金属材料教案-铁碳合金相图
《汽车工程材料》教案(15,16)-铁碳合金相图
《汽车工程材料》教案(15,16)-铁碳合金相图主要教学步骤和教学内容★课程回顾:(5min)匀晶相图、共晶相图的结晶过程分析及形成的相与组织★课程导入:(5min)1、钢与铸铁性能有何不同,为什么?2、钢为什么要加热(烧红)再锻打?(提出问题,学生思考并回答)★新课讲授:(70min)铁碳合金相图钢铁材料是工业生产和日常生活中应用最广泛的金属材料,主要组元是铁和碳,故称铁碳合金。
实际上是Fe和Fe3C两个基本组元组成的Fe-Fe3C相图。
一、纯铁的同素异构转变自然界中有许多元素具有同素异构现象,即同一种元素在不同条件下具有不同的晶体结构。
当温度等外界条件变化时,晶格类型会发生转变,称为同素异构转变。
二、铁碳合金的基本组织及其性能(提出思考问题:为什么fcc比bcc可溶入更多间隙原子?)三、铁碳合金相图铁碳合金相图是人类经过长期生产实践以及大量科学实验后总结出来的,是研究钢和铸铁的基础,也是选择材料、制定热加工、热处理工艺的主要依据。
铁和碳可以形成一系列化合物,考虑到工业上的实用价值,目前常用ωc<6.69%的铁碳合金。
在相图的左上角靠近δ-Fe部分还有一部分高温转变,由于实用意义不大,所以在一般的研究中,常将此部分省略简化。
1.特性点2.主要特性线各不同成分的合金中具有相同意义的临界点的连接线称为特性线。
简化的Fe- Fe3C 相图中各特性线的符号、位置和意义如下。
(1)AC线:液体向奥氏体转变的开始线。
冷却至该线时,液体中开始结晶出固相奥氏体,即:L→A。
(2)CD线液体向渗碳体转变的开始线。
冷却至该线时,液体中开始结晶出渗碳体,称为一次渗碳体。
即:L→Fe3CⅠ。
ACD线统称为液相线,在此线之上合金全部处于液相状态,用符号L表示。
(3)AE线液体向奥氏体转变的终了线。
ωc<2.11%的液态铁碳合金冷却至此线,全部转变为单相奥氏体组织。
(4)ECF水平线共晶线。
ωc=4.3%~6.69%的液态铁碳合金冷却至此线时,将在恒温(1148℃)发生共晶转变,形成高温莱氏体。
(完整word版)铁碳合金相图
铁碳合金相图非合金钢[(GB /T 13304-91),将钢分为非合金钢、低合金钢和合金钢三大类]和铸铁是应用极其广泛的重要金属材料,都是以铁为基主要由铁和碳组成的铁碳合金。
了解铁碳合金成分与组织、性能的关系,有助于我们更好地研究和使用钢铁材料。
本章将着重讨论铁碳相图及其应用方面的一些问题。
铁与碳可以形成一系列化合物:C Fe 3、C Fe 2、FeC 等。
C Fe 3的含碳量为6.69%,铁碳合金含碳量超过6.69%,脆性很大,没有实用价值,所以本章讨论的铁碳相图,实际是Fe -C Fe 3相图。
相图的两个组元是Fe 和C Fe 3。
3.1 Fe -C Fe 3系合金的组元与基本相3.l.l 组元⑴纯铁 Fe 是过渡族元素,1个大气压下的熔点为1538℃,20℃时的密度为2/m kg 3107.87⨯。
纯铁在不同的温度区间有不同的晶体结构(同素异构转变),即: δ-Fe (体心)γ-Fe (面心)α-Fe (体心) 工业纯铁的力学性能大致如下:抗拉强度b σ=180~230MPa ,屈服强度2.0σ=100~170MPa ,伸长率=δ30~50%,硬度为50~80HBS 。
可见,纯铁强度低,硬度低,塑性好,很少做结构材料,由于有高的磁导率,主要作为电工材料用于各种铁芯。
⑵C Fe 3 C Fe 3是铁和碳形成的间隙化合物,晶体结构十分复杂,通常称渗碳体,可用符号Cm 表示。
C Fe 3具有很高的硬度但很脆,硬度约为950~1050HV ,抗拉强度b σ=30MPa ,伸长率0=δ。
3.1.2 基本相Fe -C Fe 3相图中除了高温时存在的液相L ,和化合物相C Fe 3外,还有碳溶于铁形成的几种间隙固溶体相:⑴ 高温铁素体 碳溶于δ-Fe 的间隙固溶体,体心立方晶格,用符号δ表示。
⑵ 铁素体 碳溶于α-Fe 的间隙固溶体,体心立方晶格,用符号α或F 表示。
F 中碳的固溶度极小,室温时约为0.0008%,600℃时约为0.0057%,在727℃时溶碳量最大,约为0.0218%,但也不大,在后续的计算中,如果无特殊要求可忽略不计。
金属材料教案-铁碳合金相图
广东省技工学校文化理论课教案共3页第1页科目金属材料四章一节课题合金的组织授课日期9.1 6课时1班级12机电班授课方式讲授、分析、演示作业题数1拟用时间0.1小时教学目的1、了解合金的概念2、懂得合金的组织类型,及各类的组织成分。
选用教具挂图重点合金的组织类型难点合金的组织类型教学回顾第一章的内容。
审阅签名:年月日共3 页第 2 页新课由日常生活所见金属材料引入合金概念一、合金合金是一种金属元素与其他金属元素或非金属元素通过熔炼成或其他方法结合而成的具有金属特性的材料。
组元:组成合金的最基本的独立物质成为组元,组元可以为金属元素,非金属元素,或稳定的化合物。
相:在合金中成分,结构及性能相同的组成部分称为相。
二、合金的组织1、固溶体2、金属化合物3、混合物1、固溶体固溶体是一种组元的原子溶入另一组元的晶格中所形成的均匀固相。
溶入元素成为溶质,而基本元素成为溶剂,固溶仍然保持溶剂的晶格。
固溶体分类1、间隙固溶体:溶质原子分布于溶剂晶格间隙之中而形成2、置换固溶体:溶质原子置换了溶剂晶格提点上某些原子而形成。
2、金属化合物合金组元间发生相互作用而形成一种具有金属特性的物质称为金属化合物。
(其晶格类型不同于任一组元)具有熔点高,硬度高,脆性大的特点。
共 3 页第3页3、混合物两种或两种以上的相接一定质量分数组成的物质称为混合物(混和物中各相仍保持自己原来的晶格)小结1、合金的概念2、合金的组织主要有哪几种?作业1、预习第四章三节内容。
2、P51 1广东省技工学校文化理论课教案共4页第1页科目金属材料四章三节课题铁碳合金相图授课日期10.10课时6班级12机电班授课方式讲授、分析作业题数1拟用时间0.5小时教学目的1、了解铁碳合金的成分、组织和性能2、读懂铁碳合金相图的应用,并根据图中写出相应组织选用教具挂图重点1、铁碳合金的成分、组织和性能。
2、铁碳合金相图的应用。
难点铁碳合金的成分、组织和性能教学回顾1、合金的概念2、合金的组织主要有哪几种?审阅签名:年月日共4页第 2页一、铁碳合金的相及组织1、铁素体(F)碳溶解在a-Fe中形成的间隙固溶体称为铁素体,用符号F表示,溶解度:由于a-Fe属于体心立方晶格晶格间隙小,碳在a-Fe的溶解度小,在727℃a-Fe最大溶碳量仅为0.0218%,随着温度下降a-Fe性能:铁素体含碳量较低,所以其性能与纯铁相似,具有良好的塑性和韧性而强度和硬度较低。
铁碳合金相图分析
第四章铁碳合金第一节铁碳合金的相结构与性能一、纯铁的同素异晶转变δ-Fe→γ-Fe→α-Fe体心面心体心同素异晶转变——固态下,一种元素的晶体结构随温度发生变化的现象.特点:是形核与长大的过程重结晶将导致体积变化产生内应力通过热处理改变其组织、结构→ 性能二、铁碳合金的基本相基本相定义力学性能溶碳量铁素体 F碳在α-Fe中的间隙固溶体强度,硬度低,塑性,韧性好最大%奥氏体 A碳在γ-Fe中的间隙固溶体硬度低,塑性好最大%渗碳体Fe3C Fe与C的金属化合物硬而脆800HBW,δ↑=αk=0%第二节铁碳合金相图一、相图分析两组元:Fe、 Fe3C上半部分图形二元共晶相图共晶转变:1148℃ 727℃→ + Fe3C →P + Fe3C莱氏体Ld Ld′2、下半部分图形共析相图两个基本相:F、Fe3C共析转变:727℃→ + Fe3C珠光体P二、典型合金结晶过程分类:三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727oC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300oC以下溶碳量小于%.因此当铁素体从727oC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.工业纯铁<%C钢——亚共析钢、共析钢%C、过共析钢白口铸铁——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁L → L+A → A → PF+Fe3CL → L+A → A → A+F →P+FL → L+A → A → A+ Fe3CⅡ→P+ Fe3CⅡ4、共晶白口铸铁L → LdA+Fe3C →LdA+Fe3C+ Fe3CⅡ → Ld′P+Fe3C+Fe3CⅡ5、亚共晶白口铸铁L → LdA+Fe3C + A →Ld+A+ Fe3CⅡ → Ld′+P+ Fe3CⅡ6、过共晶白口铸铁L → LdA+Fe3C + Fe3C → Ld + Fe3C→ Ld′+ Fe3C三、铁碳合金的成分、组织、性能之间的关系1、含碳量对铁碳合金平衡组织的影响2、含碳量对铁碳合金力学性能的影响四、铁碳合金相图的应用1、选材方面的应用2、在铸造、锻造和焊接方面的应用3、在热处理方面的应用第三节碳钢非合金钢碳钢是指ωc≤%,并含有少量锰、硅、磷、硫等杂质元素的铁碳合金.铁碳合金具有良好的力学性能和工艺性能,且价格低廉,故广泛应用.一、杂质元素对碳钢性能的影响1、锰Mn + FeO → MnO + Fe 脱氧Mn+ S → MnS 炉渣去硫Mn溶入铁素体→ 固溶强化Mn溶入Fe3C → 形成合金渗碳体Fe, Mn3C Mn <%,对性能影响不大2、硅Si + FeO → SiO2 + Fe 脱氧Si溶入铁素体→ 固溶强化Si<%,对性能影响不大3、硫钢中S+Fe → FeS.FeS与Fe形成低熔点的共晶体985℃分布在晶界上,当钢在热加工1000~1200℃时,共晶体熔化,导致开裂——热脆消除热脆:Mn+ S → MnS熔点高1620℃并有一定塑性硫是一种有害元素4、磷钢中磷全部溶于铁素体,产生强烈固溶强化,低温时更加严重——冷脆磷是一种有害元素二、碳钢的分类按含碳量分:低碳钢~、中碳钢~、高碳钢~%按质量分类:普通碳钢、优质碳钢、特殊碳钢S、P含量按用途分类:碳素结构钢、碳素工具钢三、碳钢的牌号、性能和应用1、碳素结构钢GB700-88 Q195, Q215, Q235, Q255, Q275五大类,20个钢种GB700-79 A1, A2, A3, A4, A5Q235-AF表示:σs≥235Mpa,质量等级为A,沸腾钢.应用:Q195, Q215——塑性高,用于冲压件、铆钉、型钢等; Q235——强度较高,用于轴、拉杆、连杆等;Q255, Q275——强度更高,用于轧辊、主轴、吊钩等.2、优质碳素结构钢优质碳素结构钢:优质钢、高级优质钢A、特级优质钢E 牌号:08F ——冲压件;45——齿轮、连杆、轴类;65 Mn——弹簧、弹簧垫圈、轧辊等.3、碳素工具钢牌号:T8、T8A——木工工具;T10、T10A——手锯锯条、钻头、丝锥、冷冲模;T12、T12A——锉刀、绞刀、量具.4、铸钢表示方法:用力学性能表示ZG200-400σs≥200Mpa,σb≥400Mpa用化学成分表示ZG30%C用于制作形状复杂且强度和韧性要求较高的零件,如轧钢机架、缸体、制动轮、曲轴等.. 状态图中的特性点Fe- Fe3C相图中各点的温度、浓度及其含义Fe-Fe3C 相图中各特性点的符号及意义二. 状态图中的特性线Fe-C合金相图中的特性线三. 状态图中的相区在Fe-Fe3C相图中共有五个单相区、七个两相区和三个三相区.五个单相区是:ABCD以上——液相区LAHNA——δ固溶体区δα、δNJESGN——奥氏体区γ或AGPQG——铁素体区α或FDFKL——渗碳体区Fe3C或Cm两相区是:L+δ、L+γ、L+ Fe3C、δ+γ、α+γ、γ+ Fe3C和α+ Fe3C.三个三相区是:HJB线、ECF线和PSK线.1. 工业纯铁含C≤%——其显微组织为铁素体+Fe3CⅢ.2. 钢含C在~%——其特点是高温组织为单相奥氏体具有良好的塑性因而适于锻造.根据室温组织的不同钢又可分为三类:① 亚共析钢< C <%——其组织是铁素体+珠光体② 共析钢C=%——其组织为珠光体③ 过共析钢< C≤%——其组织为珠光体+渗碳体3. 铁在1538ºC结晶为δ-FeX射线结构分析表明它具有体心立方晶格.当温度继续冷却至1394ºC时δ-Fe转变为面心立方晶格的γ- Fe通常把δ-Fe←→γ- Fe的转变称为A4转变转变的平衡临界点称为A4点.当温度继续降至912ºC时面心立方晶格的γ- Fe又转变为体心立方晶格的α-Fe把γ- Fe←→α-Fe的转变称为A3转变转变的平衡临界点称为A3点.4. 三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727ºC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300ºC以下溶碳量小于%.因此当铁素体从727ºC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.四. 名词1. 铁素体:是碳在α-Fe中形成的固溶体常用“δ”或“F”表示.铁素体在770ºC以上具有顺磁性在770ºC以下时呈铁磁性.通常把这种磁性转变称为A2转变把磁性转变温度称为铁的居里点.碳溶于δ-Fe中形成的固溶体叫δ铁素体在1495ºC时其最大溶碳量为%.2. 顺磁性:就是在顺磁物质中分子具有固有磁矩无外磁场时由于热运动各分子磁矩的取向无规宏观上不显示磁性;在外磁场作用下各分子磁矩在一定程度上沿外场排列起来宏观上呈现磁性这种性质称为顺磁性.3. 铁磁性:就是磁性很强的物质在未磁化时宏观上不显示出磁性但在外加磁场后将会显示很强的宏观磁性.4. 奥氏体:是碳溶于γ-Fe中所形成的固溶体用“γ”或“A”表示.奥氏体只有顺磁性而不呈现铁磁性.碳在γ-Fe 中是有限溶解其最大溶解度为%1148ºC.5. 渗碳体:是铁与碳的稳定化合物Fe3C 用“C”表示.其含碳量为%.由于碳在α-Fe中的溶解度很小所以在常温下碳在铁碳合金中主要是以渗碳体的形式存在.渗碳体于低温下具有一定的铁磁性但是在230ºC以上铁磁性就消失了所以230ºC是渗碳体的磁性转变温度称为A0转变.渗碳体的熔点为1227ºC.它不能单独存在总是与铁素体混合在一起.在钢中它主要是强化相它的形态、大小及分布对钢的性能有很大的影响.另外渗碳体在一定的条件下可以分解形成石墨状的自由碳.即Fe3C——→3Fe+C石墨6. 珠光体:是由铁素体和渗碳体所组成的机械混合物常用“P”表示.珠光体存在于727ºC以下至室温.五. 铁碳合金相图的应用一在选材方面的应用若需要塑性、韧性高的材料应选用低碳钢含碳为~%;需要强度、塑性及韧性都较好的材料应选用中碳钢含碳为~%;当要求硬度高、耐磨性好的材料时应选用高碳钢含碳为~%.一般低碳钢和中碳钢主要用来制造机器零件或建筑结构.高碳钢主要用来制造各种工具.二在制定热加工工艺方面的应用铁碳相图总结了不同成分的合金在缓慢加热和冷却时组织转变的规律即组织随温度变化的规律这就为制定热加工及热处理工艺提供了依据.钢处于奥氏体状态时强度较低、塑性较好便于塑性变形.因此钢材在进行锻造、热轧时都要把坯料加热到奥氏体状态.各种热处理工艺与状态图也有密切的关系退火、正火、淬火温度的选择都得参考铁碳相图.六. 应用铁碳相图应注意的几个问题1. 铁碳相图不能说明快速加热或冷却时铁碳合金组织的变化规律.2. 可参考铁碳相图来分析快速加热或冷却的问题但还应借助于其他理论知识.3. 相图告诉我们铁碳合金可能进行的相变但不能看出相变过程所经过的时间.相图反映的是平衡的概念而不是组织的概念.铁碳相图是由极纯的铁和碳配制的合金测定的而实际的钢铁材料中还含有或有意加入许多其他元素.其中有些元素对临界点和相的成分都有很大的影响此时必须借助于三元或多元相图来分析和研究.第二部分晶体结构一. 金属键1. 金属键:金属原子依靠运动于其间的公有化的自由电子的静电作用而结合起来这种结合方式叫金属键.2. 在固态金属及合金中众多的原子依靠金属键牢固的结合在一起.二. 晶体结构1. 晶体:凡是原子或离子、分子在三维空间按一定规律呈周期性排列的固体均是晶体.液态金属的原子排列无周期规则性不为晶体.2. 晶体结构:是指晶体中原子或离子、分子、原子集团的具体排列情况也就是晶体中这些质点原子或离子、分子、原子集团在三维空间有规律的周期性的重复排列方式.3. 三种典型的金属晶体结构a. 体心立方晶格:晶胞的三个棱边长度相等三个轴间夹角均为90º构成立方体.除了在晶胞的八个角上各有一个原子外在立方体的中心还有一个原子.b. 面心立方晶格:在晶胞的八个角上各有一个原子构成立方体在立方体6个面的中心各有一个原子.c. 密排六方晶格:在晶胞的12个角上各有一个原子构成六方柱体上底面和下底面的中心各有一个原子晶胞内还有3个原子.三. 固溶体1. 固溶体:合金的组元以不同的比例相互混合混合后形成的固相的晶体结构与组成合金的某一组元的相同这种相就称为固溶体.2. 置换固溶体:是指溶质原子位于溶剂晶格的某些结点位置所形成固溶体.3. 间隙固溶体:是指溶质原子不是占据溶剂晶格的正常结点位置而是填入溶剂原子间的一些间隙中.4. 金属化合物:是合金组元间发生相互作用而形成的一种新相又称为中间相其晶格类型和性能均不同于任一组元一般可以用分子式大致表示其组成.除了固溶体外合金中另一类相是金属化合物.四. 金属的结晶1. 金属的结晶:金属由液态转变为固态的过程称为凝固由于凝固后的固态金属通常是晶体所以又将这一转变过程称之为结晶.2. 杠杆定律的应用.在合金的结晶过程中合金中各个相的成分以及它们的相对含量都在发生着变化.为了了解相的成分及其相对含量就需要应用杠杆定律.对于二元合金两相共存时两个平衡相的成分固定不变.五. 同素异构转变当外部条件如温度和压强改变时金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变.六. 晶体的各向异性各向异性是晶体的一个重要特性是区别于非晶体的一个重要标志.晶体具有各向异性的原因是由于在不同的晶向上的原子紧密程度不同所致.原子的紧密程度不同意味着原子之间的距离不同从而导致原子之间的结合力不同使晶体在不同晶向上的物理、化学和机械性能不同.第三部分元素的影响1. 锰和硅的影响:锰和硅是炼钢过程中必须加入的脱氧剂用以去除溶于钢液中的氧.它还可以把钢液中的F eO还原成铁并生成MnO和SiO2.脱氧剂中的锰和硅总会有一部分溶于钢液中冷至室温后即溶于铁素体中提高铁素体的强度.锰对钢的机械性能有良好的影响它能提高钢的强度和硬度当含锰量低于%时可以稍微提高或不降低钢的塑性和韧性.碳钢中的含硅量一般小于%它也是钢中的有益元素.硅溶于铁素体后有很强的固溶强化作用显著的提高了钢的强度和硬度但含量较高时将使钢的塑性和韧性下降.2. 硫的影响:硫是钢中的有害元素.硫只能溶于钢液中在固态中几乎不能溶解而是以FeS夹杂的形式存在于固态钢中.硫的最大危害是引起钢在热加工时开裂这种现象称为热脆.防止热脆的方法是往钢中加入适量的锰形成MnS可以避免产生热脆.硫能提高钢的切削加工性能.在易切削钢中含硫量通常为%~%同时含锰量为%~%.3. 磷的影响:一般来说磷是有害的杂质元素.无论是高温还是低温磷在铁中具有较大的溶解度所以钢中的磷都固溶于铁中.磷具有很强的固溶强化作用它使钢的强度、硬度显著提高但剧烈地降低钢的韧性尤其是低温韧性称为冷脆磷的有害影响主要就在于此.4. 氮的影响:一般认为钢中的氮是有害元素但是氮作为钢中合金元素的应用已日益受到重视.5. 氢的影响:氢对钢的危害是很大的.一是引起氢脆.二是导致钢材内部产生大量细微裂纹缺陷——白点在钢材纵断面上呈光滑的银白色的斑点在酸洗后的横断面上则成较多的发丝壮裂纹.存在白点时钢材的延伸率显著下降尤其是断面收缩率和冲击韧性降低的更多有时可接近于零值.因此具有白点的钢是不能用的.6. 氧及其它非金属夹杂物的影响:氧在钢中的溶解度非常小几乎全部以氧化物夹杂的形式存在于钢中如FeO、AL2O3、SiO2、MnO、CaO、MgO等.除此之外钢中往往存在FeS、MnS、硅酸盐、氮化物及磷化物等.这些非金属夹杂物破坏了钢的基体的连续性在静载荷和动载荷的作用下往往成为裂纹的起点.它们的性质、大小、数量及分布状态不同程度地影响着钢的各种性能尤其是对钢的塑性、韧性、疲劳强度和抗腐蚀性能等危害很大.因此对非金属夹杂物应严加控制.第四部分热处理一. 热处理的作用1. 热处理:是将钢在固态下加热到预定的温度保温一定的时间然后以预定的方式冷却下来的一种热加工工艺.钢中组织转变的规律是热处理的理论基础称为热处理原理.热处理原理包括钢的加热转变、珠光体转变、马氏体转变、贝氏体转变和回火转变.在临界温度以下处于不稳定状态的奥氏体称为过冷奥氏体.钢在加热和冷却时临界温度的意义如下:Ac1——加热时珠光体向奥氏体转变的开始温度;Ar1——冷却时奥氏体向珠光体转变的开始温度;Ac3——加热时先共析铁素体全部转变为奥氏体的终了温度;Ar3——冷却时奥氏体开始析出先共析铁素体的温度;Accm——加热时二次渗碳体全部溶入奥氏体的终了温度;Arcm——冷却时奥氏体开始析出二次渗碳体的温度.通常把加热时的临界温度加注下标“C”而把冷却时的临界温度加注下标“r”.2. 珠光体转变——是过冷奥氏体在临界温度A1以下比较高的温度范围内进行的转变.珠光体转变是单相奥氏体分解为铁素体和渗碳体两个新相的机械混合物的相变过程因此珠光体转变必然发生碳的重新分布和铁的晶格改组.由于相变在较高温度下发生铁、碳原子都能进行扩散所以珠光体转变是典型的扩散型相变.无论珠光体、索氏体还是屈氏体都属于珠光体类型的组织.它们的本质是相同的都是铁素体和渗碳体组成的片层相间的机械混合物.它们之间的差别只是片层间距的大小不同而已.珠光体的片层间距:450~150 nm形成于A1~650℃温度范围内.索氏体的片层间距:150~80nm形成于650~600℃温度范围内.屈氏体的片层间距:80~30nm形成于600~550℃温度范围内.3. 马氏体转变——是指钢从奥氏体化状态快速冷却抑制其扩散性分解在较低温度下低于Ms点发生的转变.马氏体转变属于低温转变.钢中马氏体是碳在α-Fe中的过饱和固溶体具有很高的强度和硬度.由于马氏体转变发生在较低温度下此时铁原子和碳原子都不能进行扩散马氏体转变过程中的Fe的晶格改组是通过切变方式完成的因此马氏体转变是典型的非扩散型相变.二. 热处理工艺1. 退火和正火:将金属及其合金加热保温和冷却使其组织结构达到或接近平衡状态的热处理工艺称为退火或回火.A. 低温退火去应力退火:是指钢材及各类合金为消除内应力而施行的退火.加热温度< A1 碳钢及低合金钢550~650℃高合金工具钢600~750℃B. 再结晶退火:加热温度> Tr Tr+150~250℃C. 扩散退火:是指为了改善和消除在冶金过程中形成的成分不均匀性而实行的退火.1 通过扩散退火可以使在高温下固溶于钢中的有害气体主要是氢脱溶析出这时称为脱氢退火.2 均匀化退火的任务在于消除枝晶成分偏析改善某些可以溶入固溶体夹杂物如硫化物的状态从而使钢的组织与性能趋与均一.扩散退火的加热温度> Ac3 Acm 在固相线以下高温加热同时也要考虑不使奥氏体晶粒过于长大.碳钢1100~1200℃D. 完全退火:是指将充分奥氏体化的钢缓慢冷却而完成重结晶过程的退火.加热温度 Ac3+30~50℃E. 等温退火:是指将奥氏体用较快的速度冷却到临界点以下较高温度范围进行珠光体等温转变的退火. 加热温度 Ac3~Ac12. 正火:是指将碳合金加热到临界点Ac3以上适当温度并保持一定时间然后在空气中冷却的工艺方法.过共析钢正火后可消除网状碳化物而低碳钢正火后将显著改善钢的切削加工性.所有的钢铁材料通过正火均可使锻件过热晶粒细化和消除内应力.正火比退火的冷却速度快正火后的组织比退火后的组织细.3. 淬火与回火1. 淬火:是指将钢通过加热、保温和大于临界淬火速度Vc的冷却是过冷奥氏体转变为马氏体或贝氏体组织的工艺方法.2. 钢的淬透性:就是钢在淬火时能够获得马氏体的能力它是钢材本身固有的一个属性.3. 当淬火应力在工件内超过材料的强度极限时在应力集中处将导致开裂.4. 回火:本质上是淬火马氏体分解以及碳化物析出、聚集长大的过程.它与淬火不同点是由非平衡态向平衡态稳定态的转变.4. 化学热处理:是将工件放在一定的活性介质中加热使非金属或金属元素扩散到工件表层中、改变表面化学成分的热处理工艺.如:渗入碳、氮、硼、钒、铌、铬、硅等元素第五部分宏观检验一. 宏观检验主要可分为低倍组织及缺陷酸蚀检验、断口检验、硫印检验等.二. 酸蚀试验在宏观检验领域中酸蚀检验是最常用的检验金属材料缺陷、评定钢铁产品质量的方法.如果一批钢材在酸蚀中显示出不允许存在的缺陷或超过允许程度的缺陷时其它检验可不必进行.1. 酸蚀试验:是用酸蚀方法来显示金属或合金的不均匀性.1 热酸浸蚀实验方法2 冷酸浸蚀实验方法3 电解腐蚀实验方法2. 酸蚀试验所检验的常见组织和缺陷A:偏析:是钢中化学成分不均匀现象的总称.在酸蚀面上偏析若是易蚀物质和气体夹杂物析集的结果将呈现出颜色深暗、形状不规则而略凹陷、底部平坦的斑点;若是抗蚀性较强元素析集的结果则呈颜色浅淡、形状不规则、比较光滑微凸的斑点.根据偏析的位置和形状可分为中心偏析、锭型偏析或称方框偏析、点状偏析、白斑和树枝状组织.中心偏析:出现在试面中心部位形状不规则的深暗色斑点.锭型偏析:具有原钢锭横截面形状的、集中在一条宽窄不同的闭合带上的深暗色斑点.B. 疏松:这种缺陷是钢凝固过程中由于晶间部分低熔点物最后凝固收缩和放出气体而产生的孔隙.在横向酸蚀面上这种孔隙一般呈不规则多边形、底部尖狭的凹坑这种凹坑多出现在偏析斑点之内.根据疏松分布的情况可分为中心疏松和一般疏松.C. 夹杂:宏观夹杂可分为外来金属、外来非金属和翻皮三大类.D. 缩孔:由于最后凝固的钢液凝固收缩后得不到填充而遗留下来的宏观孔穴.E. 气泡:由于钢锭浇注凝固过程中所产生和放出气体所造成的.一般可分为皮下气泡和内部气泡两类.a. 皮下气泡: 由于浇注时钢锭模涂料中的水分和钢液发生作用而产生的气体.b. 内部气泡:又可分为蜂窝气泡和针孔气泡.蜂窝气泡是由于钢液去气不良所导致一般为不允许存在的缺陷存在钢坯内部在试面上较易浸蚀象排列有规律的点状偏析但颜色更深暗些;针孔是因为较深的皮下气泡在锻轧过程中未焊合而被延伸成细管状在横试面上呈孤立的针状小孔.白点:也称发裂是由于氢气脱溶析集到疏松孔中产生巨大压力和钢相变时所产生的局部内应力联合造成的细小裂缝.在横试面上呈细短裂缝三. 硫印检验是一种定性检验是用来直接检验硫元素并间接检验其它元素在钢中偏析或分布情况的操作.硫印检验时先用5~10%的稀硫酸水溶液浸泡相纸5分钟左右后取出去除多余的硫酸溶液把湿润的相纸感光面贴到受检表面上应确保相纸与试样面的紧密接触不能发生任何滑动排除相纸与试样面的气泡和液滴.其化学反应大致为:MnS+H2SO4→MnSO4+H2S↑FeS+H2SO4→FeSO4+H2S↑H2S+2AgBr→2HBr+Ag2S↓几秒到几分钟后将从试面上揭下的相纸在水中冲洗约10分钟然后放入定影液中定影10分钟以上取出后在流动水中冲洗30分钟以上干燥后既成.四. 断口检验1. 脆性断口:通常工程上把没有明显塑性变形的断裂统称为脆性断裂发生脆性断裂的断口为脆性断口.脆性断口也称晶状断口是指出现大量晶界破坏的耀眼光泽断口断口中晶状区的面积与断口原始横截面积的百分比则是脆性断面率也称晶状断面率.2. 结晶状断口:此种断口具有强烈的金属光泽有明显的结晶颗粒断面平齐而呈银灰色.是一种正常的断口.属于脆性断口.3. 纤维状断口:这种断口呈无光泽和无结晶颗粒的均匀组织.通常在断口的边缘有明显的塑性变形.一般情况下是允许存在的.属于韧性断口.4. 瓷状断口:是一种类似瓷碎片的断口呈亮灰色、致密、有绸缎的光泽和柔和感.是一种正常的断口.5. 台状断口:这种断口出现在纵向断面上呈比基体颜色略浅、变形能力稍差、宽窄不同、较为平坦的片状平台状.多分布在偏析内.6. 撕痕状断口:这种断口出现在纵向断面上沿热加工方向呈灰白色、变形能力差致密而光滑的条带.7. 层状断口:这种断口出现在纵向断面上呈劈裂的朽木状或高低不平的、无金属光泽的、层次起伏的条带条带中伴有白亮或灰色线条.8. 缩孔残余断口:出现在纵向断口的轴心区是非结晶状条带或疏松区有时伴有非金属夹杂物或夹杂沿条带常带有氧化色.9. 石状断口:在断口表面呈现粗大而凹凸不平的沿晶界断裂的粗晶颜色暗灰而无金属光泽象有棱角的沙石颗粒堆砌在一起.。
第三章铁碳合金相图详解版
第 二 节 铁碳合金状态图
铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC,它们都可以作为纯组元看待。
含碳量大于Fe3C成分(6.69%)时,合金太脆, 已无实用价值。
实际所讨论的铁碳合金相图是Fe- Fe3C相图。
Fe
Fe3C Fe2C
FeC
C
C%(at%) →
一、Fe - Fe3C 相图的建立
4. 铁碳合金分类
(1) 工业纯铁 <0.0218% C 亚共析钢 <0.77% C
(2) 碳钢 共析钢 0.77% C 过共析钢 >0.77% C 亚共晶白口铸铁<4.3% C
(3) 白口铸铁 共晶白口铸铁 4.3% C 过共晶白口铸铁 >4.3% C
三、典型铁碳合金的结晶过程
1 1)共析钢的结晶过程
1 3)过共析钢的结晶过程
T12钢组织
室温组织:P+Fe3CⅡ
1
补充:工业纯铁的结晶过程
4)共晶白口铁结晶过程
室温组织为: Ld‘ ( P+ Fe3C共晶+ Fe3CⅡ )
1
5)亚共晶白口铁的结晶过程 室温组织为P+Fe3CⅡ+Ld’。
1
6)过共晶白口铁的结
晶过程
室温组织为:Fe3CⅠ +Ld‘ Ld‘( P+ Fe3C共晶+ Fe3CⅡ )
1
第三节 含碳量对碳钢组织与性能的影响
一 、含碳量对碳钢室温平衡组织的影响 含碳量与缓冷后相及组织组成物之间的定量关系为:
钢铁 分类
工
钢
业
共析钢
纯
铁 亚共析钢 过共析钢
白口 铸 铁
共晶白口铸铁
铁碳合金相图
第四章 铁碳合金相图碳钢与铸铁是使用最为广泛的金属材料,是铁和碳组成的合金,不同成分的碳钢和铸铁,组织和性能也不相同。
在研究和使用钢铁材料、制定其热加工和热处理工艺以及分析工艺废品的原因时,都需要应用铁碳相图。
在铁碳合金中,根据结晶条件不同,组元碳可具有碳化物Fe 3C (渗碳体)和石墨两种形式,渗碳体在热力学上是一个亚稳定相(meta-stable phase ),而石墨是稳定的相。
在通常情况下,铁碳合金是按Fe-Fe 3C 系进行转变,本章我们讨论的铁碳相图实际上就是Fe-Fe 3C 相图。
4-1 铁碳合金的组元一、纯铁纯铁的熔点为1538℃,其冷却曲线如图7.1所示。
纯铁由液态结晶为固态后,继续冷却到1394℃及912℃时,先后发生两次晶格类型的转变。
金属在固态下发生的晶格类型的转变称为同素异晶转变(allotropic transformation )。
同素异构转变伴有热效应产生,因此在纯铁的冷却曲线上,在1394℃及912℃处出现平台。
铁的同素异晶转变如下:(体心立方)(面心立方)(体心立方)Fe Fe Fe CC O O −⇔−⇔−αγδ9121394 温度低于912℃的铁为体心立方晶格,称为α-Fe ;温度在912~1394℃间的铁为面心立方晶格,称为γ-Fe ;温度在1394~1538℃间的铁为体心立方晶格,称为δ-Fe 。
工业纯铁的机械性能特点是强度、硬度低,塑性好,其机械性能大致如下:时间温度(℃)图7.1 纯铁的冷却曲线及晶体结构的变化拉伸强度σb18×107~28×107N/m2屈服强度σ0.2 10×107~17×107N/m2延伸率δ 30~50%断面收缩率ψ70~80%冲击值160~200J/cm2布氏硬度HB 50~80二、碳在铁中的固溶体碳的原子半径较小,在α-Fe和γ-Fe中均可进入Fe原子间的空隙而形成间隙固溶体。
碳在α-Fe中形成的间隙固溶体称为铁素体(ferrite),常用符号F或α表示,其最大溶解度为0.0218wt%C,发生于727℃,碳多存在于体心立方α结构的八面体空隙。
铁碳合金相图
铁碳合金相图用以温度为纵坐标,以碳含量为横坐标的图解方法,表示在接近平衡或亚稳状态下,以铁碳为单元组成的合金,在不同温度下相与相之间关系的图称为铁碳平衡图,也称为铁碳相图。
它是研究铁碳合金的基础,是研究碳钢和铸铁的成分、温度、组织及性能之间关系的理论基础,是制定热加工、热处理、冶炼和铸造等工艺依据,对了解我们厂内金属材料,尤其认识、理解锅炉管材有重要的意义,对后续想做好锅炉四管运行和维护也都是重要的基础。
一、基本概念1)我们日常接触的“铁、钢”等其实都是合金,含铁、碳、硫、硅等等,要认识了解所熟知的“铁、钢”就必须先认识他们中最基础的两种元素,纯铁和碳。
纯铁在1394℃以上以体心立方结构(δ-Fe)稳定存在,温度下降,在912~1394℃范围内发生同素异构转变,以面心立方晶格的γ-Fe稳定存在,在912℃以下又重新回复到体心立方晶格的α-Fe,说体心立方体、面心立方体都离不开另一个主角碳,就是碳在以铁元素构成的立方体中在其体心或者面心。
2)碳溶入α-Fe和γ-Fe中所形成的固溶体称为铁素体和奥氏体。
当含量超过铁素体和奥氏体的溶解度时,则会出现金属化合物相Fe3C,称为渗碳体。
3)碳原子溶入δ-Fe中所形成的固溶体称为高温铁素体。
它在1394℃以上的高温出现,对工程上应用的铁碳合金的组织和性能没有什么影响,故不作为铁碳合金的基本相。
4)铁碳合金相图的基本组成相是铁素体、奥氏体和渗碳体,这里引出这三个体,具体理解如下。
1、铁素体碳原子溶入α-Fe中形成的间隙固溶体,称做铁素体,如图1所示。
由于体心立方晶格的α-Fe的晶格间隙半径只有0.036nm,而碳原子半径为0.077nm,所以碳在铁素体中的溶解度很小。
在727℃时最大固溶度为0.0218%,而在室温时碳的固溶度几乎降为零。
因此,常温下铁素体的力学性能与纯铁相近,铁素体有优良的塑性和韧性,但强度,硬度较低,在铁碳合金中是软韧相,铁素体是912℃以下的平衡相,也称做常温相,其显微组织图如图2所示。
《金属材料及热处理》-5.铁碳合金相图
材料科学基础5、铁碳合金相图
作者:陈儒军
Material Science
二元合金相图的建立方法
• 配制一组不同成分的合金。 • 用热分析法测定各组合金的冷却曲线。 • 找出各冷却曲线上的相变点。 • 建温度—成分坐标。 • 找成分点、画成分线。 • 标相变点。 • 将相同意义的点用一条光滑的曲线连接起来。 • 在每个分区标上相或组织名称。
材料科学基础5、铁碳合金相图
作者:陈儒军
Material Science
根据以下资料建立PbSn合金的二元合金相图
材料科学基础5、铁碳合金相图
作者:陈儒军
Material Science
材料科学基础5、铁碳合金相图
作者:陈儒军
Material Science
材料科学基础5、铁碳合金相图
作者:陈儒军
2、二元合金相图的基本类型
Material Science
(1)包晶相图
包晶转变 一定成分的液相和一定成分的固相在恒温下转变成为另一固
相。 以Pt-Ag相图为例: LC +αD à βP
(2)匀晶相图
匀晶转变 由液相直接析出单相固溶体的过程。(Làα)
(典型:Cu-Ni相图)
(3)共晶相图
(2)共晶相图
Material Science
材料科学基础5、铁碳合金相图
作者:陈儒军
(a)共晶合金
Material Science
此时所发生的反应均为共晶反应,共晶反应生成共晶体。 即:Le→(αm +βn)
材料科学基础5、铁碳合金相图
作者:陈儒军
铁碳合金相图
碳合金过程分析、含碳量对钢力学性能的影响及Fe-Fe3C相图的应 用。 ♦ (1)讲铁碳相图结构分析时主要介绍简化后的Fe-Fe3C状态图中主 要点、线、面(区域)的含义及铁碳合金的分类,具体如教材中所 述。 ♦ 但应强调指出,在铁碳合金中,铁与碳可以形成Fe3C、Fe2C、FeC 等一系列化合物,因此整个Fe-C合金相图是由Fe-Fe3C、Fe3C –Fe2C、 Fe2C-FeC等一系列状态图组成,如教参图3-4所示。但由于含碳量 高于6.69%的铁碳合金脆性极大,没有使用价值,因此现在研究的 铁碳合金相图,只是Fe-Fe3C部分的相图(教参数3-4上的阴影部 分)。即含碳量在6.69%以下的部分。并且应说明这里的Fe3C可以 看作是组成铁碳合金的一个独立组元,所以现在所研究的铁碳相图, 也可以为Fe和Fe3C这两个组元所组成的二元合金状态图。 ♦ 还应说明的是简化Fe-Fe3C相图及实际精确的Fe-Fe3C相图是有差别 的,主要表现在左上角及左下角部分不一样,这是考虑到实际应用 的铁碳合金,一般不会处于这么高的温度或含有这么少的碳,故可 简化,以利于学生掌握此图。
1.工业纯铁 ( Wc < 0.0218% ) 工业纯铁
工业纯铁组织金相图
2. 共析钢 ( Wc = 0.77% )
共析钢组织金相图
3.亚共析钢 ( Wc = 0.45% ) 亚共析钢
亚共析钢组织金相图
4.过共析钢 ( Wc = 1.2% ) 过共析钢
过共析钢组织金相图
5.共晶白口铁 ( Wc = 4.3% ) 共晶白口铁
Fe - C相图的基础知识 相图的基础知识
1.铁与碳可以形成 Fe3C、Fe2C、FeC 铁与碳可以形成 、 、 等一系列化合物。 等一系列化合物。 2.稳定的化合物可以作为一个独的组 稳定的化合物可以作为一个独的组 元。 3.Fe – C 二元相图。 二元相图。
金属材料及热处理:铁碳相图
◆渗碳体(Cementite)or Fe3C
◆珠光体(Pearlite) (F+ Fe3C)机械混合物
片状P :α 和 Fe3C 呈片状相间分布粒 状P: Fe3C呈粒状分布在α 基体上
◆高温莱氏体 (Ledeburite)or Ld
奥氏体呈颗粒状
(A+ Fe3C )机械混合物,727℃以上 ◆低温莱氏体用Le’or Ld’表示
铁碳合金相图
简介 1.铁碳合金基本相和组织 2.铁碳合金相图分析 3.铁碳合金成分、组织与性能的关系
简介 铁碳合金— 碳钢和铸铁 使用最广泛的金属材料。 铁与碳两个组元可形成的化合物:
Fe3C (wC=6.67%) , Fe2C, FeC
工业纯铁: wC ≤ 0.0218 % 碳钢:0.0218 %< wC ≤ 2.11% 铸铁:2.11% < wC ≤ 6.67%
S——共析点,727℃, wC=0.77%
As → ( F+ Fe3C ) P
E——A体中最大溶C量, wC=2.11% 也是钢、铁的分界点
G——Fe的同素异构转变的温度 ,912 ℃
α-Fe γ-Fe
1.主要特性线
ECF——共晶线,1148℃,
L4.3 1148oC A2.11 Fe3C6.67
体心立方
2.铁素体 F (Ferrite) ①铁素体 — C 在 -Fe 中形成的间隙固溶体,具有体 心立方晶 格,用符号 F 表示
② 铁素体的溶碳能力差 — 由于体心立方晶格的间 隙远小于碳的原子半径;
最大溶碳量:727℃, wC=0.0218% 最小溶碳量:室温, wC=0.0008%
③ 强度、硬度低,塑性好。
或块状分布在渗 碳体的基体上
《金属材料与热处理》铁碳合金相图教案
含碳量越高,钢的强度和硬度越高,而塑性和韧性越低。
6、Fe—Fe3C相图的应用。
作为选用钢材料的依据:如制造要求塑性、韧性好,而强度不太高的构件,则应选用含碳量较低的钢;要求强度、塑性和韧性等综合性较好的构件,则选用含碳量适中的钢,各种工具要求硬度高及耐性好,则应选用含碳量较高的钢。制定铸、锻和热处理等热加工工艺的依据。
教学难点
铁碳合金相图的分析及铁碳合金冷却结晶过程的分析。
教学方法
讲授法、展示法
教学过程
备注
第一课时
组织教学
复习并引入
1、组织、组元、相的概念
2、合金的组织有哪些?分别是?
新授
钢铁材料是现代工业中应用最为广泛的合金,它们均为以铁和碳两种元素为主要原素的合金。由于钢铁材料的成分(含碳量)不同,因此组织和性能也不相同,应用场合也不一样。铁碳合金相图总结了铁碳合金的组织和性能随成分、温度变化的规律,这对生产实践有着很重要的意义,它不仅是选择钢铁材料的重要工具,而且还可以作为制定铸、锻、焊及热处理等加工工艺的依据。
S点:共析点,As P=(F+Fe3CⅠ)
3、线的含义:
ACD线:液相线,在此线的上方所有的铁碳合金都为液体。
AECF线:固相线,在此线的下方所有的铁碳合金都为固体。
在ACD线与AECF线之间是结晶区,即过渡区。
GS线:从A中析出F的开始线,又称A3线
ES线:C在A中溶解度曲线,亦称为Acm线。
ECF:共晶线,温度为11487270C。
2、铁碳合金相图的点、线、面的含义及各区域内的组织
3、铁碳合金相图的分类
4、铁碳合金的成分、组织与性能的关系
5、Fe—Fe3C相图的应用。
铁碳合金相图教案
课题:铁碳合金相图【设计者】:浙江工业大学,周云中【教材】:机械工业出版社《机械制造基础》第二版第四章【课程标准】:学生通过本课程的学习,了解不同成分的钢和铸铁在不同温度下所具有的组织或状态,了解铁碳合金的成分,组织,性能之间的关系。
并能根据铁碳合金相图选择合适的钢材。
【内容分析】:铁碳合金相图是研究铁碳合金的重要工具,了解与掌握铁碳合金相图,对于钢铁材料的研究和使用,各种热加工工艺的制订以及工艺废品原因的分析等方面都有重要指导意义。
铁碳合金相图描述了铁碳合金的组织随含碳量的变化规律,合金的性能决定于合金的组织,这样根据零件的性能要求来选择不同成分的铁碳合金;为制定热加工工艺提供依据。
【学情分析】:本节课是在学生通过《机械制造基础》前三章的学习,已经掌握了金属材料的力学性能和金属和合金的晶体结构及结晶的基础上,探究不同成分的钢和铸铁在不同温度下所具有的组织或状态。
在教学时,可以让学生清楚了解不同的含碳量对铁碳合金性能的影响,知道各合金常温下的状态。
在这一基础上,进一步让学生体会机械制造的魅力。
教材的编写意图是通过本课时学习目标,使学生能把所学,运用到学生的实际生活,培养发展提出问题和解决问题的能力。
【学习目标】:1:能绘制合金相图2:学生能对典型铁碳合金的结晶过程分析3:能应用铁碳合金相图选择合适的钢铁材料【评价设计】:1.针对目标1,通过教师在黑板上绘制铁碳合金相图并分析绘制的要点,让学生了解并能跟着教师的步骤一步一步绘制基本的铁碳合金相图2.针对目标2,教师对书本上铁碳合金的结晶过程做具体的分析,让学生了解典型铁碳合金的过程,教师解释完成后,允许学生以小组的形式互相讨论,5分钟后随机叫学生回答,看学生能否对典型铁碳合金的过程做出分析。
3.针对目标3,教师告诉学生具体的钢材选择原则,如建筑结构选用含碳量低的钢材,机器结构选用碳含量适中的钢等,之后给出实际案例让学生选用合适的钢材。
考察学生能否根据机器不同的使用情况选择合适的钢材。
第三章-铁碳合金相图【详解版】
⑴ 五个单相区:
L、、、、Fe3C ⑵ 七个两相区: L+、
L+、L+Fe3C、 +、 +Fe3C、+ 、 +Fe3C
• ⑶ 三个三相区:即HJB (L++)、ECF(L++ Fe3C)、 PSK(++ Fe3C)三条水平线
2021/1/18
4. 铁碳合金分类
• (1) 工业纯铁 <0.0218% C 亚共析钢 <0.77% C
• 亚共析钢随含碳量增加,P 量增加,钢的强度、硬度 升高,塑性、韧性下降。
0.77%C时,组织为100% P, 钢的性能即P的性能。
>0.9%C,Fe3CⅡ为晶界 连续网状,强度下降, 但 硬度仍上升。
>2.11%C,组织中有以
Fe3C为基的Ld’,合金太脆.
1
2021/1/18
• 三、 含碳量对工艺性能的影响
2021/1/18
2)亚共析钢的 结晶过程
L→L+A →A→A+F先共析 AS(0.77% C) →P 室温组织为:P+F
2021/1/18
20钢组织
40钢组织
2021/1/18
• 亚共析钢室温下的组织 为F+P。
• 在0.0218~0.77%C 范围 内珠光体的量随含碳量 增加而增加。
60钢组织
2021/1/18
bcc
fcc
bcc
二、铁碳合金中的基本相
铁碳合金中的组元:Fe、C
L相:液态下无限互溶、成分均匀
Fe和C
固溶体相:C溶于Fe中形成 F、A等
金属化合物相:Fe与C化合形成Fe3C
铁碳合金状态图教案
铁碳合金状态图教案一、教学目标1. 让学生了解铁碳合金的基本概念和性质。
2. 使学生掌握铁碳合金状态图的构成和作用。
3. 培养学生运用铁碳合金状态图分析问题和解决问题的能力。
二、教学内容1. 铁碳合金的基本概念和性质2. 铁碳合金状态图的构成3. 铁碳合金状态图的作用4. 铁碳合金状态图的绘制方法5. 铁碳合金状态图的应用实例三、教学方法1. 讲授法:讲解铁碳合金的基本概念、性质和状态图的构成。
2. 演示法:展示铁碳合金状态图,讲解其作用和绘制方法。
3. 案例分析法:分析铁碳合金状态图在实际工程中的应用实例。
4. 小组讨论法:分组讨论铁碳合金状态图的应用问题。
四、教学准备1. 教材或教学资源:《金属材料与热处理》、《金属学》等。
2. 投影仪或白板:展示铁碳合金状态图。
3. 教学PPT:制作铁碳合金状态图教案的相关内容。
4. 案例材料:收集铁碳合金状态图在实际工程中的应用实例。
五、教学过程1. 导入:简要介绍铁碳合金的基本概念和性质,激发学生的学习兴趣。
2. 新课:讲解铁碳合金状态图的构成和作用,引导学生理解并掌握相关知识点。
3. 演示:展示铁碳合金状态图,讲解绘制方法,让学生直观地感受状态图的应用。
4. 案例分析:分析铁碳合金状态图在实际工程中的应用实例,培养学生运用知识解决问题的能力。
5. 小组讨论:分组讨论铁碳合金状态图的应用问题,促进学生之间的交流与合作。
6. 总结:回顾本节课的主要内容,强调铁碳合金状态图的重要性。
7. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对铁碳合金基本概念和性质的理解。
2. 状态图绘制练习:让学生绘制简单的铁碳合金状态图,检验其对状态图构成和绘制方法的掌握。
3. 案例分析报告:评估学生在案例分析中的表现,包括分析问题的思路、运用知识的能力和团队合作精神。
七、教学拓展1. 邀请相关领域的专家或企业工程师进行讲座,分享铁碳合金状态图在实际工程中的应用经验和案例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省技工学校文化理论课教案
共3页第1页
科目金属
材料
四章一节课题合金的组织
授课
日期
9.1 6
课
时
1
班级12机电班
授
课方式讲授、分析、演示
作业
题数
1
拟
用
时
间
0.1
小
时
教学目的1、了解合金的概念
2、懂得合金的组织类型,及各类的组织成分。
选
用
教
具
挂
图
重
点合金的组织类型
难
点
合金的组织类型
教
学
回
顾
第一章的内容。
审阅签名:年月日
共3 页第 2 页新课
由日常生活所见金属材料引入合金概念
一、合金
合金是一种金属元素与其他金属元素或非金属元素通过熔炼成或其他方法结合而成的具有金属特性的材料。
组元:组成合金的最基本的独立物质成为组元,组元可以为金属元素,非金属元素,或稳定的化合物。
相:在合金中成分,结构及性能相同的组成部分称为相。
二、合金的组织
1、固溶体
2、金属化合物
3、混合物
1、固溶体
固溶体是一种组元的原子溶入另一组元的晶格中所形成的均匀固相。
溶入元素成为溶质,而基本元素成为溶剂,固溶仍然保持溶剂的晶格。
固溶体分类
1、间隙固溶体:溶质原子分布于溶剂晶格间隙之中而形成
2、置换固溶体:溶质原子置换了溶剂晶格提点上某些原子而形成。
2、金属化合物
合金组元间发生相互作用而形成一种具有金属特性的物质称为金属化合物。
(其晶格类型不同于任一组元)
具有熔点高,硬度高,脆性大的特点。
共 3 页第3页
3、混合物
两种或两种以上的相接一定质量分数组成的物质称为混合物(混和物中各相仍保持自己原来的晶格)
小结
1、合金的概念
2、合金的组织主要有哪几种?
作业
1、预习第四章三节内容。
2、P51 1
广东省技工学校文化理论课教案
共4页第1页
科目金属
材料
四章三节课题铁碳合金相图
授课
日期
10.10
课
时
6
班级12机电班
授
课方式讲授、分析
作业
题数
1
拟
用
时
间
0.5
小
时
教
学目的1、了解铁碳合金的成分、组织和性能
2、读懂铁碳合金相图的应用,并根据图中写出相应组织
选
用
教
具
挂
图
重点1、铁碳合金的成分、组织和性能。
2、铁碳合金相图的应用。
难
点
铁碳合金的成分、组织和性能
教
学回顾1、合金的概念
2、合金的组织主要有哪几种?
审阅签名:年月日
共4页第 2
页
一、铁碳合金的相及组织
1、铁素体(F)
碳溶解在a-Fe中形成的间隙固溶体称为铁素体,用符号F表示,溶解度:由于a-Fe属于体心立方晶格晶格间隙小,碳在a-Fe的溶解度小,在727℃a-Fe最大溶碳量仅为0.0218%,随着温度下降a-Fe性能:铁素体含碳量较低,所以其性能与纯铁相似,具有良好的塑性和韧性而强度和硬度较低。
2、奥氏体(A)
碳溶解在r-Fe中形成的间隙固溶体称为奥氏体,符号A表示,r-Fe属于面心立方晶格,且晶格类型较大,故傲视体溶碳能力较强,
在1148℃时溶碳量达2.11%,但随着温度的变化而变化,温度下降,溶解度逐渐减少,在727℃时溶碳量为0.77%
性能:硬度和强度不高,塑性较好。
3、渗碳体(FeC3)
含碳量为6.69%的铁碳的金属化合物,成称为渗碳体,符号(化学式为Fe3C)渗碳体呈斜方晶体结构,与铁和碳晶体不同。
其熔点为1227℃
性能:硬度高,塑性好,伸长率和冲击韧性几乎为0,且硬而脆
4、珠光体(P)C%=0.77%
珠光体是铁素体和渗碳体的混合物,符号为P表示,它是属于渗碳体和铁素体片层相同,交替排列形成的混合物,
对珠光体由硬的渗碳体和软的铁素体组成,所以其力学性能主要取决于铁素体和渗碳体性能,
性能:强度较高,硬度适中,只有一定的塑性。
5、莱氏体(Ld)
莱氏体是含碳量为4.3%的液体铁碳合金,在1148℃时从液相中同时结晶出的奥氏体和渗碳体的混合物,符号Ld表示。
且对珠光体在727℃时将转变成为珠光体,
共4页第3 页室温下的莱氏体由珠光体和渗碳体组成,称为低温莱氏体,用符号L′d表示。
二、铁碳合金的室温组织
铁碳合金的室温组织一般由铁素体+渗碳体组成,也就是珠光体P组织
三、铁碳合金的成分主要以铁为主,以碳为辅想结合的合金。
四、合金的组织和性能的关系(根据图分析)
铁碳合金组织和性能有很大关系,组织的变化,将会引起性能的变化,碳在合金中所占比例将改变钢的力学性能,含碳量越高,钢的强度和硬度就越高,但塑性和韧性就越低,在工业生产过程中,为了保证钢具有足够的强度,且具有一定的塑性和韧性,钢中含碳量一般不超过1.4%。
共4页第4 页
五、Fe3C相图的应用
作为选用材料的依据。
铁碳合金相图所表明的成分,组织和性能的规律,为钢材料的选用提供了依据,如要求塑性好,强度不太高的构件,则可选用含碳量较低的钢,要求强度,塑性和韧性等综合性能较好的构件则选用含碳量较高的钢,而各种工具要求硬度高及耐磨性好,则应选用含碳量较高的钢
制定铸,锻和热处理等热加工工艺的依据,
1)在铸造生产过程中的应用
2)在锻造工艺上的应用
3)在热处理工艺上的应用
小结
1、铁碳合金的相包括哪几方面,以及各有何优缺点?
2、思考铁碳合金相图的组织关系
布置作业
1、铁碳合金室温的组织是什么?(课堂完成,让学生强化记忆。
)
2、抄画Fe-Fe3C
习题册的做与讲,单元测验(约两课时)。