叶绿素理化性质及含量

合集下载

叶绿素所含元素

叶绿素所含元素

叶绿素所含元素叶绿素是一种重要的植物色素,它主要存在于植物的叶子和其他绿色组织中。

叶绿素是一种复杂的有机化合物,其化学式为C30H32O5N4Mg,包含了碳(C)、氢(H)、氧(O)、氮(N)和镁(Mg)五种元素。

下面是对这五种元素的详细介绍。

1.碳(C):叶绿素中的碳含量是最高的,大约占据了整个分子质量的30%。

碳是构成有机物质的基本元素,是生命的基石之一。

在叶绿素的分子结构中,碳原子连接了其他各种元素,形成了复杂的有机环状结构。

2.氢(H):氢也是叶绿素的重要成分之一,大约占据了整个分子质量的32%。

在叶绿素的分子结构中,氢原子与碳原子结合,参与构成了有机环状结构,并维持了叶绿素的稳定性。

3.氧(O):氧是叶绿素中的第三个重要元素,大约占据了整个分子质量的16%。

在叶绿素的分子结构中,氧原子与碳原子和氢原子结合,形成了各种功能团,如羧基和醇基,这些功能团在叶绿素的生物活性中起着关键作用。

4.氮(N):氮是叶绿素中的第四个重要元素,虽然在整个分子中的含量相对较少,但却是叶绿素分子中许多功能团的重要组成成分。

氮原子在叶绿素的分子结构中参与构成了各种氨基和亚氨基等离子基团,这些基团对于叶绿素的生物活性和运输光能的功能至关重要。

5.镁(Mg):镁是叶绿素中的最后一个重要元素,虽然在整个分子中的含量也相对较少,但它对于叶绿素的生物活性和光合作用至关重要。

在叶绿素的分子结构中,镁原子与氧原子结合,形成了叶绿素特有的卟啉环结构。

这种结构对于叶绿素捕获光能、传递电子和转化能量等生物过程起着关键作用。

综上所述,叶绿素所含的五种元素——碳、氢、氧、氮和镁,各自在叶绿素的分子结构和生物活性中扮演着重要角色。

这些元素协同作用,使叶绿素能够有效地捕获光能、传递电子和转化能量等过程,从而支持植物的生长和发育。

叶绿体色素的提取与分离、理化性质及含量测定 3

叶绿体色素的提取与分离、理化性质及含量测定 3

叶绿体色素提取分离与理化性质及含量测定▪(一)实验目的及意义▪(二)实验原理▪(三)实验步骤▪(四)实验报告实验目的和意义▪绿色植物的光合作用是在叶绿体中的叶绿体色素中进行的,了解叶绿体色素的组成、性质及测定对于理解光合作用的本质很有帮助。

▪因此,测定叶绿素含量便成为研究光合作用与氮代谢必不可少的手段,在作物育种、科学施肥、看叶诊断中有着广泛的应用叶绿体在细胞中运动视频叶绿体在细胞中的分布与结构类囊体膜的结构及功能实验原理植物叶绿体色素是吸收太阳光能,进行光合作用的重要物质。

它一般由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。

这些色素都不溶于水,而溶于有机溶剂,故可用乙醇、丙酮等有机溶剂提取。

实验原理▪色素分离的方法有多种,纸层析是最简便的一种。

当溶剂(有机推动剂)不断从纸上流过时,由于混合物(叶绿素提取液)中各种成分在固定相(滤纸纤维素所吸附的水分)和流动相(有机推动剂)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。

▪叶绿素是一种二羧酸——叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成醇(甲醇和叶绿醇)和叶绿酸的盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开。

实验原理▪叶绿素与类胡萝卜素都具有光学活性,表现出一定的吸收光谱,可用分光光度计精确测定。

叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。

叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较稳定。

▪叶绿素中的镁可以被氢离子所取代而成褐色的去镁叶绿素。

去镁叶绿素遇铜则成为铜代叶绿素,铜代叶绿素很稳定,在光下不易破坏,故常用此法制作绿色多汁植物的浸渍标本。

实验步骤(1)▪根据朗伯一比尔定律,某有色溶液的吸光度D与其中溶液浓度C和液层厚度L成正比,即:▪D=KCL▪D:吸光度,即吸收光的量,C:溶液浓度, K:为比吸收系数(吸光系数),L:液层厚度,通常为1cm.▪如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和,这就是吸光度的加和性。

叶绿体色素的提取分离理化质和定量测定

叶绿体色素的提取分离理化质和定量测定
分光光度计测定
六、实验结果观察及计算
(1)实验结果观察描述
(2)计算组织中叶绿体色素含量
(用mg/g鲜重或干重表示)
公式
叶绿素的浓度(C) 提取液体积 稀释倍数
叶绿体色素含量=
样品鲜重(或干重)
七、思考题
(1)叶绿素a、b在蓝光区也有吸收峰,能否 用这一吸收峰波长进行叶绿素a、b的定量分析? 为什么?
叶绿素中镁可被H+取代而形成褐色去镁叶绿素。 去镁叶绿素遇铜则成为铜代叶绿素。 皂化反应: 叶绿素可与碱起皂化反应而形成醇(甲醇和叶绿 醇)和叶绿酸的盐,产生的盐能溶于水--分开叶绿素 与类胡萝卜素。
2. 定量测定
根据叶绿体色素提取液对可见光谱的吸收,利用分 光光度计在某一特定波长下测定其光密度,即可用 公式计算出提取液中各色素的含量。
四、 实验步骤
1. 提取叶绿素
研磨法 材料剪碎 加入有机溶剂
研磨、匀浆 过滤 提取液
研磨法提取光合色素
荧光现象
(2)纸层析分离现象观察
去镁叶绿素
(3)叶绿素荧光现象观察
(4)H+和Cu2+对叶绿素 中Mg2+的取代作用
(5)皂化反应现象观察
铜代叶绿素 绿黄色素分层现象
五、定量测定
(1)定量用叶绿素提取液制备 (2)分光光度计测定 (3)实验数据及其处理
(2)用不含水的有机溶剂如无水乙醇、无水 丙酮等提取植物材料,特别是干材料的叶绿体 色素往往效果不佳,原因何在?
(3)研磨提取叶绿素时加入CaCO3. 石英砂 各有什么作用?
Ca=12.72D663 - 2.59D645 (1) Cb=22.88D645 - 4.67D663 (2) 将Ca与Cb相加即得叶绿素总量(CT): CT=Ca+Cb=20.2D645+8.05D663(3) 或:

叶绿素理化性质及含量

叶绿素理化性质及含量

实验报告课程名称: 植物生理学(乙)指导老师: 廖敏 成绩: 实验名称: 叶绿素理化性质和含量 实验类型: 定量探究型 同组学生姓名: 方昊一、实验目的和要求(必填)三、主要仪器设备(必填)五、实验数据记录和处理七、讨论、心得二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的和要求掌握植物中叶绿体色素的分离和性质鉴定、定量分析的原理和方法;二、实验内容和原理以青菜为材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量分析。

原理如下:1. 叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,常用95%的乙醇或80%的丙酮提取;2. 叶绿素是二羧酸酯,与强碱反应,形成绿色的可溶性叶绿素盐,就可与有机溶剂中的类胡萝卜素分开;3. 在酸性或加温条件下,叶绿素卟啉环中的Mg++可依次被H+和Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素;4. 叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光;5. 叶绿素吸收红光和蓝紫光,红光区可用于定量分析,其中645和663用于定量叶绿素a 、b 及总量,而652可直接用于总量分析。

专业:农业资源与环境 姓名: 吴主光学号: 3110100403 日期: 2013.10.17 地点: 生物实验中心装订 线三、主要仪器设备1. 天平(万分之一)、可扫描分光光度计、离心机、研具、各种容(量)器、洒精灯等四、操作方法、实验步骤以及实验现象定性分析:鲜叶5g+95%30ml(逐步加入),磨成匀浆过滤入三角瓶中,观察荧光现象:透射光绿色,反射光红色。

皂化反应(3ml):加KOH数片剧烈摇均,加石油醚5ml和H2O1ml分层后观察:上层呈黄色,为类胡萝卜素,吸收蓝紫光;下层呈绿色,为叶绿素,吸收红光和蓝紫光。

取代反应(1):加醋酸约2ml,变褐(去镁叶绿素);取1/2加醋酸铜粉加热,变鲜绿色,为铜代叶绿素。

取代反应(2):鲜叶2-3cm2,加Ac-AcCu 20ml加热,观察: 3 min变为褐绿色的去镁叶绿素, 5 min后,变为深绿色的铜代叶绿素。

植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定

植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定

植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定引言:叶绿体是植物细胞中的一个重要细胞器,其中主要存在着叶绿素等色素,它们在光合作用中起着重要的作用。

研究叶绿体色素的提取、分离、理化性质和叶绿素含量的测定,对于了解光合作用的机理以及研究植物生理生化过程具有重要意义。

本实验旨在通过实验手段提取叶绿体色素,进行色素的分离、理化性质的研究和叶绿素含量的测定。

材料与方法:材料:菠菜叶片、研钵、磨杵、丙酮、乙醇、石油醚、叶绿素提取液、测色皿、高锰酸钾溶液、浓硫酸。

方法:1.取适量菠菜叶片放入研钵中,加入适量丙酮,用磨杵捣碎成糊状。

2.将捣碎的菠菜糊状物转移到玻璃漏斗中,用石油醚冲洗3次,使叶绿体附着物进一步析出。

3.将漏斗中的上清液收集,并加入适量乙醇,振摇混合,使叶绿素慢慢析出。

4.将释放出的叶绿体颗粒通过离心机离心沉淀10分钟,收集沉淀。

5.取收集到的叶绿体沉淀,加入适量叶绿素提取液,用乳钙酸钠解离剂进行叶绿素含量的测定。

6.将其中一部分叶绿体溶液加入高锰酸钾溶液,观察颜色变化。

7.将其余叶绿体溶液与浓硫酸混合,观察颜色变化。

结果与讨论:通过上述方法,我们成功地提取并分离出菠菜叶片中的叶绿体色素。

加入石油醚可以去除一部分杂质,使叶绿体进一步纯化。

加入乙醇可以使叶绿素从叶绿体中溶出。

通过离心沉淀,我们收集到了叶绿体的沉淀物。

叶绿体的提取液与高锰酸钾溶液反应后呈现蓝色或紫色,这是由于高锰酸钾通过氧化反应将一些具有现菌酮结构的物质氧化为合成叶绿素的前体物质所引起的。

这种反应也证实了叶绿体的存在。

叶绿体溶液与浓硫酸混合后呈现蓝绿色,这是由于浓硫酸通过剥离叶绿体周围的蛋白质和其他有机物质,将叶绿素分子释放出来,产生颜色变化。

叶绿素的含量测定是通过与乳钙酸钠解离剂反应来进行的。

乳钙酸钠解离剂能够与叶绿体中的叶绿素结合,并形成稳定的叶绿素-乳钙酸钠络合物。

这种络合物通过光密度的测定,可以根据比色法来测量叶绿素的含量。

叶绿素的理化性质名词解释

叶绿素的理化性质名词解释

叶绿素的理化性质名词解释叶绿素是一种存在于植物和一些藻类生物体中的绿色色素,广泛参与光合作用的光捕获和能量转化过程。

它拥有丰富的理化性质,包括光吸收、荧光发射、氧化还原和光解等方面。

在本文中,我们将对叶绿素的理化性质进行解释和探讨。

首先,叶绿素的光吸收特性是其最基本的特点之一。

叶绿素分子拥有丰富的共轭双键结构,使得它能够吸收可见光谱范围内的蓝光和红光,而对绿光则表现出较弱的吸收。

这就解释了为什么叶绿素呈现出绿色的外观,因为它吸收了红光和蓝光,而将绿光反射出来。

其次,叶绿素的光解作用也是其重要的理化性质之一。

在光合作用中,光解作用指的是叶绿素分子中电子的激发和失去,这个过程包括两个步骤:光化作用和光解作用。

光化作用发生在光合作用的反应中心,叶绿素分子吸收到光能后,激发电子进入到高能态,从而产生能量。

而光解作用则是光能的转化过程,将光能转化为电能或化学能,用于ATP和NADPH的合成。

叶绿素的荧光发射能力也是其重要的性质之一。

当叶绿素分子吸收到光能后,一部分能量会被转化为热能释放出去,而另一部分能量则以荧光的形式发射出来。

这种荧光辐射可以被用来测量叶绿素的浓度,并且可以用来了解光合作用的活性和叶绿素分子与其他分子之间的相互作用。

此外,叶绿素还具有氧化还原性质。

在光合作用中,光能被叶绿素分子吸收后,通过一系列氧化还原反应,将原子和分子的电子转移和传递。

例如,在光合作用的光反应过程中,叶绿素分子通过光解作用失去电子,然后通过一系列电子传递链将电子转移到其他物质中,最终将能量储存为ATP和NADPH。

除了这些理化性质之外,叶绿素还可以参与其他许多生物过程。

例如,叶绿素可以参与光合作用的调节,当光线过强时,叶绿素可以起到光保护作用,防止光合反应受到过度损害。

此外,叶绿素还可以参与植物的光感应和生长发育过程。

总的来说,叶绿素的理化性质在植物生命中扮演着重要的角色。

光吸收、荧光发射、氧化还原和光解等性质,使其能够参与光合作用,并将光能转化为化学能和电能。

实验一_叶绿素的提取、理化性质和含量测定

实验一_叶绿素的提取、理化性质和含量测定

一、实验原理叶绿素是植物光合作用色素,主要有chla chlb ,不溶于水,可溶于酒精.丙酮和石油醚。

叶绿素是叶绿酸的酯,叶绿酸是双羧酸,其中一个羧基被甲醇酯化,另一个被叶醇酯化,能发生皂化反应。

叶绿素分子含有一个卟啉环的“头部”和一个叶绿醇( 植醇,phytol) 的“尾巴”。

卟啉环中的镁原子可被H+、Cu2 +、Zn2 +所置换。

用酸处理叶片,H+易进入叶绿体,置换镁原子形成去镁叶绿素,使叶片呈褐色。

去镁叶绿素易再与铜离子结合,形成铜代叶绿素,颜色比原来更稳定。

人们常根据这一原理用醋酸铜处理来保存绿色植物标本。

叶绿素溶液在透射光下呈绿色,而在反射光下呈红色,这种现象称为叶绿素荧光现象。

原因是当叶绿素分子吸收光量子后,就由最稳定的、能量的最低状态-基态(ground state)上升到不稳定的高能状态-激发态(excited state)。

叶绿素荧光指被激发的叶绿素分子从第一单线态回到基态所发射的光。

寿命很短。

处于第一三线态的叶绿素返回到基态所发射的光称为叶绿素磷光。

二、实验目的1.学会提取和分离叶绿体中色素的方法。

2.观察叶绿体中的各种色素。

3.掌握叶绿素的物理和化学性质三、实验用品1.材料与试剂:菠菜、脱脂棉等、固体碳酸钠或碳酸钙、丙酮、石油醚、蒸馏水、饱和NaCL水溶液、醋酸铜结晶、KOH-甲醇溶液等。

2.仪器设备:载玻片、盖玻片、镊子、解剖针、解剖刀、玻璃漏斗、分液漏斗中、研钵、试管、具塞锥形瓶等等。

四、方法和步骤1、叶绿体色素的提取• 将新鲜菠菜叶片洗净擦干,去叶柄及中脉,称取10g 去中脉的叶片,剪碎置研钵内,加入少许固体碳酸钠或碳酸钙和10 mL丙酮,迅速研磨成匀浆,再加15 mL丙酮充分研磨提取叶绿素。

• 在玻璃漏斗底部垫一小团脱脂棉,将匀浆通过脱脂棉过滤到已装有15 mL石油醚的分液漏斗中,再用少量丙酮冲洗叶片残渣和研钵,合并滤液。

• 沿分液漏斗的壁小心加入30mL蒸馏水,轻轻转动加入4 -8mL饱和NaCl水溶液,静止几分钟待分层清楚后,弃去下面的丙酮一水层。

叶绿素试验

叶绿素试验

叶绿素含量的测定(分光光度法) 三、叶绿素含量的测定(分光光度法)
(一)原 理
叶绿素a 叶绿素 a 、 b在红光区的 最大吸收峰分别为665nm和 665nm 最大吸收峰分别为 665nm 和 649nm nm, 649nm , 类胡萝卜素的最大 吸收峰为470nm,据朗伯- 470nm 吸收峰为 470nm , 据朗伯 - 比尔定律,求出叶绿素a 比尔定律 , 求出叶绿素a、 及类胡萝卜素含量。 b及类胡萝卜素含量。 13.95A 88A Ca = 13.95A665 - 6.88A649 24.96A 32A Cb = 24.96A649 - 7.32A665 Cx. 05Ca 114. Cx.c = (1000A470 - 2.05Ca - 114.8Cb) / 245 1000A
(三)方法与步骤
称取0.1g左右的鲜 称取0.1g左右的鲜 0.1g 剪碎,放入研钵中。 叶,剪碎,放入研钵中。 加少许碳酸钙和少量的 石英砂( 石英砂(中和细胞中的 酸,防止镁从叶绿素分 子中移出) 95%乙 子中移出)与1ml 95%乙 在研钵中快速研磨。 醇。在研钵中快速研磨。 再加95% 95%乙醇洗涤残渣 再加95%乙醇洗涤残渣 中的色素,过滤。 中的色素,过滤。在 25ml的容量瓶里定容至 25ml的容量瓶里定容至 25ml, 25ml,滤液即为色素提 取液。 取液。
(二)方法与பைடு நூலகம்骤
用移液管取叶绿素 提取液注入比色杯中, 提取液注入比色杯中, 以95%乙醇作为参比溶 95%乙醇作为参比溶 根据实验要求, 液。根据实验要求,选 用相应的波长在分光光 度计上测定光密度。 度计上测定光密度。
(三)结果与计算
样品中叶绿素含量(mg/g) 样品中叶绿素含量(mg/g) =比色杯中叶绿素浓度×稀释倍数×定容体 比色杯中叶绿素浓度×稀释倍数× 样品量(g鲜重) (g鲜重 积/样品量(g鲜重)

叶绿体色素的提取分离理化性质鉴定及含量测定

叶绿体色素的提取分离理化性质鉴定及含量测定
实验目的:分析校园中两种植物 材料叶绿体色素的差异
内容:
①叶绿素a和b含量差异; ②绿色素与黄色素的含量差异
色素提取分离的原理; 叶绿素测定的方法及其原理; 绿色素与黄色素的纯化原理及步骤; 叶绿素的理化性质的鉴定方法
实验原理
Photosynthesis
Thermosynechococcus
elongatus(蓝细菌)
研钵、剪刀、漏斗、滤纸、移液管(1mL)、 试管及试管架、洗耳球、酒精灯等。 • 试剂:丙酮、80%丙酮、醋酸酮、5%盐酸、 碳酸钙、石英砂等
实验步骤
鲜叶4 g,加丙酮10 ml及少许碳酸
1
钙和石英砂,匀浆,以漏斗过滤之
再加丙酮20 ml洗并过滤,即为色素提取液。放于暗处备用。
取少许于另 3 一试管中
实验步骤 叶绿素a和b的测定
鲜叶0.5 g,加丙酮5 ml及少许碳酸钙和石英砂,匀浆,将 匀浆转入量筒中,并用适量80%丙酮洗涤研钵,用80%丙酮 定容至10ml
吸取2.5ml加入有10ml80%丙酮的量筒中,过滤,滤液备用
取上述色素提取液4ml,以80%丙酮为对照,分别测定 663nm、645nm和 440nm处的光密度值。
Ca=12.7 OD663-2.69 OD645
(3)
Cb=22.9 OD645-4.68 OD663
(4)
CT= Ca+ Cb=8.02 OD663+20.21 OD645
பைடு நூலகம்
• Ck=4.7OD440- 0.27Ca+b
(5)
叶绿体色素的理化性质
(1)叶绿素与类胡萝卜素都有一定的吸收光谱, 可用分光镜检查或用分光光度计精确测定;
第二单线 态10-12 S

叶绿素的探究

叶绿素的探究

叶绿素的合成
谷氨酸
5-氨基酮戊酸
卟胆原
原卟啉Ⅸ
叶绿素a
NADPH

叶绿素酯a
单乙烯基原叶绿素酯a
原叶绿素酯 氧化还原酶
第1阶段:谷氨酸 经过5-氨基酮戊酸 (ALA),2分子 ALA合成卟胆原 (PBG,胆色素原)
第2阶段:4分子 PBG聚合成原卟 啉Ⅸ
第3阶段:光照 和NADPH存在 下,还原成叶绿 素酯a
另 一种类型是非功能 性的滞绿, 叶绿体的光 合作用能力丧失。
叶绿素的分解
Chl 的分解代谢反应分两个阶段。前一个阶段 是所有植物所共有的, 此时Chl 被降解成无色 的、蓝色 荧光中间产物(FCC), 这一阶段共需要 4种酶。首先, Chl被叶绿素酶(CLH)催化脱去植 醇基形成 Chlide, 然后, 由一个金属螯合物 (MCS) 通过非酶学过程去除镁离子形成脱镁叶 绿酸 a(Pheide a)。催化脱镁反应的是一种叶 绿体膜结合蛋白, 即镁-去 螯合酶。对这两种相 互矛盾的活性的可能解释是, MCS 只是镁-去 螯合酶的一个辅助因子。接下来, Pheide a 经 过由脱镁叶绿酸 a 加氧酶(PAO)和红色叶绿素 代谢产物还原酶(RCCR)催化的两步反应转化成 pFCC, 中间过程形成一种不稳定的中 间产物红 色叶绿素代谢产物(RCC)。最后, pFCC 经过几 次修饰之后运输至液泡中。第二个阶段, 经过 修饰的 pFCC 在液泡中发生非酶学异构形成最 终的非荧光叶绿素代谢产物(NCCs), 这是 一个 由酸性液泡的 pH 所催化的物种特异性修饰过 程, 最后转化形成单吡咯降解产物。
叶绿素
chlorophyll
目录
CONTENT
01 理化特性 02 合成与分解 03 提取与测定 04 应用

叶绿体色素的提取、分离、理化性质和叶绿素含量的测定

叶绿体色素的提取、分离、理化性质和叶绿素含量的测定

• 2、叶绿素的荧光现象
透射光下呈绿色
反射光下呈暗红色
• 3、取代反应
CH2 CH C C C CH3 N C CH —CH3 H3C— C H3C R1—C C C C N
H3C R1—C HC C C C N
C
C
HH
HC
H3C—
Cu
C
CH2 CH C C C CH3 N C CH
—CH3
褐色
绿色
4、皂化反应
COOCH3 C32H30ON4Mg COOC20H39 COO— + 2K+ +CH3OH +C20H39OH COO—
+ 2KOH
C32H30ON4Mg


5、定量分析:叶绿素吸收红光和兰紫光,红
光区可用于定量分析,其中665 和649用于定量 叶绿素a,b及总量,而652可直接用于总量测定
180 160 140 120 100 80 60 40 20 0 400 500 Waverlength(nm) 600 700
abBiblioteka • 实验步骤 1.定性分析:
取鲜叶3-5g+95%乙醇15-25ml(逐步加入),磨成匀浆

过滤入三角瓶中
观察荧光现象 透射光 色,反射 光 光。
定性实验 无需移液管量 皂化反应(约1ml)
省培项目
叶绿体色素的提取、分离、 理化性质和叶绿素含量的测定
• 一、实验目的和要求:掌握植物中叶绿 体色素的提取分离和性质鉴定、定量分 析的原理和方法。
• 二、实验内容和原理:以菠菜为材料, 提取和分离叶绿体色素并进行理化性质 分析和叶绿素含量测定。
1、叶绿素和类胡 萝卜素均不溶于 水而溶于有机溶 剂,常用95%的 乙醇或80%的丙 酮提取。

叶绿色素的提取分离、理化性质-清华

叶绿色素的提取分离、理化性质-清华

现代生物学导论普生实验报告叶绿色素的提取分离、理化性质和含量测定生医9 田雪霏2009013189(同组人:蒋楠)PART A一、实验名称:叶绿色素的提取与分离二、实验原理叶绿体中叶绿素a、叶绿素b、胡萝卜素、叶黄素与类囊体膜结合成为色素蛋白复合体。

这些色素都不溶于水,而溶于有机溶剂,故可用乙醇等有机溶剂提取。

提取液可用薄层色谱法加以分离和鉴别。

由于吸附剂对不同物质的吸附能力大小不同,吸附能力强的物质相对移动慢一些,而吸附力弱的物质则相对移动快一些,从而使各组分有不同的移动速度而彼此分开。

三、实验材料与试剂1.新鲜的菠菜叶片2.体积分数为95% 的乙醇,CaCO3粉末,展开剂(石油醚:丙酮:苯=7:5:1,体积比)3.天平,研钵,漏斗,三角瓶,剪刀,点样毛细管,层析缸,硅胶预制板,滤纸。

四、实验步骤(一)、色素提取液的制备1.取新鲜叶片4~5片(2g左右),洗净,擦干叶表面,去中脉剪碎,放入研钵中2.研钵中加入少量CaCO3,加2~3ml体积分数为95% 的乙醇,研磨至糊状,再加15ml 体积分数为95% 的乙醇,上清液用漏斗过滤,残渣再用10ml 体积分数为95% 的乙醇冲洗一次,一同过滤于三角瓶中,即制成叶绿体色素提取液。

提取液应避光保存,因提取量较大,可用于其它相关实验。

(制备的叶片中叶绿体色素的提取液)(二)、叶绿体色素的分离1. 取硅胶预制板一个,用点样毛细管吸取上述提取液,平行于硅胶板的短边,距下边缘1cm 处用毛细管划线,风干或吹风机吹干后再划第二次,重复操作3~4次。

2. 在干洁的层析缸中加入适量的展开剂,高度约0.5cm,将硅胶预制板带有色素的一端放入,使其下端浸入展开剂中。

迅速盖好层析缸盖。

此时,展开剂借毛细管作用沿硅胶预制板向上扩散,并把叶绿体色素向上推动,不久即可看到各种色素的色带。

当各种色素得到较好分离,展开剂前沿接近硅胶预制板上端近边缘处时,取出硅胶预制板,并迅速用铅笔标出展开剂前沿和各色素带的位置。

实验4 叶绿素的理化性质

实验4 叶绿素的理化性质

实验4 叶绿素的理化性质一、实验目的:1、掌握叶绿体色素的提取、分离和含量的测定的方法。

2、掌握分光光度计的应用。

二、实验原理:理化性质:1.荧光现象:透射光下呈绿色,反射光下呈红色。

叶绿素吸收光量子→激发态→基态:发射出红光量子。

2.叶绿素分子的镁可被氢和铜替代镁→氢:褐色镁→铜:绿色3.皂化作用(绿色素与黄色素的分离)叶绿酸的酯+碱→醇+叶绿酸的盐三、实验用具及器材和药品:(1)天平、剪刀、研钵、烧杯、量筒、25ml容量瓶、滤纸、表面皿、漏斗、滴管、试管、酒精灯(2)石英砂、碳酸钙、80%丙酮、盐酸、醋酸铜晶体、乙醚、蒸馏水、30%KOH-甲醇溶液(3)菠菜叶四、实验步骤:1.叶绿素的提取:取菠菜(或其他植物)叶子2g,剪碎,放在研钵中,加石英砂和碳酸钙少许,80%丙酮约2-3ml,研磨成匀浆,再加80%丙酮定容至25ml,用漏斗过滤,即为色素提取液。

2. 叶绿素理化性质鉴定(1)叶绿素的荧光现象:观察在反射光和透射光下观察色素提取液的颜色有什么不同。

(2)氢和铜对叶绿素分子中镁的替代作用(稀释10倍后再做)取两支试管。

第一支试管加叶绿体色素提取液2毫升,作为对照。

第二支试管加叶绿体色素提取液2毫升,1滴1滴地加入盐酸,直至溶液出现橙色,此时叶绿素分子已遭破坏,形成去镁叶绿素。

然后加醋酸铜晶体1小粒,慢慢地在酒精灯上加热溶液,观察记录溶液颜色变化,并与对照试管比较。

(3)皂化作用(黄色素和绿色素的分离)将叶绿体色素提取液2毫升于试管中,加入4毫升乙醚,摇匀,沿试管壁慢慢加入5毫升左右的蒸馏水,轻轻混匀,静置片刻后,溶液即分为两层,色素已全部转入上层乙醚中。

用滴管吸取上层绿色层溶液,放入另一试管中。

在色素乙醚溶液中加入1-2毫升30%KOH-甲醇溶液,充分摇匀,静置。

溶液逐渐分为两层,下层是甲醇溶液皂化的叶绿素),上层是乙醚溶液(胡萝卜素和叶黄素)五、实验现象及结果:1. 叶绿素的荧光现象:在反射光下可以看到提取液呈黄绿色,在投射光下呈绿色。

实验3 叶绿体色素的提取、分离、性质

实验3  叶绿体色素的提取、分离、性质

实验三叶绿体色素的提取、分离、性质及含量一、实验目的1、掌握叶绿体色素的提取方法;2、掌握纸层析法分离叶绿体色素的原理和步骤;3、掌握叶绿体色素的部分理化性质。

二、实验原理叶绿体中含有绿色素(包括叶绿素a和叶绿素b)和黄色素(包括胡萝卜素和叶黄素)两大类。

它们与类囊体膜上的蛋白质相结合,而成为色素蛋白复合体,这两类色素都不溶于水,而溶于有机溶剂,故可用乙醇或丙酮等有机溶剂提取。

提取液可用色层分析的原理加以分离。

因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各成分在两相(流动相和固定相)间具有不同的分配系数,所以它们的移动速度不同,经过一定时间层析后,便将混合色素分离。

叶绿素与类胡萝卜素都具有光学活性,表现出一定的吸收光谱,可用分光光度计精确测定。

叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。

叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较稳定。

叶绿素中的镁可以被H+所取代而成褐色的去镁叶绿素,后者遇铜则成为绿色的铜代叶绿素,铜代叶绿素很稳定,在光下不易破坏,故常用此法制作绿色多汁植物的浸渍标本。

三、实验仪器及材料仪器及试剂:吹风机、定性滤纸、脱脂棉、火柴、碘钨灯、95%乙醇、汽油、醋酸铜、浓盐酸、CaCO3材料:菠菜叶片四、实验步骤1、提取称菠菜叶子10g,加少许石英砂、CaCO3、乙醇研磨,研成匀浆,过滤,用乙醇定容至50ml,分装于5个试管内。

2、分离用滤纸条浸色素提取液(试管1),吹干,反复多次;将带色素的滤纸条卷成灯芯,将表面皿放在培养皿内,注上汽油,把灯芯浸在汽油内,加盖,色素层分清后,取下吹干,即可看到分离的各种色素:叶绿素a为蓝绿色,叶绿素b为黄绿色,叶黄素为鲜黄色,胡萝卜素为橙黄色。

用铅笔标出各种色素的位置和名称。

3、叶绿体色素吸收光谱曲线取1ml提取液于比色杯中(试管2),加3ml95%乙醇。

2016新编实验一_叶绿素的提取、理化性质和含量测定

2016新编实验一_叶绿素的提取、理化性质和含量测定

一、实验原理叶绿素是植物光合作用色素,主要有chla chlb ,不溶于水,可溶于酒精.丙酮和石油醚。

叶绿素是叶绿酸的酯,叶绿酸是双羧酸,其中一个羧基被甲醇酯化,另一个被叶醇酯化,能发生皂化反应。

叶绿素分子含有一个卟啉环的“头部”和一个叶绿醇( 植醇,phytol) 的“尾巴”。

卟啉环中的镁原子可被H+、Cu2 +、Zn2 +所置换。

用酸处理叶片,H+易进入叶绿体,置换镁原子形成去镁叶绿素,使叶片呈褐色。

去镁叶绿素易再与铜离子结合,形成铜代叶绿素,颜色比原来更稳定。

人们常根据这一原理用醋酸铜处理来保存绿色植物标本。

叶绿素溶液在透射光下呈绿色,而在反射光下呈红色,这种现象称为叶绿素荧光现象。

原因是当叶绿素分子吸收光量子后,就由最稳定的、能量的最低状态-基态(ground state)上升到不稳定的高能状态-激发态(excited state)。

叶绿素荧光指被激发的叶绿素分子从第一单线态回到基态所发射的光。

寿命很短。

处于第一三线态的叶绿素返回到基态所发射的光称为叶绿素磷光。

二、实验目的1.学会提取和分离叶绿体中色素的方法。

2.观察叶绿体中的各种色素。

3.掌握叶绿素的物理和化学性质三、实验用品1.材料与试剂:菠菜、脱脂棉等、固体碳酸钠或碳酸钙、丙酮、石油醚、蒸馏水、饱和NaCL水溶液、醋酸铜结晶、KOH-甲醇溶液等。

2.仪器设备:载玻片、盖玻片、镊子、解剖针、解剖刀、玻璃漏斗、分液漏斗中、研钵、试管、具塞锥形瓶等等。

四、方法和步骤1、叶绿体色素的提取• 将新鲜菠菜叶片洗净擦干,去叶柄及中脉,称取10g 去中脉的叶片,剪碎置研钵内,加入少许固体碳酸钠或碳酸钙和10 mL丙酮,迅速研磨成匀浆,再加15 mL丙酮充分研磨提取叶绿素。

• 在玻璃漏斗底部垫一小团脱脂棉,将匀浆通过脱脂棉过滤到已装有15 mL石油醚的分液漏斗中,再用少量丙酮冲洗叶片残渣和研钵,合并滤液。

• 沿分液漏斗的壁小心加入30mL蒸馏水,轻轻转动加入4 -8mL饱和NaCl水溶液,静止几分钟待分层清楚后,弃去下面的丙酮一水层。

叶绿素的药理功能及特性

叶绿素的药理功能及特性

叶绿素的药理功能及特性■叶绿素的药理功能叶绿素是植物中含的绿色色素,植物细胞内的叶绿体吸收太阳光能源,从水和空气中CO2合成糖等有机物。

叶绿素结构类似动物血液中的红色素,为维持生命不可缺的重要物质。

叶绿素存在许多类似体,高等绿色植物和绿藻等含叶绿素a和b,褐藻、硅藻等含叶绿素a。

为提高稳定性,食品和医药品中用叶绿素诱导体为多。

叶绿素有多种药理效果引起食品界的注目。

铜叶绿素、铜叶绿素钠、铁叶绿素钠早在上世纪60年代初就被作为食品添加剂,用于口香糖、蔬菜等加工品的着色。

日本研究表明,叶绿素的诱导体可作胃肠药、口臭防止药、洗口液等成分。

具体说,叶绿素有下列重要药理功能:创伤治愈作用叶绿素能促进切伤、火伤、溃疡等伤口的肉芽新生、加快治愈作用。

对创伤、溃疡局部涂布能使创伤面干燥,加快肉芽及上皮细胞的产生,明显促进创伤治愈。

脱臭作用。

叶绿素能除去饮食、香烟及新陈代谢产生的口臭、脚臭、腋下恶臭、饮酒后酒气臭。

铜叶绿酸钠有显著抑制口臭的挥发性硫化物的效果。

抗过敏作用。

铜叶绿酸钠对治疗顽固性慢性荨麻疹、顽固性慢性湿疹、支气管哮喘及冻疮均有明显效果。

叶绿素的抗过敏作用强。

抗溃疡作用。

据国外对鼠试验,对幽门结扎溃疡的鼠同时投服叶绿酸作制酸剂和抗胆碱药有明显抗溃疡效果。

肠蠕动功能亢进作用。

叶绿素能使肠道蠕动轻度亢进,解消便秘。

抗变异原性。

叶绿酸、叶绿素能和发癌物质Trp-p-2的活性体形成复合体,使其不活化,还能抑制黄曲霉素、苯并芘等变异原物质。

制癌作用。

叶绿酸钠能使肝癌细胞的增殖消失。

叶绿素提取物有抗肿瘤功能及大大提高肿瘤的光导疗法效果。

降血清胆固醇作用。

叶绿素的分解物脱镁叶绿素及叶绿酸均有降低胆固醇效果。

叶绿素来自天然植物,安全性高,作为绿色的叶绿素的应用将更加广泛,在食品中作健康与功能食品添加剂。

■叶绿素的制造及性质叶绿素制造,以小球藻等为原料,用丙酮等有机溶剂提取,得到叶绿素a、b的混合物。

但这种天然的叶绿素受光线(特别是紫外线)和热分解、易褪色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称: 植物生理学(乙)指导老师: 廖敏 成绩: 实验名称: 叶绿素理化性质和含量 实验类型: 定量探究型 同组学生姓名: 方昊
一、实验目的和要求(必填)
三、主要仪器设备(必填)
五、实验数据记录和处理
七、讨论、心得
二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)
一、实验目的和要求
掌握植物中叶绿体色素的分离和性质鉴定、定量分析的原理和方法;
二、实验内容和原理
以青菜为材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量
分析。

原理如下:
1. 叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,常用95%的乙醇或80%的丙酮提取;
2. 叶绿素是二羧酸酯,与强碱反应,形成绿色的可溶性叶绿素盐,就可与有机溶剂中的类胡萝卜素
分开;
3. 在酸性或加温条件下,叶绿素卟啉环中的Mg++可依次被H+和Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素;
4. 叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光;
5. 叶绿素吸收红光和蓝紫光,红光区可用于定量分析,其中645和663用于定量叶绿素a 、b 及总量,而652可直接用于总量分析。

专业:农业资源与环境 姓名: 吴主光
学号: 3110100403 日期: 2013.10.17 地点: 生物实验中心

订 线
三、主要仪器设备
1. 天平(万分之一)、可扫描分光光度计、离心机、研具、各种容(量)器、洒精灯等
四、操作方法、实验步骤以及实验现象
定性分析:
鲜叶5g+95%30ml(逐步加入),磨成匀浆
过滤入三角瓶中,观察荧光现象:透射光绿色,反射光红色。

皂化反应(3ml):加KOH数片剧烈摇均,加石油醚5ml和H2O1ml分层后观察:上层呈黄色,为类胡萝卜素,吸收蓝紫光;下层呈绿色,为叶绿素,吸收红光和蓝紫光。

取代反应(1):加醋酸约2ml,变褐(去镁叶绿素);取1/2加醋酸铜粉加热,变鲜绿色,为铜代叶绿素。

取代反应(2):鲜叶2-3cm2,加Ac-AcCu 20ml加热,观察: 3 min变为褐绿色的去镁叶绿素, 5 min后,变为深绿色的铜代叶绿素。

叶绿素和类胡萝卜素的吸收光谱测定:
皂化反应的上层黄色石油醚溶液(稀释470nm OD 0.5-1)
反复用石油醚粹取,直到无类胡萝卜素,离心得叶绿素(盐)(稀释663nm OD 0.5-1)
在400-700nm处扫描光谱,分别测定类胡萝卜素和叶绿素的吸收峰.
叶绿素定量分析:鲜叶0.1g,加1.9mlH2O,磨成匀浆,取0.2ml加80%丙酮4.8ml,摇匀,4000转离心3min,上清液在645,652,663测定OD,计算Chla,Chlb 和Chl总量的值。

五、实验数据记录和处理
OD645 = 0.104 OD652 = 0.147 OD663 = 0.246
Ca(mg/L)=12.7 OD663 - 2.69 OD645 = 2.84 (mg/L)
Cb (mg/L) =22.9 OD645 - 4.68 OD663 = 1.23 (mg/L)
CT (mg/L) = Ca + Cb = 4.07 (mg/L) 或 OD652× 1000 / 34.5 = 4.26 (mg/L) Chla含量(mg/g.FW) = (Ca(mg/L)/1000)×2/ 0.1×5/ 0.2 = 1.42 (mg/g.FW)
Chlb含量(mg/g.FW) = (Cb(mg/L)/1000)×2/ 0.1×5/ 0.2 = 0.62 (mg/g.FW)
Chl总含量(mg/g.FW) = (CT(mg/L)/1000)×2/ 0.1×5/ 0.2 = 2.04 (mg/g.FW)
六、实验结果与讨论
1.吸收光谱图谱分析
胡萝卜素吸收波长范围集中在400-500nm的蓝紫光区,其中占主要的440-480区间内出现了两个峰值。

叶绿素吸收波长范围集中在400-500nm的蓝紫光区以及600-700nm的红橙光区,其中蓝紫光区峰值明显大于红橙光区。

2.定量分析
由OD652计算得出的Chl总含量与OD625及OD663得出的值稍存在一定的偏差,经分析可能原因:
1.视觉误差:由于操作者个人视力的因素不可能将仪器刻度盘绝对准确
地调至645nm、652nm以及
663nm,另一方面由于叶绿素a、b的吸收峰很陡,从而此时对3个数值的调准偏差应尽量减少到最低;
2.实验材料制备的误差:实验制备材料时可能由于叶绿素叶黄素等没有
充分溶解,导致后面测得的数剧偏低。

3.仪器误差:仪器本身造成实验结果产生误差;
七、心得
实验中最重要的部分不是分光光度计对于吸收峰的测定,最重要的部分应该是实验材料的制取,制取材料的时候如果没有制备好,后面测得的数据会有很大的偏差,与标准值差距也会非常大。

相关文档
最新文档