理学半导体物理学第一章
半导体物理学简答题及答案知识讲解
第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。
半导体物理基础第一章课件
1.7.5只有一种杂质的半导体
• 2、P型半导体
• 在杂质饱和电离的温度范围内有:p N a • 导带电子浓度为: n ni2 ni2
p Na
• 费米能级为
EF
EV
KT ln
NV Na
EF
Ei
KT
ln
Na ni
43
1.7.5只有一种杂质的半导体
• 结论:对于P型半导体,在杂质饱和电离 温度范围之内,费米能级位于价带顶之上, 本征费米能级之下。随着掺杂浓度提高, 费米能级接近价带顶;随着温度升高,费 米能级远离价带顶。
成共价键时,将因缺少一个价电子而形 成一个空穴,于是半导体中的空穴数目 大量增加。
22
1.6杂质能级
• Acceptor,掺入半导体的杂质原子向半导 体中提供导电的空穴,并成为带负电的 离子。
• 掺入受主杂质的半导体为P(Positive)型 半导体。施主杂质的浓度记为NA。
23
1.6杂质能级
• 受主接受电子称为受主杂 志,提供了一个局域化的 电子态,相应的能级称为 受主能级—Ea。
NV
2 2mdp KT
h3
3 2
• 称为价带有效状态密度
34
1.7.3能带中电子和空穴的浓度
• 导带电子浓度和价带空穴浓度之积
Eg
np Nc NV e KT • 式 把中它E写g为成禁经带验宽关度系。式与E温g 度有E关g0 , 可T以
• 其 时中的Eg值为。禁带宽度温度系数,Eg0为0K
Chap1 半导体物理基础
1
1.2 能带
一、能带的形成 • 能级:电子所处的能量状态。 • 当原子结合成晶体时,原子最外层的价
半导体物理第一章习题答案
半导体物理第一章习题答案半导体物理第一章习题答案在半导体物理学的学习中,习题是非常重要的一部分。
通过解答习题,我们可以加深对理论知识的理解,巩固所学内容,并培养解决问题的能力。
下面是一些关于半导体物理第一章的习题及其答案,希望对大家的学习有所帮助。
1. 什么是半导体?答:半导体是介于导体和绝缘体之间的材料。
它的导电性介于导体和绝缘体之间,可以通过施加外界电场或温度的变化来改变其电导率。
2. 半导体的能带结构有哪些特点?答:半导体的能带结构具有以下特点:- 价带和导带之间存在禁带,禁带宽度决定了材料的导电性能。
- 价带和导带中的能级数目与电子数目之间存在关联,即保持电中性。
- 价带和导带中的电子分布符合费米-狄拉克分布。
3. 什么是载流子?答:载流子是指在半导体中参与电流传输的带电粒子。
在半导体中,载流子主要有电子和空穴两种类型。
4. 什么是固有载流子浓度?答:固有载流子浓度是指在材料中由于温度引起的自发激发和热激发所产生的载流子浓度。
它与材料的能带结构和温度有关。
5. 什么是掺杂?答:掺杂是指向纯净的半导体中加入少量杂质,通过改变杂质的电子结构来改变半导体的电导性能。
掺杂分为n型和p型两种。
6. 什么是pn结?答:pn结是由n型和p型半导体通过扩散或外加电场形成的结构。
在pn结中,n型半导体中的自由电子会扩散到p型半导体中,而p型半导体中的空穴会扩散到n型半导体中,形成电子-空穴复合区域。
7. 什么是势垒?答:势垒是指pn结两侧带电粒子所形成的电场引起的电位差。
势垒的存在导致了电子和空穴的扩散和漂移,从而产生电流。
8. 什么是正向偏置和反向偏置?答:正向偏置是指在pn结上施加外加电压,使得p区的正电荷和n区的负电荷相吸引,势垒减小,电流得以流动。
反向偏置是指在pn结上施加外加电压,使得p区的负电荷和n区的正电荷相吸引,势垒增大,电流被阻断。
9. 什么是击穿?答:击穿是指在反向偏置下,当外加电压达到一定值时,pn结中的电场强度足够大,使得势垒被完全破坏,电流急剧增大的现象。
半导体物理学 第一章__半导体中的电子状态
The End of Preface
第一章 半导体中的电子状态
主要内容:
1.1 半导体的晶格结构和结合性质 1.2半导体中电子状态和能带 1.3半导体中电子运动--有效质量 1.4 本征半导体的导电机构--空穴 1.5 常见半导体的能带结构 (共计八学时)
本章重点:
*重 点 之 一:Ge、Si 和GaAs的晶体结构
晶体结构周期性的函数 uk (x) 的乘积。
分布几率是晶格的周期函数,但对每个原胞的
相应位置,电子的分布几率一样的。 波矢k描述晶体中电子的共有化运动状态。
它是按照晶格的周期 a 调幅的行波。
这在物理上反映了晶体中的电子既有共有化的 倾向,又有受到周期地排列的离子的束缚的特点。
只有在 uk (x) 等于常数时,在周期场中运动的 电子的波函数才完全变为自由电子的波函数。
硅基应变异质结构材料一维量子线零维量子点基于量子尺寸效应量子干涉效应量子隧穿效应以及非线性光学效应等的低维半导体材料是一种人工构造通过能带工程实施的新型半导体材料是新一代量子器件的基宽带隙半导体材料宽带隙半导体材料主要指的是金刚石iii族氮化物碳化硅立方氮化硼以及iivi族硫锡碲化物氧化物zno等及固溶体等特别是sicgan和金刚石薄膜等材料因具有高热导率高电子饱和漂移速度和大临界击穿电压等特点成为研制高频大功率耐高温抗辐射半导体微电子器件和电路的理想材料在通信汽车航空航天石油开采以及国防等方面有着广泛的应用前景
(1)元素半导体晶体
Si、Ge、Se 等元素
(2)化合物半导体及固溶体半导体
SiC
AsSe3、AsTe3、 AsS3、SbS3
Ⅳ-Ⅳ族
Ⅴ-Ⅵ族
化合物 半导体
InP、GaN、 GaAs、InSb、
半导体物理课件1-7章(第一章)
室温下,金刚石的禁带宽度为6~7eV,它是绝 缘体;硅为1.12eV,锗为0.67eV,砷化镓为1.43eV, 所以它们都是半导体。
★本征激发:
一定温度下,价带电子依靠热激发获得能量脱 离共价键,成为准自由电子。价带电子激发成 为导带电子的过程,称为本征激发。
•*第8章 半导体表面MIS结构 •*第9章 半导体异质结构 •*第10章 半导体的光学性质和光电与发光现象 •*第11章 半导体的热电性质 •*第12章 半导体磁和压阻效应 •*第13章 非晶态半导体
第1章 半导体中的电子状态
本章重点 •半导体材料中的电子状态及其运动规律
处理方法 •单电子近似——能带理论
Springer (2010) • 7 Donald A. Neamen 《半导体物理与器件》,4th Ed,电子工业出版社 • ……
课程设置:
绪论:
2014年诺贝尔物理学奖被授予了日 本科学家赤崎勇、天野浩和美籍日 裔科学家中村修二
表彰他们发明了蓝色发光二 极管(LED),并因此带来的
1.2.2 半导体中的电子状态和能带
•★自由电子运动规律
动量方程 p m0v
能量方程 E p2
波方程
Φ
(
r
,t
2m0
)=A
e
i
(k
r
t
)
( x )e it
k为波矢,大小等于2/λ
• 方向与波面法线平行,即波的传播方向。
德布罗意假设:一切微观粒子都具有波粒二象性.
具有确定的动量和确定能量的自由粒子,相当于 频率为和波长为的平面波
半导体物理学复习提纲(重点)
第一章 半导体中的电子状态§1.1 锗和硅的晶体结构特征 金刚石结构的基本特征§1.2 半导体中的电子状态和能带 电子共有化运动概念绝缘体、半导体和导体的能带特征。
几种常用半导体的禁带宽度; 本征激发的概念§1。
3 半导体中电子的运动 有效质量导带底和价带顶附近的E(k )~k 关系()()2*2nk E k E m 2h -0=; 半导体中电子的平均速度dEv hdk=; 有效质量的公式:222*11dk Ed h m n =。
§1。
4本征半导体的导电机构 空穴空穴的特征:带正电;p n m m **=-;n p E E =-;p n k k =-§1。
5 回旋共振§1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴第二章 半导体中杂质和缺陷能级§2。
1 硅、锗晶体中的杂质能级基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。
§2。
2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为第三章 半导体中载流子的统计分布热平衡载流子概念§3。
1状态密度定义式:()/g E dz dE =;导带底附近的状态密度:()()3/2*1/232()4ncc m g E VE E h π=-;价带顶附近的状态密度:()()3/2*1/232()4p v Vm g E V E E hπ=-§3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01()1exp /F f E E E k T =+-⎡⎤⎣⎦;Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关.1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。
3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。
半导体物理第一章
• -群速度是介质中能量的传输速度 • -布洛赫定理说明电子的运动可以看作是很多行波
的叠加,它们可以叠加为波包;而波包的群速就是 电子的平均速度。 • -波包由一个特定波矢k附近的诸波函数组成,则
波包群速Vg为半导体中电子的平均速度
1.3.3 半导体中电子的加速度
a
➢ 体心立方单原胞角落上的1个原子将被8个相邻的原胞所均 分,即一个角落原子将有1/8被包含在单原胞之中,因此一体 心立方的原胞将有两个原子
➢ 答案:1.6x1022个/cm3
4.晶面与晶向
晶面可以用平面与晶格坐标轴的截距来表达。 截距:l=2, m=1, n=3 倒数:(1/2, 1, 1/3) 乘以最小公分母:(3, 6, 2) 该平面成为:(362)面
1.2 半导体中的电子状态和能带
重点:
• 电子的共有化运动 • 导带、价带与禁带
1 、原子的能级和晶体的能带
(1)孤立原子的能级
原子中的电子在原子核和 其它电子的作用下,分别 处在不同的能级,形成所 谓的电子壳层。用不同的 符号表示。和能量一一对 应
角量子数 l:0,1,2,…(n-1) 磁量子数 ml:0,±1,±2,…±l 自旋量子数ms:±1/2
(x) Aei2kx
电子在空间是等几率分布的,即自由电子在空间作 自由运动。
波矢k描述自由电子的运动状态。
2.周期势场中电子的波函数
V
孤
1
立 原
x
子
的
势 场
晶体的势能曲线
电子的运动方程为
2
2m0
d2 dx2
V (x) (x)
E (x)
( x) ei2kxuk ( x) 为布洛赫函数
半导体物理学简答题及答案知识讲解
第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。
半导体物理第一章解读
讨论:
对于半导体Ge,上述讨论依然成立。由于Ge 较大的原子系数,其对价电子束缚力较弱。 存在大量的化合物半导体材料。比如III-V 型化合物:GaAs,InSb,GaP,InP等。II-VI型 半导体:ZnO,CdS. GaAs是一类重要的半导体,已广泛用于制 造发光二极管、激光器以及微波器件等。
第一章:掺杂半导体的导电性
1.1 载流子
半导体的导电与金属不同,存在两种载流 子:电子和空穴。 空穴:可以自由移动的缺位。 常温下,热运动对半导体导电性影响十分微 弱(对于Si,Ne, Np<1.5×1010 cm-3)。 掺杂是控制半导体中载流子浓度,从而控制半导体 导电性的重要手段。
1.2 掺杂
xj称为结深。表面厚度为xj的 这一层叫做扩散薄层,通常厚 度为几个微米。
扩 散 后 的 杂 质 浓 度 分 布 ( 型 )
p
离开表面深度
对于电阻率恒定的薄层导体,如果其宽为W、厚为 d,则其电阻为:
L L R ( ) Wd d W
比例系数 d 称为方块电阻 R
( x) N ( x) q 对于电阻率不恒定的薄层导体, 1 1 1 R xj x 1 j xj xj x ( x)dx q 0 N ( x) dx j xj 0
授课主要内容(半导体物理基础知识):
掺杂半导体的导电性(载流子,电导率,电阻率, 迁移率,方块电阻) 能级(多子,少子,费米能级,非平衡载流子复合、 扩散) PN结(I-V关系,空间电荷区,晶体管,PN结击穿、 电容效应,金属-半导体接触) 半导体表面(表面空间电荷区,MIS电容器,MOS场 效应晶体管,电荷耦合器件) 晶格和缺陷(空位,间隙原子,位错,层错,相变, 相图)
半导体物理第一章
2、闪锌矿结构和混合键
III-V族化合物半导体绝大 多数具有闪锌矿型结构。闪 锌矿结构由两类原子各自组 成的面心立方晶胞沿立方体 的空间对角线滑移了1/4空 间对角线长度套构成的。每 个原子被四个异族原子包围。 例: GaAs、GaP、ZnO
2、闪锌矿结构和混合键
两类原子间除了依靠共价键结合外,还有一定 的离子键成分,但共价键结合占优势。 以离子为结合单元,由正、负离子组成的、靠 库仑力而形成的晶体。此种结合力称为离子键。 由碱金属元素与卤族元素所组成的化合物晶体 是典型的离子晶体,如NaCl、CsCl等。II-VI族 化合物晶体也可以看成是离子晶体,如CdS、 ZnS等。
⑴ 每一个BZ 内包含了所有能带中的全部电子状态。或者说,每一个区 域所包含的波矢数(即 k 的取值个数)等于晶体所包含的原胞数( N)。 因此,电子的运动状态可以在一个 BZ内进行讨论,注意,在同一个BZ内, 电子的能量是准连续的。
布里渊区有如下若干主要特点:
布里渊区与能带:
求解一维条件下晶体中电子的薛定谔方程,可以得到如图所 示的晶体中电子的E(k)~k关系,虚线是自由电子 E(k)~k关 系。
1.自由电子的运动状态
(1)孤立原子中的电子是在该原子的核和其它电子的势场中 运动 (2)自由电子是在恒定势场中运动 (3)晶体中的电子是在严格周期性重复排列的原子间运动
单电子近似——晶体中的某一个电子是在周期性排列且固 定不动的原子核的势场以及其它大量电子的平均势场中运 动,这个势场也是周期性变化的,而且它的周期与晶格周 期相同。
原子间通过共价键结合。
共价键的特点:饱和性、方向性。
⑴ 饱和性:共价键的饱和性是指,一个原子只能形成一定数目的共价 键。由于共价键是两个原子通过共用各自未配对的电子而形成的,而原 子的电子结构是确定的,某一原子在与其它原子化合时,能够形成共价 键的数目就完全取决于原子外层电子中未配对的电子数。此乃饱和性的 实质。 ⑵ 方向性:共价键的方向性是指,原子只能在某些特定的方向上形成 共价键。按量子理论,共价键实际上是由于相邻原子的电子云交叠而形 成的,电子云交叠程度的大小决定了共价键的强弱。因此,原子形成共 价键时,总是取电子云密度最大的方向。这就是方向性的根源。
半导体物理学_第01章绪论2016
半导体物理发展史
1900后的重大事件
理论的突破:肖克莱(W. shockley)。 1949年他在“the Bell System Technical Journal”上发表了题为“The Theory of PN Junction in semiconductor and PN Junction Transistors”的文章。
D. 参考文献 Tudor Jenkins, Physics Education 40 (5), 430, 2005
课程简介
半导体物理学发展与展望参考资料
Scientific American,Jan., 1998, Special Issue, Solid-State Century: the past, present and future of the transistor
而且它还是一系列新材料、新结构、新效应、新器件和 新工艺产生的源泉。极大地丰富了凝聚态物理的研究内容 和有力地促进了半导体科学技术的迅速发展。
半导体的基本概念
半导体的概论
Different kinds of semiconducting devices
半导体的基本概念
半导体的导电能力(电阻率)
半导体的基本概念
半导体物理学
物理科学与技术学院 夏向军
ቤተ መጻሕፍቲ ባይዱ
PART ONE
课程简介 Syllabus
内容概要
01 课程简介
02 半导体的基本概念
03 半导体的发展史
04
半导体物理的未来
课程简介 任课教师信息
主讲教师: 夏向军 办公室: 九号教学楼12楼
1206室 QQ:370048061
QQ群: 236473633 (半导体物理学_纳米所)
半导体物理学重点和难点
重点和难点
第一章半导体中的电子状态
1、Si和GaAs的晶体结构
2、Ge、Si和GaAs的能带结构
3、本征半导体及其导电机构、空穴
4、本征半导体及其导电机构、空穴
第二章半导体中的杂质和缺陷
l、本征激发与本征半导体的特征 2、杂质半导体与杂质电离第三章半导体中载流子的统计分布
1、热平衡态时非简并半导体中载流子的浓度分布
2、费米能级E F的相对位置。
第四章半导体中的导电性
1、迁移率
2、散射——影响迁移率的本质因素
3、电导率
4、弱电场下电导率的统计理论
第五章非平衡载流子
1、非平衡载流子的产生
2、非平衡载流子的复合
3、非平衡载流子的运动规律
4、扩散方程
5、爱因斯坦关系
6、连续性方程
第六章金属和半导体接触
1、阻挡层与反阻挡层的形成
2、肖特基势垒的定量特性
3、欧姆接触的特性
4、少子的注入
第七章半导体表面与MIS结构
1、表面电场效应
2、理想与非理想MIS结构的C-V特性
3、Si-SiO2系统的性质
4、表面电导。
半导体物理学Semi_Phys01
一、晶格的周期性
原胞:一个晶格最小的周期性单元
◆原胞的选取不是唯一的; ◆但实际上各种晶格结构已有习惯的原胞选取的方式;
◆三维晶格的原胞通常是一个平行六面体。
晶格基矢:是指原胞的边矢量
a1 ai a2 a j a ak 3
二、晶向
• 晶向指数:可以看成分列在一系列相互平行的直线系上, 这些直线系称为晶列。 • 同一个格子可以形成方向不同的晶列 • 每一个晶列定义了一个方向,该方向称为晶向 • 晶向用晶向指数标记 晶向指数的确定:如果沿着某一晶 向,从一个原子到最近的原子的位 l1a1 l2a2 l3a3 ,则该晶 移矢量为: 向就用l1 、l2 、l3来标志,写成 [l1l2l3]。标志晶向的这组数称为晶 向指数。
第一章 半导体中的电子状态
本章重点 • 半导体单晶材料中的电子状态及其运动 规律 • 领会“结构决定性质” 处理方法 • 单电子近似——能带论
固体物理基本概念回顾 固体:处于凝聚态下的物体。 晶体:内部排列是有规则地,具有一定周期性。 非晶体:原子的排列是无规则的,过冷溶体,玻璃,塑 料。 单晶体:整块材料中,原子都是规则地,周期性地重复 排列。 多晶体:由大量的微小的晶粒组成,每个小晶粒内,原 子是规则排列的。
按照构成固体的粒子在空间的排列情况,可以将固体分为:
单晶 有周期性
非晶 无周期性
多晶 每个小区域有周期性
• 基元:构成晶体的最小的重复单元。 • 空间晶格或布拉伐格子:基元的代表点空间分布的周 期性。 • 结晶学原胞:以格点为顶点,以三个独立方向上的周 期为边长所构成的平行六面体,反映晶体的周期性, 同时,也反映对称性。 • 物理学原胞:最小体积的原胞,每个原胞只含一个基 元。 • 基矢量:原胞三个方向上,长度等于原胞边长的三个 独立矢量。
半导体物理学第一章4
令 空穴加速度可表示为: 空穴加速度可表示为: a =
* m* = −mn p
f = * * mp mp
r qE
m* p
即为空穴的有效质量
由于空穴一般位于价带顶, 由于空穴一般位于价带顶,在价带顶电子有效质量为负 值,所以空穴的有效质量为正
空穴概念小结
空穴带一个电子电量的正电荷 空穴位于价带顶,有效质量是一个正常数, 空穴位于价带顶,有效质量是一个正常数,它与 价带顶附近空态电子有效质量大小相等, 价带顶附近空态电子有效质量大小相等,符号相 反 空穴的运动速度就是价带顶附近空态电子运动速 度 空穴的浓度就是价带顶附近空态的浓度p 空穴的浓度就是价带顶附近空态的浓度 空穴是一种假想粒子, 空穴是一种假想粒子,它概括了未填满价带中大 量电子对半导体导电电流的贡献
dk f = h = qE dt h dt = dk qE
t =∫
代入数据
1 2a 0
h h 1 dk = qE qE 2a
时 当电场为102 v/m时,t=8.3x10-8 s 当电场为 当电场为10 时 当电场为 7 v/m时,t=8.3x10-13 s
例4
根据如图所示的能量曲 的形状试分析, 线E(K)的形状试分析, 的形状试分析 (1)那个能带中,电 )那个能带中, 子有效质量数值最小。 子有效质量数值最小。 (2)设Ⅰ,Ⅱ为满带, 为满带, ) 带为空带, Ⅲ带为空带,若少量电 子进入Ⅲ 子进入Ⅲ带,在Ⅱ带中 产生同样数目的空穴, 产生同样数目的空穴, 那么Ⅱ 那么Ⅱ带中空穴的有效 质量比Ⅲ 质量比Ⅲ带中电子的有 效质量大,还是小? 效质量大,还是小?
解:
对一维情况K状态电子的速度为: 对一维情况 状态电子的速度为:Байду номын сангаас状态电子的速度为
半导体物理学刘恩科第一章p
2p
2p
2p
2s
2s
2s
• 电子受到另一原子的作用 能级分裂 • 两个原子越靠近,能级分裂越厉害!
1s 原子间距
➢ 晶体中原子周期性紧密排列 电子共有化运动:
• 电子只能在相似壳层中转移
• 只有最外层电子的共有化运动才显著!(交叠程度)
电子只能在相似壳层中转移 能级分裂成N个:一般N 很大
3. 具有波粒二象性的微观粒子,其运动不能再 用经典力学来描述,粒子状态用波函数表示, 而决定其状态变化的方程是薛定谔方程,而 不再是牛顿运动方程
➢自由电子的波函数和能量
自由电子:在恒定势场中运动,即处处不受力 U (r) U0
先看最简单情形:一维,质量 m0,且取 U0 0
故自由电子的波函数为:
化学键: 共价键+离子键 (离子键占优势)
(001)面是两类原子各自 组成的六方排列的双原子 层按ABABA…顺序堆积
➢纤锌矿型结构和混合键
– Ⅱ-Ⅵ族二元化合物半导体也可为纤锌矿型结构:
➢基础结构仍为
正四面体结构
➢具有六方对称性
晶格常数 a、c
➢复式晶格
c
a
• 纤锌矿型结构和混合键
– 注意几点:
2. 三维情形: 沿 k方向传播的平面波
(r,
t
)
(r)
f
(t)
Aexp[i(k
r t )]
3. 自由电子波函数的强度| (r, t) |2 A2,说明任意时刻
在空间中任意一点找到自由电子的几率相等,这符合
其“自由”之意
➢自由电子的波函数和能量
– 注意几点:
4. 自由电子能量、动量、速度与波矢之间的关系为:
半导体物理学
偏离理想的各种因素
• 1、反向电压时的势垒区产生电流 J g qni X D / 2
• 2、势垒区的复合电流
• 3、大注入
pn结电容
• 势垒电容 突变结
线性缓变结
• 扩散电容
pn击穿
• 雪崩击穿 • 隧道击穿
• 热击穿
第七章金属和半导体接触
• Wm金属功函数 • 半导体功函数
接触电势差
• 对于n型半导体
• 1、当Wm>Ws • 阻挡层 • qVd=-qVs=Wm-Ws
• 2、当Wm<Ws 反阻挡层
表面态
• 受主型表面态 • 施主型表面态
金属接触整流理论
• 扩散理论 Jsd=
热电子发射理论
镜像力、隧道效应
• 反向特性影响显著 • 原因: 金属的势垒高度下降
隧道效应: 当势垒宽度很小时可近似认为 完全透明
n0 ND 4、过渡区:
n0 N D p0 • 5、高温本征激发区:
n0 p0
费米能级的变化
• 温度T
• 杂质浓度
简并半导体
禁带宽度变窄效应
• 杂质能级扩展
第四章半导体导电性
重点在于迁移率
J ,欧姆定理微分形式 nq,电导率 1/ nq,电阻率
1/(nqn pq p )
电阻率随温度变化
• 对于纯半导体: • 对于掺杂半导体: • AB;BC;C...
第五章非平衡载流子
• 非平衡状态 • 比平衡状态多出来的就是非平衡载流子
非平衡载流子寿命
复合理论
• 直接复合 • 间接复合:体内复合,表面复合
直接复合
复合率:R=rnp; 产生率:G 热平衡:G rn0 p0
《半导体物理学》刘恩科课后答案
代入数据得:
t=
6.62 ×10-34
= 8.3 ×10−6 (s)
2 ×1.6 ×10−19 × 2.5 ×10−10 × E
E
当 E=102 V/m 时,t=8.3×10-8(s);E=107V/m 时,t=8.3×10-13(s)。
3. 如果 n 型半导体导带峰值在[110]轴上及相应对称方向上,回旋共振实验结果应 如何? [解] 根据立方对称性,应有下列 12 个方向上的旋转椭球面:
(6.625
×
10
−34
)
2
( 5.7
×
1018
)
2 3
=
2 2 × 3.14 ×1.38 ×10−23 × 300
= 3.39173 ×10−31 Kg
﹟求 77k 时的 Nc 和 Nv:
3
2(2π ⋅ mn*k0T ') 2
N
' c
=
h3
Nc
3
2(2π ⋅ mn*k 0T ) 2
=
(
T' T
)
3 2
d 2 EC dk 2
= 2h2 3m0
+ 2h2 m0
= 8h2 3m0
;∴
mn=
h2
/
d 2 EC dk 2
=
3 8
m0
③价带顶电子有效质量 m’
d 2 EV dk 2
=
− 6h2 m0
,∴ mn'
=
h2Leabharlann /d 2 EV dk 2
=
−
1 6
m0
④准动量的改变量
h △k= h (kmin-kmax)=
半导体物理学(第一章)
n=1 2个电子
15
Si 半导体物理学 黄整
第一章 半导体中的电子状态
原子的能级的分裂 4个原子能级的分裂 个原子能级的分裂
孤立原子的能级
16
半导体物理学 黄整
第一章 半导体中的电子状态
大量原子的能级分裂为能带
17
半导体物理学 黄整
第一章 半导体中的电子状态
Si的能带(价带、导带和带隙) 的能带(价带、导带和带隙)
37
k = kx + k y + kz
2 2 2
2
半导体物理学 黄整
第一章 半导体中的电子状态
具有确定能量E的全部 点 具有确定能量 的全部k点 的全部
r r r r k = kx + k y + kz
构成一个封闭的曲面, 构成一个封闭的曲面,称为等能面 理想的等能面为k空间的一个球面 理想的等能面为 空间的一个球面
4、无论是自由电子还是晶体材料中的电子,他们 、无论是自由电子还是晶体材料中的电子, 在某处出现的几率是恒定不变的。 在某处出现的几率是恒定不变的。 ( ) 5、分别叙述半导体与金属和绝缘体在导电过程中 、 的差别。 的差别。
30
半导体物理学 黄整
第一章 半导体中的电子状态
与波矢k的关系 三、半导体中能量E与波矢 的关系 半导体中能量 与波矢
gap gap
3
半导体物理学 黄整
第一章 半导体中的电子状态
硼 铝 锌 镓 镉 铟
碳 硅 锗 锡
氮 氧 磷 硫 砷 硒 锑 碲
4
半导体物理学 黄整
第一章 半导体中的电子状态
运动的描述
Minkowski空间:
x,y,z,ict px,py,pz,iE/c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料性质从体内向表面的转变 半导体表面物理
能带特征从自然向人工的转变 半导体超晶格物理
体系结构从三维向零维的转变 纳米半导体物理
元素组成从原子向分子的转变 有机半导体物理
半导体物理学研究对象
研究半导体的各种物理性质及其内在规 律。
研究在外界作用下(掺杂、电场、温度场、 磁场)半导体性质的变化及其原因。
导体、半导体、绝缘体的能带
(a)绝缘体
(b)半导体
(c)导体
1.3 半导体中电子的运动 有效质量
E(k)和k之间的关系 之前只给出了一个定性的关系,对E(k)和k 的关系式并不清楚。
通常半导体中,起作用的是导带底或价带 顶的电子,需考虑能带极值附近E(k)和k的 关系。
1.4 本征半导体的导电结构 空穴
2.闪锌矿型结构和离子键
由三族元素Al、Ga,铟和五族元素P、As组 成的三五族化合物,它们大都是闪锌矿型结 构。 闪锌矿结构:与金刚石型结构类似,由两 类原子组成,双原子复式格子。
以共价键为主,但有一定的离子键成分。
3.纤锌矿型结构
二-六族化合物,如锌、铬、汞和硫、 硒、碲等组成的化合物大部分具有闪 锌矿型结构,但其中有些也可具有纤 锌矿型结构。
物质存在的形式多种多样,固体、液体、气体、 等离子体等等。
通常把导电性和导电导热性差或不好的材料, 如金刚石、人工晶体、琥珀、陶瓷等等,称为 绝缘体。
而把导电、导热都比较好的金属如金、银、铜、 铁、锡、铝等称为导体。
可以简单的把介于导体和绝缘体之间的材料称 为半导体。
半导体物理发展进程
半导体物理的发展序幕 晶态半导体物理
半导体种类繁多,本课程主要针对硅基 晶态半导体作为研究对象。
学习本课程的基础课程
量子力学
半导体 物理
热力学
固体物理 统计物理
主要参考书:
半导体物理学,第7版,刘恩科,朱秉升, 罗晋生等编,电子工业出版社,2008年
其他参考书:
半导体物理与器件,裴素华,机械工业出版 社, 2008年9月 固体物理,方俊鑫,上海科技出版社, 1995
1.5回旋共振
不同的半导体材料,其能带结构不同,从 理论上难以确定E与波矢k的关系,需借助 实验的帮助。
回旋共振实验用于测量半导体中载流子有 效质量及能带结构。
.6硅和锗的能带结构
1.导带结构
若等能面是球面,那么只能观察到一个吸收峰。
对硅来说, (1)当B沿[111]晶轴方向,只能观察到一个吸收峰; (2)当B沿[110]晶轴方向,可以观察到两个吸收峰; (3)当B沿[100]晶轴方向,也能观察到两个吸收峰; (4)当B沿任意晶轴方向,可以观察到三个吸收峰。
两个面心立方沿立方 体的空间对角线互相 位移了空间对角线四 分之一的长度套构而 成。
8个原子在角顶,6个 在面中心,晶胞内部 有4个原子,顶角和 面心与这4个原子周 围不同,是相同原子 构成的复式格子。
晶向,面的介绍
(001)(010)(100)(110)(111)面 <001><110><111>向 {100}{110}{111}
相对位移形成复式格子。 相对结构子晶格相互位移套构而成
结晶学 晶体学中的布喇菲原胞,按对称特点来选取。基 矢在晶轴方向,固体物理学中选取的原胞,不是 任意重复单元,基矢方向和晶轴方向还是有一定 的相对取向。 结晶学中的立方晶系,布喇菲原胞
简立方(SC) 体心立方(BCC) 面心立方(FCC)
离子键
1.2半导体中的电子状态和能带
半导体材料大都是单晶体。单晶体是 由靠得很紧密的原子周期性重复排列 而成,相邻原子之间间距在nm量级, 因此半导体中电子状态肯定和单原子 的电子状态有所不同。
电子的共有化运动
共有化运动的能量
原子能级分裂为能带的示意图
金刚石型结构价电子能带示意图 导带 价带 禁带
半导体中电子的状态和能带
晶体中的原子与孤立原子的电子不同,也 和自由运动的电子不同。 单电子近似认为,晶体中某一个电子是在 周期性排列且固定不动的原子核势场和其 他大量电子的势场中运动。
研究发现,电子在周期性势场中运动的基 本特点和自由电子运动十分相似。
布里渊区与能带
简约布里渊区与能带
金刚石型结构的第一布里渊区
第一章 半导体中的电子状态
1.1半导体的晶格结构和结合性质 1.2半导体的电子状态和能带 1.3半导体中电子的运动 有效质量 1.4本征半导体的导电机构 空穴 1.5回旋共振 1.6硅和锗的能带结构
1.1半导体的晶格结构和结合性质
半导体的单晶材料和其他固态晶体材料一 样,是由大量原子周期性重复排列而成。每 个原子又包含原子核和核外电子。
单电子近似方法,即假设每个电子是在 周期性排列且固定不动的原子核势场及 其他电子的平均势场中运动。该势场具 有与晶格同周期的周期性势场。
三种简单格子
简立方 体心立方 面心立方
原胞:重复的单元。 边长等于该方向上的周期,结点为顶点的平行六
面体
晶体学原胞: 为反映晶体的对称性,体积不一定最小
布喇菲点阵 多种原子:同种原子组成子晶格
硅有六个椭球等能面,分别分布在<100>晶 向的六个等效晶轴上,电子主要分布在这六 个椭球的中心(极值)附近。
仅从回旋共振的实验还不能决定导带极值 (椭球中心)的确定位置。通过施主电子自 旋共振实验得出,硅的导带极值位于<100> 方向的布里渊区边界的0.85倍处
1.金刚石型结构和共价键
Si,Ge都是第四周期的 元素,即外层有四个价 电子。硅、锗的结合依 靠共价键结合,组成金 刚石型结构。结构特点: 每一个原子周围有四个 最邻近的原子,这四个 原子分别处在四个顶角 上,任一顶角的原子和 中心原子各贡献一个价 电子为两个原子所共有。
四面体的结合
结晶学原胞
解释: 如果硅导带底附近等能面是沿[100]方 向的旋转椭球面,椭球长轴与该方向重合,那 么理论与实验结果一致。同时,导带最小值不 在k空间原点,在[100]方向上。
硅导带等能面示意图
硅的导带等能面,6 个旋转椭球面
锗的导带等能面,8 个半旋转椭球面
回旋共振的实验发现,硅、锗电子有效质量 各向异性,说明其等能面各向异性。