介质损耗,介损

合集下载

介质损耗详解

介质损耗详解

1、介质损耗什么就是介质损耗:绝缘材料在电场作用下,由于介质电导与介质极化得滞后效应,在其内部引起得能量损耗。

也叫介质损失,简称介损。

2、介质损耗角δ在交变电场作用下,电介质内流过得电流相量与电压相量之间得夹角(功率因数角Φ)得余角(δ)。

简称介损角。

3、介质损耗正切值tgδ又称介质损耗因数,就是指介质损耗角正切值,简称介损角正切。

介质损耗因数得定义如下:如果取得试品得电流相量与电压相量,则可以得到如下相量图:总电流可以分解为电容电流Ic与电阻电流IR合成,因此:这正就是损失角δ=(90°-Φ)得正切值。

因此现在得数字化仪器从本质上讲,就是通过测量δ或者Φ得到介损因数。

测量介损对判断电气设备得绝缘状况就是一种传统得、十分有效得方法。

绝缘能力得下降直接反映为介损增大。

进一步就可以分析绝缘下降得原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损得同时,也能得到试品得电容量。

如果多个电容屏中得一个或几个发生短路、断路,电容量就有明显得变化,因此电容量也就是一个重要参数。

4、功率因数cosΦ功率因数就是功率因数角Φ得余弦值,意义为被测试品得总视在功率S中有功功率P所占得比重。

功率因数得定义如下:有得介损测试仪习惯显示功率因数(PF:cosΦ),而不就是介质损耗因数(DF:tgδ)。

一般cosΦ<tgδ,在损耗很小时这两个数值非常接近。

(1) 容量与误差:实际电容量与标称电容量允许得最大偏差范围、一般使用得容量误差有:J级±5%,K 级±10%,M级±20%、精密电容器得允许误差较小,而电解电容器得误差较大,它们采用不同得误差等级、常用得电容器其精度等级与电阻器得表示方法相同、用字母表示:D级—±0、5%;F级—±1%;G级—±2%;J级—±5%;K级—±10%;M级—±20%、(2) 额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受得最大直流电压,又称耐压、对于结构、介质、容量相同得器件,耐压越高,体积越大、(3) 温度系数:在一定温度范围内,温度每变化1℃,电容量得相对变化值、温度系数越小越好、(4) 绝缘电阻:用来表明漏电大小得、一般小容量得电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆、电解电容得绝缘电阻一般较小、相对而言,绝缘电阻越大越好,漏电也小、(5) 损耗:在电场得作用下,电容器在单位时间内发热而消耗得能量、这些损耗主要来自介质损耗与金属损耗、通常用损耗角正切值来表示、(6) 频率特性:电容器得电参数随电场频率而变化得性质、在高频条件下工作得电容器,由于介电常数在高频时比低频时小,电容量也相应减小、损耗也随频率得升高而增加、另外,在高频工作时,电容器得分布参数,如极片电阻、引线与极片间得电阻、极片得自身电感、引线电感等,都会影响电容器得性能、所有这些,使得电容器得使用频率受到限制、不同品种得电容器,最高使用频率不同、小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ、不同材质电容器,最高使用频率不同、COG(NPO)材质特性温度频率稳定性最好,X7R次之,Y5V(Z5U)最差、贴片电容得材质规格贴片电容目前使用NPO、X7R、Z5U、Y5V等不同得材质规格,不同得规格有不同得用途、下面我们仅就常用得NPO、X7R、Z5U与Y5V来介绍一下它们得性能与应用以及采购中应注意得订货事项以引起大家得注意、不同得公司对于上述不同性能得电容器可能有不同得命名方法,这里我们引用得就是敝司三巨电子公司得命名方法,其她公司得产品请参照该公司得产品手册、NPO、X7R、Z5U与Y5V得主要区别就是它们得填充介质不同、在相同得体积下由于填充介质不同所组成得电容器得容量就不同,随之带来得电容器得介质损耗、容量稳定性等也就不同、所以在使用电容器时应根据电容器在电路中作用不同来选用不同得电容器、一NPO电容器NPO就是一种最常用得具有温度补偿特性得单片陶瓷电容器、它得填充介质就是由铷、钐与一些其它稀有氧化物组成得、NPO电容器就是电容量与介质损耗最稳定得电容器之一、在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率得变化小于±0、3ΔC、NPO电容得漂移或滞后小于±0、05%,相对大于±2%得薄膜电容来说就是可以忽略不计得、其典型得容量相对使用寿命得变化小于±0、1%、NPO电容器随封装形式不同其电容量与介质损耗随频率变化得特性也不同,大封装尺寸得要比小封装尺寸得频率特性好、NPO 电容器适合用于振荡器、谐振器得槽路电容,以及高频电路中得耦合电容、二X7R电容器X7R电容器被称为温度稳定型得陶瓷电容器、当温度在-55℃到+125℃时其容量变化为15%,需要注意得就是此时电容器容量变化就是非线性得、X7R电容器得容量在不同得电压与频率条件下就是不同得,它也随时间得变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%、X7R电容器主要应用于要求不高得工业应用,而且当电压变化时其容量变化就是可以接受得条件下、它得主要特点就是在相同得体积下电容量可以做得比较大、三Z5U电容器Z5U电容器称为”通用”陶瓷单片电容器、这里首先需要考虑得就是使用温度范围,对于Z5U电容器主要得就是它得小尺寸与低成本、对于上述三种陶瓷单片电容起来说在相同得体积下Z5U电容器有最大得电容量、但它得电容量受环境与工作条件影响较大,它得老化率最大可达每10年下降5%、尽管它得容量不稳定,由于它具有小体积、等效串联电感(ESL)与等效串联电阻(ESR)低、良好得频率响应,使其具有广泛得应用范围、尤其就是在退耦电路得应用中、Z5U电容器得其她技术指标如下:工作温度范围+10℃--- +85℃温度特性+22% ---- -56%介质损耗最大4%四Y5V电容器Y5V电容器就是一种有一定温度限制得通用电容器,在-30℃到85℃范围内其容量变化可达+22%到-82%、Y5V得高介电常数允许在较小得物理尺寸下制造出高达4、7μF电容器、Y5V电容器得其她技术指标如下:工作温度范围-30℃--- +85℃温度特性+22% ---- -82%介质损耗最大5%For personal use only in study and research; not for mercial use。

高电压技术问答----介损专题

高电压技术问答----介损专题

高电压技术----介损专题一.测量介质损耗角正切值tg 有何意义?介质损耗角正切值又称介质损耗因数或简称介损。

测量介质损耗因数是一项灵敏度很高的试验项目,它可以发现电力设备绝缘整体受潮、劣化变质以及小体积被试设备贯通和未贯通的局部缺陷。

例如:某台变压器的套管,正常tg 值为0.5%,而当受潮后tg 值为3.5%,两个数据相差7倍;而用测量绝缘电阻检测,受潮前后的数值相差不大。

由于测量介质损耗因数对反映上述缺陷具有较高的灵敏度,所以在电工制造及电力设备交接和预防性试验中都得到了广泛的应用。

变压器、发电机、断路器等电气设备的介损测试《规程》都作了规定。

二.当前国内介损测试仪的现状及技术难点?介损测试仪的技术发展很快,以前在电力系统广泛使用的QS1西林电桥正被智能型的介损测试仪取代,新一代的介损测试仪均内置升压设备和标准电容,并且具有操作简单、数据准确、试验结果读取方便等特征。

虽然目前介损测试技术发展很快,但与国际水平相比,在很多方面仍有很大差距,差距主要表现在以下几个方面:(1)抗干扰能力由于介质损耗测试是一个灵敏度很高的项目,因此测试数据也极易受到外界电场的干扰,目前介损测试仪采取的抗干扰方法主要有:倒相法、移相法、异频法等。

虽然这些方法能在一定程度下解决干扰的问题,但当外界干扰很强的情况下,仍会产生较大的偏差。

(2)反接法的测试精度问题现场很多电力设备均已接地,因此必须使用反接法进行检测,但反接时,影响测试数据的因素较多,往往数据会有很大偏差,特别是当被试品容量较小(如套管),高压导线拖地测试时(有些介损测试仪所配高压导线虽能拖地使用,但对地泄漏电流较大),会严重影响测试的准确度。

三.什么是“全自动反干扰源”,与其它几种抗干扰方法相比有何特点?所谓“全自动反干扰源”,即仪器内部有一套检测装置,能检测到外界干扰信号的幅值和相位,将相关信息传送给CPU,CPU输出指令给“反干扰源控制装置”,该装置会在仪器内部产生一个和干扰信号幅值相同但相位相反的“反干扰信号”,与“干扰信号”叠加抵消,以达到抗干扰的目的。

介质损耗,介损

介质损耗,介损
U
图16、绝缘介质tanδ的电压特性
2、温度特性
GB/T6451-2008《油浸式电力变压器技术参数和要求》中要求:容量 在8000KVA及以上变压器应提供tanδ值,测试通常在10~40 ℃下进行, 不同温度下的tanδ 值一般可按下式换算:
tan δ 2 = tan δ 1 *1.3
(T2 − T1 )
一旦变压器状态确定,无 论在串联模型还是并联模型中 变压器的等效电阻和电容也就 确定了,从而被试组合的tanδ 也就确定了,为一定值。所以 认为tanδ是绝缘材料在某一状 态下固有的,可以用作判断产 品绝缘状态是否良好的依据, 是绝缘介质的基本特性之一。
P =U IR Q =U IC
• •

P IR tan δ = = • Q IC U 1 Z R ZC jωCP 1 tan δ = = = = U ZR RP jω RP CP ZC tan δ = 1 ω RP CP
I U
C1 IC1 C R
被试绕组的等效电路
R1 ICR
IR1
图1
P tan δ = Q
图1可以转化成两种模型,一种是串联模型(图3)所示,另一种是并 联模型(图4)所示:
P =UR I Q =UC I
• • •
P UR tan δ = = • Q U C RS Z tan δ = R = = jω RS CS 1 ZC jωCS tan δ = ω RS CS
表1、变压器介损的测量部位
序列号 1 2 3 4 5 6 其他特别指示部分 高压、低压 外壳 双线圈变压器 被测线圈 低压 高压 接地部分 高压、外壳 低压、外壳 被测线圈 低压 中压 高压 高压、中压 高压、中压、低压 其他特别指示部分 三线圈变压器 接地部分 高压、中压、外壳 高压、低压、外壳 中压、低压、外壳 低压、外壳 外壳

介质损耗因数 介电损耗角正切

介质损耗因数 介电损耗角正切

介质损耗因数与介电损耗角正切一、引言在电介质物理学和电气工程领域,介质损耗因数和介电损耗角正切是两个关键的参数,用于描述电介质在交流电场下的电气性能。

介质损耗因数用于衡量电介质在交流电场作用下的能量损耗程度,而介电损耗角正切则反映了能量的损耗与存储之间的平衡关系。

这两个参数在评估电介质材料性能、优化电气设备和改善电力传输效率等方面具有重要意义。

本文将详细介绍介质损耗因数和介电损耗角正切的基本概念、测量方法及其在实践中的应用。

二、介质损耗因数介质损耗因数,也称为介质损失角正切,是用于描述电介质在交流电场下能量损耗程度的参数。

该参数是通过比较电介质中能量损耗与无损理想介质的能量损耗得到的。

在交流电场作用下,电介质内部的束缚电荷将被迫移动,并在电场反复变化时与自由电荷相互碰撞,导致能量的损失。

这种能量损耗表现为介质中的热能生成。

介质损耗因数越小,说明电介质在交流电场下的能量损耗越低,其电气性能越好。

三、介电损耗角正切介电损耗角正切是用来描述电介质在交流电场下能量损耗与存储之间平衡关系的参数。

它定义为介质电导率与介质电容率之比的反正切,即:tanδ= δ′/δ″。

其中,δ′和δ″分别为电介质的实部和虚部。

介电损耗角正切反映了电介质在交流电场下能量转换为热能、光能等其他形式的能量的程度。

在实际应用中,介电损耗角正切的测量对于评估绝缘材料性能、预防电气设备过热等方面具有重要意义。

四、介质损耗因数和介电损耗角正切的关系介质损耗因数和介电损耗角正切之间存在密切的关系。

在理想情况下,当电介质没有能量损失时,其介电常数为实数,不存在虚部,因此tanδ= 0。

然而,在实际的电介质材料中,由于能量的损失,介电常数存在虚部,因此tanδ≠0。

介质损耗因数和介电损耗角正切之间的这种关系反映了电介质在交流电场下能量转换的平衡状态。

五、实验测量与应用实验测量是获取介质损耗因数和介电损耗角正切的关键手段。

常用的测量方法包括西林电桥法、变频变压器法和Q表法等。

介质损耗

介质损耗

绝缘介质在交流电压作用下的介质损耗有两种:一是由电导引起的电导损耗,二是由极化引起的极化损耗。

介质中如无损耗,则流过的电流是纯无功电容电流,并超前电压向量90°。

如介质中有损耗则电流存在有功分量,其大小可代表介质损耗的大小。

这时,总电流与电容电流之间有一δ角,该角正切值等于有功电流与无功电流的比,tgδ越大,有功电流越大,说明介质损耗越大。

1、介质损耗什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。

也叫介质损失,简称介损。

2、介质损耗角δ在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。

简称介损角。

3、介质损耗正切值tgδ又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。

介质损耗因数的定义如下:如果取得试品的电流相量和电压相量,则可以得到如下相量图:总电流可以分解为电容电流Ic和电阻电流IR合成,因此:这正是损失角δ=(90°-Φ)的正切值。

因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。

测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。

绝缘能力的下降直接反映为介损增大。

进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损的同时,也能得到试品的电容量。

如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。

4、功率因数cosΦ功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。

功率因数的定义如下:有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。

一般cosΦ<tgδ,在损耗很小时这两个数值非常接近。

5、高压电容电桥高压电容电桥的标准通道输入标准电容器的电流、试品通道输入试品电流。

通过比对电流相位差测量tgδ,通过出比电流幅值测量试品电容量。

关于介质损耗的一些基本概念

关于介质损耗的一些基本概念

第一篇关于介质损耗的一些基本概念1、介质损耗与介质损耗因数:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。

也叫介质损失,简称介损。

介质损耗指的是电介质在电场作用下引起的能量损耗,主要分为三种形式:漏导引起的损耗、电介质极化引起的损耗、局部放电引起的损耗。

直流电压作用下电介质里的损耗主要是漏导损耗,用绝缘电阻或漏导电流表示就可以了,因此平常讨论的介质损耗均为针对交流电压作用下电介质中的损耗。

2、介质损耗角δ:在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角为φ)的余角(δ)。

简称介损角。

3、介质损耗正切值tgδ:又称介质损耗因数,是指介质损耗角正切值。

简称介损角正切。

根据推导当电介质、外加电压及其频率一定时,介质损耗P与介质损耗因数tgδ成正比,所以可以用tgδ来表征介质损耗的大小,工程上都是通过测量计算tgδ值来表示介损的大小。

4、高压介质损耗测量仪:简称介损仪,是指采用电桥原理,应用数字测量技术,对介质损耗角正切值和电容量进行自动测量的一种新型仪器。

一般包含高压电桥、高压试验电源和高压标准电容器三部分。

5、外施:使用外部高压试验电源和标准电容器进行试验,对介损仪的示值按一定的比例关系进行计算得到测量结果的方法。

6、内施:使用介损仪内附高压电源和标准器进行试验,直接得到测量结果的方法。

7、正接线:用于测量不接地试品的方法,测量时介损仪测量回路处于地电位。

8、反接线:用于测量接地试品的方法,测量时介损仪测量回路处于高电位,他与外壳之间承受全部试验电压。

9、常用介损仪的分类:现常用介损测试仪有西林型和M型两种。

QS1和KD9000属于西林型。

10、常用抗干扰方法:目前介质损耗测量中常见抗干扰方法有以下几种:倒相法、移相法、变频法和移相跟踪抗干扰法等。

11、准确度的表示方法tgδ:±(1%D+0.0004)CX:±(1%C+1pF)加号前表示为相对误差,加号后表示为绝对误差。

什么是介质损耗

什么是介质损耗

什么是介质损耗?介质损耗是什么意思?介质是指能够传播媒体的载体。

媒体包括各种文件、数据等,泛指一切可以用电子信号存储的东西。

介质亦称媒质。

一般地说,它是物理系统在其间存在或物理过程(如力和能量的传递,光和声的传播等)在其间进行的物质。

介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。

也叫介质损失,简称介损。

介质损耗角δ在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。

简称介损角。

介质损耗正切值tgδ又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。

介质损耗因数的定义如下:如果取得试品的电流相量和电压相量,则可以得到如下相量图:总电流可以分解为电容电流Ic和电阻电流IR合成,因此:这正是损失角δ=(90°-Φ)的正切值。

因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。

测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。

绝缘能力的下降直接反映为介损增大。

进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损的同时,也能得到试品的电容量。

如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。

电介质在交变电场作用下,所积累的电荷有两种分量:(1)有功功率。

一种为所消耗发热的功率,又称同相分量;(2)无功功率,又称异相分量。

异相分量与同相分量的比值即称为介质损耗。

通常用正切tanδ表示。

tanδ=1/WCR(式中W 为交变电场的角频率;C为介质电容;R为损耗电阻)。

介电损耗角正切值是无量纲的物理量。

可用介质损耗仪、电桥、Q表等测量。

对一般陶瓷材料,介质损耗角正切值越小越好,尤其是电容器陶瓷。

仅仅只有衰减陶瓷是例外,要求具有较大的介质损耗角正切值。

橡胶的介电损耗主要来自橡胶分子偶极化。

在橡胶作介电材料时,介电损耗是不利的;在橡胶高频硫化时,介电损耗又是必要的,介质损耗与材料的化学组成、显微结构、工作频率、环境温度和湿度、负荷大小和作用时间等许多因素有关。

耗散因子 介质损耗

耗散因子 介质损耗

耗散因子和介质损耗是两个与信号传输和能量损耗相关的概念,它们在电路、通信和材料科学等领域中具有重要意义。

1. 耗散因子(Damping Factor):
耗散因子通常用于描述电路或系统中的能量损耗。

在模拟电路中,耗散因子是指电路的输出信号与输入信号的幅值比值的平方根的倒数。

它反映了电路放大信号时能量的损耗程度。

耗散因子越小,表示电路的能量损耗越少,放大效果越好。

在无线通信系统中,耗散因子也可以用来描述信号在传输过程中的能量损耗。

2. 介质损耗(Dielectric Loss):
介质损耗是指在电场作用下,介质材料在交流电信号作用下能量损耗的特性。

在绝缘材料、电容器和其他电子元件中,介质损耗会导致能量以热的形式损耗掉。

介质损耗通常用介电损耗角正切(Tanδ)来表征,它是指介质材料的损耗角正切值,反映了介质在交流电场中的能量损耗能力。

介电损耗角正切值越大,表示介质的能量损耗越大。

在实际应用中,耗散因子和介质损耗都是非常重要的参数,因为它们直接影响到电子设备和系统的性能。

例如,在设计电路时,需要选择耗散因子小的元件以确保信号的有效传输;在选择电容器等元件时,需要考虑其介质损耗以避免过多的能量损耗。

关于介质损耗的一些基本概念

关于介质损耗的一些基本概念

第一篇关于介质损耗的一些基本概念1、介质损耗与介质损耗因数:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。

也叫介质损失,简称介损。

介质损耗指的是电介质在电场作用下引起的能量损耗,主要分为三种形式:漏导引起的损耗、电介质极化引起的损耗、局部放电引起的损耗。

直流电压作用下电介质里的损耗主要是漏导损耗,用绝缘电阻或漏导电流表示就可以了,因此平常讨论的介质损耗均为针对交流电压作用下电介质中的损耗。

2、介质损耗角δ:在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角为φ)的余角(δ)。

简称介损角。

3、介质损耗正切值tgδ:又称介质损耗因数,是指介质损耗角正切值。

简称介损角正切。

根据推导当电介质、外加电压及其频率一定时,介质损耗P与介质损耗因数tgδ成正比,所以可以用tgδ来表征介质损耗的大小,工程上都是通过测量计算tgδ值来表示介损的大小。

4、高压介质损耗测量仪:简称介损仪,是指采用电桥原理,应用数字测量技术,对介质损耗角正切值和电容量进行自动测量的一种新型仪器。

一般包含高压电桥、高压试验电源和高压标准电容器三部分。

5、外施:使用外部高压试验电源和标准电容器进行试验,对介损仪的示值按一定的比例关系进行计算得到测量结果的方法。

6、内施:使用介损仪内附高压电源和标准器进行试验,直接得到测量结果的方法。

7、正接线:用于测量不接地试品的方法,测量时介损仪测量回路处于地电位。

8、反接线:用于测量接地试品的方法,测量时介损仪测量回路处于高电位,他与外壳之间承受全部试验电压。

9、常用介损仪的分类:现常用介损测试仪有西林型和M型两种。

QS1和KD9000属于西林型。

10、常用抗干扰方法:目前介质损耗测量中常见抗干扰方法有以下几种:倒相法、移相法、变频法和移相跟踪抗干扰法等。

11、准确度的表示方法tgδ:±(1%D+0.0004)CX:±(1%C+1pF)加号前表示为相对误差,加号后表示为绝对误差。

介损的一些概念(终审稿)

介损的一些概念(终审稿)

介损的一些概念文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-关于介质损耗的一些基本概念1、介质损耗什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。

也叫介质损失,简称介损。

2、介质损耗角δ在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。

简称介损角。

3、介质损耗正切值tgδ又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。

介质损耗因数的定义如下:如果取得试品的电流相量和电压相量,则可以得到如下相量图:总电流可以分解为电容电流Ic和电阻电流IR合成,因此:这正是损失角δ=(90°-Φ)的正切值。

因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。

测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。

绝缘能力的下降直接反映为介损增大。

进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损的同时,也能得到试品的电容量。

如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。

4、功率因数cosΦ功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。

功率因数的定义如下:有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。

一般cosΦ<tgδ,在损耗很小时这两个数值非常接近。

5、高压电容电桥高压电容电桥的标准通道输入标准电容器的电流、试品通道输入试品电流。

通过比对电流相位差测量tgδ,通过对比电流幅值测量试品电容量。

因此用电桥测量介损还需要携带标准电容器、升压PT和调压器。

接线也十分烦琐。

国内常见高压电容电桥有:6、高压介质损耗测量仪简称介损仪,是指采用电桥原理,应用数字测量技术,对介质损耗角正切值和电容量进行自动测量的一种新型仪器。

什么叫介损及介损角

什么叫介损及介损角

1、介质损耗什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。

也叫介质损失,简称介损。

2、介质损耗角δ在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。

简称介损角。

3、介质损耗正切值tgδ又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。

介质损耗因数的定义如下:如果取得试品的电流相量和电压相量,则可以得到如下相量图:总电流可以分解为电容电流Ic和电阻电流IR合成,因此:这正是损失角δ=(90°-Φ)的正切值。

因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。

测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。

绝缘能力的下降直接反映为介损增大。

进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损的同时,也能得到试品的电容量。

如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。

4、功率因数cosΦ功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。

功率因数的定义如下:有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。

一般cosΦ<tgδ,在损耗很小时这两个数值非常接近。

5、高压电容电桥高压电容电桥的标准通道输入标准电容器的电流、试品通道输入试品电流。

通过比对电流相位差测量tgδ,通过出比电流幅值测量试品电容量。

因此用电桥测量介损还需要携带标准电容器、升压PT和调压器。

接线也十分烦琐。

什么是介质损耗

什么是介质损耗

什么是介质损耗
介质是指能够传播媒体的载体。

媒体包括各种文件、数据等,泛指一切可以用电子信号存储的东西。

介质亦称媒质。

一般地说,它是物理系统在其间存在或物理过程(如力和能量的传递,光和声的传播等)在其间进行的物质。

介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。

也叫介质损失,简称介损。

介质损耗角δ
在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。

简称介损角。

介质损耗正切值tgδ
又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。

介质损耗因数的定义如下:
如果取得试品的电流相量和电压相量,则可以得到如下相量图:
总电流可以分解为电容电流Ic和电阻电流IR合成,因此:
这正是损失角δ=(90°-Φ)的正切值。

因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。

测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。

绝缘能力的下降直接反映为介损增大。

进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损的同时,也能得到试品的电容量。

如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。

介质损耗怎样计算_介质损耗计算公式

介质损耗怎样计算_介质损耗计算公式

介质损耗怎样计算_介质损耗计算公式介质损耗因数(dielectriclossfactor)指的是衡量介质损耗程度的参数。

介质损耗(dielectricloss)指的是绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。

也叫介质损失,简称介损。

1、介质损耗什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。

也叫介质损失,简称介损。

2、介质损耗角δ在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。

简称介损角。

介质损耗因数详细介绍1、介质损耗正切值tgδ介质损耗因数图册又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。

介质损耗因数的定义如下:如果取得试品的电流相量和电压相量:总电流可以分解为电容电流Ic和电阻电流IR合成,因此:这正是损失角δ=(90°-Φ)的正切值。

因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。

测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。

绝缘能力的下降直接反映为介损增大。

进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损的同时,也能得到试品的电容量。

如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。

2、功率因数cosΦ功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。

功率因数的定义如下:有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。

一般cosΦ《tgδ,在损耗很小时这两个数值非常接近。

3、高压电容电桥高压电容电桥的标准通道输入标准电容器的电流、试品通道输入试品电流。

通过比对电流相位差测量tgδ,通过出比电流幅值测量试品电容量。

因此用电桥测量介损还需要携带标准电容器、升压PT和调压器。

介质损耗

介质损耗

概念
电介质在外电场作用下,其内部会有发热现象,这说明有部分电能已转化为热能耗散掉,电介质在电场作用 下,在单位时间内因发热而消耗的能量称为电介质的损耗功率,或简称介质损耗(diclectric loss)。介质损 耗是应用于交流电场中电介质的重要品质指标之一。介质损耗不但消耗了电能,而且使元件发热影响其正常工作。 如果介电损耗较大,甚至会引起介质的过热而绝缘破坏,所以从这种意义上讲,介质损耗越小越好。
2)极化损耗
在介质发生缓慢极化时(松弛极化、空间电荷极化等),带电粒子在电场力的影响下因克服热运动而引起的 能量损耗。
一些介质在电场极化时也会产生损耗,这种损耗一般称极化损耗。位移极化从建立极化到其稳定所需时间很 短(约为10-16~10-12s),这在无线电频率(5×1012Hz以下)范围均可认为是极短的,因此基本上不消耗能 量。其他缓慢极化(例如松弛极化、空间电荷极化等)在外电场作用下,需经过较长时间(10-10s或更长)才达 到稳定状态,因此会引起能量的损耗。
介质损耗
绝缘材料在电场作用下,由于介质电导 和介质极化的滞后效应,在其内部引起
的能量损耗
01 概念
03 表征ห้องสมุดไป่ตู้
目录
02 形式 04 工程材料
介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫 介质损失,简称介损。在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的 余角δ称为介质损耗角。
工程材料
离子晶体的损耗
离子晶体的介质损耗与其结构的紧密程度有关。
紧密结构的晶体离子都排列很有规则,键强度比较大,如α-Al2O3、镁橄榄石晶体等,在外电场作用下很难 发生离子松弛极化,只有电子式和离子式的位移极化,所以无极化损耗,仅有的一点损耗是由漏导引起的(包括 本质电导和少量杂质引起的杂质电导)。这类晶体的介质损耗功率与频率无关,损耗角正切随频率的升高而降低。 因此,以这类晶体为主晶相的陶瓷往往用在高频场合。如刚玉瓷、滑石瓷、金红石瓷、镁橄榄石瓷等

介质损耗,介损

介质损耗,介损

绝缘介质在交流电压作用下消 耗的功率P即为介质损耗(图1), 但P随U的变化而变化,是一变 量,为了有效的说明介质损耗, 我们用介质损耗因数tanδ表示。 δ的由来:是由于绝缘介质产 生了的损耗不仅有有功损耗P 还有无功损耗Q,造成施加在 绝缘介质上的交流电压与电流 之间的功率因数角φ不是90 °, δ就是功率因数角的余角(图2)。 tanδ可表示为:
介质损耗
a
1
试验目的
介质损耗试验的目的是对变压器生产过程 中的工艺处理质量和制造质量进行监督。 该项试验可以间接鉴别变压器绝缘在高电 压作用下的可靠性,并可验证变压器真空 处理的好坏和受潮、脏污的影响,以便及 时发现变压器绝缘的局部缺陷!介质损耗 试验习惯上称为绝缘特性试验。
a
2
试验原理
被试绕组的等效电路
随着技术的不断进步,现在tanδ的测量是通过单板机和一系列电子设备,将矢量电流通 过自动模/数转换,求出介质损耗角和电容量。CTC测量tanδ时所采用的AI-6000(A) 型介损测试仪就是这种设备。
试品Zx
.
高压U
Ux
R3
Cn
. Un 高压U R4
C4
试品Zx . Ux
R3
Cn
C套管高压
端对地
. Un 高压U
接地部分
低压
高压、外壳
高压
低压、外壳
高压、低压
外壳
其他特别指示部分
a
三线圈变压器
被测线圈
接地部分
低压
高压、中压、外壳
中压
高压、低压、外壳
高压
中压、低压、外壳
高压、中压
低压、外壳
高压、中压、低压
外壳
其他特别指示部分

介质损耗详解

介质损耗详解

1、介质损耗什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。

也叫介质损失,简称介损。

2、介质损耗角δ在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。

简称介损角。

3、介质损耗正切值tgδ又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。

介质损耗因数的定义如下:如果取得试品的电流相量和电压相量,则可以得到如下相量图:总电流可以分解为电容电流Ic和电阻电流IR合成,因此:这正是损失角δ=(90°-Φ)的正切值。

因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。

测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。

绝缘能力的下降直接反映为介损增大。

进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损的同时,也能得到试品的电容量。

如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。

4、功率因数cosΦ功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。

功率因数的定义如下:有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。

一般cosΦ<tgδ,在损耗很小时这两个数值非常接近。

(1) 容量与误差:实际电容量和标称电容量允许的最大偏差范围.一般使用的容量误差有:J级±5%,K级±10%,M级±20%.精密电容器的允许误差较小,而电解电容器的误差较大,它们采用不同的误差等级.常用的电容器其精度等级和电阻器的表示方法相同.用字母表示:D级—±0.5%;F级—±1%;G级—±2%;J 级—±5%;K级—±10%;M级—±20%.(2) 额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受的最大直流电压,又称耐压.对于结构、介质、容量相同的器件,耐压越高,体积越大.(3) 温度系数:在一定温度范围内,温度每变化1℃,电容量的相对变化值.温度系数越小越好.(4) 绝缘电阻:用来表明漏电大小的.一般小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆.电解电容的绝缘电阻一般较小.相对而言,绝缘电阻越大越好,漏电也小.(5) 损耗:在电场的作用下,电容器在单位时间内发热而消耗的能量.这些损耗主要来自介质损耗和金属损耗.通常用损耗角正切值来表示.(6) 频率特性:电容器的电参数随电场频率而变化的性质.在高频条件下工作的电容器,由于介电常数在高频时比低频时小,电容量也相应减小.损耗也随频率的升高而增加.另外,在高频工作时,电容器的分布参数,如极片电阻、引线和极片间的电阻、极片的自身电感、引线电感等,都会影响电容器的性能.所有这些,使得电容器的使用频率受到限制.不同品种的电容器,最高使用频率不同.小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ.不同材质电容器,最高使用频率不同.COG(NPO)材质特性温度频率稳定性最好,X7R次之,Y5V(Z5U)最差.贴片电容的材质规格贴片电容目前使用NPO、X7R、Z5U、Y5V等不同的材质规格,不同的规格有不同的用途.下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意.不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是敝司三巨电子公司的命名方法,其他公司的产品请参照该公司的产品手册.NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同.在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同.所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器.一NPO电容器NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器.它的填充介质是由铷、钐和一些其它稀有氧化物组成的.NPO电容器是电容量和介质损耗最稳定的电容器之一.在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC.NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的.其典型的容量相对使用寿命的变化小于±0.1%.NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好.NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容.二X7R电容器X7R电容器被称为温度稳定型的陶瓷电容器.当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的.X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%.X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下.它的主要特点是在相同的体积下电容量可以做的比较大.三Z5U电容器Z5U电容器称为”通用”陶瓷单片电容器.这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本.对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量.但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%.尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围.尤其是在退耦电路的应用中.Z5U电容器的其他技术指标如下:工作温度范围+10℃--- +85℃温度特性+22% ---- -56%介质损耗最大4%四Y5V电容器Y5V电容器是一种有一定温度限制的通用电容器,在-30℃到85℃范围内其容量变化可达+22%到-82%.Y5V的高介电常数允许在较小的物理尺寸下制造出高达4.7μF电容器.Y5V电容器的其他技术指标如下:工作温度范围-30℃--- +85℃温度特性+22% ---- -82%介质损耗最大5%。

介质损耗详解

介质损耗详解

1、介质损耗之欧侯瑞魂创作创作时间:二零二一年六月三十日什么是介质损耗:绝缘资料在电场作用下, 由于介质电导和介质极化的滞后效应, 在其内部引起的能量损耗.也叫介质损失, 简称介损.2、介质损耗角δ在交变电场作用下, 电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ). 简称介损角.3、介质损耗正切值tgδ又称介质损耗因数, 是指介质损耗角正切值, 简称介损角正切.介质损耗因数的界说如下:如果取得试品的电流相量和电压相量, 则可以获得如下相量图:总电流可以分解为电容电流Ic和电阻电流IR合成, 因此:这正是损失角δ=(90°-Φ)的正切值.因此现在的数字化仪器从实质上讲, 是通过丈量δ或者Φ获得介损因数.丈量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法.绝缘能力的下降直接反映为介损增年夜.进一步就可以分析绝缘下降的原因, 如:绝缘受潮、绝缘油受污染、老化蜕变等等.丈量介损的同时, 也能获得试品的电容量.如果多个电容屏中的一个或几个发生短路、断路, 电容量就有明显的变动, 因此电容量也是一个重要参数.4、功率因数cosΦ功率因数是功率因数角Φ的余弦值, 意义为被测试品的总视在功率S中有功功率P所占的比重.功率因数的界说如下:有的介损测试仪习惯显示功率因数(PF:cosΦ), 而不是介质损耗因数(DF:tgδ).一般cosΦ<tgδ, 在损耗很小时这两个数值非常接近.(1) 容量与误差:实际电容量和标称电容量允许的最年夜偏差范围.一般使用的容量误差有:J级±5%,K级±10%,M级±20%.精密电容器的允许误差较小,而电解电容器的误差较年夜,它们采纳分歧的误差品级.经常使用的电容器其精度品级和电阻器的暗示方法相同.用字母暗示:D级—±0.5%;F级—±1%;G级—±2%;J级—±5%;K 级—±10%;M级—±20%.(2) 额定工作电压:电容器在电路中能够长期稳定、可靠工作,所接受的最年夜直流电压,又称耐压.对结构、介质、容量相同的器件,耐压越高,体积越年夜.(3) 温度系数:在一定温度范围内,温度每变动1℃,电容量的相对变动值.温度系数越小越好.(4) 绝缘电阻:用来标明漏电年夜小的.一般小容量的电容,绝缘电阻很年夜,在几百兆欧姆或几千兆欧姆.电解电容的绝缘电阻一般较小.相对而言,绝缘电阻越年夜越好,漏电也小.(5) 损耗:在电场的作用下,电容器在单元时间内发热而消耗的能量.这些损耗主要来自介质损耗和金属损耗.通经常使用损耗角正切值来暗示.(6) 频率特性:电容器的电参数随电场频率而变动的性质.在高频条件下工作的电容器,由于介电常数在高频时比低频时小,电容量也相应减小.损耗也随频率的升高而增加.另外,在高频工作时,电容器的分布参数,如极片电阻、引线和极片间的电阻、极片的自身电感、引线电感等,城市影响电容器的性能.所有这些,使得电容器的使用频率受到限制.分歧品种的电容器,最高使用频率分歧.小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ.分歧材质电容器,最高使用频率分歧.COG(NPO)材质特性温度频率稳定性最好,X7R次之,Y5V(Z5U)最差.贴片电容的材质规格贴片电容目前使用NPO、X7R、Z5U、Y5V等分歧的材质规格,分歧的规格有分歧的用途.下面我们仅就经常使用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及推销中应注意的定货事项以引起年夜家的注意.分歧的公司对上述分歧性能的电容器可能有分歧的命名方法,这里我们引用的是敝司三巨电子公司的命名方法,其他公司的产物请参照该公司的产物手册.NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质分歧.在相同的体积下由于填充介质分歧所组成的电容器的容量就分歧,随之带来的电容器的介质损耗、容量稳定性等也就分歧.所以在使用电容器时应根据电容器在电路中作用分歧来选用分歧的电容器.一 NPO电容器NPO是一种最经常使用的具有温度赔偿特性的单片陶瓷电容器.它的填充介质是由铷、钐和一些其它稀有氧化物组成的.℃到+125℃时容量变动为0±30ppm/℃,电容量随频率的变动小于±0.3ΔC.NPO电容的漂移或滞后小于±0.05%,相对年夜于±2%的薄膜电容来说是可以忽略不计的.其典范的容量相对使用寿命的变动小于±0.1%.NPO电容器随封装形式分歧其电容量和介质损耗随频率变动的特性也分歧,年夜封装尺寸的要比小封装尺寸的频率特性好.NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容.二 X7R电容器℃到+125℃时其容量变动为15%,需要注意的是此时电容器容量变动是非线性的.X7R电容器的容量在分歧的电压和频率条件下是分歧的,它也随时间的变动而变动,年夜约每10年变动1%ΔC,暗示为10年变动了约5%.X7R电容器主要应用于要求不高的工业应用,而且当电压变动时其容量变动是可以接受的条件下.它的主要特点是在相同的体积下电容量可以做的比力年夜.三 Z5U电容器Z5U电容器称为”通用”陶瓷单片电容器.这里首先需要考虑的是使用温度范围,对Z5U电容器主要的是它的小尺寸和低本钱.对上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最年夜的电容量.但它的电容量受环境和工作条件影响较年夜,它的老化率最年夜可达每10年下降5%.尽管它的容量不稳定,由于它具有小体积、等效串连电感(ESL)和等效串连电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围.尤其是在退耦电路的应用中.Z5U电容器的其他技术指标如下:工作温度范围 +10℃ --- +85℃温度特性 +22% ---- -56%介质损耗最年夜 4%四 Y5V电容器Y5V电容器是一种有一定温度限制的通用电容器,在-30℃到85℃范围内其容量变动可达+22%到-82%.Y5V的高介电常数允许在较小的物理尺寸下制造出高达4.7μF 电容器.Y5V电容器的其他技术指标如下:工作温度范围 -30℃ --- +85℃温度特性 +22% ---- -82%介质损耗最年夜 5%For personal use only in study and research; not for commercial use。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试品Zx Cn . Un R4 R3 C4 R3 试品Zx
Cn . Un R4 C4
C套管高压
端对地
末屏Zx . Ux R3 C电容芯子 R4
Cn . Un
高压U
. Ux
高压U
. Ux
高压U
C4
图6、西林电桥正接法
图7、西林电桥反接法
图8、西林电桥测套管末屏介损
正接法:套管介损测量接线
高压芯线或屏 蔽线接所有被 试套管短路线
影响介损的相关因素
1、电压特性 1.1、tanδ与施加的电压的关系决定了绝缘介质的性能、绝缘介质工艺 处理的好坏和产品结构。当绝缘介质工艺处理良好时,外施电压与 tanδ之间的关系近似一条水平直线,且施加电压上升和下降时测得的 tanδ值是基本重合的。当施加电压达到某一极限值时, tanδ曲线才开 始向上弯曲, 图16曲线1。 1.2、如果绝缘介质工艺不好、绝缘中残留气泡等, tanδ比良好时要大 ,而且会在电压比较低时而向上弯曲,施加电压上升和下降时测得的 tanδ值不会重合,图16曲线2。 tanδ 1.3、当绝缘老化时, tanδ反而比良好 时要小,但tanδ曲线在较低的电压下 4 向上弯,曲图16曲线3 ;老化的的介质容 2 易吸潮,一旦吸潮, tanδ随电压迅速增 1 加,施加电压上升和下降时测得的tanδ 3 值是不会重合,图16曲线4。
西林电桥
tanδ的测量一般都是通过西林电桥测定的,西林电桥(图5)是一种交流电桥,配以合 适的标准电容,可以在高压下测量材料和设备的电容值和介质损耗角。西林电桥有四 个臂,两个高压臂:一个代表被试品的ZX,一个代表无损耗标准电容Cn;两个低压臂: 一个是可调无感电阻R3,另一个是无感电阻R4和可调电容C4的并联回路。调节R3、 C4,使检流计G的电流为零。则可计算如下: 设被试品阻抗Zx为Z1;Cn为Z2;R3为Z3;R4并联C4为Z4。 计算为:
I U
C1 IC1 C R
被试绕组的等效电路
R1 ICR
IR1
图1
P tan δ = Q
图1可以转化成两种模型,一种是串联模型(图3)所示,另一种是并 联模型(图4)所示:
P =UR I Q =UC I
• • •
P UR tan δ = = • Q U C RS Z tan δ = R = = jω RS CS 1 ZC jωCS tan δ = ω RS CS
10
tanδ 2 : 油温为T2时的tgδ 的值,% tanδ1 : 油温为T1时的tgδ 的值,%
释时, 变压 产 测 结果 应 过 值(当 术协议 释时, 术协议为 ): ℃时 2%(JB/T501-91); a、35KV 产 20 ℃时 应 2%(JB/T501-91); 63KV~220KV产 ℃时 1.5%( JB/T501b、63KV~220KV产 20 ℃时 应 1.5%( JB/T501-91 ); ℃时 c、330KV 产 , 20~25 ℃时 应 0.5% GB/T6451( GB/T6451-2008 )。
只能用高压芯 线接被试套管 试验抽头
图12、正 内接线
反接法:绕组介损测量接线
高压芯线接被 试组合短路线
图13、反 内接线
反接法:末屏对地介损测量接线
高压屏蔽线 接被试组合 短路线
高压芯线接套 管试验抽头
图14、反 内接线
正接法:外接电容、外加压
外部施加电压, 外接标准电容
图15、正 外接线
绕组测量
一旦变压器状态确定,无 论在串联模型还是并联模型中 变压器的等效电阻和电容也就 确定了,从而被试组合的tanδ 也就确定了,为一定值。所以 认为tanδ是绝缘材料在某一状 态下固有的,可以用作判断产 品绝缘状态是否良好的依据, 是绝缘介质的基本特性之一。
P =U IR Q =U IC
• •

P IR tan δ = = • Q IC U 1 Z R ZC jωCP 1 tan δ = = = = U ZR RP jω RP CP ZC tan δ = 1 ω RP CP
END
介质损耗
试验目的
介质损耗试验的目的是对变压器生产过程 中的工艺处理质量和制造质量进行监督。 该项试验可以间接鉴别变压器绝缘在高电 压作用下的可靠性,并可验证变压器真空 处理的好坏和受潮、脏污的影响,以便及 时发现变压器绝缘的局部缺陷!介质损耗 试验习惯上称为绝缘特性试验。
试验原理
绝缘介质在交流电压作用下消 耗的功率P即为介质损耗(图1), 但P随U的变化而变化,是一变 量,为了有效的说明介质损耗, 我们用介质损耗因数tanδ表示。 δ的由来:是由于绝缘介质产 生了的损耗不仅有有功损耗P 还有无功损耗Q,造成施加在 绝缘介质上的交流电压与电流 之间的功率因数角φ不是90 °, δ就是功率因数角的余角(图2)。 tanδ可表示为:
U
图16、绝缘介质tanδ的电压特性
2、温度特性
GB/T6451-2008《油浸式电力变压器技术参数和要求》中要求:容量 在8000KVA及以上变压器应提供tanδ值,测试通常在10~40 ℃下进行, 不同温度下的tanδ 值一般可按下式换算:
tan δ 2 = tan δ 1 *1.3
(T2 − T1 )
Байду номын сангаас意事项
1、测量过程中要注意高压连线可能的支撑物及产品外绝缘污秽、 受潮等因素对测量结果带来的较大误差。 2、测试线由于长期使用,易造成测试线隐性断路,或芯线和屏蔽 线短路,或插头接触不良,当测量数据不符合要求时,应检查测 量线是否完好。 3、接好线后请选择正确的测量工作模式(正、反),不可选错。 4、变压器产品在进行tanδ测量时,被试绕组均应短路,并应正确 记录产品的油温。 5、测量通常应在10~40 ℃温度下进行,变压器产品测量结果不应 超过标准值。 6、试品准备阶段可能有登高或不稳定作业,应确保安全。
表1、变压器介损的测量部位
序列号 1 2 3 4 5 6 其他特别指示部分 高压、低压 外壳 双线圈变压器 被测线圈 低压 高压 接地部分 高压、外壳 低压、外壳 被测线圈 低压 中压 高压 高压、中压 高压、中压、低压 其他特别指示部分 三线圈变压器 接地部分 高压、中压、外壳 高压、低压、外壳 中压、低压、外壳 低压、外壳 外壳
Z1 = Z X ; Z 2 =
1 R4 ; Z 3 = R3 ; Z 4 = jω cn 1 + jω c4 R4
U U Z3 = Z4 Z1 + Z 3 Z2 + Z4 Z Z1 = 2 Z 3 = R4 Z4 1 jω cn R3 = R3 c + 4 R3 jω cn R4 cn
图5、西林电桥
1 + jω c4 R4
cR c 按复数相等的定义:虚部、实部分别相等。则:RX = 4 R3 ; C X = n 4 cn R3
从而可以求出被试品的电容量及tanδ !
通过ZX的串、并联的等效变换,无论串联还是并联,介损都为:tgδ
= ω c4 R4
西林电桥的应用
西林电桥在实际测量中得到广泛 的应用,根据西林电桥的特点,它使用于变压器、电 机、互感器等高压设备的tanδ和电容量的测量。西林电桥有正接法和反接法两种,正接 法(图6)适用于两端绝缘的产品,在变压器tanδ测量中,套管介损采用此方法;反接 法(图7)适用于一端接地的产品,变压器tanδ测量中,绕组介损测量采用此方法,(图 8)是反接法的应用,测套管末屏对地介损。其中在正接法中,电压加在被试品上,电 桥上 的电压相对较低,相对安全;反接法中,电压加在电桥上的,对操作人员有一定 的危险性。 随着技术的不断进步,现在tanδ的测量是通过单板机和一系列电子设备,将矢量电流通 过自动模/数转换,求出介质损耗角和电容量。CTC测量tanδ时所采用的AI-6000(A) / CTC tanδ AI-6000 A 型介损测试仪就是这种设备。
试验电源的频率为额定频率,其偏差不应大于:±5%。 一般的,当绝缘介质优良时,试验电压即使升到很高, tanδ值也基本上没有变化。但 是,当绝缘介质工艺不好、绝缘中残留气泡或绝缘老化时,电压升高,试验电压超过 局部放电起始电压时,绝缘介质中发生局部放电, tanδ值会迅速增大。所以,为了有 效的验证变压器的绝缘水平,对试验电压有一定的要求: a、额定电压为6KV及一下的试品,取额定电压; b、额定电压为10~35KV的试品,取10KV; c、额定电压为63KV及一上的试品,取10KV或者大于10KV,但不超过绕组线端较低电 压的60%。CTC产品的试验电压一般取10KV。 60% CTC 10KV
相关文档
最新文档