鲤鱼疱疹病毒

合集下载

鱼类疱疹病毒的种类和分布

鱼类疱疹病毒的种类和分布

鱼类疱疹病毒的种类和分布生物种类众多,和它们共存的病菌病毒数量也不少。

在水中生长的动物,比如鱼,同样面临被病毒挑战的风险。

其中鱼类疱疹病毒是一类常见的鱼类病毒,也是水产养殖业的常见病之一。

本文将会介绍鱼类疱疹病毒的种类和分布。

一、鱼类疱疹病毒的分类鱼类疱疹病毒(Fish herpesvirus, FHV)是一类DNA病毒。

根据它们感染的鱼类分类,FHV可以分为三个属,分别是Iridovirus、Megavirus 和Malacoherpesviridae。

其中Iridovirus主要感染淡水和海水鱼类,包括黄鳝、草鱼、鲈鱼、褐鲤等。

Megavirus感染海水鱼类,比如金枪鱼、虹鳟等。

而Malacoherpesviridae属比较特别,在感染鱼类的同时,也能感染龙虾。

二、鱼类疱疹病毒的分布1. IridovirusIridovirus属分布广泛,从北极到南极几乎都能找到感染它的鱼类。

在亚洲,Iridovirus属常见于日本、中国、印度尼西亚等鱼类养殖盛行地。

中国的鱼类疱疹病毒主要感染青鱼、草鱼、鲤鱼等。

在北美洲,Iridovirus属主要感染鲈鱼、黄鳝、群集琉璃鳝等。

2. Megavirus与另外两个属相比,Megavirus的分布面积稍小。

它一般在赤道附近的海区分布,比如夏威夷、墨西哥湾等。

Megavirus的感染对象多数为游泳鱼类,它们在游泳或在加工过程中被感染都有可能。

3. MalacoherpesviridaeMalacoherpesviridae属的黑桃对虾和美国龙虾是感染来源,它能够感染鲈鱼和墨西哥湾虹彩鱼等鱼种。

龙虾和疱疹感染鲈鱼最容易引发严重的海洋环保问题。

因此,需要严格检测并隔离感染者。

总的来说,由于鱼类疱疹病毒分三种,分布面较广,鱼类养殖业又处于日新月异的发展阶段,如何防控鱼类疱疹病毒已成为在水产养殖中重要的研究方向之一。

鲤鱼苗种阶段主要病害及防控措施

鲤鱼苗种阶段主要病害及防控措施

鲤鱼苗种阶段主要病害及防控措施鲤鱼是目前我国辽宁、四川、河南、山东、河北、天津、云南等地区淡水养殖的主要对象,全国鲤鱼养殖产量达200多万吨,约占大宗淡水鱼产量的1/5。

鲤鱼苗种在培育过程中,由于放养密度大,鱼苗个体较小,活动能力差,机体抵抗力低下以及饲养管理条件和环境因子的作用常受到一些病害的危害,直接影响到鱼苗的成活率,现介绍几种对鲤鱼鱼种危害较大的常见病害及其防治方法。

一、鲤鱼的锦鲤疱疹病毒病鲤鱼的锦鲤疱疹病毒病的病原为锦鲤疱疹病毒(Koi Herpesvirus, KHV),属鲤疱疹病毒3型(CyHV-3)。

本病于1998年首次在以色列暴发,并于2002年传至我国,是目前我国鲤鱼养殖危害最大的疾病。

流行季节主要是春秋季节,水温在18℃~28℃易发病,23℃~28℃时易暴发流行,发病后死亡率最高可达100%。

该病在临床上的特征性症状是发病鱼头部皮肤、眼睛凹陷,鳃丝局部溃烂(见图1),肠道发红(见图2),脾脏、肾脏肿大。

一般发病后3天达到死亡高峰。

对于锦鲤疱疹病毒病,目前还没有有效的治疗方法。

该病的防控应该以综合预防为主。

1、加强对鲤鱼苗种的检测,避免购买的苗种携带病毒;2、发病高峰期避免诱发因素(如注井水,使用杀虫药等);3、定期在饲料中添加“L Y-生命素”、“低聚糖-500”等提高免疫力;4、保持水质环境稳定,适时调水、改底,防止水变;5、发病时,切忌用刺激性较强的消毒剂、抗生素、杀虫药等。

可内服“L Y-生命素+银翘板蓝根”,外用“激活”。

图1 感染锦鲤疱疹病毒的鲤鱼眼睛凹陷,鳃丝溃烂图2 锦鲤疱疹病毒引起的鲤鱼肠道发红二、鲤春病毒血症鲤春病毒血症的病原为鲤春病毒血症病毒(Spring viremia of carp virus, SVCV),属于弹状病毒科,水泡性口炎病毒属的一种。

主要引起鲤鱼幼鱼和成鱼全身出血和腹水的急性传染性疾病。

该病于春季水温8℃~20℃,尤其是在13℃~15℃时流行,春季成为疾病流行的主要季节,当水温超过22℃就不再发病,鲤春病毒血症由此得名。

鱼疱疹病毒病症状有哪些?疱疹病毒是怎么传染的?.doc

鱼疱疹病毒病症状有哪些?疱疹病毒是怎么传染的?.doc

鱼疱疹病毒病症状有哪些?疱疹病毒是怎么传染的?概述:鱼疱疹病毒病,这几年主要感染鲤鱼,并呈爆发趋势。

该病不仅病程短,而且死亡率还高。

特别是一些不知道的养殖户可能把这个病当成烂鳃病治疗了,结果可想而知,增加经济损失。

那么,鱼疱疹病毒病症状有哪些?疱疹病毒是怎么传染的?如何诊断?带着这些问题,我们一起来了解下下文,希望能使你得到想要的答案。

鱼疱疹病毒病症状有哪些?1、临床症状:病发病初期无明显症状,2-3天发展为中后期,即大批死亡,死亡率高达70%以上,严重时可造成毁灭性死亡。

发生该病的全过程为,初期吃食正常,食欲无明显变化,病鱼体色发黑,尤其头部甚重,其它无明显病症;中后期,食欲下降,病鱼两眼凹陷,头部萎缩,呈“骷髅头”、“扣扣眼”症状,鳃丝粘液增多,局部呈失血和贫血症状,严重的局部鳃瓣呈白色坏死,坏死周围易有附着物粘连,鳃耙与鳃丝的相连处发生溃烂;镜检(10×16)鳃组织无异常现象,未发现与往年类似的鳃丝与鳃耙连接处开始的烂鳃现象,除个别发现少量的指环虫、车轮虫、三代虫外,均未发现与此病有关的病原体。

2、剖检症状:解剖内脏,肝脏有失血或出血现象,大部分肝脏有不同程度的脂肪肝病。

胆囊和肾脏肿大,部分胆囊有充血现象并呈红色,肠道发炎红肿,偶尔可见肠道有未消化的食物。

一般肠道红肿的死亡已经进入高峰期,很难治愈,而肠道红肿不明显的多为发病初期,比较好治愈。

疱疹病毒是怎么传染的?该病传染性很强,鱼种、渔具及水源都会造成传染。

往往一个地区发病,整个区域难于幸免,呈现出快速蔓延的趋势和流行特点。

鱼疱疹病毒病如何诊断?根据症状及流行情况进行初步诊断。

但要区分开和细菌性烂鳃的区别,细菌性烂鳃不会眼球突出或凹陷,从表层开始腐烂,呈现大面积浅表腐烂。

疱疹病毒从里层鳃片向外层腐烂,且不烂处鳃丝正常。

鲤鱼孢疹病毒病防控措施

鲤鱼孢疹病毒病防控措施

施 佳 目 地大 量 使用 刺 激性 强的
药物( 还 有 用 中药 水 剂 ) 后,
4 0 %以 内; 框镜鲤病程 约 2 5天左右 , 1 2 一 l 3天 达 到死亡 高峰 ,高峰持 续 约 2 — 3 天, 死亡率一般 7 0 %以内。 ,
如果 在黑 龙 江 、 辽 宁 7月下 旬 发 病 ,
结果是越治疗死 亡量越大 ,越用药病情 越严重 , 造成 的经济损失非常大。现将该 病在国内的流行特点 、 现场初步诊断和预 防方法做以介绍, 希望对大家有所帮助。

发病 后水 温马 上升 高 到 3 O ℃以上 的池 塘, 死亡 率很 低 , 一般不 到 5 %, 如果在 6 月份发病 ,发病期 间水温处于病毒繁殖 的适宜温度 , 用药不合理死亡率会很 高 ,
池塘 、 水源 、 水 禽 等 。从 各 个 池 塘 发 病 时 间上 看 , 有 明 显 的 相邻 池塘 接 连 发 病 、 逐
渐向远方传染 的现象 。同一来源的鲤 鱼 种在不同养殖场养殖相继发病 , 发病池塘
显 。鳃丝边缘或局部腐烂或鳃丝贫血发
白,与养殖鲤鱼常见的细菌性烂鳃呈大
面积浅表溃烂不同 ,没有 溃烂处 的鳃丝 外观正常 , 养殖户称 “ 花鳃” 。 解剖典型病鱼见脾脏肿大 , 发黑 , 肾 脏肿 大。很大一部分发病鱼肠道内壁呈
用过的网具 , 其它池塘使用 , 其它塘就发 病。有的池塘注完共用的河道水后发病。
发病后的鱼具 有免疫性 。有些业 内 人士介绍 ,池塘春天得 过鲤鱼疱疹病毒
病后 ,不重复感染 ,一般秋 天不再得该
紫致富柏南 2 0 1 5 — 1 8
—4 5 —
{ 团圆
病。 秋天鱼种得病以后 , 一般次年春天不

锦鲤疱疹病毒流行病学及诊断防治技术研究进展

锦鲤疱疹病毒流行病学及诊断防治技术研究进展

DA N 病毒 ,有囊膜 ,与其 同科的 C V C 之 间有 免疫 H 、C V 鱼苗腹胀 大 , 呈球状 漂浮于水 面 ,下风 处居 多 , 病鱼失去游泳能力 、肚皮朝上 ,肛 门红肿 ,鳃 完整但 苍 白色 。死亡 率 3% 0 以上 ,用小手术剪解剖可见 0  ̄4% 肠 内充满许多溶血性小气泡 ,内脏模糊不清 与肠 溶在
的感 染谱较 小 ,仅感 染锦鲤 、鲤 鱼 以及 鲤鱼 的普 通
变种 。
3 传 播 途 径 .
K V自 2 0 年 在 我 国 首 次 发 现 后 , 得 以迅 速 传 H 02
播 ,至今 已遍布全 国各地 。K V H 被怀 疑可 以藉 由被 污 染 的水 、 网具 、鱼 池 、鱼 缸 或 工 作 人 员 来携 带 传 播 ,但 是有关 此病 是如 何传播 ,以及是 否有其 他保 毒 者或 传播媒 介 皆没有 确切 的 了解 。并 且很 多遭 到
1 K V的 临床 症 状 .H
起 ,腹腔 内有 淡红色液体 。
2 防 治 方 法 .
ห้องสมุดไป่ตู้
①排 去 13 水 ,加注 新水保持水质 清新 。②每 /老 亩 平均 1 米水深 ,用食 盐 4 千克 ,化水均匀 泼洒 。③ 每立 方米水体用 亮剑 ( 氟苯 尼考) . 2 +大蒜素 0 3 00 克 .
本研 究就 该病 毒 的流行及 检测 技术 等方 面作 一 概述 , 以期为 国 内的流行病 学 调查及疾 病监 控提 供
参考 。


KV 性 H特
锦鲤 疱疹 病毒 ,又称 为鲤 鱼 间质性 肾 炎及鳃坏
死 性 病 毒 (a p i tr tt a n p r t S a d C r n e s i i I e h i i n g 1 er s S v r s C G ) 该 病 毒 为 线 形 双 股 i 1 n co i iu , N V 。

鲤痘疮病毒 (2)

鲤痘疮病毒 (2)

未知驱动探索,专注成就专业
鲤痘疮病毒
鲤痘疮病毒又称愈伤病毒(Koi Herpesvirus,简称KHV),是一种能引起鲤鱼类患上鲤病的病毒。

该病毒主要感染鲤鱼、鳙鱼和鳙叉出鳞鱼等鲤科鱼类,属于疱疹病毒科。

鲤痘疮病毒主要通过直接接触感染,可以通过水体、鱼类
的分泌物以及污染的设施传播。

一旦鱼类感染了该病毒,
常会出现一系列症状,包括呼吸困难、皮肤出现红斑、浑
身发黑、食欲减退、生长缓慢等。

严重感染可以导致鱼类
大面积死亡。

目前,鲤痘疮病毒在全球范围内广泛存在,且无特效治疗
方法。

因此,预防和控制是避免鲤痘疮病毒传播的关键。

这包括保持鱼类养殖环境的清洁卫生、避免新引入未确诊
的鱼类、隔离疑似感染鱼类等措施。

需要注意的是,鲤痘疮病毒对人类一般不具有传染性,因
此对人的健康影响较小。

1。

锦鲤疱疹病毒病的诊断及防治措施

锦鲤疱疹病毒病的诊断及防治措施

2018.4在的技术手段是可以定性、定量检测的,无论是养殖水体、底泥等环境中的病原,还是养殖动物组织中的病原。

我们需要定量监测,因为病原生物也是健康生态系统的一部分,简单定性发现了病原而据此判断其就是致病病原是不科学的,防治过程中也不能一味抱着将病原生物杀灭干净、以营造无病原的养殖环境,这不仅不现实,且这种无病原的养殖生境未必是健康的。

绒螯蟹肝胞虫早在2007年就被王文老师发现并鉴定,但河蟹养殖直到2015年才出现了“水瘪子”的暴发,且绒螯蟹肝胞虫在入侵英国的河蟹中也被检出,但迄今未报道“水瘪子”,这也能部分说明绒螯蟹微孢子虫的感染并不是“水瘪子”发生的元凶。

当然,本文发现的绒螯蟹肝胞虫与河蟹“水瘪子”不相关,离“水瘪子”的防控还有很大的距离,仅仅为“水瘪子”再次出现时的防控对策研究时排除了一个可能而已。

鲤鱼是品种最多、分布最广、养殖历史最悠久、年产量最高的淡水养殖鱼类之一,具有极高的经济价值。

由于锦鲤的进出口及鲤鱼的国际贸易,目前锦鲤疱疹病毒病已在世界范围内传播,严重威胁鲤和锦鲤产业发展。

我国养鲤业同样深受该病困扰。

本文对锦鲤疱疹病毒的病原、流行病学、发病机制、诊断方法及防治措施进行整理,以期为有效鉴定锦鲤疱疹病毒病并及时控制治疗提供一定的指导方法。

一、锦鲤疱疹病毒(KHV)简要介绍1.病原学锦鲤疱疹病毒病(Koi herpesvi-rus disease,KHVD)是由锦鲤疱疹病毒(Koi her-pesvirus ,KHV,又称鲤疱疹病毒3型CyHV-3)引起的一种恶性传染病,死亡率高达80%~100%。

KHV 为线形双股DNA 病毒,分子量大小为295kb,有囊膜,与其同科的斑点叉尾 病毒(CCV)、鲤鱼痘疱疹病毒(CHV)之间有免疫交叉反应。

已经确定了来自不同地理位置的四种CyHV-3毒株的完整DNA 序列:以色列(CyHV-3I)、日本(CyHV-3J)、美国(CyHV-3U)和中国(CyHV-3GZ11)四种基因型。

四种危害严重的病毒性疾病

四种危害严重的病毒性疾病

602018-21目前,在我国养殖大宗淡水鱼中造成严重危害的病毒性疾病主要有四种,分别是草鱼出血病、鲤春病毒血症、锦鲤疱疹病毒病、鲫造血器官坏死症。

一、四种病毒性疾病简介1.草鱼出血病草鱼出血病是20世纪60年代末期我国发现的第一个鱼类病毒性疾病,其病原为草鱼呼肠孤病毒(GCRV)。

草鱼出血病流行范围广,在我国大部分省份均有草鱼出血病发生,其传播速度快,流行季节长,死亡率高达70%~80%,主要危害一龄草鱼和二龄草鱼鱼种。

近年的流行病学调查结果表明,大规格草鱼鱼种以及养殖草鱼成鱼亦有草鱼出血病发生。

患病草鱼以体表出血、肌肉出血、肠道充血为主要症状。

病原学研究表明,迄今在我国养殖草鱼中已发现三种基因型草鱼呼肠孤病毒,主要流行株以草鱼呼肠孤病毒基因型II型为主。

2.鲤春病毒血症鲤春病毒血症是一种急性出血和流行性败血症,主要感染鲤鱼及其变种,是养殖鲤鱼最为严重的病毒性疾病之一,其病原为鲤春病毒血症病毒(SVCV)。

鲤春病毒血症一般在春季水温8~20℃暴发,水温13~15℃时是流行高峰,死亡率可达70%。

我国农业部发布的《一、二、三类动物疫病病种名录》中规定,将SVCV列为一类疫病。

3.锦鲤疱疹病毒病锦鲤疱疹病毒病是一种严重感染养殖鲤鱼、锦鲤和杂交鲤的传染性病毒病,其病原为锦鲤疱疹病毒(KHV),又称鲤疱疹病毒3型(Cyprinidherpesvirus 2,CyHV-3)。

锦鲤疱疹病毒病的发病水温为16~30℃,患病鲤鱼呈现暴发性死亡,感染种群患病率100%,死亡率70%~80%,有时可高达90%~100%,是近年来鲤鱼和锦鲤养殖中最为严重的一种疾病。

潜伏感染、水媒传播是锦鲤疱疹病毒感染养殖鲤鱼的重要特征,也是病原传播的主要途径。

4.鲫造血器官坏死症鲫造血器官坏死症是近年来我国养殖鲫鱼中暴发的一种严重的病毒性疾病,其病原为鲤疱疹病毒Ⅱ型(Cyprinid herpesvirus 2,CyHV-2)。

鲤疱疹病毒II 型主要感染观赏鱼金鱼、养殖鲫鱼及其变种,其流行范围广,传播速度快,死亡率高,危害严重。

鲤鱼疱疹病毒的发病原因及防治方法

鲤鱼疱疹病毒的发病原因及防治方法

鲤鱼疱疹病毒的发病原因及防治方法近几年来在四川及周边地区,发生鲤鱼暴发性死亡,经过对多口池塘走访,确诊为鲤鱼急性鳃坏死,由于不少技术员和渔民从未见过该病,按照寄生虫病和细菌性烂鳃来治疗,造成更大的损失,笔者现将4年来的经历和经验总结如下,供大家参考:一、病原锦鲤疱疹病毒(疱疹病毒Ⅲ型)。

二、流行病学该病最早发现在北方地区,目前多省都见报道,最适水温23--27℃,其发病水温24--28℃,当水温超过30℃不在发病。

三、病症刚开始发病,池塘出现鲤鱼零星死亡,未见任何症状,很容易被忽视,有些塘套养有叉尾鮰,鱼死后,鳃被叉尾鮰吃掉,更不容易被发现,有些药店和养殖户以为是寄生虫或细菌性引起,使用杀虫剂消毒剂后出现大量死亡,当发现池塘进水口和浅水处有鲤鱼慢游时,就开始暴发死亡,鱼种塘从发病2—3天死亡率可达80%以上,发病急,死亡量大,具有专一性,只危害鲤鱼和锦鲤,同塘的其他品种均不发病,病鱼眼球凹陷,头部萎缩,头和背部发黑,尤其头部最明显,体表无其它病症,发病初期,鳃部粘液增多,和正常鳃没多大区别,眼睛凹陷也不明显,随着病情发展,眼睛凹陷明显,鳃片局部坏死呈白色,多在鳃丝根部和最里层的鳃片上,要仔细观察,解剖鱼,多有脂肪肝,肝脏有出血点,肠道发红。

病鱼的头和背部发黑病鱼眼球凹陷,头部萎缩,发病初期,鳃部粘液增多,和正常鳃没多大区别,眼睛凹陷也不明显,随着病情发展,眼睛凹陷明显,鳃片局部坏死呈白色,多在鳃丝根部和最里层的鳃片上,要仔细观察,解剖鱼,多有脂肪肝,肝脏有出血点,肠道发红。

鳃片局部坏死呈白色,多在鳃丝根部和最里层的鳃片上四、发病原因高密度饲养,并长期大量投喂高蛋白饲料,导致鱼生长过快,免疫低下,体质差;同时水质长期处于不良状态,尤其是亚硝酸盐长期超标的池塘更容易发病。

五、预防1、定期用肥水救星和池底救星调节水质,使水保持良好状态,2、合理使用增氧机,特别是晴天中午一定要坚持开机2-3小时,减少底部氧债,3、合理投放鱼种的数量,和使用饲料,不能盲目追求生长速度,4、定期内服板黄散保肝排毒,提高鱼的免疫力。

鲤疱疹病毒1型(CyHV-1)

鲤疱疹病毒1型(CyHV-1)


病原名称:鲤疱疹病毒1型(CyHV-1)
感染对象:主要危害鲤、鲫及圆腹雅罗鱼
发病症状:发病初期,体表出现乳白色小斑点,覆盖着很薄的一屋白色粘液。

随着病情的发展,白色斑点的数目和大小逐渐增加和扩大,以致蔓延全身。

由于患病部位的表皮增厚而形成石蜡状的"增生物",这些"增生物"增长到一定大小后,可自动脱落,接着在原位置重新出现新的"增生物",增生物可高出体表1-5毫米,其表面原为光滑,后来变为粗糙,质地也由柔软变软骨状致密续结缔组织,内有一些微血管,其成分主要是胶原纤维。

流行病学:此病在西欧十六世纪就有记载,发病的主要是二龄以上的鲤鱼,发病率为10%,水温低时(10—18度)最易发生,发病期间,同池的草,青,鲢,鳙等通常不会感染。

危害性:蜡质增生物数量不多时,对病鱼特别是大鱼,没有多大危害;但如增生物占鱼体表面积的大部分,就严重地影响鱼的正常生长发育,使鱼体消瘦,游动迟钝,甚至发生死亡。

可检样品:鲤、鲫及圆腹雅罗鱼
样品要求:有临床症状的鱼,如是体长小于等于 4c m 的鱼苗取整条鱼,体长 4c m-6c m 的鱼苗取内脏(包括肾);体长大于 6 cm 的鱼
则取脑、肝、肾、脾。

而对无症状的鱼要取肾、脾、鳃和脑组织,成熟雌鱼还需取卵巢液,鱼卵则取卵壳
建议检测节点:投苗前、恶劣天气后或有明显症状时、无症状建议定期监测。

鲤鱼夏花鱼种疱疹病毒病的防治

鲤鱼夏花鱼种疱疹病毒病的防治

复合碘 +五倍 子 ,剂量是 每亩 1 米水深施用 磷酸复合 酯碘 5 0 毫升 ,五倍 子粉末 1 5 0  ̄2 0 0 克( 开水浸泡五倍 子2 小时 ,或 是提前 2 小时把 五倍子 浸泡在磷 酸酯 复 合碘 里) 。同时 ,连 拌 3 天 药饵投 喂,即每 5 0 千克饵 料 添加益 服康 ( 1 O O 克) +牛磺 多聚维 c 酯( 2 5 克) +鱼
池 塘感 染此 病 ,死亡 率 1 0 0 % 。2 0 1 5 年 ,虽然 我们 重 视 了此病 ,但 还是 由于预 防不 到位 ,只 幸存 了4 0 % 的 鱼 种 。2 0 1 6 年 ,我们 总 结 了前 两年 的经 验 教训 ,提
前预 防,取得 了很 好效果 。截 至 9 月份 ,鲤鱼鱼种 长 势 良好 ,没有感 染此病 。笔者治疗过程 中,积累了一 些经验和 教训,下面就谈一下这方面 的体会 。
达9 7 % 。因此 ,该分 离菌 鉴定为嗜麦芽寡养单胞 菌。 3 . 药敏试验 采用 纸片扩散法进行 了分离菌 的药 物敏感性测定 ,发现其 对阿奇霉素 、洛美沙星 、强 力
霉素 、复方新诺 明敏感 ,对红霉素、诺氟沙星 、环 丙
四 、注 意 事 项
从7 月初开始 ,每天 监测池塘水温 ,当超 过 2 0  ̄ C 时,就应 提高警惕 。当开增氧机 、在池边能 闻见鱼腥
新 ; 渤 羧 翳 一
南方鲇 ( ¥ i l u r u s m e r i d i o n a l i s ) ,俗 称 河鲇 。
肝 宝散 ( 1 2 5 克) ,每 月投 喂两 次药饵。 ( 2 ) 如果 水质 指标超过 正常值 ,就 应该分 别外用 亚 硝速 净和腐殖 酸钠等 改 良水质 。然后 ,连续 2 天全 池泼洒磷 酸酯复合碘 +五倍子 。同时,投喂添加益服 康 +牛磺 多聚维 C 脂 +鱼肝宝散制成 的药饵 ,连续投

鱼类疱疹病毒概述

鱼类疱疹病毒概述

鱼类疱疹病毒概述
鱼类疱疹病毒病通常指由疱疹病毒快速增值从而引发细胞病变致使鱼类患病。

依据基因组分析,鱼类疱疹病毒隶属异疱疹病毒科,主要有鲤疱疹病毒属、鮰鱼疱疹病毒属、鲑鱼疱疹病毒属和一些暂未分类的疱疹病毒。

在温水性养殖鱼类中,淡水养殖鱼类常见的疱疹病毒病主要有3种,为鲤痘疮病、鲫造血器官坏死症、锦鲤疱疹病毒病。

危害对象是鲤鱼和鲫鱼。

鱼类疱疹病毒病最早发现于1998年的以色列,后在印尼、日本均爆发该病,造成近千吨锦鲤和鲤鱼的死亡;在2004年的一项回顾性研究中发现来源于英国的1996年样品呈锦鲤疱疹病毒阳性,说明锦鲤疱疹病毒的感染早于1998年;2003年首次报道中国某养殖场内进口的锦鲤有锦鲤疱疹病毒的感染;2004年首次在国内海南某养殖的锦鲤中检测到锦鲤疱疹病毒。

截止2023年,锦鲤疱疹病毒病已经遍布欧洲、亚洲、美洲和非洲,超过30个国家或地区爆发KHVD,包括以色列、英国、德国、美国、南非、日本、澳大利亚、韩国、马来西亚、新加坡以及印尼等。

疱疹病毒病发病主要存在两个发病阶段,一是春夏交接期,雨水多、长期低温的时候发病比较重。

水温渐渐升高到28℃的时候,鱼病可逐渐缓解或者自行痊愈。

二是夏秋转换期,水温逐步下降时发病率高。

该病传染性很强,往往一个地区发病,整个区域难于幸免,呈现出快速蔓延的趋势和流行特点。

这与疱疹病毒的生理特性相关。

鲤.鲫疱疹病毒病的诊断与防治措施

鲤.鲫疱疹病毒病的诊断与防治措施

鲤.鲫疱疹病毒病的诊断与防治措施作者:洪徐鹏来源:《河北渔业》 2013年第1期洪徐鹏(上海海洋大学水产与生命学院,上海 201306)2012年夏初在江苏省盐城银鲫养殖区大规模爆发“大红鳃”和“鳃出血”病症导致全池鲫鱼、鲤鱼在一周内全部漂塘,给养殖户带来巨大损失。

经过回感实验以及病原检测确定病原为鲫疱疹病毒为鲤疱疹病毒Ⅱ型(CyHV-Ⅱ)。

经过查阅报道,每年在全国各大鲤、鲫养殖区均有疱疹病毒病疫情发生,本文将系统介绍疱疹病毒病以及诊断与防治,希冀为养殖户有所帮助。

1病原鲤、鲫疱疹病毒病的病原分别是鲤疱疹病毒Ⅲ型(CyHV-Ⅲ)和鲤疱疹病毒Ⅱ型(CyHV-Ⅱ),暂列为疱疹病毒科(Herpesviridae),鲤疱疹病毒属(Cyprinid Herpesvirus)。

鲤疱疹病毒Ⅲ型(CyHV-Ⅲ)又称锦鲤疱疹病毒,鲤疱疹病毒属还有鲤痘疮病毒(鲤疱疹病毒Ⅰ型,CyHV-Ⅰ)和金鱼造血器官坏死病毒(鲤疱疹病毒Ⅱ型,CyHV-Ⅱ)。

鲤疱疹病毒病的病原为鲤疱疹病毒Ⅲ型(CyHV-Ⅲ),是一种具有成熟的病毒颗粒的球状病毒,有囊膜,直径约170~230 nm。

该病毒的核衣壳为对称十面体,直径为100~110 nm,该病毒由31种病毒多肽组成,遗传物质为双链DNA,CyHV-Ⅲ的基因组大小约为277 kb。

鲫疱疹病毒病的病原暂确定为鲤疱疹病毒Ⅱ型(CyHV-Ⅱ),该病毒的核衣壳呈六角形或球形,直径为100~110 nm,有囊膜,病毒粒子呈椭圆形,病毒粒子的直径为175~200 nm。

CyHV-Ⅱ与另外两种鲤科鱼类的病毒:CyHV-I 和 CyHV-Ⅲ,关系十分接近。

由于对该病毒的研究尚处于起步阶段对其基因组大小及病毒多肽组成尚不明确。

2流行学特点鲤疱疹病毒Ⅲ型(CyHV-Ⅲ)仅仅感染锦鲤、鲤鱼和剃刀鱼(Solenostomus paradoxus)。

其鱼苗、幼鱼、成鱼,均可感染。

CyHV-Ⅲ的发病最适温度是23~28 ℃(低于18 ℃,高于30 ℃不会引起死亡)。

鲤鱼疱疹病毒病的诊断及防控

鲤鱼疱疹病毒病的诊断及防控

3 ) ,也称 为锦 鲤疱 疹病毒 ( K H V ) 。近 几年来 中 国养 殖
鲤 鱼 的锦 鲤 疱 疹 病 毒 病 危 害 十 分 严 重 ,全 国 主 要 鲤 鱼
养殖地 区都有流行 ,从池塘养殖 、网箱养殖 到小型湖
泊养殖等 各种养殖模式发病率 、死亡 率都很高 。该病 每年有 两个主要 的发病阶段 ,一 是春 夏交接期 、水温 初 步上升 的时候 ,大约 1 个月 ;二是夏秋转 换期 、水 温 逐步下 降 时。每 当夏初 雨水 多、长期低 温 的年份 , 水温 长期处在鱼类发病适温 ,发病 更严重 ,发病水温
二 、 症 状
毒 +板蓝根等 ,尤 以季节转换 时需加 强添 加。
3 . 生 预 防 不在发病严重地 区购 买鱼种;发病 期谨慎注水 ,有条件 的尽量选择机井 水,不注入容 易
l 国 _ 冒 l 叵
旦 塑 旦 基
增多 ,眼睛及头 部上 方凹陷 ,鳃盖 出现 明显条 纹,鳃 丝末端腐烂 。解 剖发现 病鱼见脾脏肿大 ,发 黑;肾脏 肿大 ,像含水 ;肝脏颜 色鲜艳 ,有 出血或是淤 血 。有

部分发病鱼肠 道 内壁呈均匀 的大面积 出血 ,肠 内有
疱疹病毒病是普通鲤鱼和 观赏锦鲤经常暴发 的一
发新 型基因疫苗 以期 能取得 突破 性进展 ,从而使得该
病 的预防得 到有效解决 。 2 . 药物预 防 药物 预 防 主要 是遵 循 定 期投 喂 药 饵 ,确保鲤鱼体质 强壮 、活力强 、免疫力 强等 。主要 包括定期投 喂免疫 增强剂+保肝利胆 +外用碘制 剂消
大 。2 0 1 5 年6 月1 0日其 中一家 养殖 户 发现鲤 鱼 开始 出现 死亡 ,第一天死亡几十尾 ,没有引起养殖户 的足 够 重 视 ,6 月1 1 日其他 几 家 也 陆续 出现 死 亡 ,6月 1 3 —1 6日达到高峰 , 日死亡约 1 5 0 0 尾。

锦鲤疱疹病毒病的诊断和治疗

锦鲤疱疹病毒病的诊断和治疗
出血 点 呈鲜 红色 。
求非常高,发病高峰在水温2 ℃左右 ,如果水温突然升 5
到3 ℃ ,并维 持2 e 时 ,可 能很 多病 症就 全 部消 失 ;水 5 4J , 温 突 然 降到 1℃ ,并 维持 2 4时 ,很 多病 毒病 症 状 也会 5 4,
消失,死亡量大幅减少。病毒病的治疗一定要看天气 ,

近几年来 ,锦鲤疱疹病毒病在广东锦鲤养殖池塘高 发,死亡率高。广东顺德、南海 、中山、东莞的锦鲤养
殖池 塘 都有 发病 。笔者 去池 塘边 诊 断 ,接 到很 多 电话 反
2 发病锦鲤浮在水面,有些暗浮在水面,有些侧卧 . 水面 ;患病锦鲤 出现精神沉郁,食欲废绝;行为上会 出 现无方向感的游泳,或在水中呈头下尾上之直立姿势漂 浮,甚至停止游泳;如果在水泥池中发病 ,会发现很多 锦鲤侧 卧在水底,尤其在进、排水 口较多,有些养殖户
握。具体情况及病鱼情况见彩 中插2 。 四、病症分析
锦鲤疱疹病毒是一种致病力强、致死率高的病毒, 发病 时,表 现出发 病快速 、感染率高、死亡率高等特
点。锦鲤感染该病毒后,在适宜温度发病,该病毒破坏 鱼类的神经系统,导致鱼类活动力下降,平衡力失调, 昏睡。该病发作快,对锦鲤伤害大 ,锦鲤难 以忍受 ,容 易蹭破皮肤 ,加之微血管破裂 ,表现 出皮肤 出血的症 状 ,微血管大量 出血 ,导致锦鲤凝血系统崩溃,引起体 内多处出血、多器官衰竭而死。
色 ,鳃丝 出血、组织坏死、鳃丝末端坏死变白。 5鳍条尤其尾鳍充血严重 ,部分出血,似有 白色黏 .
液覆 盖 。
6 肛 门红 肿 。 .
二、鱼类病毒病的特点 病 毒具有 化学性和生物性 ,鱼类病毒病有 以下特
点:
7撕 开皮肤 ,有皮 下充 血和 肌 肉出血症状 ,出血 和 .

2013一例鲤鱼疱疹病毒病的防治办法_杨亮

2013一例鲤鱼疱疹病毒病的防治办法_杨亮

天津市蓟县出头岭镇小稻地养殖户何树,有池塘面积70亩,水深1.8~2米,水温21℃,养殖用水来自附近的于桥水库。

2012年9月10日发现鲤鱼死亡几十尾,养殖户没有重视,9月12日死亡200尾左右,9月21-24日达到高峰,日死亡约1200尾。

9月20日,隔壁20亩鱼塘发现同样症状的死鱼。

捕捞上来的死鱼体表腐烂严重,并伴有出血,头部、胸鳍基部尤其明显。

经判断认定,病鱼死亡后先沉入水底,之后在增氧机附近上浮。

新鲜的、死亡时间不长的鱼症状表现为体表黏液增多,眼睛及头部上方凹陷,鳃盖出现明显条纹,鳃丝末端腐烂,内脏脂肪偏多,肝胆变化不十分明显。

另外,发病后,花白鲢、草鱼及其他混养鱼不死,也是明显特征之一。

有以上特点即可以确诊为鲤鱼疱疹病毒病。

在小稻地附近及宝坻、唐山等地区的其他养殖户处了解到,5-6月份也曾经发生该病,部分死亡严重。

药物使用情况。

发病初期泼洒二氧化氯,无效;9月14日使用戊二醛溶液泼洒,内服恩诺沙星,没有明显效果。

后来,经附近养殖户介绍使用大黄与硫酸铜泼洒有效,我们使用主要成分是大黄等成分的水中宝,内服三黄粉。

用药后第二天死鱼数量明显减少,病情得到有效控制。

经了解,鲤鱼疱疹病毒病最近两年在天津地区呈蔓延趋势,发病迅速,传染性强,死亡率高,最高可达80%,给养殖户造成重大经济损失。

养殖户须特别注意病死鱼处理、养殖工具的使用、以及进排水等工作,避免疾病传染。

由于2012年鲤鱼价格低,部分养殖户用药量低、用药时间迟,造成病害暴发。

其次,与养殖户根据往年养殖经验认为白露节气一过、到9月中下旬很少发病、便放松警惕也有一定关系。

该病毒在水温为20~23℃流行,5-6月份、9-10月份为发病高峰期,应引起养殖户高度重视。

疾病分析及对策:发病池塘多为水质较差,池底污泥多,透明度低水色差,养殖密度高的池塘。

建议广大养殖户做好从池塘清淤消毒、确定合理养殖密度、选择优质饲料、适时肥水调水、早发现早治疗等每一个步骤的工作。

锦鲤疱疹病毒病的研究进展

锦鲤疱疹病毒病的研究进展
是 已经 有 所 控 制 的 严 重 疾 病 有 返 强趋 势 ,近 年 来 ,
业带 来了巨大 的经济损 失。2 0 年 , 国质检 总局要 求 07 我 2 HV的分类和命名 .K 2
停 止从 日本和印尼进 口锦鲤 和鲤鱼 , 将锦鲤 疱疹病毒作 为必检 项 目。 锦 鲤疱疹病 毒病是 由锦鲤 疱疹病毒 ( HV) 起 的 K  ̄f
研 究表 明 , V与疱 疹病毒 在进 化和 形态 学上具 KH 有明显的相似性 ,但 K V 的基 因组比其他疱疹病毒都 H
大。 通过序列分析发现 , HV与鲤 鱼 1 K 型疱疹病毒和金
锦鲤 、 鱼及其普通变种发 生鳃坏死和 间质性肾炎 的一 鱼 出血 性 坏死 疱 疹 病 毒 有较 高 相 似性 ,进 一 步 表 明 鲤 种高致病 性和 高死 亡率 的疾病 。该病 多发生在 水温 为 KH V属于疱疹 病毒科 。 1 ̄ 8 C~2 ℃的春秋季 节 ,但 目前有低温 下发病 的趋 势 。 8 目前 , 国际上还没有对 K HV的统一命名 , 锦鲤疱疹 病 毒 ( HV) K 又称 为鲤 鱼间质性 肾炎及 鳃坏死病 毒 。通
普通鲤 鱼发生 暴发性 疾病 ,死 亡 率高
达 8 ̄0 0 9 %,经 P R 检 测 为 K C HV 阳 性 ; 两年 来 , HV检 测 也均 为阳性 。 近 K 另外 , 有报道 , 近年来在 菲律 宾非法 进
入 的锦 鲤 中检 测 到 K 。2 0 年 , HV 0 8 中
K V是 线 形双 股 DNA病毒 , H 病 毒基 因组大 小 为 2 5 b , 9 K p 两股 基 因组 的末端含有 2 正 向重复序列 ; 2个 有 16 开放性 阅读框 ( 5个 ORF , 个 末端 )8
以色列株 ( HV I。但在 G n ak中 K —) ebn

锦鲤疱疹病毒病的流行特征及防治措施

锦鲤疱疹病毒病的流行特征及防治措施

疫病防治LIVESTOCKANDPOULTRYINDUSTRYNo.6,2020锦鲤疱疹病毒病的流行特征及防治措施曲 木1,张宝龙1,赵国营2,赵子续1,刘昕阳1,郑含笑1,翟胜利1(1.天津市晨辉饲料有限公司,天津市水族动物功能性饲料企业重点实验室,天津301800;2.天津市宝坻区畜牧水产业发展服务中心,天津301800)摘 要:锦鲤疱疹病毒病是一种极易感染锦鲤和其他鲤科鱼类的高致死性病毒病,该病发病迅速、传染性强,且目前尚无合适的治疗方式可将其完全治愈,一旦爆发,会给养殖户乃至整个水产养殖业造成极大的经济损失。

该病的防控重在预防。

主要对其病毒病原、流行病学特征和临床表现、预防控制措施进行介绍,以期对该病的防治提供一定的理论依据。

关键词:锦鲤;疱疹病毒;病原;检测方法;防治措施DOI:10.19567/j.cnki.1008-0414.2020.06.058基金项目:宝坻区2017年度科技项目“锦鲤鱼体色鲜艳的配合饲料的成果转化与应用”资助 引言锦鲤为目前比较受广大消费者喜爱的观赏鱼品种之一,其色彩艳丽、寿命较长,许多人将其当作宠物饲养,在观赏鱼交易中占据很大的比例,经济价值较高,锦鲤生长过程中会患有多种疾病,其中最严重的当属锦鲤疱疹病毒病[1-2]。

锦鲤疱疹病毒病原1.1 KHV的分类和命名锦鲤疱疹病毒病(KioHerpesvirusDisease,KHVD)又被称为鲤疱疹病毒3型(CyHV-3),其病原为锦鲤疱疹病毒(Koiherpesvirus,KHV)。

隶属于疱疹病毒目(Herpesvirales)、疱疹病毒科(Herpesviridae)、鲤疱疹病毒属(CyprinidHerpesviridae)[3]。

KHV的形态结构类似于其他2种可感染鱼类的疱疹病毒(鲤痘疮病毒CyHV-1、金鱼造血器官坏死病毒CyHV-2),但是它们在临床表现、生长特性、细胞变异类型等方面都有所不同[4]。

KHV

KHV
KHV主要通过水平传播,爆发KHV后幸存鱼可将病毒传染给其他健康鱼,水是传播病毒的主要非生 物载体,病毒粒子通过带毒鱼的粪便、尿液、鳃和皮肤黏液排出传播。
症状
1.水面出现水泡就如产卵期的雄鲤大量释出精子. 2.鱼体变白,就像白云病. KHV 3茶鲤和无花纹鲤出现鱼体变黑,如写墨般的无花纹鲤鱼,茶鲤变成了茶泻鲤,红鲤就变成绯泻, 这是因为体内所发出的锅墨变薄,并以状呈现在鲤鱼体表上所致. 4.鲤鳃腐烂. 5.鱼体泛力,有时会沉在池底的一角,有时会在池壁附近浮沉,鼻子往上仰,浮在水面的鱼一直 在水面2~3天,感觉像死了一样. 6.鱼死亡后会在池底或水面,和我们一般认识死鱼浮出水面的情形不同,
死亡的鲤鱼横躺在池底,经过一天后才能浮上来. 7.眼睛凹陷1~2MM,头部萎缩成正三角形. 8.会有像白粉一样的斑点.体表充血的现象也有!
诊断
(1)初步诊断:仅有鲤(锦鲤)及其变种能被感染致死,可根据这一特点和临床症状及流行情 况进行初步诊断。(2)样品采集:取无症状鱼150尾或病鱼10尾,采集病鱼脑、肝、脾、肾等样 品,成熟雌鱼还需要取卵巢液,鱼苗取整条鱼进行病原分离和鉴定。(3)实验室确诊:主要有 细胞分离法、聚合酶链式反应(PCR)、免疫荧光、ELISA、电镜观察等;可用锦鲤鳍条细胞系 (KF-1)或鲤脑细胞系(CCB)接种疑似样品培养KHV,用PCR技术鉴定;对有临床症状的鱼用任 一方法检测为阳性即可确诊,无临床症状的鱼需用两种方法检测为阳性才能确诊,其中之一为阳 性,则视为可疑。(4)鉴别诊断:应与普通细菌感染和寄生虫侵袭相区别,特别是与细菌性烂 鳃病进锦鲤疱疹病毒病目前无有效的药物和商品化的疫苗用于治疗。 (1)预防措施:加强进出口口岸检疫;对养殖场实施防疫条件审核、苗种生产管理制度;加强 水源、鱼、设施等的严格消毒;加强疫病监测,掌握流行病学情况;培育和引进抗病品种;加强 饲养管理等。 (2)处理:发现患病鱼必须销毁,并对养殖水体、工具、场地等进行消毒。 (3)划区管理:根据水域和流域情况及自然屏障进行,并对其实施区域管理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DISEASES OF AQUATIC ORGANISMSDis Aquat OrgVol. 69: 137–143, 2006Published April 6INTRODUCTIONHerpesviral hematopoietic necrosis (HVHN) is a dis-ease of goldfish Carassius auratus auratus (Linnaeus,1758) that has been reported in Japan, Australia, Tai-wan and the USA. Mortality associated with HVHN can approach 100% (Jung & Miyazaki 1995, Groff et al. 1998, Chang et al. 1999, Stephens et al. 2004, Good-win et al. in press). Herpesviral hematopoietic necrosis is caused by Cyprinid herpesvirus 2 (CyHV-2), a mem-ber of the cyprinid herpesvirus group that includes carp pox (CyHV-1) and koi herpesvirus (CyHV-3)(Waltzek et al. 2005). Reports of losses attributed to HVHN are limited to the 5 publications noted above,but the apparent rarity of HVHN may be due more to the lack of a sensitive and specific diagnostic test,rather than a reflection of the true incidence of the disease.The diagnosis of HVHN has been based in most cases on histological findings and the demonstration,by electron microscopy, of herpesviral particles in tissues of infected fish (Jung & Miyazaki 1995, Groff et al. 1998, Chang et al. 1999, Stephens et al. 2004).Cyprinid herpesvirus 2 has been cultured on cyprinid cell lines but the virus is lost after about 4 passages in vitro (Jung & Miyazaki 1995). There is a single report of the successful development of a goldfish fin cell line that supports sequential passage of goldfish herpes-virus (Li & Fukuda 2003), but distribution of the cell line is limited and propagation of the virus using this cell line in other laboratories has proven difficult (Gilad et al. 2004). More recently, several cases of HVHN in the USA were diagnosed and confirmed by degenerate PCR of the CyHV-2 DNA polymerase gene followed by DNA sequencing (Goodwin et al. 2006),but this method is time consuming and too technically© Inter-Research 2006 · *Email: agoodwin@Detection of the herpesviral hematopoietic necrosis disease agent (Cyprinid herpesvirus 2) in moribund and healthy goldfish: validation of a quantitativePCR diagnostic methodA. E. Goodwin*, G. E. Merry, J. SadlerUniversity of Arkansas at Pine Bluff, Aquaculture/Fisheries Center, 1200 N. University Dr., Mail Slot 4912, Pine Bluff,Arkansas 71601, USAABSTRACT: Cyprinid herpesvirus 2(CyHV-2) is a pathogen of goldfish Carassius auratus auratus L.that causes herpesviral hematopoietic necrosis (HVHN) disease. The disease is associated with necrosis of hematopoietic tissues and anemia with high mortality. We have developed a real time 5’-nuclease PCR method (Taqman) that quantitatively detects CyHV-2 with a linear response over 8 logs of target concentration. The coefficient of variability on replicate samples tested on different days was 13% and the calculated sensitivity approached 1 target molecule per reaction. The assay does not cross-react with other similar fish herpesviruses, including CyHV-1 (carp pox) and CyHV-3(koi herpesvirus), but reliably detects known CyHV-2 positive fish. The assay detects CyHV-2 not just in clinical cases of HVHN but also in apparently healthy 1 yr old goldfish fingerlings and even in 3 to 5 yr old broodfish.KEY WORDS: Herpes · Virus · Goldfish · Quantitative PCR · CyHV-2Resale or republication not permitted without written consent of the publisherDis Aquat Org 69: 137–143, 2006demanding for most diagnostic work or for large research studies.Little is known about the epidemiology of CyHV-2,but characteristics of other, better studied, fish herpes-viruses indicate that CyHV-2 will be difficult to con-trol or eradicate. Koi herpesvirus (KHV or CyHV-3)spreads very easily and produces high mortality in wild and domestic stock of common carp and koi Cyprinus carpio (Hedrick et al. 2000). Koi herpesvirus is closely related to CyHV-2 and recent studies have shown that fish surviving acute disease carry the virus for at least several months post-infection (Gilad et al.2004). These latently infected fish are anecdotally implicated in the spread of KHV to new populations.Channel catfish herpesvirus (CCV or IcHV-1) produces latent infections in channel catfish surviving acute infections (Gray et al. 1999, Stingley et al. 2003) and the virus may even be vertically transmitted (Hanson et al. 2004).The detection of carrier status for herpesviruses is difficult because latently infected animals may carry the viral genome without producing infectious parti-cles that could be detected in cell culture or by serolog-ical methods (Lamers et al. 1985, Cohrs & Gilden 2001,Kamal et al. 2004). Another approach is to look for anti-viral antibodies that would indicate prior virus expo-sure, but in fish the duration of detectable titers against specific pathogens is quite variable (Vestergaard &Jørgensen 1982, Eggset et al. 1997, Bricknell et al.1999). More problematic is that antibodies may not be present in fish that carry the virus but that have not yet developed the acute disease. Because of the limitations of culture and serological methods, the detection of latent herpesviral infections most often relies on the detection of the viral genome by PCR (Gray et al. 1999,Gilad et al. 2004).Traditional PCR tests are useful for the detection of viral genomes in extracted fish or cell culture DNA, but these methods provide only a ‘yes or no’ answer that does not differentiate between a fish dying from an active viral infection and one that is dying of some other disease but carrying the virus in its latent form.The answer to this problem is the development of quantitative PCR methods that can be used to differen-tiate between the high viral loads typical of an active infection and the much lower loads that may be associ-ated with latency or carrier status. Other advantages of quantitative PCR over conventional PCR are that it is faster, that methods using both primers and fluorescent probes are more specific, and that there is a smaller chance of false positives caused by the contamination of new reactions with the products of previous PCR assays (Mackay et al. 2002). In our work, we report the development and validation of a quantitative 5’-nucle-ase PCR method (Taqman assay; Heid et al. 1996) todetect CyHV-2 and its successful use to detect viral DNA in both moribund and apparently healthy gold-fish.MATERIALS AND METHODSP rimers and probe. Primer and TaqMan probe sequences (Table 1) were selected from the CyHV-2DNA polymerase gene sequence (Genbank AY939863,Waltzek et al. 2005) using Beacon Designer 4.0 (PRE-MIER Biosoft International). The probe was labeled at the 5’ end with the fluorescent reporter FAM and at the 3’ end with the quencher BHQ-1 (Integrated DNA Technologies). The PCR product is 170 bp.PCR conditions.Real-time PCR for CyHV-2 was per-formed in 12.5 µl reactions containing 2.5 µl of tem-plate, 0.5 µl each of forward and reverse primers (10µM each), 0.5 µl of FAM-labeled probe (10 µM),6.25 µl of 2X supermix (Bio-Rad), and 2.25 µl of water.The PCR thermal profile consisted of an initial incuba-tion of 2 min at 95°C followed by 35 cycles of 45 s at 58°C, 45 s at 72°C, and 30 s at 95°C, and a final exten-sion of 2 min at 72°C. The annealing temperature was selected in preliminary experiments where DNA from known positive fish was run in triplicate at 8 different annealing temperatures. The PCR was run on a real time PCR machine (iCycler; Bio-Rad) using the manu-facturer’s software (iQ Real-Time Detection System).The concentration and purity of all template DNA was verified using spectrophotometry (Nanodrop ND-1000).Standard curve/dynamic range.To determine the dynamic range of the Taqman assay, the PCR product was purified using a GFX PCR DNA & Gel Band Purifi-cation kit (Amersham Biosciences), then cloned and transfected into Escherichia coli (TOPO-TA cloning kit for sequencing, Invitrogen). Plasmid DNA was purified by an Amersham Biosciences GFX Microplasmid Prep kit. The concentration was determined by spectropho-tometry, then serially diluted from 108down to 1 copy per reaction. The PCR efficiency and correlation coef-ficient were calculated from the standard curve (iQ Real-Time Detection System; Bio-Rad).To examine the possibility that non-target DNA would interfere with the assay, additional standard curves were developed by serial dilution of plasmid DNA alone,and by serial dilution of plasmid DNA in the presence of138Forward 5’-TCGGTTGGACTCGGTTTGTG-3’Reverse 5’-CTCGGTCTTGATGCGTTTCTTG-3’Probe5’-FAM-CCGCTTCCAGTCTGGGCCACTACC-BHQ1-3’Table 1. Primer and probe sequences for the detection of Cyprinidherpes-virus 2 (CyHV-2) by quantitative Taqman PCRGoodwin et al.: Detection of Cyprinid herpesvirus2 by qPCRCyHV-2 negative goldfish spleen DNA isolated accord-ing to manufacturer’s instructions (Qiagen DNeasy tissue kit), using a 200 µl elution volume. Serial 1:9 dilutions of plasmid were made from 2.63 ×108to 2.63 ×101copies per reaction. One series was diluted in TE buffer, the other in TE buffer containing enough spleen DNA such that each 12.5 µl reaction received 600 ng. All were run in triplicate using the PCR protocol above. The PCR efficiency was calculated using the commercial software (iQ Real-Time Detection System).To ensure that intact CyHV-2 DNA behaved the same as the plasmid, additional standard curves were developed using DNA extracted from the spleen and trunk kidney of a known CyHV-2 positive fish (Good-win et al. 2006). The DNA was diluted with and with-out the same 600 ng per reaction of spleen DNA described above. The PCR efficiency of dilution series of fish extracts with or without spleen DNA was com-pared to that of plasmid DNA alone.Sensitivity of assay.Serial dilutions of the plasmid containing the CyHV-2 PCR product were amplified in quadruplicate by the protocol described above. Dilu-tions covered the entire dynamic range of the assay from 108copies per reaction down to 1 copy. Precision. DNA from 3 known positive fish (Good-win et al. 2006) was tested for CyHV-2 using the plas-mid DNA standard curve. Each sample was run in trip-licate 2 or 3 times on different days and the mean and standard deviation of the copy number was measured.A blank, using TE buffer in place of template, and neg-ative fish tissue controls were included in triplicate for every run. The coefficient of variation (standard devia-tion/mean) was calculated for each sample. Specificity of assay.To determine whether there was cross-reactivity (cross-amplification) with other herpes viruses, CyHV-1, CyHV-3 and IvHV-1 were subject to real-time PCR using our quantitative assay. The CyHV-1 DNA was obtained by extraction of DNA from typical carp pox lesions removed from the skin of koi. The CyHV-3 positive DNA was extracted from infected cell culture layers of KF-1 cells. The isolate was from a case occurring in California in 1996. The DNA was extracted when almost all cells in the culture showed the vacuolization typical of KHV. The IcHV-1 DNA was extracted from spleens of moribund channel catfish with active channel catfish virus disease confirmed by culture. The identities of the cyprinid control viral isolates were confirmed by PCR (Gilad et al. 2004, Waltzek et al. 2005)To determine cross-reactivity in conventional PCR, the same thermal profile was followed, using 12.5 µl reactions containing 2.5 µl of template as described above, 0.5 µl of each primer, 6.25 µl of Sybergreen supermix (2X) (BioRad) and 2.75 µl of water, but with no Taqman probe. Melting curves were determined in 0.5°C increments over 80 cycles. The PCR products were electrophoresed in agarose gels and stained with ethidium bromide.Organ choice for CyHV-2 detection. Total DNA was extracted from the gill, liver, spleen, trunk kidney, gonad, swim bladder, and brain of 13 goldfish using the Qiagen kit and following the manufacturer’s instructions for both fresh and formalin fixed tissues, then tested for CyHV-2 using the quantitative PCR assay described above using the plasmid for the stan-dard curve. All fish tested were samples from 4 clinical cases of HVHN (Goodwin et al. in press) but not all fish tested had clinical signs of the disease. Due to the small size of some fish, and to the necessity to obtain samples for other diagnostic procedures, not all organs were tested from every fish. In one case, DNA was extracted from the gill, visceral organs, and brain of a moribund fish frozen by the fish owner, then thawed in 10% neutral buffered formalin and held for 1 yr prior to DNA extraction.CyHV-2 detection in fish without clinical signs of HVHN. Apparently healthy 3 to 5 yr old goldfish broodstock (n = 590) were obtained from 2 different goldfish breeders during March and April 2005. Trunk kidney and spleen tissue was removed from the brood-fish, pooled in groups of 5 fish per pool, and then DNA for PCR was extracted using the Qiagen kit. Appar-ently healthy 7 to 8 mo old fingerling goldfish (n = 135) were obtained from 3 goldfish breeders, also during March and April 2005, and analyzed as 4 separate lots because they were collected on different days or from groups of fish raised in separation. The fish were sub-mitted to the laboratory for a routine culture-based virological survey, so tissues were handled as if for cell culture. Trunk kidney and spleen tissues from all of the fingerlings were pooled at 5 fish per pool, homoge-nized in Hank’s balanced salt solution, and centrifuged for 10 min at 10000 ×g; then DNA for PCR was extracted from the cell pellet using the Qiagen kit. The CyHV-2 copy numbers in the extracted broodfish and fingerling DNA were determined by PCR as described above and read off the plasmid DNA standard curve. All samples were run in triplicate.RESULTSStandard curve/dynamic rangeStandard curves run using purified plasmid DNA as the template were linear over 8 logs of template con-centration. The correlation coefficient for the best straight line drawn through the threshold cycle values for each concentration was 0.98 and PCR efficiency was 100.0% (Fig. 1).139Dis Aquat Org 69: 137–143, 2006The PCR efficiencies for plasmid DNA and known positive fish DNA, both alone and spiked with 600 ng spleen DNA per reaction, were similar. The plasmid alone in TE buffer had a correlation coefficient of 0.999 and PCR efficiency of 100.5% and CyHV-2 positive fish DNA diluted in TE had a correlation coefficient of 0.999 and PCR efficiency of 106.2%. In the presence of 600 ng spleen DNA, the plasmid produced a correla-tion coefficient of 0.999 and efficiency of 99.9%, while the CyHV-2 positive fish DNA had a correlation coeffi-cient of 0.999 and PCR efficiency of 94.7%.Sensitivity of assayUsing quantitative PCR of serial dilutions of our plasmid, quadruplicate reactions calculated to have at least 20 copies of the plasmid tested positive for CyHV-2 every time (Fig. 1). Reactions calculated to contain 10 copies were positive 3 out of 4 times. Reac-tions with 5, 2.5, and 1 copy were positive in 2 of 4, 1 of 4, and 1 of 4 times respectively.PrecisionThe PCR assays replicated on the same sample from fish with clinical CyHV-2 disease but on different days demonstrated low variability (Table 2). The coeffi-cients of variation of replicate tests were 9 to 18% with an average of 13%.Specificity of assayThe quantitative Taqman assay produced no cross-reaction with CyHV-1, CyHV-3, or IcHV-1. Using the same primers but no probe in a traditional PCR reac-tion produced a product with CyHV-1 and CyHV-2 as the template, but not with CyHV-3 or IcHV-1. Align-140Cyprinid herpesvirus2 (CyHV-2) detection by Taqman PCR. The standard is a plasmid containing the Taqman PCR product. Correlation coefficient for the best straight line is 0.98Sample Run 1Run 2Run 3Mean SD CV 1190 140200 17732 18 222325426624822 9 3164139nd15218 11 Table 2. Cyprinid herpesvirus2 (CyHV-2) copy number by quantitative PCR. Data from 3 positive goldfish Carassius auratus auratus tested multiple times on different days. All numbers shown are in millions of copies per µg of host DNA.SD: standard deviation; CV: coefficient of variation;nd: not doneFwd primer----TCGGTTGGACTCGGTTTGTG------------------------------------ 20CyHV-2GAGGTCGGTTGGACTCGGTTTGTGACCTACACCGCTTCCAGTCTGGGCCACTACCTCTCT 252CyHV-1GAGGTCGGGTGGACTCGCTTCGAGACCTACACGGCCTCAAGCCTTGGCCACTACCTGTCC 2397CyHV-3GAGGTCGGCTGGGTCCGCTTCGAGACCTACACGGCGTCTAGCCTCAACCACTACCTGAGC 2400*************Rev Primer----------------CAAGAAACGCATCAAGACCGAG---------------------- 22CyHV-2CTATGAGATCTCAGTACAAGAAACGCATCAAGACCGAGAAAGACGCGAGTCTCAAGGCGT 310CyHV-1CCATGAGATCCCACTACAAGAAGCGCATGAAGAACGAGCCGGACCCCGGCCTCAAGGCCT 2455CyHV-3GCATGAGGTCCCAATACAAGAAGCGCATGAAGACGGAGAAGGACGCCGGGCTCAAGGCCT 2458******************Probe-------------------------------CCGCTTCCAGTCTGGGCCACTACC----- 24CyHV-2GAGGTCGGTTGGACTCGGTTTGTGACCTACACCGCTTCCAGTCTGGGCCACTACCTCTCT 252CyHV-1GAGGTCGGGTGGACTCGCTTCGAGACCTACACGGCCTCAAGCCTTGGCCACTACCTGTCC 2397CyHV-3GAGGTCGGCTGGGTCCGCTTCGAGACCTACACGGCGTCTAGCCTCAACCACTACCTGAGC 2400*****************Fig. 2. Comparison of primer and probe sequences for TaqMan PCR of Cyprinid herpesvirus2 (CyHV-2) to published sequences for other cyprinid herpesviruses (Waltzek et al. 2005). Sequences shown are from Genbank (CyHV-1, AY939868; CyHV-2, AY939863; CyHV-3, AY939862). Conserved nucleotides are noted with an asteriskGoodwin et al.: Detection of Cyprinid herpesvirus 2 by qPCR ment of the primer and probe sequences with CyHV-1,CyHV-3, and IcHV-1 sequences show that the primer sequences are most similar to CyHV-1 but that there are 4 mismatches in the forward primer, 3 in the reverse, and 5 in the Taqman probe (Fig. 2).Organ choice for CyHV-2 detectionOf the organs tested, the spleen and trunk kidney consistently had the highest copy number of CyHV-2DNA, but viral DNA was also often detected in the liver, gonad, swim bladder and brain (Table 3). In 1 fish (1a in Table 3) the spleen and trunk kidney tested neg-ative but viral DNA was detected in the gonad and brain. The fish in groups 1 and 3 had no detectable viral DNA in the gill, but gill tissues from groups 2 and 4 were strongly positive.While DNA from fixed tissue cannot be directly compared to that from fresh samples, CyHV-2 DNA was success-fully detected in Fish 4 even though the tissue had been both frozen and formalin fixed.CyHV-2 detection in fish withoutclinical signs of HVHN There was considerable variability in viral DNA load among apparently healthy goldfish tested by our PCR (Table 4). In groups of fingerlings the incidence of detectable CyHV-2 varied from all to none of the pools tested. In groups of both fingerlings and brood-fish, low incidence (the percentage of pools positive) of detectable CyHV-2was associated with low copy numbers (820 and 46000 µg –1host DNA). In the 2 groups of fingerlings where 100% of the pools tested positive, the mean copy number was at least 300 times higher (13000000 and 98000000 µg –1host DNA). In 3 to 4 yr old broodfish,42 of 118 pools were positive for CyHV-2 and the average copy number in positive pools was 46000 µg –1host DNA. Numbers of copies and inci-dence for individual fish are not known because the number of positive fish per pool is unknown, but may have varied from 1 to 5.DISCUSSIONThe quantitative PCR method that we describe is specific for CyHV-2 and did not detect the closely related fish herpesviruses CyHV-1, CyHV-3, and IcHV-1. The assay is quantitative over an 8 log range of target copy numbers with an efficiency approaching 100% (Fig. 1). The efficiency of the reaction is the same for intact CyHV-2 as it is for the plasmid, and effi-ciency is not impaired by the addition of comparatively large amounts of non-target DNA. The assay closely attains the hypothetical sensitivity limit of 1 target mol-ecule per reaction (considering the potential for mole-141SampleGillLiverSpleen Trunk Gonad Swim Mixed Brainkidney bladder viscera a Fish 1a 0000510nt nt 0.3Fish 1b 00 3.19.2 4.3nt nt 0.5Fish 1c 00.209.00.4 2.6nt 11Fish 1d 00.3 3.60.90.30.3nt 0Fish 2a 13nt 173215nt nt 1.9Fish 2b 19nt 8.3 1.0 1.3nt nt 2.5Fish 2c 17nt 4.7 2.5 3.5nt nt 7.2Fish 2d 2400 nt 3444 1.8nt nt 91Fish 2e 5700nt 620022000230nt nt 2200Fish 2f 39nt 90008500nt nt 860Fish 2g 540nt 2700078004100 nt nt 99Fish 30nt 0150nt nt 0Fish 4b450ntntntntnt850950aDNA was extracted from a pool of visceral organs because the frozen then fixed sample had already been used for histological specimens and the remainder was not sufficiently well preserved for individual organs to be testedbThis fish was frozen by the owner, thawed in 10% buffered formalin for histology, then held in formalin for 5 mo prior to DNA extraction and PCR analysisTable 3. Comparison of Cyprinid herpesvirus 2 (CyHV-2) copy number mea-sured by quantitative PCR of individual organs from goldfish Carassius auratus auratus sampled from populations with clinical signs of CyHV-2 infection. All numbers are in thousands of copies per µg DNA. Fish numbers denote clinicalcases, lower case letters are individual fish; nt: not tested FishPools of Pools Mean of SDRange 5 tested positive positivesLow High Fingerling151513000 33000 1.1130000Fingerling 720.820.670.047 1.3Fingerling 50––––Fingerling 101098000 110000 1.3310000Broodfish 11842461500.12740Total fish775Table 4. Cyprinid herpesvirus 2 (CyHV-2) as thousands of copies per µg gold-fish Carassius auratus auratus tissue DNA as detected by Taqman PCR.Samples were of pooled trunk kidney tissue from fish with no clinical signsof CyHV-2 infectionDis Aquat Org 69: 137–143, 2006cules to be lost on tube or tip walls, and the obvious improbability that all 4 dilutions to 1 molecule per reaction would actually end up with 1 molecule per tube). Quantitative results were very precise with independent runs returning very similar values even on different days with a coefficient of variability of just 13% (Table 2). All known positive fish tested positive using the assay.Our finding that spleen, trunk kidney, and brain appear to be the best organs for CyHV-2 PCR is consis-tent with both the biology of HVHN and with standard protocols for fish virology. Published histological descriptions of HVHN all describe necrosis of the hematopoietic tissues, so it is reasonable to expect the virus to be present in large amounts in spleen and trunk kidney tissues (Jung & Miyazaki 1995, Groff et al. 1998, Chang et al. 1999, Stephens et al. 2004). Stan-dard protocols for fish virology suggest that the best organs for virus screening are pools of spleen, trunk kidney, and brain tissues (USFWS and AFS-FHS 2004). Pools of these organs would have been positive in all of our cases, with the brain apparently only being re-quired for 1 positive fish (1a in Table 3). The results from gill tissue testing (Table 3) are interesting in that 2 of 4 groups of positive fish were strongly gill positive while the other groups were negative. This is probably more a result of an intense general viremia in groups 2 and 4 (Table 3) than it is indicative of different disease mechanisms among the 4 cases. Virus detected in gill samples may also have resulted from adherence of waterborne virus to gill tissues. It would be interesting to do further studies of organ distribution over time fol-lowing CyHV-2 infection, but in the present study we chose to limit our investigation to fish with naturally occurring HVHN.In the present study, we have chosen to report some of our results as copy numbers per µg of total DNA template. Reporting the results as copy number per mg of tissue would be problematic because of differences in DNA extraction efficiency among different organ types, and due to the effects of sample size and quality. While we find our copies for µg units to be very useful in comparing levels of infection, others may wish to report values on a per host cell basis. This can be approximated by dividing the number of µg of DNA tested by the molecular weight of the goldfish genome, or by doing a parallel quantitative PCR assay for a goldfish gene (Gilad et al. 2004). We did not use a gold-fish gene in parallel because running the additional assays almost doubles requirements for machine time, labor, and reagents. Attempts to reduce the time and expense by using a duplex reaction for CyHV-2 and the common carp glucokinase gene (Gilad et al. 2004) were unsuccessful because the high copy number of the glucokinase gene out-competed the CyHV-2reaction, producing a loss of CyHV-2 sensitivity (data not shown).Application of our assay to healthy and moribund fish served not only to validate the assay, but also to provide some very interesting insights into HVHN dis-ease and the potential for CyHV-2 latency. Studies looking for latency in other fish viruses have proven very difficult and copy numbers of KHV (CyHV-3) drop to levels almost undetectable by quantitative PCR within 62 d post infection (Gilad et al. 2004). Detection of latency of IcHV-1 has not been reported quantita-tively, but detection of the viral genome by regular PCR required very sensitive nested reactions (Gray et al. 1999). This supports a conclusion that both of those viruses are present only in very low copy numbers in fish without clinical disease. Surprisingly, we were able to easily detect CyHV-2 in asymptomatic finger-ling goldfish and even in broodfish that were several years old (Table 4). While we have not formally demonstrated that these cases involve latent infec-tions, the high prevalence of the virus in fish of all ages, including young of the year, makes it likely that in broodfish we are detecting CyHV-2 at several years post infection. This implies that the CyHV-2 virus is present in a higher number in asymptomatic fish than are the other fish herpesviruses.Two of the groups of apparently healthy goldfish fin-gerlings tested for CyHV-2 in our assay produced sur-prisingly high copy numbers (Table 4). Both of these groups of fish were sampled during the spring when HVHN is most likely to occur and both were shipped overnight in boxes with oxygen. It may be that the shipping stress triggered the onset of acute HVHN dis-ease in these fish, but that they were not yet showing clinical signs at necropsy. It is also possible that the dis-ease was developing before the fish were sampled and shipped, but the breeders supplying the fish reported no HVHN-like losses in those fish that remained behind in ponds on their facilities.The importance of CyHV-2 in aquaculture is still unclear but there is now enough information to specu-late on similarities to other fish herpesviruses. KHV is highly pathogenic, producing high mortality in ex-posed fish of all ages. Exposures outside of the temper-ature optimum of the disease seem to often induce a carrier state that develops into acute disease when temperatures enter the permissive range (Hedrick et al. 2000). CCV is very different and appears to have a very high incidence in channel catfish populations but only rarely produces disease, which occurs only in young of the year fish during periods of hot weather, often combined with other stressors like handling (Plumb 1978, Gray et al. 1999). Given that CyHV-2 is very widespread and that diagnoses are rare, it is tempting to assume that HVHN is more like CCV dis-142Goodwin et al.: Detection of Cyprinid herpesvirus2 by qPCRease than KHV, but the prior lack of good testing meth-ods for HVHN may have led to an underestimation of its importance. Some breeders do report that they have experienced significant fall mortalities in goldfish, and that anemia often appeared to be involved.For diagnostic laboratories without access to real time PCR machines, we also tested our primer set for conventional PCR. Using this assay and electrophore-sis to detect products in ethidium bromide stained agarose gels, we have shown that the assay does cross-react with CyHV-1 but not with CyHV-3 or IcHV-1. This implies that much of the specificity of the assay is attributable to the Taqman probe (where 5 mismatches occurred between the probe sequence and that of CyHV-1; Fig. 2) and not to the primers. The occurrence of this cross-reaction with CyHV-1 is not ideal, but CyHV-1 is a koi and common carp pathogen that has not been detected in goldfish. Thus, while a standard PCR assay needs to be validated for diagnostic labora-tories without access to quantitative PCR equipment, our primers may be useful for the interim in standard PCR for the diagnosis of acute disease in goldfish. Our quantitative PCR method will facilitate future studies on both the impact of CyHV-2 and on its control and eradication. If breeders are truly experiencing sig-nificant mortality from HVHN, then farm-level eradi-cation efforts may be warranted. However, the success of those efforts cannot be guaranteed until it is known if CyHV-2 is vertically transmitted and if that transmis-sion is inside or on the outside of the gametes. We are currently working to answer this question.LITERATURE CITEDBricknell IR, King JA, Bowden TJ, Ellis AE (1999) Duration of protective antibodies, and the correlation with protection in Atlantic salmon (Salmo salar L.), following vaccination with an Aeromonas salmonicida vaccine containing iron-regulated outer membrane proteins and secretory poly-saccharide. Fish Shellfish Immunol 9:139–151Chang PH, Lee SH, Chiang HC, Jong MH (1999) Epizootic of herpes-like virus infection in goldfish, Carassius auratus in Taiwan. Fish Pathol 34:209–210Cohrs RJ, Gilden DH (2001) Human herpesvirus latency.Brain Pathol 11:465–74Eggset G, Mikkelsen H, Killie JEA (1997) Immunocompe-tence and duration of immunity against Vibrio salmoni-cida and Aeromonas salmonicid a after vaccination of Atlantic salmon (Salmo salar L.) at low and high tempera-tures. Fish Shellfish Immunol 7:247–260Gilad O, Yun S, Zagmutt-Vergara FJ, Leutenegger CM, Bercovier H, Hedrick RP (2004) Concentrations of a koi herpesvirus (KHV) in tissues of experimentally infected Cyprinus carpio koi as assessed by real-time TaqManPCR. Dis Aquat Org 60:179–187Goodwin AE, Khoo L, LaPatra SE, Bonar C, Key DW, Garner M, Hanson L(2006) Goldfish hematopoietic necrosis her-pesvirus (Cyprinid herpesvirus2) in the USA: molecular confirmation of isolates from diseased fish. J Aquat Anim Health 18:11–18Gray WL, Williams RJ, Griffin BR (1999) Detection of channel catfish virus DNA in acutely infected channel catfish, Ictalurus punctatus(Rafinesque), using the polymerase chain reaction. J Fish Dis 22:111–116Groff JM, LaPatra SE, Munn RJ, Zinkl JG (1998) A viral epi-zootic in cultured populations of juvenile goldfish due to a putative herpesvirus etiology. J Vet Diag Invest 10: 375–378Hanson LA, Rudis MR, Petrie-Hanson L (2004) Susceptibility of channel catfish fry to Channel Catfish Virus (CCV) challenge increases with age. Dis Aquat Org 62:27–34 Hedrick RP, Gilad O, Yun S, Spangenberg JV and 5 others (2000) A herpesvirus associate with mass mortality of juve-nile and adult koi, a strain of a common carp. J Aquat Anim Health 12:44–57Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 10:986–994Jung SJ, Miyazaki T (1995) Herpesviral haematopoietic necrosis of goldfish, Carassius auratus(L.). J Fish Dis 18: 211–220Kamal MK, Lepisto AJ, Hendricks RL (2004) Immunity to latent viral infection: many skirmishes but few fatalities.Trends Immunol 25:5230–5234Lamers CHJ, de Haas MJH, van Muiswinkel WB (1985) The reaction of the immune system of fish to vaccination: development of immunological memory in carp, Cyprinus carpio L., following direct immersion in Aeromonas hydro-phila bacterin. J Fish Dis 8:253–262Li X, Fukuda H (2003) In vitro culture of goldfish cell sensitive to goldfish herpesvirus. J Shanghai Fisheries Univ (Shang-hai Shuichan Daxue Xuebao) 12:12–18Mackay IM, Arden KE, Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Res 30:1292–1305Plumb JA (1978) Epizootiology of channel catfish virus dis-ease. Mar Fish Rev 40:26–29Stephens FJ, Raidal SR, Jones B (2004) Haematopoietic ne-crosis in a goldfish (Carassius auratus)associated with an agent morphologically similar to herpesvirus. Aust Vet J 82:167–169Stingley RL, Griffin BR, Gray WL (2003) Channel catfish virus gene expression in experimentally infected channel catfish, Ictalurus punctatus(Rafinesque). J Fish Dis 26:487–493 USFWS and AFS-FHS (U.S. Fish and Wildlife Service and American Fisheries Society – Fish Health Section) (2004) Standard procedures for aquatic animal health inspec-tions. In: AFS-FHS. FHS blue book: suggested procedures for the detection and identification of certain finfish and shellfish pathogens, 2004 edn. AFS-FHS, Bethesda, MD (available as CD)Vestergaard PE, Jørgensen RD (1982) Egtved virus: tempera-ture-dependent immune response of trout to infection with low-virulence virus. J Fish Dis 5:47–55Waltzek TB, Kelley G, Stone DM, Way K, Hanso L, Fukuda H, Davison AJ, Hedrick RP (2005) Koi herpesvirus representsa third cyprinid herpesvirus (CyHV-3) in the family Her-pesviridae. J Gen Virol 86:1659–1667143Editorial responsibility: Jo-Ann Leong, Kaneohe, Hawaii, USA Submitted: July 12, 2005; Accepted: December 9, 2005 Proofs received from author(s): March 15, 2006。

相关文档
最新文档