三元一次方程组解法练习题

合集下载

初一数学下册知识点《解三元一次方程组》经典50例及解析

初一数学下册知识点《解三元一次方程组》经典50例及解析
初一数学下册知识点《解三元一次方程组》经典 50 例及
解析
副标题
题号 得分




总分
一、选择题(本大题共 16 小题,共 48.0 分) 1. 若(2x-4)2+(x+y)2+|4z-y|=0,则 x+y+z 等于( )
A. -
B.
C. 2
【答案】A 【解析】解:∵(2x-4)2+(x+y)2+|4z-y|=0,
A. 3
B. 2
C. 1
D. 无法确定
【答案】A
【解析】解:由题意将
代入方程组得:

①+②+③得:a+2b+2b+3c+c+3a=2+3+7, 即 4a+4b+4c=4(a+b+c)=12, 则 a+b+c=3. 故选 A. 由题意,可将 x,y 及 z 的值代入方程组得到关于 a,b,c 的方程组,将方程组中三个方 程左右两边相加,变形后即可求出 a+b+c 的值. 此题考查了三元一次方程组的解,以及解三元一次方程组,方程组的解为能使方程组中
4. 对于三元一次方程组,我们一般是先消去一个未知数,转化为二元一次方程组求
解.那么在解三元一次方程组
时,下列没行实现这一转化的是
()
A.
B.
C.
D.
【答案】A 【解析】解:因为解三元一次方程组的步骤先消去一个未知数,得到一个二元一次方程 组, 所以没行实现这一转化的是 A 选项,仍旧是三个未知数, 故选:A. 根据解三元一次方程组的步骤先消去一个未知数,得到一个二元一次方程组,从而得出 答案. 本题考查了三元一次方程组的解法,把“三元”转化为“二元”、把“二元”转化为 “一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题 转化为简单问题的思想方法.解三元一次方程组的关键是消元.

七年级数学(下)第八章《三元一次方程组的解法》练习题含答案

七年级数学(下)第八章《三元一次方程组的解法》练习题含答案

七年级数学(下)第八章《三元一次方程组的解法》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程组中是三元一次方程组的是A.212x yy zxz⎧-=⎪+=⎨⎪=⎩B.111216yxzyxz⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩C.123a b c da cb d+++=⎧⎪-=⎨⎪-=⎩D.1812m nn tt m+=⎧⎪+=⎨⎪+=⎩【答案】D2.解方程组3423126①②③x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩时,第一次消去未知数的最佳方法是A.加减法消去x,将①-③×3与②-③×2 B.加减法消去y,将①+③与①×3+②C.加减法消去z,将①+②与③+②D.代人法消去x,y,z中的任何一个【答案】C【解析】观察所给方程组,可以发现z的系数最简单,故可通过加减法消去z,故选C.3.已知方程组2334823x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=-⎩①②③,若消去z,得二元一次方程组不正确的为A.531153x yx y+=⎧⎨-=⎩B.53115+719x yx y+=⎧⎨=⎩C.535+719x yx y-=⎧⎨=⎩D.5+35+719x yx y=⎧⎨=⎩【答案】D【解析】在方程组2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③中,①+②得5311x y +=④,①×2+③得53x y -=⑤,②×2-③得5719x y +=⑥,所以由④与⑤可以组成A ,由④与⑥可以组成B ,由⑤与⑥可以组成C ,故选D .4.三元一次方程组32522x y x y z z -⎧=++==⎪⎨⎪⎩的解是A .112x y z ===⎧⎪⎨⎪⎩B .112x y z ⎧==-=⎪⎨⎪⎩C .112x y z ⎧=-==⎪⎨⎪⎩D .112x y z ⎧=-=-=⎪⎨⎪⎩【答案】B【解析】32522①②x y x y z z -=⎧⎪++=⎨⎪=⎩,把z =2代入②得:x +y =0③,①+③×2得:5x =5,即x =1,把x =1代入③得:y =-1,则方程组的解为112x y z =⎧⎪=-⎨⎪=⎩,故选B .5.已知方程组35223x y k x y k +=+⎧⎨+=⎩,x 与y 的值之和等于2,则k 的值为A .4B .4-C .3D .3-【答案】A【解析】35223x y k x y k +=+⎧⎨+=⎩①②,①×2-②×3得:y =2(k +2)-3k =-k +4,把y =-k +4代入②得:x =2k -6,又x 与y 的值之和等于2,所以x +y =-k +4+2k -6=2,解得k =4,故选A .6.三元一次方程组64210x y x z x y z -=⎧⎪+=⎨⎪-+=⎩的解的个数为A .无数多个B .1C .2D .0【答案】A【解析】在方程组64210x y x z x y z -=⎧⎪+=⎨⎪-+=⎩①②③中,③-②得6x y -=④,即①与④相同,所以方程组有无数个解.故选A.7.学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2∶3,三种球共41个,则篮球的个数为A.21 B.12 C.8 D.35【答案】A【解析】设篮球有x个,排球有y个,足球有z个,根据题得232341y xz yx y z-=⎧⎪=⎨⎪++=⎩∶∶,解得21128xyz=⎧⎪=⎨⎪=⎩,所以篮球有21个.故选A.8.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有A.2种B.3种C.4种D.5种【答案】B9.已知方程组35204522x yx y zax by z-=⎧⎪+-=⎨⎪+-=-⎩与方程组85234ax by zx y z cx y-+=⎧⎪++=⎨⎪+=-⎩有相同的解,则a、b、c的值为A.231abc=-⎧⎪=-⎨⎪=⎩B.231abc=-⎧⎪=⎨⎪=⎩C.231abc=⎧⎪=-⎨⎪=-⎩D.231abc=⎧⎪=⎨⎪=-⎩【答案】D【解析】解方程组3520234x yx y zx y-=⎧⎪+-=⎨⎪+=-⎩,解得12xyz=⎧⎪=-⎨⎪=⎩,代入可得方程组41022281a ba bc-=-⎧⎪+=⎨⎪-=⎩,解得231abc=⎧⎪=⎨⎪=-⎩,故选D.二、填空题:请将答案填在题中横线上. 10.若x +y +z ≠0且222y z x y z xk x z y+++===,则k =__________. 【答案】3 【解析】∵222y z x y z x k x z y+++===,∴2y z kx +=,2x y kz +=,2z x ky +=,∴2y z ++2x +2y z x kx ky kz ++=++,即3()()x y z k x y z ++=++,又∵0x y z ++≠,∴3k =,故答案为:3.11.在等式y =ax 2+bx +c 中,当x =1时,y =-2;当x =-1时,y =20;当32x =与13x =时,y 的值相等,则a =__________,b =__________,c =__________. 【答案】6;-11;3【解析】根据题意,可得方程组29311429320①②③a b c a b c a b c a b c ++=-⎧⎪⎪++=++⎨⎪⎪-+=⎩,由②得11a +6b =0④,③-①得-2b =22,解得b =-11,将b =-11代入④得a =6,再将a =6,b =-11代入①得c =3.故原方程组的解为6113a b c =⎧⎪=-⎨⎪=⎩,故答案为:6;-11;3.12.已知方程组237x y y z z x +=⎧⎪+=⎨⎪+=⎩,则x +y +z =__________.【答案】6【解析】将三个方程相加,得2x +2y +2z =12,所以x +y +z =6,故答案为:6.13.如图,表中各行、各列及两条对角线上三个数的和都相等,则a +b +c +d +e +f 值是__________ .【答案】21【解析】由题意得4-1+a =d +3+a ,解得d =0,∵4+b +0=b +3+c ,解得c =1,又∵4-1+a =a +1+f ,解得f =2,∴a =6,b =5,e =7,则a +b +c +d +e +f =6+5+1+0+7+2=21.故答案为:21. 三、解答题:解答应写出文字说明、证明过程或演算步骤.14.解方程组2923103243①②③x y z x y z x y z -+=⎧⎪++=⎨⎪+-=-⎩.所以原三元一次方程组的解为322x y z =⎧⎪=-⎨⎪=⎩.15.有三个数,第一个数的3倍比第二个数的5倍小90,而第一个数的4倍与第二个数的6倍之差等于第三个数的20倍的相反数,同时,第三个数比4大1.求这三个数. 【解析】设第一个数为x ,第二个数为y ,第三个数为z ,由题意得:3590462041x y x y z z -=-⎧⎪-=-⎨⎪-=⎩,解得20305x y z =⎧⎪=⎨⎪=⎩, 答:这三个数依次是20,30,5.16.已知方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式437x y -=成立.(1)求原方程组的解;(2)求代数式221m m -+的值.【解析】(1)根据题意得,734521x y x y m +=⎧⎨-=-⎩①②,+①②,得1111x =,解得1x =,把1x =代入①得,1y =-,∴原方程组的解为11x y =⎧⎨=-⎩.(2)将1x =,1y =-代入521x y m -=-,得8m =, 将8m =代入2221828149m m -+=-⨯+=. ∴代数式221m m -+的值为49.17.某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植农作物每公顷所需的劳动力人数及投入的设备资金如下表:已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?【解析】设种植水稻x 公顷,棉花y 公顷,蔬菜为z 公顷,由题意得26748530051x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩,解得:152016x y z =⎧⎪=⎨⎪=⎩,答:种植水稻15公顷,棉花20公顷,蔬菜为16公顷.。

三元一次方程组的解法专题训练卷(人教版)

三元一次方程组的解法专题训练卷(人教版)

三元一次方程组的解法专题训练卷(人教版)一.选择题(共6小题)1.已知且x+y=3,则z的值为()A.9B.﹣3C.12D.不确定2.若方程组的解x和y的值相等,则k的值为()A.4B.11C.10D.123.6月18日,最开始是京东的周年庆,2013年后,618就成了各大电商平台的网购节了.在618当日,小梦在某电商平台上选择了甲乙丙三种商品,当购物车内选3件甲,2件乙,1件丙时显示价格为420元;当选2件甲,3件乙,4件丙时显示价格为580元,那么购买甲、乙、丙各两件时应该付款()A.200元B.400元C.500元D.600元4.购买铅笔7支,作业本3个,中性笔1支共需18元;购买铅笔10支,作业本4个,中性笔1支共需24元;则购买铅笔11支,作业本5个,中性笔2支共需()A.33元B.32元C.31元D.30元5.已知,且y≠0,则的值为()A.B.﹣C.﹣12D.126.一个三位数,各个数位上数字之和为10,百位数字比十位数字大1.如果百位数字与个位数字对调,则所得新数比原数的3倍还大61,那么原来的三位数是()A.325B.217C.433D.541二.填空题(共6小题)7.已知a、b、c满足a+2b+3c=10,3a+2b+c=70,则a+b+c=.8.若方程组的解也是方程3x+ky=10的一个解,则k=.9.已知关于x的整系数二次三项式ax2+bx+c,当x取1、6、8、12时,某同学算得这个二次三项式的值分别是0、15、35、100.经验算,只有一个是错误的,这个错误的结果是.10.2022年冬,重庆新冠疫情期间,某火锅店举办“云端火锅,共抗疫情”活动,将火锅底料及菜品打包成“便利火锅包”送至附近小区大门处,由居民自行前往提取.根据菜品种类分为A、B、C三类,三个品类成本价分别是125元,100元,75元.且A类和B类火锅的标价一样,该店对这三个品类全部打8折销售.若三个品类的销量相同,则火锅店能获得30%的利润,此时A品类利润率为20%.若A、B、C三类销量之比是2:1:2,则火锅店销售A、B、C类便利火锅包的总利润率为.(利润率=×100%)11.为响应教育部对中小学生实行“五项管理”之读物管理,某书店购进了大量的名著类、学科类、创新类读物,每类读物每本进价分别是24元,20元,16元.设同类读物每本售价相同,且学科类和创新类读物的售价也相同.如果该书店对这三类读物全部按售价打7.5折销售,那么每类读物的销售量相同,且书店不亏不赚,只有创新类读物利润率为12.5%.如果每本书都在打7.5折的基础上涨a元,那么名著类、学科类、创新类销量之比是1:1:4,为使该书店总体实现利润率10%,则a=.(售价=进价(1+利润率))12.2022年11月中旬疫情肆虐重庆,为了方便配送,推出甲、乙、丙三种蔬菜包.假设每种蔬菜的大小差不多,甲蔬菜包1份萝卜、2斤莴笋、3斤西红柿;乙蔬菜包2份萝卜、3斤莴笋、5斤西红柿;丙蔬菜包2份萝卜、1斤莴笋、3斤西红柿.甲蔬菜包市场售价25元,乙蔬菜包市场售价40元;如果甲和丙的利润率都为25%,乙的利润为4元,则丙每包的市场售价是元.三.解答题(共3小题)13.(1)实数计算:①;②;(2)解方程组:①;②;③;(3)解方程:①4x2=25;②(x﹣0.7)3=0.027.14.阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组,则x﹣y=;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需元.(3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1=.15.某企业A,B,C三个部门计划在甲,乙商家购买一批口罩和消毒液,口罩30元/盒,消毒液10元/瓶.甲,乙商家的销售优惠方式如下:①甲商家:口罩和消毒液都是按8折销售;②乙商家:买一盒口罩可送一瓶消毒液.(1)A部门有10人,计划每人配置1盒口罩和2瓶消毒液.若A部门选择甲商家购买,则需要花费元.(2)B部门选择了乙商家,共花费500元,已知购买消毒液的数量是口罩数量的2倍多2.请问B部门购买了多少盒口罩.(3)C部门要购买15盒口罩和消毒液若干(超过15瓶),如果你是该部门负责人,且只能在甲,乙商家选其中一家购买,应该选择哪家才会更加划算,请说明理由.。

《三元一次方程组及其解法》拔高练习

《三元一次方程组及其解法》拔高练习

三元一次方程组及其解法拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)已知实数x,y,z满足,则代数式3(x﹣z)+1的值是()A.﹣2B.﹣4C.﹣5D.﹣62.(5分)解下面的方程组时,要使解法较为简便,应()A.先消去x B.先消去y C.先消去z D.先消去常数3.(5分)三元一次方程组的解是()A.B.C.D.4.(5分)已知xyz≠0,且,则x:y:z等于()A.3:2:1B.1:2:3C.4:5:3D.3:4:5 5.(5分)三元一次方程组的解是()A.B.C.D.二、填空题(本大题共5小题,共25.0分)6.(5分)已知实数a、b、c满足2a+13b+3c=90,3a+9b+c=72,则=.7.(5分)若方程组的解也是方程3x+ky=10的一个解,则k=.8.(5分)已知三元一次方程组,则x+y+z=.9.(5分)方程组的解是.10.(5分)已知,则x+y+z的值为.三、解答题(本大题共5小题,共50.0分)11.(10分)已知关于x,y的方程组和有相同解,求(﹣a)b 值.12.(10分)解三元一次方程组:13.(10分)【方法体验】已知方程组求4037x+y的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:【方法迁移】根据上面的体验,填空:已知方程组则3x+y﹣z=.【探究升级】已知方程组求﹣2x+y+4z的值.小明凑出“﹣2x+y+4z=2•(x+2y+3z)+(﹣1)•(4x+3y+2z)=20﹣15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设﹣2x+y+4z=m•(x+2y+3z)+n•(4x+3y+2z),对照方程两边各项的系数可列出方程组,它的解就是你凑的数!根据丁老师的提示,填空:2x+5y+8z=(x+2y+3z)+(4x+3y+2z)【巩固运用】已知2a﹣b+kc=4,且a+3b+2c=﹣2,当k为时,8a+3b﹣2c为定值,此定值是.(直接写出结果)14.(10分)解方程组:15.(10分)解方程组.三元一次方程组及其解法拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)已知实数x,y,z满足,则代数式3(x﹣z)+1的值是()A.﹣2B.﹣4C.﹣5D.﹣6【分析】将方程组②﹣①得:3x﹣3z=﹣5,整理得:3(x﹣z)=﹣5,把3(x﹣z)=﹣5代入代数式3(x﹣z)+1,即可得到答案.【解答】解:方程组,②﹣①得:3x﹣3z=﹣5,整理得:3(x﹣z)=﹣5,把3(x﹣z)=﹣5代入代数式3(x﹣z)+1得:﹣5+1=﹣4,即代数式3(x﹣z)+1的值是﹣4,故选:B.【点评】本题考查解三元一次方程组,正确掌握加减消元法消去未知数是解决本题的关键.2.(5分)解下面的方程组时,要使解法较为简便,应()A.先消去x B.先消去y C.先消去z D.先消去常数【分析】根据加减消元法的方法结合方程组的特点求解可得.【解答】解:由方程组知①中没有未知数z,只需利用加减法消去②、③中的z求解较为简便,故选:C.【点评】本题主要考查解三元一次方程组,解题的关键是熟练掌握加减消元法适用的方程组.3.(5分)三元一次方程组的解是()A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,把③代入①得:y+z=5④,把③代入②得:4y+3z=18⑤,④×4﹣⑤得:z=2,把z=2代入④得:y=3,把y=3,z=2代入③得:x=5,则方程组的解为,故选:A.【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.(5分)已知xyz≠0,且,则x:y:z等于()A.3:2:1B.1:2:3C.4:5:3D.3:4:5【分析】由,①×3+②×2,得出x与y的关系式,①×4+②×5,得出x与z的关系式,从而算出xyz的比值即可.【解答】解:∵,∴①×3+②×2,得2x=y,①×4+②×5,得3x=z,∴x:y:z=x:2x:3x=1:2:3,故选:B.【点评】本题考查了三元一次方程组的解法,用含有x的代数式表示y与z是解此题的关键.5.(5分)三元一次方程组的解是()A.B.C.D.【分析】由①+②消去z,②×3+③消去z,组成关于x、y的二元一次方程组,进一步解二元一次方程组,求得答案即可.【解答】解:由①+②,得2x+4y=﹣2,即x+2y=﹣1 ④由②×3+③,得3x+8y=﹣8 ⑤④⑤组成二元一次方程组得解得,代入②得z=﹣2.故原方程组的解为故选:B.【点评】本题考查三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解方程组较简单.二、填空题(本大题共5小题,共25.0分)6.(5分)已知实数a、b、c满足2a+13b+3c=90,3a+9b+c=72,则=1.【分析】根据已知变形后可得:a+2b=18,3b+c=18,代入可得结论.【解答】解:,②×3﹣①得:9a+27b+3c﹣2a﹣13b﹣3c=216﹣90,7a+14b=126,a+2b=18,①×3﹣②×2得:6a+39b+9c﹣6a﹣18b﹣2c=270﹣144=3b+c=18,∴.故答案为:1.【点评】本题考查了解三元方程组和求分式的值,利用了整体代入的数学思想,其技巧性较强,其中把已知等式进行适当的变形是解本题的关键.7.(5分)若方程组的解也是方程3x+ky=10的一个解,则k=﹣.【分析】由题意求得x,y的值,再代入3x+ky=10中,求得k的值.【解答】解:由题意得组,解得,代入3x+ky=10,得9﹣2k=10,解得k=﹣.故本题答案为:﹣.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.8.(5分)已知三元一次方程组,则x+y+z=11.【分析】根据题目中的方程的特点和所求的式子,将方程组中的三个方程相加,整理即可求得所求式子的值.【解答】解:,①+②+③,得2x+2y+2z=22,故答案为:11.【点评】本题考查解三元一次方程组,解答本题的关键是明确解三元一次方程组的方法,利用方程的思想解答.9.(5分)方程组的解是.【分析】①+②得出3x+y=1④,③﹣②求x,把x=1代入④求出y,把x=1,y=﹣2代入①求出z即可.【解答】解:①+②得:3x+y=1④,③﹣②得:x=1,把x=1代入④得:3+y=1,解得:y=﹣2,把x=1,y=﹣2代入①得:1﹣4+z=0,解得:z=3,所以原方程组的解为,故答案为:.【点评】本题考查了解三元一次方程组,能把三元一次方程转化成二元一次方程组或一元一次方程是解此题的关键.10.(5分)已知,则x+y+z的值为10.【分析】方程组三方程相加即可求出所求.【解答】解:,①+②+③得:2(x+y+z)=20,故答案为:10【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.三、解答题(本大题共5小题,共50.0分)11.(10分)已知关于x,y的方程组和有相同解,求(﹣a)b 值.【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b 的方程组即可得出a,b的值.【解答】解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得,代入(2)得.所以(﹣a)b=(﹣2)3=﹣8.【点评】此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.12.(10分)解三元一次方程组:【分析】方程组利用加减消元法求出解即可.【解答】解:①+②得:2y=﹣5﹣1,解得:y=﹣3,②+③得:2x=﹣1+15,解得:x=7,把x=7,y=﹣3代入①得:﹣3+z﹣7=﹣5,解得:z=5,方程组的解为:.【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(10分)【方法体验】已知方程组求4037x+y的值.小明同学发现解此方程组代入求值很麻烦!后来他将两个方程直接相加便迅速解决了问题.请你体验一下这种快捷思路,写出具体解题过程:【方法迁移】根据上面的体验,填空:已知方程组则3x+y﹣z=5.【探究升级】已知方程组求﹣2x+y+4z的值.小明凑出“﹣2x+y+4z=2•(x+2y+3z)+(﹣1)•(4x+3y+2z)=20﹣15=5“,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设﹣2x+y+4z=m•(x+2y+3z)+n•(4x+3y+2z),对照方程两边各项的系数可列出方程组,它的解就是你凑的数!根据丁老师的提示,填空:2x+5y+8z=(x+2y+3z)+(﹣)(4x+3y+2z)【巩固运用】已知2a﹣b+kc=4,且a+3b+2c=﹣2,当k为﹣2时,8a+3b﹣2c为定值,此定值是8.(直接写出结果)【分析】【方法迁移】将两个方程直接相减即可求得(3x+y﹣z)的值;【探究升级】根据提示将方程两边各项的系数列出方程组,解答即可;【巩固运用】根据提示将方程两边各项的系数列出方程组,解答即可;【解答】解:【方法迁移】将中的两个方程相减得到:﹣3x﹣y+z=﹣5,则3x+y﹣z=5.故答案是:5;【探究升级】设2x+5y+8z=m(x+2y+3z)+n(4x+3y+2z)由题意得:解得:∴2x+5y+8z=(x+2y+3z)﹣(4x+3y+2z)故答案为:,﹣【巩固运用】设8a+3b﹣2c=m(2a﹣b+kc)+n(a+3b+2c)∴解得∴8a+3b﹣2c=m(2a﹣b+kc)+n(a+3b+2c)=3×4+2×(﹣2)=8故答案为﹣2,8【点评】本题考查了三元一次方程组的解法,二元一次方程组的解法,阅读理解题目的意思是本题的关键.14.(10分)解方程组:【分析】根据三元一次方程组的解法即可求出答案.【解答】解:把①代入②得,y=3,将y=3代入③得,x=5将x=5,y=3代入②得,z=9∴方程组的解为【点评】本题考查方程组的解法,解题的关键是熟练运用方程组的解法,本题属于基础题型.15.(10分)解方程组.【分析】先将三元一次方程化为二元一次方程组,再化为一元一次方程即可解答本题.【解答】解:①+②,得4x+8z=12④②×2+③,得8x+9z=17⑤④×2﹣⑤,得7z=7解得,z=1,将z=1代入④,得x=1,将x=1,z=1代入①,得y=2.故原方程组的解是.【点评】本题考查解三元一次方程组,解题的关键是明确消元的数学思想,会解三元一次方程组.。

七年级数学-三元一次方程组的解法练习含解析 (2)

七年级数学-三元一次方程组的解法练习含解析 (2)

七年级数学-三元一次方程组的解法练习含解析一.选择题(共3小题)1.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0 B.1 C.2 D.不能求出2.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于()A.﹣B.C.2 D.﹣23.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元二.填空题(共15小题)4.已知:,则x+y+z=.5.三元一次方程组的解是.6.如果x,y互为相反数,且满足|a﹣2y﹣3|+(5x+9)2=0,那么a=.7.三元一次方程组的解是.8.已知x=﹣1时,3ax5﹣2bx3+cx2﹣2=10,其中a:b:c=2:3:6,那么=.9.如果方程组的解是方程2x﹣3y+a=5的解,那么a的值是.10.若关于x的方程组的解满足x=y,则k=.11.已知y=ax2+bx+c,且当x=1时,y=5;当x=﹣2时,y=14;当x=﹣3时,y=25,则a =,b=,c=.当x=4时,y=.12.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需元.13.如图,长方形ABCD被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积为.14.有甲、乙、丙3种商品,某人若购甲3件、乙7件、丙1件共需24元;若购甲4件、乙10件、丙1件共需33元,则此人购甲、乙、丙各一件共需元.15.7公斤桃子的价钱等于1公斤苹果和2公斤梨的价钱;7公斤苹果的价钱等于10公斤梨和1公斤桃子的价钱,则购买12公斤苹果所需的钱可以购买梨公斤.16.现有甲、乙、丙三种东西,若购买甲3件、乙5件、丙1件共需32元;若购买甲4件、乙7件、丙1件共需40元,则要购买甲、乙、丙各1件共需元.17.某公司董事会拨出总额为40万元款项作为奖励金,全部用于奖励本年度做出突出贡献的一、二、三等奖的职工.原来设定:一等奖每人5万元,二等奖每人3万元,三等奖每人2万元;后因考虑到一等奖的职工科技创新已给公司带来巨大的经济效益,现在改为:一等奖每人15万元,二等奖每人4方元,三等奖每人1万元,那么该公司本年度获得一、二、三等奖的职工共人.18.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用来购买C型号的电池,则能买只.三.解答题(共14小题)19.二元一次方程组的解x,y的值相等,求k.20.在y=ax2+bx+c中,当x=0时,y=﹣7;x=1时,y=﹣9;x=﹣1时,y=﹣3,求a、b、c 的值.21.已知关于x,y的方程组的解满足3x+2y=19,求m的值.22.已知关于x,y的二元一次方程组的解x与y的值互为相反数,试求m的值.23.已知:4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),求的值.24.解方程组.25.已知方程组的解x、y的和为12,求n的值.26.自习课上,数学老师为了检验小明同学对方程组这部分内容的掌握情况,给他出了这样一道练习:“当m为何值时,方程组的解x、y互为相反数.”这下可把平时学习不认真的小明给难住了,聪明的同学,你能帮小明求出m的值吗?27.若关于x、y的二元一次方程租的解x、y互为相反数,求m的值.28.m为何值时,方程组的解x,y满足x﹣y=2,并求出此方程组的解.29.解三元一次方程组:.30.某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植农作物每公顷所需的劳动力人数及投入的设备资金如下表:农作物品种每公顷需劳动力每公顷需投入资金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?31.为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5 (1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?32.把数字1,2,3,…,9分别填入右图的9个圈内,要求三角形ABC和三角形DEF的每条边上三个圈内数位之和等于18.(1)给出符合要求的填法;(2)共有多少种不同填法?证明你的结论.人教新版七年级下学期《8.4 三元一次方程组的解法》2020年同步练习卷参考答案与试题解析一.选择题(共3小题)1.若2x+5y+4z=0,3x+y﹣7z=0,则x+y﹣z的值等于()A.0 B.1 C.2 D.不能求出【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.【解答】解:根据题意得:,把(2)变形为:y=7z﹣3x,代入(1)得:x=3z,代入(2)得:y=﹣2z,则x+y﹣z=3z﹣2z﹣z=0.故选:A.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.2.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于()A.﹣B.C.2 D.﹣2【分析】利用非负数的性质列出关于x,y及z的方程组,求出方程组的解即可得到x,y,z的值,确定出x+y+z的值.【解答】解:∵(2x﹣4)2+(x+y)2+|4z﹣y|=0,∴,解得:,则x+y+z=2﹣2﹣=﹣.故选:A.【点评】此题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.3.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元【分析】设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,建立三元一次方程组,两个方程相减,即可求得x+y+z的值.【解答】解:设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,根据题意得,②﹣①得x+y+z=1.05(元).故选:B.【点评】解答此题的关键是根据题意列出方程组,同时还要有整体思想.二.填空题(共15小题)4.已知:,则x+y+z= 6 .【分析】三个式子左右两边分别相加即可求解.【解答】解:三个式子相加得:2(x+y+z)=12,则x+y+z=6.故答案是:6.【点评】本题考查了三元一次方程组的解法,理解三个方程的左边相加所得结果与x+y+z的关系是关键.5.三元一次方程组的解是.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:x﹣z=2④,③+④得:2x=8,即x=4,把x=4代入④得:z=2,把z=2代入②得:y=3,则方程组的解为,故答案为:【点评】此题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.6.如果x,y互为相反数,且满足|a﹣2y﹣3|+(5x+9)2=0,那么a=.【分析】根据非负数的性质可得出两个关于x、y的方程,再联立x=﹣y组成方程组,可求得a的值.【解答】解:根据题意得,解得.即a=.【点评】初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.7.三元一次方程组的解是.【分析】用代入法或加减消元法求出方程组的解即可.【解答】解:(1)+(2)得3a+2b=15,(1)﹣(3)得b=5,代入3a+2b=15得a=,把a=,b=5代入(1),得c=.故本题答案为:.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.8.已知x=﹣1时,3ax5﹣2bx3+cx2﹣2=10,其中a:b:c=2:3:6,那么=.【分析】先将x=﹣1代入3ax5﹣2bx3+cx2﹣2=10,得到一个关于a、b、c的方程,然后设a =2y,则b=3y,c=6y,代入即可求出y的值,继而求出a、b、c的值,最后代入即可求出答案.【解答】解:将x=﹣1代入3ax5﹣2bx3+cx2﹣2=10,得﹣3a+2b+c=12,设a=2y,则b=3y,c=6y,代入可得y=2,即a=4,b=6,c=12,代入===.故答案为:.【点评】本题考查了三元一次方程组解法,解题的关键是弄清题意,分别用y来表示a、b、c 的值.9.如果方程组的解是方程2x﹣3y+a=5的解,那么a的值是﹣10 .【分析】本题实际上是一道关于三元一次方程组的题目,将题目中的二元一次方程组和三元一次方程列为三元一次方程组来解答即可.【解答】解:由题意得把(1)代入(2)得:2(y+5)﹣y=5,(4)解得y=﹣5;(5)将(5)代入(1),解得x=0;(6)把(5)(6)代入(3),解得a=﹣10.【点评】理解清楚题意,运用三元一次方程组的知识,解出a的数值.10.若关于x的方程组的解满足x=y,则k=.【分析】理解清楚题意,运用三元一次方程组的知识,列出三元一次方程组,先用k表示出x 的值,再代入原方程,求得k的值.【解答】解:由题意得,把③代入②得x=,代入①得k=﹣.故本题答案为:.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.11.已知y=ax2+bx+c,且当x=1时,y=5;当x=﹣2时,y=14;当x=﹣3时,y=25,则a=2 ,b=﹣1 ,c= 4 .当x=4时,y=32 .【分析】根据题意,把x,y的值代入y=ax2+bx+c中,得到关于a、b、c的三元一次方程组,即可求得a、b、c的值.【解答】解:据题意得,解得,∴当x=4时,y=32.故本题答案为:4;32.【点评】本题实质考查了三元一次方程组的建立和解法.此题提高了学生的计算能力.12.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需105 元.【分析】设购买甲、乙、丙各一件分别需要x,y,z元,列出方程组,消去z后,得到x+3y的值,再代入①,即可求得x+y+z的值,也即购买甲、乙、丙各一件的共需钱数.【解答】解:设购买甲、乙、丙各一件分别需要x,y,z元,由题意得,②﹣①得x+3y=105,代入①得x+y+2(x+3y)+z=315,即x+y+z+2×105=315,∴x+y+z=315﹣210=105.故答案为:105.【点评】本题考查了三元一次方程组的实际应用,解答此题的关键是首先根据题意列出方程组,再整体求解.13.如图,长方形ABCD被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积为85 .【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF与S△ABE=S△ADE+S△BCE 列出三元一次方程组,再利用加减消元法即可求得y的值.【解答】解:设未知的三块面积分别为x,y,z(如图)则,即由①+②解得y=85故答案为85【点评】解决本题的关键是理清三角形与矩形间的面积关系,列出三元一次方程组,再根据方程组中系数特点,通过加减,得到y值,即为所求.14.有甲、乙、丙3种商品,某人若购甲3件、乙7件、丙1件共需24元;若购甲4件、乙10件、丙1件共需33元,则此人购甲、乙、丙各一件共需 6 元.【分析】设甲、乙、丙3种商品的单价分别是x元、y元、z元.由题意列方程组得:,然后求得x+y+z的值.【解答】解:设甲、乙、丙3种商品的单价分别是x元、y元、z元.由题意列方程组得由①×3﹣②×2得x+y+z=6故答案为6.【点评】根据系数特点,通过加减,得到一个整体,然后整体求解.15.7公斤桃子的价钱等于1公斤苹果和2公斤梨的价钱;7公斤苹果的价钱等于10公斤梨和1公斤桃子的价钱,则购买12公斤苹果所需的钱可以购买梨18 公斤.【分析】设苹果的价格为每千克x元,梨的价格为每千克y元,桃子的价格为每千克z元,建立方程组,求得x,y的关系即可.【解答】解:设苹果的价格为每千克x元,梨的价格为每千克y元,桃子的价格为每千克z 元.则根据题意列方程组,解方程组得12x=18y.∴买12千克苹果的钱可买18千克梨.故本题答案为:18.【点评】此题无法直接解出来,但通过关系式12x=18y可以轻松得出结论.16.现有甲、乙、丙三种东西,若购买甲3件、乙5件、丙1件共需32元;若购买甲4件、乙7件、丙1件共需40元,则要购买甲、乙、丙各1件共需16 元.【分析】设甲、乙、丙每件单价为x、y、z元,建立方程组,整体求得x+y+z的值.【解答】解:设甲、乙、丙每件单价为x、y、z元,根据题意列方程组得,②﹣①得:x+2y=8③,②+①得:7x+12y+2z=72④,④﹣③×5得:2x+2y+2z=32,∴x+y+z=16.故本题答案为:16.【点评】未知数共有三个,方程只有两个,无法直接解答,通过加减,将x+y+z看做一个整体来解.17.某公司董事会拨出总额为40万元款项作为奖励金,全部用于奖励本年度做出突出贡献的一、二、三等奖的职工.原来设定:一等奖每人5万元,二等奖每人3万元,三等奖每人2万元;后因考虑到一等奖的职工科技创新已给公司带来巨大的经济效益,现在改为:一等奖每人15万元,二等奖每人4方元,三等奖每人1万元,那么该公司本年度获得一、二、三等奖的职工共17 人.【分析】根据题中给出的条件列出两个三元一次方程,再根据X、Y、Z均为正整数,便可解得X+Y+Z的值.【解答】解:设该公司本年底获得一、二、三等奖的职工分别是X,Y,Z人.5X+3Y+2Z=40 (1)15X+4Y+Z=40 (2)(2)*2﹣(1)得5X+Y=8,由于X,Y,Z为正整数,0<5X<8,X=1,Y=3,从而得出Z=13.X+Y+Z=17该公司本年底获得一、二、三等奖的职工共17人.故答案为:17.【点评】本题主要考查了三元一次方程的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键,属于中档题.18.有A、B、C三种不同型号的电池,它们的价格各不相同.有一笔钱可买A型4只,B型18只,C型16只;或A型2只,B型15只,C型24只;或A型6只,B型12只,C型20只.如果将这笔钱全部用来购买C型号的电池,则能买48 只.【分析】先设买一只A型的价格是x元,买一只B型的价格是y元,买一只C型的价格是z 元,能买C型W只根据题意列出方程组,求出方程组的解即可.【解答】解:设买一只A型的价格是x元,买一只B型的价格是y元,买一只C型的价格是z 元,能买C型W只,根据题意得:,解得:代入4x+18y+16z=Wz得:W=48.故答案为:48.【点评】本题主要考查了三元一次方程组的应用问题,解答此题的关键是列出方程组,用代入消元法或加减消元法求出方程组的解.三.解答题(共14小题)19.二元一次方程组的解x,y的值相等,求k.【分析】由于x=y,故把x=y代入第一个方程中,求得x的值,再代入第二个方程即可求得k的值.【解答】解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=1代入kx+(k﹣1)y=3中得:k+k﹣1=3,∴k=2【点评】由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.在y=ax2+bx+c中,当x=0时,y=﹣7;x=1时,y=﹣9;x=﹣1时,y=﹣3,求a、b、c 的值.【分析】将x、y的值分别代入y=ax2+bx+c,转化为关于a、b、c的方程,再根据解三元一次方程组的步骤,即可求出a、b、c的值.【解答】解:由题意得:,把c=0代入②、③得:,解得:a=1,b=﹣3,则a=1,b=﹣3,c=﹣7.【点评】此题考查了三元一次方程组的解,掌握解三元一次方程组的步骤是本题的关键,主要渗透了待定系数法求函数解析式的思想.21.已知关于x,y的方程组的解满足3x+2y=19,求m的值.【分析】先解关于x,y二元一次方程组,求得用m表示的x,y的值后,再代入3x+2y=19,建立关于m的方程,解出m的数值.【解答】解:,①+②得x=7m,①﹣②得y=﹣m,依题意得3×7m+2×(﹣m)=19,∴m=1.【点评】本题实质是解二元一次方程组,先用m表示的x,y的值后,再求解关于m的方程,解方程组关键是消元.22.已知关于x,y的二元一次方程组的解x与y的值互为相反数,试求m的值.【分析】根据三元一次方程组解的概念,列出三元一次方程组解出x,y的值代入含有m的式子即求出m的值.【解答】解:由题意得,由③得:x=﹣y,④把④代入①得,y=﹣m﹣3,把④代入②得:x=,∴﹣m﹣3+=0,解得m=﹣10.【点评】本题的实质是考查三元一次方程组的解法.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.23.已知:4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),求的值.【分析】先由题意列出方程组,先用z表示出x,y的值,再代入所求代数式求值即可.【解答】解:由题意得,①﹣②×4得:﹣11y+22z=0,解得:y=2z,将y=2z代入①得:x=3z,即,代入得:原式==.【点评】将x、y都转化为关于z的代数式,即可将z消去,得原式的值.24.解方程组.【分析】利用加减法消掉一个未知数,将三元一次方程组转化为二元一次方程组,再进行解答.【解答】解:③+①得,3x+5y=11④,③×2+②得,3x+3y=9⑤,④﹣⑤得2y=2,y=1,将y=1代入⑤得,3x=6,x=2,将x=2,y=1代入①得,z=6﹣2×2﹣3×1=﹣1,∴方程组的解为.【点评】本题考查了解三元一次方程组,需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,得到由另外两个未知数组成的二元一次方程组.25.已知方程组的解x、y的和为12,求n的值.【分析】由题意列出方程组求解,用n表示出x,y的值代入x+y=12,求得n的值.【解答】解:由题意可得,解得,代入x+y=12,得n=14.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.26.自习课上,数学老师为了检验小明同学对方程组这部分内容的掌握情况,给他出了这样一道练习:“当m为何值时,方程组的解x、y互为相反数.”这下可把平时学习不认真的小明给难住了,聪明的同学,你能帮小明求出m的值吗?【分析】理解清楚题意,运用三元一次方程组的知识,解出m的数值.【解答】解:因为x、y互为相反数,所以方程组可变形为:,解得:.故m=2.【点评】解答此题关键是根据题列出方程组,再用代入法或加减消元法求解.27.若关于x、y的二元一次方程租的解x、y互为相反数,求m的值.【分析】利用x,y的关系代入方程组消元,从而求得m的值.【解答】解:将x=﹣y代入二元一次方程租可得关于y,m的二元一次方程组,解得m=23.【点评】考查了解二元一次方程的能力和对方程解的概念的理解.28.m为何值时,方程组的解x,y满足x﹣y=2,并求出此方程组的解.【分析】先用含m的代数式表示x,y,即解关于x,y的方程组,再代入x﹣y=2中可得m的值,进而求出方程组的解.【解答】解:解方程组得,∵x﹣y=2,∴﹣(﹣)=2,解得:m=1,∴方程组的解是.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.29.解三元一次方程组:.【分析】因为三个方程中z的系数相同或互为相反数,应用加减法来解.【解答】解:①+②得5x+2y=16④,③+②得3x+4y=18⑤,得方程组,解得,代入③得,2+3+z=6,∴z=1.∴方程组的解为.【点评】解三元一次方程组要注意以下几点:方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.30.某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植农作物每公顷所需的劳动力人数及投入的设备资金如下表:农作物品种每公顷需劳动力每公顷需投入资金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?【分析】首先种植水稻x公顷,棉花y公顷,蔬菜为z公顷,根据题意可得等量关系:①三种农作物的投入资金=67万元;②三种农作物所需要的人力=300名职工;③三种农作物的公顷数=51公顷,根据等量关系列出方程组即可.【解答】解:设种植水稻x公顷,棉花y公顷,蔬菜为z公顷,由题意得:,解得:,答:种植水稻15公顷,棉花20公顷,蔬菜为16公顷.【点评】此题主要考查了三元一次方程组的应用,关键是弄懂题意,抓住题目中的关键语句,找出等量关系,设出未知数,列出方程组.31.为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5 (1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?【分析】(1)根据题意可得方程组,再解方程组即可.(2)根据题意可得方程组,再解方程组即可.【解答】解:(1)由题意得:,解得:A=1,B=6,C=8,答:接收方收到的密码是1、6、8;(2)由题意得:,解得:a=3,b=4,c=7,答:发送方发出的密码是3、4、7.【点评】此题主要考查了方程组的应用,关键是正确理解题意,根据密文与明文之间的关系列出方程组.32.把数字1,2,3,…,9分别填入右图的9个圈内,要求三角形ABC和三角形DEF的每条边上三个圈内数位之和等于18.(1)给出符合要求的填法;(2)共有多少种不同填法?证明你的结论.【分析】(1)先确定D、E、F三处的数字之和应该是24,再进一步分析其它的数字;(2)把填入A,B,C三处圈内的三个数之和记为x;D,E,F三处圈内的三个数之和记为y;其余三个圈所填的数位之和为z.结合图形和已知条件得到方程组,进而求得y=24,再进一步分析即可.【解答】解:(1)右图给出了一个符合要求的填法;(2)共有6种不同填法把填入A,B,C三处圈内的三个数之和记为x;D,E,F三处圈内的三个数之和记为y;其余三个圈所填的数位之和为z.显然有x+y+z=1+2+…+9=45①,图中六条边,每条边上三个圈中之数的和为18,所以有z+3y+2x=6×18=108②,②﹣①,得x+2y=108﹣45=63③,把AB,BC,CA每一边上三个圈中的数的和相加,则可得2x+y=3×18=54④,联立③,④,解得x=15,y=24,继而解之z=6.在1,2,3,…,9中三个数之和为24的仅为7,8,9,所以在D,E,F三处圈内,只能填7,8,9三个数,共有6种不同填法.显然,当这三个圈中的数一旦确定,根据题目要求,其余六个圈内的数也随之确定,从而得结论,共有6种不同的填法.【点评】此题中要特别注意三角形的顶点的数字的重复使用,能够根据各边的数字之和列方程组求解.2020。

2.21 解三元一次方程组100题 浙教版数学七年级下册基础知识讲与练专项练习(含答案)

2.21 解三元一次方程组100题 浙教版数学七年级下册基础知识讲与练专项练习(含答案)

专题2.21 解三元一次方程组100题(专项练习)三元一次方程组及其解法的重要性容易不被引起重视,从而影响到了初三学习二次函数求解析式的有效性和正确性,因此巩固此内容相当重要,希望本专题的练习,为后期学习打下扎实基础!一、解答题1.解方程组2.解方程组:.3.解方程组:.4.已知多项式,当时,它的值是,当时,它的值是,试求的值.5.解方程组:6.设线段x、y、z满足,求x、y、z的值.7.解方程组:8.已知y=ax2+bx+c.当x=3时,y=0;当x=-1时,y=0;当x=0,y=3;求a、b、c的值9.10.解方程组:.11.解方程组12.13.在等式中,当时,;当时,:当时,.(1) 求,,的值;(2) 求当时,的值.14.解方程组:15.解方程组:16.解三元一次方程组:17.解三元一次方程组.18.用代入法解三元一次方程组.19.解方程组:20.解方程组.21.解方程组22.解方程:23.解方程组:.24.解方程组:.25.解方程组:.26.解方程组:.27.解方程组:.28.解方程组:.29.解方程组.30.解方程组:.31.解方程组:.32.解方程组:.33.解方程组:34.解下列三元一次方程组:35.解方程组:.36.解方程组:.37.解方程组:.38.解方程组:.39.解方程组:40.解方程组:41.解下列方程组:(1)(2)42.解方程组:43.解方程组44.解下列方程组:(1);(2).45.解下列三元一次方程组:(1);(2).46.在等式中,当时,;当时,;当与时,的值相等.求,,的值.47.解下列三元一次方程组:(1);(2).48.解三元一次方程组49.解方程组.50.在等式中,当时,;当时,;当时,.求,,的值.51.解下列三元一次方程组:(1);(2).52.解三元一次方程组:53.解方程组:54.在等式中,当时,;当时,;时,.求、、的值.55.已知等式y=ax2+bx+c,且当x=1时,y=2;当x=﹣1时,y=6;当x=0时,y=3,求a,b,c的值.56.已知y=ax2+bx+c,当x=1时,y=8;当x=0时,y=2;当x=﹣2时,y=4.(1)求a,b,c的值;(2)当x=﹣3时,求y的值.57.已知.当时,;当时,;当时,.(1)求、、的值;(2)求时,的值.58.59.在等式y=ax3+bx+c中.当x=1时,y=6;当x=2时,y=9;当x=3时,y=16.求a,b,c的值.60.解方程组:61.解方程组:62.解方程组:63.解方程组64.解方程组:.65.解方程组:.66.在等式中,当时,;当时,;当时,,求这个等式中、、的值.67.在等式y=ax2+bx+c中,当x=1时,y=6;当x=﹣1时,y=0;当x=2时,y=12,当x=4时,y的值是多少.68.解方程组:.69.解方程组:70.71.72.73.解三元一次方程组74.解方程组:.75.在等式y=ax2+bx+c中,当x=1时,y=﹣2;当x=﹣1时,y=20;当x=2时,y =﹣10;求当x=﹣2时,y的值.76.解方程组:.77.78.解三元一次方程组.79.若,且x+2y+z=36,分别求x、y、z的值.80.已知代数式,当时,;当时,;当时,;①求、、的值;②求时,的值.81.已知方程组其中c≠0,求的值.82.已知y=ax2+bx+c. 当x=1时,y=0;当x=2时,y=4;当x=3时,y=10.(1)求a、b、c的值;(2)求x=4时,y的值.83.阅读下列解方程组的过程:解方程组:由①+②+③,得2(x+y+z) =6,即x+y+z=3.④由④-①,得z=2;由④-②,得x=1;由④-③,得y=0.则原方程组的解为按上述方法解方程组:84.解方程组:85.解方程组86.解方程组:87.解方程组:(1)(2)88.解方程组:89.解方程(1)(2)90.解方程组:91.解三元一次方程组:92.解方程组:(1) ;(2) 93.解方程组94.解三元一次方程组95.解方程组.96.解方程组.97.解方程组:.98.已知,xyz≠0,则的值_____.99.解方程组100.解方程组:(1) ;(2) ;(3) ;(4) .参考答案1.2.【分析】先用加减消元法消去z,变为关于x、y的二元一次方程组,解三元一次方程组即可.解:,②①,得:,③②,得:,解方程组,得:,将代入①,得:,解得:,∴原方程组的解为:.【点拨】本题考查了三元一次方程组的解法,解题的关键是熟练运用消元法把三元化为二元,再解二元一次方程组.2.【分析】根据加减消元法和代入消元法求解即可解:①②得,④,③④得,,解得,代入③得,,代入①得,,∴方程组的解为.【点拨】本题考查了三元一次方程组的求解,正确的计算是解决本题的关键.3.【分析】①②得:④,把③代入④求出x,把代入③求出y,再把,代入①求出z即可.解:,①②得:④,把③代入④得:,解得:,把代入③得:,把,代入①得:,解得:,原方程组的解为:.【点拨】此题考查了解三元一次方程组,正确掌握三元一次方程组的解法是解题的关键.4.【分析】把与代入,分别使其值为0和1,列出两个关系式,相减即可求出的值.解:由题意得,②①,得,∴.【点拨】本题考查了代数式求值,以及解三元一次方程组,熟练掌握运算法则是解本题的关键.5.【分析】第一个与第三个方程相加解出x,第一个与第二个方程相加列出关于的方程组,再将x代入求出y,进而求出z的值,即可得到方程组的解.解:得:得:④把代入④得:把,代入①得:所以原方程组的解是:【点拨】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.6..【分析】设===k,从而可得x+y=2k,z+x=3k,y+z=4k,进而可得x+y+z=k,然后根据x+y+z=18,求出k的值,从而求出x+y=8,z+x=12,y+z=16,最后进行计算即可解答.解:设===k,∴x+y=2k,z+x=3k,y+z=4k,∴x+y+z+x+y+z=9k,∴2x+2y+2z=9k,∴x+y+z=k,∵x+y+z=18,∴k=18,∴k=4,∴x+y=8,z+x=12,y+z=16,∴z=10,y=6,x=2,∴原方程组的解为:.【点拨】本题考查解三元一次方程组,解题的关键是令===k,并求出k值.7.【分析】利用消元法先把三元一次方程组变形为二元一次方程组,再解二元一次方程组即可得解.解:,得,把和④组成方程组得,解此二元一次方程组得,把,代入②得2×2+5×1-2z=11,解得z=−1,∴原方程组得解为.【点拨】本题主要考查了解三元一次方程组,把三元一次方程组通过消元法化为二元一次方程组是解题的关键.8.,,.【分析】代入得出三元一次方程组,求出方程组的解即可.解:由题意得:将代入①,③中得:,由④⑤得:,解得:,将代入④中得:,解得:,即,,.【点拨】本题考查了解三元一次方程组的应用,解此题的关键是能根据题意得出三元一次方程组,题目比较好,难度适中.9.【分析】由于未知数的系数均为1,可以用加减消元法解答.解:,①+②+③得,∴,④-③得y=0,将y=0代入①中得:x=2,将y=0代入②中得:z=3故原方程组的解为:.【点拨】本题考查解三元一次方程组,用加减消元法来解答,要注意消元思想的应用.10.【分析】由②+③×3可得,再由由①-④可得,然后把分别代入①,②,即可求解.解:由②+③×3得:,由①-④得:,解得:,把代入①得:,把,代入②得:,所以原方程组的解为【点拨】本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键.11.【分析】由①得,由②得,利用代入消元法求解即可.解:,由①得④,由②得⑤,把④、⑤代入③得:,解得,把代入④得,把代入⑤得,∴.【点拨】本题考查解三元一次方程组,利用代入消元法求解是解题的关键.12.【分析】先用②+③求得x,然后代入②得:y=x+3z-4 ④,再将④代入①可求得z,然后将x、z代入④可求得y.解:②+③得:5x=2,∴x=,由②得:y=x+3z-4 ④,将④代入①得:2x-3(x+3z-4 )+4z=12,解得:z=-,将x=,z=-代入④得:y=-,∴原方程组的解为:.【点拨】本题主要考查了三元一次方程组的解法,掌握加减消元法和代入消元法是解答本题的关键.13.(1) (2)【分析】(1)根据题设条件,得到关于,,的三元一次方程组,利用加减消元法解之即可,(2)结合(1)的结果,得到关于和的等式,把代入,计算求值即可.解:(1)根据题意得:,①+②得:④③+②×2得:⑤,⑤-④得:,把代入④得:,解得:,把,代入①得:,解得:,方程组的解为:;(2)根据题意得:,把代入得:,即的值为.【点拨】本题考查了解三元一次方程组,解题的关键:(1)正确掌握加减消元法,(2)正确掌握代入法.14.解:①+②,解得y=8.将y=8代入②和③,得,解得,所以原方程组的解为.15.【分析】消去未知数z或y,把三元一次方程组先化为二元一次方程组,求解二元一次方程组后再求出另一个未知数.解:由①+②,得,由①+③,得,由④⑤组成方程组为,解这个方程组,得,把代入①,得;∴原方程组的解为;【点拨】本题考查了解三元一次方程组,把三元一次方程组化为二元一次方程组是解决本题的关键.16.【分析】先利用方程①③消去位置是z,再与方程②结合求解x,y,再求解z,从而可得答案.解:①-③得-x+2y=1④,④+②得y=2,将y=2代入②得x=3,将x=3,y=2代入①得z=1,所以原方程组的解为.【点拨】本题考查的是三元一次方程组的解法,掌握利用加减消元法解三元一次方程组的步骤是解本题的关键.17.【分析】先由①×2-②消去y,①×3+③消去y,得到,转化为解关于x,z的二元一次方程组,据此解答.解:①×2-②,得①×3+③,得解方程组解得把代入①,得,所以原方程组的解为.【点拨】本题考查加减消元法解三元一次方程组,是基础考点,掌握相关知识是解题关键.18.【分析】观察每个方程的特点,将变形为z=3x+2y﹣16,分别代入剩下的方程,再利用加减消元解二元一次方程组即可.解:,由②得:z=3x+2y﹣16④,把④代入①得:2x+y+9x+6y﹣48=13,即11x+7y=61⑤;把④代入③得:x+3y﹣15x﹣10y+80=10,即2x+y=10⑥,⑥×7﹣⑤得:3x=9,即x=3,把x=3代入⑥得:y=4,把x=3,y=4代入④得:z=1,则方程组的解为.【点拨】本题主要考查了解三元一次方程组,正确运用消元思想进行运算是解题的关键.19.【分析】根据解三元一次方程组的求解方法求解即可.解:解析:①③得④,②④3得,把代入④得,把代入①得,∴方程组的解为.【点拨】本题主要考查了解三元一次方程组,熟知解三元一次方程组的方法是解题的关键.20.【分析】分别将①与②相加,③减去①,联立得到关于x和z的二元一次方程组,求解并代入原方程组任意方程即可求解.解:,①+②得,④,③-①得,⑤,④-⑤得,,,把代入④得,,,把,代入②,,,∴方程组的解为.【点拨】本题考查解三元一次方程组,选择一个比较容易消去的未知数进行消元,能够使运算更加简便.21.【分析】先用加减消元法消去z,变为关于x、y的二元一次方程组,解三元一次方程组即可.解:,②−①,得:,②+③,得:,解方程组,得:,将代入①,得:,解得:,∴原方程组的解为:【点拨】本题考查了三元一次方程组的解法,解题关键是熟练运用消元法把三元化为二元,再解二元一次方程组.22.【分析】分别用②﹣①、③﹣①消去z,得到两个关于x和y的方程,求出x和y的值,进而可求出z的值.解:,②﹣①得:3x﹣y=11④,③﹣①得:15x+5y=35,即3x+y=7⑤,④+⑤得:6x=18,解得:x=3,④﹣⑤得:﹣2y=4,解得:y=﹣2,把x=3,y=﹣2代入①得:z=﹣5,则方程组的解为.【点拨】此题考查了解三元一次方程组,解题的关键是利用加减消元法消去未知数转化成一元一次方程.23.【分析】把①代入②消去z得到方程④,把③④构成方程组解得x、y,再代入①求得z,从而求解.或者把①+②消去z得到方程④,把③④构成方程组解得x、y,再代入①求得z,从而求解.解:方法一:,把①代入②得,④联立方程③④得,解得,把代入①,得.所以原方程组的解是.方法二:,①+②,得,,④联立方程③④,得,解得,所以原方程组的解是.【点拨】本题考查解三元一次方程组,熟练运用代入消元法、加减消元法解方程组是解决本题的关键.24.【分析】利用加减消元法求出解即可.解:解方程组,①+②,得④,,得⑤,④+⑤,得,∴,将代入③,得,∴,将代入②,得,∴,∴方程组的解为.【点拨】本题考查了解三元一次方程组,利用消元的思想是解题的关键,消元包括:代入消元法和加减消元法.25.【分析】先①+②得④,再求出,将代入④求出x,最后将代入②求出y即可.解:,①+②,得④,,得:,∴,将代入④中,得:,∴,将代入②中,得:,∴,∴方程组的解为.【点拨】本题考查了三元一次方程组的解法,理解三元一次方程组的解法是解答关键.26.【分析】利用消元的方法将三元一次方程组化为二元一次方程组,再利用消元的方法将二元一次方程组化为一元一次方程组,再求出未知数的值,将求出的未知数的值代入方程中求出另外两个未知数的值.解:由①得:将④代入②和③中整理得:得:将代入⑤中得:将,代入④中得:∴该方程组的解为【点拨】本题主要考查了用消元法解方程组,熟练掌握消元法解方程组是解答此题的关键.27.【分析】由①+②可得3x+4y=24④,再由①+③可得6x-3y=15⑤,然后④⑤可得y=3,再把把y=3代入④,可得x=4,最后把x=4,y=3代入①,即可求解.解:,①+②得3x+4y=24④①+③得6x-3y=15⑤④⑤得8y+3y=48-15解得:y=3,把y=3代入④,得:3x+12=24,解得:x=4,把x=4,y=3代入①,得:4+3+2z=15,解得:z=4,∴方程组的解为.【点拨】本题主要考查了解三元一次方程组,熟练掌握解三元一次方程组得基本方法是解题的关键.28.【分析】根据解三元一次方程组的步骤即可求得.解:,由②得,将代入①中得:,则,由①+③得:,则,解得,,,所以方程组的解为:.【点拨】本题考查了三元一次方程组的解法,灵活运用加减消元或代入消元法解方程组是解决本题的关键.29.【分析】利用“消元”的思想将三元一次方程组消元变成二元一次方程组,再继续消元变成一元一次方程,解一元一次方程,将得到的未知数的值回带到前面的式子求出另外两个未知数即可.解:方法一:①②,得④②③,得⑤④⑤5,得把代入④,得把,代入③,得原方程组的解是.方法二:①②,得④①③,得由④与⑤构成的二元一次方程组为解这个方程组,得把代入③,得所以原方程组的解是.方法三:①②,得④②③,得⑤由⑤得⑥把⑥代入④,得所以把代入⑥,得把,同时代入③得所以所以原方程组的解为.【点拨】本题考查解三元一次方程组,关键是掌握解方程组中的“消元”思想,利用代入法或加减法消元.30.【分析】由①设,把,,代入②,求得,进而即可求得.解:,由①设,∴,,,把,,代入②,∴,.∴,,.∴方程组的解为.【点拨】本题考查了解三元一次方程组,根据比例式设参数是解题的关键.31.【分析】根据解三元一次方程的方法求解即可.解:①+②得,解得,③-①得,即,解得,将代入①得,解得,故方程组的解为.【点拨】本题主要考查了解三元一次方程组,熟知解三元一次方程的方法是解题的关键.32.【分析】利用加减消元法解该三元一次方程组即可.解:②③得,④,③①得,⑤,⑤④得,,,把代入④,得:解得:,把,代入①,得:解得:.∴方程组的解为:.【点拨】本题考查解三元一次方程组.掌握解三元一次方程组的方法是解题关键.33.【分析】将①+②可得得:④,再由③+④可得,然后把和代入①可得,即可求解.解:将①+②得:④,将③+④得:,解得:,将代入④得:,将和代入①得:,原方程组的解为.【点拨】本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键.34.解:将①代入②、③,消去z,得解得把x=2,y=3代入①,得z=5。

人教版七年级数学下册 8-4 三元一次方程组的解法(同步练习)

人教版七年级数学下册 8-4 三元一次方程组的解法(同步练习)

第8章二元一次方程组*8.4三元一次方程组的解法班级:姓名:知识点1三元一次方程组的概念及解1.写一个三元一次方程组,使它的解为x=1,y=1,z=1,这个三元一次方程组为.2.以下方程中,属于三元一次方程组的是()A.ìíîïï2x +3y =4,2y +z =5,x 2+y =1 B.ìíîïïïï1x +1y +1z =16,3x -4y =3,x +z =2C.ìíîïïx +y +z =2,x -2y =3,y -6z =9D.ìíîïïx -y =2,2x -3y =4,2x -2y =43.三元一次方程组{x +y =1,y +z =5,z +x =6的解是()A.{x =1,y =0,z =5 B.{x =1,y =2,z =4C.{x =1,y =0,z =4D.{x =4,y =1,z =0知识点2解三元一次方程组4.解方程组ìíîïïïïx +y -z =11,①y +z -x =5,②z +x -y =1,③若要使运算简便,消元的方法应选()A.先消去xB.先消去yC.先消去zD.以上说法都不对5.解下列三元一次方程组:(1)ìíîïïy =2x -7,5x +3y +2z =2,3x -4z =4;(2)ìíîïïx +y +z =12,x +2y +5z =22,x =4y .6.解下列三元一次方程组:(1)ìíîïï3x -y +z =4,2x +3y -z =12,x +y +z =6;(2)ìíîïï2x +4y +3z =9,3x -2y +5z =11,5x -6y +7z =13;(3)ìíîïïïï4x +9y =12,3y -2z =1,7x +5z =434;(4)ìíîïï3x -y +2z =3,2x +y -3z =11,x +y +z =12.7.解方程组ìíîïï2x +3y +z =6,x -y +2z =-1,x +2y -z =5.8.解方程组ìíîïï3x +y -4z =13,5x -y +3z =5,x +y -z =3.9.解方程组:(1)ìíîïïïï2x +6y +3z =6,①3x +15y +7z =6,②4x -9y +4z =9;③(2)ìíîïïïïx +2y +3z =4,①3x +y +2z =5,②2x +3y +z =6.③知识点3解三元一次方程组的应用10.方程组{3x +5y =6,6x +15y =16的解也是方程3x+ky=10的解,则()A.k=6B.k=10C.k=9D.k=11011.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k 的值为()A.3B.-3C.-4D.412.李红在做这样一个题目:在等式y=ax 2+bx+c 中,当x=1时,y=6;当x=2时,y=21;当x=-1时,y=0;当x=-2时,y 等于多少?她想,在求y 值之前应先求a,b,c 的值,你认为她的想法对吗?你能帮她求出a,b,c 的值吗?知识点4列三元一次方程组解应用题13.有铅笔、练习本、圆珠笔三种学习用品,若购买铅笔3支、练习本7本、圆珠笔1支共需3.15元;若购买铅笔4支、练习本8本、圆珠笔2支共需4.2元,那么,购买铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元14.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花、12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花、3750朵紫花,则黄花一共用了朵.15.一个三位数,个位与百位上的数的和等于十位上的数,百位上的数的7倍比个位与十位上的数的和大2,个位、十位、百位上的数的和是14,求这个三位数.综合点1根据方程组的特点,灵活选用解法16.解方程组:{x +y =9,y +z =11,x +z =10.17.解方程组:ìíîïïx ∶y =3∶2,y ∶z =5∶4,x +y +z =66.综合点2方程组与其他知识结合18.已知|x-8y|+2(4y-1)2+3|8z-3x|=0,求x+y+z的值.19.已知单项式-ab 11c y+z-x 与12a x+z-yb x+y-zc 5是同类项,求x,y,z 的值.拓展点1利用整体的思想解题20.有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需元.拓展点2不定方程的整数解21.用100元买15张邮票,其中有4元、8元、10元三种面值,问可以怎么买?(列出三元一次方程组)第8章二元一次方程组*8.4三元一次方程组的解法答案与点拨1.不唯一,如:{x +y +z =3,2x -y =1,3y -z =2.(点拨:根据题意任意写出一个三元一次方程组,满足x=1,y=1,z=1就行,答案不唯一.)2.C3.A(点拨:可利用三元一次方程组解的定义逐个验证.)4.D(点拨:原方程组中,①+②可消去x,z,求出y;①+③可消去y,z,求出x;②+③可消去x,y,求出z;故选D.)5.(1)ìíîïïïïx =2,y =-3,z =12.(2){x =8,y =2,z =2.6.(1){x =2,y =3,z =1.(2)ìíîïïïïx =-1,y =12,z =3.(3)ìíîïïïïïïïïx =-34,y =53,z =2.(4){x =3,y =8,z =1.7.ìíîïï2x +3y +z =6,①x -y +2z =-1,②x +2y -z =5.③③+①得,3x+5y=11.④③×2+②得,3x+3y=9.⑤④-⑤得2y=2,y=1.将y=1代入⑤得,3x=6,x=2.将x=2,y=1代入①得,z=6-2×2-3×1=-1,∴原方程组的解为{x =2,y =1,z =-1.8.ìíîïï3x +y -4z =13,①5x -y +3z =5,②x +y -z =3.③①+②得z=8x-18,②+③×3得y=7-4x.把z=8x-18,y=7-4x,代入③得x=2,则z=-2,y=-1.所以原方程组的解是:{x =2,y =-1,z =-2.9.(1)ìíîïïïïx =5,y =13,z =-2.(2)ìíîïïïïïïïïx =76,y =76,z =16.10.B11.D(点拨:解{3x -y =7,2x +3y =1得:{x =2,y =-1,代入y=kx-9得:-1=2k-9,解得k=4.故选D.)12.她的想法正确.根据题意,得{a +b +c =6,4a +2b +c =21,a -b +c =0,解得{a =4,b =3,c =-1.∴该等式为y=4x 2+3x-1.∴当x=-2时,y=4×4-3×2-1=9,即y=9.13.B14.438015.设此数个位上数字为x,十位为y,百位为z,得{x +z =y,7z -(x +y )=2,x +y +z =14,解得{x =5,y =7,z =2,答:此三位数为275.16.{x =4,y =5,z =6.(点拨:三个方程相加得2x+2y+2z=9+10+11.)17.{x =30,y =20,z =16.18.由已知得{x -8y =0,4y -1=0,8z -3x =0,解之得ìíîïïïïïïïïx =2,y =14,z =34.∴x+y+z=2+14+34=3.19.由已知可得{x +z -y =1,x +y -z =11,y +z -x =5,解之得{x =6,y =8,z =3.20.15021.设4元、8元、10元三种面值邮票的张数分别为x,y,z 张,由题意得{x +y +z =15,4x +8y +10z =100,整理得4y+6z=40,则2y+3z=20,z=20-2y3,所以y=1,4,7,10,对应z=6,4,2,0.代入①求得x=8,7,6,5.所以方程组的解为{x =8,y =1,z =6;{x =7,y =4,z =4;{x =6,y =7,z =2;{x =5,y =10,z =0.也就是买8张4元,1张8元,6张10元或买7张4元,4张8元,4张10元或买6张4元,7张8元,2张10元或买5张4元,10张8元.。

三元一次方程组计算专项练习90题(有答案)ok

三元一次方程组计算专项练习90题(有答案)ok

三元一次方程组专项练习90题(有答案)1..2..3.4..5.6..7.8..9..10..11..12..14..15..17..18..20..21..23..24.已知方程组的解能使等式4x﹣6y=10成立,求m的值.25.当a 为何值时,方程组的解x、y的值互为相反数.26.27..28..29.已知方程组的解x、y的和为12,求n的值.30.已知方程组的解满足3x﹣4y=14,求a的值.(1)(2).32..34..35..37. .38.在y=ax2+bx+c中,当x=0时,y=﹣7;x=1时,y=﹣9;x=﹣1时,y=﹣3,求a、b、c的值.39..40.41.43..44..46..47.;49..50.52..53..55..56.若,求x,y,z的值.57.对于等式y=ax2+bx+c,有三对x,y的值;;能使等式两边值相等,试求a,b,c的值.58..59.已知关于x,y 的方程组的解也是方程4x﹣y=﹣9的解,求k的值.60.方程组的解也是方程4x﹣3y+k=0的解,求k的值.61.已知等式y=ax2+bx+c,且当x=1时y=2;当x=﹣1时y=﹣2;当x=2时y=3,你能求出a,b,c的值吗?62.当x=1,x=2,x=4时,代数式ax+bx+c的值分别是﹣4,3,35,求a,b,c的值.63.已知关于x,y的方程组的解满足3x+15y=16+2k,求k.64.在等式y=ax2+bx+c中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.求a、b、c的值.65.(1)(2).66.(1);(2).67.(1);(2).68.k 取何值时,方程组的解满足 5x﹣3y=0?69..70.71.72..73..74.若三元一次方程组的解使ax+2y﹣z=0,求a的值.75.已知:,求x,y,z的值.76.已知代数式ax2+bx+c,当x=1时,其值为﹣4;当x=7时,其值为8;当x=5时,其值为0,求a、b、c的值.77.(1)(2).78.若方程组的解满足x+y=0,试求m的值.79.(1);(2).80.(1)(2)(3)(4).81.在等式y=ax2+bx+c中,当x=1时,y=0;当x=2时,y=4;当x=3时,y=10.当x=4时y的值是多少?82.已知x、y同时满足下列三个等式:①5x+2y=a,②3x﹣2y=7a,③4x+y=a+1.求a的值.83.a 为何值时,方程组的解x、y的值互为相反数,求出a的值,并求出方程组的解.84.在代数式at2+bt+c中,当t=1,2,3时,代数式的值分别是0,3,28,求当t=﹣1时,求这个代数式的值.85..86.已知(a﹣2b﹣4)2+(2b+c)2+|a﹣4b+c|=0,求3a+b﹣c的值.87.已知:x+2y﹣z=9,2x﹣y+8z=18,求x+y+z的值.89.已知正实数a、b、c满足方程组,求a+b+c的值90.解方程组.参考答案:1.③+①得,3x+5y=11④,③×2+②得,3x+3y=9⑤,④﹣⑤得2y=2,y=1,将y=1代入⑤得,3x=6,x=2,将x=2,y=1代入①得,z=6﹣2×2﹣3×1=﹣1,∴方程组的解为2.,①×3+②得,9x+7y=19④,①×2﹣③得,3x+3y=9,即x+y=3⑤,联立,解得,把x=﹣1,y=4代入①得,2×(﹣1)+3×4﹣z=4,解得z=6,所以方程组的解是.3.①+②得:2x+3y=18 …④,②+③得:4x+y=16…⑤,由④×2﹣⑤得:5y=20,∴y=4,将y=4代入⑤得:x=3,把代入①得:z=5,原方程组的解为.4.由题意知,将①×2﹣②得,﹣y﹣3z=0…④,将方程①﹣③得,3y=﹣15,解得y=﹣5,将y=﹣5代入方程④得,z=,把y,z的值代入①得,x﹣5﹣=5,∴x=,∴方程组的解为.5.解:原方程组化简得①﹣③得2b=﹣4,b=﹣2②﹣①得2a+b=5,a=把b=﹣2,a=代入①得c=﹣5所以原方程组的解为.6.由①+②,并整理得x+y=5 ④由③﹣②,并整理得x+3y=9 ⑤由⑤﹣④,并整理得y=2 ⑥把⑥代入①,并解得x=3 ⑦把⑥、⑦代入①,并解得z=1,所以,原不等式组的解集是:7.①﹣②,②+③,得,再用消元法①×4+②,得x=2,y=3,再代入x+y+z=6中,解得z=1,∴.8.由①变形得:b=c+3 ④把④代入②中得:a﹣2c=﹣3即a=2c﹣3 ⑤把⑤代入③式中得:c=13将c=13代入④中,得b=16将c=13代入⑤中得:a=21,∴方程组的解是:9.,③﹣①得x﹣2y=﹣1④,由②④组成方程组得,解得,把代入①得3+2+z=6,解得z=1,所以原方程组的解10.,①+②得5x﹣z=14④,①+③得4x+3z=15⑤,④×3+⑤得15x+4x=57,解得x=3,把x=3代入④得15﹣z=14,解得z=1,把x=3,z=1代入③得3+y+1=12,解得y=8,所以方程组的解为.11.①+②,得:2x+2y=6,即x+y=3④…(1分)③+④,得:2x=2,∴x=1…(1分)把x=1代入③,得:1﹣y=﹣1∴y=2…(1分)把x=1、y=2代入②,得:1+2﹣z=0∴z=3…(1分)所以,原方程的解是…12.,①+②,得x+z=2④,②+③,得5x﹣8z=36⑤,④×5﹣⑤,得13z=﹣26,解得z=﹣2,把z=﹣2代入④,得x=4,把x=4,z=﹣2代入②,得y=0.所以原方程组的解是.13.,①+②得,2x=0,解得x=0,③﹣②得,2z=2,解得z=1,③﹣①得,2y=﹣2,解得y=﹣1,所以,方程组的解是14.,由①﹣②得:x﹣z=﹣1④,由④+③得:2x=2,解得x=1,把x=1代入①得:y=﹣3,把y=﹣3代入②得:z=2,∴原方程组的解为.15.,①﹣②得,3y+z=6…④,①﹣③得,﹣y﹣z=4…⑤,由④、⑤得,∴把代入①得,x=17,∴原方程组的解为16.,②×3+③得:11x+10z=35④,④×2﹣①×5得:7x=35,解得:x=5,将x=5代入④得:z=﹣2,将x=5,z=﹣2代入②得:y=,则方程组的解为.17.解:,①+②得:2x+3y=18 ④,②+③得:4x+y=16 ⑤,由④和⑤组成方程组:,解方程组得:,把x=3,y=4 代入①.得:3+4+z=12,解得:z=5,∴方程组的解是.18.由①﹣②,得y=2,由①+②,得2x+2z=4,即x+z=2④,由④+③,得2x=10,解得:x=5,把x=5代入③,得z=﹣3,∴原方程组的解是19.,①+②得:2x﹣y=4④,②+③得:x﹣y=1⑤,④﹣⑤得:x=3,将x=3代入⑤得:y=2,将x=3,y=2代入①得:z=﹣4,则方程组的解为20.,①+③得,x+y=5④,②+③×2得,5x+7y=31⑤,④与⑤联立得,解得,把x=2,y=3代入②得,2+3+2z=7,解得z=1,所以,方程组的解是.21.设x=7a,则y=8a,z=9a,∴代入2x+7y﹣6z=16得,14a+56a﹣54a=16,解得,a=1,∴方程组的解为:.22.①+②,得3x+z=6④,③④组成方程组,得,解得,把x=1,z=3代入②,得y=2.∴原方程组的解是.23.方程组,由①+②得,3x﹣8z=14…④,由③﹣②得,x+4z=﹣2…⑤,由④+⑤×2得,5x=10,解得,x=2,把x=2,然后代入④得,z=﹣1,把x=2、z=﹣1的值代入③得,y=3,所以,原方程组的解为24.由题意得方程组解得把代入方程5x﹣2y=m﹣1得m=8.25.∵x、y的值互为相反数,∴y=﹣x,即原方程组可化为,得﹣2a+a+6=0,解得a=6.26.由(1),得x=﹣5+2y﹣z(4)把(4)代入(2)、(3),并整理,得,解方程组,得,将其代入(4),解得x=﹣11,故原方程的组的解为:.27.,①﹣③得,y﹣z=1④,②﹣④得,3z=3,解得z=1,把z=1代入④得,y﹣1=1,解得y=2,把y=2代入①得,x+2=2,解得x=0,所以,方程组的解是.28.①+②得5x+2y=16④,③+②得3x+4y=18⑤,得方程组,解得,代入③得,2+3+z=6,∴z=1.∴方程组的解为29.由题意可得,解得,代入x+y=12,得n=14.30.解方程组,得:,代入方程3x﹣4y=14,得:a=2.31.(1),把②代入①得:2y+z=25 ④,把②代入③得:y+z=16 ⑤,由④﹣⑤得:y=9,把y=8代入⑤得:z=7,把y=8代入②得:x=10;则原方程组的解是:;(2),由①﹣②得:y=1,②﹣③得:﹣4y﹣2z=0 ④,把y=1代入④得;z=﹣2,把y=1,z=﹣2代入①得:x=3,则原方程组的解是:32.设=k,则x=2k,y=3k,z=4k,代入②得:2k+3k+4k=18,∴.33.,①+②得:2x﹣y=5 ④,②×2﹣③得:﹣5y=﹣15,解得:y=3,把y=3代入④得:x=4,把y=3,x=4代入②得:z=0,则原方程组的解是:34.,③﹣②得,x﹣2y=11④,④与①联立组成二元一次方程组,得,①﹣④得,y=﹣3,把y=﹣3代入①得,x+3=8,解得x=5,把x=5,y=﹣3代入②得,5﹣3+z=3,解得z=1,∴原方程组的解为35.,①﹣②得,x﹣z=1④,②×2﹣③得,x+3z=5⑤,⑤﹣④得,4z=4,解得z=1,把z=1代入④得,x﹣1=1,即得x=2,把x=2,z=1代入①得,4+y+1=5,解得y=0,原方程组的解为36.,由①﹣③得:2x﹣2y=﹣2,即x﹣y=﹣1即x=y ﹣1④,由②+③得:3x+4y=18⑤,由④代入⑤得:7y=21,解得y=3,把y=3代入④得:x=2,把x=2代入③得:z=1,∴原方程组的解为37.,①+②得:5x+3y=11 ④,①×2+③得:5x﹣y=3 ⑤,由④⑤组成方程组,解方程组得:,把x=1,y=2代入①得:z=3,∴方程组的解是:.38.由题意得:,把c=0代入②、③得:,解得:a=1,b=﹣3,则a=1,b=﹣3,c=﹣7.39.,②﹣①得,a+b=1④,③﹣②得,a﹣b=5⑤,④+⑤得,2a=6,解得a=3,把a=3,b=﹣2代入①得3﹣(﹣2)+c=0,解得c=﹣5,所以,原方程组的解是40.解:②﹣①×4,得7x=7,x=1.把x=1分别代入方程①和③,得⑤﹣④×27,得77y=77,y=1.把x=1,y=1代入①,得z=1.则原方程组的解是41.①﹣②得﹣x+2y=1③+①得3y=3y=1代入﹣x+2y=1得x=1把x=1,y=1代入①得1+1+z=4z=2所以原方程组的解为42.由②﹣①得,3x+y=5,④由③﹣①,得4x+y=6,⑤由⑤﹣④,得x=1,⑥将⑥代入④,解得y=2,⑦将⑥⑦代入①,解得z=3.∴原方程组的解是:43.,②﹣③,得2x﹣5z=13④,①﹣③×4,得x﹣3z=8⑤,④⑤组成方程组,得,把x=﹣1,z=﹣3代入③,得y=2,∴原方程组的解是44.由②+③,得x+y=11,④由①+②×2,得7x+y=29,⑤由⑤﹣④,解得x=3;⑥将代入④,解得y=8,将其代入③解得,z=1;∴原方程组的解为:45.,①+②得:5x﹣z=14,④①+③得:4x+3z=15,⑤④×3得:15x﹣3z=42,⑥⑤+⑥得:19x=57,解得:x=3,把x=3代入④得:z=1,把x=3,z=1代入③得:y=8,则原方程的解是:46.,①﹣③得:y=﹣3,①﹣②得;4y﹣3z=5 ④,把y=﹣3代入④得:z=﹣,把y=﹣3,z=﹣代入①得,x=,则原方程组的解为:.47.,①﹣②得,3y﹣z=1④,③﹣①得,y﹣z=﹣9⑤,④﹣⑤得,2y=10,解得y=5,bay=5代入⑤得,5﹣z=﹣9,解得z=14,把y=5,z=14代入①得,x+2×5+3×14=11,解得x=﹣41,所以,方程组的解是48.方程组,由①+②得,5x﹣z=3…④,由②×2﹣③得,5x﹣3z=1…⑤,由④﹣⑤得,z=1,代入④得,x=,把x=、z=1值代入①式得,y=,∴原方程组的解为:49.,①+②,②+③,得:,解这个方程组得:,把x=2,y=3代入①,得2+3+z=6,∴z=1,所以这个方程组的解是.50.②×2﹣③得,5x+27z=34…④,①×3+④得,17x=85,解得,x=5,把x=5代入①得,4×5﹣9z=17,解得,z=,把x=5,z=代入③得,5+2y+3×=2,解得,y=﹣2.故此方程组的解为51.①+②得2x+z=27,即:x=,①﹣②得y=,代入③得z=7,把z=7代入x=,y=,可得x=10,y=9.∴.52.由(2)得4x=3y=6z,∴x=y,z=y;代入(1)得:y=4,代入(2)得:x=3,z=2,方程组的解为.53.①×2﹣②得,y=10﹣9=1,①×3﹣③得,2x﹣3y=0,把y=1代入得,x=,把x=,y=1代入①得,+2+3z=5,解得,z=.故原方程组的解为.54.原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.55.①﹣②得x+2y=5,①+②得x=1,∴,解得,代入①得z=3,∴.56.根据题意得:,①×2+②得:2x﹣z=10④,④×2+③得:5x=25,解得:x=5,将x=5代入④得:10﹣z=10,即z=0,将x=5代入①得:5﹣y=3,即y=2,57.根据题意得,②﹣①得3a﹣3b=6,整理得a﹣b=2④,③﹣②得5a+5b=0,整理得a+b=0⑤,解由④⑤组成的方程组得,把a=1,b=﹣1代入①得1﹣1+c=﹣2,解得c=﹣2,所以原方程组的解为.58.,②×3﹣①得:5x+y=7④,②×2﹣③得:x+y=3⑤,④﹣⑤得:4x=4,即x=1,将x=1代入⑤得:1+y=3,即y=2,将x=1,y=2代入②得:2+2+z=7,即z=3,则原方程组的解为.59.解关于x,y 的方程组,得x=2k,y=﹣k,把x=2k,y=﹣k代入4x﹣y=﹣9,得4×2k﹣(﹣k)=﹣9,解得k=﹣1.60.解方程组,得,代入4x﹣3y+k=0,得﹣40+45+k=0,解得:k=﹣5.61.由已知可得,解得62.根据题意列方程组得:,(3)﹣(1)得a+b=7,(3)﹣(2)得2a+2b=32,而a+b=16与a+b=7相矛盾,∴此题无解63.①﹣②×3得x=9+6k,代入①得y=﹣,代入方程3x+15y=16+2k,得3(9+6k )﹣15×=16+2k,解得k=﹣1.64.把x=﹣1时,y=0;x=2时,y=3;x=5时,y=60代入y=ax2+bx+c得:,②﹣①得:a+b=1 ④,③﹣②得:21a+3b=57 ⑤,⑤﹣④×3得:a=3,把a=3代入④得:b=﹣2,把a=3,b=﹣2代入①得:c=﹣5,则原方程组的解为:65.(1),①×2﹣②得x+7z=11④,①×3+③得10x+7z=37⑤,解由④⑤组成的方程组得,把x=3,z=1代入①得6+y+3=11,解得y=2,(2),①+②得5x+7y﹣9z=8④,③﹣④得15z=15,解得z=1,把z=1代入①②得到方程组,解得,所以原方程组的解为.66.(1),③﹣①得:2z+2y=56 ④,②×2+④得:4y=62,解得:y=,把y=代入④得:z=,把z=代入③得:x=12,则原方程组的解为:;(2),①+③得;2x+z=5 ④,①×3+②得:11x+2z=24 ⑤,⑤﹣④×2得:7x=14,解得:x=2,把x=2代入④得:z=1,把x=2,z=1代入①得:y=3,则原方程组的解为:③×3﹣①得,4y﹣3z=8④,③×2﹣②得,5y﹣4z=10⑤,将④和⑤组成方程组得,,解得,将代入③得,x=﹣1,∴方程组的解集为;(2),③﹣②×2得,﹣5x﹣27z=﹣34④,将①和④组成方程组得,,解得,,将代入②得,6+y﹣15=18,解得,y=27,∴方程组的解集为68.由题意知方程组和5x﹣3y=0有公共解,由x﹣2y=8﹣k变形得:k=8﹣x+2y,把它代入3x+y=4k得:3x+y=4(8﹣x+2y),整理得:7x﹣7y=32,又∵5x﹣3y=0,∴两方程联立解得:x=﹣,y=﹣,把它代入k=8﹣x+2y得:k=﹣869.由(1)×2﹣(3)得:2x+4y+2z﹣x﹣2z+2y=13,∴x+6y=13(4),由(4)﹣(1)得:y=2,把y=2代入(2)得:x=1,把x、y的值代入(1)得:z=3,∴.70.原方程组变形为,由②×2﹣①×3得:x+13y=60④,由③+②得:x+2y=16⑤,由④﹣⑤得:y=4,把y=4代入⑤得x=8,把x、y的值代入②得:z=6,∴原方程组的解为;71.分析注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:①+②得x+u=3,⑥②+③得y+v=5,⑦③+④得z+x=7,⑧④+⑤得u+y=9.⑨又①+②+③+④+⑤得x+y+z+u+v=15.⑩由⑩﹣⑥﹣⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=﹣1.∴为原方程组的解72.,①﹣②得,2b=﹣3,b=﹣④,将④代入③得,2a ﹣3×(﹣)=﹣1,解得,a=﹣,将a=﹣,b=﹣代入②,c=1﹣a+b=1+﹣=,可知,三元一次方程组的解为73.原方程组可化为,①×2﹣②,3y+2z=39④,将③和④组成方程组得,,解得,,将代入①得,x=5,方程组的解为.74.,①﹣②得:y﹣z=6 ④,③+④得:2y=4,解得:y=2,把y=2代入④得:z=﹣4,把y=2代入①得:x=3,把y=2,x=3,z=﹣4代入ax+2y﹣z=0得:a=﹣.75.,①×5+②得,7x+2y=5④,①﹣③得,﹣2x=﹣2,x=1,把x=1代入④得,7+2y=5,y=﹣1,将x=1,y=﹣1代入①得,z=0,故方程组的解为76.∵代数式ax2+bx+c,当x=1时,其值为﹣4;当x=7时,其值为8;当x=5时,其值为0,∴,②﹣①得:48a+6b=12,②﹣③得:24a+2b=8,解得:77.(1)①+②+③得:2x+2y+2z=24,x+y+z=12④,④﹣①得:z=5,④﹣②得:x=4,④﹣③得:y=3,即方程组的解为:.(2)①+②+③7x+7y+7z=14,x+y+z=2④,①﹣④得:4x=4,x=1,②﹣④得:4y=﹣4,y=﹣1,③﹣④得:4z=8,z=2,即方程组的解为:78.由题意知x+y=0和方程组有公共解,∴3x+4y=m﹣4变形为:m=3x+4y+4,又∵x+y=0,∴x=﹣y,把它代入16x+28y=﹣29得:y=﹣,∴x=,把x、y的值代入m=3x+4y+4得:m= 79.(1)解:①×2+②,得3x﹣y=13④,③﹣①,得2x+y=﹣2⑤,④+⑤,得5x=11,x=2.2.把x=2.2代入⑤,得y=﹣6.4.把x=2.2,y=﹣6.4代入①,得z=﹣10.2.则方程组的解是.(2)解:①+②+③,得2x+2y+2z=14,x+y+z=7④,④﹣①,得z=4.④﹣②,得x=2.④﹣③,得y=1.则方程组的解是80.(1),把①代入③得:4y+z=164…⑤,④+⑤得:6y=180,解得:y=30,把y=30代入①得:x=66,把x=66,y=24代入③得:z=50,则方程组的解是:;(2),①+②得:5x﹣y=7…④,②×2+③得:8x+5y=﹣2…⑤,解方程组:,解得:,把代入②得:2﹣2﹣z=4,则z=﹣4.故方程组的解是:;(3),①+②+③得:2x+2y+2z=2,即x+y+z=1…④,④﹣①得:z=﹣4,④﹣②得:x=2,④﹣③得:y=3.故方程的解是:;(4),③﹣①得:x﹣2y=﹣8…④,②﹣④得:y=26,把y=26代入②得:x=27,把x=27,y=26代入①得:z=﹣27.81.把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax2+bx+c得:,解得:,则等式y=x2+x﹣2,把x=4代入上式得:y=18.82.根据题意得:,①+②得:8x=8a,x=a ④,③×2+②得:11x=9a+2 ⑤,把④代入⑤得:a=1.则a的值是1.83.①+②得3x=3a﹣18,x=a﹣6;代入x﹣5y=2a,得a﹣6﹣5y=2a;y=,∵x、y的值互为相反数,∴x+y=0,即a﹣6=0,a=6,∴84.由题意可知,解这个方程组得,所以原式=11t2﹣30t+19,当x=﹣1时,原式=11×(﹣1)2﹣30×(﹣1)+19=60.word 格式可编辑专业资料整理 85., ①+②+③得6x+6y+6z=18, 所以x+y+z=3④,②﹣①得x+y ﹣2z=0⑤,④﹣⑤得3z=3,解得z=1,③﹣①得2x ﹣y ﹣z=0⑥,④+⑥得3x=3,解得x=1,把x=1,z=1代入④得1+y+1=3,解得y=1, 所以原方程组的解为.86.∵(a ﹣2b ﹣4)2+(2b+c )2+|a ﹣4b+c|=0, ∴a﹣2b ﹣4=0,2b+c=0,a ﹣4b+c=0, ∴, 解得:,则3a+b ﹣c=3×6+1﹣(﹣2)=21.87.x+2y ﹣z=9①,2x ﹣y+8z=18②,①×3得3x+6y ﹣3z=27③,③+②得5x+5y+5z=45,两边同时除以5得x+y+z=9.88.∵x﹣y=(x ﹣z )+(z ﹣y ),代入方程组并化简得由(4)﹣(3)×(1988+1990)得:z ﹣y=198989.三式相加,得:(a+b+c )+(a 2+b 2+c 2+2ab+2bc+2ca )=72, ∴(a+b+c )2+(a+b+c )﹣72=0,∴[(a+b+c )+9][(a+b+c )﹣8]=0,∵a ,b ,c 都是正实数,∴a+b+c+9>0,∴a+b+c=8 90.根据题意由方程①③得:x=y ,又∵x=y,∴y=z=x, ∴=x , 解方程得:x=0或, ∴原方程组的解为x=y=z=或0.。

三元一次方程组习题

三元一次方程组习题

三元一次方程组习题1.汽车在平路上每小时行30公里,上坡时每小时行28公里,下坡时每小时行35公里,现在行驶142公里的路程用去4小时三十分钟,回来使用4小时42分钟,问这段平路有多少公里?去时上下坡路各有多少公里?解:去时上坡x平路y下坡zx+y+z=142 x/28+y/30+z/35=4.5 z/28+y/30+x/35=4.7答案:x=42 y=30 z=702.某校初中三个年级一共有651人,初二的学生数比初三学生数多10%,初一的学生数比初二的学生数多5%。

求三个年级各有多少人?解:初一:x 初二:y 初三:zx+y+z=651 y=1.1z x=1.05y答案:x=231 y=220 z=2003.x+y=102x-3y+2z=5x+2y-z=3解:x+y=10 ----(1)2x-3y+2z=5 ----(2)x+2y-z=3----(3)(3)*2+(2)得4x+y=11----(4)(4)-(1)得3x=1x=1/3将x=1/3代入(1),解得将x=1/3,y=29/3代入(3)解得z=50/34.某校初中三个年级共有651人,初二的学生数比初三的学生数多10%,初一的学生数比初二的学生数多5%,求这三个年级各有多少人?解:解设初1 2 3人数分别为X Y ZX+Y+Z=651Y=110%ZX=105%Y(解的过程中一定要换成Z来运算)231/200 Z + 220/200 Z +200/200 Z=651Z=200 Y=220 X=2315.在代数式ax的平方+bx+c里,当x=1,2,-3时代数式的值分别是0,3,28,则这个代数式是?解:根据题意得到方程组:a+b+c=0 方程14a+2b+c=3 方程29a-3b+c=28 方程3方程2-方程1,得:3a+b=3方程3-方程1,得:5a-5b=25,即:a-b=5得到新方程组:3a+b=3a-b=5解方程组得:a=2把a=2,b=-3代入原方程得:c=1所以原方程组解为:a=2,b=-3,c=16。

三元一次方程组的解法练习题

三元一次方程组的解法练习题

8.4三元一次方程组的解法一、单选题 1.已知方程组{2x −y +z =−13x +6y −z =16,则x +y 的值为 A .4 B .5 C .3 D .62.将三元一次方程组{5x +4y +z =0①3x +y −4z =11②x +y +z =−2③,经过①-①和①×4+①消去未知数z 后,得到的二元一次方程组是( )A .{4x +3y =27x +5y =3B .{4x +3y =223x +17y =11C .{3x +4y =223x +17y =11D .{3x +4y =27x +5y =33.三元一次方程组{x +y =3y +z =5x +z =4,的解为( )A .{x =1y =3z =2B .{x =2y =1z =3C .{x =3y =2z =1D .{x =1y =2z =34.下列图中所示的球、圆柱、正方体的重量分别都相等,三个天平分别都保持平衡,那么第三个天平中,右侧秤盘上所放正方体的个数应为( )A .5B .4C .3D .25.有甲、乙、丙三种商品,如果购买3件甲商品、2件乙商品、1件丙商品共需315元,购买1件甲商品、2件乙商品、3件丙商品共需285元,那么购买甲、乙、丙三种商品各一件共需( ) A .50元 B .100元 C .150元 D .200元6.解方程组{2x −y +7z =53x +y +5z =75x +y −4z =8,要使运算简便,应( )A .先消去xB .先消去yC .先消去zD .先消去常数项7.如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是( )A .2B .7C .8D .15二、填空题1.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件共需63元;若购买甲4件、乙10件、丙1件只需84元,则购买甲、乙、丙各一件共需__________元. 2.“如果华佗再世,崇洋都被医治,外邦来学汉字,激发我民族意识......”最近,刘畊宏的健身操刷爆全网,掀起了一股全民健身热潮,《本草纲目》健身操让众多网友直呼酸爽.最出圈的《公公偏头疼》、《龙拳》、《本草纲目》三首曲目每分钟卡路里的消耗量之比为4①3①6,三首曲目时长之比为3①2①2.走红以后,根据众多网友的反馈,刘教练对健身操的动作与曲目时长都进行了重新编排,重新编排后,《龙拳》每分钟卡路里的消耗量比之前降低了13,《本草纲目》每分钟卡路里的消耗量为之前的43.《公公偏头疼》和《本草纲目》的卡路里总消耗量增加,《龙拳》的卡路里总消耗量减少,《公公偏头疼》增加的卡路里消耗量与《龙拳》减少的卡路里消耗量之比为2①3,《本草纲目》增加的卡路里消耗量是《公公偏头疼》增加的卡路里消耗量的2倍,且占三首曲目卡路里消耗总量的10%,则重新编排后《龙拳》与《本草纲目》的曲目时长之比为_______.3.在一家水果店,小明买了1斤苹果,4斤西瓜,2斤橙子,共付27.2元;小惠买了2斤苹果,6斤西瓜,2斤橙子,共付32.4元,则买1斤苹果和2斤西瓜一共需付____元.4.一个三位数,个位、百位上的数字和等于十位上的数字2倍,百位上的数字的3倍比个位、十位上的数字和大1,个位、十位、百位上的数字和是15,则这个三位数是__________.5.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案.三、解答题1.在等式y =ax 2+bx +c 中,当x =−1时,y =0;当x =2时,y =3;当x =5时,y =60.求a ,b ,c 的值.2.有甲、乙、丙三人,若甲、乙的年龄之和为25岁,乙、丙的年龄之和为26岁,甲、丙的年龄之和为27岁,则甲、乙、丙三人的年龄分别为多少岁?3.合肥市某中学学生张强到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资 计件奖金”的方法(即营业员月总收入由基本工资和计件金两部分构成),并获得如下信息:营业员A :月销售件数200件,月总收入4500元;营业员B :月销售件数300件,月总收入5000元.假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲服装3件,乙服装2件,丙服装1件共需1500元;如果购买甲服装1件,乙服装2件,丙服装3件共需1620元.某顾客想购买甲、乙、丙服装各一件,共需多少元?4.解方程(组):(1)4x+3=2(x−1)+1(2)x−13−x+26=4−x2;(3){x2+y3=22x+3y=28;(4){3x−2y=82y+3z=1x+5y−z=−4.。

七年级下册数学同步练习题库:三元一次方程组的解法(较易)

七年级下册数学同步练习题库:三元一次方程组的解法(较易)

三元一次方程组的解法(较易)1、已知方程组,则x+y+z的值为()A.6 B.﹣6 C.5 D.﹣52、下列四组数值中,为方程组的解是()A. B. C. D.3、若,则.4、由方程组,可以得到x+y+z的值是_____.5、如图1,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图2,在第二个天平上,砝码A 加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与__________个砝码C的质量相等.6、已知3x+4y﹣5z=3,4x+5y﹣4z=5,则x+y+z的值为____.7、有甲、乙、丙3种商品,某人若购甲3件、乙7件、丙1件共需24元;若购甲4件、乙10件、丙1件共需33元,则此人购甲、乙、丙各一件共需_____元。

8、设a,b,c都是非负数,且满足a+b+c=3,3a+b-c=5,则5a+4b+2c的最大值是.9、.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需630元;若购甲4件、乙10件、丙1件共需840元,现购甲、乙、丙各一件共需元.10、方程组的解是 .11、有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需630元;若购甲4件、乙10件、丙1件共需840元,现购甲、乙、丙各一件共需元.12、已知方程组,则x+y+z=______________13、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文对应密文.例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,则解密得到的明文为.14、在式子中,当x=0时,y=1;,当x=1时,y=0;,当x=-1时,y=4;则a,b,c的值分别为__________.15、购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支、作业本5本圆珠笔2支共需元。

16、方程组的解是________.17、在等式y=ax2+bx+c中,当x=1时,y=-2;当x=-1时,y=20;当与时,y的值相等,则a=________,b=________,c=________.18、若甲、乙两数的和为a,乙、丙两数的和为b,甲、丙两数的和为c,则甲、乙、丙三个数的和为________.19、甲、乙、丙三数之和为25,甲数的2倍比乙数大5,乙数的等于丙数的,则甲数为________,乙数为________,丙数为________.20、今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有_________________种。

七年级数学-三元一次方程组的解法练习含解析 (2)

七年级数学-三元一次方程组的解法练习含解析 (2)
则x+y+z=6.
故答案是:6.
【点评】本题考查了三元一次方程组的解法,理解三个方程的左边相加所得结果与x+y+z的关系是关键.
5.三元一次方程组 的解是 .
【分析】方程组利用加减消元法求出解即可.
【解答】解: ,
①+②得:x﹣z=2④,
③+④得:2x=8,即x=4,
把x=4代入④得:z=2,
把z=2代入②得:y=3,
【解答】解:设购买甲、乙、丙各一件分别需要x,y,z元,
由题意得 ,
②﹣①得x+3y=105,
代入①得x+y+2(x+3y)+z=315,
即x+y+z+2×105=315,
∴x+y+z=315﹣210=105.
故答案为:105.
【点评】本题考查了三元一次方程组的实际应用,解答此题的关键是首先根据题意列出方程组,再整体求解.
11.已知y=ax2+bx+c,且当x=1时,y=5;当x=﹣2时,y=14;当x=﹣3时,y=25,则a=2,b=﹣1,c=4.当x=4时,y=32.
【分析】根据题意,把x,y的值代入y=ax2+bx+c中,得到关于a、b、c的三元一次方程组,即可求得a、b、c的值.
【解答】解:据题意得 ,
解得 ,
【解答】解:由题意得 ,
把③代入②得x= ,
代入①得k=﹣ .
故本题答案为: .
【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.

三元一次方程组解法练习题

三元一次方程组解法练习题

8.4 三元一次方程组解法举例(一)、基础练习1.在方程5x-2y +z=3 中,若x=-1,y=-2,则z= ___2.已知单项式-8a3x+y-z b12c x +y+z与2a4b2x-y+3z c6,则x=____ ,x+y-z=113.解方程组y +z, -x= 5 则x=___ ,y= ____ ,z=____ .z+x-y=14.已知代数式ax2+bx+c,当x=- 1 时,其值为4;当x=1 时,其值为8;当x=2 时,其值为时,其值为 _____ .5.已知x-3y+2z=0 ,则x∶y∶z=_________ .3x-3y-4z=0x+y-z=116.解方程组y+z-x=5,若要使运算简便,消元的方法应选取()z+x-y= 1A 、先消去x B、先消去y C、先消去z D 、以上说法都不对x+y =- 1 x+的z=解0 是()y+z=1A、x =B-、1y=1z=0 x=0xy==01z=- 1x=-1y=0z=18.若x+2y+3z=10,4x+3y+2z=15,则x+y+z 的值为(A 、2 B、3 C、4 D、59.若方程组4x+的3解y=x 1与y相等,则a的值等于()ax+(a-1)y=3A、4B、10C、11D、1210.已知∣ x-8y∣+2(4y-1)2+3∣8z-3x∣=0,求x+y+z的值. 11.解方程组x+y-z= 61)x-3y+2z=13x +2y-z=4 2)x+y=3y+z=5x+z=6;则当x=37.方程组12.一对夫妇现在年龄的和是其子女年龄和的6 倍,他们两年前年龄和是子女两年前年龄和的10 倍, 6 年后他们的年龄和是子女6 年后年龄和的 3 倍,问这对夫妇共有多少个子女?(二)拓展训练13、解下列方程组:3x y 2z 3 (1)2x y 3z 11 x y z 12 |2x 3y z| (x 2y z)2 0 x y z 11三)达标测试ax by 16 x 814、已知方程组的解应该是,一个学生解题时,把cx 20y 224 y 10 c 看错了,因此得到解为x 12,求a、b、c 的值。

备战中考数学基础必练三元一次方程组的解法(含解析)

备战中考数学基础必练三元一次方程组的解法(含解析)

2019备战中考数学基础必练-三元一次方程组的解法(含解析)一、单选题1.若方程组的解x与y的和为O,则m等于()A. ﹣2B. -1C. 1D. 22.一个三位数,各个数位上数字之和为10,百位数字比十位数字大1.如果百位数字与个位数字对调,则所得新数比原数的3倍还大61,那么原来的三位数是()A. 235B. 216C. 217D. 2083.一宾馆有二人间,三人间,四人间三种客房供游客居住,某旅行团24人准备同时租用这三间客房共8间,且每个客房都住满,那么租房方案有()A. 4种B. 3种C. 2种D. 1种4.有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A. 50B. 100C. 150D. 2005.某单位在一快餐店订了22盒盒饭,共花费183元,盒饭共有甲、乙、丙三种,它们的单价分别为10元、8元、5元.那么可能的不同订餐方案有()A. 1个B. 2个C. 3个D. 4个6.在“六•一”儿童节那天,某商场推出A、B、C三种特价玩具.若购买A种2件、B种1件、C种3件,共需23元;若购买A种1件、B种4件、C种5件,共需36元.那么小明购买A种1件、B种2件、C种3件,共需付款()A. 21元B. 22元C. 23元D. 不能确定7.关于x、y、z的方程组中,已知a1>a2>a3,那么将x、y、z从大到小排起来应该是()A. x>y>zB. y>x>zC. z>x>yD. 无法确定8.若方程组中的x是y的2倍,则a等于()A. -9B. 8C. -7D. -6二、填空题9.方程组的解是________10.若,则x+y+z=________ .11.为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a,b,c,d对应的密文为a+b,b+c,c+d,d+2a.例如:明文1,2,3,4对应的密文为3,5,7,6.当接收方收到密文8,11,15,15时,则解密得到的明文应为________12.有甲、乙、丙3种商品,某人若购甲3件、乙7件、丙1件共需24元;若购甲4件、乙10件、丙1件共需33元,则此人购甲、乙、丙各一件共需________ 元。

初中数学七年级下数学三元一次方程组的解法同步专项练习题含答案

初中数学七年级下数学三元一次方程组的解法同步专项练习题含答案

初中数学七年级下数学三元一次方程组的解法同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列方程组中,是三元一次方程组的是 ( )A.{x +y =0,y −z =1,z +w =5B.{x +y =0,y +2x =1C.{3x +4z =7,2x +3y =9−z ,5x −9y +7z =8D.{x 2−2y =0,y +z =3,x +y +z =12. 三个二元一次方程2x +5y −6=0,3x −2y −9=0,y =kx −9有公共解的条件是k =( )A.4B.3C.2D.13. 若2x +3y −z =0且x −2y +z =0,则x:z =( )A.1:3B.−1:1C.1:2D.−1:74. 若方程x +y =3,x −y =5和x +ky =2有公共解,则k 的值是( )A.2B.−2C.1D.35. 有甲、乙、丙三种货物,若购甲3件、乙2件、丙1件,共需315元,若购甲1件,乙2件,丙3件共需285元,那么购甲、乙、丙各1件,共需( )A.128元B.130元C.150元D.160元6. 如图,在正方形ABCD 的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC 上的数是7,CD 上的数是12,则AD 上的数是( )A.2B.7C.8D.157. 已知{a−2b+3c=02a−3b+4c=0,则a:b:c等于()A.3:2:1B.1:3:1C.1:2:3D.1:2:18. 方程组{x+y+z=103x+y−z=502x+y=40()A.无解B.有1组解C.有2组解D.有无穷多组解9. 若a:b:c=2:3:7,且a−b+3=c−2b,则c=()A.7B.63C.10.5D.5.2510. 有甲、乙、丙三种货物,若购买甲3件,乙7件,丙1件,共需63元,若购甲4件,乙10件,丙1件共需84元.现在购买甲、乙、丙各一件,共需()元.A.21B.23C.25D.27二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 已知△ABC的周长为25cm,三边a、b、c中,a=b,c:b=1:2,则边长a=________.12. 已知三元一次方程组,则________.13. 若x2=y3=z4,且3x+2y+z=32,则(y−z)x=________.14. 某超市销售A、B、C三种商品,若将A、B两种商品分别提价30%,C种价格不变,那么三种商品的总价将提高20%;若将A、B两种商品在原价的基础上分别提高25%,C 种商品降价5%,那么三种商品的总价将提高________%.15. 方程组{ xyz y+z =65xyz x+z =32xyz x+y=2的解是________.16. 若{x +y −z =11y +z −x =5z +x −y =1,则x +y +z =________.17. 某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的34和83.甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是________.18. 2015年5月18日华中旅游博览会在汉召开.开幕式上用到甲、乙、丙三种造型的花束,甲种花束由3朵红花、2朵黄花和1朵紫花搭配而成,乙种花束由2朵红花和2朵黄花搭配而成,丙种花束由2朵红花、1朵黄花和1朵紫花搭配而成.这些花束一共用了580朵红花,150朵紫花,则黄花一共用了________朵.19. 已知方程组{x +ay =25x −2y =3的解也是二元一次方程x −y =1的一个解,则a =________.20. 已知a 、b 、c 满足a +2b +3c =0,3a +2b +c =70,则a +b +c =________.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 , )21. 解方程组:{x 2=y 3=z 52x +y +3z =88.22. 一种饮料大小包装有3种,1个中瓶比2个小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,3种包装的饮料每瓶各多少元?23. 解方程:{x +y +z =651(1+10%)z =y (1+5%)y =x.24. 汽车在平路、上坡路、下坡路的速度分别为30km/ℎ,28km/ℎ,35km/ℎ,甲、乙两地两距142km ,汽车从甲地去乙地需4.5ℎ,从乙地回甲地需4.7ℎ.从甲地去乙地,平路、上坡路、下坡路各有多少千米?25. 一个三位数,各数位上的数字之和为13,十位上的数字比个位上的数字大2,如果把百位上的数字与个位上的数字对调,那么所得新数比原来三位数大99,求原来的三位数.26. 解方程组:{x −y +z =0,3y −z =8,x +y =6.27. 某电脑公司有A 型、B 型、C 型三种型号的电脑,其中A 型每台5000元、B 型每台4000元、C 型每台3000元,某中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由.28. 已知:{x +y −z =02x −3y +5z =53x +y −z =2,求x ,y ,z 的值.29. 有这样一道数学题:在等式y =ax 2+bx +c 中,当x =−1时,y =0,当x =2时,y =3,当x =5时,y =60.(1)请你列出关于a ,b ,c 的方程组,这是一个三元一次方程组吗?(2)求出a ,b ,c 的值.30. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需34.5元;若购甲4件,乙10件,丙1件,共需42.00元,现在购甲、乙、丙各一件共需多少元?31. 解方程组:{2x +3y =4,2x −y +2z =−4,x +2y −2z =3.32. 有一个三位数,个位上的数字与百位上的数字的和等于十位上的数字,百位上的数字的2倍比个位,十位上的数字的和大4,个位、十位、百位上的数字的和是14,求这个三位数.33. 解方程组{2x+y+z=3 x+2y+z=5 x+y+2z=8.34. 解三元一次方程组{3x+4z=72x+3y+z=95x−9y+7z=8.35. 已知:青铜含有80%的铜、4%锌和16%锡,而黄铜是铜和锌的合金.今有黄铜和青铜的混合物一块,其中含有74%的铜、16%锌和10%锡.求黄铜含有铜和锌之比.36. 王明在超市用74元钱买了苹果、梨、香蕉三种水果共15.5/kg,苹果比梨多2kg,已知苹果5元/kg,梨5.5元/kg,香蕉4元/kg.王明买了苹果、梨、香蕉各多少/kg?37. 请借助数轴求解:甲、乙两人分别开车从武汉出发到某风景区游玩,途中要经过一个高速公路收费站和一个休息站.当乙到达收费站时,甲才出发;当甲经过收费站半小时后得知乙已经到达休息站,此时乙已经走了全程的12;当甲到达休息站时,乙离风景区只有13的路程.已知甲、乙两车始终保持60千米/时的速度行驶,途中也没有休息,问甲比乙晚出发多长时间?38. 一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共有多少个子女?39. {2x+y+3z=383x+2y+4z=56 4x+y+5z=66.40. 已知△ABC的三边a、b、c满足{a+b=21b+c=24a+c=27,求这个三角形的三边a、b、c的长.参考答案与试题解析初中数学七年级下数学三元一次方程组的解法同步专项练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】C【考点】三元一次方程组的应用三元一次方程组的定义【解析】利用三元一次方程组的定义判断即可.【解答】解:A ,4个未知数,不符合题意;B ,2个未知数,不符合题意;C ,有3个未知数,未知数的次数都是1,是三元一次方程组,符合题意;D ,未知数x 的最高次数为2,不符合题意.故选C .2.【答案】B【考点】解三元一次方程组【解析】理解清楚题意,运用三元一次方程组的知识,把三个方程组成方程组再求解.【解答】解:由题意得:{2x +5y −6=03x −2y −9=0y =kx −9,①×3−②×2得y =0,代入①得x =3,把x ,y 代入③,得:3k −9=0,解得k =3.故选B .3.【答案】D【考点】解三元一次方程组【解析】根据2x +3y −z =0和x −2y +z =0,可用含y 的式子表示x 与z ,再求比值即可.【解答】解:∵ 2x +3y −z =0①,x −2y +z =0②,∴ ①+②得,3x +y =0,解得x =−13y ,①-②×2得,7y −3z =0,解得z =73y , ∴ x:z =−13y 73y =−17. 故选D .4.【答案】A 【考点】解三元一次方程组【解析】把方程x +y =3,x −y =5和x +ky =2组成方程组,首先求出x ,y 的值,再把x ,y 的值代入x +ky =2中,就可以得到k 的值.【解答】解;把x +y =3,x −y =5和x +ky =2组成方程组得;{x +y =3①x −y =5②x +ky =2③,①+②得:2x =8,x =4,把x =4代入①得;y =−1,把x =4,y =−1代入③得;k =2,∴ 方程组的解为{x =4y =−1k =2.故选A .5.【答案】C【考点】三元一次方程组的应用【解析】根据题意分别表示出购甲3件、乙2件、丙1件,共需315元,若购甲1件,乙2件,丙3件共需285元,进而将两式相加得出答案.【解答】解:设甲1件x 元,乙1件y 元,丙1件z 元,根据题意可得:3x +2y +z =315①,x +2y +3z =285②,①+②得:4x +4y +4z =600,则x +y +z =150(元),故购甲、乙、丙各1件,共需150元.故选C .6.【答案】C【考点】正方形的性质规律型:数字的变化类规律型:图形的变化类【解析】根据题意首先设A端点数为x,B点为y,则C点为:7−y,D点为:z,得出x+y=3①,C点为:7−y,z+7−y=12,而得出x+z的值.【解答】设A端点数为x,B点为y,则C点为:7−y,D点为:z,根据题意可得:x+y=3①,C点为:7−y,故z+7−y=12②,故①+②得:x+y+z+7−y=12+3,故x+z=8,即AD上的数是:8.7.【答案】D【考点】解三元一次方程组【解析】首先利用加减消元法,求得用c来表示a、b,再进一步代入求得a:b:c即可.【解答】解:{a−2b+3c=02a−3b+4c=0,①×2−②得:−b+2c=0则b=2c;①×3−②×2得:−a+c=0则a=c;所以a:b:c=c:2c:c=1:2:1.故选:D.8.【答案】A【考点】解三元一次方程组【解析】首先①+②消去z可得:4x+2y=60,化简得:2x+y=30,而③式中2x+y=40,故无解.【解答】解:∵{x+y+z=10①3x+y−z=50②2x+y=40③,∴ ①+②得:4x+2y=60,即2x+y=30④,又∵2x+y=40③,∴原方程组无解.故选A.9.【答案】C【考点】解三元一次方程组【解析】利用a、b、c比值可设a=2t,b=3t,c=7t,于是可得到关于t的一次方程2t−3t+ 3=7t−6t,解方程得t=1.5,然后计算7t即可.【解答】解:由a:b:c=2:3:7可设a=2t,b=3t,c=7t,把a=2t,b=3t,c=7t代入a−b+3=c−2b,得2t−3t+3=7t−6t,解得t=1.5,所以c=7t=10.5.故选C.10.【答案】A【考点】三元一次方程组的应用【解析】设购买甲、乙、丙各一件分别需要x,y,z元,列出方程组,消去z后,得到x+3y的值,再代入①,即可求得x+y+z的值,也即购买甲、乙、丙各一件的共需钱数.【解答】设购买甲、乙、丙各一件分别需要x,y,z元,由题意得{3x+7y+z=634x+10y+z=84,②-①得x+3y=21,代入①得x+y+2(x+3y)+z=63,即x+y+z+2×21=63,∴x+y+z=63−42=21.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】10cm【考点】三元一次方程组的应用【解析】由c:b=1:2,可得b=2c,因为a=b,所以a=2c,再根据三角形的周长为25cm即可求出c,继而求出a的长.【解答】解:∵c:b=1:2,∴b=2c,∴a=b,∴a=2c,∵△ABC的周长为25cm,∴a+b+c=25,∴5c=25,∴c=5cm,∴a=2c=10cm故答案为:10cm.12.【答案】6【考点】解三元一次方程组【解析】方程组中三个方程左右两边相加,变形即可得到x+y+z的值.①【解答】解:{x+y=3y+z=4x+z=5③ ②①+②+③,得2x+2y+2z=12 x+y+z=6故答案为:6.13.【答案】16【考点】解三元一次方程组【解析】先设x2=y3=z4=k,根据3x+2y+z=32,求出k的值,再根据k的值分别求出x,y,z的值,再把它代入即可求出答案.【解答】解:设x2=y3=z4=k,则x=2k,y=3k,z=4k,∵3x+2y+z=32,∴6k+6k+4k=32,解得:k=2,∴x=4,y=6,z=8,∴(y−z)x=(6−8)4=(−2)4=16.故答案为:16.14.【答案】15【考点】三元一次方程组的应用【解析】设A 、B 、C 三种商品的原价分别是a 元、b 元、c 元,根据题意列出方程组解决问题即可.【解答】解:设A 、B 、C 三种商品的原价分别是a 元、b 元、c 元则1.3a +1.3b +c =1.2(a +b +c),化简得a +b =2c ,所以1.25a +1.25b +0.95c =1.25(a +b)+0.95c=1.25×2c +0.95c=2.5c +0.95c=3.45c ,原价为a +b +c =2c +c =3c ,所以(3.45c −3c)÷3c ×100%=15%.答:那么三种商品的总价将提高15%.故答案为:15.15.【答案】{x 1=1y 1=2z 1=3,{x 2=−1y 2=−2z 2=−3【考点】解三元一次方程组【解析】先把原方程组取倒数,得到一组新的方程,然后再写成分式相加的形式,再利用加减消元法和代入法求解即可.【解答】解:原方程组可化为{ y+z xyz =56x+z xyz =23x+y xyz =12,∴ { 1xz +1xy =561yz +1xy =231yz +1xz =12∴ { 1yz =161xz =131xy =12,∴ {yz =6xz =3xy =2 ∴ {x 1=1y 1=2z 1=3,{x 2=−1y 2=−2z 2=−316.【答案】17【考点】解三元一次方程组【解析】方程组中的三个方程相加,即可得出答案.【解答】{x +y −z =11(1)y +z −x =5(2)z +x −y =1(3)(1)+(2)+(3)得:x +y −z +y +z −x +z +x −y =11+5+1即x +y +z =17,故答案为:1717.【答案】18:19【考点】三元一次方程组的应用【解析】设第一、二、三、四车间毎天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天,根据题意列出三元一次方程组,解方程组得到答案.【解答】设第一、二、三、四车间毎天生产相同数量的产品为x 个,每个车间原有成品m 个,甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天,则第五、六车间每天生产的产品数量分別是34x 和83x , 由题意得,{6(x +x +x)+3m =6ac2(x +34x)+2m =2bc (2+4)×83x +m =4bc,②×2−③得,m =3x ,把m =3x 分别代入①得,9x =2ac ,把m =3x 分别代入②得,192x =2bc ,则a:b =18:19,甲、乙两组检验员的人数之比是18:19,18.【答案】430【考点】三元一次方程组的应用【解析】题中有两个等量关系:甲种盆景所用红花的朵数+乙种盆景所用红花的朵数+丙种盆景所用红花的朵数=580朵,甲种盆景所用紫花的朵数+丙种盆景所用紫花的朵数=150朵.据此可列出方程组,设步行街摆放有甲、乙、丙三种造型的盆景分别有x 盆、y 盆、z 盆,用含x 的代数式分别表示y 、z ,即可求出黄花一共用的朵数.【解答】解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x 盆、y 盆、z 盆.由题意,有{3x +2y +2z =580①x +z =150②, 把②代入①得:x +2y =280.所以2x +2y +z =(x +z)+(x +2y)=150+280=430(朵).即黄花一共用了430朵.故答案是:430.19.【答案】−52【考点】解三元一次方程组【解析】由题意建立关于x ,y 的新的方程组,求得x ,y 的值,再代入x +ay =2中,求得a 的值.【解答】解:由题意得{5x −2y =3x −y =1, 解得{x =13y =−23, 代入方程x +ay =2,解得a =−52. 故本题答案为:−52. 20.【答案】17.5【考点】解三元一次方程组【解析】运用两式相加得出a +b +c 的关系式求解.【解答】解:∵ a +2b +3c =0,3a +2b +c =70,∴ 4(a +b +c)=70,∴ a +b +c =17.5.故答案为:17.5.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】解:设x 2=y 3=z 5=k , 则x =2k ,y =3k ,z =5k ,代入2x +y +3z =88得:4k +3k +15k =88,k =4,所以x =8,y =12,z =20,即方程组的解为{x =8y =12z =20.【考点】解三元一次方程组【解析】设x 2=y 3=z 5=k ,则x =2k ,y =3k ,z =5k ,代入2x +y +3z =88得出4k +3k +15k =88,求出k =4,即可得出答案.【解答】解:设x 2=y 3=z 5=k , 则x =2k ,y =3k ,z =5k ,代入2x +y +3z =88得:4k +3k +15k =88,k =4,所以x =8,y =12,z =20,即方程组的解为{x =8y =12z =20.22.【答案】大瓶5元,中瓶3元,小瓶1.6元.【考点】三元一次方程组的应用【解析】设大瓶x 元,中瓶y 元,小瓶z 元,根据题意列出三元一次方程组,求出方程组的解即可.【解答】解:设大瓶x 元,中瓶y 元,小瓶z 元,由题意可得:{y =2z −0.2x =y +z +0.4x +y +z =9.6,解得:{x =5y =3z =1.6,23.【答案】解:方程组整理得:{x +y +z =651①11z =10y②21y =20x③,由②得:y =1.1z ,由③得:x =2120y =1.155z ,代入①得:1.155z +1.1z +z =651,解得:z =200,可得x =231,y =220,则方程组的解为{x =231y =220z =200.【考点】解三元一次方程组【解析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:{x +y +z =651①11z =10y②21y =20x③,由②得:y =1.1z ,由③得:x =2120y =1.155z ,代入①得:1.155z +1.1z +z =651,解得:z =200,可得x =231,y =220,则方程组的解为{x =231y =220z =200.24.【答案】这段路的去时上坡路是70千米,下坡路是42千米,平路是30千米.【考点】三元一次方程组的应用【解析】本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程不变.题中的等量关系是:甲、乙两地路程是142千米,;去时上坡时间+下坡时间+平路时间=4.5ℎ;回时上坡时间+下坡时间+平路时间=4.7ℎ,据此可列方程组求解.【解答】解:设去时上坡路是x 千米,下坡路是y 千米,平路是z 千米.依题意得:{x +y +z =142x 28+y 35+z 30=4.5x 35+y 28+z 30=4.7, 解得{x =70y =42z =30.25.【答案】解:设个位、十位、百位上的数字为x 、y 、z ,则{x +y +z =13y −x =2100z +10y +x +99=100y +10z +x,解得{x =4y =6z =3.故原来的三位数为364.【考点】三元一次方程组的应用【解析】此题首先要掌握数字的表示方法,每个数位上的数字乘以位数再相加.设个位、十位、百位上的数字为x 、y 、z ,则原来的三位数表示为:100z +10y +x ,新数表示为:100x +10y +z ,故根据题意列三元一次方程组即可求得.【解答】解:设个位、十位、百位上的数字为x 、y 、z ,则{x +y +z =13y −x =2100z +10y +x +99=100y +10z +x,解得{x =4y =6z =3.故原来的三位数为364.26.【答案】解:{x −y +z =0,①3y −z =8,②x +y =6.③由①得x =y −z ,代入③得,2y −z =6④②-④得y =2,所以解得{x =4,y =2,z =−2.【考点】解三元一次方程组【解析】此题暂无解析【解答】解:{x −y +z =0,①3y −z =8,②x +y =6.③由①得x =y −z ,代入③得,2y −z =6④②-④得y =2,所以解得{x =4,y =2,z =−2.27.【答案】解:设购买A 型电脑x 台,B 型y 台,C 型z 台,(1)若购买A 型、B 型时,由题意,得{x +y =305000x +4000y =100000, 解得:{x =−20y =50,不符合题意,舍去; (2)若购买A 型、C 型,由题意,得{x +z =305000x +3000z =100000, 解得:{x =5z =25; (3)当购买C 型、B 型时,由题意,得{y +z =304000y +3000z =100000, 解得:{y =10z =20. 故共有两种购买方案:①购买A 型5台,C 型25台;②购买B 型10台,C 型20台.【考点】三元一次方程组的应用【解析】设购买A 型电脑x 台,B 型y 台,C 型z 台,分情况讨论当购买A 型、B 型时,当购买A 型、C 型时,当购买C 型、B 型时分别建立方程组求出其解即可.【解答】解:设购买A 型电脑x 台,B 型y 台,C 型z 台,(1)若购买A 型、B 型时,由题意,得{x +y =305000x +4000y =100000, 解得:{x =−20y =50,不符合题意,舍去; (2)若购买A 型、C 型,由题意,得{x +z =305000x +3000z =100000, 解得:{x =5z =25; (3)当购买C 型、B 型时,由题意,得{y +z =304000y +3000z =100000, 解得:{y =10z =20. 故共有两种购买方案:①购买A 型5台,C 型25台;②购买B 型10台,C 型20台. 28.【答案】解:{x +y −z =0①2x −3y +5z =5②3x +y −z =2③,①×5+②得,7x +2y =5④,①-③得,−2x =−2,x =1,把x =1代入④得,7+2y =5,y =−1,将x =1,y =−1代入①得,z =0,故方程组的解为{x =1y =−1z =0.【考点】解三元一次方程组【解析】①×5+②得到7x +2y =5,①-③得到−2x =−2,x =1,将x =1代入④求出y 的值,再将x 、y 的值代入①得z =0,可得方程组的解.【解答】解:{x +y −z =0①2x −3y +5z =5②3x +y −z =2③,①×5+②得,7x +2y =5④,①-③得,−2x =−2,x =1,把x =1代入④得,7+2y =5,y =−1,将x =1,y =−1代入①得,z =0,故方程组的解为{x =1y =−1z =0.29.【答案】解:(1)把{x =−1y =0,{x =2y =3,{x =5y =60分别代入y =ax 2+bx +c得:{a −b +c =04a +2b +c =325a +5b +c =60,这是一个三元一次方程组;(2){a −b +c =0①4a +2b +c =3②25a +5b +c =60③②-①得:3a +3b =3,a +b =1④,③-①得:24a +6b =60,4a +b =10⑤,由④和⑤组成一个二元一次方程组{a +b =14a +b =10, 解这个方程组得:a =3,b =−2,把a =3,b =−2代入①得:3+2+c =0,解得:c =−5.【考点】解三元一次方程组三元一次方程组的定义【解析】(1)把三组数分别代入,即可得出答案;(2)②-①得出3a +3b =3,求出a +b =1④,③-①求出4a +b =10⑤,由④和⑤组成一个二元一次方程组,求出a 、b 的值,把a 和b 的值代入①求出c 即可.【解答】解:(1)把{x =−1y =0,{x =2y =3,{x =5y =60分别代入y =ax 2+bx +c得:{a −b +c =04a +2b +c =325a +5b +c =60,这是一个三元一次方程组;(2){a −b +c =0①4a +2b +c =3②25a +5b +c =60③②-①得:3a +3b =3,a +b =1④,③-①得:24a +6b =60,4a +b =10⑤,由④和⑤组成一个二元一次方程组{a +b =14a +b =10, 解这个方程组得:a =3,b =−2,把a =3,b =−2代入①得:3+2+c =0,解得:c =−5.30.【答案】解:设甲、乙、丙各一件共需x 元,y 元,z 元,根据题意,得:{3x +7y +z =34.50①4x +10y +z =42.00②, ①×3−②×2得:x +y +z =19.5;则现在购甲、乙、丙各一件共需19.5元.【考点】三元一次方程组的应用【解析】先设甲、乙、丙各一件共需x 元,y 元,z 元,根据购甲3件,乙7件,丙1件,共需34.5元,购甲4件,乙10件,丙1件,共需42.00元,列出方程组,求出x +y +z 的值即可.【解答】解:设甲、乙、丙各一件共需x 元,y 元,z 元,根据题意,得: {3x +7y +z =34.50①4x +10y +z =42.00②, ①×3−②×2得:x +y +z =19.5;则现在购甲、乙、丙各一件共需19.5元.31. 【答案】解:{2x +3y =4,①2x −y +2z =−4,②x +2y −2z =3,③②+③得3x +y =−1④,④×3−①得7x =−7,∴ x =−1.把x =−1代入④得y =2.把x =−1,y =2代入②,解得z =0,∴ {x =−1,y =2,z =0.【考点】解三元一次方程组【解析】此题暂无解析【解答】解:{2x +3y =4,①2x −y +2z =−4,②x +2y −2z =3,③②+③得3x +y =−1④,④×3−①得7x =−7,∴ x =−1.把x =−1代入④得y =2.把x =−1,y =2代入②,解得z =0,∴ {x =−1,y =2,z =0.32.【答案】解:这个三位数个位上的数字为x ,十位上的数字为y ,百位上的数字为z .{x +z =y,①2z =x +y +4,②x +y +z =14,③把①代入③得y =7,把y =7代入①得x +z =7④,代入②得2z =x +11⑤④-⑤得z =6,∴ x =1,∴ 这个三位数是671.【考点】三元一次方程组的应用【解析】等量关系为:个位上的数字+百位上的数字=十位上的数字;百位上的数字×2=个位数字+十位上的数字+4;个位上的数字+十位上的数字+百位上的数字=14,把相关数值代入可得各位上的数字,三位数=100×百位上的数字+10×十位上的数字+个位数字,把相关数值代入计算可得.【解答】解:这个三位数个位上的数字为x ,十位上的数字为y ,百位上的数字为z .{x +z =y,①2z =x +y +4,②x +y +z =14,③把①代入③得y =7,把y =7代入①得x +z =7④,代入②得2z =x +11⑤④-⑤得z =6,∴ x =1,∴ 这个三位数是671.33.【答案】解:{2x +y +z =3①x +2y +z =5②x +y +2z =8③②-①得:−x +y =2④,①×2−③得:3x +y =−2⑤,由④和⑤组成方程组{−x +y =23x +y =−2, 解得:x =−1,y =1,把x =−1,y =1代入①得:−2+1+z =3,解得:z =4,所以原方程组的解为:{x =−1y =1z =4.【考点】解三元一次方程组【解析】②-①得出−x +y =2④,①×2−③得出3x +y =−2⑤,由④和⑤组成一个二元方程组,求出方程组的解,再代入求出z 即可.【解答】解:{2x +y +z =3①x +2y +z =5②x +y +2z =8③②-①得:−x +y =2④,①×2−③得:3x +y =−2⑤,由④和⑤组成方程组{−x +y =23x +y =−2, 解得:x =−1,y =1,把x =−1,y =1代入①得:−2+1+z =3,解得:z =4,所以原方程组的解为:{x =−1y =1z =4.34.【答案】解:②×3+③,得11x +10z =35 ④①与④组成方程组{3x +4z =7①11x +10z =35解得{x =5z =−2,把{x =5z =−2代入方程②得,y =13,三元一次方程组{3x +4z =72x +3y +z =95x −9y +7z =8的解为{x =5y =13z =−2.【考点】解三元一次方程组【解析】根据加减消元法,化三元一次方程组为二元一次方程组,再根据加减消元法,可得一元一次方程,求出一元一次方程的解,在逐步代入,可得方程组的解.【解答】解:②×3+③,得11x +10z =35 ④①与④组成方程组{3x +4z =7①11x +10z =35解得{x =5z =−2,把{x =5z =−2代入方程②得,y =13, 三元一次方程组{3x +4z =72x +3y +z =95x −9y +7z =8的解为{x =5y =13z =−2.35.【答案】黄铜中铜和锌的比例是16:9.【考点】三元一次方程组的应用【解析】首先黄铜含有铜的百分比是x ,锌的百分比是y ,青铜在混合物中的百分比是z . 根据题目中青铜、黄铜4、锡所占百分比列出三元一次方程组方程组{z ×80%+x(1−z)=74%z ×4%+y(1−z)=16%z ×16%=10%,解得x 、y 后,再求x 与y 之比即为所求结果.【解答】解:设黄铜含有铜的百分比是x ,锌的百分比是y ,青铜在混合物中的百分比是z .根据题意得{z ×80%+x(1−z)=74%①z ×4%+y(1−z)=16%②z ×16%=10%③由③的 z =58 将z 分别代入①②得 x =64%,y =36%所以黄铜中铜和锌的比例是64%36%=16936.【答案】王明买了苹果、梨、香蕉分别是6kg ,4kg ,5.5kg .【考点】三元一次方程组的应用【解析】先设买了苹果xkg 、梨ykg 、香蕉zkg ,根据74元钱买了苹果、梨、香蕉三种水果共15.5/kg ,苹果比梨多2kg ,已知苹果5元/kg ,梨5.5元/kg ,香蕉4元/kg ,列出方程组,求出方程组的解即可.【解答】解:设买了苹果xkg 、梨ykg 、香蕉zkg ,根据题意得:{x +y +z =15.5x −y =25x +5.5y +4z =74,解得:{x =6y =4z =5.5.37.【答案】甲比乙晚出发0.5小时.【考点】三元一次方程组的应用【解析】假设收费站离休息站距离B 千米、休息站离终点距离2A 千米、起点到收费站距离C 千米,根据根据“乙到达收费站时,甲才出发;当甲经过收费站半小时后得知乙已经到达休息站”,可得(B −C)=60×0.5=30,由于C +B =A ,根据“当甲到达休息站时,乙离风景区只有13的路程”,可得B −30=A −23A ,联立可得A ,B ,C 的值,进一步即可求解.【解答】解:如图:设收费站离休息站距离B 千米、休息站离终点距离2A 千米、起点到收费站距离C 千米; 根据“乙到达收费站时,甲才出发;当甲经过收费站半小时后得知乙已经到达休息站” 可得(B −C)=60×0.5=30,C =B −30,∵ C +B =A ,∴ 2B −30=A ,根据“当甲到达休息站时,乙离风景区只有1/3的路程”可得B −30=A −23A =13A =13(2B −30), 3B −90=2B −30,B =60,A =90,C =A −B =90−60=30,甲比乙晚出发时间=3060=0.5(小时).38.【答案】这对夫妇共有3个子女.【考点】三元一次方程组的应用【解析】设夫妇现在的年龄的和是x ,子女年龄和为y ,共有n 个子女,建立关于x ,y ,n 的方程组求解.【解答】解:设夫妇现在的年龄和为x ,子女年龄和为y ,共有n 个子女,由夫妇现在年龄的和是其子女年龄和的6倍可知:x =6y ,由他们两年前年龄和是子女两年前年龄和的10倍可知:x −2×2=10×(y −2n), 由6年后他们的年龄和是子女6年后年龄和的3倍可知:x +2×6=3×(y +6n),列出方程组{x −2×2=10×(y −2n)x +2×6=3×(y +6n), 将x =6y 代入方程组中解得:n =3.39.【答案】解:{2x +y +3z =38①3x +2y +4z =56②4x +y +5z =66③③-①得:2x +2z =28,即x +z =14④,①×2−②得:x +2z =20⑤,由④和⑤组成方程组:{x +z =14x +2z =20, 解得:{x =8z =6, 把x =8,z =6代入①得:16+y +18=38,解得:y =4,即方程组的解为{x =8y =4z =6.【考点】解三元一次方程组【解析】③-①得出x +z =14④,①×2−②得出x +2z =20⑤,由④和⑤组成方程组,求出方程组的解,把x =8,z =6代入①求出y 即可.【解答】解:{2x +y +3z =38①3x +2y +4z =56②4x +y +5z =66③③-①得:2x +2z =28,即x +z =14④,①×2−②得:x +2z =20⑤,由④和⑤组成方程组:{x +z =14x +2z =20, 解得:{x =8z =6,把x =8,z =6代入①得:16+y +18=38, 解得:y =4,即方程组的解为{x =8y =4z =6.40.【答案】三角形的三边a 、b 、c 的长分别是12、9、15.【考点】三元一次方程组的应用【解析】通过解三元一次方程组可以求得a 、b 、c 的值.【解答】解:{a +b =21,①b +c =24,②a +c =27,③,由①-②,得a −c =−3,④由③+④,得2a =24,解得 a =12.把a =12代入①,解得b =9.把a =12代入③,解得 c =15.综上所述,原方程组的解是{a =12b =9c =15.。

三元一次方程组的解法练习题

三元一次方程组的解法练习题

8.4三元一次方程组的解法一、单选题1.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有( )种.A .3B .4C .5D .6 2.已知方程组{4x −5y +2z =0x +4y −3z =0(xyz≠0),则x :y :z 等于( ) A .2:1:3 B .3:2:1 C .1:2:3 D .3:1:23.若方程组{4x +3y =12kx +(k −1)y =3的解x 和y 的值互为相反数,则k 的值等于( ) A .0 B .1 C .2 D .34.为丰富学生的课余生活,王老师给小明50元钱,让他购买三种体育用品:大绳,小绳,毽子.其中大绳至多买两条,大绳每条14元,小绳每条5元,毽子每个2元.在把钱都用尽的条件下,小绳的买法共有( )A .3种B .4种C .5种D .6种5.甲、乙、丙三人共解100道数学题,每人都只会做其中的60道题,且三人合在一起,这100道都能解答出来,将其中只有一人会做的题目叫做难题,三人都会做的题叫容易题,则难题比容易题多( )A .30道B .25道C .20道D .15道6.在中央电视台2套“开心辞典”节目中,有一期的某道题目是:如图所示,天平中放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的( )A .43倍B .43倍 C .2倍 D .2倍7.如图,“●、■、▲”分别表示三种不同的物体,已知前两架天平保持平衡,要使第三架也保持平衡,如果在“?”处只放“■”,那么应放“■”( )A .5个B .4个C .3个D .2个二、填空题 1.三元一次方程组{x +y +z =13y +z =10x +y −2z =−5的解是_____.2.在刚刚结束的万州二中秋季运动会中,有一个趣味项目,5分钟内运送三大筐数量相同的乒乓球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.比赛激烈最终三人都记不清各自取了多少次球了,最后裁判清点发现第一个筐中剩下7个球,第二个筐剩下4个球,第三个筐剩下2个球,那么根据上述情况可以推知每个筐中至少有____________个乒乓球.3.解方程组{2x +5y +z =3①3x −2y −z =−7②4x +2y −z =−14③时先消去未知数_____________比较方便,具体做法如下:先由①+①得方程______________________,再由①+①得方程_________________.4.某班有若干人参加一次智力竞赛,共a 、b 、c 三题,每题或者得满分或者得0分.其中题a 、题b 、题c 满分分别为20分、 30分、40分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,只答对其中两道题的有15人,答对题a 的人数与答对题b 的人数之和为29,答对题a 的人数与答对题c 的人数之和为25,答对题b 的人数与答对题c 的人数之和为20,则这个班参赛同学的平均成绩是_______分.5.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,志愿者将所有衣物分成若干A 、B 、C 类组合,由志愿者们分别送往交通极其不便利的各个山区,一个A 类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B 类组合含有40件棉衣,40件防寒服;一个C 类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了_____件.三、解答题1.解方程组(1){3x +5y =82x −y =1(2){x +y =7x +y +z =5x −y −z =12.阅读下列材料,然后解答后面的问题.已知方程组{3x +7y +z =204x +10y +z =27,求x+y+z 的值. 解:将原方程组整理得{2(x +3y)+(x +y +z)=20①3(x +3y)+(x +y +z)=27②, ②–①,得x+3y=7③,把③代入①得,x+y+z=6.仿照上述解法,已知方程组{6x +4y =22−x −6y +4z =−1,试求x+2y–z 的值. 3.对于一个三位数 n ,如果 n 满足:它的百位数字、十位数字之和与个位数字的差等于8,那么称这个数 n 为“快乐数”.例如: 1=934n , 9348+-= , 934∴ 是“快乐数”; 2701n = , 7016+-= , 701∴ 不是“快乐数”.(1)判断844,735是否为“快乐数”?并说明理由;(2)若将一个“快乐数” m 的个位数的3倍放到百位,原来的百位数变成十位数,原来的十位数变成个位数,得到一个新的三位数 t (例如:若 642m = ,则 664t = ),若 t 也是一个“快乐数”,求满足条件的所有 m 的值.4.【信息阅读】有些问题,所要求的结果往往不是某一个量的值,而是某些式子或问题的整体值.如下面的问题:问题:已知实数x ,y 同时满足3x - y =5①,和2x+3y =7②.求代数式7x+5y 的值.思路1:将①和②联立组成方程组,先求得x 、y 的值后,再代入7x +5y 求值.思路2:为降低运算量,由①+②×2,可直接得出7x+5y = 19.这样的解题思路即为整体思想.【问题解决】(1)已知方程组{3x +2y =72x +3y =3,则x - y = ; (2)若购买13支铅笔、5块橡皮、3本日记本共需33元;若购买25支铅笔、9块橡皮、3本日记本共需55元,求购买1支铅笔、1块橡皮、3本日记本共需多少元? 5.设线段x 、y 、z 满足{x+y 2=z+x 3=y+z 4x+y+z=18 ,求x 、y 、z 的值.。

2.5 三元一次方程组及其解法(分层练习)(原卷版)

2.5 三元一次方程组及其解法(分层练习)(原卷版)

第2章 二元一次方程组2.5 三元一次方程组及其解法精选练习1.(2022秋·陕西西安·八年级校考阶段练习)有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件,共需64元;若购甲4件、乙10件、丙1件,共需79元;现购甲、乙、丙各一件,共需( )元A .33B .34C .35D .362.(2023秋·安徽池州·七年级统考期末)一个三位数,各个数位上数字之和为10,百位数字比十位数字大1.如果百位数字与个位数字对调,则所得新数比原数的3倍还大61,那么原来的三位数是( )A .325B .217C .433D .5413.(2022秋·河北邢台·七年级校考期末)设“■▲●”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,则“?”处应该放“●”( )A .1个B .2个C .3个D .4个4.(2022秋·全国·八年级专题练习)某商店有5袋面粉,各袋重量在25~30公斤之间,店里有一磅秤,但只有能称50~70公斤重量的秤砣,现要确定各袋面粉的重量,至少要称( )A .7次B .6次C .5次D .4次5.(2022春·重庆黔江·七年级统考期末)有铅笔、作业本、签字笔三种学习用品.若购铅笔3支,作业本7本,签字笔1支共需20.5元;若购铅笔4支,作业本8本,签字笔2支共需25元,那么,购铅笔、作业本、签字笔各1件共需( )A .2.5元B .3元C .3.5元D .4.5元6.(2023春·七年级课时练习)解三元一次方程组0321020x y z x y z x y z ++=ìï++=íï-+=î①②③,如果消掉未知数z ,则应对方程组变形为( )A .① +③ ,① ×2﹣②B .① +③ ,③ ×2+②C .②﹣① ,②﹣③D .①﹣② ,① ×2﹣③7.(2023春·浙江·七年级专题练习)根据舟山市政府疫情防控要求,所有进入舟山车辆要在金塘服务区下高速,接受防疫检查.已知金塘收费站出口有编号为①,②,③,④,⑤的五个收费出口,假定各收费出口每小时通过的车流量是不变的,同时开放其中两个收费出口,统计这两个出口1小时一共通过的汽车的数量记录如下收费出口编号①,②②,③③,④④,⑤⑤,①通过汽车数量(辆)8010070130120则下列说法错误的是:( )A .①出口1小时通过汽车的数量最少;B .⑤出口1小时通过汽车的数量最多;C .②出口1小时通过汽车的数量是④出口的两倍:D .①和④出口1小时通过汽车的数量之和等于③出口1小时通过的汽车数量.8.(2022春·湖北武汉·七年级统考期末)某商家将蓝牙耳机、多接口优盘、迷你音箱搭配为A ,B ,C 三种盲盒各一个,其中A 盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B 盒中有2蓝牙耳机,4个多接口优盘,2个迷你音箱;C 盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A 盒成本为145元,B 盒成本为200元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C 盒的成本为( )A .150元B .155元C .165元D .170元9.(2023秋·山东枣庄·八年级校考期末)若24629x y z x y z ++=ìí+-=î,那么代数式x y z ++=______.10.(2022秋·山东青岛·八年级统考期末)若三元一次方程组512x y x z y z +=ìï+=-íï+=-î的解使20ax y z +-=,则a 的值是__________.11.(2023秋·重庆·七年级校考期末)在春节来临之际,京东商城推出A 、B 、C 三种礼盒,如果购买A 礼盒3盒、B 礼盒2盒和C 礼盒2盒,则需付人民币2200元;如果购买A 礼盒4盒、B 礼盒3盒和C 礼盒5盒,则需付人民币3150元;李老板预计购买A 礼盒5盒、B 礼盒4盒和C 礼盒8盒送亲戚朋友,则共需付人民币_______元.12.(2023春·七年级课时练习)若3x y +=,1x y -=和20x my -=有公共解,则m 的值是___________13.(2022秋·重庆·七年级重庆实验外国语学校校考期中)在2022年的世界环境保护日的知识竞赛中,A 校6人获一等奖,5人获二等奖,7人获三等奖,所获得奖品价值为1130元;B 校获一等奖的人数比A 校获二等奖的人数多60%,9人获二等奖,11人获三等奖,所获得的奖品价值为1730元;C 校7人获一等奖,10人获二等奖,10人获三等奖;D 校5人获一等奖,7人获二等奖,9人获三等奖.则C 校和D 校所获得的奖品价值之和为______元.14.(2022春·重庆·八年级重庆一中校考阶段练习)“清明时节雨纷纷”,今年的4月5日是我国的传统祭祖节日一清明节,某鲜花电商特推出A 、B 、C 三种祭祀花束.三月份最后一周销售A 、B 、C 三种祭祀花束的数量之比为4:3:2,A 、B 、C 三种祭祀花束的单价之比为2:1:3.四月初该鲜花电商加大了宣传力度,并对三种鲜花的价格作了适当的词整,预计四月份第一周三种鲜花的销售总额将比三月份最后一周有所增加.其中A 鲜花增加的销售额占四月份第一周销售总额的110,B 、C 鲜花增加的销售额之比为3:1.四月份第一周A 鲜花单价提高20%,B 鲜花打九折,且四月份第一周A 鲜花的销售额与C 鲜花的销售额之比为8:9,则四月份第一周预计的A 花的销售数量与B 鲜花的销售数量之比为______.15.(2021春·海南海口·七年级校考期中)解方程或方程组:(1)()()5310241x x --=+. (2)321538x y x y +=ìí-=î. (3)12320x y z x y z x y z ++=ìï--=íï-+=î.16.(2022秋·八年级课时练习)探索创新完成下面的探索过程:给定方程组111112115x y y zz xì+=ïïï+=íïï+=ïî,如果令1x =A ,1y =B ,1z =C ,则方程组变成______;解出这个新方程组(要求写出解新方程组的过程),得出A ,B ,C 的值,从而得到:x = ______;y =______;z = ______.17.(2022秋·八年级课时练习)已知y=ax2+bx+c.当x=3时,y=0;当x=-1时,y=0;当x=0,y=3;求a、b、c的值18.(2023春·全国·七年级专题练习)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员小丽小华月销售件数(件)200150月总收入(元)14001250假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)如果在商场购买甲3件,乙2件,丙1件共需315元;如果购买甲1件,乙2件,丙3件共需285元.某顾客想购买甲、乙、丙各一件共需多少元?19.(2021秋·全国·八年级专题练习)现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?20.(2021春·浙江杭州·七年级校考期中)阅读理解:已知实数x ,y 可满足35x y -=……①,237x y +=……②,求4x y -和75x y +值,仔细观察未知数系数之间的关系,如由①-②可得42x y -=-,由2+´①②可得7519x y +=.这就是通常说的“整体思想”.尝试利用“整体思想”,解决下列问题:(1)已知二元一次方程组28210x y x y +=ìí+=î,则x y -=___________,x y +=___________;(2)买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?(3)对于实数x ,y ,定义新运算:x y ax by c *=++,其中a ,b ,c 是常数,等式右边是实数运算.已知3515*=,4728*=,求11*的值.1.(2022·浙江·九年级自主招生)现有A ,B ,C 三种型号的纸片若干张,大小如图所示.从中取出一些纸片进行无空隙、无重叠拼接,拼成一个长宽分别为11和5的新矩形,在各种拼法中,B 型纸片最多用了( )张.A .5B .6C .7D .前三个答案都不对2.(2022秋·全国·八年级专题练习)三角形幻方是锻炼思维的有趣数学问题,例:把数字1、2、3、…、9分别填入如图所示的9个圆圈内,要求ABC V 和DEF V 的每条边上三个圆圈内数字之和都等于18,则x y z ++的和是( )A .6B .15C .18D .243.(2022秋·全国·八年级专题练习)《九章算术》是我国古代著名的数学专著,其“方程”章中给出了“遍乘直除”的算法解方程组.比如,对于方程组323923342326x y z x y z x y z ++=ìï++=íï++=î,将其中数字排成长方形形式,然后执行如下步骤(如图);第一步,将第二行的数乘以3,然后不断地减第一行,直到第二行第一个数变为0;第二步,对第三行做同样的操作,其余步骤都类似.其本质就是在消元.那么其中的a ,b 的值分别是( )32139321393213923134693102...05112326.. (0839)ab ®®®®®A .24,4B .17,4C .24,0D .17,04.(2022秋·广东梅州·八年级校考阶段练习)若 1m ,2m ,2016m L 是从 0,1,2这三个数中取值的一列数,且 1220161546m m m +++=L ,()()()2221220161111510m m m -+-++-=L ,则在 1m ,2m ,2016m L 中,取值为 2 的个数为 ( )A .505B .510C .520D .5505.(2023秋·江苏苏州·七年级校考阶段练习)将下表从左到右在每个小格子中都填入一个整数,使得其中任意四个相邻格子中所填整数之和都相等,则第2022个格子中的数字是( )3a b c 1-02…A .3B .2C .0D .1-6.(2023春·浙江·七年级专题练习)已知123x y z =ìï=íï=î是方程组237ax by by cz cx az +=ìï+=íï+=î的解,则a b c ++的值为( )A .3B .2C .1D .07.(2022秋·全国·八年级专题练习)我们探究得方程2x y +=的正整数解只有1组,方程3x y +=的正整数解只有2组,方程4x y +=的正整数解只有3组,……,那么方程9x y z ++=的正整数解的组数是( )A .27B .28C .29D .308.(2022春·四川自贡·七年级四川省荣县中学校校考期中)对于实数x ,y 定义新运算:x y ax by c Ä=++,其中a ,b ,c 均为常数,且已知3515Ä=,4728Ä=,则23Ä的值为( )A .2B .4C .6D .89.(2021·浙江·九年级自主招生)有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支、练习本7本、圆珠笔1支共需6.3元;若购铅笔4支、练习本10本、圆珠笔1支共需8.4元,现购铅笔、圆珠笔各1支、练习本1本,共需_________元.10.(2022秋·重庆沙坪坝·八年级重庆八中校考期中)甲乙两个同学参加数学比赛,共有选择题、填空题、解答题三种题型.每种题型都不超过10个题,选择题每题3分,填空题每题5分,解答题每题8分,每题除全对外其他情况都不得分,两个同学选择题做对的道数相同,乙做对的填空题比甲做对的填空题至少多2道,甲、乙两个同学每个题型均有做对的题,甲一共得了70分,乙一共得了83分,则两个同学做对的解答题共为________道.11.(2023春·七年级课时练习)有甲、乙、丙三种商品,买甲3件,乙7件,丙1件,共需32元,买甲4件,乙10件,丙1件,共需43元,则甲、乙、丙各买1件需________元钱?12.(2022秋·八年级课时练习)已知x 、y 、z 满足2303140x y z x y z --=ìí+-=î且xyz ≠0,则x :y :z =_________.13.(2022·重庆永川·统考一模)某中学科技节颁奖仪式隆重举行,其中小科技创新发明奖共有60人获奖,原计划特等奖5人,一等奖15人,二等奖40人.后来经校领导开会研究决定,在该项奖励总奖金不变的情况下,各等级获奖人数实际调整为:特等奖8人,一等奖18人,二等奖34人,调整后特等奖每人奖金降低40元,一等奖每人奖金降低20元,二等奖每人奖金降低10元,调整前一等奖每人奖金比二等奖每人奖金多70元,则调整后特等奖每人奖金比一等奖每人奖金多_______元.14.(2022秋·重庆万州·九年级重庆市万州第二高级中学校考期末)秋季泡脚,睡前养生,9月份某商场从工厂进货了中药包、精油球和足浴液这三种类型的泡脚材料,数量之比为5:4:2,中药包与精油球单价之比为1:3,足浴液的单价是精油球的2倍,由于天气骤冷,足浴液销售火爆,10月份工厂对这三种泡脚材料的价格进行了调整,该商场也相应调整了进货量,相较于9月,商场采购中药包增加的费用占10月所有泡脚材料采购费用的110且10月采购中药包与精油球的总费用之比为3:7,采购精油球、足浴液增加的费用之比为15:29,则精油球9月份与10月份的采购总费用之比为________.15.(2022春·上海闵行·六年级校考期末)解方程组:231x yz xy z-=ìï-=íï+=-î①②③.16.(2022秋·陕西西安·八年级西安市第二十六中学校考阶段练习)解方程组(1)523849x yx y+=-ìí-=î(2)1232317x yx yì-=ïíï+=î(3)232523x y zx y zx y z+-=ìï-+=íï+-=î17.(2023春·全国·七年级专题练习)在等式2y ax bx c =++中,当1x =时,=2y -;当=1x -时,20y =;当32x =与13x =时,y 的值相等,求23a b c -+的值.18.(2023春·七年级单元测试)在求代数式的值时,可以用整体求值的方法,化难为易.例:已知32475310x y z x y z ++=ìí++=î①②,求x y z ++的值.解:①2´得:6428x y z ++=③②-③得:2x y z ++=∴x y z ++的值为2.(1)已知231056726x y z x y z ++=ìí++=î,求345x y z ++的值;(2)马上期中了,班委准备把本学期卖废品的钱给同学们买期中奖品,根据商店的价格,购买40本笔记本、20支签字笔、4支记号笔需要488元.通过还价,班委购买了80本笔记本、40支签字笔、8支记号笔,只花了732元,请问比原价购买节省了多少钱?19.(2022·河南洛阳·统考二模)已知实数x ,y 满足327x y -=①,39x y +=②,求25x y -和54x y +的值.本题常规的解题思路是将①②两式联立组成方程组,解得x ,y 的值.再代入欲求值的代数式得到答案,常规思路运算量较大.其实,仔细观察两个方程未知数x ,y 的系数与所求代数式中x ,y 的系数之间的关系,本题还可以通过适当的变形整体求得代数式的值.由①-②得:252x y -=-,由①+②2´得5425x y +=,这样的解题思想就是通常所说的“整体思想”.问题解决:(1)已知二元一次方程组2629x y x y +=ìí+=î,则x y +值为 ,x y -的值为 .(2)某班组织活动购买奖品,买20支铅笔、3块橡皮、2本日记本共需32元;买39支铅笔、5块橡皮、3本日记本共需58元.则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x ,y ,定义新运算:*x y ax by c =++,其中a ,b ,c 是常数,等式右边是通常的加法和乘法运算.已知3*515=,4*728=,则1*1的值为 .20.(2021秋·福建三明·八年级统考期末)有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题∶已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②2´可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题∶(1)已知二元一次方程组327233x y x y +=ìí+=î则x y -=______,x y +=______.(2)某班级组织活动购买小奖品,买13支铅笔、5块橡皮、2本日记本共需31元,买25支铅笔、9块橡皮、3本日记本共需55元,则购买3支铅笔、3块橡皮、3本日记本共需多少元?(3)对于实数x 、y ,定义新运算∶x y ax b c *=++,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3516*=,2312*=,那么59*=______.。

三元一次方程组的解法(习题卷)(无答案) 人教版数学七年级下册

三元一次方程组的解法(习题卷)(无答案) 人教版数学七年级下册

8.4 三元一次方程组的解法(习题卷)人教新版数学七年级下册一.选择题1.一家宾馆有二人间、三人间、四人间3种客房,一个由20人组成的旅行团准备同时租住这3种客房共7间,如果每个房间都住满,可供选择的方案有()A.1种B.2种C.3种D.4种2.一只船有一个漏洞,水以均匀速度进入船内.发现漏洞时,船内已经进入了一些水,如果以12个人淘水,3h可以淘完,如果以5个人淘水,10h才能淘完.现在要想在2h内淘完,需要()人.A.17B.18C.20D.213.三元一次方程组,消去未知数z后,得到的二元一次方程组是()A.B.C.D.4.已知实数x、y、z满足3x+7y+z=5,4x+10y+z=3,则x+y+z=()A.9B.10C.12D.不确定5.为了使学生既能获得足够的营养又能保持良好的身材,艺海舞蹈学校欲为学生配制营养餐,下表给出甲、乙、丙三种食物的维生素A,维生素B的含量及成本:若餐厅欲将三种食物混合成100kg的营养餐,设所用甲、乙、丙的分量依次为x,y,z,若营养餐至少需含44000单位的维生素A及48000单位的维生素B,若考虑使成本最低,则x,y,z 的取值为()甲乙丙维生素A(单位/kg)400600400维生素B(单位/kg)800200400成本(元/kg)654 A.x=30kg,y=30kg,z=40kg B.x=30kg,y=20kg,z=50kgC.x=20kg,y=30kg,z=50kg D.x=50kg,y=20kg,z=30kg6.某商店甲、乙、丙三种商品每件单价分别为2元,3元,5元.某人必须买这三种商品若干件,买完后他共付钱20元,后来此人发现其中有种商品买多了,退还两件这种商品,但营业员只有10元一张的钱,没有零钱退,此人只得将其它两种商品购买的数量作了调整,使总价格保持不变.这时,此人所购得的三种物品中,乙种商品的件数是()A.1B.2C.3D.47.方程x+y+z=7的正整数解有()A.10组B.12组C.15组D.16组8.如果方程组的解也是方程4x+y+2a=0的解,那么a的值是()A.﹣B.C.﹣2D.29.下列说法错误的是()A.是一个二元一次方程组B.是一个二元一次方程组C.是方程组的解D.二元一次方程x﹣7y=11有无数个解10.已知,都是关于x,y的方程y=﹣3x+c的一个解,则下列对于a,b的关系判断正确的是()A.a﹣b=3B.a﹣b=﹣3.C.a+b=3D.a+b=﹣3二.填空题11.近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人.现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有名员工.12.某校去年租借了三架无人机A,B,C用于体育节航拍,无人机A,B,C飞行平均速度之比为1:8:3,飞行时间之比为2:1:2.今年继续租借,但根据航拍需求,对三架无人机飞行平均速度和时间均作了调整.无人机B的平均速度比去年低了,无人机C的平均速度为去年的.A,C两架无人机的飞行总路程增加,而无人机B飞行总路程减少.无人机C增加的路程是无人机A增加路程的2倍,且占今年三架无人机总路程的20%.无人机A增加的路程与无人机B减少的路程之比为7:15,则今年无人机B与无人机C的飞行时间之比为.13.某个“卡通玩具”自动售货机出售A、B、C三种玩具,A、B、C三种玩具的单价分别是3元/个、5元/个,6元/个,工作日期间,每天上货量是固定的,且能全部售出,其中,A 玩具的数量(单位:个)是B玩具数量的2倍,B玩具的数量(单位:个)是C玩具数量的2倍.某个周六,A、B、C三种玩具的上货量分别比一个工作日的上货量增加了50%,70%、50%,且全部售出.但是由于软件出错,发生了一起错单(即消费者按某种玩具一个的价格投币,但是取得了另一种玩具1个),结果这个周六的销售收入比一个工作日的销售收入多了958元,则这个“卡通玩具”自动售货机一个工作日的销售收入是元.14.万盛是重庆茶叶生产基地和名优茶产地之一,以“重庆第一泡•万盛茶飘香”为主题的采茶制茶、品茶赏茶,茶艺表演活动在万盛板辽湖游客接待中心开幕,活动持续两周,活动举办方为游客准备了三款2021年的新茶:清明香,云雾毛尖、滴翠剑茗.第一批采制的茶叶中清明香、云雾毛尖、滴翠剑茗的数量(盒)之比为2:3:1.由于品质优良宣传力度大,网上的预订量暴增,举办方加紧采制了第二批同种类型的茶叶,其中清明香增加的数量占总增加数量的,此时清明香总数量达到三种茶叶总量的,而云雾毛尖和滴翠剑茗的总数量恰好相等.若清明香、云雾毛尖、滴翠剑茗三种茶叶每盒的成本分别为500元、420元,380元,清明香的售价为每盒640元,活动中将清明香的供游客免费品尝,活动结束时两批茶叶全部卖完,总利润率为16%,且云雾毛尖的销售单价等于另外两种茶叶销售单价之和的,则滴翠剑茗单价为元.15.现有A、B、C三种型号的产品出售,若A售3件,B售4件,C售1件,共得315元:若A售5件,B售7件,C售1件,共得420元.问售出A、B、C各一件共得元.三.解答题16.在等式y=ax2+bx+c中,当x=﹣1时,y=0;当x=5时,y=60;当x=0时,y=﹣5.求a2+2ab+c2的值.17.解方程组:(1);(2);(3).18.(1)解方程组:;(2)已知x、y、z满足方程组(y≠0),求x:y.19.[阅读理解]在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化繁为简.(1)解方程组解:(1)把②代入①得:x+2×1=3把x=1代入②得:y=0所以方程组的解为(2)已知,求x+y+z的值.解:(2)①+②得:10x+10y+10z=40③③÷4得x+y+z=4[类比迁移](1)直接写出方程组的解.(2)若,求x+y+z的值.[实际应用]打折前,买36件A商品,12件B商品用了960元.打折后,买45件A商品,15件B商品用了1100元,比不打折少花了多少钱?20.解下列方程或方程组:(1);(2).。

2022年 《三元一次方程组及其解法》基础练习配套精选卷

2022年 《三元一次方程组及其解法》基础练习配套精选卷

三元一次方程组及其解法根底练习一、选择题〔本大题共5小题,共分〕1.〔5分〕假设二元一次方程3﹣=7,23=1,=﹣9有公共解,那么的取值为〔〕A.3B.﹣3C.﹣4D.42.〔5分〕方程组,那么代数式8﹣﹣的值是〔〕A.6B.7C.8D.93.〔5分〕三元一次方程组,经过步骤〔1〕﹣〔3〕或〔3〕×4〔2〕消去未知数后,得到的二元一次方程组是〔〕A.B.C.D.4.〔5分〕方程组的解是〔〕A.B.C.D.5.〔5分〕〔≠0〕,那么::的值为〔〕A.1:2:3B.3:2:1C.2:1:3D.不能确定二、填空题〔本大题共5小题,共分〕6.〔5分〕在三元一次方程2=5中,假设=﹣1,=2,那么=.7.〔5分〕方程组,那么abc=.8.〔5分〕假设方程组的解中与的值相等,那么为.9.〔5分〕假设、、满足方程组,那么的值为.10.〔5分〕三元一次方程组的解是.三、解答题〔本大题共5小题,共分〕11.〔10分〕在等式=a2bc中,当=﹣1时,=3;当=0时,=1,当=1时,=1,求这个等式中a、b、c的值.12.〔10分〕解方程组13.〔10分〕〔1〕.〔2〕.14.〔10分〕,试求a2b3c的值.15.〔10分〕试一试,解以下方程组:三元一次方程组及其解法参考答案与试题解析一、选择题〔本大题共5小题,共分〕1.〔5分〕假设二元一次方程3﹣=7,23=1,=﹣9有公共解,那么的取值为〔〕A.3B.﹣3C.﹣4D.4【分析】由题意建立关于,的方程组,求得,的值,再代入=﹣9中,求得的值.【解答】解:解得:,代入=﹣9得:﹣1=2﹣9,解得:=4.应选:D.【点评】此题先通过解二元一次方程组,求得后再代入关于的方程而求解的.2.〔5分〕方程组,那么代数式8﹣﹣的值是〔〕A.6B.7C.8D.9【分析】根据“3﹣﹣2=1〞,得到﹣﹣=1﹣3,代入8﹣﹣得:51,,①②得:5=6,代入51,即可得到答案.【解答】解:∵3﹣﹣2=1,∴﹣﹣=1﹣3,8﹣﹣=1﹣38=51,,①②得:5=6,即8﹣﹣=61=7,应选:B.【点评】此题考查了解三元一次方程组,正确掌握解三元一次方程组的方法是解题的关键.3.〔5分〕三元一次方程组,经过步骤〔1〕﹣〔3〕或〔3〕×4〔2〕消去未知数后,得到的二元一次方程组是〔〕A.B.C.D.【分析】根据解三元一次方程组的方法可以解答此题.【解答】解:,〔1〕﹣〔3〕,得43=2〔4〕,〔3〕×4〔2〕,得75=3〔5〕,由〔4〕〔5〕可知,选项A正确,应选:A.【点评】此题考查解三元一次方程组,解题的关键是明确题意,会用消元法解方程.4.〔5分〕方程组的解是〔〕A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,③﹣①得:=﹣5,把=﹣5代入②得:=﹣11,把=﹣11代入①得:=﹣7,那么方程组的解为,应选:C.【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.〔5分〕〔≠0〕,那么::的值为〔〕A.1:2:3B.3:2:1C.2:1:3D.不能确定【分析】把原方程组看作为关于、的二元一次方程组,先利用加减消元法解得=,再利用代入消元法解得=,然后计算::.【解答】解:,①﹣②×4得﹣5﹣16212=0,解得=,把=代入②得﹣3=0,解得=,所以::=::=1:2:3.应选:A.【点评】此题考查了解三元一次方程组:利用代入消元或加减消元把解三元一次方程组的问题转化为解二元一次方程组.二、填空题〔本大题共5小题,共分〕6.〔5分〕在三元一次方程2=5中,假设=﹣1,=2,那么=2.【分析】把=﹣1,=2代入三元一次方程2=5得到关于的一元一次方程,解之即可.【解答】解:把=﹣1,=2代入三元一次方程2=5得:﹣122=5,解得:=2,故答案为:2.【点评】此题考查了解三元一次方程组,正确掌握代入法是解题的关键.7.〔5分〕方程组,那么abc=2.【分析】方程组三方程相加即可求出所求.【解答】解:,①②③得:2〔abc〕=4,那么abc=2,故答案为:2【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.〔5分〕假设方程组的解中与的值相等,那么为2.【分析】将43=14与=组成方程组,求出、的值,再代入〔﹣1〕=6即可求出的值.【解答】解:根据题意得:,解得①,将①代入〔﹣1〕=6得,22〔﹣1〕=6,解得=2.【点评】此题考查了用消元法解方程组.先求出方程组的解,再将解代入第三个方程,即可求出的值.9.〔5分〕假设、、满足方程组,那么的值为.【分析】把看做数表示出与,代入原式计算即可求出值.【解答】解:方程组整理得:,①×7②×6得:33=22,即=,把=代入①得:=,那么原式===×=,故答案为:【点评】此题考查了三元一次方程组,利用了消元的思想,熟练掌握运算法那么是解此题的关键.10.〔5分〕三元一次方程组的解是.【分析】将方程组三个方程相加求出的值,进而将每一个方程代入即可求出,,的值.【解答】解:,①②③得:2〔〕=22,即=11④,将①代入④得:=6,将②代入④得:=2,将③代入④得:=3,那么方程组的解为.故答案为:【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.三、解答题〔本大题共5小题,共分〕11.〔10分〕在等式=a2bc中,当=﹣1时,=3;当=0时,=1,当=1时,=1,求这个等式中a、b、c的值.【分析】根据题意列出三元一次方程组,解方程组即可.【解答】解:由题意得,,解得,a=1,b=﹣1,c=1.【点评】此题考查的是三元一次方程组的解法,解三元一次方程组的一般步骤:①首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组.②然后解这个二元一次方程组,求出这两个未知数的值.③再把求得的两个未知数的值代入原方程组中的一个系数比拟简单的方程,得到一个关于第三个未知数的一元一次方程.④解这个一元一次方程,求出第三个未知数的值,得到方程组的解.12.〔10分〕解方程组【分析】方程组利用加减消元法求出解即可.【解答】解:②﹣①得:32=5④,③﹣②得:52=11⑤,⑤﹣④得:2=6,解得:=3,把=3代入④得:=﹣2,把=3,=﹣2代入①得:=﹣5,那么方程组的解为.【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.〔10分〕〔1〕.〔2〕.【分析】〔1〕方程组利用加减消元法求出解即可;〔2〕方程组利用加减消元法求出解即可.【解答】解:〔1〕,①×2②得:7=21,解得:=3,把=3代入①得:=﹣2,那么方程组的解为;〔2〕,①②③得:2〔〕=0,解得:=0④,把①代入④得:=1,把②代入④得:=0,把③代入④得:=﹣1,那么方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.〔10分〕,试求a2b3c的值.【分析】方程组两方程相减求出a2b的值,第一个方程变形后将a2b代入求出c的值,即可求出所求.【解答】解:,②﹣①得:a2b=3,把a2b=3代入①得:4〔a2b〕3c=18,即123c=18,解得:c=2,那么原式=32=5.【点评】此题考查了解三元一次方程组,利用了整体代入的思想,熟练掌握运算法那么是解此题的关键.15.〔10分〕试一试,解以下方程组:【分析】方程组利用加减消元法求出解即可.【解答】解:,①②得:=1④,①③得:4﹣=14⑤,④⑤得:5=15,解得:=3,把=3代入④得:=﹣2,把=3,=﹣2代入①得:=﹣5,那么方程组的解为.【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。

三元一次方程组的解法练习题

三元一次方程组的解法练习题

第八章二元一次方程组*8.4 三元一次方程组的解法1.解三元一次方程组:1232325a b ca b ca b c+-=⎧⎪+-=⎨⎪-+=⎩①②③,具体过程如下:(1)②-①,得b=2,(2)①×2+③,得4a-2b=7,(3)所以2427 ba b=⎧⎨-=⎩,(4)把b=2代入4a-2b=7,得4a-2×2=7(以下求解过程略).其中开始出现错误的一步是A.(1)B.(2)C.(3)D.(4)2.已知123xyz=⎧⎪=⎨⎪=⎩是方程组237ax byby czcx az+=⎧⎪+=⎨⎪+=⎩的解,则a+b+c的值是A.1 B.2C.3 D.以上各项都不对3.三元一次方程组156x yy zz x+=⎧⎪+=⎨⎪+=⎩的解是A.15xyz=⎧⎪=⎨⎪=⎩B.11xyz=⎧⎪=⎨⎪=-⎩C.11xyz=⎧⎪=⎨⎪=-⎩D.11xyz=-⎧⎪=⎨⎪=⎩4.下列方程组中是三元一次方程组的是A.111xyyzxz=⎧⎪=⎨⎪=⎩B.222x yy zx z+=⎧⎪+=⎨⎪+=⎩C.111111x yz x⎧+=⎪⎪⎨⎪+=⎪⎩D.23121x yx zx y z⎧+=⎪+=⎨⎪--=⎩5.现有面值为20元、10元和5元的人民币共24张,合计290元,其中面值为20元的比10元的少6张,则三种人民币的数量分别为A.7张,13张,4张B.5张,8张,11张C.6张,9张,9张D.7张,12张,5张6.已知方程组329x yy zz x+=⎧⎪+=-⎨⎪+=⎩,则x+y+z的值为A.6 B.-6 C.5 D.-5 7.若|x-z-2|+|3x-6y-7|+|3y+3z-4|=0,则A.3131xyz=⎧⎪⎪=-⎨⎪=⎪⎩B.3131xyz=⎧⎪⎪=⎨⎪=⎪⎩C.12-1xyz=⎧⎪=⎨⎪=⎩D.121xyz=-⎧⎪=-⎨⎪=-⎩8.三元一次方程组5+4034112x y zx y zx y z+=⎧⎪+-=⎨⎪++=-⎩①②③经过步骤①-③和③×4+②消去未知数z后,得到的二元一次方程组是A.432753x yx y+=⎧⎨+=⎩B.4323711x yx y+=⎧⎨+=⎩C.342753x yx y+=⎧⎨+=⎩D.3423711x yx y+=⎧⎨+=⎩9.某车间共有86名工人,已知每人平均每天可以加工甲种部件15个,乙种部件12个或丙种部件9个,要使加工后的部件按3个甲种部件,2个乙种部件和1个丙种部件配套,则应安排__________人加工甲种部件,__________人加工乙种部件,__________人加工丙种部件.10.甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,那么甲、乙、丙三个数分别是__________.11.解三元一次方程组:126 218 x yx y zx y z-=⎧⎪++=⎨⎪-+=⎩.12.解下列方程组:(1)2333215x y zx y zx y z+-=⎧⎪-+=-⎨⎪--=⎩;(2)2362125x y zx y zx y z++=⎧⎪-+=-⎨⎪+-=⎩.13.已知方程组2332x yx y m+=⎧⎨-=⎩的解也满足方程x+y=1,求m的值.14.已知方程组354x y ay z az x a+=⎧⎪+=⎨⎪+=⎩的解使代数式x-2y+3z的值等于-10,求a的值.15.解方程组3232437515x y zx y zx y z+=⎧⎪+-=⎨⎪++=⎩-若要使运算简便,消元时应A.先消去x B.先消去z C.先消去y D.以上说法都对16.已知xyz≠0,且4520430x y zx y z-+=⎧⎨+-=⎩,则x∶y∶z等于A.3∶2∶1 B.1∶2∶3 C.4∶5∶3 D.3∶4∶517.已知方程组35204522x yx y zax by z-=⎧⎪+-=⎨⎪+-=-⎩与方程组85234ax by zx y z cx y-+=⎧⎪++=⎨⎪+=-⎩有相同的解,则a、b、c的值为A.231abc=-⎧⎪=-⎨⎪=⎩B.231abc=-⎧⎪=⎨⎪=⎩C .231a b c =⎧⎪=-⎨⎪=-⎩D .231a b c =⎧⎪=⎨⎪=-⎩18.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有种 A .6 B .5 C .4D .319.为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密).已知加密规则为:明文a b c ,,对应密文223a b b c c ++,,.例如:明文1,2,3对应的密文5,7,9,当接收方收到密文14,9,15时,则解密得到的明文为 A .10,5,2 B .10,2,5 C .2,5,10D .5,10,220.已知方程组2345216x y zx y z ⎧==⎪⎨⎪-+=⎩,若设=234x y z k ==,则k =__________.21.某单位职工在植树节当天去植树,甲、乙、丙三个小组共植树50棵,乙组植树的棵数是甲、丙两组和的14,甲组植树的棵数恰好是乙组和丙组的和,则每组各植树多少棵?22.新定义对有理数x ,y 定义新运算x △y =ax +by +c ,其中a ,b ,c 是常数,等式右边是通常的加法与乘法运算.已知1△2=9,(-3)△3=6,0△1=2,求(-2)△5的值.23.在等式y=ax2+bx+c中,当x=-1时,y=4;当x=2时,y=4;当x=1时,y=2.(1)求a,b,c的值;(2)当x=-2时,求y的值.24.△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又∠B比大20°,则△ABC的三个内角的度数分别是多少?25.(2016·六盘水)为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5.(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?1.【答案】B【解析】第(2)步①×2+③,得4a-b=7,所以第(2)错误,故选B.2.【答案】C【解析】由题意将x =1,y =2,z =3代入方程组得:2223337a b b c c a +=⎧⎪+=⎨⎪+=⎩①②③, ①+②+③得:a +2b +2b +3c +c +3a =2+3+7, 即4a +4b +4c =4(a +b +c )=12, 则a +b +c =3.故选C . 3.【答案】A【解析】由②,得y =5-z , 由③,得x =6-z ,将y 和x 代入①,得11-2z =1, ∴z =5,x =1,y =0∴方程组的解为105x y z =⎧⎪=⎨⎪=⎩.故选A .4.【答案】B【解析】A .含有三个未知数,但不是一次方程,故该选项错误; B .是三元一次方程组,故该选项正确; C .不是整式方程,故该选项错误;D .不是一次方程组,故该选项错误,故选B .7.【答案】B【解析】由|x-z-2|+|3x-6y-7|+|3y+3z-4|=0可得20 3670 3340 x zx yy z--=⎧⎪--=⎨⎪+-=⎩,解方程组可得3131xyz=⎧⎪⎪=⎨⎪=⎪⎩,故选B.8.【答案】A【解析】①-③的结果为4x+3y=2,③×4的结果为7x+5y=3,所以经过步骤①-③和③×4+②消去未知数z后得到的二元一次方程组为432753x yx y+=⎧⎨+=⎩,故选A.9.【答案】36;30;20【解析】设应安排x人加工甲种部件,y人加工乙种部件,z人加工丙种部件.则由题意得8615391229x y zxzyz⎧++=⎪⎪=⎪⎨⎪⎪=⎪⎩①②③,由②得x=95z④,由③得y =32z ⑤, 将④⑤代入①,解得z =20,∴x =36,y =30.故答案为:36,30,20. 10.【答案】10,9,7【解析】设甲数为x ,乙数为y ,丙数为z ,根据题意得:261218x y z x y x z y ++=⎧⎪-=⎨⎪+-=⎩, 解得:1097x y z =⎧⎪=⎨⎪=⎩,则甲数是10,乙数是9,丙数是7,故答案为:10,9,7.11.【解析】126218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩①②③,将方程①+②得:2x +z =27④, 将方程②+③得:3x +2z =44⑤, 将④×3﹣⑤×2得:z =7, 将z 值代入⑤得:x =10, 把x =10代入①得:y =9,∴三元一次方程组的解为1097x y z =⎧⎪=⎨⎪=⎩.12.【解析】(1)2333215x y z x y z x y z +-=⎧⎪-+=-⎨⎪--=⎩①②③,①+③,得3x -4z =8④, ②-③,得2x +3z =-6⑤,联立④⑤,得348 236 x zx z-=⎧⎨+=-⎩,解得2 xz=⎧⎨=-⎩,把x=0,z=-2代入③,得y=-3,所以原方程组的解是32xyz=⎧⎪=-⎨⎪=-⎩.(2)2362125x y zx y zx y z++=⎧⎪-+=-⎨⎪+-=⎩①②③,③+①,得3x+5y=11④,③×2+②,得3x+3y=9⑤,④-⑤,得2y=2,解得y=1,将y=1代入⑤,得3x=6,解得x=2,将x=2,y=1代入①,得z=-1,所以原方程组的解为211 xyz=⎧⎪=⎨⎪=-⎩.13.【解析】∵方程组2332x yx y m+=⎧⎨-=⎩的解也满足方程x+y=1,∴23321x yx y mx y+=⎧⎪-=⎨⎪+=⎩,解得218xym=⎧⎪=-⎨⎪=⎩,∴m=8.15.【答案】C【解析】方程①+②可直接消去未知数y,②-③也可直接消去y,那么即可得到一个关于x、z的二元一次方程组,∴要使运算简便,消元的方法应选取先消去y,故选C.16.【答案】B【解析】∵4520430x y zx y z-+=⎧⎨+-=⎩①②,∴①×3+②×2,得2x=y,①×4+②×5,得3x=z,∴x∶y∶z=x∶2x∶3x=1∶2∶3,故选B.17.【答案】D【解析】解方程组35202934x yx y zx y-=⎧⎪+-=⎨⎪+=-⎩,解得12xyz=⎧⎪=-⎨⎪=⎩,代入可得方程组41022281a ba bc-⎧⎪+=⎨⎪-=⎩=-,解得231abc=⎧⎪=⎨⎪=-⎩,故选D.18.【答案】D【解析】设小虎足球队胜了x场,平了y场,负了z场,依题意得:17316x y z x y y kz ++=⎧⎪+=⎨⎪=⎩①②③,把③代入①②得(1)17316x k z x kz ++=⎧⎨+=⎩,解得:z =3523k +(k 为正整数). 又∵z 为正整数,∴当k =1时,z =7;当k =2时,z =5;当k =16时,z =1.综上所述:小虎足球队所负场数的情况有3种情况.故选D .19.【答案】B【解析】根据题意可得:21429315a b b c c +=⎧⎪+=⎨⎪=⎩,解得:1025a b c =⎧⎪=⎨⎪=⎩,即明文为:10,2,5,故选B .20.【答案】2 【解析】设=,234x y z k ==则x =2k ,y =3k ,z =4k , 代入5x −2y +z =16得:10k −6k +4k =16,解得:k =2,故答案为:2.21.【解析】设甲、乙、丙三个小组分别植树x 棵、y 棵和z 棵.根据题意, 得501()4x y z y x z x y z++=⎧⎪⎪=+⎨⎪=+⎪⎩, 解得251015x y z =⎧⎪=⎨⎪=⎩.答:甲、乙、丙三个小组分别植树25棵、10棵和15棵.22.【解析】由题意得293362a b c a b c b c ++=⎧⎪-++=⎨⎪+=⎩,解得253 abc=⎧⎪=⎨⎪=-⎩,所以此新运算为x△y=2x+5y-3,故(-2)△5=2×(-2)+5×5-3=18.24.【解析】由题意得,220180A CA BA B C∠=∠⎧⎪∠=∠+︒⎨⎪∠+∠+∠=︒⎩,解得806040ABC∠=︒⎧⎪∠=︒⎨⎪∠=︒⎩,∴△ABC的三个内角的度数分别是80°,60°,40°.25.【解析】(1)由题意得:2232335A BC⨯-=⎧⎪=⨯⎨⎪=+⎩,解得:A=1,B=6,C=8.答:接收方收到的密码是1、6、8.(2)由题意得:22 2811a bbb c-=⎧⎪=⎨⎪+=⎩,解得:a=3,b=4,c=7.答:发送方发出的密码是3、4、7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.4三元一次方程组解法举例(一)、基础练习1.在方程5x-2y+z=3中,若x=-1,y=-2,则z=_______.2.已知单项式-8a3x+y-z b12 c x+y+z与2a4b2x-y+3z c6,则x=____,y=____,z=_____.3.解方程组x=_____,y=______,z=_______.4.已知代数式ax2+bx+c,当x=-1时,其值为4;当x=1时,其值为8;当x=2时,其值为25;则当x=3时,其值为_______. 5.已知,则x∶y∶z=___________.6.解方程组)A、先消去xB、先消去y C、先消去z D、以上说法都不对7.方程组解是()A B、8.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值为()A、2B、3C、4D、59.若方程组的解x与y相等,则a的值等于()A、4B、10C、11D、1210.已知∣x-8y∣+2(4y-1)2+3∣8z-3x∣=0,求x+y+z的值. 11.解方程组(1(2)4x+3y=1ax+(a-1)y=3x-3y+2z=03x-3y-4z=012.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共有多少个子女?(二)拓展训练13、解下列方程组:(1) 323231112x y zx y zy z-+=+-=++=(2)|23|(2)2011x y z x y zx y z-+++-=++=(三)达标测试14、已知方程组1620224ax bycx y+=-+=-的解应该是810xy==-,一个学生解题时,把c看错了,因此得到解为1213xy==-,求a、b、c的值。

三、课后巩固15.小明手里有12张面额分别为1元、2元、5元的纸币,共计22元,其中,1元纸币的张数是2元纸币张数的4倍,求1元、2元、5元的纸币各多少张?例1 一个口袋装有5只同样大小的球,编号分别为1,2,3,4,5,从中同时取出3只,以ξ表示取出最小的号码,求ξ的分布列。

例2 同时掷两颗质量均匀的骰子,观察上一面出现的点数,求两颗骰子中出现的最大点数X的概率分布,并求出X 大于2小于5的概率(25)P X<<。

例3 篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中率为0.7,求他罚球一次的得分的分布列。

例4 一批产品50件,其中有次品5件,正品45件,现从中随机抽取2件,求其中出现次品的概率。

练习:1 一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以X表示取出球的最大号码,求X的概率分布列。

2 某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中的男生人数,求X的分布列。

3 袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得1分,从袋中任取4个球①求得分X的概率分布列;②求得分大于6分的概率。

4 从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布列为?5 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数。

求:①ξ的分布列;②所选3人中女生人数ξ1≤的概率。

62袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17。

现在甲、乙两人从袋中轮流摸取1球,甲先取,易后取,然后甲再取 取后不放回,直到两人中有一人取到白球时即停止,每个球在每一次被取出的机会是等可能的。

①求袋中原有白球的个数;②用ξ表示取球终止时所需要的取球次数,求随机变量ξ的概率分布;③求甲取到白球的概率。

7盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意取出3张,每张卡片被取出的可能性都相等,求:①抽出的3张卡片上最大的数字是4的概率;②抽出的3张中有2张卡片上的数字是3的概率;③抽出的3张卡片上的数字互不相同的概率。

8从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为?9某国科研合作项目成员由11个美国人,4个法国人和5个中国人组成,现从中随机选出两位作为成果发布人,则此两人不属于同一国家的概率为?10将一颗质地均匀的六面骰子先后抛掷3次,至少出现一次6点向上的概率是?11在一个小组中有8名女同学和4名男同学,从中任意地挑选2名担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是?12在正方体上任取3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为?13两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本,将它们任意地排成一排,左边4本恰好属于同一部小说的概率是?14在一个口袋中装有5个白球和3个黑球,这些球除颜色完全相同,从中摸出3个球,至少摸到个黑球的概率等于?指数与指数幂的运算1. 若n x a =,则x 叫做a 的nn >1,且n N *∈. n 次方根具有如下性质: (1)在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数;正数的偶次方根是两个绝对值相等、符号相反的数,负数的偶次方根没有意义;零的任何次方根都是零. (2)n 次方根(*1,n n N >∈且)有如下恒等式:na =;,||,a n a n ⎧=⎨⎩为奇数为偶数;=(a ≥0). 2.规定正数的分数指数幂:m na=(0,,,1a m n N n *>∈>且);1m nmna a -==.¤例题精讲:【例1】求下列各式的值:(1)*1,n n N>∈且); (2..【例2】化简与求值: (1(2+⋅⋅⋅+.指数函数及其性质1. 定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .2. 以函数2x y =与1()2xy =的图象为例,观察这一对函数的图象,可总结出如下性质:定义域为R ,值域为(0,)+∞;当0x =时,1y =,即图象过定点(0,1);当01a <<时,在R 上是减函数,当1a >时,在R 上是增函数.¤例题精讲:【例1】求下列函数的定义域:(1)132xy -=; (2)1()3y = (3)1010010100xxy +=-.【例2】求下列函数的值域:(1)2311()3x y -=; (2)421xxy =++. 【例3】已知21()21xx f x -=+. (1)讨论()f x 的奇偶性; (2)讨论()f x 的单调性.第3讲 §2.2.1 对数与对数运算(一)1. 对数的运算法则:log ()log log a a a M N MN=+ ,log log log aa a M M NN=-,log log na a M n M=,其中0,1a a >≠且,0,0,M N n R>>∈.2. 对数的换底公式log log log b ab N N a=. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log nna aNN=,log log mna an NNm=,log log log 1a b c b c a = 等.¤例题精讲:【例1】化简与求值:(1)21(lg lg 2lg 52++(2)2log .【例2】若2510ab==,则11ab+= .. 【例3】 (1)方程lg lg(3)1x x ++=的解x =________;(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 .【例4】(1)化简:532111log 7log 7log 7++;(2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅= ,求实数m 的值.对数函数及其性质1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增. 【例1】求下列函数的定义域:(1)y =(2)y =.【例2】已知函数()log (3)a f x x =+的区间[2,1]--上总有|()|2f x <,求实数a 的取值范围.【例3】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.对数函数及其性质1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.2. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.3. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.幂函数.1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象. 2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ).A .101n m -<<<<B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.基本初等函数¤例题精讲:【例1】若()(0,1)x f x a a a =>≠且,则1212()()()22x x f x f x f ++≤. (注:此性质为函数的凹凸性)【例2】已知函数2()(0,0)1bx f x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.【例3】(01天津卷.19)设a >0, ()xxea f x ae=+是R 上的偶函数.(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.函数测试卷1已知集合{}{}20,40≤≤=≤≤=y y B x x A ,下列不表示从A 到B 的映射的是( ) A .x y x f 21:=→ B .x y x f 41:=→ C .x y x f 2:=→ D .x y x f =→:2.设,32)(+=x x g )()2(x f x g =+,则)(x f 等于( )(A )72+x (B )12-x (C ) 32-x (D )12+-x 3、设f(x)=xx -+22lg,则)2()2(xf x f +的定义域为( )A. ),(),(-4004B.(-4,-1) (1,4)C. (-2,-1) (1,2)D. (-4,-2) (2,4)4.设)(,1,,1,)(2x g x x x x x f ⎩⎨⎧<≥=是二次函数,若))((x g f 的值域是),0[+∞,则)(x g 的值域是 A.),,(-∞+-∞1[]1 B. ),,(-∞+-∞0[]1 C. ),∞+0[ D. ),∞+1[ 5.在同一平面直角坐标系中,函数12)(+=x x f 的图像与xx g -=12)(的图像关于( )A. 原点对称B. x 轴对称C. y 轴对称D. 直线x y =对称 6.函数222++-=x x y 的单调递增区间为( )A. ]211[,- B. ]1-∞,(- C. ),∞+2[ D. ]221[, 7.定义在R 上的偶函数()f x 满足:对任意的1212,(,0]()x x x x ∈-∞≠,有2121()(()())0x x f x f x -->.则当*n N ∈时,有 ( )(A)()(1)(1)f n f n f n -<-<+ (B) (1)()(1)f n f n f n -<-<+ (C) (1)()(1)f n f n f n +<-<- (D) (1)(1)()f n f n f n +<-<-8.已知函数()x f 是定义在R 上的奇函数,且当0≥x 时,()x x x f 22-=,则()x f y =在R 上的解析式为( ) A .()()2+-=x x x f B .()()2-=x x x f C .()()2-=x x x f D .()()2-=x x x f9.若函数)1lg()(2+=x x f 的定义域为[]b a ,、值域为[0,1],则b a +的取值范围为( ) (A )[]3,3- (B )[]0,3- (C )[]3,0 (D )[]9,9-10.已知⎩⎨⎧≥<+-=1,log 1,4)13()(x x x a x a x f a 是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1) (B )1(0,)3(C )11[,)73(D )1[,1)711.设)(x f = 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式2)(>x f 的解集为( )(A)(1,2)⋃(3,+∞)(B)(10,+∞)(C)(1,2)⋃ (10 ,+∞) (D)(1,2) 12.设⎭⎬⎫⎩⎨⎧-∈3,21,1,1a ,则使函数ax y =为R 上的奇函数的a 的个数( ) A. 1 B. 2 C. 3 D. 413.已知集合M={}1,1-N=⎭⎬⎫⎩⎨⎧∈<<+Z x x x ,4221|1则N M =__________.14.已知函数a x a ax x f +-+=)31()(2在区间),1(+∞上递增,则a 的取值范围是_. 15.设函数)(x f 是定义在R 上的奇函数,若当),0(+∞∈x 时,)(x f =x lg ,则满足)(x f 0≥的x 的取值范围__________.16.函数)2(log log 2x x y x +=的值域为____________.17.函数6)1(3)1()(22+-+-=x a x a x f(1)若)(x f 的定义域为R ,求实数a 的取值范围. (2)若)(x f 的定义域为[-2,1],求实数a 的取值范围.18.函数3)(2++=ax x x f(1)当R x ∈时,a x f ≥)(恒成立,求实数a 的取值范围. (2)当[]2,2-∈x 时,a x f ≥)(恒成立,求实数a 的取值范围.19.已知定义域为R 的函数122)(++-=x xa b x f 是奇函数.(1)求b a 、的值;(2)若对任意的R t ∈,不等式0)2()2(22<-+-k t f t t f 恒成立,求k 的范围.20.若函数)10(log2log 2<<+-=a b x x y aa的定义域为[2,4],值域为[8,425],求b a 、的值.21.已知函数xpxx f 32)(2-+=的图象经过点⎪⎭⎫⎝⎛-35,2,. (1)求p 值,并写出函数()x f 的解析式;(2)判断函数()x f 在(]1,0上是单调性,并用定义法证明;(3)求函数()x f 在⎥⎦⎤⎢⎣⎡t ,21上的最大值.22.设函数)(x f 的定义域为R ,对任意实数y x ,都有)()()(y f x f y x f +=+,当0>x 时0)(>x f 且6)2(=f . (1) 求证:函数)(x f 为奇函数;(2)证明:函数)(x f 为R 上的增函数; (3)在区间[-4,4]上,求)(x f 的最值.。

相关文档
最新文档