逻辑函数的化简方法

合集下载

03第二章-2 卡诺图化简逻辑函数

03第二章-2 卡诺图化简逻辑函数
注意:卡诺图水平方向同一行首尾,同一列 首尾也为逻辑相邻相。
m0 与 m1 、 m2 逻辑相邻。
三变量卡诺图
四变量卡诺图
圆柱面
m0 与 m1 m2 m4 m1 与 m0 m3 m5
球面
均为逻辑相邻 均为逻辑相邻
m0 与 m1 m2 m4 m8 均为逻辑相邻 m1 与 m0 m3 m5 m9 均为逻辑相邻
(1) 在卡诺图构成过程中,变量的 取值按格雷码的顺序排列。 二变量卡诺图
格雷码:相邻两个代码之间只有一位发生变化
B0 A
1
0 m0 m1
1 m2 m3
平面表格
(2) 卡诺图两侧标注的数值代表 的二进制数对应的十进制数即为 格中对应的最小项编号。 (3) 几何位置相邻的最小项也是 逻辑相邻项。 (4) 卡诺图是上下、左右闭合的 图形。
二、用卡诺图表示逻辑函数
由于任何一个逻辑函数都能表示为若干最小 项之和的形式,所以自然也就可以用卡诺图表示 逻辑函数了。 1、逻辑函数→卡诺图 (1) 最小项法 ① 将逻辑函数化为最小项表达式; ② 在卡诺图上与这些最小项对应的位 置上填入1,在其余位置填入0或不填。 这样就得到了表示该逻辑函数的卡诺图。
例1:
Y = ABC + ABC ′ + AB′ = AB(C + C ′) + AB′ = AB + AB′ = A
例2
ABC + A′ + B′ + C ′ ′ = ABC + ( ABC ) = 1 A′BC ′ + AC ′ + B′C ′
例3
= A′BC ′ + ( A + B′)C ′ ′ = A′BC ′ + ( A′B ) C ′ = C ′

用代数法化简逻辑函数

用代数法化简逻辑函数

用代数法化简逻辑函数一、引言逻辑函数是计算机科学中的重要概念之一,它是由一个或多个逻辑变量构成的表达式。

在实际应用中,我们需要对逻辑函数进行化简,以便更好地理解和优化电路设计。

本文将介绍代数法化简逻辑函数的方法。

二、基本概念1. 逻辑变量:指只能取两个值(真或假)的变量。

2. 逻辑运算:指对逻辑变量进行操作的运算符,包括非(NOT)、与(AND)、或(OR)等。

3. 逻辑表达式:由逻辑变量和逻辑运算符组成的表达式。

三、代数法化简方法1. 布尔代数定律布尔代数定律包括以下几种:(1)结合律:A AND (B AND C) = (A AND B) AND C;A OR (B OR C) = (A OR B) OR C。

(2)交换律:A AND B = B AND A;A OR B = B OR A。

(3)分配律:A AND (B OR C) = (A AND B) OR (A AND C);A OR (B AND C) = (A OR B) AND (A OR C)。

(4)吸收律:A OR (A AND B) = A;(A OR B) AND A = A。

(5)恒等律:A AND 1 = A;A OR 0 = A。

(6)补充律:A OR NOT A = 1;A AND NOT A = 0。

2. 化简步骤化简逻辑函数的基本步骤如下:(1)将逻辑函数写成标准形式;(2)应用布尔代数定律进行化简;(3)使用代数运算法则进行化简;(4)使用卡诺图进行化简。

四、例子假设有一个逻辑函数F(A,B,C)=AB+BC+AC,要将其化简为最简形式。

步骤如下:(1)将逻辑函数写成标准形式:F(A,B,C)=(A AND B) OR (B AND C) OR (A AND C)。

(2)应用布尔代数定律进行化简:F(A,B,C)=(A AND B) OR (B AND C) OR (A AND C)=(A AND B) OR (B AND C)=(B AND (A OR C)) OR (A AND B)(3)使用代数运算法则进行化简:F(A,B,C)=(B AND (A OR C)) OR (A AND B)=(AB OR BC) OR AC=AB+BC+AC因此,原来的逻辑函数F可以被化简为最简形式AB+BC+AC。

逻辑函数化简方法

逻辑函数化简方法

逻辑函数化简方法
逻辑函数化简是将复杂的逻辑函数简化为更简洁的形式的过程。

以下是常见的逻辑函数化简方法:
1. 真值表方法:通过构造逻辑函数的真值表,观察不同输入值下函数值的变化规律来推导简化逻辑函数的形式。

2. 化简定律:通过逻辑运算的各种定律来对逻辑函数进行化简,常见的包括德摩根定律、分配律、结合律、交换律等。

3. 卡诺图方法:利用卡诺图来进行逻辑函数的化简。

卡诺图是一种用来表示逻辑函数的图表,通过观察卡诺图的模式,可以找到逻辑函数的最小项和最大项,并将其化简为更简单的形式。

4. 斯芬克斯化简方法:适用于较复杂的逻辑函数。

斯芬克斯化简方法是一种将逻辑函数分解为多个子函数,并利用分解后的子函数进行化简的方法。

这些方法可以单独使用,也可以结合使用,根据具体情况选择合适的方法来进行逻辑函数的化简。

逻辑函数的公式化简法

逻辑函数的公式化简法

逻辑函数的公式化简法
公式化简法的原理就是反复使用规律代数的基本公式和常用公式消去函数式中多余的乘积项和多余的因式,以求得函数式的最简形式。

公式化简法没有固定的步骤。

现将常常使用的方法归纳如下:
一、并项法
二、汲取法
利用公式A+AB=A,汲取掉(即除去)多余的项。

A和B同样也可以是任何一个简单的规律式。

【例】试用汲取法化简下列规律函数:
三、消项法利用公式AB+ C+BC=AB+ C及AB+ C+BCD=AB+ C,将BC或BCD消去。

其中A、B、C、D都可以是任何简单的规律式。

【例】用消项法化简下列规律函数:
四、消因子法利用公式A+B=A+B,可消去多余的因子。

A、B均可以是任何简单的规律式。

【例】试用消因子法化简下列规律函数
五、配项法1、依据基本公式A+A=A可以在规律函数式中重复写入某一项,有时能获得更加简洁的化简结果。

2、依据基本公式A+=1,可以在函数式中乘以(A+ ),然后拆成两项分别与其他项合并,有时能得到更加简洁的化简结果。

在化简简单的规律函数时,往往需要敏捷、交替地运用上述方法,才能得到最终的化简结果。

【例】化简规律函数。

逻辑函数化简公式大全

逻辑函数化简公式大全

逻辑函数化简公式大全逻辑函数化简是在布尔代数中常用的一种方法,它通过应用逻辑运算规则和布尔代数定律,将复杂的逻辑函数简化为更简洁的形式。

这种简化可以减少逻辑电路的复杂性,提高计算机系统的效率。

以下是一些常见的逻辑函数化简公式大全:1. 与运算的化简:- 与运算的恒等律:A∧1 = A,A∧0 = 0- 与运算的零律:A∧A' = 0,A∧A = A- 与运算的吸收律:A∧(A∨B) = A,A∧(A∧B) = A∧B- 与运算的分配律:A∧(B∨C) = (A∧B)∨(A∧C)- 与运算的交换律:A∧B = B∧A2. 或运算的化简:- 或运算的恒等律:A∨1 = 1,A∨0 = A- 或运算的零律:A∨A' = 1,A∨A = A- 或运算的吸收律:A∨(A∧B) = A,A∨(A∨B) = A∨B- 或运算的分配律:A∨(B∧C) = (A∨B)∧(A∨C)- 或运算的交换律:A∨B = B∨A3. 非运算的化简:- 非运算的双重否定律:(A) = A- 非运算的德摩根定律:(A∧B) = A∨B,(A∨B) = A∧B4. 异或运算的化简:- 异或运算的恒等律:A⊕0 = A,A⊕1 = A- 异或运算的自反律:A⊕A = 0- 异或运算的结合律:A⊕(B⊕C) = (A⊕B)⊕C- 异或运算的交换律:A⊕B = B⊕A5. 条件运算的化简:- 条件运算的恒等律:A→1 = 1,A→0 = A- 条件运算的零律:A→A' = 0,A→A = 1- 条件运算的反转律:A→B = A∨B- 条件运算的分配律:A→(B∧C) = (A→B)∧(A→C)这些公式是逻辑函数化简中常用的基本规则,通过灵活应用它们,可以将复杂的逻辑表达式简化为更简单的形式。

使用这些规则,我们可以提高逻辑电路的效率和简洁性,并降低硬件成本。

逻辑函数的化简方法

逻辑函数的化简方法
[例] Y A A BC ( A B C D) BC
( A BC ) ( A BC ) ( A B C D)
A BC
三、消去法:
A AB A B
[例 1. 2. 9] Y AB AC BD
A B AC BD A B C D
3. 变量卡诺图的特点:用几何相邻表示逻辑相邻 (1) 几何相邻:
相接 — 紧挨着 相对 — 行或列的两头 相重 — 对折起来位置重合
两个最小项只有一个变量不同
(2) 逻辑相邻:
化简方法: 逻辑相邻的两个最小项可以合并成一 项,并消去一个因子。
2、逻辑函数的图形化简法
1. 2. 2 逻辑函数的公式化简法
(与或式 一、并项法:
公式 定理
最简与或式)
AB AB A
[例 1. 2. 7] Y ABC ABC AB
AB AB B
[ 例]
Y ABC ABC ABC ABC
A ( BC B C ) A ( BC BC )
1. 2 逻辑函数的化简方法
1. 2. 1 逻辑函数的标准与或式和最简式 一、标准与或表达式 [例 1. 2. 1] Y F ( A ,B ,C ) AB AC
最简式
AB(C C ) AC ( B B)
ABC ABC ABC ABC
最小项
标准与 或式
标准与或式就是最小项之和的形式
ABC ABC A B C AB C D A B C D 与前面m0 ABCD ABC D ABC D ABC D m7 m6 m5 m4 相重 A B C D A B C D AB C D A B C D m1 m0 m8 m0

逻辑函数的化简及其门电路的实现

逻辑函数的化简及其门电路的实现
逻辑函数的化简 及其门电路的实

一、逻辑函数的化简法
(一)逻辑函数的公式化简法
(二)逻辑函数的卡诺图化简法
1.逻辑函数的最小项及最小项表达式
2.逻辑函数的卡诺图表示方法
1)卡诺图的画法规则的性质 2)用卡诺图化简逻辑函数的基本步骤
(三)含随意项的逻辑函数的化简
化简含随意项的逻辑函数时,充分利用随意项可以得到更加 简单的逻辑表达式,因而其相应的逻辑电路也更简单。在化简过 程中,随意项的取值可视具体情况取0或者取1。简单地说,如果 随意项对化简有利,则取1;如果随意项对化简不利,则取0。
二、逻辑函数门电路的实现
谢谢观看!

逻辑函数化简公式

逻辑函数化简公式

逻辑函数化简公式逻辑函数化简是一种将复杂的逻辑表达式简化为更简洁形式的方法。

通过化简,我们可以减少逻辑电路的复杂性,提高电路的性能和效率。

公式化简的过程涉及到逻辑运算的规则和性质。

下面是一些常见的逻辑函数化简公式:1. 同一律:A + 0 = A,A * 1 = A。

这表示在逻辑表达式中,与0相或的结果是原始信号本身,与1相与的结果是原始信号本身。

2. 吸收律:A + A * B = A,A * (A + B) = A。

这表示当一个信号与另一个信号的与运算结果相或,或者一个信号的与运算结果与另一个信号相与时,结果都是原始信号本身。

3. 分配律:A * (B + C) = A * B + A * C,A + (B * C) = (A + B) * (A + C)。

这表示在逻辑表达式中,可以将与运算分配到相或的运算中,或者将相或的运算分配到与运算中。

4. 德摩根定律:(A + B)' = A' * B',(A * B)' = A' + B'。

这表示在逻辑表达式中,如果一个信号取反后与另一个信号相与,或者一个信号取反后与另一个信号相或,相当于原始信号分别与另一个信号取反后的结果相或相与。

通过运用这些公式,我们可以逐步将复杂的逻辑表达式进行化简,从而得到更简洁的形式。

这有助于我们设计更简单、更高效的逻辑电路,并且减少电路的成本和功耗。

然而,化简过程也需要谨慎进行,需要根据具体情况来选择最优的化简策略。

有时候,过度地化简可能会导致逻辑电路的复杂性增加,或者引入一些错误。

因此,在进行逻辑函数化简时,我们需要充分理解逻辑运算的规则和性质,并结合具体的应用场景来进行合理化简。

1.1 逻辑函数的代数(公式)化简法

1.1 逻辑函数的代数(公式)化简法

逻辑函数的代数(公式)化简法代数化简法的实质就是反复使用逻辑代数的基本公式和常用公式消去多余的乘积项和每个乘积项中多余的因子,以求得函数式的最简与或式。

因此化简时,没有固定的步骤可循。

现将经常使用的方法归纳如下:①吸收法:根据公式A+AB=A 可将AB 项消去,A 和B 同样也可以是任何一个复杂的逻辑式。

()F A A BC A BC D BC =+⋅⋅+++例:化简()()()()()()F A A BC A BC D BCA A BC A BC D BCA BC A BC A BC D A BC=+⋅⋅+++=+++++=+++++=+解:现将经常使用的方法归纳如下:②消因子法:利用公式A+AB=A +B 可将AB 中的因子A 消去。

A 、B 均可是任何复杂的逻辑式。

1F A AB BEA B BE A B E=++=++=++例:2()F AB AB ABCD ABCDAB AB AB AB CDAB AB AB ABCDAB AB CD=+++=+++=+++=++现将经常使用的方法归纳如下:③合并项法(1):运用公式A B +AB=A 可以把两项合并为一项,并消去B 和B 这两个因子。

根据代入规则,A 和B 可以是任何复杂的逻辑式。

例:化简F BCD BCD BCD BCD=+++()()()()F BCD BCD BCD BCDBCD BCD BCD BCD BC D D BC D D BC BC B=+++=+++=+++=+=现将经常使用的方法归纳如下:③合并项法(2):利用公式A+A=1可以把两项合并为一项,并消去一个变量。

例:1()1F ABC ABC BCA A BC BCBC BC =++=++=+=现将经常使用的方法归纳如下:③合并项法(2):利用公式A+A=1可以把两项合并为一项,并消去一个变量。

例:2()()()()F A BC BC A BC BC ABC ABC ABC ABCAB C C AB C C AB AB A=+++=+++=+++=+=现将经常使用的方法归纳如下:例:1()()()()()(1)(1)()F AB AB BC BCAB AB C C BC A A BCAB ABC ABC BC ABC ABCAB ABC BC ABC ABC ABC AB C BC A AC B B AB BC AC=+++=+++++=+++++=+++++=+++++=++④配项法:将式中的某一项乘以A+A 或加A A ,然后拆成两项分别与其它项合并,进行化简。

6、逻辑代数的化简(公式法和卡诺图法)

6、逻辑代数的化简(公式法和卡诺图法)

6、逻辑代数的化简(公式法和卡诺图法)⼀、逻辑函数的化简将⼀个逻辑表达式变得最简单、运算量最少的形式就叫做化简。

由于运算量越少,实现逻辑关系所需要的门电路就越少,成本越低,可靠性相对较⾼,因此在设计逻辑电路时,需要求出逻辑函数的最简表达式。

由此可以看到,函数化简是为了简化电路,以便⽤最少的门实现它们,从⽽降低系统的成本,提⾼电路的可靠性。

通常来说,我们化简的结果会有以下五种形式为什么是这五种情况,这个跟我们实现的逻辑电路的元器件是有关系的。

在所有的逻辑电路中,都是通过与、或、⾮三种逻辑电路来实现的,之前说过逻辑“与或”、“或与”、“与或⾮”组合逻辑电路是具有完备性的,也就是说能够通过它们不同数量的组合能够实现任何电路。

通过不同的“与或”电路组成的电路,最后化简的表达式就是“与或”表达式,其他同理。

⼆、将使⽤“与或”表达式的化简表达式中乘积项的个数应该是最少的表达了最后要⽤到的与门是最少的,因为每⼀个乘积项都需要⼀个与门来实现。

同时也对应了或门输⼊端的个数变少,有2个与项或门就有2个输⼊端,有3个与项或门就有3个输⼊端。

所以第⼀个条件是为了我们的与门和或门最少。

每⼀个乘积项中所含的变量个数最少它是解决每⼀个与门的输⼊端最少。

逻辑函授的化简有三种⽅法三、逻辑函数的代数化简法3.1 并项法并项法就是将两个逻辑相邻(互补)的项合并成⼀个项,这⾥就⽤到了“合并律”将公因⼦A提取出来合并成⼀项,b和b⾮相或的结果就等于1,所以最后的结果就是A。

吸收法是利⽤公式“吸收律”来消去多余的项3.3 消项法消项法⼜称为吸收律消项法3.4 消因⼦法(消元法)3.4 配项法左边的例⼦⽤到了⽅法1,右边的例⼦⽤到了⽅法2。

3.5 逻辑函数的代数法化简的优缺点优点:对变量的个数没有限制。

在对定律掌控熟练的情况下,能把⽆穷多变量的函数化成最简。

缺点:需要掌握多个定律,在使⽤时需要能够灵活应⽤,才能把函数化到最简,使⽤门槛较⾼。

逻辑函数化简方法

逻辑函数化简方法
YF(A ,B) ( 2 变量共有 4 个最小项)
A B AB A B AB YF( A ,B ),C( 3 变量共有 8 个最小项) ABC ABC ABC ABC ABC ABC AB C ABC
Y F(A ,B ,C),D( 4 变量共有 16 个最小项) ABCD ABCD ABCD … … ABCD ABCD
( n 变量共有 2n 个最小项)
2. 最小项的性质:
ABC
000 001 010 011 100 101 110 111
ABC ABC ABC ABC ABC ABC AB C ABC
1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 10 0 0 0 0 0 0 01
二、吸收法: AA B A
[例 1. 2. 10] YA B A D B E A BA D B E AB
[例 1. 2. 11] YA BA CD B CD AB(AB)CD ABABCD AB AB
[例] YA A B(C A B C D )BC (A B) C (A B)(C A B C D )
BCACAB
或 BCA CACBC AB
冗余项
ABACBC [例 1. 2. 15] Y A B A B C C A B A C BC
ABAC BC 或 A B A C B C A B A C BC
ABACBC
综合练习:
Y A A C B B C E E D B C D E C A E E E (A A C B B C D C A ) B C D E(C B D A )B C D

电工电子技术-逻辑函数的化简

电工电子技术-逻辑函数的化简

(2)吸收法
运用公式 A AB A 消去多余的项,其中,A、B可以是
任意一个复杂的逻辑式。例如:
Y1 AB AC DEB AB
Y2 AB ABC ABD AB D E AB AB C D D E AB
(3)消去法
运用公式 A AB A B 消去多余的因子。例如:
例如:逻辑函数Y的卡诺图。 Y ABCD ABCD ABCD ABCD
ABCD ABCD ABCD ABCD
(3)用卡诺图化简逻辑函数式 使用卡诺图化简逻辑函数所依据的原理是:具有相邻性 的最小项可以合并消去不同的因子。 ①2个相邻的最小项结合(用一个包围圈表示),可以消 去1个取值不同的变量而合并为1项,如下图所示。
00 01 11 10 00
01 11 10
②4个相邻的最小项结合(用一个包围圈表示),可以消 去2个取值不同的变量而合并为l项,如下图所示。
00 01 11 10 00
01 11 10
③8个相邻的最小项结合(用一个包围圈表示),可以消 去3个取值不同的变量而合并为l项,如下图所示。
00 01 11 10 00
②化简具有无关项的逻辑函数 在卡诺图中用×表示无关项。使用卡诺图化简逻辑函数 式时,要充分利用无关项可以当0也可以当1的特点,尽量扩 大卡诺圈,使逻辑函数式更简。
(2)卡诺图
卡诺图就是将n变量的全部最小项各用一个小方块表示,
并使具有逻辑相邻性的最小项在几何位置上也相邻的排列起 来所得的图形。下图所示为2到4变量最小项的卡诺图。
若要画出某一逻辑函数的卡诺图,只需将该逻辑函数式 化为最小项之和的标准形式后,在卡诺图中这些最小项对应 的位置上填入1,在其余的位置上填入0即可。
1.公式化简法

逻辑函数的公式化简法(经典实用)

逻辑函数的公式化简法(经典实用)

逻辑函数的公式化简法(经典实用)逻辑函数公式化简法是一种在数字逻辑设计中常用的方法,用于简化逻辑函数表达式,以便更有效地进行逻辑电路设计。

以下是一些经典实用的逻辑函数公式化简法:
1.摩根定律
摩根定律可以将两个逻辑函数表达式进行等价转换。

它有两个版本:
① 0-1律:¬(A+B) = ¬A * ¬B
② A律:¬(A*B) = ¬A + ¬B
使用摩根定律可以将复杂的逻辑函数表达式转换为更简单的形式。

2.吸收律
吸收律可以用来简化逻辑函数表达式中的冗余项。

它有两个版本:
① A+AB=A
② A+A'B=A+B
使用吸收律可以消除逻辑函数表达式中的冗余项,使表达式更简洁。

3.分配律
分配律可以将逻辑函数表达式中的括号展开,使表达式更易于分析。

它有两个版本:
① A*(B+C)=AB+AC
② A+(B C)=(A+B)(A+C)
使用分配律可以简化逻辑函数表达式中的括号,使表达式更简洁。

4.反演律
反演律可以用来求得一个逻辑函数的反函数。

它在数字逻辑设计中非常有用,因为它允许我们在一个逻辑函数和它的反函数之间进行转换。

反演律的公式为:A' * (A * B) = B。

通过使用以上经典实用的逻辑函数公式化简法,我们可以将复杂的逻辑函数表达式转换为更简单的形式,从而更有效地进行逻辑电路设计。

逻辑函数的化简

逻辑函数的化简

1.3.4 逻辑函数的化简•对逻辑函数进行化简,可以求得最简逻辑表达式,也可以使实现逻辑函数的逻辑电路得以简化,这样既有利于节省元器件,也有利于提高可靠性。

•逻辑函数有如下三种化简方法:•公式化简法:利用逻辑代数的基本公式和规则来化简逻辑函数。

•图解化简法:又称卡诺图(Karnaugh Map)化简法。

•表格法:又称Q-M(Quine-McCluskey)化简法。

1.逻辑函数的公式化简法同一个逻辑函数,可以用不同类型的表达式表示,主要有以下五类:“与或”表达式、“或与”表达式、“与非”-“与非”表达式、“或非”-“或非”表达式、“与或非”表达式。

例如函数:=+Z AC AB“与或”表达式A B A C“或与”表达=++()()式AC AB“与非”-“与非”表达=⋅式=+++A B A C“或非”-“或非”表达式“与或非”表达式判断最简“与或”表达式的条件如下:(1)乘积项(即与项)个数最少的“与或”表达式;(2)当乘积项个数相等,则每个乘积项中因子(即变量)的个数最少的“与或”表达式。

例1-5 以下4个“与或”表达式是相等的,即它们表示同一个函数:(1)(2)(3)(4)=+++=++=++=++Z AC BC AB ACAC ABC ACAC BC ACAC AB AC 试判断哪一个是最简“与或”表达式。

(1)(2)(3)(4)=+++=++=++=++Z AC BC AB ACAC ABC ACAC BC ACAC AB AC 解:根据判断条件(1),式(1)含有4个与项,而式(2)~(4)都含有3个与项,因此,式(2)~(4)有可能最简;进一步比较与项中个数,式(3)和式(4)中,各与项都含2个变量,而式(2)中有一个与项含3个变量。

结论:式(3)和式(4)同为该函数的最简“与或”表达式。

公式法化简:借助定律和定理化简逻辑函数,常用以下几种方法。

(1)并项法利用互补率1A A +=()+=+=A BC A BC A B C C A B()()+++=⋅⊕+⋅⊕=A BC BC A BC BC A B C A B C A+=B ABD B,将两项合并为一项,合并时消去一个变量,如:(2)吸收法利用定理1(A + AB = A ),吸收掉(即除去)多余的项,如:(3)消去法利用定理2(+=+A AB A B ()++=++=+=+AB A C BC AB A B C AB ABC AB C(4)配项法根据互补律,利用()=+B A A B +A A ()()+++=+++++AB BC BC AB AB BC A A BC AB C C =+++++AB BC ABC A BC ABC ABC()()()=+++++AB ABC BC ABC A BC ABC =++AB BC A C),消去多余的因子,如:,先添上()作配项用,以便最后消去更多的项。

逻辑函数的公式化简法

逻辑函数的公式化简法
解:①先求出Y的对偶函数Y',并对其进行化简。
Y B D B DAG CE C G AEG B D CE C G
②求Y'的对偶函数,便得Y的最简或与表达式。
Y ( B D)(C E )(C G)
逻辑函数的公式化简法
逻辑函数的公式化简法就是运用逻辑代数的基本公式、定 理和规则来化简逻辑函数。
1、并项法
利用公式A+A=1,将两项合并为一项,并消去一个变量。 运用分配律 变并 相 和 包 量成 同 反 含 Y1 ABC A BC BC ( A A ) BC BC 的一 时 变 同 若 因项 , 量 一 两 BC BC B(C C ) B 子, 则 , 个 个 。并 这 而 因 乘 运用分配律 消两其子积 Y2 ABC AB AC ABC A( B C ) 去项他的项 互可因原中 ABC A BC A( BC BC ) A 为以子变分 反合都量别 运用摩根定律
2、吸收法 (1)利用公式A+AB=A,消去多余的项。 是另 项 是 Y1 A B A BCD( E F ) A B 多外 的 另 运用摩根定律 余 一 因 外 如 的个 子 一 果 。乘 , 个 乘 Y2 A B CD ADB A BCD AD B 积则乘积 项这积项 ( A AD) ( B BCD) A B (2)利用公式A+AB=AB,消去多余的变量。 因项 的 Y AB C A C D BC D 子 的 反 Y AB A C B C 如 AB C C ( A B) D 是 因 是 果 多子 另 一 AB ( A B )C 余, 一 个 AB C ( A B) D 的则 个 乘 AB ABC AB C AB D 。这 乘 积 个积项 AB C AB C D

逻辑函数的化简

逻辑函数的化简

逻辑相邻
根据逻辑相邻的定义,不难由图8-10看出, 几何相邻的两个方格的最小项满足逻辑相邻性. 而不直接相邻的方格,但以卡诺图中心轴对称 的方格对应的最小项也满足逻辑相邻,如图810c中m0与m2,m0与m8,m3与m11等,称这种相 邻叫对称相邻.所以卡诺图可看作是立体图. 这是卡诺图巧妙之所在 .
由图8-12中可以看出卡诺图覆盖过的变量以0 和1两种取值出现,则该变量被消去;只以0出 现,则该变量用反变量表示;只以1出现,则 以原变量出现.卡诺圈越大消去的变量越多, 能够合并相邻项的一个正确的卡诺圈必须符合 以下要求.
(1) 卡诺圈里的1方格数必须是2m个.m=0,1, 2,…. (2) 2m个1方格必须排列成方阵或矩阵. (3) 2m个1方格必须是方格相邻或对称相邻的.
二,公式化简
1.并项法 利用 A + A =1将两项合并成一 项并消去一个变量. 2.吸收法 3.消去法 F= = 利用A+AB=A,消去多余项. 利用A+AB=A+B,消去多余项.
AB + A B + A BD + ABD
AB + AB + D AB + A B
= AB + A B + D
4. 配项法
二,三,四个变量的函数的卡诺图
a.二变量函数的卡诺图 b.三变量函数的卡诺图. c.四变量函数的卡诺图
构造卡诺图时应遵循以下规则
① n变量函数有2n个最小项,则卡诺图有2n方 格,即方格与最小项一一对应. ② 2n个方格必须排列成方阵或矩阵. ③ 变量分成两组,行变量和列变量组,行变 量为高位组,列变量为低位组.如图8-10中C 中,为行变量,为列变量. ④ 变量取值遵守反射码的形成规则.

逻辑函数的公式化简法

逻辑函数的公式化简法

分配律 吸收律 分配律 吸收律 并项 吸收律
逻辑函数的公式化简法
化简逻辑函数表达式的方法 ◇公式化简法
◆没有固定的步骤可以遵循 ◆依赖于对逻辑代数公式的熟练掌握 ◆需要一些化简技巧 ◆难以确定被化简过的逻辑函数是否最简 ◇卡诺图化简法 √简便、直观
= B (A+AC)+ AC + BCD = B (A+C)+ AC + BCD = AB + AC + BC (1 + D) = AB + AC + BC = AB + AC
化简逻辑函数表达式的方法 公式化简法 卡诺图化简法
逻辑函数的公式化简法
(1) 并项、配项 A + A = 1 ; 1 = A + A
逻辑函数的公式化简法
逻辑函数式越简单,逻辑电路越简单,所使用的元器件越少, 成本越低,工作越可靠
AB + AC + BC = AB + AC
A
&
B
1 &
C
&
1
Y
逻辑函数的公式化简法
☆最简与—或表达式 也最少
Y = AB + AC + BCD + ABC
分配律 吸收律
逻辑函数的公式化简法
Y = ABCD + ABD + BCD + ABC + BD + BC = ABC(D + 1)+ BD(A + 1)+ BCD + BC = ABC+ BD + BCD + BC = B(AC + C)+ B(D + CD) = B(A + C)+ B(D + C) = AB + BD + B(C + C) =B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消
因子。

常用方法有:
①并项法利用公式AB+AB’=A 将两个与项合并为一个,消去其
中的一个变量。

②吸收法利用公式A+AB=A 吸收多余的与项。

③消因子法利用公式A+A’B=A+B 消去与项多余的因子
④消项法利用公式AB+A’C=AB+A’C+BC 进行配项,以消去更多
的与项。

⑤配项法利用公式A+A=A,A+A’=1配项,简化表达式。

二、卡诺图化简法
逻辑函数的卡诺图表示法
将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。

逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。

1.表示最小项的卡诺图
将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,每一个方格对应变量的一个取值组合。

具有逻辑相邻性的最小项在位置上也相邻地排列。

用卡诺图表示逻辑函数:
方法一:1、把已知逻辑函数式化为最小项之和形式。

2、将函数式中包含的最小项在卡诺图对应的方格中填 1,其余方格中填 0。

方法二:根据函数式直接填卡诺图。

用卡诺图化简逻辑函数:
化简依据:逻辑相邻性的最小项可以合并,并消去因子。

化简规则:能够合并在一起的最小项是2n个。

如何最简:圈数越少越简;圈内的最小项越多越简。

注意:卡诺图中所有的 1 都必须圈到,不能合并的 1 单独画圈。

说明,一逻辑函数的化简结果可能不唯一。

合并最小项的原则:
1)任何两个相邻最小项,可以合并为一项,并消去一个变量。

2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。

3)任何8个相邻最小项,可以合并为一项,并消去3个变量。

卡诺图化简法的步骤:
画出函数的卡诺图;
画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合);画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小
项仅被圈过一次,以免出现多余项。

写出最简与或表达式。

三、具有无关项的逻辑函数及其化简
逻辑函数中的无关项:约束项和任意项可以写入函数式,也可不包含在函数式中,因此统称为无关项。

相关文档
最新文档