高等数学基础期末复习资料全
数学期末复习提纲
![数学期末复习提纲](https://img.taocdn.com/s3/m/bd908f5387c24028915fc37a.png)
复习提纲第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法2、分部积分法(注意加 C )定积分:1、定义2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程)3、空间平面4、空间旋转面(柱面)具体内容函数收敛比如函数的极限是a,那么我们可以叫他为函数收敛于 a 性质如果函数收敛那么极限唯一。
如果函数收敛它一定有界(有界是指函数定义域存在一个数使得函数值的绝对值大于等于这个数)。
绕口令:函数有界是函数收敛的必要条件(因为可能极限不存在)证明极限的方法1求函数极限的方法定义证明设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,|Xn - a|<ε 都成立,那么就称常数a是数列|Xn|的极限,或称数列|Xn|收敛于a。
记为lim Xn = a 或Xn→a(n→∞)2利用左右极限左右极限存在并相等。
3利用极限存在准则一、单调有界准则,如单调递增又有上界者,或者单调递减又有下界者。
二、夹逼准则,如能找到比目标数列或者函数大而有极限的数列或函数并且又能找到比目标数列或者函数小且有极限的数列或者函数,那么目标数列或者函数必定存在极限。
4利用两个重要极限1)x->0时,sinx/x=1 2)x->无穷时,(1+1/x)^x=e x趋近0的时候5极限的运算法则。
高等数学基础复习资料
![高等数学基础复习资料](https://img.taocdn.com/s3/m/ba9604f31b37f111f18583d049649b6649d70915.png)
高等数学基础复习资料一、引言高等数学作为大学数学的重要组成部分,是理工科学生必修的一门课程。
作为一门基础性的学科,高等数学为学生奠定了后续学习的数学基础,并为他们建立了抽象思维和逻辑推理能力奠定了基础。
本文将为大家提供一份高等数学基础复习资料,帮助学生系统回顾相关知识点,提高自己的数学水平。
二、数列与极限1. 数列的概念及表示方法- 数列的定义与本质特征- 数列的表示方法:通项公式、递推公式2. 数列的极限- 数列极限的定义与判定方法- 数列收敛与发散的判断- 数列极限的性质与运算规则3. 无穷级数- 级数的概念与收敛性判断- 常见级数的收敛性判断方法- 级数收敛的性质与运算规则三、函数与极限1. 函数的概念与性质- 函数的定义与分类- 函数的图像与性质2. 函数的极限- 函数极限的定义与性质- 常见函数极限的计算方法- 无穷小量与无穷大量的定义与性质3. 一元函数的连续性与导数- 函数连续性的定义与判断- 函数导数的定义与计算方法- 函数导数的性质与应用四、微分学1. 一元函数的微分学- 函数微分的定义与计算方法- 微分的几何意义与应用- 高阶微分与泰勒公式2. 函数的极值与最值- 函数极值的判定与求解- 条件极值与拉格朗日乘数法3. 函数的凸性与曲线的形状- 函数凸性的定义与判定方法- 曲线的拐点与渐进线五、积分学1. 定积分与不定积分- 定积分的定义与性质- 定积分计算的方法与技巧- 不定积分的定义与计算方法2. 反常积分- 反常积分的概念与判定- 常见反常积分的计算方法3. 微积分基本定理与应用- 微积分基本定理的表述与应用- 曲线下面积的计算- 参数方程与极坐标下的积分六、常微分方程1. 常微分方程的基本概念- 常微分方程的定义与分类- 一阶常微分方程的常见形式2. 一阶常微分方程的解法- 可分离变量方程的求解- 线性方程的求解- 齐次与非齐次方程的解法3. 高阶常微分方程- 二阶常微分方程解的一般性质- 常系数二阶齐次线性微分方程的解法- 特征方程求解与常系数二阶非齐次线性微分方程的解法七、向量代数与空间解析几何1. 向量的概念与性质- 向量的基本运算与性质- 向量的数量积与向量积2. 空间直线与平面- 点、直线与平面的位置关系- 空间直线的方程与相交关系- 空间平面的方程与位置关系3. 空间几何体的体积与曲面积分- 空间几何体的体积计算- 曲面积分的概念与计算方法八、多元函数微分学1. 多元函数的偏导数- 偏导数的定义与计算方法- 偏导数的几何意义与性质2. 多元函数的方向导数与梯度- 方向导数的定义与计算方法- 梯度的定义与性质3. 多元函数的极值与最值- 多元函数的极值点与极值- 约束条件下的极值求解九、多元函数积分学1. 二重积分与三重积分- 二重积分的定义与计算方法- 三重积分的定义与计算方法2. 极坐标与球坐标下的积分计算- 极坐标下的二重积分与三重积分- 球坐标下的三重积分3. 变量替换与重积分- 变量替换的基本思想与方法- 重积分的计算方法与应用十、常微分方程与偏微分方程初步1. 常微分方程初值问题的求解- 常微分方程初值问题的基本概念- 高阶线性常微分方程初值问题的求解2. 偏微分方程的基本概念与分类- 偏微分方程的基本定义与分类- 一阶偏微分方程的求解方法初探3. 偏微分方程边值问题与特解- 偏微分方程边值问题的基本概念- 常见偏微分方程的特解求解方法结语通过对高等数学基础内容的系统复习,我们可以巩固数理基础,提高数学水平,为后续的学习和研究打下坚实的基础。
《高等数学基础》期末试题及答案
![《高等数学基础》期末试题及答案](https://img.taocdn.com/s3/m/890c13b527fff705cc1755270722192e453658c3.png)
《高等数学基础》期末试题及答案一、选择题(每题5分,共25分)1. 函数f(x) = x² - 2x + 1在x = 1处的导数是()A. 0B. 2C. -2D. 1答案:A2. 函数y = ln(e²x)的导数是()A. 2xB. 2C. e²xD. 1答案:A3. 下列极限中,正确的是()A. lim(x→0) sinx/x = 0B. lim(x→0) sinx/x = 1C. lim(x→0) sinx/x = ∞D. lim(x→0) sinx/x = -1答案:B4. 函数y = x²e²x的极值点为()A. x = 0B. x = 1C. x = -1D. x = 2答案:C5. 定积分∫(0→1) x²dx的值是()A. 1/3B. 1/2C. 1D. 2答案:A二、填空题(每题5分,共25分)6. 函数y = 2x³ - 3x² + 2x + 1的一阶导数是______。
答案:6x² - 6x + 27. 函数y = x²e²x的二阶导数是______。
答案:4x²e²x + 4xe²x8. 极限lim(x→∞) (1 + 1/x)²ⁿ = ______。
答案:e9. 定积分∫(0→π) sinx dx的值是______。
答案:210. 定积分∫(0→π/2) eˣdx的值是______。
答案:eπ/2 - 1三、解答题(每题25分,共75分)11. 设函数f(x) = x³ - 3x² + 4,求f'(x)和f''(x)。
解:f'(x) = 3x² - 6x,f''(x) = 6x - 6。
12. 求函数f(x) = x²e²x的极值点和极值。
高等数学基础期末复习资料 (2)
![高等数学基础期末复习资料 (2)](https://img.taocdn.com/s3/m/8ac8d088551810a6f424862c.png)
《高等数学基础》课程期末考试复习资料册一、单项选择题1.设函数f(x)的定义域为,则函数f(x)+f(-x)的图形关于(C)对称.A.y=xB.x轴C.y轴D.坐标原点2.函数在x=0处连续,则k=(C).A.1B.5D.03.下列等式中正确的是(C).4.若F(x)是4.f(x)的一个原函数,则下列等式成立的是(A).5.下列无穷限积分收敛的是(D).6.设函数f (x)的定义域为,则函数f(x)- f(-x)的图形关于( D)对称.A.y=xB.x轴C.y轴D.坐标原点7.当时,下列变量中( A)是无穷大量.8.设f (x)在点x=1处可导,则 =(B).9.函数在区间(2,4)内满足(A).A.先单调下降再单调上升B.单调上升C.先单调上升再单调下降D.单调下降10.=(B).A.0B. ПC.2ПD. П/211.下列各函数对中,(B)中的两个函数相等.12.当,变量(C)是无穷小量.13.设f(x)在点x=0处可导,则=(A).14.若f(x)的一个原函数是,则=(D).15.下列无穷限积分收敛的是(C).16.设函数f(x)的定义域为,则函数的图形关于(A)对称.A.坐标原点B.x轴C.y轴D. y=x17.当时,变量(D)是无穷小量.18.设f(x)在x。
可导,则=(C).19.若则=(B).20. =(A).21.下列各函数对中,(B)中的两个函数相等.22.当k=(C)时,在点x=0处连续.A. -1B. 0c.1 D.223. 函数在区间(2,4)内满足(B).A. 先单调下降再单调上升B.单调上升C. 先单调上升再单调下降D.单调下降24 若,则= (D).A. sinx十CB. -sinx十cC. -cosx+cD. cosx 十C25. 下列无穷积分收敛的是(A).26.设函数f(x) 的定义域为,则函数f(x)- f(-x)的图形关于(D)对称.A.y=xB.x轴C.y轴D.坐标原点27. 当x→0时,变量(C)是无穷小量.28. 函数在区间(-5,5) 内满足(B).A. 单调下降B.先单调下降再单调上升C先单调上升再单调下降 D.单调上升29. 下列等式成立的是(A).30.下列积分计算正确的是(D).31. 函数的定义域是(D).32.若函数,在x=0处连续,则k=(B).A .1 B.2C.-1D.33.下列函数中,在内是单调减少的函数是(A).34.若f(x) 的一个原函数是,则=(C).A. cosx +cB. - sinx十CC. sinx十CD. - cosx十C35. 下列无穷限积分收敛的是(C).36.下列各函数对中,(C)中的两个函数相等.37. 37.在下列指定的变化过程中, (A)是无穷小量.38. 设f(x)在可导,则= (C).39. =(A).40. 下列无穷限积分收敛的是(C).41.下列函数中为奇函数的是(A).42. 当x→0时,变量(C)无穷小量.43.下列等式中正确的是(B).44 若f(x)的一个原函数是,则=(D).45.=(A).46.函数的图形关于(D)对称.A.y=xB.x轴c.y轴 D.坐标原点47. 在下列指定的变化过程中,(A)是元穷小量.48.函数在区间(-5,5)内满足(C).A. 先单调上升再单调下降B.单调下降C. 先单调下降再单调上升D.单调上升49. 若f(x) 的一个原函数是,则 = (B).50.下列无穷限积分收敛的是(B).二、填空题1.函数的定义域是(3,5) .2.已知,当时,f(x)为无穷小量.3.曲线f(x)=sinx在处的切线斜率是 -1 .4.函数的单调减少区间是 .5.= 0 .6.函数的定义域是(2,6) .7.函数的间断点是 x=0 .8.函数的单调减少区间是 .9.函数的驻点是 x= - 2 .10.无穷积分当时p >1 时是收敛的.11..若,则f(x)= .12.函数的间断点是 x=0 .13.已知,则= 0 .14.函数的单调减少区间是 .15.= .16.函数的定义域是 (-5,2) .17. .18.曲线在点(1,3)处的切线斜率是 2 .19.函数的单调增加区间是 .20.若则f(x)= .21.若则f(x)= .22 已知当时,f(x)为无穷小量.23. 曲线在(l ,2) 处的切线斜率是 .24. = .25 若,则= .26.函数的定义域.27. 函数的间断点是 x=0 .28. 曲线在x=2处的切线斜率是 .29. 函数的单调增加区间是 .30.= .31. 函数,则f(x)= .32. 函数的间断点是 x=3 .33. 已知则 = 0 .34. 函数的单调减少区间 .35. 若f(x) 的一个原函数为lnx,则 f(x) = .36. 若函数,则f(O)= -3 .37.若函数在x=O处连续,则k=e .38.曲线在(2,2)处的切线斜率是 .39.函数的单调增加区间是 .40.= .41. 函数的定义域是(-2,2) .42. 函数的间断点是 x=3 .43. 曲线在(0,2)处的切线斜是 1 .44. 函数的单调增加区间是 .45. 若,则f(x)= .46.函数的定义域是 .47.若函数,在x=O处连续,则k= e .48. 已知f(x) =ln2x ,则= 0 .49. 函数的单调增加区间是 .50. ,则= .三、计算题1.计算极限.解:2..解:由导数四则运算法则和复合函数求导法则得3.计算不定积分.解:由换元积分法得4.计算定积分.解:由分部积分法得5.计算极限.解:6.设,求.解:由导数四则运算法则和复合函数求导法则得7.计算不定积分.解:由换元积分法得8.计算定积分.解:由分部积分法得9.计算极限解:10.设,求dy.解:由微分四则运算法则和一阶微分形式不变性得11.计算不定积分.解:由换元积分法得12.计算定积分.解:由分部积分法得13.计算极限.解:14.设,求.解:15.计算不定积分·解:由换元积分法得16.计算定定积分.解:由分部积分法得17.计算极限.解:18.设求dy.解:19.计算不定积分.解:由换元积分法得20.计算定积分.解:由分部积分法得21.计算极限.22.设求 .解:由导数四则运算法则和导数基本公式得23.计算不定积分.解:由换元积分法得24.计算定积分.解:由分部积分法得25.计算极限.26.设,求.解: 由导数四则运算法则和复合函数求导法则得27.计算不定积分.解:由换元积分法得28.计算定积分.解:由分部积分法得29. 计算极限.30.设,求.解:由导数运算法则和导数基本公式得31.计算不定积分.解:由换元积分法得32. 计算定积分.解:由分部积分法得33. 计算极限.34设,求dy.解: 由微分运算法则和微分基本公式得35.计算不定积分.解:由换元积分法得36.计算定积分.解:由分部积分法得37. 计算极限38.设,求dy.解: 由微分运算法则和微分基本公式得39.计算不定积分.解:由换元积分法得40. 计算定积分.解:由分部积分法得四、应用题1.求曲线上的点,使其到点A(0,2)的距离最短.解:曲线上的点到点A(0,2)的距离公式为d与在同一点取到最大值,为计算方便求最大值点,将代人得求导得令得,并由此解出,即曲线上的点和点到点A(0,2)的距离最短。
2020-2021-2高等数学期末复习资料
![2020-2021-2高等数学期末复习资料](https://img.taocdn.com/s3/m/a2659f03e009581b6ad9eb09.png)
注:(1)发散级数加括号后可能收敛也可能发散。
(2)收敛级数去括号后可能收敛可能发散。
(3)发散级数去括号后仍然发散。
2.
p
级数
n1
1 np
(
p
1时收敛;
p
1 时发散)
3.
比较判别准则的极限形式:设 un
n1
和 vn
n1
是正项级数,且 lim un v n
n
l ,则
①若 l 为正数( 0 l ),则级数 un 和 vn 敛散性相同;
x3
1 et2 dt
(6)lim x0
cos x
x2
x ln(1 t)dt
(7) lim 0 x0
x2
(8) lim x0
tan x2
0
sin 2tdt
x
x (1 cos t)dt
(10) lim 0 x0
x3
考点 2.求定积分(第一类换元积分法)
2x
t sin tdt
(9) lim x0
0
ln(1 x3)
考点 2.求幂级数的收敛域及和函数
知识点回顾:
1.幂级数 un x 收敛域的求解方法: n1
第一步:令 lim un1 u n
n
1或 lim n n
un
1 ,可求出 x (a,b)
第二步:端点处敛散性另行判定后,就可以确定收敛域,其中收敛半径为 R b a 。 2
2.(1)求和函数前,必须先求收敛域,即和函数的定义域。
x
S(x)
,先积分再求导。
练习题:
1. 求下列幂级数的收敛域
xn
(1)
n1 n!
(2) nxn1 n1
(整理)高等数学期末考试复习资料
![(整理)高等数学期末考试复习资料](https://img.taocdn.com/s3/m/b74160c54693daef5ff73d24.png)
综合试卷一一. 单项选择题(每题3分,共30分)1.下列等式成立的是()2.设在点的某邻域内存在,且是的极大值,则=()3.下列各极限中能够用洛必达法则求出的是()4.设,则=1是的()A.可去间断点 B. 跳跃间断点 C.无穷间断点 D.连续点5.下列关系式正确的是( )6.下列广义积分收敛的是( )7.的待定特解形式为( )A.﹡=AsinB.﹡=AC. ﹡=﹡=8.平面的相关位置关系为( )A.相交且垂直B.相交不垂直C. 平行不重合D. 重合9.若发散,则( )10.设,则= …………..( )二.填空题(每题3分,共15分)1.2.3.的水平渐近线是,垂直渐近线是4.时,取得极值.5.平行于直线且与曲线相切的直线方程为.三.解答题(每题4分,共32分)1.设2.已知,求常数的值.3.4.5.6.7.8.求曲线与在点处的切线和Y轴所围图形的面积.四. 综合题(共23分)1. (8分)2.设产品的需求函数Q=125-5P (Q为需求量,P为价格),若生产该产品的固定成本为100(百元),多生产一个产品成本增加2(百元),且工厂自产自销,产销平衡.试问如何定价,才能使工厂获得最大利润?最大利润是多少? (8分)3.求曲线与在点(-1,0)和(1,0)处的法线所围成的平面图形的面积. (7分)综合试卷二一. 单项选择题(每题3分,共30分)1.下列等式成立的是()2.若直线与X轴平行且与曲线相切,则切点坐标为()3.设在上连续,,下面说法正确的是()A.I是的一个原函数 B.I是一个确定常数,且与积分变量记号无关C. I是的全体原函数D. I是一个确定常数,且与积分变量记号有关4.设()A. B. C. D.5.设为连续函数,则( )6.设,则点(1,2) ……( )7.要使直线落在平面上,则K=( )A. -2B. 2C.D. -8.若幂级数……( )9. 的待定特解形式为( )A.﹡=AB.﹡=(A+B)eC. ﹡=﹡=10.设(R>0),把表示为极坐标的二次积分是. ( )二.填空题(每题3分,共15分)1.= .2.若则3.4.则.5.以为通解的二阶线性常系数齐次微分方程为三.解答题(每题4分,共32分)1.确定常数,使在可导2.设,求.3.求4.计算5.6.7. (R>0)8.求方程的通解。
(完整版)高等数学复习资料大全
![(完整版)高等数学复习资料大全](https://img.taocdn.com/s3/m/6797994449649b6648d747a3.png)
《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
高等数学复习资料大全
![高等数学复习资料大全](https://img.taocdn.com/s3/m/f073e22dcd7931b765ce0508763231126edb7716.png)
高等数学复习资料大全高等数学复习资料大全一、函数的极限1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。
2、函数极限的性质:(1)唯一性:若极限存在,则唯一。
(2)局部有界性:在极限附近的函数值有界。
(3)局部保号性:在极限附近,函数值的符号保持不变。
(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。
3、极限的四则运算:设、存在,则、也存在,且、、、。
4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。
5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。
(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。
6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)^ x / kx = e^k (k为常数且k趋近于0)。
二、导数与微分1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。
2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。
3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。
4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。
5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。
三、不定积分1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x)进行积分所得的结果称为f(x)的不定积分,记为或。
2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。
大一高数期末复习课提纲(很有用)
![大一高数期末复习课提纲(很有用)](https://img.taocdn.com/s3/m/123438c98bd63186bcebbcf8.png)
18
常用函数的麦克劳林公式
2 n+1 x 3 x5 x sin x = x − + − ! + ( −1)n + o( x 2 n+2 ) 3! 5! ( 2n + 1)! 2n x 2 x4 x6 x n 2n cos x = 1 − + − + ! + ( −1) + o( x ) 2! 4! 6! ( 2n)!
( a) 当 f ʹ′ʹ′( x0 ) < 0, f ( x )在 x0 处取得极大值 , ( b) 当 f ʹ′ʹ′( x0 ) > 0, f ( x )在 x0 处取得极小值 .
23
求极值的步骤:
a. 求导数 f ʹ′( x); b. 求驻点(方程 f ʹ′( x) = 0 的根) 及 f ʹ′( x)不存在 的点. c. 检查 f ʹ′( x) 在b中所有点左右的正负号, 或 f ʹ′ʹ′( x) 在该点的符号, 判断极值点. d . 求极值.
x x n x ln(1 + x ) = x − + − ! + ( −1) + o( x n+1 ) 2 3 n+1
2
3
n+1
19
1 2 n n = 1 + x + x + ! + x + o( x ) 1− x m( m − 1) 2 (1 + x ) = 1 + mx + x +! 2! m( m − 1)!( m − n + 1) n n + x + o( x ) n!
lim f ( x ) = f ( x0 )
6
高等数学基础期末复习资料
![高等数学基础期末复习资料](https://img.taocdn.com/s3/m/d01505f7482fb4daa48d4b26.png)
《高等数学基础》课程期末考试复习资料册一、单项选择题1.设函数f(x)的定义域为,则函数f(x)+f(-x)的图形关于(C)对称.A.y=xB.x轴C.y轴D.坐标原点2.函数在x=0处连续,则k=(C).A.1B.5D.03.下列等式中正确的是(C).4.若F(x)是4.f(x)的一个原函数,则下列等式成立的是(A).5.下列无穷限积分收敛的是(D).6.设函数f (x)的定义域为,则函数f(x)- f(-x)的图形关于( D)对称.A.y=xB.x轴C.y轴D.坐标原点7.当时,下列变量中( A)是无穷大量.8.设f (x)在点x=1处可导,则 =(B).9.函数在区间(2,4)内满足(A).A.先单调下降再单调上升B.单调上升C.先单调上升再单调下降D.单调下降10.=(B).A.0B. ПC.2ПD. П/211.下列各函数对中,(B)中的两个函数相等.12.当,变量(C)是无穷小量.13.设f(x)在点x=0处可导,则=(A).14.若f(x)的一个原函数是,则=(D).15.下列无穷限积分收敛的是(C).16.设函数f(x)的定义域为,则函数的图形关于(A)对称.A.坐标原点B.x轴C.y轴D. y=x17.当时,变量(D)是无穷小量.18.设f(x)在x。
可导,则=(C).19.若则=(B).20. =(A).21.下列各函数对中,(B)中的两个函数相等.22.当k=(C)时,在点x=0处连续.A. -1B. 0c.1 D.223. 函数在区间(2,4)内满足(B).A. 先单调下降再单调上升B.单调上升C. 先单调上升再单调下降D.单调下降24 若,则= (D).A. sinx十CB. -sinx十cC. -cosx+cD. cosx 十C25. 下列无穷积分收敛的是(A).26.设函数f(x) 的定义域为,则函数f(x)- f(-x)的图形关于(D)对称.A.y=xB.x轴C.y轴D.坐标原点27. 当x→0时,变量(C)是无穷小量.28. 函数在区间(-5,5) 内满足(B).A. 单调下降B.先单调下降再单调上升C先单调上升再单调下降 D.单调上升29. 下列等式成立的是(A).30.下列积分计算正确的是(D).31. 函数的定义域是(D).32.若函数,在x=0处连续,则k=(B).A .1 B.2C.-1D.33.下列函数中,在内是单调减少的函数是(A).34.若f(x) 的一个原函数是,则=(C).A. cosx +cB. - sinx十CC. sinx十CD. - cosx十C35. 下列无穷限积分收敛的是(C).36.下列各函数对中,(C)中的两个函数相等.37.37.在下列指定的变化过程中, (A)是无穷小量.38. 设f(x)在可导,则= (C).39. =(A).40. 下列无穷限积分收敛的是(C).41.下列函数中为奇函数的是(A).42. 当x→0时,变量(C)无穷小量.43.下列等式中正确的是(B).44 若f(x)的一个原函数是,则=(D).45.=(A).46.函数的图形关于(D)对称.A.y=xB.x轴c.y轴 D.坐标原点47. 在下列指定的变化过程中,(A)是元穷小量.48.函数在区间(-5,5)内满足(C).A. 先单调上升再单调下降B.单调下降C. 先单调下降再单调上升D.单调上升49. 若f(x) 的一个原函数是,则 = (B).50.下列无穷限积分收敛的是(B).二、填空题1.函数的定义域是(3,5) .2.已知,当时,f(x)为无穷小量.3.曲线f(x)=sinx在处的切线斜率是 -1 .4.函数的单调减少区间是 .5.= 0 .6.函数的定义域是(2,6) .7.函数的间断点是 x=0 .8.函数的单调减少区间是 .9.函数的驻点是 x= - 2 .10.无穷积分当时p >1 时是收敛的.11..若,则f(x)= .12.函数的间断点是 x=0 .13.已知,则= 0 .14.函数的单调减少区间是 .15.= .16.函数的定义域是 (-5,2) .17. .18.曲线在点(1,3)处的切线斜率是 2 .19.函数的单调增加区间是 .20.若则f(x)= .21.若则f(x)= .22 已知当时,f(x)为无穷小量.23. 曲线在(l ,2) 处的切线斜率是 .24. = .25 若,则= .26.函数的定义域.27. 函数的间断点是 x=0 .28. 曲线在x=2处的切线斜率是 .29. 函数的单调增加区间是 .30.= .31. 函数,则f(x)= .32. 函数的间断点是 x=3 .33. 已知则 = 0 .34. 函数的单调减少区间 .35. 若f(x) 的一个原函数为lnx,则 f(x) = .36. 若函数,则f(O)= -3 .37.若函数在x=O处连续,则k=e .38.曲线在(2,2)处的切线斜率是 .39.函数的单调增加区间是 .40.= .41. 函数的定义域是(-2,2) .42. 函数的间断点是 x=3 .43. 曲线在(0,2)处的切线斜是 1 .44. 函数的单调增加区间是 .45. 若,则f(x)= .46.函数的定义域是.47.若函数,在x=O处连续,则k= e .48. 已知f(x) =ln2x ,则= 0 .49. 函数的单调增加区间是 .50. ,则= .三、计算题1.计算极限.解:2..解:由导数四则运算法则和复合函数求导法则得3.计算不定积分.解:由换元积分法得4.计算定积分.解:由分部积分法得5.计算极限.解:6.设,求.解:由导数四则运算法则和复合函数求导法则得7.计算不定积分.解:由换元积分法得8.计算定积分.解:由分部积分法得9.计算极限解:10.设,求dy.解:由微分四则运算法则和一阶微分形式不变性得11.计算不定积分.解:由换元积分法得12.计算定积分.解:由分部积分法得13.计算极限.解:14.设,求.解:15.计算不定积分·解:由换元积分法得16.计算定定积分.解:由分部积分法得17.计算极限.解:18.设求dy.解:19.计算不定积分.解:由换元积分法得20.计算定积分.解:由分部积分法得21.计算极限.22.设求 .解:由导数四则运算法则和导数基本公式得23.计算不定积分.解:由换元积分法得24.计算定积分.解:由分部积分法得25.计算极限.26.设,求.解: 由导数四则运算法则和复合函数求导法则得27.计算不定积分.解:由换元积分法得28.计算定积分.解:由分部积分法得29. 计算极限.30.设,求.解:由导数运算法则和导数基本公式得31.计算不定积分.解:由换元积分法得32. 计算定积分.解:由分部积分法得33. 计算极限.34设,求dy.解: 由微分运算法则和微分基本公式得35.计算不定积分.解:由换元积分法得36.计算定积分.解:由分部积分法得37. 计算极限38.设,求dy.解: 由微分运算法则和微分基本公式得39.计算不定积分.解:由换元积分法得40. 计算定积分.解:由分部积分法得四、应用题1.求曲线上的点,使其到点A(0,2)的距离最短.解:曲线上的点到点A(0,2)的距离公式为d与在同一点取到最大值,为计算方便求最大值点,将代人得求导得令得,并由此解出,即曲线上的点和点到点A(0,2)的距离最短。
高等数学-上__期末复习资料大全
![高等数学-上__期末复习资料大全](https://img.taocdn.com/s3/m/f04ab99d8762caaedd33d4db.png)
例14 求
(换元和分布积分法结合使用)
2 则 解 : 令 x t , x t , dx 2 t d t
当x 0时, t 0,当x 1时,t 1.
四、应用题 例14 求函数
间,凹凸区间.
的极值点,拐点,单调区
解
y x 2 2 x x( x 2), y 2 x 2 2( x 1).
2 4
y yd y y
y 2 2x
(8 , 4)
为简便计算, 选取 y 作积分变量,
o
y x4
(2 , 2)
x
18
x (t ) 空间光滑曲线 : y (t ) z (t ) 切向量 T ( (t0 ) , (t0 ) , (t0 ))
二、导数和偏导数
例6
解
y ln cos(e ), 求y及dy x x y ln cos(e ) y ln u, u cosv, v e .
x
1 dy dy du dv ( sin v ) e x u dx du dv dx
sin(e x ) x x x e e tan( e ). x cos(e )
2 2
x2
x 3 sin x
x
解
lim
x 0
0
2 f (u )du 1 f ( x ) 2x 1 0 0 lim ( ) lim 4 x 0 2 x0 4 x3 2 x 0
1 f (x2 ) 1 f ( x 2 ) f (0) f (0) 1 lim lim . 2 2 x 0 x 0 4 4 x 4 x 0 4
高等数学复习 一、极限
《高等数学基础》知识点汇总
![《高等数学基础》知识点汇总](https://img.taocdn.com/s3/m/b93bd65b8f9951e79b89680203d8ce2f00666527.png)
《高等数学基础》知识点汇总第1章 函数 第2章 极限与连续 (一) 单项选择题⒈下列各函数对中,(C )中的两个函数相等. A.2)()(x x f =,x x g =)( B. 2)(x x f =,x x g =)(C.3ln )(xx f =,x x g ln 3)(= D.1)(+=x x f ,11)(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于(C )对称.A. 坐标原点B. x 轴C. y 轴D.x y =⒊下列函数中为奇函数是(B ). A.)1ln(2x y += B. x x y cos =C.2x x a a y -+=D.)1ln(x y +=⒋下列函数中为基本初等函数是(C ). A.1+=x y B. x y -=C.2xy = D.⎩⎨⎧≥<-=0,10,1x x y ⒌下列极限存计算不正确的是(D ). A.12lim 22=+∞→x x x B. 0)1ln(lim 0=+→x x C.0sin lim=∞→x x x D. 01sin lim =∞→x x x⒍当0→x 时,变量(C )是无穷小量.A. x x sinB. x 1C. xx 1sin D. 2)ln(+x⒎若函数)(x f 在点0x 满足(A ),则)(x f 在点0x 连续。
A. )()(lim 00x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义C.)()(lim 00x f x f x x =+→ D. )(lim )(lim 0x f x f x x x x -+→→=(二)填空题⒈函数)1ln(39)(2x x x x f ++--=的定义域是()+∞,3.⒉已知函数x x x f +=+2)1(,则=)(x f x 2-x .⒊=+∞→xx x)211(lim 21e . ⒋若函数⎪⎩⎪⎨⎧≥+<+=0,0,)1()(1x k x x x x f x ,在0=x 处连续,则=ke .⒌函数⎩⎨⎧≤>+=0,sin 0,1x x x x y 的间断点是0=x .⒍若A x f x x =→)(lim 0,则当0x x →时,A x f -)(称为时的无穷小量0x x →。
高等数学复习资料
![高等数学复习资料](https://img.taocdn.com/s3/m/369723f204a1b0717fd5dd8d.png)
寄语:亲爱的学弟,学妹们。
期末将至,班主任助理小组为大家准备了一些关于高数的复习资料。
请大家做好考前准备,预祝大家取得优异的成绩。
亲~ 一定要看哦! 考试内容、重点问题与方法(按照考试提纲总结的) 第一部分:函数极限的计算 (1) 函数值的计算 (2) 连续性的判断 (3) 未定式极限的求法 (4) 洛比达法则的应用 常用的极限公式non x x n n k x kn x x q q x n o=<===→-∞→∞→∞→lim )1|(|0lim 01lim 01lim1 )()(lim 1lim )0(1lim o n n x n n n n n x p x p n a a o==>=→∞→∞→)(0co lim sin lim )"1("1sin lim0为无穷小无穷小乘以有界函数仍极限===∞→∞→→x sx x x x x x x x e x e xen x x n =+=+=+→∞→∞→1x x n )1(lim )11(lim )11(lim 111sinlim 1sinlim 01sin lim 0===∞→∞→→xx x x x x x x x ∞=⋅==⋅=∞→∞→∞→→→→x x x x x x x x x x x x x x x x lim 1sin lim 1sin lim 0lim 1sin lim 1sinlim 2020常见的等价无穷小xx xe x x x x x x x αα~1)1(~121~cos 1~tan ~sin 2-+-- x nx x x x x xx x x n1~1)1(~)1l n (21~1c o s~a r c t a n ~a r c s i n 12-++--第二部分:导数的计算 (1) 包括初等函数,隐函数及参数方程及抽象函数的一阶,二阶或高阶导数概念与求法;(2) 包括导数概念,几何意义以及连续、导数与微分的关系。
大学高数复习资料大全
![大学高数复习资料大全](https://img.taocdn.com/s3/m/aa22db4e5f0e7cd184253689.png)
高等数学第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】36x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim limlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x(,0)-∞ 0(0,1) 1(1,2) 2(2,)+∞y '-++- y '' ++--y1 (1,3) 5 4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],ab 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= .(三行表)x1- ()1,1-1 (]1,3()f x ' 0+-()f x极小值极大值4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰。
高数复习资料
![高数复习资料](https://img.taocdn.com/s3/m/8a23c40a16fc700abb68fc27.png)
高等数学期末复习资料第 1 页(共9 页)高等数学第一章函数与极限函数与极限函数与极限函数与极限第一节函数○函数基础(高中部分相关知识)(★)○邻域(去心邻域)(★)....,|Uaxxa.........,|0Uaxxa......第二节数列的极限数列的极限数列的极限数列的极限○数列极限的证明(★)【题型示例】已知数列..nx,证明..limnxxa...【证明示例】N..语言1.由nxa...化简得...gn.,∴..Ng......2.即对0...,..Ng.......,当Nn.时,始终有不等式nxa...成立,∴..axnx (i)第三节函数的极限函数的极限函数的极限函数的极限○0xx.时函数极限的证明(★)【题型示例】已知函数..xf,证明..Axfxx..0lim【证明示例】...语言1.由..fxA...化简得..00xxg....,∴....g.2.即对.. . 0 ,....g..,当00xx....时,始终有不等式..fxA...成立,∴ f .x. Ax x.. 0lim○..x时函数极限的证明(★)【题型示例】已知函数 f .x. ,证明..Axfx (i)【证明示例】X..语言1.由..fxA...化简得..xg..,∴ (X)2.即对.. . 0 ,...gX..,当Xx.时,始终有不等式..fxA...成立,∴..Axfx (i)第四节无穷小与大无穷小与大无穷小与大无穷小与大无穷小与大○无穷小与大的本质(★)函数..xf无穷小...0lim.xf函数..xf无穷大.....xflim○无穷小与大的相关定理推论(★)(定理三)假设 f .x. 为有界函数,..xg为无穷小,则....lim0fxgx......(定理四)在自变量的某个化过程中,若在自变量的某个化过程中,若..xf为无穷大,则无穷大,则无穷大,则..1fx.为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若..xf为无穷小,且..0fx.,则..xf1.为无穷大【题型示例】计算:....0limxxfxgx......(或..x)1.∵..fx≤M∴函数..fx在0xx.的任一去心邻域...,0xU.内是有界的;(∵..fx≤M ,∴函数..fx在Dx.上有界;)2...0lim0..xgxx即函数..xg是0xx.时的无穷小;(..0lim...xgx即函数g.x. 是x . . 时的无穷小;)3.由定理可知....0lim0xxfxgx.......(....lim0xfxgx........)第五节极限运算法则极限运算法则极限运算法则极限运算法则极限运算法则○极限的四则运算法(★)(定理一)加减法则(定理二)乘除法则关于多项式..px、..xq商式的极限运算设:.....................nnnmmmbxbxbxqaxaxaxp110110则有...............0lim00baxqxpxmnmnmn...........000lim00xxfxgxfxgx......................0000000,00gxgxfxgxfx.....(特别地,当....00lim0xxfxgx..(不定型)时,通常分子分母约去公因式约去公因式约去公因式即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便可求解出极可求解出极可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9xxx...高等数学期末复习资料第 2 页(共9 页)【求解示例】解:因为3.x,从而可得3.x,所以原式....23333311limlimlim93336xxxxxxxxx.............其中3x.为函数..239xfxx...的可去间断点倘若运用罗比达法则求解(详见第三章二节):解:....00233323311limlimlim9269xLxxxxxxx.............○连续函数穿越定理(复合函数的极限求解)(★)(定理五)若函数..xf是定义域上的连续函数,那么,....00limlimxxxxfxfx...............【题型示例】求值:93lim23 (xxx)【求解示例】22333316limlim9966xxxxxx.........第六节极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要○夹迫准则(P53P53)(★)第一个重要极限:1sinlim0..xxx∵........2,0.x,xxxtansin..∴ 1sinlim.. xxx0000lim11limlim1sinsinsinlimxxxxxxxxxx.............(特别地,000sin()lim1xxxxxx....)○单调有界收敛准则(P57P57)(★)第二个重要极限:exxx..........11lim(一般地,(一般地,(一般地,(一般地,........limlimlimgxgxfxfx.........,其中..0lim.xf)【题型示例】求值:11232lim (xxxx)【求解示例】....211121212122121122122121lim21221232122limlimlim121212122lim1lim121212lim121xxxx xxxxxxxxxxxxxxxxxxxx...................................................................................................解:....12lim1212121212122lim121xxxxxxxxxeeee.......................................第七节无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小的比较无穷小的比较无穷小的比较)○等价无穷小(★)1...~sin~tan~arcsin~arctan~ln(1)~1UUUUUUUe..2.UUcos1~212.(乘除可替,加减不行)【题型示例】求值:....xxxxxx31ln1lnlim20.....【求解示例】..............3131lim31lim31ln1lim31ln1lnlim,0,000020........................xxxxxxxxxxxxxxxxxxxxx所以原式即解:因为第八节函数的连续性函数的连续性函数的连续性函数的连续性函数的连续性○函数连续的定义(★)......000limlimxxxxfxfxfx......○间断点的分类(P67P67)(★).........)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数.......xaexfx2,00..xx应该怎样选择数a,使得..xf成为在R上的连续函数?【求解示例】1.∵......2010000feeefaafa...................2.由连续函数定义......efxfxfxx.......0limlim00∴ea.高等数学期末复习资料第 3 页(共9 页)第九节闭区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质○零点定理(★)【题型示例】证明:方程】证明:方程】证明:方程】证明:方程....fxgxC..至少有一个根介于a与b之间【证明示例】1.(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)......xfxgxC....在闭区间..,ab上连续;2.∵....0ab....(端点异号)3.∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间..ba,内至少有一点.,使得..0...,即....0fgC.....(10...)4.这等式说明方程这等式说明方程这等式说明方程这等式说明方程....fxgxC..在开区间在开区间.a,b.内至少有一个根.第二章导数与微分导数与微分导数与微分导数与微分第一节导数概念○高等数学中导的定义及几何意(P83P83)(★)【题型示例】已知函数】已知函数】已知函数........baxexfx1,00..xx在0.x处可导,求a,b【求解示例】1.∵....0010fefa............,......00001120012feefbfe...................2.由函数可导定义..........0010002ffafffb..................∴1,2ab..【题型示例】求..xfy.在ax.处的切线与法方程(或:过(或:过(或:过..xfy.图像上点..,afa....处的切线与法处的切线与法处的切线与法处的切线与法方程)【求解示例】1...xfy...,..afyax....|2.切线方程:......yfafaxa....法线方程:......1yfaxafa.....第二节函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则○函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则★)1.线性组合(定理一):线性组合(定理一):()uvuv..........特别地,当1....时,有()uvuv......2.函数积的求导法则(定理二):函数积的求导法则(定理二):()uvuvuv.....3.函数商的求导法则(定理三):函数商的求导法则(定理三):2uuvuvvv...........第三节反函数和复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数..xf1.的导数【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得..xf为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域D上单调、可导,且..0..xf;∴....11fxfx........○复合函数的求导法则(★)【题型示例】设..2arcsin122lnxyexa....,求y.【求解示例】................2222222arcsin122arcsin122222arcsin1222arcsin1222arcsin1222arcsin122arcsiarcsin12 211121*********xxxxxxxyexaexaxxaexaxexaxxxexxaeaeexa.......................................................... .......解:2n1222212xxxxxxa.............第四节高阶导数○........1nnfxfx.......(或....11nnnndydydxdx..........)(★)【题型示例】求函数..xy..1ln的n阶导数【求解示例】..1111yxx......,......12111yxx...............,..........2311121yxx....................……..1(1)(1)(1)nnnynx........!第五节隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导○隐函数的求导(等式两边对x求导)(★)【题型示例】试求:方程】试求:方程】试求:方程】试求:方程yexy..所给定的曲线所给定的曲线所给定的曲线所给定的曲线C:..xyy.在点..1,1e.的切线方程与法【求解示例】由y y . x . e 两边对x 求导即..yyxe.....化简得1yyey.....∴eey (11111)高等数学期末复习资料第 4 页(共9 页)∴切线方程:..exey (1111)法线方程:....exey (111)○参数方程型函数的求导【题型示例】设参数方程.........tytx..,求22dxyd【求解示例】1.....ttdxdy.....2...22dydydxdxt..........第六节变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变(不作要求)第七节函数的微分函数的微分函数的微分函数的微分○基本初等函数微分公式与运算法则(★★★)..dxxfdy...第三章中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用第一节中值定理○引理(费马)(○引理(费马)(★)○罗尔定理(★)【题型示例】现假设函数..fx在..0,.上连续,在上连续,在上连续,在..0,.上可导,试证明:..0,....,使得....cossin0ff.......成立【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....sinxfxx..显然函数..x.在闭区间.0,. .上连续,在开区间开区间.0,. . 上可导;2.又∵....00sin00f.......sin0f......即....00.....3.∴由罗尔定理知....0,..,使得,使得. .c . . ossin0 f. f ... . . . 成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x.时,xeex..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令函数..xfxe.,则对1x..,显然函数..fx在闭区间..1,x上连续,在开区间..1,x上可导,并且..xfxe..;2.由拉格朗日中值定理可得,..1,x...使得等式..11xeexe....成立,又∵1ee..,∴..111xeexeexe......,化简得xeex..,即证得:当x .1时,x e ex . .【题型示例】证明不等式:当0x.时,..ln1xx..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....ln1fxx..,则对0x..,函数,函数 f .x. 在闭区间..0,x上连续,在开区上连续,在开区上连续,在开区上连续,在开区间.0,. . 上可导,并且..11fxx...;2.由拉格朗日中值定理可得,由拉格朗日中值定理可得,..0,x...使得等式......1ln1ln1001xx.......成立,化简得..1ln11xx....,又∵..0,x..,∴..111f......,∴..ln11xxx....,即证得:当x .1时,x e ex . .第二节罗比达法则罗比达法则罗比达法则罗比达法则○运用罗比达法则进行极限算的基本步骤(★)1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比达法则的三个前提条件A.属于两大基本不定型(0,0..)且满足条件,则进行运算:........limlimxaxafxfxgxgx.....(再进行1、2步骤,反复直到结果得出)B.☆不属于两大基本定型(转化为基本不定型)⑴0..型(转乘为除,构造分式)【题型示例】求值:0limlnxxx...【求解示例】..10000201lnlnlimlnlimlimlim111lim0xxLxxxxxxxxxxxxxa.................................解:(一般地,..0limln0xxx.....,其中,R...)⑵...型(通分构造式,观察母)【题型示例】求值:011limsinxxx........【求解示例】200011sinsinlimlimlimsinsinxxxxxxxxxxxx...........................解:........000000002sin1cos1cossinlimlimlimlim0222LxxLxxxxxxxxxx..................高等数学期末复习资料第 5 页(共9 页)⑶00型(对数求极限法)【题型示例】求值:0limxxx.【求解示例】....0000limlnln000002ln,lnlnln1lnln0limlnlimlim111limlim0limlim11xxxxxLxyyxxxxxyxyxxxxxx xyxxxxyeeex...................................解:设两边取对数得:对对数取时的极限:,从而有⑷1.型(对数求极限法)【题型示例】求值:..10limcossinxxxx..【求解示例】..........01000000limlnln100lncossincossin,ln,lncossinln0limlnlimlncossincossin10limlim1,cossin1 0lim=limxxxxLxxyyxxxxyxxyxxxyxyxxxxxxxxyeeee.................................解:令两边取对数得对求时的极限,从而可得⑸0.型(对数求极限法)【题型示例】求值:tan01limxxx.......【求解示例】....tan002000202200011,lntanln,1ln0limlnlimtanln1lnlnlimlimlim1sec1tantantansinsinlimlimlixxx xLxxxLxyyxxxyxyxxxxxxxxxxxxx...................................................................解:令两边取对数得对求时的极限,00limlnln0002sincosm0,1lim=lim1xxyyxxxxyeee.........从而可得○运用罗比达法则进行极限算的基本思路(★)0000001.......................(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分)⑶取对数获得乘积式(通过对数运算将指提前)第三节泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理(不作要求)(不作要求)(不作要求)(不作要求)第四节函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸○连续函数单调性(单调区间)(★)【题型示例】试确定函数】试确定函数】试确定函数】试确定函数..3229123fxxxx....的单调区间【求解示例】1.∵函数..fx在其定义域R上连续,且可导∴..261812fxxx....2.令......6120fxxx.....,解得:,解得:,解得:121,2xx..3.(三行表).(三行表).(三行表).(三行表)x..,1..1..1,22..2,....fx......fx极大值极小值4.∴函数 f .x. 的单调递增区间为....,1,2,....;单调递减区间为..1,2【题型示例】证明:当0x.时,1xex..【证明示例】1.(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数)设..1xxex....,(0x.)2...10xxe.....,(x . 0 )∴....00x....3.既证:当x . 0 时,1 x e .x.【题型示例】证明:当x . 0 时,..ln1xx..【证明示例】1.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设....ln1xxx....,(x . 0 )2...1101xx......,(x . 0 )∴....00x....3.既证:当x . 0 时,l . . n1 .x .x○连续函数凹凸性(★)【题型示例】试讨论函数2313yxx...的单调性、极值的单调性、极值的单调性、极值的单调性、极值的单调性、极值凹凸性及拐点【证明示例】高等数学期末复习资料第 6 页(共9 页)1.....236326661yxxxxyxx........................320610yxxyx................120,21xxx......3.(四行表)x(,0)..(0,1)1(1,2)2(2,)..y.....y......y1(1,3)4.⑴函数 2 3 y 1 3xx . ..单调递增区间为(0,1), (1,2) 单调递增区间为( ,0) .. , (2,) .. ;⑵函数 2 3 y 1 3xx . ..的极小值在0x.时取到,为..01f.,极大值在2x.时取到,为..25f.;⑶函数 2 3 y 1 3xx . ..在区间( ,0) .. , (0,1)上凹,在区间(1,2), (2,) .. 上凸;⑷函数 2 3 y 1 3xx . ..的拐点坐标为..1,3第五节函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小○函数的极值与最关系(★)⑴设函数..fx的定义域为的定义域为的定义域为D,如果Mx.的某个邻域..MUxD.,使得对..MxUx..,都适合不等式....Mfxfx.,我们则称函数 f .x. 在点..,MMxfx....处有极大值..Mfx;令..123,,,...,MMMMMnxxxxx.则函数 f .x. 在闭区间..,ab上的最大值M满足:......123max,,,,...,,MMMMnMfaxxxxfb.⑵设函数 f .x. 的定义域为D,如果,如果mx.的某个邻域..mUxD.,使得对,使得对,使得对..mxUx..,都适合不等,都适合不等,都适合不等,都适合不等,都适合不等式....mfxfx.,我们则称函数我们则称函数我们则称函数我们则称函数 f .x. 在点..,mmxfx....处有极小值..mfx;令..123,,,...,mmmmmnxxxxx.则函数 f .x. 在闭区间.a,b. 上的最小值m满足:......123min,,,,...,,mmmmnmfaxxxxfb.;【题型示例】求函数..33fxxx..在..1,3.上的最值【求解示例】1.∵函数 f .x. 在其定义域. 1 . ,3 . 上连续,且可导∴..233fxx....2.令......3110fxxx......,解得:121,1xx...3.(三行表).(三行表).(三行表).(三行表)x1...1,1.1..1,3f. .x...f .x.极小值极大值4.又∵......12,12,318fff......∴........maxmin12,318fxffxf.....第六节函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘(不作要求)(不作要求)(不作要求)第七节曲率(不作要求)(不作要求)(不作要求)(不作要求)第八节方程的近似解方程的近似解方程的近似解方程的近似解方程的近似解(不作要求)(不作要求)(不作要求)(不作要求)第四章不定积分第一节不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质○原函数与不定积分的概念(★)⑴原函数的概念:假设在定义区间I上,可导函数上,可导函数上,可导函数..Fx的导函数为..Fx.,即当自变量,即当自变量,即当自变量,即当自变量xI.时,有时,有....Fxfx..或....dFxfxdx..成立,则称成立,则称成立,则称成立,则称F.x. 为..fx的一个原函数⑵原函数存在定理:(★)如果函数..fx在定义区间I 上连续,则在I 上必存在可导函数..Fx使得 F . . . . xfx . . ,也就是说:连续函数一定存在原(可导必)⑶不定积分的概念(★)在定义区间I 上,函数上,函数f .x. 的带有任意常数项C的原函数称为 f .x. 在定义区间I 上的不定积分,即表示为:....fxdxFxC...(.称为积分号, f .x. 称为被积函数,..fxdx称为积分表达式,x则称为积分变量)○基本积分表(★)○不定积分的线性性质(分项积公式)(★)........1212kfxkgxdxkfxdxkgxdx..........第二节换元积分法换元积分法换元积分法换元积分法○第一类换元法(凑微分)((凑微分)((凑微分)((凑微分)(★)(dy . f ..x.. dx 的逆向应用)........fxxdxfxdx......................高等数学期末复习资料第7 页(共9 页)【题型示例】求221dxax..【求解示例】222211111arctan11xxdxdxdCaxaaaaxxaa............................解:【题型示例】求121dxx..【求解示例】....111121************dxdxdxxxxxC.............解:○第二类换元法(去根式)(★)(dy . f ..x.. dx的正向应用)⑴对于一次根式(0,abR..):axb.:令taxb..,于是2tbxa..,则原式可化为t⑵对于根号下平方和的形式(0a.):22ax.:令tanxat.(22t.....),于是arctanxta.,则原式可化为secat;⑶对于根号下平方差的形式( a . 0 ):a.22ax.:令sinxat.(2 2t. .. ..),于是arcsinxta.,则原式可化为cosat;b.22xa.:令secxat.(02t...),于是arccosatx.,则原式可化为tanat;【题型示例】求12 1dxx . . (一次根式)【求解示例】2211122112121txxtdxtdtdxtdtdttCxCtx.....................解:【题型示例】求22axdx..(三角换元)【求解示例】....2sin()222222arcsincos22cos1cos221sin2sincos222xattxtadxataaxdxatdttdtaattCtttC.................... .............解:第三节分部积法分部积法分部积法分部积法○分部积法(★)⑴设函数..ufx.,..vgx.具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其分部积公式可表示为:udvuvvdu....⑵分部积法函数排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”○运用分部积法计算不定积分的基本步骤:⑴遵照分部积法函数排序次对被;⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(vdxdv...)⑶使用分部积公式:udvuvvdu . . ..⑷展开尾项vduvudx.....,判断a.若vudx...是容易求解的不定积分,则直接计,则直接计,则直接计算出答案(容易表示使用基本积分、换元法算出答案(容易表示使用基本积分、换元法与有理函数积分可以轻易求解出结果);与有理函数积分可以轻易求解出结果);b.若v udx . . . 依旧是相当复杂,无法通过a中方法求解的不定积分,则重复⑵、⑶,直至⑵、⑶,直至⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2xexdx..【求解示例】....222222222222222xxxxxxxxxxxxxxxexdxxedxxdexeedxxexedxxexdexexeedxxexeeC................ .........解:【题型示例】求sinxexdx..【求解示例】........sincoscoscoscoscoscossincossinsincossinsinxxxxxxxxxxxxxxexdxedxexxdeexexdxexedxexe xxdeexexexdx...........................解:..sincossinsinxxxxexdxexexxde.......即:∴..1sinsincos2xxexdxexxC.....第四节有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分○有理函数(★)设:........101101mmmnnnPxpxaxaxaQxqxbxbxb.............对于有理函数....PxQx,当..Px的次数小于..Qx的次数时,有理函次数时,有理函次数时,有理函次数时,有理函. .. .P xQ x是真分式;当是真分式;当是真分式;当是真分式;当P.x. 的次数高等数学期末复习资料第8 页(共9 页)大于. . Q x 的次数时,有理函. .. .P xQ x是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数将有理函数将有理函数将有理函数. .. .P xQ x的分母Q.x. 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示为一次因式..kxa.;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为二次质因式..2lxpxq..,(240pq..);即:......12QxQxQx..一般地:nmxnmxm.........,则参数nam..22bcaxbxcaxxaa...........则参数,bcpqaa..⑵则设有理函数. .. .P xQ x的分拆和式为:............122klPxPxPxQxxaxpxq.....其中........1122...kkkPxAAAxaxaxaxa................2112222222...llllPxMxNMxNxpxqxpxqxpxqMxNxpxq...............参数121212,,...,,,,...,lklMMMAAANNN.........由待定系数法(比较)求出⑶得到分拆式后项积即可求解【题型示例】求21xdxx..(构造法)【求解示例】......221111111111ln112xxxxdxdxxdxxxxxdxdxdxxxxCx................................第五节积分表的使用积分表的使用积分表的使用积分表的使用积分表的使用(不作要求)(不作要求)(不作要求)(不作要求)第五章定积分极其应用定积分极其应用定积分极其应用定积分极其应用定积分极其应用第一节定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质○定积分的义(★)....01limnbiiaifxdxfxI.........( f .x. 称为被积函数,f . . xdx称为被积表达式,x则称为积分变量,a称为积分下限,b称为积分上限,..,ab称为积分区间)○定积分的性质(★)⑴....bbaafxdxfudu...⑵..0aafxdx..⑶....bbaakfxdxkfxdx.......⑷(线性质)........1212bbbaaakfxkgxdxkfxdxkgxdx..........⑸(积分区间的可加性)......bcbaacfxdxfxdxfxdx.....⑹若函数..fx在积分区间.a,b. 上满足..0fx.,则..0bafxdx..;(推论一)若函数 f .x. 、函数、函数..gx在积分区间在积分区间在积分区间.a,b. 上满足....fxgx.,则....bbaafxdxgxdx...;(推论二)....bbaafxdxfxdx...○积分中值定理(不作要求)第二节微积分基本公式微积分基本公式微积分基本公式微积分基本公式微积分基本公式○牛顿-莱布尼兹公式(★)(定理三)若果函数..Fx是连续函数..fx在区间..,ab上的一个原函数,则......bafxdxFbFa...○变限积分的导数公式(★)(上导―下)..............xxdftdtfxxfxxdx...................【题型示例】求21cos20limtxxedtx...【求解示例】..221100coscos2002limlim解:ttxxxLxdedtedtdxxx.........高等数学期末复习资料第9 页(共9 页)........2222221coscos000cos00coscos0cos010sinsinlimlim22sinlim2cossin2sincoslim21limsincos2 sincos21122xxxxxLxxxxxxeexxexxdxedxxxexexxexxxee.......................................第三节定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部○定积分的换元法(★)⑴(第一换元法)........bbaafxxdxfxdx......................【题型示例】求20121dxx..【求解示例】....222000111121ln212122121ln5ln5ln122解:dxdxxxx...............⑵(第二换元法)设函数....,fxCab.,函数..xt..满足:a.,...,使得....,ab......;b.在区间.在区间.在区间..,..或..,..上,....,ftt.......连续则:......bafxdxfttdt............【题型示例】求40221xdxx...【求解示例】..221210,43220,1014,332332311132222113111332223522933解:ttxxxtxttxdxdxtxttdttdttxt........................................⑶(分部积法)........................bbaabbbaaauxvxdxuxvxvxuxdxuxdvxuxvxvxdux..............○偶倍奇零(★)设....,fxCaa..,则有以下结论成立:⑴若....fxfx..,则....02aaafxdxfxdx....⑵若....fxfx...,则..0aafxdx...第四节定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用(不作要求)第五节定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用(不作要求)第六节反常积分(不作要求)(不作要求)(不作要求)(不作要求)如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式21arctan1dxxCx....的证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学基础》课程期末考试复习资料册一、单项选择题1.设函数f(x)的定义域为,则函数f(x)+f(-x)的图形关于(C)对称.A.y=xB.x轴C.y轴D.坐标原点2.函数在x=0处连续,则k=(C).A.1B.5D.03.下列等式中正确的是(C).4.若F(x)是4.f(x)的一个原函数,则下列等式成立的是(A).5.下列无穷限积分收敛的是(D).6.设函数f (x)的定义域为,则函数f(x)- f(-x)的图形关于( D)对称.A.y=xB.x轴C.y轴D.坐标原点7.当时,下列变量中( A)是无穷大量.8.设f (x)在点x=1处可导,则 =(B).9.函数在区间(2,4)满足(A).A.先单调下降再单调上升B.单调上升C.先单调上升再单调下降D.单调下降10.=(B).A.0B. ПC.2ПD. П/211.下列各函数对中,(B)中的两个函数相等.12.当,变量(C)是无穷小量.13.设f(x)在点x=0处可导,则=(A).14.若f(x)的一个原函数是,则=(D).15.下列无穷限积分收敛的是(C).16.设函数f(x)的定义域为,则函数的图形关于(A)对称.A.坐标原点B.x轴C.y轴D. y=x17.当时,变量(D)是无穷小量.18.设f(x)在x。
可导,则=(C).19.若则=(B).20. =(A).21.下列各函数对中,(B)中的两个函数相等.22.当k=(C)时,在点x=0处连续.A. -1B. 0c.1 D.223. 函数在区间(2,4)满足(B).A. 先单调下降再单调上升B.单调上升C. 先单调上升再单调下降D.单调下降24 若,则= (D).A. sinx十CB. -sinx十cC. -cosx+cD. cosx 十C25. 下列无穷积分收敛的是(A).26.设函数f(x) 的定义域为,则函数f(x)- f(-x)的图形关于(D)对称.A.y=xB.x轴C.y轴D.坐标原点27. 当x→0时,变量(C)是无穷小量.28. 函数在区间(-5,5) 满足(B).A. 单调下降B.先单调下降再单调上升C先单调上升再单调下降 D.单调上升29. 下列等式成立的是(A).30.下列积分计算正确的是(D).31. 函数的定义域是(D).32.若函数,在x=0处连续,则k=(B).A .1 B.2C.-1D.33.下列函数中,在是单调减少的函数是(A).34.若f(x) 的一个原函数是,则=(C).A. cosx +cB. - sinx十CC. sinx十CD. - cosx十C35. 下列无穷限积分收敛的是(C).36.下列各函数对中,(C)中的两个函数相等.37.37.在下列指定的变化过程中, (A)是无穷小量.38. 设f(x)在可导,则= (C).39. =(A).40. 下列无穷限积分收敛的是(C).41.下列函数中为奇函数的是(A).42. 当x→0时,变量(C)无穷小量.43.下列等式中正确的是(B).44 若f(x)的一个原函数是,则=(D).45.=(A).46.函数的图形关于(D)对称.A.y=xB.x轴c.y轴 D.坐标原点47. 在下列指定的变化过程中,(A)是元穷小量.48.函数在区间(-5,5)满足(C).A. 先单调上升再单调下降B.单调下降C. 先单调下降再单调上升D.单调上升49. 若f(x) 的一个原函数是,则 = (B).50.下列无穷限积分收敛的是(B).二、填空题1.函数的定义域是(3,5) .2.已知,当时,f(x)为无穷小量.3.曲线f(x)=sinx在处的切线斜率是 -1 .4.函数的单调减少区间是 .5.= 0 .6.函数的定义域是(2,6) .7.函数的间断点是 x=0 .8.函数的单调减少区间是 .9.函数的驻点是 x= - 2 .10.无穷积分当时p >1 时是收敛的.11..若,则f(x)= .12.函数的间断点是 x=0 .13.已知,则= 0 .14.函数的单调减少区间是 .15.= .16.函数的定义域是 (-5,2) .17. .18.曲线在点(1,3)处的切线斜率是 2 .19.函数的单调增加区间是 .20.若则f(x)= .21.若则f(x)= .22 已知当时,f(x)为无穷小量.23. 曲线在(l ,2) 处的切线斜率是 .24. = .25 若,则= .26.函数的定义域.27. 函数的间断点是 x=0 .28. 曲线在x=2处的切线斜率是 .29. 函数的单调增加区间是 .30.= .31. 函数,则f(x)= .32. 函数的间断点是 x=3 .33. 已知则 = 0 .34. 函数的单调减少区间 .35. 若f(x) 的一个原函数为lnx,则 f(x) = .36. 若函数,则f(O)= -3 .37.若函数在x=O处连续,则k=e .38.曲线在(2,2)处的切线斜率是 .39.函数的单调增加区间是 .40.= .41. 函数的定义域是(-2,2) .42. 函数的间断点是 x=3 .43. 曲线在(0,2)处的切线斜是 1 .44. 函数的单调增加区间是 .45. 若,则f(x)= .46.函数的定义域是.47.若函数,在x=O处连续,则k= e .48. 已知f(x) =ln2x ,则= 0 .49. 函数的单调增加区间是 .50. ,则= .三、计算题1.计算极限.解:2..解:由导数四则运算法则和复合函数求导法则得3.计算不定积分.解:由换元积分法得4.计算定积分.解:由分部积分法得5.计算极限.解:6.设,求.解:由导数四则运算法则和复合函数求导法则得7.计算不定积分.解:由换元积分法得8.计算定积分.解:由分部积分法得9.计算极限解:10.设,求dy.解:由微分四则运算法则和一阶微分形式不变性得11.计算不定积分.解:由换元积分法得12.计算定积分.解:由分部积分法得13.计算极限.解:14.设,求. 解:15.计算不定积分·解:由换元积分法得16.计算定定积分. 解:由分部积分法得17.计算极限. 解:18.设求dy. 解:19.计算不定积分.解:由换元积分法得20.计算定积分.解:由分部积分法得21.计算极限.22.设求 .解:由导数四则运算法则和导数基本公式得23.计算不定积分.解:由换元积分法得24.计算定积分.解:由分部积分法得25.计算极限.26.设,求.解: 由导数四则运算法则和复合函数求导法则得27.计算不定积分.解:由换元积分法得28.计算定积分.解:由分部积分法得29. 计算极限.30.设,求.解:由导数运算法则和导数基本公式得31.计算不定积分.解:由换元积分法得32. 计算定积分.解:由分部积分法得33. 计算极限.34设,求dy.解: 由微分运算法则和微分基本公式得35.计算不定积分.解:由换元积分法得36.计算定积分.解:由分部积分法得37. 计算极限38.设,求dy.解: 由微分运算法则和微分基本公式得39.计算不定积分.解:由换元积分法得40. 计算定积分.解:由分部积分法得四、应用题1.求曲线上的点,使其到点A(0,2)的距离最短.解:曲线上的点到点A(0,2)的距离公式为d与在同一点取到最大值,为计算方便求最大值点,将代人得求导得令得,并由此解出,即曲线上的点和点到点A(0,2)的距离最短。
2.欲做一个底为正方形,容积为V立方米的长方体开口容器,怎样做法用料最省?解:设底边的边长为x,高为y,,容器表面积为S,由已知,令,解得是唯一驻点,易知是函数的最小值点,此时有,所以当时用料最省.3.圆柱体上底的中心到下底的边沿的距离为2,问当底半径与高分到为多少时,圆柱体的体积最大?解:如图所示,圆柱体高h与底半径r满足圆柱体的体积公式为将代人得求导得令得并由此解出即当底半径,高时,圆柱体的体积最大.图34.某制罐厂要生产一种体积为V的无盖圆柱形容器,问容器的底半径与高各为多少时用料最省?解:设容器的底半径为r,高为h,则其表面积为由S'=0,得唯一驻点,由实际问题可知,当时可使用料最省,此时,即当容器的底半径与高均为时,用料最省.5.某制罐厂要生产一种体积为V的有盖圆柱形容器,问容器的底半径与高各为多少时用料最省?解:设容器的底半径为r,高为h,则其表面积为由S'=0,得唯一驻点,由实际问题可知,当时可使用料最省,此时,即当容器的底半径与高分别为用料最省.6.欲做一个底为正方形,容积为立方米的长方体开口容器,怎样做法用料最省?解:设底边的边长为x,高为h,用材料为y,由已知令解得x=4是唯一驻点,易知x=4是函数的最小值点,此时有=2,所以当x=4,h=2时用料最省.7.某制罐厂要生产一种体积为V 的有盖圆柱形容器,问容器的底半径与高各为多少时用料最省?解:设容器的底半径为r,高为h,则其表面积为由S'=0,得唯一驻点,此时,由实际问题可知,当底半径和高时可使用料最省.8.在抛物线上求一点,使其与x轴上的点A(3,0)的距离最短.解:设所求点P(x,y)川,则x,y满足. 点P到点A的臣离之平方为令L' =2(x-3)十4=0,解得x=l是唯一驻点,易知x=l是函数的最小值点,当x=l时,y=2或y=-2,所以满足条件的有两个点(1,2)和(1,-2).9.欲做一个底为正方形,容积为长方形开口容器,怎样做法用料最省?解: 设底边的边长为x,高为h,容器表面积为y,由已知令.解得x=5是唯一驻点,易知x=5是函数的最小值点,此时有所以当 x=5cm,h=2. 5cm时用料最省.10. 欲做一个底为正方形,容积为的长方体开口容器,怎样做法可使用料最省?解: 设底边的边长为x,高为h,用材料为y,由已知令,解得x=4是唯一驻点,易知x=4是函数的极小值点,此时有所以当x=4(cm) , h= 2(cm)时用料最省.。