高一数学必修1期末测试题
高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)
高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0B .1C .2D .32.(2020·湖南长沙市·长郡中学高一月考)下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y =B .3y x =C .cos y x =D .||y ln x =3.(2020·渝中区·重庆巴蜀中学高三月考)已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -4.(2020·广东揭阳市·高一期末)已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x =的图象可能是( )A .B .C .D .5.(2020·浙江高一期中)已知函数()1xf x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( )A .()0,2B .[]0,2C .(1+D .1⎡⎣6.(2020·淮安市阳光学校高一月考)某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20B .40C .60D .807.(2020·浙江高一期中)已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(,2)-∞D .(,2]-∞8.(2020·江苏南通市·高二期中)“a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要9.(2020·全国高一课时练习)定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .810.(2020·长春市·吉林省实验高一期末(理))已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.12.(2018·江苏苏州市·高一期末)已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______.13.(2019·福建漳州市·龙海二中高三月考(文))已知tan()24πα-=,则sin(2)4πα-的值等于__________.14.(2020·浙江高一课时练习)里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.15.(2020·浙江杭州市·高三期中)已知34a =,2log 3b =,则ab =________;4b =________. 16.(2020·全国高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 17.(2020·浙江高一单元测试)已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan 2α=________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·安徽省蚌埠第三中学高一月考)计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭;(2)941451log log 3log 5log 272⋅--+. 19.(2020·全国高一单元测试)已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.20.(2020·湖北荆州市·荆州中学高一期末)(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值. (2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 21.(2020·北京密云区·高一期末)已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.22.(2020·浙江高一期中)已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t 的取值范围.高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0 B .1C .2D .3【答案】B 【解析】{}1013M =-,,,,{}13N =-,{}1M N ∴⋂=故选:B2.(2020·湖南长沙市·长郡中学高一月考)下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y = B .3y x =C .cos y x =D .||y ln x =【答案】D 【解析】根据题意,依次分析选项:对于A ,2x y =,为指数函数,其定义域为R ,不是偶函数,不符合题意; 对于B ,3y x =,为幂函数,是奇函数,不符合题意;对于C ,cos y x =,为偶函数,在(0,)+∞不是增函数,不符合题意; 对于D ,,0(),0lnx x y ln x ln x x ⎧==⎨-<⎩,为偶函数,且当0x >时,y lnx =,为增函数,符合题意;故选:D .3.(2020·渝中区·重庆巴蜀中学高三月考)已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -【答案】B 【解析】0((1))(0)1f f f e ===,故选:B4.(2020·广东揭阳市·高一期末)已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x =的图象可能是( )A .B .C .D .【答案】B 【解析】lg lg 0,lg 0a b ab +=∴=,即1ab =.∵函数()f x 为指数函数且()f x 的定义域为R ,函数()g x 为对数函数且()g x 的定义域为()0,∞+,A 中,没有函数的定义域为()0,∞+,∴A 错误;B 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递增,即01b <<,ab 可能为1,∴B 正确;C 中,由图象知指数函数()f x 单调递减,即01a <<,()g x 单调递增,即01b <<,ab 不可能为1,∴C 错误;D 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递减,即1b >,ab 不可能为1,∴D 错误. 故选:B.5.(2020·浙江高一期中)已知函数()1xf x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( ) A .()0,2B .[]0,2C .(12,12+D .12,12⎡⎤⎣⎦【答案】C 【解析】()11x f x e =->-,所以,()221g b b b =-+>-,整理得2210b b --<,解得1212b <故选:C.6.(2020·淮安市阳光学校高一月考)某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20B .40C .60D .80【答案】B 【解析】设此矩形面向河的一边的边长为x ,相邻的一边设为y , 由题意得200xy =, 设围栏总长为l 米,则240l x y =+≥=, 当且仅当2x y =时取等号, 此时20,10x y ==; 则围栏总长最小需要40米; 故选:B.7.(2020·浙江高一期中)已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】||y x =为偶函数,y x =为奇函数 ()||f x x x ∴=奇函数当0x 时,2()f x x =为增函数,由奇函数在对称区间上单调性相同可得函数()f x 在R 上增函数 又不等式(2)4()f x t f x +>可化为(2)|2|4||2|2|(2)x t x t x x x x f x ++>==故当[,2]x t t ∈+时,不等式(2)4()f x t f x +>恒成立, 即当[,2]x t t ∈+时,不等式22x t x +>恒成立 即2x t <恒成立 即22t t +< 解得2t >故实数t 的取值范围是(2,)+∞ 故选:A8.(2020·江苏南通市·高二期中)“a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要【答案】A 【解析】∵1log log log log a b a a b a b b+=+,又1,1a b >>,∴log 0a b >,即1log 2log a a b b +≥=当且仅当a b =时等号成立, 而11,28a b ==时有110log log log 2log 3a b a a b a b b +=+=>,显然1,1a b >>不一定成立; 综上,所以有1,1a b >>是log log 2a b b a +≥充分不必要条件. 故选:A9.(2020·全国高一课时练习)定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .8【答案】B 【解析】∵集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭, 集合{2,4,6}S =,|1,{0,1,2}2k T x x k S ⎧⎫==-∈=⎨⎬⎩⎭, ∴{}1,2,3,4,6ST =, ∴{}0,1,2,3,4,6ST T=. ∴集合STT ⋃元素的个数为6个.故选:B.10.(2020·长春市·吉林省实验高一期末(理))已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦【答案】D 【解析】 由t π=,可得2=2ππωω=⇒因为3y f x π⎛⎫=-⎪⎝⎭是奇函数 所以sin 23x πϕ⎛⎫+- ⎪⎝⎭是奇函数,即,3k k z πϕπ-=∈又因为()06f f π⎛⎫<⎪⎝⎭,即()2sin sin 3k k ππππ⎛⎫+<+⎪⎝⎭所以k 是奇数,取k=1,此时43πϕ= 所以函数()5sin 2sin 233f x x x ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭因为()f x 在[)0,t 上没有最小值,此时2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭所以此时432,332t πππ⎛⎤-∈ ⎥⎝⎦解得511,612t ππ⎛⎤∈ ⎥⎝⎦. 故选D.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.【答案】(,2)-∞ 【解析】由题设有20x ->,解得2x <,故函数的定义域为(),2-∞,填(),2-∞. 12.(2018·江苏苏州市·高一期末)已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______. 【答案】2 【解析】()g x 的零点即为()0g x =的解.当1x ≤时,令322x -=,解得12x =,符合;当1x >,令22x =,解得x =()g x 的零点个数为2.13.(2019·福建漳州市·龙海二中高三月考(文))已知tan()24πα-=,则sin(2)4πα-的值等于__________.【答案】10【解析】 由tan 1tan()241tan πααα--==+,解得tan 3α=-,因为22sin(2)2cos 2)(2sin cos cos sin )422πααααααα-=-=-+2222222sin cos cos sin 2tan 1tan 2cos sin 21tan ααααααααα-+-+=⨯=++222(3)1(3)21(3)10⨯--+-==+-. 14.(2020·浙江高一课时练习)里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.【答案】6,10000 【解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA ﹣lgA 0=lg1000﹣lg0.001=3﹣(﹣3)=6. 设9级地震的最大的振幅是x ,5级地震最大振幅是y , 9=lgx+3,5=lgy+3,解得x=106,y=102,∴62101000010x y ==. 故答案耿:6,10000.15.(2020·浙江杭州市·高三期中)已知34a =,2log 3b =,则ab =________;4b =________. 【答案】2 9 【解析】因为34a =,所以3log 4a =,又2log 3b =, 因此32lg 4lg3log 4log 32lg3lg 2ab =⋅=⋅=;222log 32log 3log 944229b ====. 故答案为:2;9.16.(2020·全国高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 【答案】121- 【解析】根据题意,得3212A B A B ⎧-=⎪⎪⎨⎪+=-⎪⎩,解得1,12A B ==-.故答案为:1,12- 17.(2020·浙江高一单元测试)已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan 2α=________.【答案】35247【解析】由已知得3cos 5α==-,所以445tan 335α==--,242243tan 27413α⎛⎫⨯- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭. 故答案为:35;247. 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·安徽省蚌埠第三中学高一月考)计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭; (2)941451log log 3log 5log 272⋅--+. 【答案】(1)3;(2)174. 【解析】(1)根据指数幂的运算法则,可得()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭222333333(24441399)1[()]22--⎛⎫=--+ -⎪⎝-+⎭==.(2)根据对数的运算法则,可得941451log log 3log 5log 272⋅--+ 325211111log 2log log 5log 2414224341722=-⨯+-+=-+-+=.19.(2020·全国高一单元测试)已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.【答案】(1)奇函数,证明见解析;(2)()0,1. 【解析】()1要使函数有意义,则{1010x x +>->,即{11x x >-<,即11x -<<, 即函数的定义域为()1,1-,则()()()()()()log 1log 1log 1log 1a a a a f x x x x x f x ⎡⎤-=-+-+=-+--=-⎣⎦, 则函数()f x 是奇函数.()2若1a >,则由()0.f x >得()()log 1log 10a a x x +-->,即()()log 1log 1a a x x +>-, 即11x x +>-,则0x >, 定义域为()1,1-,01x ∴<<,即不等式的解集为()0,1.20.(2020·湖北荆州市·荆州中学高一期末)(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值.(2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 【答案】(1)12sin 13α=,12tan 5α=-(2)3πβ=【解析】 (1)55cos 132x α==-⇒=-, ∴5,62P ⎛⎫- ⎪⎝⎭∴12sin 13α==,612tan 552α==--;(2)由1cos 7α=,02πα<<,得sin 7α=, 由13cos()14αβ-=,02πβα<<<,得02παβ<-<,得sin()αβ-=所以cos cos[()]cos cos()sin sin()βααβααβααβ=--=-+-11317142=⨯=, 又02πβ<<,∴3πβ=.21.(2020·北京密云区·高一期末)已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.【答案】(1)T π=;单调递增区间为[,]63k k ππππ-+,k Z ∈;单调递减区间为5[,]36k k ππππ++ ,k Z ∈; (2)6x k ππ=+或2x k π=+π,k Z ∈.【解析】(1)2()cos cos f x x x x -cos 21222x x +=-1sin 262x π⎛⎫=-- ⎪⎝⎭,即()1sin 262f x x π⎛⎫=-- ⎪⎝⎭, 所以()f x 的最小正周期22T ππ==. 因为sin y x =的单调增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,令222262k x k πππππ-≤-≤+,解得63k xk ππππ,k Z ∈.因为sin y x =的单调减区间为32,222k k ππππ⎡⎤+⎢⎥⎣⎦+,k Z ∈,令3222262k x k πππππ-++≤≤, 解得536k x k ππππ++≤≤,k Z ∈. 所以()f x 的单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)函数1()sin 262f x x π⎛⎫=-- ⎪⎝⎭的零点, 令1sin(2)062x π--=,即1sin(2)62x π-=.2266x k πππ-=+或52266x k πππ-=+,k Z ∈ 解得6x k ππ=+或2x k π=+π,k Z ∈所以()f x 的零点为6x k ππ=+或2x k π=+π,k Z ∈22.(2020·浙江高一期中)已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t 的取值范围.【答案】(1)±1;(2)1,5⎛⎫-∞- ⎪⎝⎭. 【解析】(1)由函数2()21x xaf x a -=⋅+为奇函数,可得()()f x f x -=-, 代入可得:222121x x x xa aa a ----=⋅+⋅++, 整理可得:2222(2)1(2)x a a x -=-,所以21a =, 解得:1a =±;(2)若0a >,由(1)知1a =,所以212()12121x x xf x -==-++, 由2x 为增函数,21x u =+为增函数且210x u =+>, 又因为2u 为减函数,所以2u-为增函数, 所以()f x 为增函数, 又因为()f x 为奇函数,由()(())20xf f x f t +⋅<可得:()20x f x t +⋅<,即21+2021x x x t -⋅<+在[1,1]x ∈-上恒成立, 若0t ≥,1x =时不成立,故0t <, 令2x s =,则1(,2)2s ∈, 整理可得:2(1)10t s t s ⋅++-<, 令2()(1)1g s t s t s =⋅++-,若1122t t +-≤或122t t +-≥ 需131()0242g t =-<,(2)610g t =+<,可得1156t -≤<-或12t ≤-,若11222t t +<-<,需1()02t g t+-<, 解得1125t -<<-,综上可得:实数t 的取值范围为1,5⎛⎫-∞- ⎪⎝⎭.。
人教版高一数学必修1必修4期末测试卷附答案
人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。
)。
A。
4.B。
8.C。
16.D。
322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。
)。
A。
(-∞,-1)。
B。
(1,+∞)。
C。
(-1,1)U(1,+∞)。
D。
(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。
)。
A。
a<b<c。
B。
b<c<a。
C。
c<a<b。
D。
c<b<a4.函数y=-x^2+4x+5的单调增区间是(。
)。
A。
(-∞,2]。
B。
[-1,2]。
C。
[2,+∞)。
D。
[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。
)。
A。
a≤2.B。
-2≤a≤2.C。
a≤-2.D。
a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。
)。
A。
y=x-2.B。
y=x-1.C。
y=x^2.D。
y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。
)。
A。
1/2.B。
2/3.C。
3/4.D。
1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。
)。
A。
1/5.B。
-1/5.C。
5.D。
-59.若tanα=3,则sinαcosα=(。
)。
A。
3.B。
3/2.C。
3/4.D。
9/410.sin600°的值为(。
)。
A。
3/2.B。
-3/2.C。
-1/2.D。
1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。
)。
A。
1.B。
-1.C。
5/8.D。
-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。
人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)
人教A 版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷(共22题)一、选择题(共10题)1. 下面关于函数 f (x )=log 12x ,g (x )=(12)x和 ℎ(x )=x −12 在区间 (0,+∞) 上的说法正确的是( ) A . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越慢 B . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越快 C . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越慢 D . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越快2. 甲用 1000 元人民币购买了一手股票,随即他将这手股票卖给乙,获利 10%,而后乙又将这手股票卖给甲,但乙损失了 10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中 ( ) A .甲刚好盈亏平衡 B .甲盈利 9 元 C .甲盈利 1 元D .甲亏本 1.1 元3. 若 a =0.32,b =log 20.3,c =20.3,则 a ,b ,c 三者的大小关系是 ( ) A . b <c <a B . b <a <c C . a <c <b D . a <b <c4. 已知当 x ∈[0,1] 时,函数 y =(mx −1)2 的图象与 y =√x +m 的图象有且只有一个交点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,1]∪[3,+∞) C . (0,√2]∪[2√3,+∞) D . (0,√2]∪[3,+∞)5. 已知函数 f (x )={15x +1,x ≤1lnx,x >1,则方程 f (x )=kx 恰有两个不同的实根时,实数 k 的取值范围是 ( ) A . (0,1e )B . (0,15)C . [15,1e )D . [15,1e ]6. 若函数 f (x )=2x +a 2x −2a 的零点在区间 (0,1) 上,则 a 的取值范围是 ( ) A . (−∞,12)B . (−∞,1)C . (12,+∞)D . (1,+∞)7. 已知定义在 R 上的函数 f (x )={x 2+2,x ∈[0,1)2−x 2,x ∈[−1,0),且 f (x +2)=f (x ).若方程 f (x )−kx −2=0 有三个不相等的实数根,则实数 k 的取值范围是 ( )A . (13,1)B . (−13,−14)C . (−1,−13)∪(13,1)D . (−13,−14)∪(14,13)8. 定义域为 R 的偶函数 f (x ),满足对任意的 x ∈R 有 f (x +2)=f (x ),且当 x ∈[2,3] 时,f (x )=−2x 2+12x −18,若函数 y =f (x )−log a (∣x∣+1) 在 R 上至少有六个零点,则 a 的取值范围是 ( ) A . (0,√33) B . (0,√77) C . (√55,√33)D . (0,13)9. 方程 log 3x +x =3 的解所在的区间是 ( ) A . (0,1) B . (1,2) C . (2,3) D . (3,+∞)10. 函数 f (x )=√1−x 2lg∣x∣的图象大致为 ( )A .B .C .D .二、填空题(共6题)11. 已知函数 f (x )={√4−x 2,x ∈(−2,2]1−∣x −3∣,x ∈(2,4],满足 f (x −3)=f (x +3),若在区间 [−4,4] 内关于x 的方程 3f (x )=k (x −5) 恰有 4 个不同的实数解,则实数 k 的取值范围是 .12. 已知关于 x 的一元二次方程 x 2+(2m −1)x +m 2=0 有两个实数根 x 1 和 x 2,当 x 12−x 22=0时,m 的值为 .13. 已知 A ={x∣ 3x <1},B ={x∣ y =lg (x +1)},则 A ∪B = .14. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .15. 设函数 f (x )={−4x 2,x <0x 2−x,x ≥0,若 f (a )=−14,则 a = ,若方程 f (x )−b =0 有三个不同的实根,则实数 b 的取值范围是 .16. 设函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]= ,若方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 .三、解答题(共6题)17. 如图,直角边长为 2 cm 的等腰直角三角形 ABC ,以 2 cm/s 的速度沿直线向右运动.(1) 求该三角形与矩形 CDEF 重合部分面积 y (cm 2)与时间 t 的函数关系(设 0≤t ≤3). (2) 求出 y 的最大值.(写出解题过程)18. 已知函数 f (x )=a x +k 的图象过点 (1,3),它的反函数的图象过点 (2,0).(1) 求函数 f (x ) 的解析式; (2) 求 f (x ) 的反函数.19. 已知函数 g (x )=log a x ,其中 a >1.(注:∑∣m (x i )−m (x i−1)∣n i=1=∣m (x 1)−m (x 0)∣+∣m (x 2)−m (x 1)∣+⋯+∣m (x n )−m (x n−1)∣) (1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,求 a 的取值范围;(2) 设 m (x ) 是定义在 [s,t ] 上的函数,在 (s,t ) 内任取 n −1 个数 x 1,x 2,⋯,x n−2,x n−1,且 x 1<x 2<⋯<x n−2<x n−1,令 x 0=s ,x n =t ,如果存在一个常数 M >0,使得 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,则称函数 m (x ) 在区间 [s,t ] 上具有性质 P . 试判断函数 f (x )=∣g (x )∣ 在区间 [1a ,a 2] 上是否具有性质 P ?若具有性质 P ,请求出 M的最小值;若不具有性质 P ,请说明理由.20. 已知函数 g (x )=ax 2−2ax +1+b (a ≠0,b <1),在区间 [2,3] 上有最大值 4,最小值 1,设f (x )=g (x )x.(1) 求常数 a ,b 的值;(2) 方程 f (∣2x −1∣)+k (2∣2x −1∣−3)=0 有三个不同的解,求实数 k 的取值范围.21. 已知函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2.(1) 求实数 m ,n 的值;(2) 若不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,求实数 k 的取值范围.22. 已知函数 f (x )=(12)ax,a 为常数,且函数的图象过点 (−1,2).(1) 求 a 的值;(2) 若 g (x )=4−x −2,且 g (x )=f (x ),求满足条件的 x 的值.答案一、选择题(共10题)1. 【答案】C【解析】观察函数f(x)=log12x,g(x)=(12)x和ℎ(x)=x−12在区间(0,+∞)上的图象(图略),由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢.函数ℎ(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.【知识点】对数函数及其性质、指数函数及其性质2. 【答案】C【解析】由题意知甲两次付出为1000元和(1000×1110×910)元,两次收入为(1000×1110)元和(1000×1110×910×910)元,因为1000×1110+1000×1110×910×910−1000−1000×1110×910=1,所以甲盈利1元.【知识点】函数模型的综合应用3. 【答案】B【解析】因为0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,所以b<a<c.【知识点】指数函数及其性质、对数函数及其性质4. 【答案】B【解析】应用排除法.当m=√2时,画出y=(√2x−1)2与y=√x+√2的图象,由图可知,两函数的图象在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x−1)2与y=√x+3的图象,由图可知,两函数的图象在[0,1]上恰有一个交点.【知识点】函数的零点分布5. 【答案】C【解析】因为方程f(x)=kx恰有两个不同实数根,所以y=f(x)与y=kx有2个交点,又因为k表示直线y=kx的斜率,x>1时,y=f(x)=lnx,所以yʹ=1x;设切点为(x0,y0),则k=1x0,所以切线方程为y−y0=1x0(x−x0),又切线过原点,所以y0=1,x0=e,k=1e,如图所示:结合图象,可得实数k的取值范围是[15,1e ).【知识点】函数零点的概念与意义6. 【答案】C【解析】因为f(x)单调递增,所以f(0)f(1)=(1−2a)(2+a2−2a)<0,解得a>12.【知识点】零点的存在性定理7. 【答案】C【知识点】函数的零点分布8. 【答案】A【解析】当x∈[2,3]时,f(x)=−2x2+12x−18=−2(x−3)2,图象为开口向下,顶点为(3,0)的抛物线.因为函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,令g(x)=log a(∣x∣+1),因为f(x)≤0,所以g(x)≤0,可得0<a<1.要使函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,如图要求g(2)>f(2).log a(2+1)>f(2)=−2⇒log a3>−2,可得3<1a2⇒−√33<a<√33,a>0,所以 0<a <√33.【知识点】函数的零点分布9. 【答案】C【解析】把方程的解转化为函数 f (x )=log 3x +x −3 对应的零点.令 f (x )=log 3x +x −3,因为 f (2)=log 32−1<0,f (3)=1>0,所以 f (2)f (3)<0,且函数 f (x ) 在定义域内是增函数,所以函数 f (x ) 只有一个零点,且零点 x 0∈(2,3),即方程 log 3x +x =3 的解所在的区间为 (2,3). 故选C .【知识点】零点的存在性定理10. 【答案】B【解析】(1)由 {1−x 2≥0,∣x ∣≠0且∣x ∣≠1, 得 −1<x <0 或 0<x <1,所以 f (x ) 的定义域为 (−1,0)∪(0,1),关于原点对称.又 f (x )=f (−x ),所以函数 f (x ) 是偶函数,图象关于 y 轴对称,排除A ; 当 0<x <1 时,lg ∣x ∣<0,f (x )<0,排除C ;当 x >0 且 x →0 时,f (x )→0,排除D ,只有B 项符合. 【知识点】对数函数及其性质、函数图象、函数的奇偶性二、填空题(共6题) 11. 【答案】 (−2√217,−38)∪{0}【知识点】函数的零点分布12. 【答案】 14【解析】由题意得 Δ=(2m −1)2−4m 2=0,解得 m ≤14. 由根与系数的关系,得 x 1+x 2=−(2m −1),x 1x 2=m 2.由 x 12−x 22=0,得 (x 1+x 2)(x 1−x 2)=0. 若 x 1+x 2=0,即 −(2m −1)=0,解得 m =12. 因为 12>14,可知 m =12 不合题意,舍去;若 x 1−x 2=0,即 x 1=x 2,由 Δ=0,得 m =14.故当 x 12−x 22=0 时,m =14.【知识点】函数零点的概念与意义13. 【答案】 R【解析】由 3x <1,解得 x <0,即 A =(−∞,0). 由 x +1>0,解得 x >−1,即 B =(−1,+∞). 所以 A ∪B =R .【知识点】对数函数及其性质、交、并、补集运算14. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点;② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布15. 【答案】 −14或 12; (−14,0)【解析】若 −4a 2=−14,解得 a =−14; 若 a 2−a =−14,解得 a =12,故 a =−14或12;当 x <0 时,f (x )<0;当 x >0 时,f (x )=(x −12)2−14,f (x ) 的最小值是 −14,若方程 f (x )−b =0 有三个不同的实根,则 b =f (x ) 有 3 个交点,故 b ∈(−14,0).【知识点】函数的零点分布、分段函数16. 【答案】 14; (14,12)【解析】函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]=f (e 0)=f (1)=14.x ≤0 时,f (x )≤1;x >0,f (x )=−x 2+x +14,对称轴为 x =12,开口向下;函数的最大值为 f (12)=12,x →0 时,f (0)→14.方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 (14,12).【知识点】函数的零点分布、分段函数三、解答题(共6题) 17. 【答案】(1) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6,综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.(2) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6, 综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.当 0≤t ≤1 时,y max =2×12=2,当 1<t <2 时,y max =2,当 2≤t ≤3 时,对称轴 t 0=2,则 t =2 时,y max =2,综上:y max =2.【知识点】函数模型的综合应用、建立函数表达式模型18. 【答案】(1) f (x )=2x +1.(2) f −1(x )=log 2(x −1)(x >1).【知识点】反函数、指数函数及其性质19. 【答案】(1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,即 x ∈[0,1] 时,log a (a x +2)>1 恒成立,因为 a >1,所以 a x +2>a 恒成立,即 a −2<a x 在区间 [0,1] 上恒成立,所以 a −2<1,即 a <3,所以 1<a <3,即 a 的取值范围是 (1,3).(2) 函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P .因为 f (x )=∣g (x )∣ 在 [1,a 2] 上单调递增,在 [1a ,1] 上单调递减,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,当存在某一个整数 k ∈{1,2,3,⋯,n −1},使得 x k =1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (1a )−f (1)]+[f (a 2)−f (1)]=1+2= 3. 当对于任意的 k ∈{1,2,3,…,n −1},x k ≠1 时,则存在一个实数 k 使得 x k <1<x k+1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (x 0)−f (x k )]+∣f (x k )−f (x k+1)∣+f (x n )−f (x k+1). ⋯⋯(∗)当 f (x k )>f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k+1)=3−2f (x k+1)<3,当 f (x k )<f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k )=3−2f (x k )<3,当 f (x k )=f (x k+1) 时,(∗)式=f (x n )+f (x 0)−f (x k )−f (x k+1)=3−f (x k )−f (x k+1)<3,综上,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,均有 ∑∣m (x i )−m (x i−1)∣n i=1≤3,所以存在常数 M ≥3,使 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,所以函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P ,此时 M 的最小值为 3.【知识点】函数的单调性、指数函数及其性质、函数的最大(小)值、对数函数及其性质20. 【答案】(1) 因为 a ≠0,所以 g (x ) 的对称轴为 x =1,所以 g (x ) 在 [2,3] 上是单调函数,所以 {g (2)=1,g (3)=4 或 {g (2)=4,g (3)=1,解得 a =1,b =0 或 a =−1,b =3(舍). 所以 a =1,b =0.(2) f (x )=x 2−2x+1x =x +1x −2.令 ∣2x −1∣=t ,显然 t >0, 所以 t +1t −2+k (2t −3)=0 在 (0,1) 上有一解,在 [1,+∞) 上有一解.即 t 2−(2+3k )t +1+2k =0 的两根分别在 (0,1) 和 [1,+∞) 上.令 ℎ(t )=t 2−(2+3k )t +1+2k ,若 ℎ(1)=0,即 1−2−3k +1+2k =0,解得 k =0,则 ℎ(t )=t 2−2t +1=(t −1)2,与 ℎ(t ) 有两解矛盾.所以 {ℎ(0)>0,ℎ(1)<0,即 {1+2k >0,−k <0, 解得 k >0. 所以实数 k 的取值范围是 (0,+∞).【知识点】函数的最大(小)值、函数的零点分布21. 【答案】(1) 由函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2,可得 {1−3m +n =0,4−6m +n =0, 解得 {m =1,n =2.(2) 由(1)可得 f (x )=x 2−3x +2,由不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,可得不等式 f (x )>k 在 x ∈[0,5] 上恒成立,可将 f (x )=x 2−3x +2 化为 f (x )=(x −32)2−14,所以 f (x )=x 2−3x +2 在 x ∈[0,5] 上的最小值为 f (32)=−14,所以 k <−14.【知识点】函数的最大(小)值、函数的零点分布22. 【答案】(1) 由已知得 (12)−a=2,解得 a =1.(2) 由(1)知 f (x )=(12)x,又 g (x )=f (x ),所以 4−x −2=(12)x,即 (14)x −(12)x−2=0,即 [(12)x ]2−(12)x−2=0,令 (12)x=t (t >0),则 t 2−t −2=0,所以 t =−1 或 t =2,又 t >0,所以 t =2,即 (12)x=2,解得 x =−1.【知识点】指数函数及其性质。
高一数学必修一测试题
高一数学必修一测试题一、选择题(每题4分,共20分)1. 已知函数 f(x) = 2x + 3,求 f(4) 的值是多少?A) 7 B) 11 C) 10 D) 92. 两个数的和是48,它们的差是14,求这两个数分别是多少?A) 31和17 B) 29和19 C) 27和21 D) 26和223. 已知直角三角形两直角边的长度分别为3和4,求斜边的长度。
A) 6 B) 7 C) 5 D) 104. 若 a + b = 10,且 a^2 + b^2 = 52,求 a 和 b 的值。
A) 2和8 B) 3和7 C) 4和6 D) 5和55. 某商店原售价150元的商品打8折出售,现售价是多少?A) 12元 B) 15元 C) 120元 D) 105元二、简答题(每题10分,共30分)1. 已知 a:b = 3:5,b:c = 4:7,求 a:b:c 的比值。
2. 某数与84的比是2:5,这个数与70的比是多少?3. 已知两个角的和为180度,其中一个角的补角是另一个角的3倍,求这两个角的度数。
三、解答题(每题30分,共50分)1. 已知直线 l1 过点 A(1, 2),斜率为1/3。
求直线 l1 的解析式,并画出其图像。
2. 某地去年的人口是20万,今年增长了5%,求今年的人口数。
3. 若 a:b = 2:3,且 a:b:c = 4:6:9,求 c 的值。
四、证明题(每题20分,共50分)1. 已知三角形 ABC,其中 AB = AC,过点 B 作 AC 的垂线,交于点 D。
证明:BD = CD。
2. 若 a + b = b + c,证明 a = c。
答案与解析:一、选择题1. A) 7解析:将 x = 4 代入 f(x) = 2x + 3,得到 f(4) = 2(4) + 3 = 8 + 3 = 11。
2. B) 29和19解析:设其中一个数为 x,则另一个数为 48 - x,根据题意可列出方程 x - (48 - x) = 14,解得 x = 29,那么另一个数为 48 - 29 = 19。
新高考高一数学期末复习必修一复习试题1-2套
A.最大值-1/4B.最大值1/4C.最小值-1/4D.最小值1/4
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.
13.函数 的定义域是____________。(用集合表示)
14.已知f(x) 偶函数,当x<0时,f(x)= ,则当x>0时,f(x)=__________.
(1)当 时,求函数 的单调递增区间;
(2)求函数 的零点个数.
新高考高一数学必修一复习试题2
一、选择题(每小题5分,共60分)
23.设集合 , ,则 = ( )
A. B. C. D.
24.化简: ()
A. 4B. C. 或4D.
25.下列四组函数,表示同一函数的是()
A. B. ,
C. D.
26.已知函数 ,那么 的值是()
38.函数 的单调增区间是_____.
三、解答题:(共70分)
39.设集合 ,集合
(1)若 ,求实数 的取值范围;
(2)若 ,求实数 的取值范围.
40.已知函数 是奇函数,且 ,
(1)求函数解析式;
(2)判断并证明 在 上的单调性
41.设函数 是定义在 上的减函数,并且满足 , .
(1)求 的值,
(2)如果 ,求 的取值范围。
新高考高一数学必修一复习试题1
一、选择题(每小题5分,共60分)D.
2.若全集 ,则集合 的真子集共有()
A. 个B. 个C. 个D. 个
3.已知集合 ,集合 ,则集合 ( )
A. B. C. D.
4.等式 的解集为()
A. B.
(完整版)高一数学必修一期末试题及答案解析
一、选择题。
(共10小题,每题4分) 1、设集合A={x ∈Q|x>-1},则( )A 、A ∅∉B 、2A ∉C 、2A ∈D 、{}2 ⊆A2、设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=( )A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5} 3、函数21)(--=x x x f 的定义域为( ) A 、[1,2)∪(2,+∞) B 、(1,+∞) C 、[1,2) D 、[1,+∞)4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )5、三个数70。
3,0。
37,,㏑0.3,的大小顺序是( )A 、 70。
3,0.37,,㏑0.3,B 、70。
3,,㏑0.3, 0.37C 、 0.37, , 70。
3,,㏑0.3,D 、㏑0.3, 70。
3,0.37,6、若函数f(x)=x 3+x 2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2 f(1.5)=0.625 f(1.25)=-0.984 f(1.375)=-0.260 f(1.438)=0.165f(1.4065)=-0.052那么方程x 3+x 2-2x-2=0的一个近似根(精确到0.1)为( ) A 、1.2 B 、1.3 C 、1.4 D 、1.57、函数2,02,0x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为( )8、设()log a f x x =(a>0,a ≠1),对于任意的正实数x ,y ,都有( )A 、f(xy)=f(x)f(y)B 、f(xy)=f(x)+f(y)C 、f(x+y)=f(x)f(y)D 、f(x+y)=f(x)+f(y)9、函数y=ax 2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定 10、某企业近几年的年产值如图,则年增长率最高的是 ( )(年增长率=年增长值/年产值)A 、97年B 、98年C 、99年D 、00年二、填空题(共4题,每题4分)11、f(x)的图像如下图,则f(x)的值域为 ;12、计算机成本不断降低,若每隔3年计算机价格降低1/3,现在价格为8100元的计算机,则9年后价格可降为 ;13、若f(x)为偶函数,当x>0时,f(x)=x,则当x<0时,f(x)= ;14、老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数;②定义域为{|0}x R x ∈≠; ③在(0,)+∞上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确。
高一必修一数学期末试卷及答案
高一必修一数学期末试卷及答案第一部分:选择题(共80分)1.解下列各方程:5x+8=3x+12. A. x=3B. x=2C. x=−3D. x=13.若x+3=2x−1,则x= A. 2B. 4C. -4D. -24.已知a=2,当x=3时,y=ax2的值是: A. 18B. 54C. 36D. 125.若f(x)=3x+4,则f(−2)= A. -2B. -6C. -2D. -10第二部分:填空题(共20分)1.已知直线y=2x+3与y=−x+1的交点坐标为(a,b),则a=(填入具体数字)2.设x是保证2x+5>3x成立的x的取值范围,x的范围是(m,n),则m=(填入具体数字),n=(填入具体数字)第三部分:计算题(共60分)1.已知a+b=5,a−b=1,求a与b的值。
2.计算$\\frac{3}{5} \\div \\frac{4}{9}$的结果。
3.若y=x2−3x+2,求当x=2时,y=?第四部分:简答题(共40分)1.简述解一元一次方程的基本步骤。
2.什么是函数?函数的概念及符号表示是什么?高一必修一数学期末试卷参考答案第一部分:选择题答案1. A. x=32. B. 43. C. 364. B. -2第二部分:填空题答案1.$(\\frac{2}{3}, \\frac{7}{3})$2.$(5, \\infty)$第三部分:计算题答案1.a=3,b=22.$\\frac{27}{20}$3.y=0第四部分:简答题答案1.解一元一次方程的基本步骤包括化简方程、移项、合并同类项、求解等。
2.函数是自变量和因变量之间的对应关系,通常用f(x)表示。
高一数学测试卷及答案详解(附答案)
(1)求函数 的定义域;
(2)讨论函数 的单调性.
17.正方体 中,求证:(1) ;
(2) .
18.一个圆锥的底面半径为2cm,高为6cm,在其中有一个高为 cm的内接圆柱.
(1)试用 表示圆柱的侧面积;
(2)当 为何值时,圆柱的侧面积最大?
19.求二次函数 在 上的最小值 的解析式.
B DB
A C C A C E
A. D、E、F B. E、D、F C. E、F、D D. F、D、E
第二部分非选择题(共100分)
二、填空题:本大题共4小题,每小题5分,满分20分.
11.幂函数 的图象过点 ,则 的解析式为_______________
12.直线过点 ,它在 轴上的截距是在 轴上的截距的2倍,则此直线方程为__________________________.
……14分
18.本小题主要考查空间想象能力,运算能力与函数知识的综合运用.满分12分.
解:(1)如图: 中, ,即 ……2分
, ……4分
圆柱的侧面积
( )……8分
(2)
时,圆柱的侧面积最大,最大侧面积为 ……12分
19.本小题以二次函数在闭区间上的最值为载体,主要考查分类讨论的思想和数形结合的思想.满分14分.
B
D
A
D
A
B
二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.
11. 12. 或 13. 14.2;3
三、解答题:
15.本小题主要考查分段函数的图象,考查函数奇偶性的判断.满分12分.
解: ……2分
函数 的图象如右图……6分
函数 的定义域为 ……8分
高中数学必修第一册 《一元二次函数、方程和不等式》期末复习专项训练(学生版+解析版)
高中数学必修第一册《一元二次函数、方程和不等式》期末复习专项训练一、单选题l. (2022·四川绵阳·高一期末〉下列结论正确的是(〉A.若的b,则。
c>bc c.若。
>b,则。
+c>b+cl I B.若α>b,则-〉-a D D.着。
>b,则。
2> b22.(2022·辽宁·新民市第一高级中学高一期末〉已知α<b<O,则(〉A.a2 <abB.ab<b2C.a1 <b1D.a2 >b i3.(2022·陕西汉中·高一期末〉若关于工的不等式,咐2+2x+m>O的解集是R,则m的取值范围是(〉A.(I, +oo)B.(0, I〕C.( -J, I)D.(J, +oo)4.(2022·广东珠海高一期末〉不等式。
+l)(x+3)<0的解集是(〉A.RB.②c.{对-3<x<-I} D.{xi x<-3,或x>-l}5. (2022·四川甘孜·高一期末〉若不等式似2+bx-2<0的解集为{xl-2<x<I},则。
÷b=( )A.-2B.OC.ID.26. (2022·湖北黄石·商一期末〉若关于X的不等式x2-ax’+7>。
在(2,7)上有实数解,则α的取值范围是(〉A.(唱,8)B.(叫8] c.(叫2./7) D.(斗)7.(2022·新疆乌市一中高一期末〉已知y=(x-m)(x-n)+2022(n> m),且α,β(α〈别是方程y=O的两实数根,则α,β,111,n的大小关系是(〉A.α<m<n<βC.m<α〈β<nB.m<α<n<βD.α<m<β<n8.(2022·浙江·杭州四中高一期末〉已失11函数y=κ-4+...2....(x>-1),当x=a时,y取得最小值b,则。
高一上学期数学期末考测试卷(提升)(解析版)--人教版高中数学精讲精练必修一
的值可以是(
)
A.3
B.4
C.5
D. 16 3
【答案】BC
【解析】作出函数 f x 的图象,如图所示,
设 f x1 f x2 f x3 f x4 t , 由图可知,当 0 t 1时,直线 y t 与函数 f x 的图象有四个交点,
交点的横坐标分别为 x1, x2 , x3, x4 ,且 x1 x2 x3 x4 ,
因为
x
0,
π 3
,
2x
π 6
π, 6
5π 6
,函数
y
sint
在
π 6
,
5π 6
上不单调,故
D
错误.
故选:ABC.
10.(2023 秋·江苏南通 )下列命题中,真命题的是( )
A. x R ,都有 x2 x x 1
B.
x 1,
,使得
x
x
4
1
6
.
C.任意非零实数 a,b ,都有 b a 2 ab
f x 在 , 上不具单调性,故 B 错误;
f x 图象与 x 轴只一个交点,即有且只有一个零点,故 C 正确;
令
yቤተ መጻሕፍቲ ባይዱ
0
,解得
x
3 2
,从图象看,
f
(x)
关于
3 2
,
0
对称,下面证明:
由 f x x 1 x 2 ,
得
f
3 2
x
x
1 2
x1 2
,
f
3 2
x
x
1 2
x 1 2
x 1 2
x 1, 2
则
f
3 2
高一必修1必修2数学试题
高一上学期期末考试数学试题第一部分 选择题(共70分)一选择题(本大题共14小题,每小题5分,共70分)1.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0}C .{x |0≤x ≤1} D .{x |x ≥1或x ≤0}2. 满足条件{0,1}∪A={0,1}的所有集合A 的个数是的个数是 ( ) A .1个 B . 2个C . 3个D .4个3.一个棱锥的三视图如右图所示,则它的体积为.一个棱锥的三视图如右图所示,则它的体积为 ( ) A .12 B .32C .1 D .13 4. 设a =0.7log 0.8,b = 1.1log 0.9,c =0.91.1,那么( ) A .a<b<c B .b<a<c C .a<c<b D .c<a<b 5. 关于直线m 、n 与平面a 、b ,有下列四个命题:,有下列四个命题:①b a //,//n m 且b a //,则n m //; ②b a ^^n m ,且b a ^,则n m ^; ③b a //,n m ^且b a //,则n m ^; ④b a ^n m ,//且b a ^,则n m //. 其中真命题的序号是:( )A. ①、②①、②B. ③、④③、④C. ①、④①、④D. ②、③②、③6. 幂函数的图象过点(2,14),则它的单调递增区间是( ) A .(-∞,0) B .(0,+∞)C .(-∞,1 ) D .(-∞,+∞)7. 直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为( ) A 030 B 045C 060 D 0908. 若圆222(3)(5)x y r -++=上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的范围是(范围是( )A (4,6)B [4,6)C (4,6]D [4,6]9. 圆1)3()1(22=++-y x 的切线方程中有一个是( )A. x-y=0 B. x+y=0 C. x=0 D. y=010.设f(x)=23x x -,则在下列区间中,使函数f(x)有零点的区间是( ) A .[0,1] B .[-1,0] C .[-2,-1] D .[1,2] 11长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为(个球的面积为( )A p 27 B p 56 C p 14 D p 64 12. 若U=R ,A=,1)21()3)(2(þýüîíì>-+x x x B={}2)(log 3<-a x x ,要使式子A ÇB=f 成立,则a 的取值范围是(取值范围是( )A -62-££a B a 311a ³£-或C -11<3<a D -113££a13.. 如图,正方体ABCD —A 1B 1C 1D 1中,EF 是异面直线AC 、A 1D 的公垂线,则EF 与BD 1的关系为(为( )A .相交不垂直.相交不垂直B .相交垂直.相交垂直C .异面直线.异面直线D .平行直线.平行直线14. 下列所给4个图像中,与所给3件事吻合最好的顺序为(件事吻合最好的顺序为( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
人教版高一数学必修1测试题(含答案)
人教版高一数学必修1测试题(含答案)人教版数学必修I测试题(含答案)一、选择题1、设集合U 1,2,3,4,5 ,A 1,2,3 ,B 2,5 ,则A CUB ()A、2B、2,3C、3D、1,32、已知集合M 0,1,2 ,N xx 2a,a M ,则集合M N (A、0 B、0,1C、1,23、函数y 1 log2x, x 4 的值域是()A、2,B、3,C、3, ,4、关于A到B的一一映射,下列叙述正确的是()① 一一映射又叫一一对应② A中不同元素的像不同③ B中每个元素都有原像④ 像的集合就是集合BA、①②B、①②③C、②③④ ①②③④ 5、在y1x2,y 2x,y x2x,y (A、1个B、2个C、3个4个)D、0,2D、D、)D、6、已知函数f x 1 x2 x 3,那么f x 1 的表达式是()A、x2 5x 9B、x2 x 3C、x2 5x 9D、x2 x 17、若方程ax x a 0有两个解,则a的取值范围是()A、0,B、1,C、0,1D、8、若102x 25,则10 x等于()A、1B1 C1 D、55501 6259、若loga a2 1 loga2a 0,则a的取值范围是()11A、0 a 1 B a 1 C、a 1 0 a D、2210、设a 40.9,b 80.481,c21.5,则a,b,c的大小顺序为()A、a b cB、a c bC、b a cD、c a b11、已知f x x2 2 a 1 x 2在,4 上单调递减,则a的取值范围是()A、a 3B、a 3C、a 3D、以上答案都不对12、若f lgx x,则f 3 ()A、lg3B、3 C、103D、310二、填空题13、设A x x 2 ,B xx a 0 ,若AB,则a的取值范围是;14、函数y 的定义域为;15、若x2,则x4的3x 值是;16lg20 log*****、。
三、解答题17、(本小题满分10分)设A 4,2a 1,a2 ,B a 5,1 a,9 ,已知A B 9 ,求a的值。
高中数学必修一期末试卷(附答案)
一、选择题1.设()31xf x =-,若关于x 的函数2()()(1)()g x f x t f x t =-++有三个不同的零点,则实数t 的取值范围为( ) A .102⎛⎫ ⎪⎝⎭, B .()0,2 C .()0,1 D .(]0,12.设函数3,()log ,x x a f x x x a⎧≤=⎨>⎩()0a >, 若函数()2y f x =-有且仅有两个零点,则a的取值范围是( ) A .. ()0,2B .()0,9C .()9,+∞D .()()0,29,⋃+∞3.已知函数()22,0log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩若a b c <<,且满足()()()f a f b f c ==,则abc 的取值范围为( ) A .(],0-∞B .(],1-∞-C .[]2,0-D .[]4,0-4.下列等式成立的是( ) A .222log (35)log 3log 5+=+ B .2221log 3log 32-= C .222log 3log 5log (35)⋅=+D .231log 3log 2= 5.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier ,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现. 比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=( ) A .134217728B .268435356C .536870912D .5137658026.若函数112xy m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是( )A .1m ≤-B .10m -≤<C .m 1≥D .01m <≤7.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,48.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .39.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞10.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉11.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,312.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-二、填空题13.已知函数()22,0,0x x x f x x x ⎧--≤=⎨>⎩,若函数()()g x f x m =-与x 轴有3个交点,则实数m 的取值范围是_________.14.若y a x =的图象与直线y x a =+(0a >)有两个不同交点,则a 的取值范围是__________.15.方程()()122log 44log 23xx x ++=+-的解为____;16.已知函数2,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥恒成立,则a 的取值范围是________.17.关于函数()11f x x =+-的性质描述,正确的是_________.①()f x 的定义域为[-1,0)∪(0,1]; ②()f x 的值域为R ; ③在定义域上是减函数; ④()f x 的图象关于原点对称.18.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.19.已知集合2|230A x x x ,{}|0B x x a =-=,若B A ≠⊂,则实数a 的值为______.20.设a ,b ,c 为实数,()()()2f x x a x bx c =+++,()()()211g x ax cx bx =+++,记集合(){}|0,S x f x x R ==∈,(){}|0,T x g x x R ==∈,若S ,T 分别为集合S ,T 的元素个数,则下列结论可能成立的是________.①1S =,0T =;②1S =,1T =;③2S =,2T =;④2S =,3T =.三、解答题21.新冠肺炎疫情发生后,某公司生产A 型抗疫商品,第一个月是为国内生产,当地政府决定对该型商品免税,该型商品出厂价为每件20元,月销售量为12万件;后来国内疫情得到有效控制,从第二个月开始,该公司为国外生产该型抗疫商品,当地政府开始对该型抗疫商品征收税率为%p (0100p <<,即销售1元要征收100p元)的税,于是该型抗疫商品出厂价就上升到每件100202p-元,预计月销售量将减少2p 万件.(1)将第二个月政府对该商品征收的税y (万元)表示成p 的函数,并指出这个函数的定义域;(2)要使第二个月该公司缴纳的税额不少于1万元的前提下,又要让该公司当月获得最大销售金额,p 应为多少?22.已知函数22,01,()ln ,1x x f x x x e-≤<⎧=⎨≤≤⎩,其中e 为自然对数的底数.(1)求(f f 的值;(2)作出函数()()1F x f x =-的图象,并指出单调递减区间(无需证明) ;(3)若实数0x 满足00(())f f x x =,则称0x 为()f x 的二阶不动点,求函数()f x 的二阶不动点的个数.23.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论.24.已知函数()f x ()()4log 41xkx k R =++∈的图象关于y 轴对称.(1)求实数k 的值(2)设函数()g x 12421f x xx m +=+⋅-(),[]20log 3x ∈,,是否存在实数m , 使得()g x 的最小值为0?若存在, 求出m 的值,若不存在说明理由.25.对于函数()f x ,若在定义域内存在实数0x ,满足()()00f x f x -=-,则称()f x 为“M 类函数”(1)已知函数()23f x cos x π⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”,并说明理由;(2)设()1423xx f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围26.已知集合{|A x y ==,{}22|60B x x ax a =--<,其中0a ≥.(1)当1a =时,求集合A B ⋃,()R C A B ⋂; (2)若()R C A B B ⋂=,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由()0g x =得()1f x =或()f x t =,作出函数()f x 的图象,可得()f x t =需有两解,有此可得t 的范围. 【详解】据题意()0g x =有三个解.由()0g x =得()1f x =或()f x t =,易知()1f x =只有一个解, ∴()f x t =必须有两解, 由图象知01t <<. 故选:C .【点睛】关键点点睛:本题考查函数零点个数问题,解题时根据零点的定义化为方程()0g x =的解的个数,进而转化为()f x t =的解的个数,再利用数形结合思想,考虑函数()y f x =的图象与直线y t =的交点个数问题.掌握转化思想是解题关键.2.D解析:D 【分析】函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,数形结合即可求出a 的取值范围. 【详解】令2x =可得12x =-,22x =;令3log 2x =得39x =函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,作3,()log ,x x a f x x x a ⎧≤=⎨>⎩()0a >图象如图:当02a <<时,()y f x =与2y =两个函数图象有且仅有两个交点,交点横坐标为12x =-,39x =,符合题意;当29a ≤≤时,()y f x =与2y =两个函数图象有且仅有3个交点,交点横坐标为12x =-,22x =,39x =,不符合题意;当9a >时,()y f x =与2y =两个函数图象有且仅有2个交点,交点横坐标为12x =-,22x =,不符合题意;所以a 的取值范围是:()()0,29,⋃+∞, 故选:D 【点睛】本题主要考查了已知函数的零点个数求参数的范围,函数的零点转化为对应方程的根,转化为函数图象的交点,属于中档题.3.A解析:A 【分析】画出()f x 的图象结合图象,求得1bc =、求得a 的取值范围,由此求得abc 的取值范围. 【详解】由函数()f x 的图象(如图),可知1022a b c ≤<≤<≤,由22log log b c =得22log log b c -=,所以1bc =,所以(],0abc a =∈-∞.故选:A【点睛】本小题主要考查分段函数的图象与性质,属于中档题.4.D解析:D 【分析】根据对数的运算法则和换底公式判断. 【详解】22222log 3log 5log (35)log 15log (35)+=⨯=≠+,A 错误;22221log 32log 3log 32-=-≠,B 错误;222log 3log 5log (35)⋅≠+,C 错误; 3233log 31log 3log 2log 2==,D 正确. 故选:D . 【点睛】关键点点睛:本题考查对数的运算法则.log log log ()a a a M N MN +=,log log n a a b n b =,一般log ()log log a a a M N M N +≠+.log ()log log a a a MN M N ≠⋅, 1log log n a a b b n≠. 5.C解析:C 【分析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可. 【详解】由已知可知,要计算16384×32768,先查第一行的对应数字: 16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912, 所以有:16384×32768=536870912, 故选C. 【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.6.B解析:B 【分析】11()+2x y m -=与x 有公共点,转化为11()2xy -=与y m =-有公共点,结合函数图象,可得结果. 【详解】11()+2x y m -=与x 有公共点,即11()2x y -=与y m =-有公共点,11()2xy -=图象如图可知0110m m <-≤⇒-≤< 故选:B 【点睛】本题考查了函数的交点问题,考查了运算求解能力和数形结合思想,属于基础题目.7.C解析:C 【分析】根据题意,可得()f x 在R 上为单调递增函数,若x a ≥时为增函数,则3a ≥,若x a <时为增函数,则0a >,比较x=a 处两函数值的大小,即可求得答案, 【详解】因为()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在R 上为单调递增函数, 当x a ≥时,2()23f x x x =--的图象如图所示:因为()f x 在R 上为单调递增函数,所以3a ≥, 当x a <时,()11f x ax =-为增函数,所以0a >, 且在x=a 处222311a a a --≥-,解得4a ≤, 综上34a ≤≤, 故选:C. 【点睛】解题的关键是熟悉分段函数单调性的求法,根据单调性,先分析分段点两侧单调性,再比较分段点处函数值的大小即可,考查推理分析,化简计算的能力,属中档题.8.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.9.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >. 令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =. 令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.10.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xyz x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.11.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.12.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解.当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意;当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.二、填空题13.【分析】先将函数与轴有个交点转化成与的交点问题再作出分段函数的图像利用数形结合求得范围即可【详解】依题意函数与轴有个交点即与有3个交点作分段函数的图像如下由图可知的取值范围为故答案为:【点睛】方法点 解析:()0,1【分析】先将函数()()g x f x m =-与x 轴有3个交点,转化成()y f x =与y m =的交点问题,再作出分段函数()y f x =的图像,利用数形结合求得m 范围即可. 【详解】依题意,函数()()g x f x m =-与x 轴有3个交点, 即()y f x =与y m =有3个交点,作分段函数()22,0,0x x x f x x x ⎧--≤=⎨>⎩的图像如下,由图可知,m 的取值范围为()0,1. 故答案为:()0,1. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.14.【分析】首先根据已知题意画出图形然后根据数形结合分析的取值范围需要注意为的斜率【详解】根据题意的图象如图:结合图象知要想有两个不同交点的斜率要大于的斜率的取值范围是故答案为:【点睛】本题考查函数图象 解析:()1,+∞【分析】首先根据已知题意画出图形,然后根据数形结合分析a 的取值范围,需要注意a 为y ax =的斜率. 【详解】根据题意y a x =的图象如图:()0a >,结合图象知,要想有两个不同交点y ax ∴=的斜率要大于y x a =+的斜率a ∴的取值范围是1a >.故答案为:()1,+∞ 【点睛】本题考查函数图象的交点问题,考查数形结合能力,属于中等题型.15.【分析】直接利用对数的运算法则化简求解即可【详解】解:可得即:解得(舍去)可得经检验是方程的解故答案为:【点睛】本题考查方程的解的求法对数的运算法则的应用考查计算能力 解析:2【分析】直接利用对数的运算法则化简求解即可. 【详解】 解:()()122log 44log 23x x x ++=+-()()1222log 44log log 232x x x +∴+=+-可得()()122log 44log 232x x x++=-⎡⎤⎣⎦, 即:()144232x x x++=-,()223240xx -⋅-=,解得21x =-(舍去)24x =,可得2x =.经检验2x =是方程的解. 故答案为:2. 【点睛】本题考查方程的解的求法,对数的运算法则的应用,考查计算能力.16.【分析】分两种情况讨论当时结合图象可知;当时再分两种情况讨论分离参数后化为函数的最值可解得结果【详解】当时则恒成立等价于恒成立函数的图象如图:由图可知;当时所以恒成立等价于恒成立若则若则恒成立所以综 解析:10a -≤≤【分析】分0x >,0x ≤两种情况讨论,当0x >时,结合图象可知0a ≤;当0x ≤时,再分0x =,0x <两种情况讨论,分离参数后化为函数的最值可解得结果. 【详解】当0x >时,()ln(1)0f x x =+>,则|()|f x ax ≥恒成立等价于ln(1)x ax +≥恒成立,函数ln(1)y x =+的图象如图:由图可知0a ≤;当0x ≤时,2()0f x x x =-+≤,所以|()|f x ax ≥恒成立等价于2x x ax -≥恒成立,若0x =,则a R ∈,若0x <,则1a x ≥-恒成立,所以1a ≥-, 综上所述:10a -≤≤. 故答案为:10a -≤≤ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;17.①②④【分析】求出函数的定义域值域判断①②根据单调性的定义判断③根据奇偶性的定义与性质判断④【详解】函数满足解得或故函数的定义域为故①正确当时当时所以函数值域为故②正确③虽然时函数单调递减当时函数单解析:①②④ 【分析】求出函数的定义域,值域判断①②,根据单调性的定义判断③,根据奇偶性的定义与性质判断④. 【详解】函数()f x =21011x x ⎧-⎪⎨+≠⎪⎩,解得10x -<或01x <,故函数的定义域为[1-,0)(0⋃,1].故①正确.当[1x ∈-,0)时(][)(]2211,(),00,1x f x x ∈+∞⇒===-∞∈⇒,当(0x ∈,1]时,(][)220,,111x x ∈∈⇒+∞⇒()[0f x ===,)+∞,所以函数值域为R ,故②正确.③虽然[1x ∈-,0)时,函数单调递减,当(0x ∈,1]时,函数单调递减,但在定义域上不是减函数,故③错误.④由于定义域为[1-,0)(0⋃,1],()11f x x x==+-,则()()f x f x -=-,()f x 是奇函数,其图象关于原点对称,故④正确.故答案为:①②④. 【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、值域、函数的定义域与对称性,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.18.02【分析】构造函数F (x )=f (x )﹣g (x )利用F (x )的单调性求出a 【详解】解:对于任意x1x2∈02且x1<x2都有f (x1)﹣f (x2)<g (x1)﹣g (x2)即f (x1)﹣g (x1)<f解析:[0,2] 【分析】构造函数F (x )=f (x )﹣g (x ),利用F (x )的单调性求出a 【详解】解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f (x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可,当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =12a≤,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =02a-≤,即a ≥0, 故a ∈[0,2], 故答案为:[0,2] 【点睛】考查恒成立问题,函数的单调性问题,利用了构造函数法,属于中档题.19.-1或3【分析】解方程用列举法表示集合AB 由即得解【详解】集合若故a=-1或3故答案为:-1或3【点睛】本题考查了集合的包含关系考查了学生概念理解数学运算能力属于基础题解析:-1或3 【分析】解方程,用列举法表示集合A ,B ,由B A ≠⊂,即得解. 【详解】 集合2|230{1,3}Ax x x ,{}|0{}B x x a a =-==若B A ≠⊂,故a =-1或3 故答案为:-1或3 【点睛】本题考查了集合的包含关系,考查了学生概念理解,数学运算能力,属于基础题.20.①②③【分析】①根据得到方程无实根推出或;再由此判断根的个数即可判断①;②取分别判断根的个数即可判断②;③取分别判断根的个数即可判断③;④当时方程有三个根所以由此求根的个数即可判断④【详解】①当时方解析:①②③ 【分析】①根据0T =,得到方程()()()2110=+++=g x ax cx bx 无实根,推出0a =,240b c -<或0a b c ===;再由此判断()0f x =根的个数,即可判断①;②取240a b c ≠⎧⎨-<⎩,分别判断()0f x =,()0g x =根的个数,即可判断②;③取20040a c b c ≠⎧⎪≠⎨⎪-=⎩分别判断()0f x =,()0g x =根的个数,即可判断③;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,由此求()0f x =根的个数,即可判断④.【详解】①当0T =时,方程()()()2110=+++=g x ax cx bx 无实根,所以0a =,240b c -<或0a b c ===;当0a b c ===时,()3f x x =,由()0f x =得0x =,此时1S =;当0a =,240b c -<时,()()2=++f x x x bx c ,由()0f x =得0x =,此时1S =;故①成立; ②当2040a b c ≠⎧⎨-<⎩时,由()()()20=+++=f x x a x bx c 得x a =-,即1S =;由()()()2110=+++=g x ax cx bx 得1x a=-;即1T =;存在②成立;③当20040a cbc ≠⎧⎪≠⎨⎪-=⎩时,由()()()20=+++=f x x a x bx c 得x a =-或2b x =-;由()()()2110=+++=g x ax cx bx 得 1x a =-或2=-x b;只需2b a ≠,即可满足2S =,2T =;故存在③成立;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,设0x 为()0g x =的一个根,则00x ≠,且200001111f a b c x x x x ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()03010g x x ==,故01x 为方程()0f x =的根.此时()0f x =有三个根,即3T =时,必有3S =,故不可能是2S =,3T =;④错;故答案为:①②③ 【点睛】本题主要考查方程根的个数与集合的综合,会判断方程根的个数即可,属于常考题型.三、解答题21.(1)2610p p y p-=-,定义域为()0,6;(2)2p =时,公司销售金额最大.【分析】(1)由题可得第二个月该商品销量为()122p -万件,月销售收入为100(122)202p p-⋅-万元,则可得出对该商品征收的税; (2)由1y ≥可得25p ≤≤,销售收入()100(6)()2510p g p p p-=≤≤-单调递减,即可求出最值. 【详解】解:(1)依题意,第二个月该商品销量为()122p -万件, 月销售收入为100(122)202p p-⋅-万元,当地政府对该商品征收的税为100(122)(6)20210010p py p p p p=-⋅⋅=-⋅--(万元).所以所求函数为2610p p y p-=-. 由60p ->及0p >得,所求函数的定义域为()0,6.(2)由1y ≥得26110p p p-≥-化简得27100p p -+≤, 即(2)(5)0p p --≤,解得25p ≤≤, 所以当25p ≤≤,税收不少于1万元;第二个月,当税收不少于1万元时,公司的销售收入为()100(6)()2510p g p p p-=≤≤-,因为100(6)400()1001010p g p p p -==+--在区间[]2,5上是减函数,所以max ()(2)50g p g ==(万元). 所以当2p =时,公司销售金额最大.【点睛】本题考查函数的实际应用,解题的关键是正确理解题目,建立正确的函数关系式,根据函数的单调性求最值.22.(1)(())1f f e =;(2)图象见解析,递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)3【分析】(1)分段函数求值,根据x 的范围代入即可;(2)画出函数图象,结合图象求出函数单调性;(3)写出(())f f x 分段函数,根据(())f f x x =,求出解的个数 【详解】解:(1)因为1e >,所以1()2f e ln e ==,所以1(())()12f f e f ==. (2)()|()1|F x f x =-,所以函数图象如下所示:递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)根据题意,012x,(())(22)f f x ln x =-,当112x <<,(())42f f x x =-,当1x e ,(())22f f x lnx =-,当012x时,由(())(22)f f x ln x x =-=,记()(22)g x ln x x =--,则()g x 在1[0,]2上单调递减,且(0)20g ln =>,11()022g =-<, 故()g x 在1[0,]2上有唯一零点1x ,即函数()f x 在1[0,]2上有唯一的二阶不动点1x . 当112x <<时,由(())42f f x x x =-=,得到方程的根为223x =,即函数()f x 在1(,1)2上有唯一的二阶不动点223x =. 当1x e 时,由(())22f f x lnx x =-=,记()22h x lnx x =--,则()h x 在[1,]e 上单调递减,且()110h =>, ()0h e e =-<,故()h x 在[1,]e 上有唯一零点3x ,即函数()f x 在[1,]e 上有唯一的二阶不动点3x . 综上所述,函数()f x 的二阶不动点有3个. 【点睛】(1)这是分段函数求值,基础题;(2)含绝对值的函数单调性的判断,比较容易;(3)这道题难点是要写出(())f f x 分段函数,根据(())f f x x =,求出解的个数,一定注意x 的范围.23.(1)(5,5)- (2)奇函数,见解析 【分析】(1)若()f x 有意义,则需满足505xx->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可. 【详解】 (1)由题,则505xx->+,解得55x -<<,故定义域为()5,5- (2)奇函数,证明:由(1),()f x 的定义域关于原点对称, 因为()()33355log log log 1055x xf x f x x x+--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数 【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明. 24.(1)12-;(2)1-. 【分析】(1)根据()()()4log 41xf x kx k R =++∈的图象关于y 轴对称.得到()()f x f x -=,再利用待定系数法法求解.(2)由(1)知()42=+⋅xx g x m ,[]20log 3x ∈,,令2x t =,[]13t ∈,得到2=+⋅y t m t ,然后利用二次函数的图象和性质求解.【详解】 (1)()()()4log 41x f x kx k R =++∈的图象关于y 轴对称.∴函数()f x 是偶函数.()()f x f x ∴-=,即()()44log 41log 41xx kx kx -+-=++,即()()()44log 411log 41xxk x kx +-+=++,即210k +=,12k ∴=-;(2)()1242142()+=+⋅-=+⋅f x xx x x g x m m ,[]20log 3x ∈,,设2x t =,则[]13t ∈,, 2∴=+⋅y t m t 在[]13t ∈,上最小值为0,又22()24m m y t =+-,[]13t ∈,,当12m-≤ 即2m ≥-时,1t =时10min y m =+=, 1m ∴=-,符合,当132m -<-< 即62m -<<-时,2m t =-时,204min m y =-=,0m ∴= 不符合,当32m-≥ 即6m ≤-时,3t =时,930min y m =+=, 3m ∴=-,不符合, 综上所述m 的值为1-. 【点睛】本题主要考查偶函数的应用,对数运算以及二次函数的图象和性质的应用,还考查了分类讨论的思想和运算求解的能力,属于中档题. 25.(1)是;答案见解析;(2)1m -. 【分析】(1)特殊值验证使得()()f x f x -=-即可;(2)因为函数满足新定义,则问题由存在问题转化为求函数值域问题,进而可以求解.【详解】解:(1)因为()2cos()2cos()2(22323f πππππ-=--=+=⨯=()2cos()2223f πππ=-==()()22f f ππ-=-, 所以存在02=x π使得函数()f x 为“M 类函数”;(2)由已知函数1()423x x f x m +=--满足:()()f x f x -=-,则化简可得:442(22)60x x x x m --+-+-=⋯①令222x x t -=+,则2442x x t -+=-,所以①可化为:2280t mt --=在区间[2,)+∞上有解可使得函数()f x 为“M 类函数”, 即18()2m t t=-在[2,)+∞有解, 而函数18()2t t -在[2,)+∞上单调递增,所以当2t =时,有最小值为18(2)122-=-, 所以1m -,故实数m 的取值范围为:[1-,)+∞.【点睛】本题考查了新定义的函数问题以及函数的有解问题,涉及到求函数的值域问题. 求函数最值和值域的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;(5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. 26.()[)()13,3,()1,3R A B C A B ⋃=-⋂= ()20a =【分析】(1)先求集合B,再根据交集、并集以及补集得定义求结果,(2)先根据条件化为集合关系,再结合数轴求实数a 的取值范围.【详解】(1){()(){}[]||3103,1A x y x x x ===+-≥=-当1a =时,{}{}()222|60|602,3B x x ax a x x x =--<=--<=-, 所以[)3,3,A B ⋃=-因为()()(),31,R C A =-∞-⋃+∞,所以()()1,3R C A B ⋂=(2)因为()R C A B B ⋂=,所以R B C A ⊆,当B =∅时,0a =,满足条件,{}()220|602,3a B x x ax a a a >=--<=-当时,不满足条件,因此0a =.【点睛】防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.。
高一数学必修1期末试卷及答案
高一数学必修1期末试卷及答案高中数学必修一期末试卷一、选择题。
(共12小题,每题5分)1、设集合A={x| x>-1},则()A、XXXB、2 ∉AC、2∈AD、2 ∈ { }改写:集合A由所有大于-1的实数x组成。
2.下列四组函数中,表示同一函数的是( ).A.f(x)=|x|,g(x)=x-1/x-1B.f(x)=log2(x+1),g(x)=2log2(x-1)C.f(x)=x2-1/x2-1,g(x)=x-1D.f(x)=g(x)改写:哪一组函数表示同一个函数?3、设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=()A、{1,2}B、{1,5}C、{2,5}D、{1,2,5}改写:如果A和B的交集是{2},那么A和B的并集是什么?4、函数f(x)=(x-1)/(x-2)的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)改写:函数f(x)=(x-1)/(x-2)的x的取值范围是什么?5、设集合M={x|-2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以集合M为定义域,N为值域的函数关系的是()删除:题目中的图形6、三个数7.3,0.3,㏑0.3,的大小顺序是()A、7>0.3>㏑0.3B、7>0.3>㏑0.3C、0.3>7>㏑0.3D、㏑0.3>7>0.3>3改写:将三个数按照从大到小的顺序排列。
7、若函数f(x)=x+x-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2f(1.25)=-0.984f(1.438)=0.165f(1.5)=0.625f(1.375)=-0.260f(1.4065)=-0.052那么方程x+x-2x-2=0的一个近似根(精确到0.1)为()A、1.2B、1.3C、1.4D、1.5改写:使用二分法逐次计算函数f(x)=x+x-2x-2的一个正数零点附近的函数值,给出下表:x。
人教版高一数学必修1测试题(含答案)
人教版数学必修I 测试题(含答案)一、选择题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U AC B =( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 MN ( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同③ B 中每个元素都有原像 ④ 像的集合就是集合BA 、①②B 、①②③C 、②③④D 、①②③④5、在221,2,,y y x y x x y x===+= ( )A 、1个B 、2个C 、3个D 、4个 6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( )A 、259x x -+B 、23x x --C 、259x x +-D 、21x x -+7、若方程0x a x a --=有两个解,则a 的取值范围是 ( )A 、()0,+∞B 、()1,+∞C 、()0,1D 、∅8、若21025x =,则10x -等于 ( )A 、15-B 、15C 、150D 、16259、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a <<B 、112a << C 、102a << D 、1a > 10、设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都不对12、若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、103 二、填空题13、设{}{}12,0A x x B x x a =<<=-<,若A B Ø,则a 的取值范围是 ; 14、函数y =的定义域为 ; 15、若2x <,则3x -的值是 ; 16、100lg 20log 25+= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考试时间:90分钟 试卷满分:100分
一、选择题:本大题共14小题,每小题4分,共56分.在每小题的4个选项中,只有一项是符合题目要求的.
1.设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ). A .{x |0≤x <1}
B .{x |0<x ≤1}
C .{x |x <0}
D .{x |x >1}
2.下列四个图形中,不是..
以x 为自变量的函数的图象是( ).
A B C D 3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ). A .a 2+a +2
B .a 2+1
C .a 2+2a +2
D .a 2+2a +1
4.下列等式成立的是( ). A .log 2(8-4)=log 2 8-log 2 4
B .
4log 8log 22=4
8
log 2 C .log 2 23=3log 2 2
D .log 2(8+4)=log 2 8+log 2 4
5.下列四组函数中,表示同一函数的是( ). A .f (x )=|x |,g (x )=2x B .f (x )=lg x 2,g (x )=2lg x
C .f (x )=1
-1
-2x x ,g (x )=x +1
D .f (x )=1+x ·1-x ,g (x )=1-2x 6.幂函数y =x α(α是常数)的图象( ). A .一定经过点(0,0) B .一定经过点(1,1) C .一定经过点(-1,1)
D .一定经过点(1,-1)
7.方程2x =2-x 的根所在区间是( ). A .(-1,0)
B .(2,3)
C .(1,2)
D .(0,1)
8.若log 2 a <0,b
⎪⎭
⎫
⎝⎛21>1,则( ).
A .a >1,b >0
B .a >1,b <0
C .0<a <1,b >0
D .0<a <1,b <0
9.函数y =x 416-的值域是( ). A .[0,+∞)
B .[0,4]
C .[0,4)
D .(0,4)
10.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( ).
A .f (x )=
x
1 B .f (x )=(x -1)
2 C .f (x )=e x
D .f (x )=ln(x +1)
11.奇函数f (x )在(-∞,0)上单调递增,若f (-1)=0,则不等式f (x )<0的解集是( ). A .(-∞,-1)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(0,1)
D .(-1,0)∪(1,+∞)
12.已知函数f (x )=⎩
⎨⎧0≤ 30log 2x x f x x ),+(>,,则f (-10)的值是( ).
A .-2
B .-1
C .0
D .1
13.已知x 0是函数f (x )=2x +x
-11
的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则有( ). A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0
D .f (x 1)>0,f (x 2)>0
二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中横线上. 14.A ={x |-2≤x ≤5},B ={x |x >a },若A ⊆B ,则a 取值范围是 . 15.若f (x )=(a -2)x 2+(a -1)x +3是偶函数,则函数f (x )的增区间是 . 16.函数y =2-log 2x 的定义域是 . 17.求满足8
241-x ⎪
⎭
⎫
⎝⎛>x -24的x 的取值集合是 .
三、解答题:本大题共3小题,共28分.解答应写出文字说明、证明过程或演算步骤. 18.(8分) 已知函数f (x )=lg(3+x )+lg(3-x ). (1)求函数f (x )的定义域;
(2)判断函数f(x)的奇偶性,并说明理由.
19.(10分)已知函数f(x)=2|x+1|+ax(x∈R).
(1)证明:当a>2时,f(x)在R上是增函数.
(2)若函数f(x)存在两个零点,求a的取值范围.
20.(10分)某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3 600元时,能租出多少辆车
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大最大月收益是多少
参考答案
一、选择题
1.B 2.C 3.C 4.C 5.A 6.B 7.C 8.D 9.D 10.C 11.A 12.A 13.D 14.B
解析:当x =x 1从1的右侧足够接近1时,x
-11
是一个绝对值很大的负数,从而保证 f (x 1)<0;当x =x 2足够大时,x
-11
可以是一个接近0的负数,从而保证f (x 2)>0.故正确选项是B .
二、填空题
15.参考答案:(-∞,-2). 16.参考答案:(-∞,0). 17.参考答案:[4,+∞). 18.参考答案:(-8,+∞). 三、解答题
19.参考答案:(1)由⎩
⎨⎧030
3>->+x x ,得-3<x <3,
∴ 函数f (x )的定义域为(-3,3). (2)函数f (x )是偶函数,理由如下:
由(1)知,函数f (x )的定义域关于原点对称, 且f (-x )=lg(3-x )+lg(3+x )=f (x ), ∴ 函数f (x )为偶函数.
20.参考答案:(1)证明:化简f (x )=⎩
⎨⎧
1221 ≥22<-,-)-(-,+)+(x x a x x a
因为a >2,
所以,y 1=(a +2)x +2(x ≥-1)是增函数,且y 1≥f (-1)=-a ; 另外,y 2=(a -2)x -2(x <-1)也是增函数,且y 2<f (-1)=-a . 所以,当a >2时,函数f (x )在R 上是增函数.
(2)若函数f (x )存在两个零点,则函数f (x )在R 上不单调,且点(-1,-a )在x 轴下方,所以a 的取值应满足⎩
⎨⎧00
22<-)<-)(+(a a a 解得a 的取值范围是(0,2).
21.参考答案:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为50
000
3600 3-=
12,所以这时租出了100-12=88辆车.
(2)设每辆车的月租金定为x 元,则租赁公司的月收益为
f (x )=⎪⎭⎫ ⎝
⎛
50000 3100--x (x -150)-
50000 3-x ×50=-501(x -4 050)2+307 050. 所以,当x =4 050 时,f (x )最大,其最大值为f (4 050)=307 050. 当每辆车的月租金定为4 050元时,月收益最大,其值为307 050元.,。