平面向量的几何意义
平面向量数量积的几何意义
00:58
19
练习:已知|a|=4,|b|=2,且a与b的夹角为120°.求 (1)|2a-b|; (2)(a-2b)·(a+b);(3)a与a+b的夹角; (4)若(a-b)⊥(λa+b),求λ的值.
(4)因为(a-b)⊥(λa+b),所以(a-b)·(λa+b)=0, 即λa2+(1-λ)a·b-b2=0,
(a b) c a (b c)成立吗?
(a b)c (b c)a成立吗?
注意: 4、 向量的数量积不满足于结合律。
00:58
13
例2 .已知 | a | 6,| b | 4, a与b的夹角为60,求(a 2b)( a 3b)
解:(a 2b)(a 3b)
小结:知三求一,注意公式变形
00:58
12
类比于实数乘法的运算 律,向量的数量积满足哪些 运算律呢?
平面向量数量积的运算律:
(1)交换律:a b b a
(2)数乘结合律:(a)b (a b) a (b)
(3)分配律:(a b)c ac bc
向量的数量积满足结合律吗?
(向量 b 在 a 方向上)的投影.
00:58
22
向量 b 在方向 a 上的投影是数量,不是向量,
什么时候为正,什么时候为负? b cos
B
b
O
a B1 A
b cos 0
B b
B1 O a A
b cos 0
B b
O(B1 ) a A
b cos 0
a
Ob B
A
b
a
B
O
A
b cos b
指出下列图中两向量的夹角
高三一轮复习2021版 第五章 第1讲 平面向量的概念及线性运算
知识点考纲下载平面向量的几何意义及基本概念理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念.向量的线性运算掌握平面向量加法、减法、数乘的概念,并理解其几何意义.平面向量的基本定理及坐标表示理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题.掌握平面向量的正交分解及其坐标表示.掌握平面向量的加法、减法与数乘的坐标运算.平面向量的数量积及向量的应用理解平面向量数量积的概念及其几何意义.掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系.会用坐标表示平面向量的平行与垂直.会用向量方法解决某些简单的平面几何问题.复数了解复数的定义、复数的模和复数相等的概念.了解复数的加、减运算的几何意义.理解复数代数形式的四则运算.第1讲平面向量的概念及线性运算1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算|λ a|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λ a=0λ(μ a)=(λμ)a;(λ+μ)a=λa+μ__a;λ(a+b)=λa+λb3.两个向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.[说明]三点共线的等价关系A,P,B三点共线⇔AP→=λAB→(λ≠0)⇔OP→=(1-t)·OA→+tOB→(O为平面内异于A,P,B 的任一点,t∈R)⇔OP→=xOA→+yOB→(O为平面内异于A,P,B的任一点,x∈R,y∈R,x+y=1).判断正误(正确的打“√”,错误的打“×”)(1)向量与有向线段是一样的,因此可以用有向线段表示向量.()(2)AB→+BC→+CD→=AD→.()(3)若两个向量共线,则其方向必定相同或相反.()(4)若向量AB→与向量CD→是共线向量,则A,B,C,D四点在一条直线上.()(5)若a∥b,b∥c,则a∥c.()(6)当两个非零向量a,b共线时,一定有b=λa,反之成立.()答案:(1)×(2)√(3)×(4)×(5)×(6)√如图所示,D是△ABC的边AB的中点,则向量CD→=()A.-BC→+12BA→B.-BC→+12AB→C.BC→-12BA→D .BC →+12BA →解析:选A.因为CD →=CB →+BD →,CB →=-BC →, BD →=12BA →,所以CD →=-BC →+12BA →.(2019·瑞安模拟)在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 一定是( ) A .矩形 B .菱形C .正方形D .平行四边形解析:选D.依题意得AB →+BC →=AB →+AD →,则BC →=AD →,因此BC ∥AD ,且BC =AD ,所以四边形ABCD 是平行四边形,故选D.给出下列命题:①零向量的长度为零,方向是任意的; ②若a ,b 都是单位向量,则a =b ; ③向量AB →与BA →相等.则所有正确命题的序号是________.解析:根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误.答案:①已知平面内四点A ,B ,C ,D ,若AD →=2DB →,CD →=13CA →+λCB →,则λ的值为________.解析:依题意知点A ,B ,D 三点共线,于是有13+λ=1,λ=23.答案:23平面向量的有关概念给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若|a |=|b |,则a =b 或a =-b ;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;其中真命题的序号是________.【解析】①是错误的,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点.②是错误的,|a|=|b|,但a,b方向不确定,所以a,b不一定相等或相反.③是正确的,因为AB→=DC→,所以|AB→|=|DC→|且AB→∥DC→;又A,B,C,D是不共线的四点,所以四边形ABCD为平行四边形.④是错误的,当a∥b且方向相反时,即使|a|=|b|,也不能得到a=b,所以“|a|=|b|且a∥b”不是“a=b”的充要条件,而是必要不充分条件.【答案】③平面向量有关概念的四个关注点(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的移动混淆.(4)非零向量a与a|a|的关系:a|a|是与a同方向的单位向量.给出下列命题:①两个具有公共终点的向量一定是共线向量;②两个向量不能比较大小,但它们的模能比较大小;③若λa=0(λ为实数),则λ必为零;④已知λ,μ为实数,若λa=μb,则a与b共线.其中正确命题的个数为()A.1 B.2C.3 D.4解析:选A.①错误.两向量共线要看其方向而不是看起点与终点.②正确.因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误.当a=0时,无论λ为何值,λa=0.④错误.当λ=μ=0时,λa=μb,此时,a与b可以是任意向量.平面向量的线性运算(高频考点)平面向量的线性运算包括向量的加、减及数乘运算,是高考考查向量的热点.常以选择题、填空题的形式出现.主要命题角度有:(1)用已知向量表示未知向量; (2)求参数的值.角度一 用已知向量表示未知向量如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个靠近B 点的三等分点,那么EF →等于( )A .12AB →-13AD →B .14AB →+12AD →C .13AB →+12DA →D .12AB →-23AD →【解析】 在△CEF 中,有EF →=EC →+CF →. 因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC 的一个靠近B 点的三等分点, 所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D. 【答案】 D角度二 求参数的值如图,在△ABC 中,AB =2,BC =3,∠ABC =60°,AH ⊥BC 于点H ,M 为AH的中点.若AM →=λAB →+μBC →,则λ+μ=________.【解析】 因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1. 因为点M 为AH 的中点, 所以AM →=12AH →=12(AB →+BH →)=12⎝⎛⎭⎫AB →+13BC →=12AB →+16BC →, 又AM →=λAB →+μBC →, 所以λ=12,μ=16,所以λ+μ=23.【答案】 23向量线性运算的解题策略(1)向量的加减常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.1.(2019·嘉兴质检)已知平行四边形ABCD ,点M 1,M 2,M 3,…,M n -1和N 1,N 2,N 3,…,N n -1分别将线段BC 和DC 进行n 等分(n ∈N *,n ≥2),如图,若AM 1→+AM 2→+…+AM n -1+AN 1→+AN 2→+…+AN n -1=45AC →,则n =( )A .29B .30C .31D .32解析:选C.由题图知,因为AM 1→=AB →+1n BC →,AM 2→=AB →+2n BC →,…,AM n -1=AB →+n -1nBC →,AN 1→=AD →+1n DC →,AN 2→=AD →+2n DC →,…,AN n -1=AD →+n -1n DC →.AB →=DC →,AD →=BC →.所以AM 1→+AM 2→+…+AM n -1+AN 1→+AN 2→+…+AN n -1=⎝ ⎛⎭⎪⎫n -1+1n +2n +…+n -1n ·(AD →+AB →)=3(n -1)2AC →,所以3(n -1)2=45,解得n =31.故选C.2.已知D 为三角形ABC 的边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.解析:因为D 为边BC 的中点, 所以PB →+PC →=2PD →, 又P A →+BP →+CP →=0, 所以P A →=PB →+PC →=2PD →, 所以AP →=-2PD →,与AP →=λPD →比较,得λ=-2. 答案:-2平面向量共线定理的应用设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.【解】 (1)证明:因为AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),所以BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →,所以AB →,BD →共线, 又它们有公共点B ,所以A ,B ,D 三点共线. (2)因为k a +b 与a +k b 共线, 所以存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量,所以k -λ=λk -1=0.所以k 2-1=0.所以k =±1.1.设e 1,e 2是两个不共线的向量,则向量a =2e 1-e 2与向量b =e 1+λe 2(λ∈R )共线的充要条件是( )A .λ=0B .λ=-1C .λ=-2D .λ=-12解析:选D.因为a =2e 1-e 2,b =e 1+λe 2,e 1,e 2不共线, 因为a ,b 共线⇔b =12a ⇔b =e 1-12e 2⇔λ=-12.2.如图,在△ABC 中,D 为BC 的四等分点,且靠近点B ,E ,F 分别为AC ,AD 的三等分点,且分别靠近A ,D 两点,设AB →=a ,AC →=b .(1)试用a ,b 表示BC →,AD →,BE →; (2)证明:B ,E ,F 三点共线. 解:(1)△ABC 中,AB →=a ,AC →=b , 所以BC →=AC →-AB →=b -a ,AD →=AB →+BD →=AB →+14BC →=a +14(b -a )=34a +14b ,BE →=BA →+AE →=-AB →+13AC →=-a +13b .(2)证明:BE →=-a +13b ,BF →=BA →+AF →=-AB →+23AD →=-a +23⎝⎛⎭⎫34a +14b =-12a +16b =12⎝⎛⎭⎫-a +13b , 所以BF →=12BE →,所以BF →与BE →共线,且有公共点B , 所以B ,E ,F 三点共线.求解向量共线问题的五个策略(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.(3)若a 与b 不共线且λa =μb ,则λ=μ=0.(4)直线的向量式参数方程:A ,P ,B 三点共线⇔OP →= (1-t )·OA →+tOB →(O 为平面内任一点,t ∈R ).(5)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.易错防范(1)作两个向量的差时,首先将两向量的起点平移到同一点,要注意差向量的方向是由减向量的终点指向被减向量的终点.(2)在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个.[基础达标]1.下列各式中不能化简为PQ →的是( ) A .AB →+(P A →+BQ →)B .(AB →+PC →)+(BA →-QC →)C .QC →-QP →+CQ →D .P A →+AB →-BQ →解析:选D.AB →+(P A →+BQ →)=AB →+BQ →+P A →=P A →+AQ →=PQ →;(AB →+PC →)+(BA →-QC →)=(AB →+BA →)+(PC →-QC →)=PC →+CQ →=PQ →;QC →-QP →+CQ →=PC →+CQ →=PQ →;P A →+AB →-BQ →=PB →-BQ →, 显然由PB →-BQ →得不出PQ →, 所以不能化简为PQ →的式子是D.2.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A .a 与λa 的方向相反 B .a 与λ2a 的方向相同 C .|-λa |≥|a | D .|-λa |≥|λ|a 解析:选B.对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.3.(2019·浙江省新高考学科基础测试)设点M 是线段AB 的中点,点C 在直线AB 外,|AB →|=6,|CA →+CB →|=|CA →-CB →|,则|CM →|=( )A .12B .6C .3D .32解析:选C.因为|CA →+CB →|=2|CM →|,|CA →-CB →|=|BA →|,所以2|CM →|=|BA →|=6, 所以|CM →|=3,故选C.4.已知a ,b 是任意的两个向量,则下列关系式中不恒成立的是( ) A .|a |+|b |≥|a -b | B .|a ·b |≤|a |·|b |C .(a -b )2=a 2-2a ·b +b 2D .(a -b )3=a 3-3a 2·b +3a ·b 2-b 3解析:选D.由三角形的三边关系和向量的几何意义,得|a |+|b |≥|a -b |,所以A 正确; 因为|a ·b |=|a ||b ||cosa ,b|,又|cosa ,b|≤1,所以|a ·b |≤|a ||b |恒成立,B 正确;由向量数量积的运算,得(a -b )2=a 2-2a ·b +b 2,C 正确;根据排除法,故选D. 5.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:选A.若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ⇒q , 若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线, 即a =λb ,且λ>0,故qp .所以p 是q 的充分不必要条件,故选A.6.(2019·温州市普通高中模考)已知A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ>0,μ>0),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1, 2 ]D .(0, 2 )解析:选B.由题意可得OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线,所以kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),选项B 正确.7.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示). 解析:如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b . 答案:b -a -a -b8.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是________.解析:BC →=AC →-AB →,当AB →,AC →同向时,|BC →|=8-5=3;当AB →,AC →反向时,|BC →|=8+5=13;当AB →,AC →不共线时,3<|BC →|<13.综上可知3≤|BC →|≤13.答案:[3,13]9.(2019·温州质检)如图所示,在△ABC 中,BO 为边AC 上的中线,BG →=2GO →,设CD →∥AG →,若AD →=15AB →+λAC →(λ∈R ),则λ的值为 ________.解析:因为BG →=2GO →,所以AG →=13AB →+23AO →=13AB →+13AC →,又CD →∥AG →,可设CD →=mAG →,从而AD →=AC →+CD →=AC →+m 3AB →+m 3AC →=⎝⎛⎭⎫1+m 3AC →+m 3AB →.因为AD →=15AB →+λAC →,所以m 3=15,λ=1+m 3=65.答案:6510.(2019·杭州中学高三月考)已知P 为△ABC 内一点,且5AP →-2AB →-AC →=0,则△P AC的面积与△ABC 的面积之比等于________.解析:因为5AP →-2AB →-AC →=0, 所以AP →=25AB →+15AC →,延长AP 交BC 于D ,则53AP →=23AB →+13AC →=AD →,从而可以得到D 是BC 边的三等分点,且CD =23CB ,设点B 到边AC 的距离为d ,则点P 到边AC 的距离为23×35d =25d ,所以△P AC 的面积与△ABC 的面积之比为25.答案:2511.经过△OAB 重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,求1n +1m的值.解:设OA →=a ,OB →=b ,则OG →=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=13(a+b )-m a =⎝⎛⎭⎫13-m a +13b . 由P ,G ,Q 共线得,存在实数λ使得PQ →=λPG →, 即n b -m a =λ⎝⎛⎭⎫13-m a +13λb , 从而⎩⎨⎧-m =λ⎝⎛⎭⎫13-m ,n =13λ,消去λ,得1n +1m=3.12.在△ABC 中,D 、E 分别为BC 、AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →.解:AD →=12(AB →+AC →)=12a +12b .AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →)=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b . [能力提升]1.设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A .13B .12C .23D .34解析:选B.因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P ABS △PBC =|P A →||CP →|=12.2.(2019·福建省普通高中质量检查)已知D ,E 是△ABC 边BC 的三等分点,点P 在线段DE 上,若AP →=xAB →+yAC →,则xy 的取值范围是( )A .⎣⎡⎦⎤19,49B .⎣⎡⎦⎤19,14 C .⎣⎡⎦⎤29,12D .⎣⎡⎦⎤29,14解析:选D.由题意,知P ,B ,C 三点共线,则存在实数λ使PB →=λBC →⎝⎛⎭⎫-23≤λ≤-13,所以AB →-AP →=λ(AC →-AB →),所以AP →=-λAC →+(λ+1)AB →,则⎩⎪⎨⎪⎧y =-λx =λ+1,所以x +y =1且13≤x ≤23,于是xy =x (1-x )=-⎝⎛⎭⎫x -122+14,所以当x =12时,xy 取得最大值14;当x =13或x =23时,xy 取得最小值29,所以xy 的取值范围为⎣⎡⎦⎤29,14,故选D. 3.(2019·浙江名校协作体高三联考)如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 的延长线,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n =________.解析:作BG ∥AC ,则BG ∥NC ,|BG ||AN |=|BM ||AM |.因为O 是BC 的中点,所以△NOC ≌△GOB , 所以|BG |=|NC |,又因为|AC |=n |AN |, 所以|NC |=(n -1)|AN |,所以|BG ||AN |=n -1. 因为|AB |=m |AM |,所以|BM |=(1-m )|AM |, 所以|BM ||AM |=1-m ,所以n -1=1-m ,m +n =2.答案:2 4. (2019·温州市四校高三调研)如图,矩形ABCD 中,AB =3,AD =4,M ,N 分别为线段BC ,CD 上的点,且满足1CM 2+1CN2=1,若AC →=xAM →+yAN →,则x +y 的最小值为________.解析:连接MN 交AC 于点G ,由勾股定理,知MN 2=CM 2+CN 2,所以1=1CM 2+1CN2=MN 2CM 2·CN 2, 即MN =CM ·CN ,所以C 到直线MN 的距离为定值1,此时MN 是以C 为圆心,1为半径的圆的一条切线.因为AC →=xAM →+yAN →=(x +y )·⎝ ⎛⎭⎪⎫x x +y AM →+y x +y AN →,所以由共线定理知,AC →=(x +y )AG →, 所以x +y =|AC →||AG →|=5|AG →|,又因为|AG →|max =5-1=4, 所以x +y 的最小值为54.答案:545.如图,EF 是等腰梯形ABCD 的中位线,M ,N 是EF 上的两个三等分点,若AB →=a ,BC →=b ,AB →=2DC →.(1)用a ,b 表示AM →; (2)证明A ,M ,C 三点共线.解:(1)AD →=AB →+BC →+CD →=a +b +⎝⎛⎭⎫-12a =12a +b , 又E 为AD 中点, 所以AE →=12AD →=14a +12b ,因为EF 是梯形的中位线,且AB →=2DC →, 所以EF →=12(AB →+DC →)=12⎝⎛⎭⎫a +12a =34a , 又M ,N 是EF 的三等分点,所以EM →=13EF →=14a ,所以AM →=AE →+EM →=14a +12b +14a =12a +12b .(2)证明:由(1)知MF →=23EF →=12a ,所以MC →=MF →+FC →=12a +12b =AM →,又MC →与AM →有公共点M ,所以A ,M ,C 三点共线.6.已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ).求证:A ,P ,B 三点共线的充要条件是m +n =1.证明:充分性:若m +n =1,则OP →=mOA →+(1-m )OB →=OB →+m (OA →-OB →), 所以OP →-OB →=m (OA →-OB →), 即BP →=mBA →, 所以BP →与BA →共线.又因为BP →与BA →有公共点B ,则A ,P ,B 三点共线. 必要性:若A ,P ,B 三点共线,则存在实数λ,使BP →=λBA →, 所以OP →-OB →=λ(OA →-OB →). 又OP →=mOA →+nOB →.故有mOA →+(n -1)OB →=λOA →-λOB →, 即(m -λ)OA →+(n +λ-1)OB →=0.因为O ,A ,B 不共线,所以OA →,OB →不共线,所以⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0.所以m +n =1.所以A ,P ,B 三点共线的充要条件是m +n =1.。
平面向量系列之几何意义法
平面向量系列几何意义法解题一、 平面向量的几何意义✓ 平面向量既有坐标表示,也有几何表示(即有向线段表示),利用平面向量的几何意义解题,在解决某些数学问题时往往能起到避繁就简的效果。
✓ 首指向尾首尾相连,b a ⇒+ ✓ 指向被减向量共起点,b a ⇒-✓ ba b t a b t a ⊥⇒-=+||||✓ 即矩形形对角线相等的平行四边,b a b a ⇒-=+||||✓即菱形四边形对角线互相垂直的平行,b a b a ⇒=-+0))((二、例题精析例1、(2017,崂山区校级期末改编)已知b a ,是非零向量,则下列条件中b a ,夹角等于0120的是( ) A 、||||b a b a -=+ B 、 |||||a |b a b -== C 、|||||a |b a b +== D 、 ||2||||a b a b a =-=+ 【解析】:由题知b a ,是非零向量,则||||b a b a -=+表示对角线相等的平行四边形,即为矩形,故b a ,夹角为090;而|||||a |b a b -==表示b a ,所在的边与其中一条对角线长度相等,故构成的三角形为等边三角形,故b a ,夹角为060;|||||a |b a b +==表示b a ,所在的边与其中一条对角线长度相等,故构成的三角形为等边三角形,画出图形可知,b a ,夹角为060的补角,即为0120;||2||||a b a b a =-=+表示对角形相等的矩形,且对角线长度等于某一边长的2倍,b a ,夹角为090。
故选C 。
例2、(2017,金台区期末改编)已知O 为三角形ABC 所在平面内一点,满足|,2|||OA OC OB OC OB -+=-则ABC ∆一定是( )A 、等腰直角三角形B 、直角三角形C 、等腰三角形D 、等边三角形【解析】:|,2|||OA OC OB OC OB -+=-||||||AC AB OA OC OA OB CB +=-+-=⇒,即对角线相等,对角线相等的平行四边形是矩形,所以ABC ∆一定是直角三角形,选B 。
平面向量的几何意义的应用
教学参考
平 面 向量 的 几何 意义 的 应 用
( 苏省兴 化 中学 2 5 0 ) 徐 勇 江 2 7 0 P ;一 N = ( A - N + C )一
平 面 向量作 为一 种 基本 工 具 , 平 面几 何 问 在 题 的求 解 中有极 其 重 要 的地 位 与作 用 , 教 材 中 而 对 于平 面 向量 给 出了几何 表 示 和坐 标 表示 两种 形 式 , 比较 而 言 , 相 学生 对 于 向量 的坐标 表示 更 容易
1 向量 问题 的转化
6一 1 专) ( 1. ) ( M +M ) 一 n 一b
由平面 向量基本 定理 可得
一
,
,
l 解 一 一 丢 得
= +
一
.
例 1 在 AA BC的边 C C A, B上分 别取 点M 、 N, 使 一百 1
O
= n 一 ( n一 6 )一
厶
I I 十
I一 )
例 2 试 证 过三 角形 一边 的 中点且 平行 于第 二 边 的平行 线 必平分 第 三边 . 已知 : 为 △A C 的边 AB 的 中点 , D 作 D B 过
I 十I
I. )
感悟 : 由实 数 与 向量 的积 的定 义 , 向量 b与非
而蔚 + 一
十
B
十 +亩 + 一
一 (+ 1 ) , 百
B
C
所以
一
, F 与 B 无公 共点 , E C
图 l
图2
所 以 E / C, F /B 又 > 0 ,
2 线 段相 等的 证 明
所以l l ( 亩 一 I
平面向量的实际背景及基本概念
数乘向量
• 数乘向量:一个实数与一个向量的乘积是一个向量,其模 等于该实数乘以原向量模,其方向与原向量方向相同或相 反(当实数为负时)。
03
平面向量的性质与运 算
向量的模
向量的模的性质
• 齐次性:对于任意实数λ和向量 a,有|λa|=|λ||a|。
向量的模定义:向量的大小或长 度称为向量的模。记作|a|,其中a 为向量。
速度与加速度的合成
总结词
平面向量在速度和加速度的计算中有着重要的应用, 通过速度和加速度的合成可以更好地分析物体的运动 状态。
详细描述
在物理学中,速度和加速度是描述物体运动状态的重 要物理量,可以用向量表示其大小和方向。通过将速 度和加速度进行合成,可以更好地分析物体的运动状 态,例如,在曲线运动中,可以将速度分解为多个分 量,然后分别对每个分量进行分析,以确定物体在曲 线上的位置、速度和加速度。此外,在航天工程中, 也需要利用平面向量来计算卫星轨道和航天器姿态等 参数。
VS
向量的积分
向量的积分可以表示向量在某个区间内的 累积效果,其计算方法与函数的积分类似 。
THANK YOU
05
平面向量的扩展与延 伸
向量的空间几何意义
向量的长度
表示向量的大小,可以通过模长来衡 量。
向量的夹角
表示两个向量之间的角度,可以通过 向量的点积来计算。
向量的平行
当两个向量共线时,它们是平行的。
向量的垂直
当两个向量正交时,它们是垂直的。
向量的函数表示
向量的线性函数
向量的线性函数是指与向量成正比的函数, 可以表示为y=mx+b的形式。
向量的二次函数
向量的二次函数是指与向量平方成正比的函数,可 以表示为y=mx²+bx+c的形式。
平面向量数量积的定义及几何意义
知识点——
平面向量数量积的定 义及几何意义
平面向量数量积的定义及几何意义
【定义】
已知两个非零向量 a与b ,它们的夹角为 α,我们
把数量 abcos叫 做 a 与 b的数量积(或内积),
记作:a b 即 : a b = ab c o s.
平面向量数量积的定义及几何意义
【几何意义】
b
2
b
1212cos604 3
| ab| 3
【解题后的思考】本例主要考查平面向量数量 积的定义等基础知识,对于这些基础知识的考 查主要以选择、填空题为主.
平面向量数量积的定义及几何意义
【变形训练】
1 .已 知 : |a | 1 ,a b 1 ,(a b )(a b ) 1
如图,我们把 bcos(acos)叫做向量
b 在 a 方 向 上 ( a 在 b 方 向 上 ) 的 投 影 ,
记做:OB1bcos
平面向量数量积的定义及几何意义
【典型例题】
1.在 R t A B C 中 , C90,A C = 4 , 则 A B A C_______. 2.已 知 向 量 a,b满 足 : |a|1,|b|2,a与 b的 夹 角 是 60,
平面向量数量积的定义及几何意义
【变形训练】 【思路分析】 1.(1)由已知可求 |b |, 再 利 用 c o s a ,b a b求 解 ;
中职数学平面向量的概念
向量的模具有非负性,即$|overset{longrightarrow}{AB}| geq 0$,且当且仅 当向量与坐标轴平行或重合时,模为0。
向量的加法
向量加法的定义
向量加法是指将两个向量首尾相接, 形成一个新的向量。
向量加法的几何意义
向量加法的几何意义是平行四边形的 对角线,即两个向量的和等于以这两 个向量为邻边的平行四边形的对角线 。
向量积的几何意义
向量积表示两个向量之间的旋 转关系。
若向量a和b的夹角为锐角,则 它们的向量积方向与a和b所在 平面垂直,且方向与a和b的旋 转方向相同。
若向量a和b的夹角为钝角,则 它们的向量积方向与a和b所在 平面垂直,且方向与a和b的旋 转方向相反。
向量积的运算律
向量积满足分配律, 即a × (b + c) = a × b + a × c。
中职数学平面向量的概念
• 引言 • 平面向量的基本概念 • 平面向量的数量积 • 平面向量的向量积 • 平面向量的混合积 • 平面向量在实际问题中的应用
01
引言
主题简介
平面向量
在二维平面内,既有大小又有方 向的量。
表达方式
通常用有向线段表示向量,起点为 箭头的起点,终点为箭头的终点。
性质
向量具有加法、数乘以及向量的模 等基本性质。
在物理中,力是一个向量,可以通过 向量加法、数乘和向量的数量积、向 量的向量积、向量的混合积等运算来 描述力的合成与分解。
速度和加速度
力的矩
力矩是一个向量,可以通过向量的数 乘、向量的向量积等运算来描述物体 受到的力矩。
速度和加速度是向量,可以通过向量 的加法、数乘和向量的数量积等运算 来描述物体运动的速度和加速度。
平面向量论文:对《平面向量》的理解
平面向量论文:对《平面向量》的理解向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。
高中数学新教材将《平面向量》作为必修内容引入,所以这部分内容的教学对于我们中学教师来说是很重要的。
向量是既有大小,又有方向的量,是具有优良运算通性的体系,但向量所关注的不是“数”的简单扩大,而是“量与运算”的扩充,这对于学生更好地建立代数与几何的关系,尽早了解现代数学思想和方法将会打下一个坚实的基础。
向量有非常直观的几何意义,是数与形的完美结合:一方面,它可以将几何问题转化为坐标的代数运算;另一方面,它可以结合图形对向量的有关问题进行分析求解。
同时,向量在物理等许多领域有非常重要的作用,因此,向量是解决数学问题和实际问题的有力工具,是中学数学的重要概念之一。
在中学数学中向量分“平面向量”和“空间向量”两章,本文就“平面向量”一章的教学重点和难点以及“平面向量”与代数、几何、三角等知识的交汇应用作一粗探。
首先通过物理背景或数学背景的介绍,使学生懂得向量是既有大小又有方向的量,而向量还可以进行加减法运算。
通过实例,使学生掌握向量与数乘的运算,并理解其几何意义,以及两个向量共线的含义及充要条件。
在教学中,我体会到平面向量的基本定理及坐标表示是全章的重要内容之一。
因为平面向量基本定理是说明同一平面内任一向量都可表示为两个不共线向量的线性组合,是向量线性运算的最高级体现。
该定理是平面向量坐标表示的理论基础。
而向量的坐标表示是平面向量的基本定理的直接应用,是一种重要的数学思想方法,即数形结合。
向量的坐标表示的引入,使向量的运算完全代数化,是数与形的完美结合。
这样很多几何问题的证明,就转化为学生熟知的代数运算。
这是向量的重要作用之一,也是学习向量的重要目的之一。
在平面向量数量积及运算律这一节,重点应使学生掌握数量积的坐标表达式,会进行平面向量数量积的运算,并能运用数量积判断两个平面向量的垂直关系,处理有关长度、角度和垂直的问题。
平面向量知识点总结(精华)
平面向量知识点总结(精华)一、向量的基本概念1. 向量的定义向量是既有大小又有方向的量。
例如,物理学中的力、位移等都是向量。
我们可以用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量的表示:几何表示:用有向线段AB表示,其中\(A为起点,\(B为终点。
字母表示:用小写字母a、b、c等表示。
2. 向量的模向量AB或a的大小称为向量的模,记作AB或a。
模是一个非负实数,例如,若a=(x,y),则a=x^2+y^2。
3. 零向量长度为\(0的向量称为零向量,记作0。
零向量的方向是任意的。
4. 单位向量模等于\(1的向量称为单位向量。
对于非零向量a,与它同方向的单位向量记作e=aa。
例如,向量a=(3,4),则a= 5,同方向的单位向量e=(35,45)。
5. 平行向量(共线向量)方向相同或相反的非零向量称为平行向量。
规定:零向量与任意向量平行。
若向量a与b平行,记作a。
例如,a=(1,2),b=(2,4),因为b = 2a,所以a。
6. 相等向量长度相等且方向相同的向量称为相等向量。
若AB=CD,则\(A与\(C重合,\(B与\(D重合,且AB=CD,方向相同。
二、向量的运算1. 向量的加法三角形法则:已知向量a、b,在平面内任取一点\(A,作AB=a,BC=b,则AC=a+b。
平行四边形法则:已知向量a、b,以同一点\(O为起点作OA=a,OB=b,以\(OA、\(OB为邻边作平行四边形\(OACB,则OC=a+b。
向量加法的运算律:交换律:a+b=b+a。
结合律:\((a+b)+c=a+(b+c)。
2. 向量的减法相反向量:与向量a长度相等,方向相反的向量称为a 的相反向量,记作a。
向量减法的定义:ab=a+(b)。
其几何意义是:已知向量a、b,在平面内任取一点\(O,作OA=a,OB=b,则BA=ab。
3. 向量的数乘定义:实数\(与向量a的乘积是一个向量,记作a。
平面向量几何意义的应用
最大 值 .
分析 : 对第 () , 1 问 可先求 , 由条件 即可得 出结 在
论. 对第 () , 2 问 先设点 M 为 A 的中点 , B 进而利用 ( ) 1 的 结论并 由条件确定 P, A, 0, B四点共圆 , 结论 即可得到. 解 :1 因为点 M 是 A 的中点 , () B
此 时 四边 形 O P 为矩 形 , A B
) 一 1 .
则 s 边一 一 l l 形 l 6 l 一。≤
() 1 如果点 M 为线段 A 的 中点 , B 求证 :
) +( 一 1)
;
一2 ,
一(一 z 当且仅 当 一6 一 时 , 四边形 O B 的面积最 大, AP 最 大值为 2 .
n4 b— ,
( , R) a ( z _ ∈ 且 x- 6 ( 1) +
一
故 P 0, B四点都在以 M 为圆心 , 为半径的圆上, , A, 1
+
所以当且仅 当 O P为圆 M 的直径时 , J I 2 一 .
一 1 .
又 为o cc ・ 一 , 因c — 号 s
所以 A 一要. B c
所 以△ABC为等 边 三 角 形 , 选 D. 故
I P = l 1= / —t 5 一 l I . - = = I  ̄ M 1 —1 M l= - =M h - -
【 2 平面上的两个向量 , 满足 } l , 例 】 蔬 一
中学 教 学 参 考
解题 方 法与技 巧
平 面 向 量 几 何 意 义 的 应 用
安徽 宿 州市第三 中学 ( 3 0 0 井红 星 2 40 )
平 面向量作为一种基本工具 , 在平 面几何 问题 的求 解 中有极其重要 的地位和作用 , 尤其 是平面 向量 的几何 意义 , 其中又有很多独特之处 , 若在解 题 中能合理 运用 , 必能起 到化难为易 、 化繁为简的作用. 1 已 】 零 向 量 与 满 足 ( +
平面向量的几何意义的应用
龙源期刊网
平面向量的几何意义的应用
作者:徐勇
来源:《数学教学通讯(教师阅读)》2008年第06期
平面向量作为一种基本工具,在平面几何问题的求解中有极其重要的地位与作用,而教材中对于平面向量给出了几何表示和坐标表示两种形式,相比较而言,学生对于向量的坐标表示更容易接受和理解,但对向量的几何表示包括几何运算往往感到比较困难,然而从平面向量的几何意义来看,其中又有很多独特之处,如能合理地运用向量的加法、减法的平行四边形法则或三角形法则以及向量平行与垂直的充要条件,结合平面向量的基本定理等这些几何意义,那么在解决平面几何问题时往往也能起到避繁就简的效果.
感悟:平面向量中与数值有关的计算问题,往往是通过向量与向量之间的特殊的位置关系,通过转化、结合向量的线性运算,数量积运算而形成求解思路.
总之,在遇到平面几何问题时,除了直接考虑几何图形中的点、线位置关系外,如能适当地运用平面向量的几何意义去将线线平行、垂直的证明,点共线、线共点的问题的证明,以及线段长度之比,数值的求解问题等进行转化并求解,往往使问题简单化、明了化,避免了平面几何中一味寻找点线、线线关系的复杂的推理,也避免了建立平面直角坐标系后,运用解析几
何求解的繁琐运算,可以收到事半功倍的效果.
本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
高中数学《平面向量 》(考纲要求)
第五章平面向量考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移.考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.(2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理.理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式.基本方法和数学思想1.两个向量平行的充要条件,设a =(x 1,y 1),b =(x 2,y 2),λ为实数。
(1)向量式:a ∥b (b ≠0)⇔a =λb ;(2)坐标式:a ∥b (b ≠0)⇔x 1y 2-x 2y 1=0;2.两个向量垂直的充要条件, 设a =(x 1,y 1),b =(x 2,y 2), (1)向量式:a ⊥b (b ≠0)⇔a •b =0;(2)坐标式:a ⊥b ⇔x 1x 2+y 1y 2=0;3.设a =(x 1,y 1),b =(x 2,y 2),则a •b θcos =x 1x 2+y 1y 2;其几何意义是a •b 等于a 的长度与b 在a 的方向上的投影的乘积;4.设A (x 1,x 2)、B(x 2,y 2),则S ⊿AOB =122121y x y x -; 5.平面向量数量积的坐标表示:(1)若a =(x 1,y 1),b =(x 2,y 2),则a •b =x 1x 2+y 1y 2221221)()(y y x x -+-=; (2)若a =(x,y),则a 2=a •a =x 2+y 2,22y x a += ;6.向量法:用向量证明或解题的方向称为向量法。
向量法在处理物理学、几何学中有很大的用处。
平面向量向量数乘运算及其几何意义
要点二
数乘运算的数乘分配律
$(\lambda_1\lambda_2)\overset{\longrightarrow}{ a} = \lambda_1(\lambda_2\overset{\longrightarrow}{a} )$。
坐标表示
• 平面向量数乘运算的坐标表示:设 $\overset{\longrightarrow}{a} = (x, y)$,$\lambda$ 为实数,则 $\lambda\overset{\longrightarrow}{a} = (\lambda x, \lambda y)$夹角是指两个向量之间 的夹角,可以用字母表示。
向量的夹角范围是$[0,\pi]$, 其中$0$表示两个向量同向, $\pi$表示两个向量反向。
向量的夹角可以通过向量的点 积计算得到。
03
平面向量数乘的几何应用
平行四边形的性质
平行四边形的对边平行且相等
当两个向量平行时,它们的长度相等且方向相同。
向量的方向
平面向量数乘的结果不仅可以改变向量的长度,还可以改变向量的方向,因此可以用来描述几何图形 的旋转和变形。
与三角函数的联系
三角恒等式
平面向量数乘的结果可以用来表示三角 函数中的恒等式,如 sin(a+b)=sinacosb+cosasinb等。
VS
向量的夹角
平面向量数乘的结果还可以用来计算两个 向量的夹角,进而用来描述两个向量之间 的角度关系。
• 平面向量数乘运算在坐标表示下的性质:在二维直角坐标系中,如果 $\overset{\longrightarrow}{a} = (x, y)$,$\lambda > 0$,则 $\lambda\overset{\longrightarrow}{a} = (\lambda x, \lambda y)$,其方向与 $\overset{\longrightarrow}{a}$ 相同;如果 $\lambda < 0$,则 $\lambda\overset{\longrightarrow}{a} = (\lambda x, \lambda y)$,其方向与 $\overset{\longrightarrow}{a}$ 相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( AB AC ) ( R ) 等
x x x y y y3 △ABC 中 A x1,y1 , B x2,y2 , C x3,y3 ,则 ABC 重心的坐标为 1 2 3 ,1 2 3 3 (11)在 ABC 中,给出 OA OB OB OC OC OA ,等于已知 O 是 ABC 的垂心(三角形的垂心是三角
(8)在平行四边形 ABCD 中,给出 | AB AD || AB AD | ,等于已知 ABCD 是矩形; (9)在 △ABC 中,给出 OA OB OC 或 OA OB OC ,等于已知 O 是 △ABC 的外心(三角形 外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点) ; (10) 在 △ABC 中, 给出 OA OB OC 0 , AP ( AB AC ) 或 OP OA 于已知 O 是 △ABC 的重心(三角形的重心是三角形三条中线的交点) ;
平面向量的几何意义 (1)给出直线的方向向量 u 1, k 或 u m, n (m 0) ,等于已知直线的斜率为 k 或 (2)给出 OA OB 与 AB 相交,等于已知 OA OB 过 AB 的中点; (3)给出 OA OB 与 OC 共线,等于已知 OC 与 OM 共线,其中 M 是 AB 的中点; (4)给出 PM PN 0 ,等于已知 P 是 MN 的中点; (5)给出以下情形之一等于已知 A, B, C 三点共线:① AB // AC ;②存在实数 ,使 AB AC ;③若存在 实数 , , 且 1, 使OC OA OB .
过 ABC 的内心; (三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点) ; (13)在 ABC 中,给出 AD
1 AB AC ,等于已知 AD 是 ABC 中 BC 边的中 ; 在 ABC 中,给出 OA BC OB CA OC AB ,等于已知 O 是 ABC 的垂心. ( 12)在 ABC 中,给出 AP (
2 2 2 2 2 2
AB AC AB AC ) 或 OP OA ( ) ( R ) 等于已知 AP 通 | AB | | AC | | AB | | AC |
n m
、 MB,给出 MA MB 0 , 等 于已知 MA MB , 即 AMB 是直角 . 给出 ( 6 ) 对于不 共线的 非零 向 量 MA ..
MA MB m 0 ,等于已知 AMB 是钝角 【或平角】 , 给出 MA MB m 0 ,等于已知 AMB 是锐角 【或零角】 ; (7)在平行四边形 ABCD 中,给出 ( AB AD) ( AB AD ) 0 ,等于已知 ABCD 是菱形;