步态训练机器人人机系统动力学仿真

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高技术通讯

年 第
卷 第
期:
步态训练机器人人机系统动力学仿真 !
张立勋! 王令军 王凤良 王克宽
哈尔滨



(哈尔滨工程大学机电工程学院
摘 应用

基于

自由度步态训练机器人的人机系统进行了动力学仿真研究。 , ) ; 分析了正常人在平地行走时的步态特征, 并给 工具箱建立了人机系统动力学仿
法, 推导了机器人的运动约束方程和动力学方程, 构成了机器人的约束

!" 、 !# 、 !"! 、 !#! 的相位关系
结 论
应用 法, 基于 对步态 训 练机器人人机进行了动力学仿真分析。通过列写机 器人的运动约束方程和动力学方程, 构成了机器人 的 , 结合双足对地面的压力模型, 利用 工具箱建立了机器人人机动力学仿真模型。对机器 人跟踪人在平地行走的步态轨迹进行了仿真分析, 仿真结果表明, 该人机模型对人的双足负载具有良 好的调节能力, 实现了对人在平地行走步态的模拟, 为实现机器人的控制及性能改进提供了理论依据。
器人模拟松软地面承载特性的研究较少。笔者以行 走康复训练问题为研究对象, 突破在机器人机构、 驱 动控制
[ ,]
、 生物信息反馈控制等关键技术, 开发出
了一种可以实现多种步态训练的机器人。 目前对机器人动力学的研究大多集中在其机械 结构上, 而对人机系统动力学的研究较少
[ ,]
。步
态训练机器人的服务对象是人, 仅对其机械机构进 行动力学分析是不充分的, 因此在考虑人的作用力 的基础上来研究步态训练机器人的动力学问题才具 有现实意义。本文应用 建立机器人动力学仿真模型



高技术通讯

月 第
卷 第
期 ( ) [ ( ) ( ) ( ) (! ) ]
( ) ! 图( ) 为左滑块受力简图。有机座约束力为 , 左支架的约束力为 力为 , 重力为 动力学方程为 ( ) ( ) 图( ) 为姿态机构受力简图。有左支架约束 力为
图! 机器人左步态机构闭环矢量图

, 丝杠对滑块的推
! ) ! )
! ( !
!) ( )
其中, ! 为姿态机构的绝对角加速度; ! 为左支架 绕 点转动的角加速度; ! 为姿态机构相对 点的 角加速度。 图( ) 为右滑块受力简图。有机座约束力为 , 右支架的约束力为 推力 , 重力为 动力学方程为 ( ) ( ) 图( ) 为右支架受力简图。右支架受右滑块 约束力为 力为 为 ( ) ( )
L
中 点, 此时启动右步态机构, 度。支撑期为 阶 段。 FL 、 FR、 和
以确保两步态机构的相位差为 阶 段, 摆动期为
FLB 、 FRB 的相位关系见图 。 FL 、 FL 、 FR 、 FLF 、 FRF 的 相位关系见图 。在运动启动时刻, FRB 、 FLF 、 F LB 、 这是由加减速度的突变引起的, FRF 均发生了突变, 这个现象可以通过变加速来改善。 FL 与 FR 、 FLB 与 这与 FRB 与 FRF 的变化均具有周期性和协调性, FLF 、 摆动期、 支撑期的交替变化特征是一致的。步态训 练机器对人的双足负载做相应的周期性调整, 为机 器人的动力学性能改善提供理论依据。
将右支架的质心位置方程为求二阶导数得 ( )( ) (# ( ) ( ) ( ) ) ! )
) " ( )
其中, 由 其中,
( ) " ( ) # ( ) 约束矩阵方程 ( ) (! ! ) , (! , ( , (!
!
, 并将此式求两次导数得
令 , (
#

( ) 。
, (! ( )
[ ]
法, 基于 , 在引入人在平
地行走时双足对地面的压力模型的基础上, 搭建了 人机系统动力学仿真模型, 并对机器人跟踪人在平 地行走的步态轨迹进行了仿真研究, 为实现机器人 的控制提供了理论基础。
" !
国家自然科学基金 ( ) 和国家博士点基金 ( ) 资助项目。 男, 生,教授, 博士生导师; 研究方向: 康复机器人, 人机合作机器人; 联系人, (收稿日期: )
・ ( ) 便 于 矩 阵 求 逆 等 运 算, 故可用 ・ , 的输出即为各关节和杆的 (角) 加速度及约束反 力等参数。式 ( ) 输出的是机器人左步态机构的动 力学参数, 同理可得右步态机构的动力学参数。 语言编写 函数来求解
叠。把步态周期进行归一化处理, 足底力模型可做
正常人步态特征
正常步态是指健康人在自我感觉最自然、 最舒 适的状态下行走时的步态, 具有稳定性、 周期性、 协 调性以及个体差异性。正常的步态周期可分为两个 相位: 支撑期与摆动期。支撑期指下肢接触地面及 承受重力的时间, 约占整个步态周期的 约占整个步态周期的 — — 。摆动 期指足离开地面向前迈步到再次落地之间的时间, , 支撑期和摆动期时间在 步态周期中所占的百分比反映了下肢在一个步态周
式中: 、 分别为左、 右脚的足底力; 为人的体
张立勋等: 步态训练机器人人机系统动力学仿真
左侧动力学模型为式 ( ) , 需要输入的数据为 FLF 、FL 、ML 。 模 型 中 相 关 参 数 有:! FLB 、 , ! ABP , h , I , m , , m 。 , l ,R ,I ,m , l ,h , l ,I ,m , m
!) )
!)
, 个动力
将左支架的质心位置方程求二阶导数得
, ( )
, 将机器人的
{
#
( )
" ( )( )
( )
学方程和 个运动约束方程组成线性方程组, 以矩 阵表示就构成 阶的约束矩阵方程 ( ) , 见式
" ( )
# ( )


高技术通讯

月 第
卷 第

将此 为 则有
的大型稀疏矩阵定义为 , 则式 ( ) 可以表示为 ・


高技术通讯

月 第
卷 第

[ ] , , , : , [ ] , : , , , [ ] , [ ] , ,( ) : , , ,( ) : , ’ [ ]蔡自兴 机器人学 北京: 清华大学出版社, [ ]訾斌, 段宝岩, 杜敬利等 柔性 模与控制 高技术通讯, [ ]董玉红, 张立勋 基于 平台的动力学建 的合作机器人 ( , ( ): ) 动 , , , ,
、L 、
L ! 为 相 应 电 机 的 位 置 控 制 器; L

L
、 ;
后 L !为相应关节直流伺服电机; LF 、 LB 分别为前、 丝杠螺母机构的力换算关系式, 丝杠导程为
L
为减速器的力放大系数; 足底力规划为式 ( ) 。
图#
机器人跟踪人在平地行走的步态轨迹
图$ 图" 动力学仿真模型结构图
!" 、 !# 、 !"! 、 !#! 的相位关系
、 !
, 姿态机构约束力为 !
!
运动约束方程组 由图 列写闭环矢量方程得 将此式向 、 轴投影并两次求导得末端 点 !
, 则根据牛顿定律可列出杆 ( ) ( )
的加速度方程为 [ ( ! ) (
[ —
( ) —
(!
) ]
张立勋等: 步态训练机器人人机系统动力学仿真
] !) " ! )
! !) " ( # ( (# #) ( ( ) ! !) [ ( ( ] ! ) ! !) " ( ( ) ! " ! # ! !)( ) ! ) (# #) ( , ( ) 。 又根据几何关系得 ( ) ( ) " ( )
参考文献 [ ]张济川, 金德闻 我国康复工程事业发展面临的机遇和 挑战 中国康复医学杂志, ,( ) :
,( ):
力学仿真 哈尔滨工程大学学报, 高技术通讯, ,( ):
[ ]夏泽洋, 陈恳, 熊繰等 仿人机器人运动规划研究进展 [ ]张今瑜, 王岚, 张立勋 基于多传感器的实时步态检测 研究 哈尔滨工程大学学报, ,( ) :
矩阵方程 (
出了人在行走时双足对地面的压力模型, 利用
真模型, 并对机器人跟踪人在平地行走的步态轨迹进行了仿真分析。仿真结果表明, 步态 训练机器人对人的双足负载具有良好的适应能力, 可以方便获取机器人的动力学参数。 该研究为实现机器人的控制及性能改进提供了理论依据。 关键词 步态训练机器人, 人机系统, 动力学, 仿真,
, 则根据牛顿定律可列出杆的

, 驱动力矩为
, 重力为
, 令
则" ! ! , 列出杆的动力学方程为 ( " ( " ( "
则根据牛顿定律可 ! , ( ) ( ) ! )
将机器人每个杆取分离体进行受力分析, 并将 每个分离体应用牛顿定律列写动力学方程, 从而构 成 方程组。机器人右侧机构各杆件受 力 分析简图如图 所示。 图( ) 为左支架受力简
Βιβλιοθήκη Baidu, 加速度及约
[ 期内的时间分配
,]
。支撑相百分比越大, 摆动相
束反力列向量定义为
, 等号右端的输入矩阵定义 ( )
百分比越小。支撑期又可分为单支撑期和双支撑 期。 在一个步态周期内, 单支撑期、 双支撑期及摆动 期存在如图 所示的时序关系, 黑色区域代表支撑 ) 和两个双支撑 期时间, 虚线区域代表摆动期时间。一个步态运动 周期由两个单脚支撑期 (各占 期 (各占 如下简化: 重, 为归一化后的步态周期。 [ ! [ ! [ ! [ ! [ ! [ ! [ ! [ ! ] ] ] ] ( ) ] ] ] ] ) 构成, 单支撑期时间与摆动期时间重
图" 各杆件受力分析简图

, 丝杠对滑块的
, 则根据牛顿定律可列出杆的

, 左支架约束力为

, 重
, 则根据牛顿定律可列出杆的动力学方程
绕 ( , 右支架约 、 ! , 阻 !#"
点的力矩平衡方程为 )( ) ( ) ( )
图。左支架受左滑块约束力为 ! 束力为 ! 、 ! 力矩为 " , 重力为 的动力学方程为
引 言
步态训练机器人可以模拟人在不同路况下的步 态, 属于健身或医疗机器人领域 态训练机器人有德国的 。 力量 训 练
[ ] [ ]
机器人动力学建模
方程组 步态训练机器人有 个自由度, 带动人的左腿 运动的机构称为左步态机构, 带动人的右腿运动的 机构称为右步态机构, 并且两者对称。步态训练机 器人左步态机构简图如图 所示。关节 、 为由 为转动关节, 带动 线性模组构成的移动关节, 关节
, 具有代表性的步 和日本的
综合了外骨骼机器人和跑步 。 能够进行平地行走训
[ ]
机的特征, 能够进行平地行走训练、 上下楼梯训练和 练、 上下楼梯训练和转弯训练 。目前国内外对机
脚踏板转动。三者协调运动, 带动受试者右腿在平 面内做步态训练。左、 右步态机构按照一定的协调 关系运动, 就能模拟人在不同路况下的步态轨迹。 如平地行走运动, 上下楼梯运动等。 在图 中, 为机座 (编号为 ) , 左滑块编号 为 , 左支架编号为 , 姿态机构 (脚踏板) 编号为 , 右支架编号为 , 右滑块编号为 。规定各杆件加速 度沿 、 轴正方向为正, 角度沿逆时针方向为正。 ! ! ! ," !; ,! ," 杆 、 杆 ! 的长度均为 为 ; 杆 的长度为 ; 杆 的长度 ; 矢量 " 、 "、 " 与水平线的夹角分别为 ! 、 杆 与水平线的夹角为 ; 杆 和矢量 !、 !; 脚踏板与水平线的夹角为 ! ; 脚踏板 " 夹角为!; 与杆 垂直。
机器人跟踪人在平地行走的步态轨迹, 见图 。 为了便于观察, 姿态角未显示, 左、 右步态轨迹与期 望轨迹基本重合。
图! 正常人的步态特征
左、 右步态轨迹的起点坐标均为 ( ) , 首先启动左步态机构, 步态周期为 动至 时, 到达图

, 当其运
人机系统动力学仿真模型与仿真曲线
动力学仿真模型结构见图 。下角标 L 和 R 分 别代表左、 右步态机构。以左步态机构为例说明: xOL 、 }OL 、 !OL 为轨迹规划生成的机器人末端的期望 移动关节 位置, 通过逆运动学 L L 求得移动关节 、 和转动关节 处的电机转角输入 gL i 、 gL i 和 gL !i ;
, (
, ,

, , )
, , ’

) , , ,
, : , , , ,


步态训练机器人人机系统动力学仿真
作者: 作者单位: 刊名: 英文刊名: 年,卷(期): 张立勋, 王令军, 王凤良, 王克宽, 高峻, Zhang Lixun, Wang Lingjun, Wang Fengliang, Wang Kekuan, Gao Jun 哈尔滨工程大学机电工程学院,哈尔滨,150001 高技术通讯 CHINESE HIGH TECHNOLOGY LETTERS 2009,19(11)
相关文档
最新文档