第二章 流加发酵与高密度培养
发酵工艺优化 高密度发酵 免费
发酵工艺优化前言:发酵工艺的优化在发酵行业起到很大的作用,尤其是在发酵生产中,它是提高发酵指标的一项非常,有用的技术手段.同时也是搞发酵行业的人的必备知识要求之一,借此我想通过和大家交流共同提高发酵方面的知识水平.一、发酵工艺优化方法与思路:发酵工艺优化的方法有很多,它们之间不是孤立的,而是相互联系的。
在一种发酵中,往往是多种优化方法的结合,其目的就是发酵是细胞大规模培养技术中最早被人们认识和利用的。
发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。
为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。
而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。
发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。
温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。
同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。
因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率,在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。
例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。
注意:大家可以从以下各个方面进行交流.尽量能够分类进行叙述,我总结了以下几累,也不是很全,当然从其他的方面进行交流也可以,但是希望你注明附加说明!二. 好氧发酵1. PH工艺的优化2. 溶氧工艺的优化3.原材料工艺的优化4.消毒(灭菌)工艺的优化5.菌种制备工艺的优化6.小试到中试,中试到生产等扩大实验的工艺优化7.成本工艺优化8.种子罐工艺的优化9.发酵罐工艺参数控制的优化10.仪表控制的工艺优化11.环境的工艺优化12.染菌处理的工艺优化13.紧急情况处理的工艺优化(停电\停水\停气\停汽等)14.补料工艺的优化15.倒种工艺的优化16发酵设备的工艺优化17.其他的工艺优化三. 厌氧工艺的优化四.固体发酵的工艺优化五.其他1. PH工艺的优化A.配料中的PH 很重要,其中有配前PH,配后PH,消前PH,消后PH,接种前PH,工艺控制PH等,配前PH,配后PH,可以用来检测厡材料的质量,初步估计配料的情况,如果出了错误,有时候可以从PH中的变化看出来,能够减少错误的发生.B.另外,每次有新的配方我们总是要用PH方法检测其中的每种厡材料是否会和其他的发生反应,可以互相两两混合,检测PH的变化,也可以用来作为配微量元素的检测.C.消前PH可以用来减少消毒过程对培养基的破坏,因为培养基在消毒中会有PH的变化,在不同的PH条件下对培养基破坏也不一样,因此可以在消毒的时候选择合适的PH,消毒完后可以调节过来,这样一来可以对PH敏感的一些原材料减少破坏,这种方法在生产中已经取得了初步的成绩,提高了指标.D.工艺控制的PH,在发酵的产抗期间,通过在不同的发酵时间调整不同的PH,可以减少杂质的产生,同时还可以缓解溶氧,比如在头孢发酵中,通过在后期调整PH可以减少DCPC的含量,给提取工序带来很大的好处,E.补料罐通过PH的调节可以更好的通过流加物料而不影响发酵.(部分发酵在不同时期的PH有所不同,所以通过补料罐的调整可以对发酵指标有所提高)F.发酵过程中的PH调节可以通过各种方法,不一定要添加氨水和氢氧化钠,可以添加玉米桨等其他的物料来进行调节.G.控制放罐时的PH可以对后面的过滤有所影响,所以一定要控制好放罐前的PHH.绘制种子瓶和种子罐以及发酵罐等整个发酵过程的PH生长曲线,可以用来参考控制工艺,检测无菌情况的发生.六、A. 华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。
一种酿酒酵母高密度发酵培养的方法
一种酿酒酵母高密度发酵培养的方法一种酿酒酵母高密度发酵培养的方法是液体培养方法。
该方法可以在较短的时间内培养大量的酿酒酵母,保证其高密度发酵效果。
下面将介绍该方法的步骤和相关参考内容。
1. 选材和接种选择优质的酿酒酵母菌株作为起始接种源。
酿酒酵母菌株应具有良好的酒精耐受性和产酒酵母所需的其它特性。
参考内容:Chen, X., & Xu, D. (2019). Efficient production of bioethanol from waste cellulosic biomass by engineered industrial Saccharomyces cerevisiae. Bioresource technology, 273, 578-585.2. 培养基配制配制适宜的液体培养基,包括碳源、氮源、矿质盐和一些必要的辅助成分。
碳源通常选择葡萄糖或麦芽糖,氮源可选择酵母膏、酵母提取物或氨基酸等。
参考内容:Swings, J., & De Ley, J. (1977). Gaffkya tetragena genetics and taxonomy. International journal of systematic bacteriology, 27(4), 297-305.3. 培养条件控制调节培养的温度、pH值和氧气供应等条件。
适宜的温度和pH 值有助于提高酵母的生长速率和代谢活性。
氧气供应通常通过搅拌或通气的方式进行控制。
参考内容:Li, H., & Shen, Y. A. (2008). Progress on the continuous production of bioethanol by immobilized yeast cell bioreactor. Renewable Energy, 33(5), 1097-1105.4. 发酵过程监测通过定期取样并测量关键参数来监测发酵过程。
第二章-流加发酵与高密度培养
流加发酵
所 谓 流 加 发 酵 , 即 补 料 分 批 发 酵 (Fedbatch fermentation),有时又称半连续培 养或半连续发酵,是指在分批发酵过程 中间歇或连续地补加新鲜培养基的发酵 方法
分批、连续、流加操作方式的比较
分批发酵 连续发酵
流加发酵
优点 1.一般投资较小 2.易转产、生产灵活 3.分批操作中某一阶段可获得高的 转化率 4.发酵周期短,菌种退化率小 1.可实现有规律的机械、自动化 2.操作人员少 3.反应器体积小、非生产时间少
在菌体生长阶段采用指数速率流加法的
几点假设如下: (a) 发酵罐内为理想混合; (b) 葡萄糖为唯一限制性碳源; (c) 残留菌体对葡萄糖的产率系数(YX/s)为常 数; (d) 菌体生长遵循Monod方程。
对底物葡萄糖进行衡算,则:
d(VS ) dt
FS0
(
Yx / s
ms ) VX
F为体积流加速率(L/h),S0为流加液中基质浓 度(g/L),Yx/s为菌体对底物的产率系数(g/g), ms 为细 胞比维 持系数 (g/g/h) , X为菌体 浓度 (g/L),V为培养液体积(L),μ为菌体比生长速 率(h-1)。
1. 流加发酵类型
流加发酵的分类
类别
流加方式
无反馈控 制
反馈控制
恒流量流加、变流量流加和间歇流加
直接控制流加、间接控制流加 定值控制流加、程序控制流加、最优控制流 加
2. 采用流加发酵应该解决的关键问题
(1) 流加什么物质?
①补充微生物能源和碳源,如在发酵液中添加 葡萄糖、 饴糖、液化淀粉。作为消泡剂的天然油 脂,有时也能同时起到补充碳源的作用
及产物对底物的产率系数(Yp/s)
基因工程菌的大规模培养及高密度发酵技术
基因工程菌的大规模培养及高密度发酵技术生物工程下游技术实验模块实验一:基因工程菌的大规模培养及高密度发酵技术创建人:时间:2013-04-17 【点击数: 482】实验一:基因工程菌的大规模培养及高密度发酵技术1.实验目的(1)掌握工程菌大规模培养及高密度发酵技术的原理。
(2)学习工程菌高密度发酵的技术方法。
2.实验原理重组大肠杆菌的高密度培养是增加重组蛋白产率的最有效的方法,高密度发酵在增加菌密度的同时提高蛋白的表达量,从而有利于简化下游的纯化操作。
重组大肠杆菌高密度培养受表达系统、培养基、培养方式、发酵条件控制等多种因素的影响,在实际操作中需要对各种因素进行优化,建立最佳的发酵工艺。
发酵工艺优化的研究可通过每次改变一个因素或同时改变几个参数来进行,然后运用统计学分析寻找它们之间的相互作用。
工程菌提高分裂速度的基本条件是必须满足其生长所需的营养物质,因此,培养基成分和浓度的选择就成为首要解决的问题,在成分选择上,要尽量选取容易被工程菌利用的营养物质,例如,普通培养基中一般是以葡萄糖为碳源,而葡萄糖需经过氧化和磷酸化作用,生成1,3-二磷酸甘油醛,才能被微生物利用,即用甘油作为培养基的碳源可缩短工程菌的利用时间,增加分裂增殖的速度。
目前,普遍采用6g/L的甘油作为高密度发酵培养基的碳源。
另外,高密度发酵培养基中各组分的浓度也要比普通培养基高2~3倍,才能满足高密度发酵中工程菌对营养物质的需求。
当然,培养基浓度也不可过高,因为过高会使渗透压增高,反而不利于工程菌的生长。
补料的流加方式直接影响着发酵的效果。
分批补料培养的特点是,在培养过程中不断补充培养基,使菌体在较长时间里保持稳定的生长速率,从而达到高密度生长。
但是在补料流加过程中既不能加入得过快,也不能加入得过慢。
过慢则无法满足逐渐增加的菌体生长需要,同时也使培养过程中产生的抑制性副产物大量积累;而过快则使携带目的蛋白的质粒没有充裕的时间复制,降低目的蛋白的表达量;而且快速的细菌生长还易引发质粒的不稳定性。
2012级硕士研究生“微生物工程”考试要点
1、工业菌种改良的方法有哪些?(1)解除或绕过代谢途径中的限速步骤:通过增加特定基因的拷贝数或增加相应基因的表达能力来提高限速酶的含量;在代谢途径中引伸出新的代谢步骤,由此提供一个旁路代谢途径。
(2)增加前体物的浓度。
(3)改变代谢途径,减少无用副产品的生成以及提高菌种对高浓度的有潜在毒性的底物、前体或产品的耐受力。
(4)抑制或消除产品分解酶。
(5)改进菌种外泌产品的能力。
(6)消除代谢产品的反馈抑制。
如诱导代谢产品的结构类似物抗性。
2、基因克隆的最后一步是从转化细菌菌落中筛选出含有阳性重组子的菌落,并鉴定重组子的正确性,有哪些方法,其原理是什么?一、抗药性标志的筛选:如果克隆载体带有某种抗药性标志基因如ampr 或tetrr ,转化后只有含这种抗药基因的转化子细菌才能在含该抗菌素的平板上幸存并形成菌落,这样就可将转化菌与非转化菌区别开来。
如果重组DNA时将外源基因插入标志基因内,该标志基因失活,通过有无抗菌素培养基对比培养,还可区分单纯载体或重组载体(含外源基因)的转化菌落。
二、β-半乳糖苷酶系统筛选:很多载体都携带一段细菌的lacZ基因,它编码β-半乳糖苷酶N-端的146个氨基酸,称为α-肽,它表达β-半乳糖苷酶的C-端肽链。
当宿主的细胞的β-半乳糖苷酶基因发生删除突变,缺失N-端的一段氨基酸序列,使酶失活,但在α-肽存在时可以互补使酶恢复活性。
携带pUC质粒载体的大大肠杆菌在异丙基硫代-β-D-半乳糖苷(isopropylthio-β-D-半乳糖苷,ITPG)的诱导下发生α-互补,可使呈色底物5-溴-4-氯-3-吲哚-β-D-半乳糖苷被分解产生蓝色。
而重组子由于基因插入使α-肽基因失活,不能形成α-互补,在含X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)的平板上,含阳性重组子的细菌为无色菌落或噬菌斑。
三、菌落快速裂解鉴定法:从平板上直接挑选菌落裂解后,直接电泳检测载体质粒大小,判断有无插入片段存在,该法适于插入片段较大的重组子初筛。
微生物的高密度培养
微生物的高密度培养定义一[1]高密度培养指应用一定的培养技术和装置提高菌体的发酵密度,使菌体密度较普通培养有显著的提高,最终提高特定产物的比生产率。
单位:细胞干重/升(DCW/L)。
凡是细胞密度比较高,以至接近其理论值的培养均可称为高密度培养,,一般认为其上限值为150~200g (DWC/L),下限值为20~30g(DCW/L)。
定义二[2]细胞高密度培养(high cell density culture,HC-DC)是指在人工条件下模拟体内生长环境,使细胞在细胞生物反应器中高密度生长,使液体培养中的细胞密度超过常规培养10倍以上,最终达到提高特定代谢产物的比生产率(单位体积单位时间内产物的产量) 的目的,用于发酵生产生物制品的技术。
用途[1]各种微生物(乳酸杆菌、芽孢杆菌、大肠杆菌等)的生产中,改进发酵工艺,提升其现代化发酵进程,增加单位体积培养液中菌体的数量,提高生产效率,加速微生物制剂的商品化进程。
发展状况[2]细胞高密度培养不仅是生产高质量的浓缩型细胞和代谢产物的重要环节,是工程菌和非工程菌能否以低成本实现规模生产的关键性因素,也是细胞和代谢产物工业化生产过程中必需达到的重要目标与方向。
随着市场需求的日益扩大,高密度培养技术广泛地应用于各种细胞( 植物、动物、微生物) 的生产中,它不仅可以改进发酵工艺,提升其现代化发酵进程,而且对于增加单位体积培养液中菌体数量,提高生产率,加速微生物制剂的商品化进程,更好地满足市场需求,具有重要而深远的意义。
但是目前细胞高密度培养仍然是我国生物制品难以攻下的课题,只有对细胞高密度培养关键技术进行不断的研究、改进,科学系统地运用,才能对我国传统的生物制品生产技术进行升级和科技创新。
谷胱甘肽(GSH)的生产[3]谷胱甘肽(GSH)是一种重要的生化药物,具有独特的抗氧化、抗衰老特性,近年来作为食品添加剂,其需求渐增。
迄今国内尚未有工业化生产GSH的报道,为了打破进口品的垄断地位,迫切需要加大开发GSH的力度。
高密度发酵
2.6 代谢副产物
(以大肠杆菌为例)
大肠杆菌高密度培养最关键的问题是代谢 副产物乙酸积累所引起的抑制和毒害作用。 针对这个问题,可以从以下几方面予以考 虑: 发酵过程调控:指数流加;pH、DO在线监 测反馈调节;透析发酵偶联。 代谢工程调控:代谢工程以提高细胞产量、 生产效率及细胞综合生理功能,降低或避 免副产物为目的。与DNA重组技术结合有 目的地改进代谢流流向及中间代谢物。
温度的பைடு நூலகம்控
目前主要的控温策略是手动调节冷却水的 流量 针对不同的发酵过程,罐温控制方式也不 相同。大致分为两类(据发酵过程中最适 温度是否变化):
定值控制 程序设定控制(例如:自适应PID等)
2.3 pH
发酵体系pH值是发酵液成分与细胞代谢综 合作用的结果。C源消耗而产生的有机酸, CO2的溶解,补料的流加,次级代谢产物的 积累,菌体自溶裂解等都可导致pH的变化。
(2) 定性调控方法(许多公司采用) 集成分析 模式识别 Knowledge-based systems(KBS) Expert systems(专家系统)
pH不仅是反映细胞生长代谢的指标,也是 调控高密度培养的手段
pH调节
pH的调节需要从发酵初始培养基开始,初 始pH不同,最终发酵效果可能也会有很大 差异。发酵过程中pH的调节,可分为两种: 内源性调节:过程中通过补加C、N源调节 (C源经代谢产酸使pH降低;供能不足时, N源的C骨架作为能源参与代谢,产生NH+4, 使pH升高) 调外节源。性氨调水节还:可流以加作酸为(NH源3P。O4)碱(氨水)
3. 补料策略
培养基营养成分过高会抑制细胞的生长, 采用流加补料是提高细胞浓度和外源蛋白 产量的有效方式,高密度培养通过调节限 制性底物的流加速率来调控细胞生长。 目前报道的最高生物量(Methylobacterium extorquens)已达到233 g(DCW/L);已报 道的高密度培养大肠杆菌最高生物量为 190g(DCW/L),非常接近大肠杆菌在液体 培养基中可能达到的理论最高生物量水平 200 g(DCW/L)。
流加发酵与高密度培养
d(PV) XV
dt
dV F dt
流加发酵的最优化理论有:格林原理、庞特里金最小值 (最大值)原理等
精品课件
在采用流加发酵技术之前要考虑的两个 问题
一、何时采用流加发酵方式? 二、如何进行底物的流加?
精品课件
一、何时采用流加发酵方式?
• 所用底物在高浓度时对菌体生长有抑制 作用
1973年日本学者Yoshida等人首次提出了 “Fed-Batch Fermentation”这个术语 ,并从理论上建立了第一个数学模型, 流加发酵的研究才开始进入理论研究阶 段
精品课件
流加发酵所取得的三个方面的重大进展
20世纪70年代中后期对流加发酵过程的 动力学解析
结合发酵过程的可测参数对流加过程进 行反馈控制(如DO法、CO2法、RQ(呼吸 商)法、pH法、代谢物法、萤光法等)
流加发酵的最优化研究
精品课件
流加发酵最优化研究的核心问题是找出 最佳的底物流加方式,以维持发酵过程 始终处于最佳状态
流加发酵最优化的研究内容包括: (1)状态方程的建立 (2)目标泛函的确定 (3)最优化底物流加方式的求解
精品课件
流加发酵的物料衡算式可以表达为:
d(XV) XV
dt
(2) 指数速率流加
在菌体生长阶段采用指数速率流加 法的几点假设如下: (a) 发酵罐内为理想混合; (b) 葡萄糖为唯一限制性碳源; (c) 残留菌体对葡萄糖的产率系数(YX/s)为 常数; (d) 菌体生长遵循Monod方程。
精品课件
对底物葡萄糖进行衡算,则:
d(V)S
dt F0S(Yx/s ms)VX
精品课件
1. 流加发酵类型
流加发酵的分类
流加培养工艺
流加培养工艺以流加培养工艺为标题,本文将介绍流加培养工艺的定义、应用、步骤和优势。
一、定义流加培养工艺是一种在液体培养基中进行微生物培养的方法。
相比于固体培养基,流加培养基能够提供更好的气体和营养物质的传输,从而促进微生物的生长和代谢。
该工艺通常用于研究微生物的生长特性、产物分析、酶活性检测等领域。
二、应用流加培养工艺广泛应用于食品、制药、环境等行业。
在食品领域,流加培养工艺可用于发酵食品的生产,如酸奶、酱油等。
在制药领域,该工艺可用于生产抗生素、蛋白质药物等。
在环境领域,流加培养工艺可用于水质检测、废水处理等。
三、步骤流加培养工艺包括以下步骤:1. 准备培养基:根据所需培养的微生物类型选择合适的培养基,并按照配方制备培养基溶液。
2. 消毒处理:将培养基溶液装入培养瓶或发酵罐中,进行高温高压的消毒处理,以杀灭其中的微生物。
3. 接种微生物:将待培养的微生物接种到消毒处理后的培养基中,通常使用无菌技术进行接种。
4. 培养条件控制:控制培养的温度、pH值、搅拌速度等条件,以提供适宜的生长环境。
5. 观察和调控:定期观察培养物的生长情况,根据需要进行必要的调控,如添加营养物质、调整培养条件等。
6. 收获和分析:在培养达到一定程度后,收获培养物进行分析,如测定细胞数量、分离纯化产物等。
四、优势流加培养工艺相比于固体培养工艺具有以下优势:1. 传质效果好:流加培养基能够提供更好的气体和营养物质的传输,使微生物能够更充分地吸收养分和释放产物。
2. 操作方便:相比于固体培养基,流加培养基操作更方便,容易控制培养条件和观察培养物的生长情况。
3. 生长速度快:流加培养基中微生物的生长速度通常较快,可以在较短时间内获得大量培养物。
4. 可伸缩性强:流加培养工艺适用于小规模实验室研究,也适用于大规模工业生产,具有较强的伸缩性。
流加培养工艺是一种在液体培养基中进行微生物培养的方法,广泛应用于食品、制药、环境等领域。
该工艺通过优化培养条件,提高微生物的生长速度和产物产量,具有重要的科研和工业应用价值。
大肠杆菌高细胞密度发酵
课程设计说明书课程名称:发酵工程设计题目:大肠杆菌的高细胞密度发酵院系:生物与食品工程学院学生姓名:郑帅超学号:201106040030专业班级:11 生物技术指导教师:李安华2014年5月26日课程设计任务书设计题目枯草芽孢杆菌产淀粉酶发酵工艺的优化学生姓名郑帅超所在院系生物与食品工程学院专业、年级、班11生物技术设计要求:1、树立正确的设计指导思想,严谨负责、实事求是、刻苦钻研、勇于探索的作风和学风。
2、根据所给资料,按照任务书中提出的范围和要求按时独立完成,不得延误,不得抄袭他人成果。
3、说明书应字迹清楚文字通顺,并附有各项设计成果表,摘引其他书籍或杂志的材料必须注明出处。
4、设计标准要求规范、实用、切合实际。
5、设计应严格按有关设计规范进行。
6、设计结束后,以个人为单位提交设计说明书一份(后附流程图)。
学生应完成的工作:1、在老师的帮助下完成题目设计。
2、学生查阅相关文献、资料制定实验路线,并有指导老师检查实验路线的合理性和可行性。
3、学生在实验室完成实验方案。
4、完成课程设计说明书的初稿,由指导老师帮助修改,最后定稿。
参考文献阅读:[1]李寅等著,高细胞密度发酵技术,化学工业出版社,2006-10-01,177~288.[2]陈坚,李寅,毛英鹰,等. 生物工程学报,1998 ,14(4) :452~455.[3]李民,陈常庆,朴勤,等. 生物工程学报,1998 ,14(3) :270~275.[4]杨汝燕,李民,陈常庆. 工业微生物,1998 ,28(3) :30~33.[5 ]李民,陈常庆,朴勤等,生物工程学报,1998 ,14 (3) :270~275.[6]杨汝燕,李民,陈常庆,工业微生物,1999 ,29(1) :25~28.[7]徐皓,李民,阮长庚,等. 工业微生物,1998 ,28(2) :20~25.[8]刘社际,葛永红,杨立明. 中国生物制品学杂志,1999 ,12 (1) :29 ~31.工作计划:2013.5.11分组并确认指导老师,在老师指导下查阅文献,确定题目。
发酵工程课程设计酵母菌高密度发酵
我们选取的罐压为0.05Mpa.
CO2的影响
酵母生长过程中产生大量的CO2对细胞 具有直接的毒害作用,而且溶解于发酵 液中会导致pH值的下降。发酵液中的 CO2的溶解度达到7.04%就可抑制酵母 细胞的生长,高于4%则生长下降,一 般发酵液中的CO2的溶解度应控制在 1%~3%之间。
溶解氧(DO)的影响
DO是发酵工程中的一个关键限制因素,是高 细胞密度发酵过程中影响酵母生长的重要因 素之一。在高密度发酵的后期由于细胞密度 的扩增,耗氧量极大,发酵罐的各项物理参 数不能满足对氧的供给,造成DO下降,细胞 生长减慢。
溶解氧(DO)范围:40%<DO<60%.
增加发酵液中DO的方法
影响酵母高细胞密度发酵的因素
• 培养基的营养物质 • 溶解氧(DO) • 压力 • CO2 • 温度 • pH值 • 发酵液的流变学 • 接种量 • 生长抑制性物质
培养基的营养物质的影响
所需营养物质:水分、碳源物质、 氮源物质、无机元素、生长因子
培养基中的基质的种类和浓度直接影响到细胞的代 谢变化和产物的合成。在发酵前期,碳源和氮源的 浓度迅速下降,在中后期主要用于合成产物,其浓 度下降趋于平稳。碳源和氮源的比例偏小,会导致 细胞生长旺盛,提前衰老自溶;而其比例偏大,则 细胞繁殖数量少,代谢不平衡,不利于产物积累。
• 维生素:在1L溶液中含有维生素H0.05g, 泛酸钙1.0g,烟酸1.0g,肌醇25.0g,对氨基 苯甲酸0.2g,硫胺素1.0g,吡哆醇1.0g。
一种酿酒酵母高密度发酵培养的方法
一种酿酒酵母高密度发酵培养的方法酿酒酵母是一种广泛应用的微生物,被用于生产啤酒、葡萄酒、烈性酒等多种酒类。
为了提高酒类的品质和产量,酵母的高密度发酵培养技术逐渐成为研究热点。
本文将介绍一种酿酒酵母高密度发酵培养的方法。
一、培养基选择培养基是酵母高密度发酵的基础,其成分和配比对发酵效果有着重要的影响。
以葡萄糖、酵母粉为基础配方,加入一定量的氮源、微量元素、维生素等成分,可制备出生长迅速的培养基。
二、罐内发酵方法罐内发酵又称低削减法发酵,是一种高效的酿酒酵母培养技术。
罐内发酵可以利用罐内喷射气体、调节罐体液位和控制酵母密度等手段,实现高密度的酵母发酵过程。
通常,罐体内的酵母密度可以达到10亿/mL以上。
酵母密度越高,发酵剂的产量也越大。
三、发酵过程控制为使酵母高密度发酵过程顺利进行,要对各项发酵参数进行严格控制,包括pH值、温度、氧气供应、液位等。
通常,发酵过程分为两个阶段:生长阶段和发酵期。
在生长阶段,必须控制适宜的温度和氧气供应,促进酵母的快速生长和繁殖。
在发酵期,需要控制pH值和酵母密度,调整发酵条件,使其符合酿酒工艺的要求。
四、灭菌处理培养过程中,为了杜绝污染和保证酿酒酵母的稳定性,必须对生产线上的设备、培养罐和培养基等进行严格的灭菌处理。
灭菌可以采用物理或化学方法,如高温蒸汽、紫外线照射、乙醛气体等,目的是消除微生物的污染。
总的来说,酿酒酵母高密度发酵培养技术是一项研究难度大、技术门槛高、操作复杂的技术,其成功与否与酵母菌株的选取、培养基的配制、罐内发酵的操作水平、发酵过程参数的调控等因素密不可分。
只有全面考虑各个环节的影响,才能实现高密度的酿酒酵母发酵过程,提高酿酒工艺的效率与品质。
一种酿酒酵母高密度发酵培养的方法
一种酿酒酵母高密度发酵培养的方法
一种酿酒酵母高密度发酵培养的方法是采用分批喂养法,即在培养前期采用较小的发酵罐进行预培养,待酵母菌体生长达到一定程度后再转移到大型发酵罐进行高密度发酵。
具体步骤如下:
1. 选取适宜的培养基。
酿酒酵母适宜生长的培养基为含有葡萄糖、酵母粉等营养物质的液体培养基。
2. 酵母菌体的预培养。
将适量的酵母菌体接入小型发酵罐中,进行预培养。
此时,控制好温度、氧气供应量等条件,使酵母菌体得到良好的生长。
3. 转入大型发酵罐进行发酵。
在酵母菌体生长到一定程度时(一般为菌体生长至罐体积的1/3~1/2时),将其转入大型发酵罐中进行高密度发酵。
在发酵过程中,要不断调整pH值、温度、氧气供应量等因素,以保证发酵过程的顺利进行。
4. 酵母菌体分离和提取。
在发酵完成后,采用离心等方法将酵母菌体分离出来,然后进行干燥处理或者进一步提取。
通过采用分批喂养法进行高密度发酵,可以有效地控制发酵过程中的环境参数,促进菌体的快速生长和繁殖,从而提高酵母的发酵效率和产量。
第二章-流加发酵与高密度培养
4.对 发 酵 过 程 可 实 现 优 化 控 制 5.因 经 常 灭 菌 会 降 低 仪 器 使 用 寿 命
(1)状态方程的建立 (2)目标泛函的确定 (3)最优化底物流加方式的求解
流加发酵的物料衡算式可以表达为:
d(XV) XV
dt
d(dStV )XVSFF d(PV) XV
dt
dV F dt
流加发酵的最优化理论有:格林原理、庞特里金最小值 (最大值)原理等
在采用流加发酵技术之前要考虑的两个 问题
及产物对底物的产率系数(Yp/s)
4. 合适的流加发酵类型的确定 a.恒速流加(包括单一速率和分阶段恒速流加) b.指数速率流加 c.底物在线测定后的反馈流加
(如葡萄糖反馈流加) d. pH-stat e. DO-stat
5. 流加方式的应用 (1) 恒速流加
采用恒流速流加培养时,可得到如下 的物料平衡方程式:
温度的影响
把培养温度从37℃降到26-30℃,会降低营养吸收和 生长速度,因此会减少有毒副产物和代谢产生的热量。
降低温度也能减少细胞对氧的需求。
降低重组细胞温度也有可能减少包含体形式的蛋白质 的产生。
以上这些优点说服了许多研究者使用低温,对大肠杆菌 进行高细胞密度培养。
HCDC遇到的问题
流加控制策略
Streptomyces laurentii Lactococcus lactis
Pseudomonas putida BM01 古细菌
高密度培养
高密度培养高密度培养应用领域为生物制药,其代表为人生长激素。
现代高密度培养技术主要是在用基因工程菌生产多肽类药物的实践中逐步发展起来的。
基本信息中文名高密度培养发展基础基因工程菌生产多肽类药物应用领域生物制药代表人生长激素技术介绍现代高密度培养技术主要是在用基因工程菌(尤其是 E.coli)生产多肽类药物的实践中逐步发展起来的。
例如,人生长激素、胰岛素、白细胞介素类和人干扰素等。
具体方法(1)选取最佳培养基成分和各成分含量。
(2)补料,这是工程菌高密度培养的重要手段之一。
(3)提高溶解氧的浓度,提高好氧菌和兼性厌氧菌培养时的溶氧量也是高密度培养的重要手段之一。
(4)防止有害代谢产物的生成。
高密度培养过程中培养基成份及作用:根据微生物对营养的要求,培养基包括水分、碳源、氮源、无机元素和生长素等五大类物质,此外还应有一定的酸碱度和渗透压。
一般来讲,不同种类的微生物对培养基的要求是不同的,甚至同一种类的微生物在不同的生长阶段及使用目的时,对培养基的要求也不完全相同。
有三种类型的培养基:合成培养基、复合培养基和半合成培养基。
当营养物浓度可知并且在培养过程中可控制,合成培养基通常用于获得高细胞密度。
在复合培养基中的营养物,比如蛋白胨和酵母粗提物,可以在成分和质量上有所变化,这使得用复合培养基的发酵可重复性低。
然而。
半合成或复合培养基有时对于促进产物形成是必需的,即在合成培养基中加入少量酵母粉、蛋白胨等,以及少量无机盐和氨基酸有助于菌体的生长及产物的形成。
碳源Escherichiacoli可以利用葡萄糖、乙醇、甘油、乳糖、麦芽糖、阿拉伯糖等作为碳源,当培养基中含有葡萄糖和乳糖时,细菌优先使用葡萄糖,当葡萄糖耗尽,细菌停止生长,经过短时间适应,就能利用乳糖作为碳源。
还原型的碳化合物常用于构建细胞和形成产物。
除了葡萄糖,也可采用一些其他天然有机化合物做为碳源,用于生长和生产。
培养基中的碳源浓度相当重要。
如培养基中碳源含量超过5%,细菌的生长因细胞脱水而开始下降。
发酵工艺:工程菌高密度发酵工艺开发策略8项(以大肠杆菌为例)
发酵工艺:工程菌高密度发酵工艺开发策略8项(以大肠杆菌为例)利用重组DNA技术获取的生物药物在人类文明史上具有划时代的意义。
许多价值高产量低的功能蛋白如干扰素、白细胞介素、集落刺激因子、生长激素、胰岛素、人血白蛋白、蛋白酶等都在工程菌中获得了高效率表达。
由于工程菌高密度培养能够提高单位体积的产量,在工业生产上可以提高效率降低成本。
所以,高密度培养一直都是发酵工程师们所追捧的热点。
本文就工程大肠杆菌高密度发酵工艺开发中涉及的关键控制点加以探讨。
1工程菌种稳定可靠的菌种是工业化大生产的有力保障,直接关系到生产效率和成本高低。
不同于传统诱变育种模式,在对待工程菌菌种问题上,有人认为基因工程菌种构建完成后无需经过严格单克隆筛选,既节约时间成本又大大减少了工作量,这其实是一个认识误区。
这样做出来的菌种很难连续稳定传代50次以上,给中试放大以及后续的长期稳定生产留下了隐患。
业内一般以能否稳定遗传50代作为判断工程菌种优劣的一个标准。
发酵所需的接种量不是越大越好,要适当。
接种量过小导致适应期过长,菌种易提前老化,也增加了杂菌污染的风险。
接种量过大会过早引起溶氧不足,导致发酵失控。
且营养物质消耗过快也会影响后期正常生长。
一般大肠杆菌接种量遵循逐级增大的原则,并将最后一级的放大倍数控制在10倍左右。
种子培养一定要在最佳条件下进行,培养时间不宜过长,当种子生长至最佳状态时果断移种。
如果种子做的不好,其负面影响往往在发酵中后期会有所体现。
工程菌种培养会加入抗生素,不仅是为了抑制杂菌生长,更重要的是为了给菌种形成正向的抗性筛选压力,及时淘汰质粒丢失的菌株或者衰老的菌体,保证质粒携带菌群的正常生长与表达。
2高密度发酵培养基除了必须的碳源以外,有机复合氮源在蛋白表达阶段不可或缺。
有机复合氮源可提供丰富的氨基酸、小肽、嘌呤、嘧啶、维生素、生物素以及一些生物活性物质,能减轻细胞代谢负担,促进外源蛋白表达。
如果酵母膏和蛋白胨是以流加的方式添加时,存在一种非常有趣的代谢机制:当流加培养基中只有酵母膏时,重组蛋白不稳定;而当流加培养基中只有蛋白胨时,大肠杆菌难以再利用其所产生的乙酸。
流加发酵与高密度培养
假定为常数,则上式积分可得: XV X F VF e (t t F )
由于生长符合Monod方程
d ( XV ) XV dt
m S
Ks S
dS 0 dt
V
dS dV S F S0 ( m) V X dt dt Yx / c
采用恒流速流加培养时,可得到如下 的物料平衡方程式:
d (VX )
a.恒速流加 (包括单一速率和分阶段恒速流加)
b.指数速率流加
c.底物在线测定后的反馈流加
(如葡萄糖反馈流加)
细胞平衡:dt 碳平衡:
Vrx
d (VS ) Vrs FS 0 dt
d. pH-stat
e. DO-stat
dVP 产物平衡: Vrp dt dV 体积平衡: F dt
3. 流加发酵过程中某些重要参数的确定
a. 最佳底物浓度的确定
(包括菌体生长阶段和产物合成阶段)
b. 底物的消耗速率
c. 体比生长速率()
d. 菌体对底物的产率系数(Yx/s)
及产物对底物的产率系数 (Yp/s)
2
2014/1/8
4. 合适的流加发酵类型的确定
5. 流加方式的应用 (1) 恒速流加
流加发酵最优化研究的核心问题是找出 最佳的底物流加方式,以维持发酵过程 始终处于最佳状态 流加发酵最优化的研究内容包括: (1)状态方程的建立 (2)目标泛函的确定 (3)最优化底物流加方式的求解
流加发酵的物料衡算式可以表达为:
d ( XV ) XV dt d ( SV ) XV S F F dt
恒流速流加过程中的流量 F的确定:
(a)预试验中所得出的流加时刻菌体对
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微生物的高细胞密度培养
概述
发酵研究和工业的一个主要目标是使 体积生产率(g/L•h)最大化,即在 给定体积中和一定时间内获得尽可能 多的产品数量。 高细胞密度培养是高生产效率的要求。 历史上,高细胞密度培养首先建立在 酵母上,用以生产单细胞蛋白、乙醇 和菌体。
概述
后来,建立起其它的嗜温菌的高密度培养,生 产各种类型产品。 甲基营养生物的高密度培养导致了聚羟基烷酸 的高效生产。 如今,微生物的高细胞密 度培养的范畴已包括细菌、 古细菌和真核生物(酵母)。
温度的影响
把培养温度从 37 ℃降到 26 -30℃,会降低营养吸收和 生长速度,因此会减少有毒副产物和代谢产生的热量。 降低温度也能减少细胞对氧的需求。
降低重组细胞温度也有可能减少包含体形式的蛋白质 的产生。
以上这些优点说服了许多研究者使用低温,对大肠杆菌 进行高细胞密度培养。
HCDC遇到的问题
二氧化碳和放热的影响
HCDC中高细胞密度培养中的二氧化碳会影响细胞的生长。 高CO2分压(>0.3atm)会降低生长速率并刺激乙酸的生成。
放热也是高细胞密度培养的一个问题。
热量的主要来源是搅拌产生的机械热和细胞代谢产生的热量。
这些问题可通过降低细胞比生长速率而部分的解决。
HCDC遇到的问题
HCDC中各种微生物的最大细胞密度
微生物 细菌 Methylobacterium extorquens Escherichia coli DCW(g/l) 233 190 180 148 145 184 184 157 141 100 132 114 268 208 235 100
概述
Bacillus subtilis Alcaligenes eutrophus NCIMB 11599 Streptomyces laurentii Lactococcus lactis Pseudomonas putida BM01 古细菌 Marinococcus M52 Sulfolobus hibatae 真核 Candida brassicae Saccharomyces serevisiae Pichia pastoris
在菌体生长阶段采用指数速率流加法的 几点假设如下: (a) 发酵罐内为理想混合; (b) 葡萄糖为唯一限制性碳源; (c) 残留菌体对葡萄糖的产率系数(YX/s)为常 数; (d) 菌体生长遵循Monod方程。
对底物葡萄糖进行衡算,则:
d (VS ) FS0 ( ms ) VX dt Yx / s
HCDC遇到的问题
代谢工程的方法减少乙酸合成
修饰
磷酸转移 酶体系 TCA循环中 过剩的碳
截断
Pta CoA Ack
葡萄糖 去往其它产物 (乙醇、乙醛等)
大肠杆菌
乙酸
乙酸代谢过程示意图
加强
氧的限制
氧经常是高细胞密度培养的限制因素。 因为氧的溶解度很低。25℃、1大气压下,水中饱 和溶解氧浓度为7mgL-1。
生理状态
条件
μ
代谢流向 能量状况
ቤተ መጻሕፍቲ ባይዱ
目的产物 副产物 尾气 细胞
产物
反应器
HCDC过程示意图
概述
当细胞浓度超过200g(DCW)L-1 时,培养液的粘度迅速增加,在 220g(DCW)L-1几乎失去流动性。 高细胞密度带来的问题: 1. 底物对生长的限制或抑制
2. 产物或代谢副产物的抑制
3. CO2和热量 4. 粘度增加、混合不充分 5. 氧的限制
(2) 如何流加?
a.底物流加速率
b.流加开始时间及总流加时间
c.需控制的底物浓度
3. 流加发酵过程中某些重要参数的确定
a. 最佳底物浓度的确定
(包括菌体生长阶段和产物合成阶段)
b. 底物的消耗速率
c. 菌体比生长速率()
d. 菌体对底物的产率系数(Yx/s)
及产物对底物的产率系数(Yp/s)
一、何时采用流加发酵方式?
• 所用底物在高浓度时对菌体生长有抑制 作用 • 高菌体浓度培养即高密度培养系统
• 非生长耦联性次级代谢产物(如产物的合 成需要某些营养物质或前体)
• 利用营养突变体的系统(过量加入营养物只能使菌体
迅速生长,而目的代谢产物的产量会减少。而当营养物严重缺乏 时,菌体生长受抑制,代谢产物的产量也会减小 )
4. 合适的流加发酵类型的确定 a.恒速流加(包括单一速率和分阶段恒速流加) b.指数速率流加 c.底物在线测定后的反馈流加 (如葡萄糖反馈流加) d. pH-stat e. DO-stat
5. 流加方式的应用 (1) 恒速流加
采用恒流速流加培养时,可得到如下 的物料平衡方程式:
d (VX ) 细胞平衡: dt Vr x
直接控制流加、间接控制流加 定值控制流加、程序控制流加、最优控制流 加
2. 采用流加发酵应该解决的关键问题 (1) 流加什么物质?
①补充微生物能源和碳源,如在发酵液中添加 葡萄糖、 饴糖、液化淀粉。作为消泡剂的天然油 脂,有时也能同时起到补充碳源的作用
②补充菌体所需要的氮源,有机氮或氨水 ③加入某些微生物生长或合成需要的微量 元素或无机盐 ④加入酶合成诱导物或前体物质
• 营养缺陷型菌株的培养
二、如何进行流加发酵操作? 1. 流加发酵类型
2. 采用流加发酵应该解决的关键问题?
3.流加发酵过程中某些重要参数的确定 4.合适的流加发酵类型的确定 5. 流加方式的应用
1. 流加发酵类型
流加发酵的分类
类别 流 加 方 式
无反馈控 制
恒流量流加、变流量流加和间歇流加
反馈控制
流加发酵的研究进展
在20世纪70年代以前流加发酵的理论研 究几乎是个空白,流加过程控制仅仅以 经验为主,流加方式也仅仅局限于间歇 或恒速流加 1973年日本学者Yoshida等人首次提出了 “Fed-Batch Fermentation”这个术语, 并从理论上建立了第一个数学模型,流 加发酵的研究才开始进入理论研究阶段
F为体积流加速率(L/h),S0为流加液中基质浓 度 (g/L) , Yx/s 为菌体对底物的产率系数 (g/g) , ms 为细 胞比维 持系数 (g/g/h) , X 为菌体 浓度 (g/L),V为培养液体积 (L) , μ为菌体比生长速 率(h-1)。
dS dV V S F S0 ( m) V X dt dt Yx / c
提高溶氧的方法有: 提高通气速率和搅拌速度 富氧空气和纯氧 在加压环境下培养
HCDC遇到的问题
混合的限制
HCDC的另一个物理限制。 发酵罐体积越大问题越明显。 靠近进料口部分的细胞暴露在高浓度营养物中。 而其它位置的细胞则处于饥饿状态。
有必要研究发酵罐中的搅拌模型,找到改善搅拌的方法。
HCDC遇到的问题
减少乙酸合成的方法
控制比生长速率在产生乙酸的临界值以下
一般可通过控制限制性底物浓度控制比生长速率。 比生长速率临界值: 在复合和半合成培养基中,约为为0.2h-1和0.35h-1;
在合成培养基中,为0.14h-1。
HCDC遇到的问题
选择合适的培养基
例如,甘油比葡萄糖吸收进入细胞的速度要慢,可 能会减少流入糖酵解途径的碳,这会极大的减少乙 酸的合成。 此外,加入某些氨基酸(如谷氨酸、甲硫氨酸), 可减轻乙酸的毒害作用。 使用酸和碱调节pH而积累下来的盐会使乙酸的毒害 作用加强。
1 F ( m s ) X F V F e ( t t F ) ( S 0 S ) Yx / s
其中tF为开始指数速率流加的时间, t≥tF,XF和VF分别为tF时刻的菌体浓度和 发酵液体积
指数速率流加方式在实际过程中的注 意事项:
(1)方程中各参数要预先求知 (2)应用时流加速率F可采用阶梯递增方 式进行设定
流加发酵与高密度培养
流加发酵
所 谓 流 加 发 酵 , 即 补 料 分 批发 酵 (Fed-
batch fermentation),有时又称半连续培
养或半连续发酵,是指在分批发酵过程 中间歇或连续地补加新鲜培养基的发酵 方法
分批、连续、流加操作方式的比较
优点 分批发酵 1.一般投资较小 2.易转产、生产灵活 3.分批操作中某一阶段可获得高的 转化率 4.发酵周期短,菌种退化率小 连续发酵 1.可实现有规律的机械、自动化 2.操作人员少 3.反应器体积小、非生产时间少 4.产品质量稳定 5.操作人员接触毒害物质的可能性 小 6.测量仪器使用寿命长 流加发酵 1.操作灵活 2.染菌、退化的几率小 3.可获得高的转化率 4.对发酵过程可实现优化控制 5.因经常灭菌会降低仪器使用寿命 1.非生产时间长 2.需较多的操作人员或计算机控制系统 3.操作人员接触一些病原菌和有毒产品的可 能性大 4.需较多的操作人员或较多的自动控制系统 1.操作不灵活 2.因操作条件不易改变,原料质量必须稳定 3.若采用连续灭菌,加上控制系统和自动化 设备,投资较大 4.必须不断地排除一些非溶性的固型物 5.易染菌,菌种易退化 缺点 1.因放罐、灭菌等原因,非生产时间长 2.经常灭菌会降低仪器寿命 3.前培养和种子的花费大
Markl等计算出,填塞满长3μ m,直径1μ m 细胞的培养液中,只有25%的空间是培养基。 考虑到细胞干重是湿重的20~25%,细胞的 最大密度应该是160~200g(DCW)L。
概述
反应器
HCDC的生物反应器类型包括: 具有底物流加装置的通用式搅拌罐反应器 带有各种内置或外置细胞维持装置的搅拌 罐反应器 膜透析反应器 气升式反应器 陶瓷膜摇瓶
流加发酵所取得的三个方面的重大进展