2018年江苏省张家港市八年级下学期期末考试数学试题word版含答案
江苏省苏州市张家港市2018-2019学年八年级下学期数学期末考试试卷及参考答案
(k≠0)在第一象限内的图象
(1) 求反比例函数的表达式和m的值; (2) 将矩形OABC的进行折叠,使点O于点D重合,折痕分别与x轴、y轴正半轴交于点F,G,求折痕FG所在直线的
函数关系式。
参考答案
1.
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
6. 下列说法正确的是( )
A . 某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是2℃ B . 一组数据2,2,3,4,5,5,5,这组数据的众数是2
C . 小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是121分 D . 一组数据2,2,3,4,这组数据的中位
3. 一元二次方程
配方后可变形为( )
A.
B.
C.
D.
4. 一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分
的概率为( )
A. B. C. D.
5. 如图,在
中,已知 , 分别为边 , 的中点,连结 ,若
,则
等于( )
A . 70º B . 67. 5º C . 65º D . 60º
26. 已知:如图,在正方形ABCD外取−点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P,已知AE=AP=BE=1.
(1) 求证:△APD≌△AEB; (2) 连接PC,求线段PC的长度; (3) 试求正方形ABCD的面积。 27. 如图,矩形OABC的顶点A.C分别在x、y轴的正半轴上,点D为BC边上的点,反比例函数y=
18. 如图①,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B.图②是点F运动时,△FBC的
(苏科版)2018-2019学年八年级数学下学期期末考试试卷(含答案)
★绝密★启用前2018-2019学年下学期期末考试八年级 数学(苏科版)一、选择题(本大题共有8小题,每小题3分,共24分)1.如图所示的四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有(▲)A .1个B .2个C . 3个D . 4个 2.下列调查中适合采用普查的是( ▲ )A .调查市场上某种白酒中塑化剂的含量B .调查鞋厂生产的鞋底能承受的弯折次数C .了解某火车的一节车厢内感染禽流感病毒的人数D .了解某城市居民收看江苏卫视的时间3.在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1个球,摸到红球的概率是(▲)A .52B .53C .51D .314.下列代数式是最简形式的是(▲)A .242--x xB .121442+++x x x C .34x D .215- 5.已知点1(1,)A y ,2(2,)B y ,3(3,)C y -都在反比例函数21k y x+=的图像上,则321,,y y y 的大小关系是( ▲ )A .312y y y <<B .123y y y <<C . 213y y y <<D .321y y y <<6.如图,直线l 与函数xky =的图像相交,C B A 、、是直线l 的三点,过点C B A 、、分 别作x 轴的垂线,垂足分别为F E D 、、,连接OC OB OA 、、,设OAD ∆的面积是1S , OBE ∆的面积是2S ,OCF ∆的面积是3S ,则( ▲ )A .123S S S <<B .123S S S ==C .213S S S >>D .312S S S >>7.图1所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是(▲) A .当3=x 时,EC EM <B .当9=y 时,EM EC >C .当x 增大时,EC CF 的值不变D .当y 增大时,BE DF 的值增大8.如图,点A 为函数)0(16>=x x y 图像上一点,连接OA ,交函数)0(4>=x xy 的图像于点B ,点C 是x 轴上一点,且AC AO =,则ABC ∆的面积为( ▲ ) A .6 B .8 C . 10 D .12第7题 第7题第6题xyFEDAO BC 第8题yxBCOA二、填空题(本大题共有10小题,每小题3分,共30分)9.若代数式12+x 在实数内范围有意义,则x 的取值范围为 ▲ .10.有五张不透明卡片,每张卡片上分别写有3,1-,327,19,π,除正面的数不同外其余都相同,将它们背面朝上洗匀后从中任取一张,取到的数是无理数的概率是 ▲ .11.函数x y 3=与42+=x y 图象的交点坐标为()b a , ,则ba 121-的值为 ▲ . 12.关于x 的分式方程3333x m mx x++=--的解为正数,则m 的取值范围是 ▲ .13.已知一个对角线长分别为6cm 和8cm 的菱形,顺次连接它的四边中点得到的四边形的面积是 ▲ 2cm . 14.若关于x 的方程311x a x x--=-无解,则a = ▲ . 15.如果三角形有一边上的中线长恰好等于这条边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt ABC ∆中,90C ∠=,一条直角边为1,如果Rt ABC ∆是“有趣三角形”,那么这个三角形“有趣中线”的长等于 ▲ .16.如图,菱形ABCD 中,P 为AB 中点,60A ∠=,折叠菱形ABCD ,使点C 落在DP 所在的直线上,得到经过点D 的折痕DE ,则DEC ∠的大小为 ▲ .17.如图,一次函数11y k x b =+的图像与反比例函数22k y x=的图像相交与A ,B 两点,其横坐标分别为2和6,则不等式21k k x b x<-的解集是 ▲ . 18.已知一个菱形的两个顶点与一个正方形的两个顶点重合,并且这两个四边形没有公共边,C'P CABDE第16题第17题yxBAO菱形的面积为224cm ,正方形的面积为232cm ,则菱形的边长为 ▲ cm . 三、解答题(本大题共有10道题,共96分) 19.(每小题4分,共8分)计算或化简: (1)()211832733÷-⨯ (2)228244244x x x x x x +-⎛⎫-÷ ⎪---+⎝⎭20.(本题8分) 解方程:22216224x x x x x -+-=+--21.(本题8分)先化简再求值:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,再从0,1-,2,中选一个数作为a 的值代入求值.22.(本题8分)为了更好地了解近阶段九年级学生的近期目标,某区设计了如下调查问卷:你认为近阶段的主要学习目标是哪一个?(此为单选题)A .升入四星级普通高中,为考上理想大学作准备;B .升入三星级普通高中,将来能考上大学就行;C .升入五年制高职类学校,以后做一名高级技师;D .升入中等职业类学校,做一名普通工人就行;E .等待初中毕业,不想再读书了.在该区9000名九年级学生中随机调查了部分学生后整理并制作了如下的统计图: 根据以上信息解答下列问题: (1)补全条形统计图;yxD CBEAO(2)计算扇形统计图中m =__▲__; (3)计算扇形统计图中A 区的圆心角的度数.(4)我区想继续升入普通高中 (含四星和三星)的大约有多少人?23.(本题10分) 如图,在四边形ABCD 中,AB CD //,点E 、F 是对角线AC 上两点,且ABF CDE ∠=∠,AE CF =(1)求证:ABF CDE ∆∆≌;(2)当四边形ABCD 的边AB ,AD 满足什么条件时,四边形BFDE 是菱形?说明理由.24. (本题10分)如图,已知()4,A n -,()4,4B n --是直线y kx b =+和双曲线my x=的两个交点,过点A ,B 分别作AC y ⊥轴,BD x ⊥轴,垂足为C ,D .(1)求两个函数的表达式;(2)观察图像,直接写出不等式0mkx b x+-≥的解集;(3)判断CD 与AB 的位置关系,并说明理由.25. (本题10分)动车的开通为江都市民的出行带来更多方便,从江都到南京,路程120公里,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少20分钟,求该动车的平均速度.(1)根据题意填空:BACDEF①若小慧设 ▲ 为x 公里/小时,列出尚不完整的 方程:xx 5.1120120=+( ▲ ); ②若小聪设 ▲ 为y 小时,列出尚不完整的 方程:1201201.5y =⨯(▲); (2)请选择其中一名同学的设法,写出完整的解答过程. 26.(本题10分)阅读题:)0,0(≥≥=⋅b a ab b a 逆写为)0,0(≥≥⋅=b a b a ab ;)0,0(>≥=b a b a b a 逆写为)0,0(>≥=b a ba b a ;())0(2≥=a a a 逆写为 ▲ .应用知识:(1).在实数范围内分解因式: =+-3322x x ▲ ; (2).化简:=+-yx yx ▲ ;(3).求值:已知621012331a b c a b c ++---+--=-,求c b a ++的值.27.(本题12分)如图,四边形ABCO 是平行四边形且点()4,0C -,将平行四边形ABCO 绕yxH DEBAFCO点A 逆时针旋转得到平行四边形ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上,若点A ,D 在反比例函数xky =的图像上,过A 作AH x ⊥轴,交EF 于点H . (1)证明:AOF ∆是等边三角形,并求k 的值;(2)在x 轴上找点G ,使ACG ∆是等腰三角形,求出G 的坐标; (3)设P ()1,x a ,()2,Q x b ()210x x >>,()1,M m y ,()2,N n y 是双曲线ky x=上的四点,,2a bm k+=122n x x =+,试判断21,y y 的大小,说明理由.28.(本题12分)已知,,45ABC AB AC ABC ∆=∠=︒,点D 为直线BC 上一动点(点D 不与C B ,重合),以AD 为边作正方形ADEF (F E D A ,,,按逆时针排列),连接CF . (1)如图①,当点D 在边BC 上时,求证:CA CD CF 2=+;(2)如图②,当点D 在边BC 的延长线上且其他条件不变时,请写出CA CD CF ,,之间存在的数量关系,并说明理由;(3)如图③,当点D 在边CB 的延长线上且其他条件不变时,补全图形,并直接写出....CA CDCF ,,之间的数量关系;(4)当点D 在直线BC 上运动时,请你用文字语言描述点F 的运动轨迹,并直接写出....DA DC DB ,,之间的数量关系.图①图②图③答案一、选择题(3×8=24分)题号 12345678答案B C B D D C C B二、填空题(3×10=30分) 9. 21-≥x 10. 52 11. 32 12.9322m m <≠且 13. 12 14.1或2- 15. 1或23316.︒75 17. 02x <<或6x > 18.5,26,8 三、解答题19.(每题4分,共8分)(1) 22- (2) 22x x --+ 20.(本题8分)2x =- 经检验2x =-是原方程的增根,∴原方程无解21.(本题8分) 原式22a a +=-- 1a ≠-,2a ≠∴当0a =时,原式1=22.(本题8分)(每小题2分) (1)画图45 (2)12 (3)︒=︒⨯14436020080 (4)567020046809000=+⨯23.(本题10分) (1)证明:AB CD //∴BAC DCA ∠=∠ AE CF = ∴AF CE =且ABF CDE ∠=∠∴ABF CDE ∆∆≌(AAS ) …………………………………………4分(2)当四边形ABCD 满足AB AD =时,四边形BFDE 时菱形。
张家港市2018~2019学年第二学期初二数学期末试卷(含答案)
2018~2019学年第二学期初中期末试卷初二数学 2019.06本试卷由选择题、填空题和解答题三部分组成,共28题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;2.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上) 1.下列调查中,适合采用普查的是A.夏季冷饮市场上冰激凌的质量B.某本书中的印刷错误C.《舌尖上的中国》第三季的收视率D.公民保护环境的意识 2.下列二次根式中,属于最简二次根式的是A.B.3.一元二次方程矛2820x x --=配方后可变形为A. 2(4)18x -= B. 2(4)14x -= C. 2(2)6x -= D. 2(2)2x -= 4.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为 A.12 B. 45 C. 49 D. 595.如图,在ABC ∆中,已知D ,E 分别为边AB ,AC 的中点,连结DE ,若70C ∠=︒,则AED ∠等于A. 70ºB. 67. 5ºC. 65ºD. 60º6.下列说法正确的是A.某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是2℃B.一组数据2,2,3,4,5,5,5,这组数据的众数是2C.小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是121分D.一组数据2,2,3,4,这组数据的中位数是2.57.如图,在平行四边形ABCD 中,E ,F 是对角线BD 上不同的两点,连接AE ,CE ,AF ,CF .下列条件中,不能得出四边形AECF 一定是平行四边形的为A. BE DF =B. AE CF =C. //AF CED. BAE DCF ∠=∠8.计算221(1)11x x x -÷+-的结果是 A. 1x - B.1x C. 1x x - D. 1x x - 9.如图,已知一次函数4y kx =-的图像与x 轴,y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图像交于点C ,且A 为BC 的中点,则一次函数的解析式为 A. 24y x =- B. 44y x =- C. 84y x =- D. 164y x =-10.如图,矩形ABCD 中, AB=8,BC=4,P ,Q 分别是直线AB ,AD 上的两个动点,点E在边CD 上,2DE =,将D E Q ∆沿EQ 翻折得到FEQ ∆,连接PF ,PC ,则P F P C+的最小值为A. 2B. 8C. 10D. 2二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.若式子4有意义,则实数x 的取值范围是 . 12.当x = 时,分式2521x x -+的值为0.13.某中学组织八年级学生进行“绿色出行,低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成,,,,A B C D E 五个等级,并绘制如图所示的扇形统计图(不完整)统计成绩,则C 等级所在扇形的圆心角是 º.14.矩形ABCD 的对角线AC 与BD 相交于点O ,4BD =,M ,N 分别是AD ,OD 的中点,则MN 的长度为 .15.已知关于x 的一元二次方程20x mx n ++=有一个非零实数根n -,则m n -的值为 .16.如图,将矩形ABCD 沿EF 折叠,使点A 落在CD 边上的点G 处,点B 落在点H 处,若30HGC ∠=︒,连接AG ,则AGD ∠= .17.如图,A ,B 是反比例函数6(0)y x x=>图像上的两点,过点A 作//AP y 轴,过点B 作//BP x 轴,交点为P ,连接OA ,OP .若AOP ∆的面积为2,则ABP ∆的面积为 . 18.如图①,点M 从菱形ABCD 的顶点D 出发,沿D C A →→以1 cm/ s 的速度匀速运动到点A .如图②是点M 运动过程中,MAB ∆的面积y ( cm 2)随时间x (s)变化的关系图像,则a 的值为 .三、解答题(本大题共76分.解答时应写出必要的计算或说明过程.并把解答过程填写在答题卡相应的位置上) 19.(本题满分8分)计算:(2)1)-+; (2)22)-20.(本题满分8分)解下列方程:(1)(3)10x x -=; (2)2373226x x +=++.21.(本题满分5分)如图,正比例函数2y x =的图像与反比例函数ky x=的图像有一个交点为(2,)P m . (1)求反比例函数ky x=函数表达式; (2)根据图像,直接写出当41x -<<-时,y 的取值范围.22.(本题满分5分)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且2AB =.(1)菱形ABCD 的周长为 ; (2)若2BD =,求AC 的长.23.(本题满分6分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m 分(60100m ≤≤),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表。
江苏省张家港市2018-2019学年八年级下学期期末数学试卷
2018~2019学年第二学期初中期末试卷初二数学 2019.06本试卷由选择题、填空题和解答题三部分组成,共28题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;2.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上) 1.下列调查中,适合采用普查的是A.夏季冷饮市场上冰激凌的质量B.某本书中的印刷错误C.《舌尖上的中国》第三季的收视率D.公民保护环境的意识 2.下列二次根式中,属于最简二次根式的是A.B. 3.一元二次方程矛2820x x --=配方后可变形为A. 2(4)8x -= B. 2(4)14x -= C. 2(2)6x -= D. 2(2)2x -= 4.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为 A.12 B. 45 C. 49 D. 595.如图,在ABC ∆中,已知D ,E 分别为边AB ,AC 的中点,连结DE ,若70C ∠=︒,则AED ∠等于A. 70ºB. 67. 5ºC. 65ºD. 60º6.下列说法正确的是A.某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是2℃B.一组数据2,2,3,4,5,5,5,这组数据的众数是2C.小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是121分D.一组数据2,2,3,4,这组数据的中位数是2.5 7.如图,在平行四边形ABCD 中,E ,F 是对角线BD 上不同的两点,连接AE ,CE ,AF ,CF .下列条件中,不能得出四边形AECF 一定是平行四边形的为A. BE DF =B. AE CF =C. //AF CED. BAE DCE ∠=∠8.计算221(1)11x x x -÷+-的结果是 A. 1x - B.1x C. 1x x - D. 1x x - 9.如图,已知一次函数4y kx =-的图像与x 轴,y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图像交于点C ,且A 为BC 的中点,则一次函数的解析式为 A. 24y x =- B. 44y x =- C. 84y x =- D. 164y x =-10.如图,矩形ABCD 中, AB=8,BC=4,P ,Q 分别是直线AB ,AD 上的两个动点,点E 在边CD 上,2DE =,将DEQ ∆沿EQ 翻折得到FEQ ∆,连接PF ,PC ,则PF PC +的最小值为A. 2-B. 8C. 10D. 2-二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.x 的取值范围是 . 12.当x = 时,分式2521x x -+的值为0.13.某中学组织八年级学生进行“绿色出行,低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成,,,,A B C D E 五个等级,并绘制如图所示的扇形统计图(不完整)统计成绩,则C 等级所在扇形的圆心角是 º.14.矩形ABCD 的对角线AC 与BD 相交于点O ,4BD =,M ,N 分别是AD ,OD 的中点,则MN 的长度为 . 15.已知关于x 的一元二次方程20x mx n ++=有一个非零实数根n -,则m n -的值为 .16.如图,将矩形ABCD 沿EF 折叠,使点A 落在CD 边上的点G 处,点B 落在点H 处,若30HGC ∠=︒,连接AG ,则AGD ∠= .17.如图,A ,B 是反比例函数6(0)y x x=>图像上的两点,过点A 作//AP y 轴,过点B 作//BP x 轴,交点为P ,连接OA ,OP .若AOP ∆的面积为2,则ABP ∆的面积为 . 18.如图①,点M 从菱形ABCD 的顶点D 出发,沿D C A →→以1 cm/ s 的速度匀速运动到点A .如图②是点M 运动过程中,MAB ∆的面积y ( cm 2)随时间x (s)变化的关系图像,则a 的值为 .三、解答题(本大题共76分.解答时应写出必要的计算或说明过程.并把解答过程填写在答题卡相应的位置上) 19.(本题满分8分)计算:0(2)1)-+; (2)22)+-20.(本题满分8分)解下列方程:(1)(3)10x x -=; (2)2373226x x +=++.21.(本题满分5分)如图,正比例函数2y x =的图像与反比例函数ky x=的图像有一个交点为(2,)P m . (1)求反比例函数ky x=函数表达式; (2)根据图像,直接写出当41x -<<-时,y 的取值范围.22.(本题满分5分)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且2AB =. (1)菱形ABCD 的周长为 ; (2)若2BD =,求AC 的长.23.(本题满分6分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m 分(60100m ≤≤),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表。
2018年苏教版八年级下学期数学期末测试题含答案
2018年苏教版八年级下学期数学期末测试题含答案2018年苏教版八年级下学期数学期末测试题含答案一、选择题:(本大题共有8小题,每小题3分,共24分)1.若二次根式有意义,则x的取值范围是()A。
x<2 B。
x≠2 C。
x≤2 D。
x≥22.若反比例函数为y=,则这个函数的图象位于()A。
第一、二象限B。
第一、三象限C。
第二、三象限D。
第二、四象限3.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A。
不变 B。
扩大为原来的3倍 C。
扩大为原来的10倍 D。
缩小为原来的4.下列分式中,属于最简分式的是()A。
B。
C。
D。
5.已知P1(-1,y1)、P2(1,y2)、P3(2,y3)是反比例函数y=的图象上的三点,则y1、y2、y3的大小关系是()A。
y1<y3<y2 B。
y1<y2<y3 C。
y2<y3<y1 D。
y3<y2<y16.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,则四边形ABCD只需要满足一个条件,是()A。
四边形ABCD是梯形 B。
四边形ABCD是菱形 C。
对角线AC=BD7.下列说法:①一组对边平行,另一组对边相等的四边形是平行四边形;②两条对角线相等且互相平分的四边形是矩形;③在反比例函数y=中,如果自变量x<2时,那么函数值y>2.其中正确的有()A。
个 B。
1个 C。
2个 D。
3个8.如图,平行四边形ABCD的顶点A的坐标为(-k,0),顶点D在双曲线y=x²(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE面积的3倍,则k的值为()A。
4 B。
6 C。
7 D。
8二、填空题(本大题共有10小题,每小题3分,共30分)9.函数中,自变量x的取值范围是______。
10.若a、b满足a²-4a+4=0,则b/a=______。
11.某研究小组设计了一个摸球试验,在袋中装有黑、白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别。
人教版八年级下册数学张家港数学期末试卷易错题(Word版含答案)
人教版八年级下册数学张家港数学期末试卷易错题(Word 版含答案) 一、选择题1.二次根式2x -中x 的值不能是( ) A .0 B .1 C .2 D .32.已知△ABC 的三边a ,b ,c 满足()24263150b c a -+-+-=,则ABC 的的面积为( ) A .12B .6C .15D .103.如图,四边形ABCD 的对角线AC 和BD 交于点O ,则下列不能..判断四边形ABCD 是平行四边形的是( )A .OA=OC ,AD //BCB .∠ABC=∠ADC ,AD//BC C .AB=DC ,AD=BCD .∠ABD=∠ADB ,∠BAO=∠DCO4.班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:甲 乙 丙 平均数/分 96 95 97 方差0.422丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )A .甲B .乙C .丙D .丁5.在棱长为1的正方体中,顶点A ,B 的位置如图所示,则A 、B 两点间的距离为( )A .1B 2C 3D 56.如图,在菱形纸片ABCD 中,∠A=60°,点E 在BC 边上,将菱形纸片ABCD 沿DE 折叠,点C 落在AB 边的垂直平分线上的点C′处,则∠DEC 的大小为( )A .30°B .45°C .60°D .75°7.如图,在Rt ABC △中,90ACB ∠=︒,30B ∠=︒,CD 是斜边AB 上的高,1cm AD =,则BC 的长度是( )A .3cmB .3cmC .23cmD .4cm8.如图,直线1:1l y x =+与直线21:22x l y =+相交于点P ,直线1l 与y 轴交于点A ,一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线2l 上的点1B 处后,改为垂直于x 轴的方向运动,到达直线1l 上的点1A 处后,再沿平行于x 轴的方向运动,到达直线2l 上的点2B 处后,又改为垂直于x 轴的方向运动,到达直线1l 上的点2A 处后,仍沿平行于x 轴的方向运动……照此规律运动,动点C 依次经过点1B ,1A ,2B ,2A ,3B ,32020A B , 2020A 则20202020AB 的长度为( )A .20202B .20192C .2020D .4040二、填空题9.已知实数x ,y 满足21124x x y -+-+=,则代数式y x 的值为____. 10.菱形的两条对角线长分别为5和8,则这个菱形的的面积为__________. 11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.如图,在矩形ABCD 中,∠BOC =120°,AB =10,则BD 的长为_______.13.某生态体验园推出了甲、乙两种消费卡.甲、乙两卡所需费用y 甲,y 乙(单位:元)与入园次数x (单位:次)的函数关系如图所示.当x 满足________时,y y >甲乙.14.如图, 在矩形ABCD 中, 对角线AC , BD 交于点O , 已知∠AOD=120°, AB=1,则BC 的长为______15.如图,直线142y x =-+与坐标轴分别交于点A ,B ,点P 是线段AB 上一动点,过点P作PM ⊥x 轴于点M ,作PN ⊥y 轴于点N ,连接MN ,则线段MN 的最小值为_________.16.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A 与点B 重合,折痕为DE ,则:BCEBDESS等于____________.三、解答题17.计算: (112483+4; (2)(22)2×(6+218.笔直的河流一侧有一营地C ,河边有两个漂流点A ,B 、其中AB =AC ,由于周边施工,由C 到A 的路现在已经不通,为方便游客,在河边新建一个漂流点H (A ,H ,B 在同一直线上),并新修一条路CH ,测得BC =10千米,CH =8千米,BH =6千米. (1)判断△BCH 的形状,并说明理由; (2)求原路线AC 的长.19.如图,正方形网格中的△ABC ,若小方格边长为1 (1)判断△ABC 是什么形状?并说明理由. (2)求AC 边上的高.20.如图,在△ABC 中,AD 是BC 边上的中线,点E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于F ,连接CF . (1)求证:△AEF ≌△DEB ;(2)若∠BAC =90°,试判断四边形ADCF 的形状,并证明你的结论.21.[阅读材料]我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用秦九韶公式可以更简便地求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地求出答案,即三角形的三边长分别为a 、b 、c ,则其面积S 2222221()42a b c a b ⎡⎤+--⎢⎥⎣⎦出一辙,即三角形的三边长分别为a 、b 、c ,记p =2a b c++,则其面积S =()()()p p a p b p c ---价的,计算各有优劣,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平.[解决问题](1)当三角形的三边a =7,b =8,c =9时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.(2)当三角形的三边a =7,b =22,c =3时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x 人,非节假日门票费用y 1(元)及节假日门票费用y 2(元)与游客x (人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y 1、y 2与x 之间的函数关系式;(3)导游小王5月2日(五一假日)带A 旅游团,5月8日(非节假日)带B 旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A 、B 两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转(),得到线段CE ,联结BE 、CE 、DE. 过点B 作BF ⊥DE 交线段DE 的延长线于F . (1)如图,当BE=CE 时,求旋转角的度数; (2)当旋转角的大小发生变化时,的度数是否发生变化?如果变化,请用含的代数式表示;如果不变,请求出的度数;(3)联结AF ,求证:.24.如图,直线12y x =-+与x 轴交于点(12,0)A ,与直线OB 交于点(,8,4)B x 轴上一点P 从O 点出发以每秒2个单位的速度向终点A 运动,作PE x ⊥轴交OB 于E ,过E 作//EF x 轴且12EF PE =,以PE EF 、为边作矩形PEFG ,设运动时间为t .()1当点F落在直线AB上时,求t的值;()2在运动过程中,设矩形PEFG与ABO的重叠部分面积为S,求S与t的关系式,并写出相应的t的取值范围;()3矩形PEFG的对角线交于点Q,直接写出PQ AQ+的最小值为_ .25.如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.(1)如图,当点E在线段BC上时,∠BDF=α.①按要求补全图形;②∠EBF=______________(用含α的式子表示);③判断线段 BF,CF,DF之间的数量关系,并证明.(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.26.如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BD、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=5,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD、CE和CA之间的数量关系,并加以说明.【参考答案】一、选择题 1.D 解析:D 【分析】根据二次根式有意义的条件即可得出答案. 【详解】∴20x -≥, 解得:2x ≤,故选项中符合条件的x 的值有0,12,, ∴x 不能为3, 故选:D . 【点睛】本题考查了二次根式有意义的条件,熟知根号下为非负数是解本题的关键.2.B解析:B 【分析】三个非负数的和为0,则它们都为0.根据此性质可得a 、b 、c 的值,由勾股定理的逆定理可判断此三角形为直角三角形,从而可求得△ABC 的面积. 【详解】 ∵0≥,260c -≥,()23150a -≥()2263150c a -+-=∴0=,260c -=,()23150a -=∴b -4=0,2c -6=0,3a -15=0 即b =4,c =3,a =5 ∵222224325b c a +=+==∴由勾股定理的逆定理可知,△ABC 是直角三角形,且a 是斜边 ∴1143622ABCSbc ==⨯⨯= 故选:B . 【点睛】本题考查了算术平方根、绝对值、平方的非负性,勾股定理的逆定理,三角形面积的计算等知识,关键是非负性的应用.3.D解析:D 【解析】 【分析】平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形;根据平行四边形的判定即可解答. 【详解】 解:∵//AD BC∴DAO BCO ∠∠=,ADO CBO ∠=∠ 在△ADO 和△CBO 中 DAO BCO ADO CBO OA OC ∠∠⎧⎪∠=∠⎨⎪=⎩= ∴△ADO 全等△CBO ∴AD =CD∴四边形ABCD 是平行四边形. 此选项A 正确; ∵//AD BC ∴ADB CBD ∠=∠ 又∵ABC CDA ∠∠=, ∴ABD BDC ∠=∠ ∴AB ∥CD∴四边形ABCD 是平行四边形. 此选项B 正确; ∵AB =CD ,AD =BC∴四边形ABCD 是平行四边形. 此选项C 正确;根据∠ABD=∠ADB ,∠BAO=∠DCO 不能判断四边形ABCD 是否为平行四边形 ∴选项D 错误. 故选D. 【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.4.D解析:D 【解析】 【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛. 【详解】 解:根据题意,丁同学的平均分为:9796989797975++++=,方差为:222221[(9797)(9697)(9897)(9797)(9797)]0.45-+-+-+-+-=; ∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小, ∴应该选择丁同学去参赛; 故选:D . 【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.C解析:C 【分析】根据Rt △ABC 和勾股定理可得出AB 两点间的距离. 【详解】解:在Rt △ABC 中,AC =1,BC =22112+=,可得:AB ()22123+=,故选:C . 【点睛】本题考查了勾股定理,得出正方体上A 、B 两点间的距离为直角三角形的斜边是解题关键.6.D解析:D 【解析】 【分析】连接BD ,由菱形的性质及60A ∠=︒,得到ABD △为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到30ADP ∠=︒,120ADC =∠︒,60C ∠=°,进而求出90PDC ∠=︒,由折叠的性质得到45CDE PDE ∠=∠=︒,利用三角形的内角和定理即可求出所求角的度数. 【详解】解:连接BD ,如图所示:∵四边形ABCD 为菱形, ∴AB AD =, ∵60A ∠=︒,∴ABD △为等边三角形,120ADC =∠︒,60C ∠=°, ∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=︒, ∴90PDC ∠=︒,∴由折叠的性质得到45CDE PDE ∠=∠=︒, 在DEC 中,()18075DEC CDE C ∠=︒-∠+∠=︒. 故选:D 【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.7.C解析:C 【解析】 【分析】根据三角形的内角和求出∠A ,根据余角的定义求出∠ACD ,根据含30度角的直角三角形性质求出AC =2AD ,AB =2AC ,进而利用勾股定理求出BC 即可. 【详解】解:∵CD ⊥AB ,∠ACB =90°, ∴∠ADC =90°=∠ACB , ∵∠B =30°, ∴∠A =90°−∠B =60°, ∴∠ACD =90°−∠A =30°, ∵AD =1cm ,∴AC =2AD =2(cm ), ∴AB =2AC =4(cm ),∴BC 22AB AC -224223-=cm ), 故选:C . 【点睛】本题主要考查的是勾股定理、含30度角的直角三角形性质和三角形内角和定理的应用,关键是求出AC =2AD ,AB =2AC .解析:B 【分析】先求出P点坐标,再由直线l1:y=x+1可知,A(0,1),则B1纵坐标为1,代入直线l2:y=12x+12中,得B1(1,1),又A1、B1横坐标相等,可得A1(1,2),则AB1=1,A1B1=2-1=1,可判断AA1B1为等腰直角三角形,利用平行线的性质,得A1A2B2、A2A3B3、…、都是等腰直角三角形,根据平行于x轴的直线上两点纵坐标相等,平行于y轴的直线上两点横坐标相等以及直线l1、l2的解析式,分别求A1B1,A2B2的长得出一般规律,再利用规律解答即可.【详解】解:由直线直线l1:y=x+1可知,P(-1,0)A(0,1),根据平行于x轴的直线上两点纵坐标相等,平行于y轴的直线上两点横坐标相等以及直线l1、l2的解析式可知,B1(1,1),A1(1,2),B2(3,2),A2(3,4),B3(7,4),A3(7,8),A1B1=2-1,A2B2=4-2=2,A3B3=8-4=4,…A n B n=2n-2(n-1)当n=2020时,20202020A B=22020-22019=2×22019-22019=22019(2-1)=22019.故选B.【点睛】本题主要考查了一次函数的综合运用以及等腰三角形的知识.掌握平行于x轴的直线上点的纵坐标相等,平行于y轴的直线上点的横坐标相等成为解答本题的关键.二、填空题9.116【解析】【分析】根据被开方数是非负数,及方程的关系,可得二元一次方程组,根据解方程组,可得x、y 的值,根据乘方运算,可得答案.【详解】解:x、y4y=,得2101204xxy-⎧⎪-⎨⎪=⎩,解得124xy⎧=⎪⎨⎪=⎩,411 216y x⎛⎫==⎪⎝⎭.故答案为:1 16.【点睛】本题考查了二次根式有意义的条件,注意二次根式的被开方数是非负数.【解析】【分析】菱形的面积是对角线乘积的一半,由此可得出结果.【详解】解:∵菱形的两条对角线长分别为5和8,∴菱形的面积:158202S=⨯⨯=.故答案为:20.【点睛】本题考查了菱形的面积,菱形面积的求解方法有两种:①底乘以高,②对角线积的一半,解题关键是对面积公式的熟练运用.11.36cm2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键.12.B解析:20【分析】先根据矩形的性质和∠BOC=120∘,证明△AOB是等边三角形,即可得到OB=AB=10,BD=2OB=20.【详解】解:∵四边形ABCD是矩形,∴OA=12AC,OB=12BD,AC=BD,∴OA=OB,∵∠BOC=120∘,∴∠AOB=60∘,∴△AOB是等边三角形,∴OB=AB=10,∴BD=2OB=20;故答案为:20.【点睛】本题主要考查了矩形的性质,等边三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.13.x >10【分析】运用待定系数法,即可求出y 与x 之间的函数表达式,联立方程组解答即可求出两直线的交点坐标,根据函数图象回答即可.【详解】解:设y 甲=k 1x ,根据题意得5k 1=100,解得k 1=20,∴y 甲=20x ;设y 乙=k 2x +100,根据题意得:20k 2+100=300,解得k 2=10,∴y 乙=10x +100;解方程组2010100y x y x =⎧⎨=+⎩,解得10200x y =⎧⎨=⎩, ∴两直线的交点坐标为(10,200);根据图象可知:当x >10时,y y >甲乙.故答案为:x >10.【点睛】本题主要考查了一次函数的应用、学会利用方程组求两个函数图象的解得交点坐标,正确由图象得出正确信息是解题关键.14.A【分析】根据矩形的性质可得∠ACB 的度数,从而利用勾股定理可求出BC 的长度.【详解】解:由题意得:∠ACB=30°,∠ABC=90°,在Rt △ABC 中,AC=2AB=2,由勾股定理得,【点睛】本题考查了矩形的性质,比较简单,解答本题的关键是求出∠ACB 的度数.15.【分析】如图,连接,依题意,四边形是矩形,则,当时,最小,底面积法求得即可.【详解】如图,连接,PM ⊥x 轴,PN ⊥y 轴,四边形是矩形,,当时,最小,直线与坐标轴分别交于点A ,B , 解析:855【分析】如图,连接OP ,依题意,四边形OMPN 是矩形,则OP MN =,当OP AB ⊥时,OP 最小,底面积法求得OP 即可.【详解】如图,连接OP ,PM ⊥x 轴,PN ⊥y 轴,90AOB ∠=︒∴四边形OMPN 是矩形,∴OP MN =,∴当OP AB ⊥时,OP 最小,直线142y x =-+与坐标轴分别交于点A ,B , 令0,4x y ==,)4(0,A ∴令0,8y x ==,(0,8)B ∴4,8OA OB ∴==,22224845AB OA OB ∴=++=当OP AB ⊥时,1122ABC S OA OB OP AB =⨯=⨯△, 8545OA OB OP AB ⨯∴=== ∴MN OP ==85.85. 【点睛】 本题考查了矩形的性质,勾股定理,垂线段最短,找到MN OP =是解题的关键. 16.14:25【分析】在中利用勾股定理计算出,根据折叠的性质得到,,设,则,,在中根据勾股定理计算出,则,利用三角形面积公式计算出,在中利用勾股定理计算出,利用三角形面积公式计算出,然后求出两面积的解析:14:25【分析】在Rt BEC △中利用勾股定理计算出10AB =,根据折叠的性质得到5AD BD ==,EA EB =,设AE x =,则BE x =,8EC x =-,在Rt BEC △中根据勾股定理计算出254x =,则257844EC ,利用三角形面积公式计算出1172162244BCE SBC CE ,在Rt BED △中利用勾股定理计算出222515()544ED ,利用三角形面积公式计算出11157552248BDE S BD DE ∆==⨯⨯=,然后求出两面积的比. 【详解】 解:在Rt BAC 中,6BC =,8AC =,10AB ∴=,把ABC ∆沿DE 使A 与B 重合,AD BD ∴=,EA EB =,152BD AB ∴==, 设AE x =,则BE x =,8EC x =-, 在Rt BEC △中,222BE EC BC ,即222(8)6x x =-+, 254x ∴=, 2578844ECx , 1172162244BCE S BC CE , 在Rt BED △中,222BE ED BD , 222515()544ED , 11157552248BDE S BD DE ∆∴==⨯⨯=, 2175::14:2548BCE BDE S S ∆∆∴==. 故答案为:14:25.【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等,对应角相等.也考查了勾股定理.三、解答题17.(1)2;(2)4(1)根据二次根式的混合运算法则计算即可;(2)根据完全平方公式以及平方差公式计算即可.【详解】解:(1)原式=﹣4=﹣4=6﹣4=2;(2)原式=(4﹣解析:(1)2;(2)4【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据完全平方公式以及平方差公式计算即可.【详解】解:(1﹣4﹣4=6﹣4=2;(2)原式=(4﹣+2)×(=(6﹣)×(=36﹣32=4.【点睛】本题考查了二次根式的混合运算,乘法公式的运用,熟练掌握相关运算法则是解本题的关键.18.(1)△HBC是直角三角形,理由见解析;(2)原来的路线AC的长为千米.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△BCH是直角三角形,理解析:(1)△HBC是直角三角形,理由见解析;(2)原来的路线AC的长为253千米.(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可.【详解】解:(1)△BCH是直角三角形,理由是:在△CHB中,∵CH2+BH2=82+62=100,BC2=100,∴CH2+BH2=BC2,∴△HBC是直角三角形且∠CHB=90°;(2)设AC=AB=x千米,则AH=AB-BH=(x-6)千米,在Rt△ACH中,由已知得AC=x,AH=x-6,CH=8,由勾股定理得:AC2=AH2+CH2,∴x2=(x-6)2+82,解这个方程,得x=253,答:原来的路线AC的长为253千米.【点睛】本题考查了勾股定理的应用,解决本题的关键是掌握勾股定理的逆定理和定理.19.(1)△ABC是直角三角形.理由见解析;(2)【解析】【分析】(1)根据勾股定理和勾股定理的逆定理可直接判断;(2)根据三角形的面积公式可求解.【详解】解:(1)△ABC是直角三角形.理解析:(1)△ABC是直角三角形.理由见解析;(2【解析】【分析】(1)根据勾股定理和勾股定理的逆定理可直接判断;(2)根据三角形的面积公式可求解.【详解】解:(1)△ABC是直角三角形.理由如下:由题意可得,ABBCAC=∴AB2+BC2=AC2,∴∠B =90°,∴△ABC 是直角三角形;(2)设AC 边上的高为h .∵S △ABC =12AC •h =12AB •BC ,∴h=13AB BC AC == 【点睛】本题主要考查了勾股定理和勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2)四边形ADCF 是菱形,理由见解析.【分析】(1)由“AAS”可证△AEF ≌△DEB ;(2)先证四边形ADCF 是平行四边形,由直角三角形的性质可得AD =CD ,可得结论.【详解析:(1)见解析;(2)四边形ADCF 是菱形,理由见解析.【分析】(1)由“AAS ”可证△AEF ≌△DEB ;(2)先证四边形ADCF 是平行四边形,由直角三角形的性质可得AD =CD ,可得结论.【详解】证明:(1)∵AD 是BC 边上的中线,∴BD =CD ,∵点E 是AD 的中点,∴AE =ED ,∵AF ∥BC ,∴∠AFE =∠EBD ,在△AEF 和△DEB 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△DEB (AAS ),(2)四边形ADCF 是菱形,理由如下:∵△AEF ≌△DEB ,∴AF =BD ,又∵BD =CD ,∴AF =CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=CD,∴四边形ADCF是菱形.【点睛】本题考查了全等三角形的判定和性质,菱形的判定和性质.证明四边形ADCF是平行四边形是解题的关键.21.(1)S=12;(2)S=【解析】【分析】(1)利用三角形的三边均为整数,可选择海伦公式进行计算;(2)利用三角形的三边中有无理数,可选择秦九韶公式进行计算.【详解】解:(1),由海伦解析:(1)S2)S【解析】【分析】(1)利用三角形的三边均为整数,可选择海伦公式进行计算;(2)利用三角形的三边中有无理数,可选择秦九韶公式进行计算.【详解】解:(1)789122p++==,∴由海伦公式得:S===(2)由秦九韶公式得:S==【点睛】本题主要考查了数学常识,三角形的面积,二次根式的应用,根据三角形三边数字的特征选择恰当的公式是解题的关键.22.(1)80元/人;(2)y1=48x ,y2=;(3)A 旅游团30人,B 旅游团20人【分析】(1)由函数图象,节假日期间,10人的购票款数为800元,购票款数除以人数,可得不打折的门票价格;(2解析:(1)80元/人;(2)y 1=48x ,y 2=80(010)64160(10)x x x x ≤≤⎧⎨+>⎩;(3)A 旅游团30人,B 旅游团20人【分析】(1)由函数图象,节假日期间,10人的购票款数为800元,购票款数除以人数,可得不打折的门票价格;(2)利用待定系数法求正比例函数解析式求出1y ,分010x 与10x >,利用待定系数法求2y 与x 的函数关系式即可;(3)设A 团有x 人,表示出B 团的人数为(50)x -,然后分010x 与10x >两种情况,根据(2)的函数关系式列出方程求解即可.【详解】解:(1)8001080÷=(元/人),答:不打折的门票价格是80元/人;(2)设110y k =,解得:48k =,148y x ∴=,当010x 时,设280y x =,当10x >时,设2y mx b =+,则10800201440m b m b +=⎧⎨+=⎩, 解得:64m =,160b =,264160y x ∴=+,280(010)64160(10)x x y x x ⎧∴=⎨+>⎩; (3)设A 旅游团x 人,则B 旅游团(50)x -人,若010x ,则8048(50)3040x x +-=,解得:20x ,与10x 不相符,若10x >,则6416048(50)3040x x ++-=,解得:30x =,与10x >相符,503020-=(人),答:A 旅游团30人,B 旅游团20人.【点睛】本题考查了一次函数的应用,利用了待定系数法求一次函数解析式,准确识图获取必要的信息是解题的关键,(3)要注意分情况讨论.23.(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC是等边三角形,从而求得=∠DCE=30°.(2)因为△CED是等腰三角形,再利用三角形的内角解析:(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC是等边三角形,从而求得=∠DCE=30°.(2)因为△CED是等腰三角形,再利用三角形的内角和即可求∠BEF=.(3)过A点与C点添加平行线与垂线,作得四边形AGFH是平行四边形,求得△ABG≌△ADH.从而求得矩形AGFH是正方形,根据正方形的性质证得△AHD≌△DIC,从而得出结论.【详解】(1)证明:在正方形ABCD中, BC=CD.由旋转知,CE=CD,又∵BE=CE,∴BE=CE=BC,∴△BEC是等边三角形,∴∠BCE=60°.又∵∠BCD=90°,∴=∠DCE=30°.(2)∠BEF的度数不发生变化.在△CED中,CE=CD,∴∠CED=∠CDE=,在△CEB中,CE=CB,∠BCE=,∴∠CEB=∠CBE=,∴∠BEF=.(3)过点A作AG∥DF与BF的延长线交于点G,过点A作AH∥GF与DF交于点H,过点C作CI⊥DF于点I易知四边形AGFH是平行四边形,又∵BF⊥DF,∴平行四边形AGFH是矩形.∵∠BAD=∠BGF=90°,∠BPF=∠APD ,∴∠ABG=∠ADH.又∵∠AGB=∠AHD=90°,AB=AD,∴△ABG≌△ADH.∴AG=AH ,∴矩形AGFH是正方形.∴∠AFH=∠FAH=45°,∴AH=AF∵∠DAH+∠ADH=∠CDI+∠ADH=90°∴∠DAH=∠CDI又∵∠AHD=∠DIC=90°,AD=DC,∴△AHD≌△DIC∴AH=DI,∵DE=2DI,∴DE=2AH=AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1);(2);(3)【解析】【分析】(1)先求直线的解析式,再用含的代数式表示点、点的坐标,将点的坐标代入,解关于的方程即可求出点落在直线上时的值;(2)先确定矩形与的重叠部分的图形为矩形解析:(1)247;(2)2222124(0)2745244272(4)879246(4)852422472(6)5t tt t tSt t tt t t⎧<≤⎪⎪⎪-+-<≤⎪=⎨⎪-+<≤⎪⎪⎪-+<≤⎩;(3125【解析】【分析】(1)先求直线OB的解析式,再用含t的代数式表示点E、点F的坐标,将点F的坐标代入12y x =-+,解关于t 的方程即可求出点F 落在直线AB 上时t 的值;(2)先确定矩形PEFG 与ABO ∆的重叠部分的图形为矩形、五边形、梯形、三角形时t 的取值范围,再按这几种不同的情况分别求出S 与t 的关系式;(3)连接AE 、GE ,则点Q 在GE 上,且PQ EQ =,先确定PQ AQ EQ AQ AE +=+≥,再证明当点G 与点A 重合时AE 的值最小,且此时PQ AQ AE +=,求出AE 的值即可得到PQ AQ +的最小值.【详解】解:(1)如图1,设直线OB 的解析式为y kx =,点(8,4)B 在直线y kx =上,84k ∴=, 解得,12k =, 12y x ∴=, 2OP t =,(2,0)P t ∴,(2,)E t t , 1122EF PE t ==, 5(2F t ∴,)t ,5(2G t ,0), 当点F 落在直线AB 上时,则5122t t -+=,解得24.7t = (2)当点E 与点B 重合时,则28t =,解得4t =;当点G 与点A 重合时,则5122t =,解得245t =; 当点P 与点A 重合时,则212t =,解得6t =,当2407t <≤时,如图1,PE t =,12EF t =, 21122S t t t ∴=⋅=; 当2447t <≤时,如图2,设直线12y x =-+交y 轴于点C ,则(0,12)C ,12OA OC ∴==,90AOC ∠=︒,45OAC OCA ∴∠=∠=︒,设EF 、FG 分别交AB 于点J 、点K ,则45FKJ OCA ∠=∠=︒,45FJK OAC ∠=∠=︒, JF FK ∴=;对于12y x =-+,当52x t =时,5122y t =-+,5(2K t ∴,512)2t -+, 57(12)1222FK t t t ∴=--+=-, 22211745(12)42722228S t t t t ∴=--=-+-; 当2445t <≤时,如图3,45GKA PJA OAC ∠=∠=∠=︒,122PA PJ t ∴==-,5122GA GK t ==-, 2221159(122)(12)62228S t t t t ∴=---=-+; 当2465t <≤时,如图4,221(122)224722S t t t =-=-+,综上所述,2222124(0)2745244272(4)879246(4)852422472(6)5t t t t t S t t t t t t ⎧<≤⎪⎪⎪-+-<≤⎪=⎨⎪-+<≤⎪⎪⎪-+<≤⎩. (3)如图4,连接AE 、GE ,由矩形的性质可知,点Q 在GE 上,且PQ EQ =, PQ AQ EQ AQ AE ∴+=+≥,∴当点Q 落在AE 上,且AE 最小时,PQ AQ +的值最小;如图5,点G 与点A 重合,则AE 与GE 重合,∴点Q 在AE 上,PQ AQ AE ∴+=,此时245t =, 24482255OP t ∴==⨯=, 48121255AP ∴=-=, 1224255PE ∴=⨯=,AE ∴=作BD x ⊥轴于点D ,作AE OB '⊥于点E ',则OB由1122OAB S OB AE OA BD ∆=⨯⋅'=⋅,得1112422⨯'=⨯⨯,解得AE ', AE AE ∴=',AE ∴的长就是点A 到直线OB 的距离,AE OB ∴⊥,AE ∴的值最小,此时PQ AQ +【点睛】 此题重点考查一次函数的图象与性质、等腰直角三角形的性质、勾股定理、用待定系数法求函数关系式及动点问题的求解等知识与方法,还涉及数形结合、分类讨论等数学思想的运用,此时难度较大,属于考试压轴题.25.(1)①详见解析;②45°-α;③,详见解析;(2),或,或【分析】(1)①由题意补全图形即可;②由正方形的性质得出,由三角形的外角性质得出,由直角三角形的性质得出即可;③在DF 上截取DM解析:(1)①详见解析;②45°-α;③DF BF =,详见解析;(2)DF BF =,或BF DF =,或BF DF +=【分析】(1)①由题意补全图形即可;②由正方形的性质得出1452DBE ABC ∠=∠=,由三角形的外角性质得出45BEF DBE BDF α∠=∠+∠=+,由直角三角形的性质得出9045EBF BEF α∠=-∠=-即可;③在DF 上截取DM=BF ,连接CM ,证明△CDM ≌△CBF ,得出CM=CF , ∠DCM=∠BCF ,得出即可得出结论;(2)分三种情况:①当点E 在线段BC 上时,,理由同(1)③;②当点E 在线段BC 的延长线上时,,在BF_上截取BM=DF ,连接CM .同(1)③得△CBM ≌△CDF 得出CM=CF ,∠BCM=∠DCF ,证明△CMF 是等腰直角三角形,得出,即可得出结论;③当点E 在线段CB 的延长线上时,,在DF 上截取DM=BF ,连接CM ,同(1) ③得:ACDM ≌△CBF 得出CM=CF ,∠DCM=∠BCF ,证明△CMF 是等腰直角三角形,得出MF=2CF ,即可得出结论.【详解】解:(1)①如图,②∵四边形ABCD 是正方形,∴∠ABC=90°,1452DBE ABC ∠=∠=, ∴45BEF DBE BDF α∠=∠+∠=+,∵BF ⊥DE,∴∠BFE=90°,∴9045EBF BEF α∠=-∠=-,故答案为:45°-α;③线段BF ,CF ,DF 之间的数量关系是2DF BF CF =.证明如下:在DF 上截取DM =BF ,连接CM .如图2所示,∵ 正方形ABCD ,∴ BC =CD ,∠BDC =∠DBC =45°,∠BCD =90°∴∠CDM =∠CBF =45°-α,∴△CDM ≌△CBF (SAS ).∴ DM =BF , CM =CF ,∠DCM =∠BCF .∴ ∠MCF =∠BCF+∠MCE=∠DCM+∠MCE=∠BCD =90°,∴ MF 2CF .∴2.DF DM MF BF CF =+=(2)分三种情况:①当点E 在线段BC 上时,2CF ,理由同(1)③; ②当点E 在线段BC 的延长线上时,2CF ,理由如下:在BF 上截取BM=DF ,连接CM ,如图3所示,同(1) ③,得:△CBM ≌△CDF (SAS),∴CM=CF , ∠BCM=∠DCF .∴∠MCF=∠DCF+∠MCD=∠BCM+∠MCD= ∠ BCD=90°,∴△CMF 是等腰直角三角形,∴2CF ,∴BF=BM+MF=DF+2CF ; ③当点E 在线段CB 的延长线上时,BF+DF=2CF ;理由如下:在DF 上截取DM=BF ,连接CM ,如图4所示,同(1)③得:△CDM ≌△CBF ,∴CM=CF ,∠DCM=∠BCF ,∴∠MCF=∠DCF+ ∠MCD= ∠DCF+∠BCF=∠BCD=90°,∴△CMF 是等腰直角三 角形,∴MF=2CF ,即DM+DF=2CF ,∴BF+DF=2CF ;综上所述,当点E 在直线BC 上时,线段BF ,CF ,DF 之间的数导关系为:2DF BF CF =+,或2BF DF CF =+,或2BF DF CF +=.【点睛】此题是四边形的一道综合题,考查正方形的性质,等腰直角三角形的判定及性质,全等三角形的判定及性质,注意解题中分情况讨论避免漏解.26.(1)见解析;(2);(3)2AC2=CD2+CE2,理由见解析【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论;(2)先求出∠CDA=∠ADE=30°,进而解析:(1)见解析;(2)34;(3)2AC2=CD2+CE2,理由见解析【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论;(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论;(3)连接BE,由等腰直角三角形的性质和全等三角形的性质可得BE=CD,∠BEA=∠CDA =45°,由勾股定理可得2AC2=CD2+CE2.【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD;又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE;(2)如图②,连接BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=12∠ADE=12×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=5,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴22225334BD BE DE++(3)2AC2=CD2+CE2,理由如下:连接BE,∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,BC2=BE2+CE2,在Rt△ABC中,AB2+AC2=BC2,∴2AC2=CD2+CE2.【点睛】此题考查了等腰直角三角形、全等三角形的性质以及勾股定理,熟练掌握相关基本性质是解题的关键.。
江苏省张家港市2018-2019学年第二学期八年级数学期末试卷
2018~2019学年第二学期初中期末试卷初二数学本试卷由选择题、填空题和解答题三部分组成,共28题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;2.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上) 1.下列调查中,适合采用普查的是A.夏季冷饮市场上冰激凌的质量B.某本书中的印刷错误C.《舌尖上的中国》第三季的收视率D.公民保护环境的意识 2.下列二次根式中,属于最简二次根式的是A.B. 3.一元二次方程矛2820x x --=配方后可变形为A. 2(4)8x -= B. 2(4)14x -= C. 2(2)6x -= D. 2(2)2x -= 4.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为 A.12 B. 45 C. 49 D. 595.如图,在ABC ∆中,已知D ,E 分别为边AB ,AC 的中点,连结DE ,若70C ∠=︒,则AED ∠等于A. 70ºB. 67. 5ºC. 65ºD. 60º6.下列说法正确的是A.某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是2℃B.一组数据2,2,3,4,5,5,5,这组数据的众数是2C.小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是121分D.一组数据2,2,3,4,这组数据的中位数是2.57.如图,在平行四边形ABCD 中,E ,F 是对角线BD 上不同的两点,连接AE ,CE ,AF ,CF .下列条件中,不能得出四边形AECF 一定是平行四边形的为A. BE DF =B. AE CF =C. //AF CED. BAE DCE ∠=∠8.计算221(1)11x x x -÷+-的结果是 A. 1x - B.1x C. 1x x - D. 1x x - 9.如图,已知一次函数4y kx =-的图像与x 轴,y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图像交于点C ,且A 为BC 的中点,则一次函数的解析式为 A. 24y x =- B. 44y x =- C. 84y x =- D. 164y x =-10.如图,矩形ABCD 中, AB=8,BC=4,P ,Q 分别是直线AB ,AD 上的两个动点,点E 在边CD 上,2DE =,将D E Q ∆沿EQ 翻折得到FEQ ∆,连接PF ,PC ,则P F P C +的最小值为A. 2B. 8C. 10D. 2二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.若式子4有意义,则实数x 的取值范围是 . 12.当x = 时,分式2521x x -+的值为0. 13.某中学组织八年级学生进行“绿色出行,低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成,,,,A B C D E 五个等级,并绘制如图所示的扇形统计图(不完整)统计成绩,则C 等级所在扇形的圆心角是 º.14.矩形ABCD 的对角线AC 与BD 相交于点O ,4BD =,M ,N 分别是AD ,OD 的中点,则MN 的长度为 . 15.已知关于x 的一元二次方程20x mx n ++=有一个非零实数根n -,则m n -的值为 .16.如图,将矩形ABCD 沿EF 折叠,使点A 落在CD 边上的点G 处,点B 落在点H 处,若30HGC ∠=︒,连接AG ,则AGD ∠= .17.如图,A ,B 是反比例函数6(0)y x x=>图像上的两点,过点A 作//AP y 轴,过点B 作//BP x 轴,交点为P ,连接OA ,OP .若AOP ∆的面积为2,则ABP ∆的面积为 . 18.如图①,点M 从菱形ABCD 的顶点D 出发,沿D C A →→以1 cm/ s 的速度匀速运动到点A .如图②是点M 运动过程中,MAB ∆的面积y ( cm 2)随时间x (s)变化的关系图像,则a 的值为 .三、解答题(本大题共76分.解答时应写出必要的计算或说明过程.并把解答过程填写在答题卡相应的位置上) 19.(本题满分8分)计算:(2)1)-+; (2)22)-20.(本题满分8分)解下列方程:(1)(3)10x x -=; (2)2373226x x +=++.21.(本题满分5分)如图,正比例函数2y x =的图像与反比例函数ky x=的图像有一个交点为(2,)P m . (1)求反比例函数ky x=函数表达式; (2)根据图像,直接写出当41x -<<-时,y 的取值范围.22.(本题满分5分)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且2AB =. (1)菱形ABCD 的周长为 ; (2)若2BD =,求AC 的长.23.(本题满分6分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m 分(60100m ≤≤),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表。
苏科版江苏省苏州市张家港市2017-2018学年八年级(下)期末数学试卷(含解析)
江苏省苏州市张家港市2017-2018学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把答题卡上正确答案对应的字母涂黑)1.要使二次根式有意义,则x的取值范围是()A.x>0B.x≤2C.x≥2D.x≥﹣22.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量3.在某次国际乒乓球单打比赛中,两名中国运动员马龙、樊振东进入最后决赛,那么下列事件为必然事件的是()A.冠军属于中国运动员马龙B.冠军属于中国运动员樊振东C.冠军属于中国运动员D.冠军属于外国运动员4.下列计算正确的是()A.=﹣4 B.+=C.=π﹣1 D.=3+45.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=6.用配方法解方程x2+3x+1=0,经过配方,得到()A.(x+)2=B.(x+)2=C.(x+3)2=10D.(x+3)2=87.为了帮助一名患“白血病”的高中生,某爱心小组的15名同学积极捐款,他们捐款数额如下表:捐款的数额(单位:元)5102050100人数(单位:个)24531这15名同学所捐款数额的中位数是()A.10B.20C.50D.1008.如图,在四边形ABCD中,∠C=90°,E、F分别为AB、AD的中点,BC=2,CD=,则EF的长为()A.B.C.D.9.如图,矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,则△DCE的面积为()A.B.C.2D.110.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.若分式的值为0,则x的值等于.12.已知一组数据为4,8,9,7,7,8,7,10,则这组数据的众数为.13.若+(y﹣3)2=0,则x+y=.14.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:摸球的次数100200300400500600摸到白球的次数58118189237302359摸到白球的频率0.580.590.630.5930.6040.598从这个袋中随机摸出一个球,是白球的概率约为.(结果精确到0.1)15.关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0实数根,则k的取值范围是.16.如图,菱形ABCD中,P为AB中点,∠A=60°,折叠菱形ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为°.17.如图,正方形ABCD中,AB=8,点E、F分别在边AB、BC上,BE=BF=2,点P是对角线AC上的一个动点,则PE+PF的最小值是.18.如图,过原点O的直线AB与反比例函数y=(k>0)的图象交于A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB于点E.若△ACD的周长为5,则k的值为.三、解答题(共76分。
2017-2018学年江苏省苏州市张家港市八年级(下)期末数学试卷(解析版)
2017-2018学年江苏省苏州市张家港市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把答题卡上正确答案对应的字母涂黑)1.(3分)要使二次根式有意义,则x的取值范围是()A.x>0B.x≤2C.x≥2D.x≥﹣22.(3分)下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量3.(3分)在某次国际乒乓球单打比赛中,两名中国运动员马龙、樊振东进入最后决赛,那么下列事件为必然事件的是()A.冠军属于中国运动员马龙B.冠军属于中国运动员樊振东C.冠军属于中国运动员D.冠军属于外国运动员4.(3分)下列计算正确的是()A.=﹣4B.+=C.=π﹣1D.=3+45.(3分)下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=6.(3分)用配方法解方程x2+3x+1=0,经过配方,得到()A.(x+)2=B.(x+)2=C.(x+3)2=10D.(x+3)2=87.(3分)为了帮助一名患“白血病”的高中生,某爱心小组的15名同学积极捐款,他们捐款数额如下表:这15名同学所捐款数额的中位数是( ) A .10B .20C .50D .1008.(3分)如图,在四边形ABCD 中,∠C =90°,E 、F 分别为AB 、AD 的中点,BC =2,CD =,则EF 的长为( )A .B .C .D .9.(3分)如图,矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,则△DCE 的面积为( )A .B .C .2D .110.(3分)在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C ′的坐标为( )A.(,0)B.(2,0)C.(,0)D.(3,0)二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.(3分)若分式的值为0,则x的值等于.12.(3分)已知一组数据为4,8,9,7,7,8,7,10,则这组数据的众数为.13.(3分)若+(y﹣3)2=0,则x+y=.14.(3分)某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为.(结果精确到0.1)15.(3分)关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0实数根,则k的取值范围是.16.(3分)如图,菱形ABCD中,P为AB中点,∠A=60°,折叠菱形ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为°.17.(3分)如图,正方形ABCD中,AB=8,点E、F分别在边AB、BC上,BE=BF=2,点P是对角线AC上的一个动点,则PE+PF的最小值是.18.(3分)如图,过原点O的直线AB与反比例函数y=(k>0)的图象交于A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB于点E.若△ACD的周长为5,则k的值为.三、解答题(共76分。
最新江苏省2018-2019年八年级下期末数学试卷
八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.2.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定【答案】A【解析】解:∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.先根据题意判断出一次函数的增减性,再根据x1<x2即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 48【答案】C【解析】解:∵菱形的两条对角线的长分别是6和8, ∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案. 此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.9. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0 【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.10. 如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若AB =8,OM =3,则线段OB 的长为( ) A. 5 B. 6 C. 8 D. 10 【答案】A 【解析】解:∵四边形ABCD 是矩形, ∴∠D =90∘,∵O 是矩形ABCD 的对角线AC 的中点,OM//AB , ∴OM 是△ADC 的中位线, ∵OM =3, ∴AD =6,∵CD =AB =8,∴AC =√AD 2+CD 2=10, ∴BO =12AC =5.故选:A .已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.11. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( ) A. 5元 B. 10元 C. 20元 D. 10元或20元 【答案】C【解析】解:设每件衬衫应降价x 元,则每天可销售(20+2x)件, 根据题意得:(40−x)(20+2x)=1200, 解得:x 1=10,x 2=20. ∵扩大销售,减少库存, ∴x =20. 故选:C .设每件衬衫应降价x 元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +3与x 轴、y 轴分别交于点E ,F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】解:∵菱形ABCD 的顶点A(2,0),点B(1,0), ∴点D 的坐标为(4,1), 当y =1时,x +3=1, 解得x =−2,∴点D 向左移动2+4=6时,点D 在EF 上, ∵点D 落在△EOF 的内部时(不包括三角形的边), ∴4<m <6,∴m 的值可能是5. 故选:C .根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D 移动到MN 上时的x 的值,从而得到m 的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)13. 若√x −2在实数范围内有意义,则x 的取值范围为______. 【答案】x ≥2【解析】解:由题意得:x −2≥0, 解得:x ≥2, 故答案为:x ≥2.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴{8k+b=183k+b=8,解得{b=2k=2;所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC ,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:(Ⅰ)√12+3√2×√6;(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2∴CM =4 3(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,∴DF=12CD=t;(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=12AC=6cm,∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.25.在平面直角坐标系中,直线l1:y=−12x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(Ⅰ)对于直线:y =−12x +4,令x =0,得到y =4, ∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83,∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m), ∵△BOD 的面积为4, ∴12×4×m =4,解得m =2, ∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4, 解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB 为菱形的边时,OB =PB =4,可得P(2√2,4−2√2),Q(2√2,−2√2). ②当P′B 为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB 为菱形的边时,点P″与D 重合,P 、Q 关于y 轴对称,Q″(−2,2), 综上所述,满足条件的Q 的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B 坐标,利用方程组求出点C 坐标即可;(Ⅱ)设D(m,m),构建方程求出m 即可解决问题,再利用待定系数法求出直线的解析式; (Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。
苏教版2018年八年级下学期数学期末测试题含答案
苏教版2018年八年级下学期数学期末测试题含答案一、选择题(本题共10小题,每小题3分,共30分)1.若二次根式有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥22.若反比例函数为y=,则这个函数的图象位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限3.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.不变 B.扩大为原来的3倍C.扩大为原来的10倍D.缩小为原来的4.下列变形正确的是()A.=×B.=×=4×=2C.=|a+b| D.=25﹣24=15.今年某初中有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是()A.这50名考生是总体的一个样本B.近1千名考生是总体C.每位考生的数学成绩是个体D.50名学生是样本容量6.下列说法不正确的是()A.“抛掷一枚硬币,硬币落地时正面朝上”是随机事件B.“任意打开数学教科书八年级下册,正好是第50页”是不可能事件C.“把4个球放入三个抽屉中,其中必有一个抽屉中至少有2个球”是必然事件D.“在一个不透明的袋子中,有5个除颜色外完全一样的小球,其中2个红球,3个白球,从中任意摸出1个小球,正好是红球”是随机事件7.如图,菱形ABCD的两条对角线相交于点O,若AC=8,BD=6,过点D作DE⊥AB,垂足为E,则DE 的长是()A.2.4 B.4.8 C.7.2 D.108.已知,则的值为()A.B.8 C.D.69.如图,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF 的值为()A.2B.4 C.4D.210.如图,四边形OABC、BDEF是面积分别为S1、S2的正方形,点A在x轴上,点F在BC上,点E在反比例函数y=(k>0)的图象上,若S1﹣S2=2,则k值为()A.1 B.C.2 D.4二、填空题:(本题共8小题,每小题3分,共24分)11.若实数a、b满足|a+2|,则=______.12.反比例函数y=的图象经过点(﹣2,3),则k的值为______.13.已知反比例函数的图象在每个象限内y的值随x的值增大而减小,则k的取值范围是______.14.若a<1,化简等于______.15.若的小数部分为m,则代数式m(m+4)的值为______.16.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足条件______时,四边形BEDF是正方形.17.若关于x的方程=+1无解,则a的值是______.18.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点A,C的坐标分别为(2,0),(0,2),D是x轴正半轴上的一点(点D在点A的右边),以BD为边向外作正方形BDEF(E,F两点在第一象限),连接FC交AB的延长线于点G.若反比例函数y=的图象经过点E,G两点,则k的值为______.三、解答题:19.(15分)(1)=1﹣;(2)+=;(3)化简:(﹣x+1)÷.20.先化简,再求值:,其中x满足x2﹣x﹣1=0.21.已知实数a,b,c在数轴上的位置如图所示,化简:﹣|a+c|+﹣|﹣b|.22.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(2016春•张家港市期末)某项工程,若由甲队单独施工,刚好如期完成;若由乙队单独施工,则要超期3天完成.现由甲、乙两队同时施工2天后,剩下的工程由乙队单独做,刚好如期完成.问规定的工期是多少天?24.如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E 旋转180°得到△CFE,连接AF,AC.(1)求证:四边形ADCF是菱形;(2)若BC=8,AC=6,求四边形ABCF的周长.25.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(﹣2,2),B (0,5),C(0,2).(1)画△A1B1C,使它与△ABC关于点C成中心对称;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),画出平移后对应的△A2B2C2;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,则旋转中心的坐标为______.26.如图,在平面直角坐标系中,正比例函数y=3x与反比例函数y=的图象交于A,B两点,点A的横坐标为2,AC⊥x轴,垂足为C,连接BC.(1)求反比例函数的表达式;(2)求△ABC的面积;(3)若点P是反比例函数y=图象上的一点,△OPC与△ABC面积相等,请直接写出点P的坐标.27.如图,菱形ABCD的边长为48cm,∠A=60°,动点P从点A出发,沿着线路AB﹣BD做匀速运动,动点Q从点D同时出发,沿着线路DC﹣CB﹣BA做匀速运动.(1)求BD的长;(2)已知动点P、Q运动的速度分别为8cm/s、10cm/s.经过12秒后,P、Q分别到达M、N两点,试判断△AMN的形状,并说明理由,同时求出△AMN的面积;(3)设问题(2)中的动点P、Q分别从M、N同时沿原路返回,动点P的速度不变,动点Q的速度改变为a cm/s,经过3秒后,P、Q分别到达E、F两点,若△BEF为直角三角形,试求a的值.28.(10分)如图1,已知点A(a,0),B(0,b),且a、b满足,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线经过C、D两点.(1)求k的值;(2)点P在双曲线上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.若二次根式有意义,则x的取值范围是()A.x<2 B.x≠2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2﹣x≥0,解得x≤2.故选C.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.2.若反比例函数为y=,则这个函数的图象位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限【考点】反比例函数的性质.【分析】根据比例系数的符号即可判断反比例函数的两个分支所在的象限.【解答】解:∵k=﹣2,∴函数的图象在第二、四象限,故选D.【点评】主要考查反比例函数的性质,用到的知识点为:反比例函数的比例系数等于在它上面的点的横纵坐标的积;比例系数小于0,反比例函数的两个分支在二、四象限.3.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.不变 B.扩大为原来的3倍C.扩大为原来的10倍D.缩小为原来的【考点】分式的基本性质.【分析】把中的x与y都扩大为原来的10倍,分式的分子和分母都扩大10倍,根据分式的基本性质,可得这个代数式的值不变,据此解答即可【解答】解:∵把中的x与y都扩大为原来的10倍,∴分式的分子和分母都扩大10倍,∴这个代数式的值不变.故选:A.【点评】此题主要考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,要熟练掌握,注意弄清楚分子、分母的变化情况.4.下列变形正确的是()A.=×B.=×=4×=2C.=|a+b| D.=25﹣24=1【考点】二次根式的乘除法;二次根式的性质与化简.【分析】运用二次根式的乘除法和二次根式的性质与化简计算即可.【解答】解:A、=×,故A选项错误;B、=×=×=,故B选项错误;C、=|a+b|,故C选项正确;D、==7,故D选项错误.故选:C.【点评】本题主要考查了二次根式的乘除法和二次根式的性质与化简,解题的关键是正确的运用二次根式的性质进行化简.5.今年某初中有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是()A.这50名考生是总体的一个样本B.近1千名考生是总体C.每位考生的数学成绩是个体D.50名学生是样本容量【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、这50名考生的数学成绩是总体的一个样本,故选项错误;B、近1千名考生的数学成绩是总体,故选项错误;C、每位考生的数学成绩是个体,正确;D、样本容量是:50,故选项错误;故选:C.【点评】本题考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.下列说法不正确的是()A.“抛掷一枚硬币,硬币落地时正面朝上”是随机事件B.“任意打开数学教科书八年级下册,正好是第50页”是不可能事件C.“把4个球放入三个抽屉中,其中必有一个抽屉中至少有2个球”是必然事件D.“在一个不透明的袋子中,有5个除颜色外完全一样的小球,其中2个红球,3个白球,从中任意摸出1个小球,正好是红球”是随机事件【考点】随机事件.【分析】根据随机事件、不可能事件以及必然事件的定义即可作出判断.【解答】解:A、“抛掷一枚硬币,硬币落地时正面朝上”是随机事件,正确;B、“任意打开数学教科书八年级下册,正好是第50页”是随机事件,则原命题错误;C、“把4个球放入三个抽屉中,其中必有一个抽屉中至少有2个球”是必然事件,正确;D、“在一个不透明的袋子中,有5个除颜色外完全一样的小球,其中2个红球,3个白球,从中任意摸出1个小球,正好是红球”是随机事件,正确.故选B.【点评】本题考查了随机事件、不可能事件以及必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.如图,菱形ABCD的两条对角线相交于点O,若AC=8,BD=6,过点D作DE⊥AB,垂足为E,则DE 的长是()A.2.4 B.4.8 C.7.2 D.10【考点】菱形的性质.【分析】根据“菱形的面积等于对角线乘积的一半”可以求得该菱形的面积.菱形的面积还等于底乘以高,所以可得DE的长度.【解答】解:∵四边形ABCD是菱形,AC=8,BD=6,∴AC⊥OD,AO=AC=4,BO=BD=3,∴由勾股定理得到:AB===5.又∵AC•BD=AB•DE.∴DE==4.8.故选:B.【点评】本题考查了菱形的性质.属于中等难度的题目,解答本题关键是掌握①菱形的对角线互相垂直且平分,②菱形的面积等于底乘以底边上的高,还等于对角线乘积的一半.8.已知,则的值为()A.B.8 C.D.6【考点】完全平方公式.【分析】首先求出(a+)2=a2++2=10,进而得出(a﹣)2=6,即可得出答案.【解答】解:∵,∴(a+)2=a2++2=10,∴a2+=8,∴a2+﹣2=(a﹣)2=6,∴=.故选:C.【点评】此题主要考查了完全平方公式的应用,根据已知得出a2+的值是解题关键.9.如图,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF 的值为()A.2B.4 C.4D.2【考点】正方形的性质.【分析】根据正方形的对角线互相垂直可得OA⊥OD,对角线平分一组对角可得∠OAD=45°,然后求出四边形OEPF为矩形,△APE是等腰直角三角形,再根据矩形的对边相等可得PF=OE,根据等腰直角三角形的性质可得PE=BE,从而得到PE+PF=OA,然后根据正方形的性质解答即可.【解答】解:在正方形ABCD中,OA⊥OD,∠OAD=45°,∵PE⊥AC,PF⊥BD,∴四边形OEPF为矩形,△APE是等腰直角三角形,∴PF=OE,PE=BE,∴PE+PF=BE+OE=OA,∵AB=BC=4,∴OA=AC==2,∴PE+PF=2,故选A.【点评】考查了正方形的性质,矩形的判定与性质,等腰直角三角形的判定与性质,熟记各性质求出PE+PF=OA是解题的关键.10.如图,四边形OABC、BDEF是面积分别为S1、S2的正方形,点A在x轴上,点F在BC上,点E在反比例函数y=(k>0)的图象上,若S1﹣S2=2,则k值为()A.1 B.C.2 D.4【考点】反比例函数系数k的几何意义.【分析】设正方形OABC、BDEF的边长分别为a和b,则可表示出D(a,a+b),F(a﹣b,a),根据反比例函数图象上点的坐标特征得到E(a﹣b,),由于点E与点D的纵坐标相同,所以=a+b,则a2﹣b2=k,然后利用正方形的面积公式易得k=2.【解答】解:设正方形OABC、BDEF的边长分别为a和b,则D(a,a+b),F(a﹣b,a),所以E(a﹣b,),所以=a+b,∴(a+b)(a﹣b)=k,∴a2﹣b2=k,∵S1﹣S2=2,∴k=2.故选C.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了正方形的性质.二、填空题:(本题共8小题,每小题3分,共24分)11.若实数a、b满足|a+2|,则=1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.反比例函数y=的图象经过点(﹣2,3),则k的值为﹣6.【考点】待定系数法求反比例函数解析式.【分析】将点(﹣2,3)代入解析式可求出k的值.【解答】解:把(﹣2,3)代入函数y=中,得3=,解得k=﹣6.故答案为:﹣6.【点评】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.13.已知反比例函数的图象在每个象限内y的值随x的值增大而减小,则k的取值范围是k>2.【考点】反比例函数的性质.【分析】由于反比例函数的图象在每个象限内y的值随x的值增大而减小,可知比例系数为正数,据此列出不等式解答即可.【解答】解:∵反比例函数的图象在每个象限内y的值随x的值增大而减小,∴k﹣2>0,解得k>2.故答案为k>2.【点评】本题考查了反比例函数的性质,要知道:(1)k>0,反比例函数图象在一、三象限,在每个象限内y的值随x的值增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每个象限内y的值随x 的值增大而增大.14.若a<1,化简等于﹣a.【考点】二次根式的性质与化简.【分析】首先根据进行化简,然后再化简绝对值,合并同类项即可.【解答】解:∵a<1,∴a﹣1<0,∴=|a﹣1|﹣1=1﹣a﹣1=﹣a.故答案为:﹣a.【点评】本题主要考查的是二次根式的化简,掌握是解题的关键.15.若的小数部分为m,则代数式m(m+4)的值为1.【考点】估算无理数的大小.【分析】求出的整数部分,进一步求出的小数部分,代入后即可.【解答】解:∵2<<3,∴的整数部分是2,又∵m是的小数部分,∴m=﹣2,∴m(m+4)=1,故答案为:1.【点评】本题考查了估计无理数的大小的应用,关键是确定m的值,题目比较典型,难度也适中,是一道比较好的题目.16.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足条件∠ABC=90°时,四边形BEDF是正方形.【考点】正方形的判定.【分析】由题意知,四边形DEBF是平行四边形,再通过证明一组邻边相等,可知四边形DEBF是菱形,进而得出∠ABC=90°时,四边形BEDF是正方形.【解答】解:当△ABC满足条件∠ABC=90°,四边形DEBF是正方形.理由:∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形∵BD是∠ABC的平分线,∴∠EBD=∠FBD,又∵DE∥BC,∴∠FBD=∠EDB,则∠EBD=∠EDB,∴BE=DE.故平行四边形DEBF是菱形,当∠ABC=90°时,菱形DEBF是正方形.故答案为:∠ABC=90°.【点评】本题主要考查了菱形、正方形的判定,正确掌握菱形以及正方形的判定方法是解题关键.17.若关于x的方程=+1无解,则a的值是2或1.【考点】分式方程的解.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.18.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点A,C的坐标分别为(2,0),(0,2),D是x轴正半轴上的一点(点D在点A的右边),以BD为边向外作正方形BDEF(E,F两点在第一象限),连接FC交AB的延长线于点G.若反比例函数y=的图象经过点E,G两点,则k的值为5.【考点】反比例函数综合题.【分析】过F作FN垂直于x轴,交CB延长线于点M,利用AAS得到三角形ABD与三角形BMF全等,利用全等三角形对应边相等得到AD=FM,进而表示出F坐标,根据B为CM中点,得出G的CF中点,表示出G坐标,进而得出E坐标,把G与E代入反比例解析式求出a的值,确定出E坐标,代入反比例解析式求出k的值即可.【解答】解:过F作FN⊥x轴,交CB的延长线于点M,过E作EH⊥x轴,交x轴于点H,∵∠FBM+∠MBD=90°,∠MBD+∠ABD=90°,∴∠FBM=∠ABD,∵四边形BDEF为正方形,∴BF=BD,在△ABD和△BMF中,,∴△ABD≌△BMF(AAS),设AD=FM=a,则有F(4,2+a),C(0,2),由三角形中位线可得G为CF的中点,∴G(2,2+a),同理得到△DHE≌△BAD,∴EH=AD=a,OH=OA+AD+DH=4+a,∴E(4+a,a),∴2(2+a)=a(4+a),即a2+3a﹣4=0,解得:a=1或a=﹣4(舍去),∴E(5,1),把F代入反比例解析式得:k=5.故答案为:5.【点评】此题属于反比例函数综合题,涉及的知识有:正方形的性质,全等三角形的判定与性质,坐标与图形性质,解一元二次方程,以及反比例函数的性质,熟练掌握反比例函数的性质是解本题的关键.三、解答题:19.(15分)(2016春•张家港市期末)(1)=1﹣;(2)+=;(3)化简:(﹣x+1)÷.【考点】分式的混合运算.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(3)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解;(2)去分母得:2x+2+3x﹣3=4x,解得:x=1,经检验x=1是增根,分式方程无解;(3)原式=•=.【点评】此题考查了分式的混合运算,以及解分式方程,熟练掌握运算法则是解本题的关键.20.先化简,再求值:,其中x满足x2﹣x﹣1=0.【考点】分式的化简求值.【分析】先通分,计算括号里的,再把除法转化成乘法进行约分计算.最后根据化简的结果,可由x2﹣x﹣1=0,求出x+1=x2,再把x2=x+1的值代入计算即可.【解答】解:原式=×,=×=,∵x2﹣x﹣1=0,∴x2=x+1,将x2=x+1代入化简后的式子得:==1.【点评】本题考查了分式的化简求值.解题的关键是注意对分式的分子、分母因式分解,除法转化成下乘法.21.已知实数a,b,c在数轴上的位置如图所示,化简:﹣|a+c|+﹣|﹣b|.【考点】二次根式的性质与化简.【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【解答】解:由图可知,a<0,c<0,b>0,且|c|<|b|,所以,a+c<0,c﹣b<0,﹣|a+c|+﹣|﹣b|,=﹣a+a+c+b﹣c﹣b,=0.【点评】本题考查了二次根式的性质与化简,绝对值的性质,根据数轴判断出a、b、c的情况是解题的关键.22.4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(2016春•张家港市期末)某项工程,若由甲队单独施工,刚好如期完成;若由乙队单独施工,则要超期3天完成.现由甲、乙两队同时施工2天后,剩下的工程由乙队单独做,刚好如期完成.问规定的工期是多少天?【考点】分式方程的应用.【分析】关键描述语为:“由甲、乙两队同时施工2天,剩下的工程由乙队单独做,刚好如期完成”;本题的等量关系为:甲2天的工作量+乙规定日期的工作量=1,把相应数值代入即可求解.【解答】解:设规定的工期是x天,由题意得+=1,解得x=6,经检验x=6是原方程的解且符合题意.答:规定的工期是6天.【点评】本题考查了分式方程的应用.根据工作量为1得到相应的等量关系是解决本题的关键;易错点是得到两人各自的工作时间.24.如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E 旋转180°得到△CFE,连接AF,AC.(1)求证:四边形ADCF是菱形;(2)若BC=8,AC=6,求四边形ABCF的周长.【考点】菱形的判定与性质;旋转的性质.【分析】(1)根据旋转可得AE=CE,DE=EF,可判定四边形ADCF是平行四边形,然后证明DF⊥AC,可得四边形ADCF是菱形;(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.【解答】(1)证明:∵将△ADE绕点E旋转180°得到△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵D、E分别为AB,AC边上的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四边形ADCF是菱形;(2)解:在Rt△ABC中,BC=8,AC=6,∴AB=10,∵D是AB边上的中点,∴AD=5,∵四边形ADCF是菱形,∴AF=FC=AD=5,∴四边形ABCF的周长为8+10+5+5=28.【点评】此题主要考查了菱形的判定与性质,关键是掌握菱形四边相等,对角线互相垂直的平行四边形是菱形.25.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(﹣2,2),B (0,5),C(0,2).(1)画△A1B1C,使它与△ABC关于点C成中心对称;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),画出平移后对应的△A2B2C2;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,则旋转中心的坐标为(0,﹣2).【考点】作图-旋转变换;作图-平移变换.【分析】(1)直接利用关于点对称的性质得出△ABC的对应点进而求出即可;(2)利用平移的性质得出平移规律进而得出答案;(3)利用旋转对称图形得出对应点的连线的交点进而得出答案.【解答】解:(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)将△A1B1C绕某一点旋转可得到△A2B2C2,则旋转中心的坐标为:(0,﹣2).故答案为:(0,﹣2).【点评】此题主要考查了平移变换和旋转变换,根据题意得出对应点位置是解题关键.26.如图,在平面直角坐标系中,正比例函数y=3x与反比例函数y=的图象交于A,B两点,点A的横坐标为2,AC⊥x轴,垂足为C,连接BC.(1)求反比例函数的表达式;(2)求△ABC的面积;(3)若点P是反比例函数y=图象上的一点,△OPC与△ABC面积相等,请直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A点横坐标代入正比例函数可求得A点坐标,代入反比例函数解析式可求得k,可求得反比例函数解析式;(2)根据反比例函数的对称性得出点B的坐标,再利用三角形的面积公式解答即可;(3)由条件可求得B、C的坐标,可先求得△ABC的面积,再结合△OPC与△ABC的面积相等求得P点坐标.【解答】解:(1)把x=2代入y=3x中,得y=2×3=6,∴点A坐标为(2,6),∵点A在反比例函数y=的图象上,∴k=2×6=12,∴反比例函数的解析式为y=;(2)∵AC⊥OC,∴OC=2,∵A、B关于原点对称,∴B点坐标为(﹣2,﹣6),∴B到OC的距离为6,∴S△ABC =2S△ACO=2××2×6=12,(3)∵S △ABC =12,∴S △OPC =12,设P 点坐标为(x ,),则P 到OC 的距离为||,∴×||×2=12,解得x=1或﹣1,∴P 点坐标为(1,12)或(﹣1,﹣12).【点评】本题主要考查待定系数法求函数解析式及函数的交点问题,在(1)中求得A 点坐标、在(2)中求得P 点到OC 的距离是解题的关键.27.如图,菱形ABCD 的边长为48cm ,∠A=60°,动点P 从点A 出发,沿着线路AB ﹣BD 做匀速运动,动点Q 从点D 同时出发,沿着线路DC ﹣CB ﹣BA 做匀速运动.(1)求BD 的长;(2)已知动点P 、Q 运动的速度分别为8cm/s 、10cm/s .经过12秒后,P 、Q 分别到达M 、N 两点,试判断△AMN 的形状,并说明理由,同时求出△AMN 的面积;(3)设问题(2)中的动点P 、Q 分别从M 、N 同时沿原路返回,动点P 的速度不变,动点Q 的速度改变为a cm/s ,经过3秒后,P 、Q 分别到达E 、F 两点,若△BEF 为直角三角形,试求a 的值.【考点】四边形综合题.【分析】(1)根据菱形的性质得AB=BC=CD=AD=48,加上∠A=60°,于是可判断△ABD 是等边三角形,所以BD=AB=48;(2)如图1,根据速度公式得到12秒后点P 走过的路程为96cm ,则点P 到达点D ,即点M 与D 点重合,12秒后点Q 走过的路程为120cm ,而BC +CD=96,易得点Q 到达AB 的中点,即点N 为AB 的中点,根据等边三角形的性质得MN ⊥AB ,即△AMN 为直角三角形,然后根据等边三角形面积可计算出S △AMN =288cm 2;(3)由△ABD 为等边三角形得∠ABD=60°,根据速度公式得经过3秒后点P 运动的路程为24cm 、点Q 运动的路程为3acm ,所以BE=DE=24cm ,然后分类讨论:当点Q 运动到F 点,且点F 在NB 上,如图1,则NF=3a ,BF=BN ﹣NF=24﹣3a ,由于△BEF 为直角三角形,而∠FBE=60°,只能得到∠EFB=90°,所以∠FEB=30°,根据含30度的直角三角形三边的关系得24﹣3a=×24,解得a=4;当点Q 运动到F 点,且点F 在BC 上,如图2,则NF=3a ,BF=BN ﹣NF=3a ﹣24,由于△BEF 为直角三角形,而∠FBE=60°,若∠EFB=90°,则∠FEB=30°,根据含30度的直角三角形三边的关系得3a ﹣24=×24,解得a=12;若∠EFB=90°,易得此时点F 在点C 处,则3a=24+48,解得a=24.【解答】解:(1)∵四边形ABCD 是菱形,∴AB=BC=CD=AD=48,∵∠A=60°,∴△ABD 是等边三角形,∴BD=AB=48,即BD 的长是48cm ;(2)如图1,12秒后点P 走过的路程为8×12=96,则12秒后点P 到达点D ,即点M 与D 点重合, 12秒后点Q 走过的路程为10×12=120,而BC +CD=96,所以点Q 到B 点的距离为120﹣96=24,则点Q 到达AB 的中点,即点N 为AB 的中点,∵△ABD 是等边三角形,而MN 为中线,∴MN ⊥AB ,∴△AMN 为直角三角形,∴S △AMN =S △ABD =××482=288(cm 2);(3)∵△ABD 为等边三角形,∴∠ABD=60°,经过3秒后,点P 运动的路程为24cm 、点Q 运动的路程为3acm ,∵点P 从点M 开始运动,即DE=24cm ,∴点E 为DB 的中点,即BE=DE=24cm ,当点Q 运动到F 点,且点F 在NB 上,如图1,则NF=3a ,∴BF=BN ﹣NF=24﹣3a ,∵△BEF 为直角三角形,而∠FBE=60°,∴∠EFB=90°(∠FEB 不能为90°,否则点F 在点A 的位置),∴∠FEB=30°,∴BF=BE ,∴24﹣3a=×24,∴a=4;当点Q 运动到F 点,且点F 在BC 上,如图2,则NF=3a ,∴BF=BN ﹣NF=3a ﹣24,∵△BEF 为直角三角形,而∠FBE=60°,若∠EFB=90°,则∠FEB=30°,∴BF=BE ,∴3a ﹣24=×24,∴a=12;若∠EFB=90°,即FB ⊥BD ,而DE=BE ,∴点F 在BD 的垂直平分线上,∴此时点F 在点C 处,∴3a=24+48,∴a=24,综上所述,若△BEF 为直角三角形,a 的值为4或12或24.。
八年级下册数学张家港数学期末试卷易错题(Word版含答案)
八年级下册数学张家港数学期末试卷易错题(Word 版含答案) 一、选择题 1.二次根式1x -中x 的取值范围是( )A .0x ≥B .1x >C .1≥xD .0x ≤ 2.已知下列三角形的各边长:①3、4、5,②3、4、6,③5、12、13,④5、11、12其中直角三角形有( )A .4个B .3个C .2个D .1个 3.在下列条件中,不能判定四边形为平行四边形的是( ) A .对角线互相平分B .一组对边平行且相等C .两组对角分别相等D .对角线互相垂直4.某校对八年级8个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h ):3.5,4,3,4,3,3.5,3,5.这组数据的中位数和众数是( )A .3.5,3B .4,3C .3,4D .3,3.5 5.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为( )A .北偏西15︒B .南偏西75°C .南偏东15︒或北偏西15︒D .南偏西15︒或北偏东15︒6.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,∠CAD =20°,则∠DHO 的度数是( )A .20°B .25°C .30°D .40°7.如图,▱ABCD 的对角线AC ,BD 交于点O ,BD ⊥DC ,BE ⊥AC ,垂足为E ,若∠COD =60°,AE =3,则▱ABCD 的面积为( )A 833B 433C .3D 3328.如图,直线m 与n 相交于点(3C ,m 与x 轴交于点()2,0D -,n 与x 轴交于点()2,0B ,与y 轴交于点A .下列说法错误的是( ).A .m n ⊥B .AOB DCB ∆∆≌C .BC AC =D .直线m 的函数表达式为3333y x =+ 二、填空题9.若2x -在实数范围内有意义,则实数x 的取值范围是___________.10.已知菱形ABCD 的对角线AC =10,BD =8,则菱形ABCD 的面积为____.11.在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,2AC =,斜边AB 的长为__________. 12.矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形周长的和是86cm ,矩形的对角线长是13cm ,那么该矩形的周长为_____.13.一次函数3y kx =+的图象过点(2,1),则k 的值为________.14.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOD=120°, AB=2,则BC 的长为___________.15.甲从A 地出发以某一速度向B 地走去,同时乙从B 地出发以另一速度向A 地而行,如图中的线段1y 、2y 分别表示甲、乙离B 地的距离(km )与所用时间()h x 的关系.则A 、B 两地之间的距离为______km ,甲、乙两人相距4km 时出发的时间为______h .16.如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为PQ ,则线段BQ 的长度为 ___.三、解答题17.计算:(1)(2+1)×8-18;(2)12273-+23×24.18.我国古代数学著作《九章算术》中“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,折断后竹子顶端落地,离竹子底端3尺处.折断处离地面的高度是多少?(1丈=10尺)19.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点按下列要求画图.(1)在图①中画一条线段AB,使AB=29,线段AB的端点在格点上;(2)在图②中画一个斜边长为34的等腰直角三角形DCE,其中∠DCE=90°,三角形的顶点在格点上.20.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,过点A作AE∥BC,过点D 作DE∥AB,DE与AC、AE分别交于点O、E,连接EC.求证:(1)四边形ABDE是平行四边形;(2)四边形ADCE是菱形.21.先阅读下列的解答过程,然后再解答:2m n±a、b,使a+b=m,ab=n,使得22()()a b m+=a b n=22=()m n a b a b±±=a>b)例如:化简7+43 解:首先把7+43化为7+212,这里m =7,n =12,由于4+3=7,4×3=12 即22(4)(3)7+=,3412⨯=∴7+43=27+212=(43)23+=+(1)填空:423-= ,9+45= ;(2)化简:19415-.22.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工的数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元.期间,某医院急需3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下的任务只能由乙厂单独完成.设甲厂加工m 天,乙厂加工y 天.①求y 关于m 的函数关系式.②如果加工总费用不超过6360元,那么甲厂至少要加工多少天?23.(1)如图1,在平行四边形ABCD 中,对角线AC 、BD 相交于O 点,过点O 的直线l 与边AB 、CD 分别交于点E 、F ,绕点O 旋转直线l ,猜想直线l 旋转到什么位置时,四边形AECF 是菱形.证明你的猜想.(2)若将(1)中四边形ABCD 改成矩形ABCD ,使AB =4cm ,BC =3cm ,①如图2,绕点O 旋转直线l 与边AB 、CD 分别交于点E 、F ,将矩形ABCD 沿EF 折叠,使点A 与点C 重合,点D 的对应点为D′,连接DD′,求△DFD′的面积.②如图3,绕点O 继续旋转直线l ,直线l 与边BC 或BC 的延长线交于点E ,连接AE ,将矩形ABCD 沿AE 折叠,点B 的对应点为B′,当△CEB′为直角三角形时,求BE 的长度.请直接写出结果,不必写解答过程.24.如图,已知点()4,0A 、()0,2B ,线段OA OC =且点C 在y 轴负半轴上,连接AC .(1)如图1,求直线AB 的解析式;(2)如图1,点P 是直线CA 上一点,若3ABC ABP SS =,求满足条件的点P 坐标; (3)如图2,点M 为直线5:2l x =上一点,将点M 水平向右平移6个单位至点N ,连接BM 、MN 、NC ,求BM MN NC ++的最小值及此时点N 的坐标.25.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).【参考答案】一、选择题1.C解析:C【分析】根据二次根式有意义的条件分析即可.【详解】10x -≥.∴1≥x .故选C .【点睛】本题考查了二次根式有意义的条件,掌握二次根式被开方数大于等于0是解题的关键.2.C解析:C【分析】判断是否可以构成直角三角形,只需验证两小边的平方和是否等于最长边的平方,即可得出答案.【详解】解:①222+=,能构成直角三角形;345②222+≠,不能构成直角三角形;346③222+=,能构成直角三角形;51213④222+≠,不能构成直角三角形;51112∴其中直角三角形有2个;故选:C.【点睛】本题主要考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足222a b c,那么+=这个三角形就是直角三角形.3.D解析:D【解析】【分析】利用平行四边形的判定可求解.【详解】解:A、对角线互相平分的四边形是平行四边形,故该选项不符合题意;B、一组对边平行且相等的四边形是平行四边形,故该选项不符合题意;C、两组对角分别相等的四边形是平行四边形,故该选项不符合题意;D、对角线互相垂直的四边形不一定是平行四边形,故该选项符合题意;故选:D.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定是本题的关键.4.A解析:A【解析】【分析】据众数和中位数的定义求解即可,中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】将3.5,4,3,4,3,3.5,3,5从小到大排列为:3,3,3,3.5,3.5,4,4,5.其中3出现的次数最多,则众数为3,中位数为:3.5 3.53.52+=.故选A.【点睛】本题考查了求众数和中位数,理解众数和中位数的定义是解题的关键.5.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵222241857632490030+=+==,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C.【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.6.A解析:A【解析】【分析】先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH⊥CD,∠DHB =90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数.【详解】解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选A.【点睛】本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.A解析:A【解析】【分析】根据题意分别求得线段AB和线段BD的长,利用底乘高求得平行四边形的面积即可.【详解】解:∵平行四边形ABCD中,BD⊥DC,∠COD=60°,∴∠DCO=30°,AB//CD,OB=OD∴∠BAE=∠DCO=30°,∴AB=2BE,∵AE3222+=,AE BE AB∴BE=1,∵BE⊥AC,∴AB=2BE=2,在Rt△ABO中,AO=2BO,AB=2,23同理利用勾股定理求得OB∴BD=2OB2343∴▱ABCD的面积为AB•BD4383,故选:A .【点睛】本题考查了平行的四边形的性质,含30°角的直角三角形的性质,勾股定理,了解含30°角的直角三角形的性质是解答本题的关键.8.D解析:D【分析】由待定系数法分别求出直线m ,n 的解析式,即可判断D ,由解析式可求A 点坐标,进而由坐标系中两点距离公式可得AC=BC=2,即可判断C 正确,再由SAS 可得AOB DCB ∆∆≌,可判断B 正确,进而可得m n ⊥.【详解】解:如图,设直线m 的解析式为1y mx n =+把(C ,()2,0D -代入得,20m n m n -+=⎧⎪⎨+⎪⎩,解得:m n ⎧=⎪⎪⎨⎪=⎪⎩∴直线m的函数表达式为1y =D 错误; 设直线m 的解析式为2y kx b =+,把(C ,(2,0)B代入得20k b k b ⎧+=⎪⎨+=⎪⎩k b ⎧=⎪⎨=⎪⎩, 所以2y的解析式为y =+当0x =时,2y =(0,A ,又∵(C ,(2,0)B ,∴2AC =,2BC ==, 则AC BC =,AB=4所以C 正确;()2,0D -, ()2,0B ,∴BD=4,∴AB=BD在AOB ∆和DCB ∆中,AB DB DBC ABO OB CB =⎧⎪∠=∠⎨⎪=⎩∴AOB ∆≌DCB ∆(SAS),故B 正确,90AOB DCB ∴∠=∠=︒,m n ∴⊥;故A 正确;综上所述:ABC 正确,D 错误,故选:D .【点睛】本题考查了待定系数法求一次函数解析式和全等三角形的判定和性质.线段长解题关键是求出一次函数解析式进而由点的坐标求出线段长.二、填空题9.2x ≥【解析】【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:∵∴20x -≥,∴2x ≥;故答案为2x ≥.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键. 10.【解析】【分析】利用菱形对角线互相垂直,所以菱形的面积等于对角线乘积的一半,来求菱形ABCD 的面积即可.【详解】解:∵菱形ABCD 的对角线10,8AC BD ==∴菱形的面积11108=4022S AC BD =⨯⨯=⨯⨯ 故答案为:40.【点睛】本题考查菱形的性质,菱形的对角线互相垂直,所以菱形的面积等于对角线乘积的一半,属于基础题型.11.B【解析】【分析】由90C ∠=︒,30A ∠=︒得到2,AB BC = 利用勾股定理可得答案.【详解】解:设BC ,x =90C ∠=︒,30A ∠=︒,2,AB x ∴=2AC =,222(2)2,x x ∴=+122323,33x x ∴==-(舍去), 42 3.3AB x ∴==故答案为:4 3.3【点睛】 本题考查的是含30角的直角三角形的性质与勾股定理的应用,掌握相关知识点是解题的关键.12.A解析:34cm【分析】根据四个小三角形的周长和为86,列式得86AD AO DO DC DO CO BC BO CO AB AO BO +++++++++++=,再由矩形的对角线相等解题即可.【详解】解:如图,矩形ABCD 中,13AC BD ==,由题意得,86AOD DOC BOC AOB C C C C +++=,86AD AO DO DC DO CO BC BO CO AB AO BO ∴+++++++++++=∴2286AD AC DB DC BC AB +++++=21321386AD DC BC AB ∴+⨯+⨯+++=8626234AD DC BC AB ∴+++=-⨯=故答案为:34cm .【点睛】本题考查矩形的性质,是重要考点,掌握相关知识是解题关键.13.-1【分析】一次函数y=kx +3的图象经过点(2,1),将其代入即可得到k 的值.【详解】解:一次函数y =kx +3的图象经过点(2,1),即当x =2时,y =1,可得:1=2k +3,解得:k =﹣1.故答案为:﹣1.【点睛】本题考查一次函数图像上点的坐标特征,要注意利用一次函数的特点以及已知条件列出方程,求出未知数.14.【分析】由条件可求得AOB 为等边三角形,则可求得AC 的长,在Rt ABC 中,由勾股定理可求得BC 的长.【详解】120AOD ∠=︒,∴60AOB ∠=︒,四边形ABCD 为矩形∴AO OC OB ==,∴AOB 为等边三角形,∴2AO OC OB AB ====,∴4AC =,在Rt ABC 中,由勾股定理可求得BC =故答案为:【点睛】本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键.15.2或3【分析】①利用路程的函数图象解得的解析式,再求的值;②根据题意列方程解答即可.【详解】解:①设=kx +b ,∵经过点P (2.5,7.5),(4,0).∴ ,解得 ,∴=解析:2或3【分析】①利用路程1y 的函数图象解得1y 的解析式,再求的1y 值;②根据题意列方程解答即可.【详解】解:①设1y =kx +b ,∵1y 经过点P (2.5,7.5),(4,0).∴ 2.57.540k b k b ⎧⎨⎩+=+= , 解得520k b -⎧⎨⎩== , ∴1y =−5x +20,当x =0时,1y =20.答:AB 两地之间的距离为20km .②根据题意得:53204x x +=-或53204x x +=+,解得:2x =或3x =.即出发2小时或3小时,甲、乙两人相距4km【点睛】此题主要考查了根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.熟练掌握相遇问题的解答也很关键.16.4【分析】设AQ =DQ =x ,则BQ =AB ﹣AQ =9﹣x ,在Rt △BDQ 中,用勾股定理列方程可解得x ,从而可得答案.【详解】解:∵BC =6,D 是BC 的中点,∴BD =BC =3,∵△ABC 折叠解析:4【分析】设AQ =DQ =x ,则BQ =AB ﹣AQ =9﹣x ,在Rt △BDQ 中,用勾股定理列方程可解得x ,从而可得答案.【详解】解:∵BC =6,D 是BC 的中点,∴BD =12BC =3,∵△ABC 折叠,使A 点与BC 的中点D 重合,∴AQ =DQ ,设AQ =DQ =x ,则BQ =AB ﹣AQ =9﹣x ,在Rt △BDQ 中,222BQ BD DQ +=∴()22293x x -+= 解得x =5,∴BQ =9﹣x =4,故答案为:4.【点睛】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长.三、解答题17.(1)4-;(2)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可;(2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)解析:(1)42)3.【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可; (2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可.【详解】(1)+=4=4==+(2=2-3+4=3=【点睛】此题考查了二次根式的加减乘法运算,解题的关键是熟练掌握二次根式的加减乘法运算法则.18.55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:解析:55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【详解】设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.解得:x=4.55,答:折断处离地面的高度为4.55尺.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.19.(1)见解析;(2)见解析【解析】【分析】(1)利用勾股定理求出AB=时的两条直角边,再在图中作出即可;(2)利用勾股定理求出斜边长DE=时的两条直角边,再在图中作出DE,再根据等腰直角三角解析:(1)见解析;(2)见解析【解析】【分析】(1)利用勾股定理求出AB(2)利用勾股定理求出斜边长DE DE,再根据等腰直角三角形DCE,得到DC=CE【详解】解:(1)∵AB∴如图①所示,线段AB即为所求;(2)∵34DCE 223+534∴如图②所示,斜边长DE 34又∵()()2217+1734221+417=∴DC =CE 17∴如图②中,等腰直角三角形DCE 即为所求.【点睛】本题考查勾股定理.根据线段的长找出相对应直角三角形的两条直角边是本题的关键. 20.(1)见解析;(2)见解析【分析】(1)根据已知条件,两组对边分别平行的四边形是平行四边形;(2)先证明四边形ADCE 是平行四边形,根据直角三角形斜边上的中线等于斜边的一半可得AD =BC =CD解析:(1)见解析;(2)见解析【分析】(1)根据已知条件,两组对边分别平行的四边形是平行四边形;(2)先证明四边形ADCE 是平行四边形,根据直角三角形斜边上的中线等于斜边的一半可得AD =12BC =CD ,根据邻边相等的平行四边形是菱形,即可得证.【详解】证明:(1)∵AE ∥BC ,DE ∥AB ,∴四边形ABDE 为平行四边形;(2)由(1)得:AE =BD ,∵AD 是边BC 上的中线,∴BD =CD ,∴AE =CD ,∴四边形ADCE 是平行四边形,又∵∠BAC =90°,AD 是边BC 上的中线,∴AD =12BC =CD ,∴平行四边形ADCE是菱形.【点睛】本题考查了平行四边形的性质与判定,菱形的判定,直角三角形斜边上的中线等于斜边的一半,掌握以上定理是解题的关键.21.(1),;(2)【解析】【分析】(1)化简时,根据范例确定a,b值为3和1,化简时,根据范例确定a,b值为4和5,再根据范例求解.(2)化简时,根据范例确定a,b值为15和4,再根据范例求解析:(11,;(22【解析】【分析】(1时,根据范例确定a,b值为3和1a,b值为4和5,再根据范例求解.(2a,b值为15和4,再根据范例求解.【详解】解:(1m=4,n=3,由于3+1=4,3×1=3即224+==∴11;m=9,n=20,由于4+5=9,4×5=20即229+==∴=2(2m=19,n=60,由于15+4=19,15×4=60即2219+==∴=22【点睛】本题考查了二次根式的化简,根据题中的范例把根号内的式子整理成完全平方的形式是解答此题的关键.22.(1)甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)①y =﹣m+60;②甲厂至少要加工28天【分析】(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据“两厂解析:(1)甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)①y=﹣32m+60;②甲厂至少要加工28天【分析】(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据“两厂各加工600套防护服,甲厂比乙厂要少用4天”列出方程,解之即可;(2)①根据“某医院急需3000套这种防护服”和“设甲厂加工m天,乙厂加工y天”列出方程,即可得到y关于m的函数关系式;②根据“甲、乙两厂加工这种防护服每天的费用分别是150元和120元”和“总加工费不超过6360元”列出不等式,求出m的取值范围即可.【详解】解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服.根据题意得:60060041.5x x=-,解得x=50,经检验:x=50是原方程的解,且符合题意,∴1.5x=1.5×50=75,答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)①根据题意得:75m+50y=3000,∴y=32-m+60;②根据题意得:150m+120×(32-m+60)≤6360,解得m≥28,答:甲厂至少要加工28天.【点睛】本题考查了分式方程与不等式的应用,关键是理清楚题目意思,建立方程或不等式求解.注意解分式方程后要验根.23.(1)四边形AECF是菱形,见解析;(2)① cm2;②BE的长为cm或cm或4cm或cm.【分析】(1)根据题意作图,先根据平行四边形得出∠FCO=∠EAO,再证明△COF≌△AOE,结合题意解析:(1)四边形AECF是菱形,见解析;(2)①147400cm2;②BE的长为43cm或或4cm.(1)根据题意作图,先根据平行四边形得出∠FCO=∠EAO,再证明△COF≌△AOE,结合题意即可得出结论;(2)①根据四边形ABCD是矩形,设DF=x cm,则CF=(4﹣x)cm,结合折叠和勾股定理得出CF,过D′作D′H⊥CF于H,由面积相等可得D′H=2125,进而得出所求面积;②根据不同图示分情况设BE=x cm,CE=(3﹣x)cm,根据折叠并结合勾股定理得出x即为所求.【详解】解:(1)猜想:当l⊥AC时,四边形AECF是菱形,如图1:连接AF、CE,∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,∴∠FCO=∠EAO,又∵∠FOC=∠EOA,∴△COF≌△AOE,∴OE=OF,∵AC⊥EF,∴四边形AECF是菱形;(2)①∵四边形ABCD是矩形,∴∠ADC=90°,CD=AB=4,AD=BC=3,设DF=x cm,则CF=(4﹣x)cm,由折叠性质可知:D′F=DF=x,CD′=AD=3,∠CD′F=∠ADC=90°,由勾股定理得(4﹣x)2=32+x2,解得x=78,∴D′F=DF=78,∴CF=4﹣78=258,如图2,过D′作D′H ⊥CF 于H ,由面积相等可得,CF •D′H =D′F •CD′, ∴D′H =2125, ∴S △DFD ′=12×78×2125=147400(cm 2); ②如图①,设BE =x cm ,CE =(3﹣x )cm ,∵AC =2234+=5cm ,∴B′C =5﹣4=1cm ,根据勾股定理可得B′C 2+B′E 2=CE 2,即:12+x 2=(3-x )2解得:x =43cm , 如图②,设BE =x cm ,则CE =(3﹣x )cm ,AB′=4cm ,B′E =x cm , 在R t △ADB′中,由勾股定理可得BD′22AB AD '-169-7, B′C =(47cm ,在R t △CB′E 中,B′C 2+CE 2=B′E 2,即16﹣7+7+9﹣6x +x 2=x 2,解得x 1647-cm , 如图③,当四边形ABEB′是正方形时,点B和点B′关于直线AE对称,△B′EC是直角三角形,此时CE=1cm,BE=4cm;如图④,BE=x cm,AB′=4cm,AD=3cm,CE=(x﹣3)cm,在R t△ADB′中,B′D22'AB AD-169-7,B′C7,在R t△B′CE中,7x2﹣6x+9=x2,解得x 1647+cm,综上,BE的长为43cm1647-或4cm1647+.【点睛】此题属于四边形综合性试题,涉及到平行四边形,菱形,矩形,正方形的性质和勾股定理的应用,有一定难度,注意不同情况分别做图求解.24.(1);(2)点P的坐标为(,)或(,);(3)的最小值为;点N的坐标为(,).【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C的坐标,然后求出直线解析:(1)122y x=-+;(2)点P的坐标为(163,43)或(83,43-);(3)BM MN NC++的最小值为6157N的坐标为(172,711).【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线AC 的解析式,由3ABC ABP S S =,得到3AC AP =,再分别求出AC 和AP 的长度,即可求出点P 的坐标;(3)根据题意,6MN =为定值,在图中找出一点B ',使得B N BM '=,即点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,此时求出B C B N NC BM NC ''=+=+,即可得到答案.【详解】解:(1)设直线AB 为y kx b =+,把点()4,0A 、()0,2B ,代入,则402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴122y x =-+; (2)∵线段4OA OC ==,且点C 在y 轴负半轴上,∴点C 的坐标为(0,-4),∵点A 为(4,0),∴直线AC 的解析式为:4y x =-;∵点B 到直线AC 的距离就是△ABC 和△ABP 的高,∴△ABC 和△ABP 的高相同,∵3ABC ABP SS =, ∴11322AC h AP h ••=⨯••, ∴3AC AP =,∵AC ==∴13AP =⨯ ∵点P 在直线AC 上,则设点P 为(x ,x -4),∴43AP x ==-=, ∴443x -=, ∴163x =或83x =, ∴点P 的坐标为(163,43)或(83,43-); (3)根据题意,∵点B 与点M 的水平距离为52,∴在点N 的右边水平距离为52处作直线11x =,如图:令点B '为(11,2),此时有B N BM '=,∵6MN =,∴66BM MN NC BM NC B N NC '++=++=++,∴当点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,最小值为:66BM MN NC B N NC B C ''++=++=+;∵点B '(11,2),点C 为(0,-4),∴直线B C '的解析式为:6411y x =-, 2211(24)157B C '++∴BM MN NC ++有最小值为:66157B C '+=+∵点N 的横坐标为:517622+=, ∴点N 的纵坐标为:6177411211y =⨯-=, ∴点N 的坐标为:(172,711). 【点睛】 本题考查了一次函数的性质,利用勾股定理求两点之间的距离,最短路径问题,坐标与图形,解题的关键是熟练掌握一次函数的图形和性质,正确找出使得线段之和最小时的临界点,注意运用数形结合的思想进行解题.25.(1)见解析;(2),;(3)①;②【分析】(1)利用直角三角形斜边中线的性质可得DO=DA ,推出∠AEO=60°,进一步得出BC ∥AE ,CO ∥AB ,可得结论;(2)先计算出OA=,推出PB=解析:(1)见解析;(2)PA =BH 3)①(4M +;【分析】(1)利用直角三角形斜边中线的性质可得DO=DA ,推出∠AEO=60°,进一步得出BC ∥AE ,CO ∥AB ,可得结论;(2)先计算出OA=PB=AP=BH 即可;(3)①求出直线PM 的解析式为,再利用两点间的距离公式计算即可;②易得直线BC 的解析式为y=,联立直线BC 和直线PM 的解析式成方程组,求得点G 的坐标,再利用三角形面积公式计算.【详解】(1)证明:∵Rt △OAB 中,D 为OB 的中点,∴AD=12OB ,OD=BD=12OB , ∴DO=DA ,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC 为等边三角形,∴∠BCO=∠AEO=60°,∴BC ∥AE ,∵∠BAO=∠COA=90°,∴CO ∥AB ,∴四边形ABCE 是平行四边形;(2)解:在Rt △AOB 中,∠AOB=30°,OB=8,∴AB=4,∴OA=∵四边形ABCE 是平行四边形,∴PB=PE ,PC=PA ,∴PB=∴PC PA == ∴1122ABC S AC BH AB BE ∆=⋅⋅=⋅⋅,即11422BH ⨯=⨯⨯∴BH (3)①∵C (0,4),设直线AC 的解析式为y=kx+4,∵P(0),∴0=,解得,k=, ∴y=, ∵∠APM=90°, ∴直线PM 的解析式为, ∵P(0),∴, 解得,m=-3, ∴直线PM 的解析式为, 设M (x), ∵AP=∴(x-2+)2=(2, 化简得,x 2,解得,x 1=4,x 2=4(不合题意舍去),当x=4时,(4)-3= ∴M(4,故答案为:(4,②∵(0,4),C B∴直线BC的解析式为:4y =+,联立34y y x ⎧=-⎪⎪⎨⎪=+⎪⎩,解得65x y ⎧=⎪⎪⎨⎪=⎪⎩,∴6)5G , 161=4252PBG PBA S S S ∆∆∴+=⨯+⨯阴 【点睛】本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.。
江苏张家港18-19学度初二下年末调研测试试题-数学
江苏张家港18-19学度初二下年末调研测试试题-数学初二数学2018.6本卷须知1、答题前,考生先将自己的学校、班级、姓名、考试号填写在答题卷密封线内相应的位置上;2、选择题、填空题、解答题必须用黑色签字笔答题,答案填在答题卷相应位置上;3、在草稿纸、试题卷上答题无效;4、各题必须答在黑色答题框中,不得超出答题框、【一】选择题:〔本大题共10小题,每题3分,共30分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的,把你认为正确的答案填在答题卷相应的空格内、〕1、要使分式11x +有意义,那么x 应满足的条件是A 、x ≠1B 、x ≠-1C 、x ≠0D 、x>12、21a b =,那么2a b a b+-的值是 A 、-5 B 、5 C 、 -4 D 、4A 、等角的余角相等B 、直角三角形斜边上的中线等于斜边的一半C 、对顶角相等D 、三角形的一个外角等于两个内角之和4、点M(-2,3)在双曲线y =k x上,那么以下各点一定在该双曲线上的是A 、〔3,-2〕B 、〔-2,-3〕C 、(2,3)D 、(3,2)5、以下约分结果正确的选项是A 、222142xy x y x =B 、2933m m m-=+- C 、21x y x xy x+=+D 、24422a a a a -+=-- 6、甲、乙、丙三人随机排成一排拍照,甲恰好排在中间的概率为A 、29B 、13C 、49D 、127、以下各式化简正确的选项是A、=BC、=8、假设数据2,x ,4,8的平均数是4,那么这组数据的极差和方差分别是A 、6和6B 、6和16C 、4和24D 、4和169、如图,在等腰梯形ABCD 中,AD ∥BC ,P 为梯形ABCD 内一点,PB =PC ,延长BP 交CD 于F 、过C 作CE ∥AB ,交BP 的延长线于E 、给出以下结论:①∠1=∠2;②∠2=∠E ;③△PFC ∽△PCE ;④△EFC ∽△ECB 、其中正确的结论的个数是A 、1个B 、2个C 、3个D 、4个10、如图,点A 是一次函数y =2x 的图象与反比例函数y =k x的图象在第一象限内的交点,AB ⊥x 轴于点B ,点C 在x 轴的负半轴上,且∠ACB =∠OAB ,△OAB 的面积为4,那么点C 的坐标为A 、〔-8,0〕B 、〔-6,0〕C 、〔-112,0〕D 、〔-92,0〕【二】填空题:〔本大题共8小题,每题3分,共24分,把你的答案填在答题卷相应的横线上、〕11x 的取值范围是▲、12、如图,AB ∥CD ,AD ⊥AC ,∠ADC =32°,那么∠BAC 的度数是 ▲、13、假设分式51x -与42x -的值相等,那么x =▲、14、命题“直角三角形中,两个锐角互余”的逆命题是▲、15、a 、b 为两个连续的整数,且,那么a +b =▲、16、假设xy<0=▲、17、如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2、将△ABC 绕点C 按顺时针方向旋转一定角度后得到△EDC ,如今点D 在AB 边上,斜边DE 交AC 于点F ,那么图中阴影部分的面积为▲、18、函数y =4x 和y =1x 在第一象限内的图象如下图,点P 是y =4x图象上的一动点,PC ⊥x轴于点C ,交y =1x 的图象于点A ,PD ⊥y 轴于点D ,交y =1x的图象于点B 、给出如下结论:①PA 与PB 始终相等;②四边形OAPB 的面积为3;③PA =3AC ;④AB ∥CD 、其中正确的结论是▲、〔把你认为正确的结论的序号都填上〕【三】解答题:〔本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明、作图时用2B 铅笔或黑色墨水签字笔、〕19、〔此题总分值8分〕计算:(1)(2))20x > 20、〔此题总分值5分〕解不等式组:()3152533x x x -<⎧⎪⎨+≤+⎪⎩,并把它的解集表示在数轴上、21、〔此题总分值5分〕 假如方程12112x k x x=---有增根,求k 的值、 22、〔此题总分值5分〕 先化简,再求值:22211111m m m m m m -+-⎛⎫÷-- ⎪-+⎝⎭,其中2m = 23、〔此题总分值6分〕一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同、(1)摸出1个球是白球的概率是▲、(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球、求两次摸出的球恰好颜色不同的概率〔要求画树状图或列表〕;(3)现再将n 个白球放入布袋,搅均后,使摸出1个球是白球的概率为57,求n 的值、24、〔此题总分值6分〕如图,在△ABC 中,AB =12cm ,BC =8cm ,BD 平分∠ABC 交AC 于点D ,DE ∥BC 交AB 于点E 、(1)求证:BE =ED ;(2)求AE 的长、25、〔此题总分值6分〕如图,在平面直角坐标系中,四边形ABCD 是正方形,点A 、B 的坐标分别为(1,0)、(0,2),反比例函数y =k x(x>0)的图象通过点D 、(1)求反比例函数的解析式;(2)假如自变量x 的取值范围是0<x ≤4,求y 的取值范围、26、〔此题总分值8分〕在某一城市美化工程招标时,有甲、乙两个工程队投标、经测算:甲队单独完成这项工程需要60天;假设由甲队先做20天,剩下的工程由甲、乙合做24天可完成、(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,假设该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?依旧由甲乙两队全程合作〔从开始到结束,甲、乙两队一起做...............〕完成该工程省钱?27、〔此题总分值8分〕如图,一次函数y =kx +b 的图象交反比例函数y =42m x-的图象于点A 、B ,交x 轴于点C 、(1)求m 的取值范围;(2)假设点A 的坐标是〔2,-4〕、且13BC AB =,求m 的值和一次函数的解析式; (3)在(2)的条件下,依照函数图象,当一次函数的值小于反比例函数的值时,自变量x 的取值范围是▲、28、〔此题总分值9分〕矩形纸片ABCD 中,AB =4,BC =6、(1)如图1,点E 是BC 边上的一点,BE =2,AE 、BD 交于点F 、①求AF :FE 的值;②求△BEF 的面积;(2)如图2,将矩形纸片沿MN 折叠,使点B 与边CD 的中点重合,点A 、B 的对应点为A 1、B 1,A 1B 1与DN 交于点G ,求△MCB 1和△B 1DG 的周长之比、29、〔此题总分值10分〕如图,在平面直角坐标系中,直线y =-43 4与x 轴交于点A ,与y 轴交于点B ,点P从点O 动身沿OA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后赶忙以原来的速度沿AO 返回;点Q 从A 动身沿AB 以每秒1个单位长的速度向点B 匀速运动,当点P 、Q 运动时,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BO -OP 于点E 、点P 、Q 同时动身,当点Q 到达点B 时停止运动,点P 也随之停止,设点P 、Q 运动的时间为t 秒(t>0)、(1)点Q 的坐标是(▲,▲)〔用含t 的代数式表示〕;(2)当点E 在BO 上时,四边形QBED 能否为直角梯形?假设能,求出t 的值;假设不能,请说明理由;(3)当t 为何值时,直线DE 通过点O 、。
2018-2019学年苏教版八年级(下)期末考试数学试卷含答案详解
2018-2019学年苏教版八年级(下)期末考试数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,只有一项是符合题目要求的)21.下列式子中,为最简二次根式的是( ) A .4 B .10 C .D .2.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( ) A .至少有2个球是黑球B .至少有1个球是白球C .至少有1个球是黑球D .至少有2个球是白球 3.与分式﹣的值相等的是( ) A .﹣B .﹣C .D .4.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分∠BED ,AB =2,∠ABE =45°,则DE 的长为( )2第4题第5题第11题A .2-2 B .-1 C . -1D .2-5.反比例函数的图象如图所示,则这个反比例函数的解析式可能是( ) A . xy 2=B .x y 6=C .x y 7=D .xy 9= 6.若分式方程+1=有增根,则a 的值是( ) A .4B .0或4C .0D .0或﹣4二、填空题:(本大题共10小题,每小题3分,计30分) 7.使22-x 有意义的x 的取值范围是______.8.分式392--x x 的值为0,那么x 的值为______;9.某班级40名学生在期中学情分析考试中,分数段在90~100分的频率为0.2,则该班级在这个分数段内的学生有 人.10.若一元二次方程ax 2-(b -1)x ﹣2017=0有一根为x =﹣1,则a +b 的值为______;11.如图,在Rt △ABC 中,∠ACB =90°,点D 、E 、F 分别为AB 、AC 、BC 的中点.若CD =5,则EF 的长为______.12.如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,将△ABC 绕点C 逆时针旋转α(0°<α<90°),得到△MNC ,连接BM ,当 BM ⊥AC ,则旋转角α的度数为______.13.已知菱形的周长为40cm ,两条对角线之比3:4,则菱形面积为______________cm 2.14.一次函数y =-x +1与反比例函数xky =(k <0)中,x 与y 的部 分对应值如下表:x -3 -2 -1 1 2 3 y =-x +143 2 0 -1 -2xk y =32 12-2-132- 则不等式1-+x x>0的解集为____________________________. 15.已知关于x 的方程=3的解是正数,那么m 的取值范围为___________16.正方形ABCD 中,直线l 经过点A ,过点B 、D 分别作直线l 的垂线,垂足分别为E 、F ,若BE =7,DF =4,则DE 的长度为___________________________. 三、解答题:(本大题共10小题,计78分) 17.(3分×2=6分)化简与计算: (1)( x ≥0,y ≥0); (2)×+÷.18.(4分×2=8分) 解方程:(1) (x -2)(x -5)=-2 (2)xx x 101317=-++19.(6分)先化简,再求值:(a a 112--)÷1222+-+a a aa ,其中a 2+a -2=0.20.(8分) 某学校校园读书节期间,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息解答下列问题:(1) 本次抽样调查一共抽查了_______名同学;(2) 条形统计图中,m=_______,n=_______;(3) 扇形统计图中,艺术类读物所在扇形的圆心角是_______度;(4) 学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.(6分)已知关于x的方程x2﹣4mx+4m2﹣9=0.(1) 求证:此方程有两个不相等的实数根;(2) 设此方程的两个根分别为x1,x2,其中x1<x2.若2x1=x2+1,求m的值.ABCD E第22题图22.(6分)如图,在△ABC 中,AB =AC ,D 为边BC 上一点,将线段AB 平移至DE ,连接AE 、AD 、E C . (1) 求证:AD =EC ; (2) 当点D 是BC 的中点时, 求证:四边形ADCE 是矩形.23.(8分)一儿童服装商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”儿童节,商店决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?x24.(8分)如图,点B 在反比例函数y =4x(x >0)的图像上,点A 、C 分别在x 轴、y 轴正 半轴上,且四边形OABC 为正方形. (1) 求点B 的坐标; (2) 点P 是y =x4在第一象限的图像上点B 右侧一动点, 且S △POB =S △AOB ,求点P 的坐标.25.(10分)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.2·1·c·n·j·y(1) 如图1,求证:矩形DEFG是正方形;(2) 若AB=2,CE=2,求CG的长度;(3) 当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.26.(12分)如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,8),点P 在边BC 上以每秒1个单位长的速度由点C 向点B 运动,同时点Q 在边AB 上以每秒a 个单位长的速度由点A 向点B 运动,运动时间为t 秒(t >0).(1) 若反比例函数xm y 图像经过P 点、Q 点,求a 的值;(2) 若OQ 垂直平分AP ,求a 的值;(3) 当Q 点运动到AB 中点时,是否存在a 使△OPQ 为直角三角形?若存在,求出a 的值;若不存在,请说明理由;参考答案1.B 2.C 3.D 4.A 5.C 6.A 7.X ≥1 8.- 3 9.8 10.2018 11.5 12.6013.24 14.-1<x <0或x >2 15.m >-6且m ≠-4 16.5或137 17.(1)5xy x 3 (2)1118.(1)x 1=3, x 2=4 (2)x =25(不检验扣1分) 19.21aa -(3分) a =-2 (a =1舍去)(2分) 43-(1分)20.(1)200 (2)m =40, n =60 (3) 72 (4)900 (每题2分)21.(1)证明(略) (2分) (2)x 1=2m -3 x 2=2m +3 (判断1分共2分)m =5 (2分)w 22.(1)证明(略)(3分)(2)证明(略)(3分) 23.设每件童装应降价x 元,根据题意得(40-x )(20+2x )=1200 (4分) x 1=20 x 2=10 (2分)因为要尽快减少库存,则x =10舍去则x =20 (1分) 答:每件童装应降价20元.(1分)(其他方法参照执行)224. (1)B (2,2) (4分) (2) P (1+, 1-+) (4分)25.(1)证明(略) (3分) (2) CG =2 (3分) (3)120°或30°(4分)【 26.(1)a =54(2分) (2)a =65(4分)(3)①当t >0时∠POQ <∠AOB =90°,则∠POQ 不为直角; (1分) ②当∠OPQ =90°时, OP 2+PQ 2=OQ 2∴82+t 2+42+(10-t )2=42+102 t 2-10t +32=0此方程无实数解,则∠OPQ 不为直角 (2分) ③当∠OQP =90°时OP 2=PQ 2+OQ 2 ∴82+t 2=42+(10-t )2+42+102t =542(2分)∵at =4 ∴a =2110(1分)。
2018八年级下册期末考试数学试卷及答案(K12教育文档)
2018八年级下册期末考试数学试卷及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018八年级下册期末考试数学试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018八年级下册期末考试数学试卷及答案(word版可编辑修改)的全部内容。
2017—2018学年度第二学期期末教学统一检测初二数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 下列函数中,正比例函数是A .y =x 2B. y =x 2 C 。
y =2x D. y =21 x2. 下列四组线段中,不能作为直角三角形三条边的是A. 3cm ,4cm,5cm B 。
2cm ,2cm ,22 cm C 。
2cm,5cm ,6cm D. 5cm,12cm ,13cm 3. 下图中,不是函数图象的是A BC D4. 平行四边形所具有的性质是A 。
对角线相等 B.邻边互相垂直 C 。
每条对角线平分一组对角 D. 两组对边分别相等5.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲 乙 丙 丁平均数(分) 92959592方差3。
63。
67.48。
1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择 A .甲 B .乙 C .丙 D .丁6. 若x=﹣2是关于x 的一元二次方程22302x ax a +-=的一个根,则a 的值为A .1或﹣4B .﹣1或﹣4C .﹣1或4D .1或47。
将正比例函数2y x =的图象向下平移2个单位长度,所得图象对应的函数解析式是 A .21y x =- B .22y x =+ C .22y x =- D . 21y x =+8. 在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心。
最新江苏省2018-2019年八年级下期末数学试卷
八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.2.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定【答案】A【解析】解:∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.先根据题意判断出一次函数的增减性,再根据x1<x2即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 48【答案】C【解析】解:∵菱形的两条对角线的长分别是6和8, ∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案. 此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.9. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0 【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.10. 如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若AB =8,OM =3,则线段OB 的长为( ) A. 5 B. 6 C. 8 D. 10 【答案】A 【解析】解:∵四边形ABCD 是矩形, ∴∠D =90∘,∵O 是矩形ABCD 的对角线AC 的中点,OM//AB , ∴OM 是△ADC 的中位线, ∵OM =3, ∴AD =6,∵CD =AB =8,∴AC =√AD 2+CD 2=10, ∴BO =12AC =5.故选:A .已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.11. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( ) A. 5元 B. 10元 C. 20元 D. 10元或20元 【答案】C【解析】解:设每件衬衫应降价x 元,则每天可销售(20+2x)件, 根据题意得:(40−x)(20+2x)=1200, 解得:x 1=10,x 2=20. ∵扩大销售,减少库存, ∴x =20. 故选:C .设每件衬衫应降价x 元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +3与x 轴、y 轴分别交于点E ,F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】解:∵菱形ABCD 的顶点A(2,0),点B(1,0), ∴点D 的坐标为(4,1), 当y =1时,x +3=1, 解得x =−2,∴点D 向左移动2+4=6时,点D 在EF 上, ∵点D 落在△EOF 的内部时(不包括三角形的边), ∴4<m <6,∴m 的值可能是5. 故选:C .根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D 移动到MN 上时的x 的值,从而得到m 的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)13. 若√x −2在实数范围内有意义,则x 的取值范围为______. 【答案】x ≥2【解析】解:由题意得:x −2≥0, 解得:x ≥2, 故答案为:x ≥2.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴{8k+b=183k+b=8,解得{b=2k=2;所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC ,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:(Ⅰ)√12+3√2×√6;(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2∴CM =4 3(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,∴DF=12CD=t;(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=12AC=6cm,∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.25.在平面直角坐标系中,直线l1:y=−12x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(Ⅰ)对于直线:y =−12x +4,令x =0,得到y =4, ∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83,∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m), ∵△BOD 的面积为4, ∴12×4×m =4,解得m =2, ∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4, 解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB 为菱形的边时,OB =PB =4,可得P(2√2,4−2√2),Q(2√2,−2√2). ②当P′B 为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB 为菱形的边时,点P″与D 重合,P 、Q 关于y 轴对称,Q″(−2,2), 综上所述,满足条件的Q 的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B 坐标,利用方程组求出点C 坐标即可;(Ⅱ)设D(m,m),构建方程求出m 即可解决问题,再利用待定系数法求出直线的解析式; (Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。
2018-2019学年苏教版八年级第二学期期末考试数学试卷(含答案详解)
2018-2019学年苏教版八年级第二学期期末考试数学试卷注意:1.本试卷共4页,满分为150分,考试时间为120分钟.2.考生答题前,务必将本人的学校、班级、姓名、学号填写在答题纸相应的位置. 3.考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共有6小题,每小题3分,共18分) 1.二次根式x -2有意义,则x 的取值范围是( )A .2>xB .2<xC .2≥xD .2≤x 2.分式x--11可变形为( ) A .11--x B .x +-11 C .x +11 D .11-x 3.在平面直角坐标系xoy 中,⊙O 的半径为4,点P 的坐标为(3,4),则点P 的位置为( ) A.在⊙A 外 B. 在⊙A 上 C. 在⊙A 内 D.不确定 4.对于反比例函数xy 2=,下列说法不正确的是( ) A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小5.我市“菜花节”观赏人数逐年增加,据有关部门统计,2017年约为20万人次,2019年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .2012)28.8x +=( B .228.81)20x +=(C .2201)28.8x +=(D .220201)201)28.8x x ++++=(( 6.有下列五个命题:①半圆是弧,弧是半圆;②周长相等的两个圆是等圆;③半径相等的两个半圆是等弧;④直径是圆的对称轴;⑤直径平分弦与弦所对的弧. 其中正确的有( ) A .1个 B .2个 C . 3个 D . 4个二、填空题(本大题共有10小题,每小题3分,共30分) 7.当a = 时,分式32a a +-的值为-4. 8.分式25x y 和52x y 的最简公分母是 . 9.比较大小:1(填“﹤”,“=”,“﹥”).10.以3、-5为根且二次项系数为1的一元二次方程是 . 11.当1<P <2时,代数式22)2()1(p p -+-的值为 .12. 已知y 是x 的反比例函数,且当x =2时,y =-3. 则当y =2时,x = .13.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 .14.如图,已知⊙O 的半径为5,点P 是弦AB 上的一动点,且弦AB 的长为8.则OP 的取值范围为 .15. 用配方法求得代数式2367x x +-的最小值是 .16.若直角三角形的两边a 、b 是方程27120x x -+=的两个根,则该直角三角形的内切圆的半径r=.三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(本题满分12分) 计算:(1⎛⎝ (2)012017222-⨯;(第14题图)18.(本题满分8分)解方程:(1)0)3(3=+-+x x x . (2)41622222-=-+-+-x x x x x .19.(本题满分8分)先化简,再求值:)2(222ab ab a a b a --÷-,其中32+=a ,32-=b .20.(本题满分8分)小明用12元买软面笔记本,小丽用21元买硬面笔记本,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?21.(本题满分10分)已知反比例函数1kyx-=的图像经过点A(2,-4).(1)求k的值;(2)它的图像在第象限内,在各象限内,y随x增大而;(填变化情况)(3)当-2 ≤ x ≤-12时,求y的取值范围.22.(本题满分10分)如图,已知BC 是⊙O 的直径,A 是⊙O 上一点,AD ⊥BC ,垂足为D ,⌒AE =⌒AB ,BE 交AD 于点F .(1)∠ACB 与∠BAD 相等吗?为什么? (2)判断△FAB 的形状,并说明理由.C B(第22题图)23.(本题满分10分)花鸟市场一家店铺正销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆.为扩大销量,增加利润,该店决定适当降价.据调查,每盆兰花每降价1元,每天可多售出2盆. 要使得每天利润达到1200元,则每盆兰花售价应定为多少元?24.(本题满分10分)关于x 的二次方程21)220k x kx -++=( . (1)求证:无论k 为何值,方程总有实数根.(2)设1x 、2x 是方程21)220k x kx -++=(的两个根,记S =2112x x x x +12x x ++,S 的值能为2吗?若能,求出此时k 的值.若不能,请说明理由.25.(本题满分12分)如图,在△ABC中,⊙O经过A、B两点,圆心O在BC边上,且⊙O与BC边交于点E,在BC上截取CF=AC,连接AF交⊙O 于点D,若点D恰好是⌒BE的中点.(1)求证:AC是⊙O的切线;(2)若BF=17,DF=13,求⊙O的半径r;(3)若∠ABC=30°,动直线l从与点A、O重合的位置开始绕点O顺时针旋转,到与OC重合时停止,设直线l与AC的交点为F,点Q为OF的中点,过点F作FG⊥BC于G,连接AQ、QG.请问在旋转过程中,∠AQG的大小是否变化?若不变,求出∠AQG的度数;若变化,请说明理由.BB(第25题图) (备用图)26.(本题满分14分)如图1,正方形ABCD顶点A、B在函数y=kx(k﹥0)的图像上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)若点A的横坐标为3,求点D的纵坐标;(2)如图2,当k=8时,分别求出正方形A′B′C′D′的顶点A′、B′ 两点的坐标;(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.图1 图2(第26题图)参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分) 1.D ;2.D ;3.A ;4.C ;5.C ;6.B.二、填空题(本大题共有10小题,每小题3分,共30分)7.1; 8.510x ; 9. ﹥; 10. 01522=-+x x ; 11.1; 12.-3; 13.-2; 14. 3≤OP ≤5; 15.-10; 16. 1或712- 三、解答题(共10题,102分.下列答案仅供参考........,有其它答案或解法.......,参照标准给分.......) 17.(本题满分12分)(1)(本小题6分)原式=335--(3分,每对1个得1分)=5-(3分); (2)(本小题6分)原式=122122++-+(4分,每对1个得1分)=32(2分). 18.(本题满分8分)(1)(本小题4分)(3)1)0x x +-=((2分),13x =-,21x =(2分). (2)(本小题4分)22(2)(2)16x x --+=(2分),2x =-,(1分).检验,2x =-是原方程的增根,所以原方程无解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年江苏省张家港市八年级下学期期末考试
数学试题
本试卷由选择题、填空题和解答题三部分组成,共28题,满分130分,考试时间120分钟.
注意事项:
1.答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;
2.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效,
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)
1可化简成
A.-2 B.4 C.2 D
2.要使分式
1
1
x+
有意义,x的取值范围是
A.x≠1 B.x≠-1 C.x≠0 D.x>-1 3.下列函数中,y是x的反比例函数的是
A.y=-2x B.y=-1
x
C.y=x+3 D.y=
2
3
x-
4.下列图形中,既是轴对称图形又是中心对称图形的是
5.在有22名男生和20名女生的班级中,随机抽签确定一名学生代表,则下列说法正确的是 A.男、女生做代表的可能性一样大 B.男生做代表的可能性较大
C.女生做代表的可能性较大D.男、女生做代表的可能性的大小不能确定
6.已知⊙O1的半径为1cm、⊙O2的半径为3cm,两圆的圆心距O1O2为4cm,则两圆的位置关系是 A.外离B.外切C.相交D.内切
7.一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系t=k
v
(k是常数),其图
象为如图所示的一段双曲线,端点为A(40,1)和B(m,0.5).则k和m的值为 A.40,80 B.40,60 C.80,80 D.80,60
8.如图,在平行四边形ABCD 中,BD 为对角线,点E 、O 、F 分别是AB 、BD 、BC 的中点,且OE =3,OF =2,则平行四边形ABCD 的周长为 A .10
B .20
C .15
D .12
9.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠C =30°,CD =.则图中阴影部分的面积为 A .π
B .2π
C .
2
3
π D .π
10.如图,在Rt △ABC 中,∠C =90°,∠A =30°,BC =14cm ,点P 从点B 出发,沿BA 方向以每秒2cm 的速度向终点A 运动;同时,动点Q 从点C 出发沿CB 方向以每秒1.5cm 的速度向终点B 运动,将△BPQ 沿BC 翻折,点P 的对应点为点P',设点P 、Q 运动的时间为t 秒,要使四边形BPQP'为菱形,则t 的值为 A .
143
B .4
C .
145
D .
72
二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上) 11.2-1
▲ .
12.为了了解10000只灯泡的使用寿命,从中抽取10只进行试验,则该考察中的样本容量是 ▲ . 13.不等式5(x -1)<3x +1的解集是 ▲ .
14.抛掷一枚质地均匀的正方体骰子,其六个面上分别写有数字1,2,3,4,5,6.记向上一面点数为奇数的概率为P 1,向上一面点数大于4的概率为P 2,则P 1与P 2的大小关系是:P 1 ▲ P 2(填“>”或“<”或“=”).
15.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,∠ABC =60°,则∠D = ▲ °.
16.如图,⊙O 的半径为3,点A 、B 、C 在⊙O 上,且∠ACB =45°,点O 到AB 的距离是 ▲ . 17.如图,已知四边形OABC 为正方形,边长为6,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且点D 的坐标为(2,0),点P 是OB 上的一个动点,则PD +PA 的最小值是 ▲ .
18.如图,已知正比例函数y 1=x 与反比例函数y 2=9
x
的图象交于A 、C 两点,AB ⊥x 轴,垂足为B ,CD ⊥x 轴,垂足为D .给出下列结论:
①四边形ABCD 是平行四边形,其面积为18;②AC =;③当-3≤x<0或x ≥3时,y 1≥y 2;④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小.
其中,正确的结论有 ▲ .(把你认为正确的结论的序号都填上)
三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)
19.(本题满分14分)
(1)填空:①= ▲ , = ▲ (a ≥0),
(2)= ▲ ,
= ▲ (a>0,b ≥0).
(3) ()0x ⎛-+> ⎝
先化简,再求值:
2
11
1
22
x
x x
-
⎛⎫
-÷
⎪
++
⎝⎭
,其中x=2.
21.(本题满分5分)
如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F.
(1)若AB=4,BC=6,求EC的长;
(2)若∠F=55°,求∠BAE和∠D的度数.
22.(本题满分6分)
在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了▲名同学;
(2)条形统计图中,m=▲,n=▲;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是▲度;
(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
已知x =3+,y =3-,求下列各式的值: (1)22x y xy +;
(2)
x y
y x
+
24.(本题满分6分)
已知y 是x 的反比例函数,且当x =4,y =-1. (1)函数y 与x 之间的函数表达式为 ▲ ;
(2)画出函数的图象,并根据图象直接写出当一3≤x ≤-1
2
时y 的取值范围; (3)若点P(x 1,y 1)、Q(x 2,y 2)在函数的图象上,且x 1<x 2,试比较y 1与y 2的大小.
25.(本题满分8分)
如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE =2DE ,延长DE 到点F ,使得EF =BE ,连接CF . (1)求证:四边形BCFE 是菱形;
(2)若CE =4,∠BCF =120°,求菱形BCFE 的面积.
小明用12元买软面笔记本,小丽用21元买硬面笔记本.
(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?
(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.
27.(本题满分8分)
如图,AB是⊙O的直径,AC是弦,OD⊥AC于点E,交⊙O于点F,连接BF、CF,∠D=∠BFC.
(1)求证:AD是⊙O的切线;
(2)若AC=8,EF=2.
①求⊙O的半径;
②设AD=x,FD=y,求x,y的值.
28.(本题满分10分)
如图,在平面直角坐标系xOy中,△OAB如图放置,点P是AB边上的一点,过点P的反比例函数y=k
x
(k>0,
x>0)与OA边交于点E,连接OP.
(1)如图1,若点A的坐标为(3,4),点B的坐标为(5,0),且△OPB的面积为5,求直线AB和反比例函数的解析式;
(2)如图2,若∠AOB =60°,过P 作PC ∥OA ,与OB 交于点C ,若PC =12OE ,并且△OPC ,求OE 的长.
(3)在(2)的条件下,过点P 作PQ ∥OB ,交OA 于点Q ,点M 是直线PQ 上的一个动点,若△OEM 是以OE 为直角边的直角三角形,则点M 的坐标为 ▲ .。