生态学 碳氮循环

合集下载

氨基酸 碳氮同位素 生态-概述说明以及解释

氨基酸 碳氮同位素 生态-概述说明以及解释

氨基酸碳氮同位素生态-概述说明以及解释1. 引言1.1 概述氨基酸是构成蛋白质的基本单位,广泛存在于生物体内。

它们在植物、动物和微生物的生长和发育过程中发挥着重要的作用。

氨基酸的碳氮同位素含量对生态系统的运转和物质代谢起着重要作用。

碳氮同位素在生态研究中被广泛应用,可以反映生态系统中物质循环和能量流动的情况。

本文将探讨氨基酸在生态系统中的作用,以及碳氮同位素组成对生态系统的影响。

通过对氨基酸和碳氮同位素的综合研究,可以更好地理解生态系统的结构和功能,促进生态环境的保护和可持续发展。

1.2 文章结构文章结构部分的内容如下:文章结构分为引言、正文和结论三个部分。

引言部分主要概述了本文的研究内容,包括对氨基酸和碳氮同位素的介绍,以及文章的目的和意义。

正文部分包括氨基酸的生态作用、碳氮同位素在生态研究中的应用以及氨基酸碳氮同位素组成对生态系统的影响三个部分。

结论部分对本文的内容进行总结,展望未来在该领域的研究方向,并得出结论。

通过这样的文章结构,可以清晰地呈现出文章的逻辑结构和内容展开,使读者更容易理解和理解文章的主要观点和结论。

1.3 目的:本文的主要目的是探讨氨基酸和碳氮同位素在生态学中的重要性和应用。

我们将分析氨基酸在生态系统中的作用,探讨碳氮同位素在生态研究中的应用,并深入探讨氨基酸碳氮同位素组成对生态系统的影响。

通过对这些内容的阐述和分析,我们旨在加深对生态系统中氮循环和碳循环的理解,为生态学研究提供新的思路和方法。

同时,我们也将展望未来在氨基酸和碳氮同位素研究方面的发展趋势,为相关领域的学术研究和实践提供参考和启示。

通过本文的撰写,希望能够促进人们对于生态系统中氨基酸和碳氮同位素的认识,推动相关领域的发展和进步。

2. 正文2.1 氨基酸的生态作用氨基酸是构成蛋白质的基本单元,也是生命体必需的营养物质之一。

在生态系统中,氨基酸起着重要的作用,影响着生物之间的相互关系和生态平衡。

首先,氨基酸是生物体内重要的能量来源之一。

生态学专业英语词汇

生态学专业英语词汇

《生态学专业英语词汇》一、生态学基础词汇1. 生态系统(Ecosystem)2. 生物多样性(Biodiversity)3. 生态位(Niche)4. 食物链(Food Chain)5. 食物网(Food Web)6. 生物量(Biomass)7. 生产者(Producer)8. 消费者(Consumer)10. 环境因子(Environmental Factor)二、生态学过程与现象1. 竞争(Competition)2. 捕食(Predation)3. 共生(Symbiosis)4. 生物入侵(Biological Invasion)5. 生物放大(Biological Magnification)6. 生态演替(Ecological Succession)7. 生物地球化学循环(Biogeochemical Cycle)8. 碳循环(Carbon Cycle)9. 氮循环(Nitrogen Cycle)10. 水循环(Water Cycle)三、生态学分支与研究方向1. 景观生态学(Landscape Ecology)2. 生态系统生态学(Ecosystem Ecology)3. 行为生态学(Behavioral Ecology)4. 进化生态学(Evolutionary Ecology)5. 环境生态学(Environmental Ecology)6. 应用生态学(Applied Ecology)7. 恢复生态学(Restoration Ecology)8. 城市生态学(Urban Ecology)9. 乡村生态学(Rural Ecology)10. 海洋生态学(Marine Ecology)四、生态学实验与技术研究1. 生态调查(Ecological Survey)2. 样方调查(Quadrat Sampling)3. 实验设计(Experimental Design)4. 遥感技术(Remote Sensing)5. 地理信息系统(GIS)6. 生态模型(Ecological Model)7. 生态模拟(Ecological Simulation)8. 环境监测(Environmental Monitoring)9. 生态修复(Ecological Restoration)10. 生物指示物(Bioindicator)五、生态学政策与管理1. 生态保护(Ecological Conservation)2. 生态红线(Ecological Red Line)3. 生态补偿(Ecological Compensation)4. 生态规划(Ecological Planning)5. 生态风险评估(Ecological Risk Assessment)6. 可持续发展(Sustainable Development)7. 生态文明建设(Ecological Civilization Construction)8. 环境影响评价(Environmental Impact Assessment)9. 生态系统服务(Ecosystem Services)10. 自然保护区(Nature Reserve)六、生态学理论与概念深化1. 生态效率(Ecological Efficiency)描述能量或物质在生态系统中从一个营养级传递到下一个营养级的效率。

生态系统中的物质循环与食物链

生态系统中的物质循环与食物链

生态系统中的物质循环与食物链生态系统是一个由生物体和非生物体构成的复杂系统,这些生物体之间以及与非生物体之间存在着各种关系,形成了生态系统中的生态学物理化学过程。

而其中最重要的两个过程,无疑就是物质循环和食物链了。

1. 物质循环物质循环指的是,生态系统中各物质要素之间的相互转化和流动。

主要包括碳、氮、磷等元素的循环。

这些元素在一个生态系统中相互输入、转化、输出,形成一个闭合的循环生态系统,维持着生物多样性和生态平衡。

(1)碳循环碳是构成生物体的重要元素之一,在生态系统中也扮演着重要角色。

碳循环的过程主要有两个方面:一是对外界的吸收和释放,例如植物通过光合作用将二氧化碳吸收,释放出氧气;而动物则是吸氧和呼氧的过程。

二是生态系统内部的碳流动,植物通过光合作用将二氧化碳转化为有机物,而动物则通过食物链将植物摄入体内,将植物的碳吸收到自己的体内。

(2)氮循环氮是构成蛋白质和核酸的重要元素,同时也是构成生物体的重要元素之一。

氮循环的过程涉及到了几个关键步骤,包括氮固定、氨化、硝化和脱氮等。

前两步主要是人工处理的过程,后两步则是生态系统内部的转化过程。

氮的循环主要是通过生物体的吸收、代谢、排泄和分解等过程。

(3)磷循环磷是构成生物体的重要元素之一,同时也是植物生长和发育所必需的营养元素。

磷循环的过程涉及到了几个关键步骤,包括矿物质磷的溶解、有机磷的水解、磷酸盐的吸收和反应等。

磷的循环主要是通过矿物质的吸收和有机质的分解等过程。

2. 食物链食物链是指生物体之间以食物关系为纽带形成的链式组合。

它反映了生物们之间的相互依存、相互制约的关系。

在食物链中,每一个物种都处于一种特定的地位,它的饮食习惯和生态习惯决定了它的位置。

下面以一个例子对食物链的组成和演变进行简单介绍。

简单食物链模型:草-羊-狼草是植物界的代表,羊是食草动物,狼是食肉动物。

这条食物链就是一个生态系统中的最简单的组成,环环相扣。

草的光合作用可以为羊提供能量来源,而羊的肉则是狼的食物。

基础生态学 13物质循环

基础生态学 13物质循环

(二) 生物地球化学循环的类型
三大类型:
水循环(water cycle) (aquatic cycle) 气体型循环(gaseous cycle)
—— 物质分子或其化合物以气体的形式参与循环过程,循环快。 有CO2、氮、氧、氯、氟等 (全球性较强) 沉积型循环(sedimentary cycle) —— 物质分子或其化合主要通过岩石风化和沉积物溶解转变为 可被生物利用的营养物质参与循环过程,循环速度极为缓慢。如硫、 磷循环
2、碳在生态系统中循环不平衡引起的生态效应
CO2增加,引起温室效应(greenhouse effect),使全球变暖, 将产生对6个生物层次的潜在影响:
– – 生物圈:海平面上升,淹没大片海岸湿地,陆地生物区变化 生态系统: • ●农业生态系统——农作物减产、病虫害加重、影响牲畜食欲。 • ●森林生态系统——导致干旱、增加森林大火风险。森林害虫 增加 • ●水生生态系统——使海洋静水层和沉淀层的微生物活动加快, 水中含氧量减少,影响许多海洋动物的生存;导致藻类繁殖速 度加快,使鱼类产量减少
(二)氮的地球化学循环 氮循环中的主要作用途径
• 占地球固氮90% 固氮作用—— 3 条途径: – 闪电、宇宙射线、火山爆发等高能固氮,形成氨或硝酸 盐,随降雨到达地面,为8.9kg/hm2· a – 工业固氮(化肥制造),目前全世界已达1×108t – 生物固氮(最重要途径),为100~200kg/km2· a 氨化作用—— 由氨化细菌和真菌的作用将有机氮分解成为 氨与氨化合物 硝化作用—— 氨化合物被亚硝酸盐细菌和硝酸盐细菌氧化 为亚硝酸盐和硝酸盐 反硝化作用—— 也称脱氨作用,反硝化细菌将亚硝酸盐转 变成大气氮,回到大气库中
– – – –
生物群落:影响生物群落结构,使植物群落中有些优势种竞争能力 下降 物种:加速物种的灭绝,及加速某些物种的迁移 种群:改变某些植食性动物的食性,导致某些种群的互相作用强度 增强 植物个体:提高水分利用,提高光合作用,促进作物生长,改变植 物形态结构

最新版全国成人高考专升本_生态学基础第五章生态系统第三节

最新版全国成人高考专升本_生态学基础第五章生态系统第三节

第五章生态系统第三节生态系统的物质循环一、生物地球化学循环生物地球化学循环是指各种化学元素在不同层次、不同大小的生态系统内,乃至生物圈里,沿着特定的途径从环境到生物体,又从生物体再回归到环境,不断地进行着流动和循环的过程。

1.生物地球化学循环的库库是由存在于生态系统某些生物或非生物成分中一定数量的某种化合物所构成的。

对于某一种元素而言,存在一个或多个主要的蓄库。

在库里,该元素的数量远远超过正常结合在生命系统中的数量,并且通常只能缓慢地将该元素从蓄库中放出。

物质在生态系统中的循环实际上是在库与库之间彼此流通的。

在一个具体的水生生态系统中,磷在水体中的含量是一个库,在浮游生物体内的磷含量是第二个库,而在底泥中的磷含量又是另一个库,磷在库与库之间的转移(浮游生物对水中磷吸收以及生物死亡后残体下沉到水底,底泥中的磷又缓慢释放到水中)就构成了该生态系统中的磷循环。

2.生物地球化学循环的速度为了表现物质循环的快慢,常用周转率和周转期两个重要指标。

周转率是指系统达到稳定状态后,某一组分中的物质在单位时间内所流出的量或流入的量占库存总量的分数值。

周转期是库中物质全部更换平均需要的时间,也是周转率的倒数。

物质的周转率用于生物库的更新称为更新率。

某段时间末期,生物的现存量相当于库存量;在该段时间内,生物的生长量相当于物质的输入量。

不同生物的更新率相差悬殊,一年生植物当生育期结束时的生物的最大现存量与年生长量大体相等,更新率接近l,更新期为1年。

森林的现存量是经过几十年甚至几百年积累起来的,所以比年净生产量大得多。

如某一森林的现存量为324t/hm2,年净生产量为28.6t /hm2,其更新率为28.6/324,即0.088,更新期约11.3年。

至于浮游生物,由于代谢率高,生物现存量常常是很低的,但却有着较高的年生产量,如某一水体中浮游生物的现存量为0.07t/hm2,年净生产量为4.1t/hm2,其更新率为4.1/0.07,即59,更新期只有6.23天。

基础生态学--第五章第三节生态系统的物质循环

基础生态学--第五章第三节生态系统的物质循环

一、生物地球化学循环
(二)分类
(2)沉积型:矿物元素贮存在地壳里。经过自然风化和开采 冶炼,从岩石中释放出来为植物吸收,并沿食物链转移,经微 生物的分解再返回环境。一部分在土壤中,一部分随水汇入海 洋,经过沉降、淀积和成岩作用变成岩石,当岩石被抬升并遭 受风化作用时,该循环才算完成。
这类循环缓慢易受干扰。沉积循环通常无全球性影响。
1)生物圈:海平面上升,淹没海岸湿地,陆地生物区变化。 2)生态系统
●农业生态系统:农作物减产;病虫害加重;影响牲畜食。 ●森林生态系统:导致干旱、增加森林大火风险。森林害虫增加,影响森林对物质的吸收。 ●水生生态系统:使海洋静水层和沉淀层的微生物活动加快,水中含氧量减少,影响许多海洋动物的
生存;导致藻类繁殖速度加快,使鱼类产量减少。
3、磷循环 (2)磷循环的环境问题。人类对磷循环的影响,主要是在农 业生态系统中取走收获物,使土壤供磷能力下降,人工施用的 磷肥补充了有效磷,但可溶性磷酸极易与金属离子结合使不 溶性降低所以磷肥的利用与土壤酸度关系很大。另外,水土 流失也使肥料流失,土壤中有效磷的含量有效地控制生物固 氮的速度。
4、水循环 从总体上说,水可以分为五部分,即大气中的水、地表水、地 下水、土壤中的水和动植物的蒸发水。地球上的水时刻都在 运动。水从一个系统输出,必然会为另一个系统输入。海洋 水、陆地水和大气水通过固体、液体和气体三相的变化,不 停地进行着交换,这种交换称为水循环。
在生态系统中的物质循环可以用库和流通两个概念 来加以概括,库是由存在于生态型:其贮存库是大气和海洋。气相循环把大气和海 洋相联系,循环迅速,具有明显的全球性。
如 CO2、N2、O2 和水等。气相循环与全球性三个环境问题 (温室效应,酸雨,臭氧层破坏)密切相关。

普通生态学 生态系统中的物质循环

普通生态学 生态系统中的物质循环

第二节生态系统的物质循环z§1 生物地化循环的概念z§2 水循环z§3 气体型循环z§4 沉积型循环z§5 有毒物质的迁移和转化z§6 放射性核素循环z§7 生物地化循环与人体健康§1生物地化循环的概念1 生物地化循环(biogeochemical cycle):生态系统之间矿物元素的输入和输出以及它在大气圈、水圈、岩圈之间以及生物间的流动和交换称生物地(球)化(学)循环,即物质循环(cycling of material) 。

2 生物地化循环的特点①物质循环不同于能量流动,后者在生态系统中的运动是循环的;②生物地化循环可以用库和流通率两个概念来描述。

库是由存在于生态系统某些生物或非生物成分中一定数量的某种化学物质所构成的,可分为贮存库和交换库。

z贮存库:特点是库容量大,元素在库中滞留的时间长,流动速率小,多属于非生物成分;z交换库:容量较小,元素滞留的时间短,流速较大。

z流通率:物质在生态系统单位面积(或单位体积)和单位时间的移动量称流通率。

③生物地化循环在受人类干扰以前一般是处于一种稳定的平衡状态。

④某些元素和难分解的化合物常发生生物积累、生物浓缩和生物放大现象。

z生物积累(bioaccumlation): 指生态系统中生物不断进行新陈代谢的过程中,体内来自环境的元素或难分解的化合物的浓缩系数不断增加的现象。

z生物浓缩(bioconcentration): 指生态系统中同一营养级上许多生物种群或者生物个体,从周围环境中蓄积某种元素或难分解的化合物,使生物体内该物质的浓度超过环境中的浓度的现象,又称生物富集。

z生物放大(biomagnification): 指生态系统的食物链上,高营养级生物以低营养级生物为食,某种元素或难分解化合物在生物机体中浓度随营养级的提高而逐步增大的现象。

生物放大的结果使食物链上高营养级生物体中该类物质的浓度显著超过环境中的浓度。

植物生理生态学中的碳氮循环和物质代谢

植物生理生态学中的碳氮循环和物质代谢

植物生理生态学中的碳氮循环和物质代谢近年来,植物生理生态学的研究越来越受到关注,特别是对于碳氮循环和物质代谢等方面的探索。

在植物生长发育以及产生有用化合物等过程中,碳和氮起着至关重要的作用。

因此,对于植物中的碳氮循环和物质代谢的研究,不仅有助于深入了解植物的发育与生长机制,同时有助于帮助农业和生态环境的保护。

首先,我们来看碳的循环。

在植物中,光合作用是碳循环的关键步骤。

在光合作用过程中,光能被捕获并转化为化学能,然后利用二氧化碳和水进行碳固定,并最终产生有机物。

与此同时,呼吸作用会消耗植物体内的氧气和有机物,释放出二氧化碳和水。

该过程称作植物中的碳循环过程。

此外,碳的定位和运输也是碳循环过程中的重要步骤之一。

在植物体内,碳可以通过蒸腾和木栓组织等途径进行运输和转移。

通过对植物体内碳的运输和转移进行研究,可以更好地理解植物如何对环境进行响应和适应。

接下来,我们来看氮的循环。

氮是构成植物体内蛋白质和核酸等重要化合物的重要元素。

在自然界中,植物获得氮主要有两种途径,一是从土壤中取得营养物质,通过根系吸收进入到植物体内,这是一个氮循环的入口。

二是通过氮的固氮作用,将空气中的氮转化为亚硝酸盐或铵盐等化合物,再从土壤中被植物吸收,这是氮循环的另一个入口。

在植物体内,氮不仅与碳一起合成化合物,还可以进行代谢或分解。

氮在代谢时主要以酰胺或游离氨的形式存在,而在植物体内氮的分解也主要通过脱氨酶等酶的作用实现。

氮循环的这些过程和机理的研究,可以帮助我们更好地理解氮在植物体内的作用及其在生长发育过程中的重要性。

最后,我们再来看物质代谢。

除了碳和氮之外,植物中还存在着许多其他元素,如钾、钙、镁等。

这些元素同样也起到了重要的生理作用。

在物质代谢过程中,植物体内的元素通过各类代谢途径被转换为能量或者用于构成其他重要化合物的原料。

这些代谢途径主要包括葡萄糖代谢、三羧酸循环和光合作用等。

许多研究表明,植物物质代谢的平衡状态与环境条件有着密切的关系。

生态学复习资料

生态学复习资料

⽣态学复习资料名词解释:(1)指⽰⽣物:反映特定环境特征的⽣物。

(2)初级⽣产:是指绿⾊植物的⽣产,即植物通过光合作⽤吸收和固定光能把⽆机物转化为有机物的⽣产过程。

(3)群落交错区:群落交错区⼜称⽣态交错区或⽣态过渡带,是两个或多个群落之间(或⽣态地带之间)的过渡区域。

群落交错区是⼀个特殊的区域,具有相邻群落的特征⼜有⾃⼰独特的特征;群落交错区种的数量及⼀些种的密度有增⼤的趋势,也即边缘效应。

(4)优势种:对群落的结构和群落环境的形成有明显控制作⽤的植物种称为优势种。

(5)建群种:优势层的优势种常被称为建群种。

(6)湿地:湿地是指不论其为天然或⼈⼯、长久或暂时的沼泽地、泥炭地或⽔域地带,带有或静⽌或流动,或淡⽔、半咸⽔或咸⽔⽔体者,当低潮时⽔深不超过6m的⽔域。

(7)限制因⼦:⽣物的⽣存和繁殖依赖于各种⽣态因⼦的综合作⽤,但是其中必有⼀种和少数⼏种因⼦是限制⽣物⽣存和繁殖的关键性因⼦。

(8)⽣态⼊侵:⼈类有意识或⽆意识地把某种⽣物带⼊适宜其栖息和繁衍的地区,种群及分布区快速扩⼤,对其他⽣物种的⽣存构成威胁,这种过程称为⽣态⼊侵。

(9)⽣态因⼦:指环境中对⽣物⽣长、发育、⽣殖、⾏为和分布有直接或间接影响的环境要素(10)逻辑斯谛增长:种群在有限环境中的⼀种简单的增长形式。

在现实有限环境中,种群不可能始终保持指数上升,种群增长率不断下降,直⾄停⽌增长,这种增长形式称为逻辑斯谛增长。

(11)营养级:是指处于⾷物链某⼀环节上的所有⽣物种的总和。

(12)⾼斯竞争假说:当两个物种对同⼀资源和空间的利⽤越相似,其⽣态重叠越多,竞争就越激烈。

竞争排除原理:在⼀个稳定的环境内,两个以上受资源限制的、但有相同资源利⽤⽅式的种不能长期共存。

简答题、部分填空和选择:⼀、演替的分类(1)⽣物群落演替类型的划分可以按照不同的原则进⾏,因⽽存在各种各样的演替名称。

(2)按照演替的延续时间划分,可分为:世纪演替、长期演替、快速演替(3)按照演替的起始条件划分,可分为:原⽣演替、次⽣演替(4)按照基质的性质划分,可分为:⽔⽣演替、旱⽣演替(5)按照控制演替的主导因素划分,可分为:内因性演替、外因性演替(6)按照群落代谢演替特征划分,可分为:⾃养性演替、异样性演替(7)(⽼师补充)按照演替⽅向分为:进展演替、逆⾏演替⼆、影响陆地⽣态系统的主要因素对于陆地⽣态系统来说,⼀般情况下植物有充分的可利⽤的光辐射,但并不是说光不会成为限制因素,例如,冠层下的叶⼦接受光辐射可能不⾜,⽩天中有时光辐射低于最适光合强度,对C4植物可能达不到光辐射的饱和强度。

森林生态系统碳氮循环功能耦合研究综述

森林生态系统碳氮循环功能耦合研究综述
第 26 卷第 7 期 2006 年 7 月
生态 学报 ACTA ECOLOGICA SINICA
Vol. 26, No. 7碳氮循环功能耦合研究综述
项文化, 黄志宏, 闫文德, 田大伦, 雷丕锋
( 中南林业科技大学生态研究室, 长沙 410004)
摘要: 在大气 CO2 浓度升高和氮沉降增加等全球变化背景 下, 森 林生态 系统减 缓 CO2 浓度升 高的作 用及其 对全球 变化的 响应 和反馈存在诸多不确定性。森林生态系统碳氮循环相互作用及功能耦 合规律的研 究是揭示这 些不确定 性的基础, 也是反 映森 林生态系统生物产量与养分之间作用规 律, 涉及林 地持 久生 产力( sustainability of long- term site productivity) 的生态 学机 理问题。 森林生态系统碳氮循环的耦合作用表现在林冠层光合作用的碳固定过 程, 森 林植物组 织呼吸、土壤凋落 物与土壤 有机质分解、 地下部分根系周转与呼吸等碳释放过程, 这些 过程存在反馈机理和非线性作用, 最终决定森林生态 系统的碳平衡。着重在生态 系统尺度上, 综述了碳氮循环耦合作用研究的 一些进展与存在的问题, 对今后研究方向进行了展望 。 关键词: 森林生态系统; 碳循环; 氮循环; 非线性作用; 功能耦合 文章编号: 1000-0933( 2006) 07-2365-08 中图分类号: S7181 55 文献标识码: A
生态系统碳 氮获 取能 力对生 物有 机体 生物 量维 持和 构建 十分 重要[ 11] 。 生态 化学 计量 学 ( ecological stoichiometry) 原理表明, 有机体中碳氮维持一定的比例关系[1, 12] 。氮是生物化学反应酶、细胞复制和大分子蛋 白质的重要组成元素, 有机物质的形成需要一定数量的氮, 植物吸收同化碳、氮的过程密切相关[ 13] 。但不同 有机体的碳氮比( CPN) 因其氮含量不同而异, 如植物组织主要由纤维素和木质素组成, 其 CPN 较高, 在 200~ 1000 之间; 土壤有机质是由死微生物体、无机氮和活的有机分子构成, 其 CPN 较低。CPN 可以用作反映植物养 分利用效率的指标, 控制植物碳生产( carbon production) 与养分吸收、植物向土壤归还有机物质与养分过程[ 12] , 对生态系统中碳氮利用、贮存和转移起着决定作用[ 1] 。因此, 森林生态系统中碳循环与氮循环紧密相连, 表现 出相互耦合作用[ 14, 15] 。

「生态学」生态系统的物质循环

「生态学」生态系统的物质循环
人类影响:对蓄库的影响。 积极:工业固氮、研究生物固氮机制等。 消极:氧化氮输入大气,污染空气,光化学烟雾;硝酸盐输入水系,富营养化; 人类从事的生产活动,从森林、草原、农田取走大量动植物残体,取走氮元素。 氮污染:人类的粪便,尿。
沉积型循环 – 磷循环图解
磷循环
在自然界中,磷由岩石圈移到水圈,它不是以可溶物移动,磷不存在任何气体 形式的化合物。受物理,化学,生物因素影响。 植物利用磷的方式:磷酸根。
生态系统中的水循环
生态系统中的水循环是 水的循环途径,淡水资 源量,全球水循环是平 衡的,但局部地区水分 分布不均匀。生态系统 中的水循环包括截取、 渗透、蒸发、蒸腾和地 表径流。
气体型循环 – 碳循环图解
碳与碳循环
碳存在于生命有机体和无机环境之中。它最主要的储存库是岩石圈占总量的 99.9%,2.7×10^16吨。多以碳酸盐形式存在,很少一部分以碳氢化合物、碳水 化合物形式存在。 海洋中含有0.1%的CO2,空气中含有0.0126%的CO2 。
→碳循环 →氮循环 3、沉积型循环(sedimentary cy水循环的生态学意义
1、没有水循环就没有生物地球化学循环。水是所有营养物质的介质,这使营 养物质的循环和水循环不可分割的联系在一起。地球上的水循环又把陆地和水 域联系在一起使局部生态系统和整个生物圈联系在一起;大量的水防止地球上 温度剧变。 2、水是很好溶剂。水在生态系统中起着能量传递、利用的作用。
沉积型循环 – 硫循环图解
硫循环
硫是原生质的重要组分,它的主要蓄库是岩石圈,但它在大气圈中能自由移动, 因此,硫循环有一个长期的沉积阶段和一个较短的气体阶段。在沉积相,硫被 束缚在有机或无机沉积物中。 岩石库中的硫酸盐主要通过生物的分解和自然风化作用进入生态系统。

生态学-微生物在生物地球化学循环中的作用

生态学-微生物在生物地球化学循环中的作用

(1) a.真菌(木霉属)
木材腐朽: 棕色腐朽(褐腐):真菌分解纤维素剩下木质素 白 b.细菌:食纤维菌属。 c.放线菌:
(2)无氧中温条件 细菌:纤维分解梭菌。 真菌:木朽菌、层孔菌 放线菌:
(3)高温条件:在60—70℃条件下生长,并分解纤维素 细 菌:如热纤维菌。 放线菌:链霉菌属、小单孢菌属
2
纤维素
单糖
纤维素复合酶
内切葡萄糖酶Cx酶 外切葡萄糖酶C1酶 β-葡萄糖苷酶CB酶
纤维素复合酶的类型(按作用场所分): 表面酶:分布于细胞表面,不能在其细胞培养液中 起作用的酶(如食纤维菌) 外 酶:分泌到胞外,在细胞生活环境中起作用的
(二)半纤维素的分解
半纤维素是由五碳糖、六碳糖及糖醛酸组成的多糖
微生物群体参入其中担负生产者和分解者的作用
生物地球化学循环
生物地球化学循环是指自然界中物质在生物 圈中进行的转化和运动,简言之,许多化学元素 在生物圈和非生物圈间的循环。
生命元素-生命体组成和生命活动中参加的元素。
基本元素:C,H,O,N,P,S, Ca,Si等循环 强烈迅速
次要元素:K,Na,Mg,Fe和卤素元素等 微量元素:Al,Br,Co,Cr,Cu,Mo,Ni,
通过食物网进行的碳转移
微生物与碳循环之间的所有关系:一个理想化的机盐
初级生产者

生 物


解体

自养微生物 被捕食 化能、光能
CO2
初级取食者
次级取食者 高级取食者
动植物残体的分解是微生物进行碳循环的主要方面
有机质
CO2
植物残体最难降解的是纤维素、木质素、果胶 几丁质等
六、微生物在生物地球化学循 环中的作用

生态系统中碳、氮、硫物质循环导析

生态系统中碳、氮、硫物质循环导析

生态系统中碳、氮、硫物质循环导析谭家学(湖北省郧县第二中学442500)生态系统的物质循环是指组成生态体的C、H、O、N、P、S等化学元素,不断进行着从无机环境到生物群落,又从生物群落到无机环境的循环过程,这一过程带有全球性,所以又叫生物地球化学循环。

在高中生物教材中,生态系统的物质循环主要包括碳循环、氮循环和硫循环,这一部分包含生态学、元素化合物、新陈代谢等相关知识,在近几年的高考命题中往往以综合题的形式出现,分值很大,所以在高考复习时要给以足够重视。

下面对碳、氮、硫三种元素的物质循环的图解加以归纳比较,使之关系清晰明了,再通过例题分析和实战训练,可以更深刻地认识三种循环之间的共同之处和差别所在,起到牢固掌握之目的。

一. 碳、氮、硫物质循环过程1、碳循环碳循环是指绿色植物通过光合作用,把大气中的二氧化碳和水合成为糖类等有机物,生产者合成的含碳有机物被各级消费者所利用,生产者和消费者在生命活动过程中,通过呼吸作用,又把二氧化碳释放到大气中;生产者和消费者的遗体被分解者所利用,分解后产生的二氧化碳也返回到大气中。

在正常情况下,碳的循环是平衡的,但由于现代工业的迅速发展,人类大量燃烧煤、石油和天然气等化石燃料,使地层中经过千百万年积存的已经脱离碳循环的碳元素,在很短的时间释放出来,就打破了生物圈中碳循环的平衡,使大气中的CO2含量迅速增加,进而导致气温上升,形成“温室效应”。

温室效应会导致地球气温逐渐上升,引起未来的全球性气候改变,促使南北极冰雪融化,使海平面上升,将会淹没许多沿海城市和广大陆地。

2、氮循环氮循环就是指氮气、无机氮化合物、有机氮化合物在自然界中相互转化过程的总称,包括氮化作用、硝化作用、反硝化作用、固氮作用以及有机氮化合物的合成等。

氮是形成蛋白质、氨基酸和核酸的主要成分,是生命的基本元素。

大气中含量丰富的氮绝大部分不能被生物直接利用,大气氮进入生物有机体的主要途径有四:①生物固氮(豆科植物、细菌、藻类等);②工业固氮(合成氨);③岩浆固氮(火山活动);④大气固氮(闪电、宇宙线作用)。

3.4生态系统中的物质能被循环利用2023-2024学年高二上学期生物浙科版(2019)选择性必修2

3.4生态系统中的物质能被循环利用2023-2024学年高二上学期生物浙科版(2019)选择性必修2

类型 高能固氮
工业闪电、宇宙射线、陨 石、火山爆发等所释放的 能量进行固氮
是在高温、高压、催化剂 的作用下,将氮气还原为 氨气
通过固氮菌和蓝藻等自养 或异养微生物进行固氮
说明 形成的氨或硝酸盐随着降雨到 达地球表面,属于天然固氮方 式
对生态系统中氮的循环产生了 重要的影响
生物固氮是最重要的固氮途径
随堂练习
1.生态系统的物质循环包括碳循环和氮循环等过程。下列有关碳循环的叙述,错误的是( ) A.消费者没有参与碳循环的过程 B.生产者的光合作用是碳循环的重要环节 C.土壤中微生物的呼吸作用是碳循环的重要环节 D.碳在非生物环境与生物群落之间主要以CO2形式循环 【答案】A 【解析】消费者的存在能加快生态系统的物质循环(碳循环),A错误;光合作用是指生产者利用光能, 将二氧化碳和水转化成有机物,并且释放出氧气的过程,大气CO2库中的碳进入生物群落是通过生产者的 光合作用或化能合成作用实现的,生产者的光合作用是碳循环的重要环节,B正确;土壤中的微生物可以 通过呼吸作用将含碳有机物中的碳返回大气中,土壤中微生物的呼吸作用是碳循环的重要环节,C正确; 碳在生物群落和非生物环境之间的循环主要以CO2的形式进行,在生物群落内部主要以含碳有机物的形式 传递,D正确。
特点:全球性、循环性
二氧化碳是碳循环的主要形式
大气中的CO2库
呼光

吸合

作作

分 用用 解 生产者
摄食
用 消费者

(有机物)

1.碳在生物体之间传递 途径是什么?
食物链和食物网 燃 烧 2.参与碳循环的生理过
程有哪些?
呼吸作用和光合作用
分解者
煤、石油
二氧化碳是碳循环的主要形式

物质流动的特点

物质流动的特点

物质流动的特点
物质流动是生态学中一个重要的概念,它指的是物质在生态系统中的循环。

它可以通过生物体或者其他物质的形式进行传递,使得生物系统中的物质能够在不同的地方进行循环。

物质流动的特点是,它是一个复杂的过程,物质从一个地方流入另一个地方,在每一个地方都会发生变化,形成一个循环。

首先,物质流动的主要特点是循环。

物质从环境中通过生物体的代谢,或者从土壤中植物的发育,或者从水体中的流动,等等,传递到生物体中,每一个物质都会经历一个循环过程,从体内被吸收,活化,分解,释放,然后回到环境中。

物质的流动使得生物体能够获取营养并保持生存,也确保了生态系统的平衡。

其次,物质流动是一个复杂的过程,物质在传递过程中会发生变化,形成一个复杂的循环系统。

这个循环系统中,每一种物质都会在不同的生态系统中发生变化,从而形成一个复杂的物质流动循环。

比如,碳氮循环,碳氮会在空气、水体和土壤之间来回流转,形成一个复杂的碳氮循环系统。

最后,物质流动是一个重要的过程,它能够确保生态系统的生存平衡。

物质流动过程中,物质会被释放,活化,吸收,分解,然后回到环境中,从而形成一个循环,保持生态系统的平衡,维持生态系统中的生物多样性。

总之,物质流动是一个复杂的过程,它涉及到生态系统中的许多物质的变化,形成一个复杂的物质循环系统,确保生态系统的生存平衡。

物质流动是生态学中一个重要的概念,它能够更好地理解生态系统的运作。

农业生态学考试重点

农业生态学考试重点

农业生态学考试重点一、名词解释1、Ecosystem:生态系统:指由环境或由占据该环境并联系在一起的生命有机体所构成的动态整体,并不断相互作用,进行物质交换、能量转换和信息传递的有机整体2、Producer生产者:自养生物,主要是各种绿色植物,也包括蓝绿藻和一些能进行光合作用的细菌3、Consumer消费者:异养生物,主要指以其他生物为食的各种动物,包括植食动物(一级),肉食动物(二到四级),杂食动物和寄生动物等4、Decomposer分解者:异养生物,把复杂的有机物分解成简单无机物,包括细菌,真菌,放线菌和动物等5、Secondary production次级生产:初级生产以外的生态系统生产,即消费者利用初级生产的产品进行新陈代谢,经过同化作用形成异养生物自身的物质,又称为第二性生产6、Primary production初级生产:生态系统中绿色植物通过光合作用,吸收和固定太阳能,从无机物合成,转化为复杂的有机物,又称为第一性生产7、Biomass生物量:某一特定观察时刻,某一空间范围内,现有有机物的量,他可以用单位面积或体积的个体数量,重量(狭义的生物量)或含能量来表示,因此它是一种现存量8、production生产量:是在一定时间阶段中,某个种群或生物系统所新生产出的有机体的数量,重量或能量,它是时间上积累的概念,即含有速率的概念。

(生产量,生产力production rate,生产率productivity同义)9、Gross primary production,GP总初级生产力与net primary production,NP净初级生产力:植物在单位面积,单位时间内,通过光合作用固定太阳能的量称为总初级生产力,植物总初级生产力减去呼吸作用消耗掉的,余下的有机物即为净初级生产力10、Pg,gross production总初级生产量:照射到植物上的太阳辐射,仅有50%左右的可见光部分可被叶绿素吸收,其他部分不被利用,在吸收的光线中,大部分散射,转化为热能,最大值有5%(被吸收量的10%)用于有机物的合成,这部分被称为总初级生产量11、PN,net production净初级生产量:总初级生产量减去20%(总辐射量的1%)的吸收消耗,为净初级生产量12、Food chain食物链和trophic level营养级:食物链是指生态系统中不同生物之间在营养关系中形成的一环套一环似的链条式的关系,即物质和能量从植物开始,然后一级一级的转移到大型食肉动物。

基础生态学:第十三章 生态系统的物质循环

基础生态学:第十三章 生态系统的物质循环

H2CO3
H++CO3 2-
CaCO3
水体中生物
海底沉积物
Carbon accumulation
• CO2 has increased from its pre-industrial level • data: recent records plus older data such as ice cores • mostly fossil fuel burning
降雨
蒸腾
截留
穿透雨
地表 径流
地表蒸发
渗透
地下径流
三. 气体型循环
(一)、碳循环 • 碳是一切生物体中最基本的成分。 • 库主要是大气和海洋。
The Carbon Cycle
CO2 in atmosphere (reservoir)
Burning of COi2ndoiRcseseaosnlpvietfdaotsisoilnfuFelisre
(reservoir)
Consumers
Producers
Wastes, SoilDbeaacdtebroiadi&es detritus feeders
Reservoirs
Processes/ Locations
Trophic Levels/ Organisms
海洋和大气CO2调节
CO2
CO2溶 于海水
• 对于生产者的 输出库的周转 率=(16+4)/100 =0.20;
• 对于生产者的 周转时间为 5.00天。
5. 影响物质循环速率的因素
(1)元素的性质:有的元素循环的速率快, 而有的则比较慢,这是元素化学特性和 被生物有机体利用的方式不同所决定的。

环境保护概论新第二章生态学基础知识

环境保护概论新第二章生态学基础知识

成游离氮,再进入大气,完成氮的循环。
四、生态系统中的信息联系
在生态系统各组成部分之间及各 组成部分内部,存在着各种形式的信 息联系,用这些信息使生态系统联系 成为一个有机的统一整体。生态系统 中的信息联系主要有:
生态系统中的信息形式主要有营 养信息、化学信息、物理信息和行为 信息。
四、生态系统中的信息联系
地球表层,碳主要以碳酸盐的形式存在,碳的
贮量约为2.7*1016亿T,大气中的碳以二氧化碳的
形式存在,其中碳的贮量约为7*1011亿T。绿色
植物在碳循环中起着重要作用。大气中二氧化
碳被生物利用的唯一途径是绿色植物的光合作
用。被绿色植物固定的碳以有机物的形式供消
费者利用。生产者、消费者通过呼吸作用将碳
二、生态系统中的能量流动

生物的各种生命活动者需要能量。能量在流动
过程中也会由一种形式转变为另一种形式,在转变
过程中既不会消失,也不会增加。

在生态系统中,全部的能量最初是来自于太阳。
太阳能被生物所利用,是通过绿色植物的光合作用
来实现的。

绿色植物在合成有机物时,将太阳光能转变为
可贮藏于植物体中的化学能。绿色植物体内所贮藏
(二)营养级

食物链中的各个环节叫营养级。生产
者为第一营养级,一级消费者为第二营养
级,依次为第三营养级和第四营养级。
低位营养级是高位营养级的营养和能 量供应者,但低级营养级的能量仅有1/10 左右能量为上一营养级所能利用。为了能 保证生态系统中能量的流通,自然界就形 成了生物数量金字塔、生物量金字塔和生 产力金字塔。在寄生性食物链上,生物数 量往往呈倒金字塔。
的化学能,通过食物链的形式,依次传给草食动物

生态学生态系统知识点汇总

生态学生态系统知识点汇总

生态学生态系统知识点汇总生态系统,这一概念对于我们理解地球上生命的运行机制至关重要。

从广袤的森林到辽阔的海洋,从干旱的沙漠到湿润的湿地,生态系统无处不在。

接下来,让我们一同深入探索生态系统的相关知识。

生态系统的定义,简单来说,就是在一定的空间范围内,生物与环境所形成的统一整体。

它包含了生物群落和它们所处的非生物环境。

生物群落由各种生物组成,包括生产者、消费者和分解者;非生物环境则涵盖了阳光、空气、水、土壤等要素。

生产者是生态系统的基石,它们能够通过光合作用将无机物转化为有机物。

绿色植物是最常见的生产者,它们吸收阳光、二氧化碳和水,制造出氧气和有机物,为整个生态系统提供了最初的能量和物质来源。

消费者则依靠生产者提供的有机物为生。

初级消费者直接以植物为食,比如兔子吃草;次级消费者以初级消费者为食,比如狐狸吃兔子。

消费者在生态系统中扮演着传递和转化能量的重要角色。

分解者是生态系统中的“清道夫”,它们将动植物的遗体、排泄物等有机物分解为无机物,重新释放到环境中,供生产者再次利用。

细菌、真菌和一些腐生生物就是典型的分解者。

生态系统中的能量流动是单向的、逐渐递减的。

太阳能被生产者固定后,通过食物链和食物网在生态系统中传递。

但在每一个营养级的传递过程中,只有大约 10% 20%的能量能够传递到下一个营养级,其余的能量则以热能的形式散失。

这也是为什么食物链通常不会太长,一般不超过 5 个营养级。

物质在生态系统中是循环利用的。

碳循环、氮循环、水循环等都是非常重要的物质循环过程。

以碳循环为例,大气中的二氧化碳通过植物的光合作用进入生物体内,再通过呼吸作用、分解作用等过程回到大气中,形成一个不断循环的过程。

生态系统还具有一定的稳定性。

抵抗力稳定性指的是生态系统抵抗外界干扰并使自身的结构和功能保持原状的能力;恢复力稳定性则是生态系统在受到外界干扰破坏后恢复到原状的能力。

一般来说,生态系统的成分越复杂,抵抗力稳定性越强,恢复力稳定性越弱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在各样地内随机设置5个1m×1m的凋落物收集器,每月 底收集落在收集器上的凋落物,装入塑料袋内带回实验 室,区分针叶、阔叶、落枝、落花、落果、树皮及其碎 屑物等组分,在80°C恒温条件下烘干48h后称量。取部 分样品粉碎后测定有机C、全N、全P、全K、Ca和Mg。
➢ 实验样地的布置; ➢ 模拟氮沉降试验; ➢ 油松林土壤不同层次理化性质对模拟氮沉降的响应; ➢ 油松林凋落物量及养分归还量对模拟氮沉降的响应; ➢ 油松林凋落物分解及养分释放对模拟氮沉降的响应; ➢ 油松林主要树种新生叶比叶面积、养分含量及对模拟氮沉降的响应; ➢ 油松林不同组分土壤呼吸动态特征及对模拟氮沉降的响应; ➢ 主要氮素转换过程的动态特征及对模拟氮沉降的响应; ➢ 氮沉降对油松幼苗生物量分配及根系形态的影响。
Quercus liaotungensis
Corylus mandshurica
Swida bretchneideri
➢ 实验样地的布置; ➢ 模拟氮沉降试验; ➢ 油松林土壤不同层次理化性质对模拟氮沉降的响应; ➢ 油松林凋落物量及养分归还量对模拟氮沉降的响应; ➢ 油松林凋落物分解及养分释放对模拟氮沉降的响应; ➢ 油松林主要树种新生叶比叶面积、养分含量及对模拟氮沉降的响应; ➢ 油松林不同组分土壤呼吸动态特征及对模拟氮沉降的响应; ➢ 主要氮素转换过程的动态特征及对模拟氮沉降的响应; ➢ 氮沉降对油松幼苗生物量分配及根系形态的影响。
表1:油松人工林不同氮处理样地的主要林分和立地特征本底值 Tab1: Background values of the stand and site characteristics in different
nitrogen treatments plots of artificial Pinus tabulaeformis forest
CK
LN
MN
5.81 7.61 6.55
3.86 3.67 2.92
3.71 3.29 2.59
HN 6.82 2.75 3.22
变量
RS=aebT
RS=aW+b
Variable a
b
R2
a
b
R2
T5/W10 0.292 0.117 0.613 —


T10/W10 0.168 0.176 0.812 -1.056 3.372 0.439
T5/W10 0.241 0.123 0.650 —


T10/W10 0.111 0.203 0.909 -1.197 3.305 0.445
T5/W10 0.297 0.108 0.647 —


T10/W10 0.136 0.188 0.916 -1.647 4.08 0.527
T5/W10 0.284 0.114 0.652 —
➢ 实验样地的布置; ➢ 模拟氮沉降试验; ➢ 油松林土壤不同层次理化性质对模拟氮沉降的响应; ➢ 油松林凋落物量及养分归还量对模拟氮沉降的响应; ➢ 油松林凋落物分解及养分释放对模拟氮沉降的响应; ➢ 油松林主要树种新生叶比叶面积、养分含量及对模拟氮沉降的响应; ➢ 油松林不同组分土壤呼吸动态特征及对模拟氮沉降的响应; ➢ 主要氮素转换过程的动态特征及对模拟氮沉降的响应; ➢ 氮沉降对油松幼苗生物量分配及根系形态的影响。
Soils 1550
Units: Stocks - Gt-C Fluxes - Gt-C yr ?
5.5 ?0.5
60 60
Atmospheric Pool
750
(stores 3.2 ?0.2 yr
?)
1.6 ?1.0
Rh
Land Use
92 90
Net = 2.0 ?0.8
Ocean 40,0 00
HN (150kg N hm-2 yr-1)
高氮
MN (100kg N hm-2 yr-1)
中氮
LN (50kg N hm-2 yr-1)
低氮
CK (0kg N hm-2 yr-1)
对照
N 36°41′42.7″ E 112°04′45.7″
N 36°40′52.2″ E 112°05′51.5″
处理 水平
CK LN MN HN
林龄 (a)
林分特征
密度 平均胸径 平均树高 平均坡度
(株·hm-2)
(cm)
(m)
(°)
75
1258
17.8
13.1
19
75
1225
21.2
13.8
15
75
1292
20.2
11.6
19
75
1258
20.5
12.4
18
立地特征
海拔 (m)
土壤容重 土壤 (g·cm-3) PH
➢ 为提高油松人工林生态系统经营和管理水平提供理 论基础。
研究方法及初步结果
➢ 实验样地的布置; ➢ 模拟氮沉降试验; ➢ 油松林土壤不同层次理化性质对模拟氮沉降的响应; ➢ 油松林凋落物量及养分归还量对模拟氮沉降的响应; ➢ 油松林凋落物分解及养分释放对模拟氮沉降的响应; ➢ 油松林主要树种新生叶比叶面积、养分含量及对模拟氮沉降的响应; ➢ 油松林不同组分土壤呼吸动态特征及对模拟氮沉降的响应; ➢ 主要氮素转换过程的动态特征及对模拟氮沉降的响应; ➢ 氮沉降对油松幼苗生物量分配及根系形态的影响。
第一次取样时间为2009年7月初即模拟氮沉降处理前;第二次取 样时间为2010年7月,还处于模拟氮沉降实验初期,此时取样 有利于清楚地了解氮沉降初期土壤的变化;第三次取样时间为 2011年7月,此时模拟氮沉降实验已进行两年,氮沉降对土壤 的影响已有比较明显的表现。测量土壤的容重、PH、全N、铵 态氮、硝态氮、有机质、速效磷、速效钾、交换性阳离子Mg2+、 Ca2+、K+、Na+(原子吸收分光光度计法)。取样时按“S”形取样 法分0-20cm、20-40cm和40-60cm三层取样。
nitrogen treatments plots of natural Pinus tabulaeformis forest
处理 水平
CK LN MN HN
林分特征
立地特征
林龄 (a)
90
密度 平均胸径 平均树高 平均坡度
(株·hm-2) (cm)
(m)
(°)
1267 13.90
7.7
24
海拔 (m)
切根+去凋
去凋 对照
挖沟 埋石棉瓦 除草+去凋
天 然 林
人 工 林
Treat A B C
Q10 (5cm) CK LN MN 3.22 3.42 2.94 1.73 1.72 1.32 2.41 2.08 1.86
HN 3.13 1.58 2.16
Treat A B C
Q10 (10cm)
➢ 实验样地的布置; ➢ 模拟氮沉降试验; ➢ 油松林土壤不同层次理化性质对模拟氮沉降的响应; ➢ 油松林凋落物量及养分归还量对模拟氮沉降的响应; ➢ 油松林凋落物分解及养分释放对模拟氮沉降的响应; ➢ 油松林主要树种新生叶比叶面积、养分含量及对模拟氮沉降的响应; ➢ 油松林不同组分土壤呼吸动态特征及对模拟氮沉降的响应; ➢ 主要氮素转换过程的动态特征及对模拟氮沉降的响应; ➢ 氮沉降对油松幼苗生物量分配及根系形态的影响。
➢ 实验样地的布置; ➢ 模拟氮沉降试验; ➢ 油松林土壤不同层次理化性质对模拟氮沉降的响应; ➢ 油松林凋落物量及养分归还量对模拟氮沉降的响应; ➢ 油松林凋落物分解及养分释放对模拟氮沉降的响应; ➢ 油松林主要树种新生叶比叶面积、养分含量及对模拟氮沉降的响应; ➢ 油松林不同组分土壤呼吸动态特征及对模拟氮沉降的响应; ➢ 主要氮素转换过程的动态特征及对模拟氮沉降的响应; ➢ 氮沉降对油松幼苗生物量分配及根系形态的影响。
1589
1.28 7.37
1589
1.23 7.47
1589
1.25 7.68
1589
1.26 7.74
表2:油松天然林不同氮处理样地的主要林分和立地特征本底值 Tab1: Background values of the stand and site characteristics in di10/W10 0.134 0.192 0.942 -2.001 4.504 0.591
a 1.228 0.237 0.587 0.15 0.704 0.133 0.752 0.273
RS=aebTWc
b
c
R2
0.071 2.363 0.764
0.159 0.393 0.819
0.108 1.956 0.829
➢ 实验样地的布置; ➢ 模拟氮沉降试验; ➢ 油松林土壤不同层次理化性质对模拟氮沉降的响应; ➢ 油松林凋落物量及养分归还量对模拟氮沉降的响应; ➢ 油松林凋落物分解及养分释放对模拟氮沉降的响应; ➢ 油松林主要树种新生叶比叶面积、养分含量及对模拟氮沉降的响应; ➢ 油松林不同组分土壤呼吸动态特征及对模拟氮沉降的响应; ➢ 主要氮素转换过程的动态特征及对模拟氮沉降的响应; ➢ 氮沉降对油松幼苗生物量分配及根系形态的影响。
太岳山油松林土壤碳氮动态及对模拟氮沉降的响应
汪金松 北京林业大学林学院
Anomaly(oc)
1.5
1.18
0
5.31
Anomaly( oc)
Tmean
-1.5 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
1.5 5.6
0
-0.15
Tmax
0.188 0.372 0.912
0.087 1.614 0.812
相关文档
最新文档