辽宁省大连市2015届高三第一次模拟考试数学(文)试题(扫描版,word版答案)
(完整word版)2018-2019高三第一次模拟试题文科数学
高三年级第一次模拟考试60分.在每小题给出的四个选项中,有且合 题目要畚考公式:样本败据x lt 鬲的标准差 尸¥门如一訝+他— 英叩丘为样車屮均数柱体的体积公式Y=*其中/为底!ftl 曲积・h 为海341(1)复数 I ~i = (A) 1+2i (B) 1-2i(C) 2-i (D) 2+i⑵函数的定义域为(A) (-1,2) (B) (0, 2] (C) (0, 2) (D) (-1,2] ⑶ 己知命题p :办I 砒+ llX ,则了为 锥体的体积公式v=*h 乩中$为底面面枳,h 为商 耶的親血祝*休枳公式$=4庆,評It 中月为球的半牲(A) (C)函数|;宀林匚阴的图象可以由函数'尸沁酬的图象 (A) 64 (B) 31 (C) 32 (D) 63(7) 已知某几何体的三视图如图所示,则其表面积为 (A)右+4观(B)「(C) 2 (D) 8一、选择题:本大题共12小题,毎小题5〕 分,共 只有一 项 符(B)(D)(A) (C)向左平移个单位得到JL个单位得到(B)向右平移3个单位得到 向左平移设变量x 、y 满足约束条件 ⑸ (A) 3 (B) 2 (C) 1 (D) 5(D)向右平移个单位得到g+2y —2 鼻(h[2x +工一7冬6则的最小值为(6)等比数列{an }的公比a>1,血,则-血+口 $+他"卜彌=(8) 算法如图,若输入 m=210,n= 119,则输出的n 为 (A) 2 (B) 3 (C) 7 (D) 11(9) 在 中,/恥C 权」,AB=2, AC=3,则 = (A) 10 (B)-10(C) -4 (D) 4(10) 点A 、B 、C D 均在同一球面上,其中 的体积为(11) 已知何m 2 '黑⑴-代2侧集合」「等于D |『工=对止卡(B)卜: (12) 抛物线 的焦点为F,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为 的重心,则直线 BC 的方程为 (A)龙卄一0 (B): tT '■(C)Ly=0 (D) | It \.■二、填空题:本大题共 4小题,每小题5分,共20分.(13) 班主任为了对本班学生的考试成绩进行分析,从全班 50名同学中按男生、女生用分层 抽样的方法随机地抽取一个容量为 10的样本进行分析•己知抽取的样本中男生人数为 6,则班内女生人数为 ________ .Lif ]町= :—(14) 函数.文+】(X 〉0)的值域是 _________ .(15) 在数列1禺1中,尙=1,如 厂% = 2门丨,则数列的通项 □」= _________ .—7 --- F ------(16) —P 尺的一个顶点P ( 7,12)在双曲线 产 3上,另外两顶点 F1、F2为该双曲线是正三角形,AD 丄平面 AD=2AB=6则该球(D)(C) 卜 j(—Ak 土(D)(A) (B) 15 (C)的左、右焦点,则屮八几的内心的横坐标为 __________ .三、解答题:本大题共 6小题,共70分.解答应写出文字说明、证明过程或演算步骤 (17) (本小题满分12分)在厶ABC 中,角A 、B C 的对边分别为a 、b 、c, A=2B,呦占」5 ' (I ) 求cosC 的值;[c\(II)求的值•(18) (本小题满分12分)某媒体对“男女同龄退休”这一公众关注的问题进行了民意调查, 右表是在某单位得到的数据(人数)•(I )能否有90%以上的把握认为对这一问题的看法与性别有关?(II)从反对“男女同龄退休”的甲、 乙等6名男士中选出2人进行陈述,求甲、乙至少有- 人被选出的概率.反对 合计|男 5 6 H 1 女II1 3 "14 合计 16925(19) (本小题满分12分)如图,在三棱柱.A 尅匚 "Q 中,CC1丄底面ABC 底面是边长为2的正三角形,M N 、G 分别是棱CC1 AB, BC 的中点. (I ) 求证:CN//平面AMB1 (II)若X 严2迄,求证:平面AMG.(20) (本小题满分12 分)X'设函数:「—L(I )当a=0时,求曲线在点(1, f(1))处的切线 方程;P(K 2^k) 0.25 Od U 0J0 kL323 2.072 2.706__ ,讯耐一比严 ____(a+附:(II )讨论f(x)的单调性•(21) (本小题满分12分)中心在原点0,焦点F1、F2在x 轴上的椭圆E 经过点C(2, 2),且 ―二◎土::(I) 求椭圆E 的方程;(II) 垂直于0C 的直线I 与椭圆E 交于A B 两点,当以AB 为直径的圆P 与y 轴相切时,求 直线I 的方程和圆P 的方程•请考生在第(22)、( 23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分 •作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑 •(22) (本小题满分10分)选修4-1:几何证明选讲如图,AB 是圆0的直径,以B 为圆心的圆B 与圆0的一个交点为P.过点A 作直线交圆Q 于 点交圆B 于点M N. (I )求证:QM=QNi110(II)设圆0的半径为2,圆B 的半径为1,当AM= 时,求MN 的长.(23) (本小题满分10分)选修4-4:坐标系与参数 方程 以直角坐标系的原点 O 为极点,x 轴正半轴为极轴,.已知直线I 的参数方程为 (t 为参数,(I )求曲线C 的直角坐标方程;(II)设直线I 与曲线C 相交于A B 两点,当a 变化时,求|AB|的最小值.(24) (本小题满分10分)选修4-5:不等式选讲 设曲线C 的极坐标方程为2cos 0 L朋& *并在两种坐标系中取相同的长度单位(I) 求不等式的解集S;(II) 若关于x不等式应总=1我=;『;:纂釧有解,求参数t的取值范围(18) 解: 由此可知,有90%的把握认为对这一问题的看法与性别有关.…5分(H)记反对“男女同龄退休”的6男士为ai , i = 1, 2,…,6,其中甲、乙分别为a2,从中选出2人的不同情形为: a1a2, a1a3, a1a4, a1a5, a1a6, a2a3, a2a4, a2a5 , a2a6, a3a4, a3a5, a3a6 , a4a5, a4a6, a5a6,…9分共15种可能,其中甲、乙至少有1人的情形有9种,93 所求概率为P = .…12分(19)解:(I)设 AB1的中点为 P ,连结NP 、MP1 1•/ CM^ — A1 , NP^— A1 , • CM^ NP,2 2文科数学参考答案 一、 选择题: A 卷: ADCDC B 卷: BCDAB 二、 填空题: (13) 20 三、 解答题: (17)解:DACB ADDCAB(14) BB CA(-1,1)(15) n2(16) 1(I): B =(0,亍),••• cosB = 1— s in 2B =•/ A = 2B ,「.4si nA = 2si nBcosB = , cosA = cos2B = 1 — 2si n2B = 5 , ••• cosC = cos[ —(A + B)] = — cos(A + B) = si nAsi nB — cosAcosB =— 2.525 'sinC =1 — cos2C=11 .525 ,根据由正弦定理,c si nC 11b sinB 5…12分(I) K2= 25 X (5 X 3— 6 X11)216 X 9X 11 X 142.932 > 2.706 a1 ,• CNPK是平行四边形,• CN// MP•/ CN平面AMB1 MP平面AMB1 • CN//平面AMB1 …4分(n)v cc 仏平面 ABC •••平面 CC1B1E L 平面 ABC , •/ AG 丄 BC, • AGL 平面 CC1B1B • B1M L AG •/ CC1 丄平面 ABC 平面 A1B1C1 //平面 ABC •- CC L AC, CC1 丄 B1C1 ,在 Rt △ MCA 中 , AM k CM 即 AC2= 6. 同理,B1M=6.•/ BB1/ CC1, • BB1 丄平面 ABC •- BB1 丄 AB, • AB1= B1B2+ AB2= C1C2+ AB2= 2.3 , • AM2+ B1M2= AB2, • B1ML AM 又 AG A AM= A , • B1ML 平面 AMG (20)解:, , x2 x(x — 2) (I)当 a = 0 时,f(x) = , f (x)=—亠exex1 1f(i) =T ,f (i) =-^,曲线y = f(x)在点(1 , f(1))处的切线方程为(2x — a)ex — (x2 — ax 土 a)ex e2x(1 )若 a = 2,贝U f (x) w 0 , f(x)在(一a , +s )单调递减. …7 分(2 )若 a v 2,贝 U…10分 …12分1y =肓(x — 1) +(x — 2)(x — a)exA Bf (x)当x€ ( —a , a)或x€ (2 , +a )时,f (x) v 0,当x € (a , 2)时,f (x) > 0 , 此时f(x)在(—a , a)和(2 , +a )单调递减,在(a , 2)单调递增.(3)若a> 2,贝U当x€ ( —a , 2)或x€ (a , +a )时,f (x) v 0,当x € (2 , a)时,f (x) >0 , 此时f(x)在(—a , 2)和(a , +a )单调递减,在(2 , a)单调递增. …12分x2 y2(21)解:(I)设椭圆E的方程为02+ b2 = 1 (a>b> 0),贝y a2+ b2记c= ,a2—b2 ,不妨设F1( — c , 0) , F2(c , 0),则C f1= ( —c—2, —2) , C f2= (c —2, —2),则C f1 • C f2= 8 —c2 = 2 , c2 = 6,即a2 —b2= 6.由①、②得a2= 12, b2= 6. 当m= 3时,直线I 方程为y =— x + 3, 此时,x1 + x2 = 4,圆心为(2 , 1),半径为2,圆P 的方程为(x — 2)2 + (y — 1)2 = 4; 同理,当 m=— 3时,直线I 方程为y = — x — 3,圆P 的方程为(x + 2)2 + (y + 1)2 = 4. …12分 (22)解:(I)连结 BM BN BQ BP. •/ B 为小圆的圆心,••• BM= BN 又••• AB 为大圆的直径,• BQL MN , •- QM= QN …4 分 (n)v AB 为大圆的直径,•/ APB= 90 , • AP 为圆B 的切线,• AP2= AM- AN …6分 由已知 AB= 4, PB= 1 , AP2= AB2- PB2= 15,所以曲线C 的直角坐标方程为 y2= 2x .(n)将直线l 的参数方程代入 y2 = 2x ,得t2sin2 a — 2tcos a — 1= 0.所以椭圆E 的方程为 x2 y2 i2+ 6 = 1. (也可通过2a = iCFlI + |C ?2|求出a ) (n)依题意,直线 0C 斜率为1,由此设直线I 的方程为y = — X + m 代入椭圆 E 方程,得 3x2 — 4m 灶2m2- 12= 0. 由△= 16m2- 12(2m2 — 12) = 8(18 — m2),得 m2< 18. 4m 2m2— 12 记 A(x1 , y1)、B(x2 , y2),贝U x1 + x2=^ , x1x2 = -—. 3 3 x1 + x2 圆P 的圆心为(一_, y1 + y2 2 ),半径r = 当圆P 与y 轴相切时, x1 + x2 r = 1 2 1, 2x1x2 = (x1 + x2)2 4 2(2m2 — 12)= 3 = 4m2 —,m2= 9v 18. …10分 (I)由 2cos 0 p = sinr v ,得(p sin 0 )2 = 2 p cos 0, …6分 7 6设A、B两点对应的参数分别为t1、t2,则4C0S2 a 4 2 + = ------------------------ sin4 a sin2 a sin2 a当a =—亍时,|AB|取最小值2 .…10分 (24)解:—x + 3, x v — 3,(I) f(x) = — 3x — 3,— 3<x < 0,x — 3, x >0.如图,函数y = f(x)的图象与直线 y = 7相交于横坐标为 x1 =— 4,x2 = 10的两点, 由此得 S = [ — 4, 10].\ :I…6分(n)由(I )知,f (x )的最小值为一3,则不等式 f(x) + |2t —3| < 0有解必须且只需—3 + |2t — 3| < 0,解得0W t < 3,所以t 的取值范围是[0 , 3]. t1 + t2 = 2C0S a sin2 at1t2 sin2 a :.|AB| = |t1 - t2| = (t1 + t2)2 - 4t1t2 …10分。
2015年东北三省三校高三第一次高考模拟考试 文科数学试卷( Word版含答案最新)
哈尔滨师大附中 2015年高三第一次联合模拟考试文科数学试卷东北师大附中 辽宁省实验中学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求)1.已知集合2{0,},{30,},A b B x x x x Z ==-<∈若AB ≠∅,则b 等于A .1B .2C .3D .1或22.复数212i i+=-A .iB .-iC .2(2)i +D .1 + i3.ΔABC 的内角A 、B 、C 的对边分别为a 、b 、c ,则“a > b ”是“cos2A < cos2B ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.向量a ,b 满足||1=a ,||2=b ,()(2)+⊥-a b a b ,则向量a 与b 的夹角为A .45°B .60°C .90°D .120°5.实数m 是区间[]0,6上的随机数,则关于x 的方程240x mx -+=有实根的概率为A .14B .13C .12D .236.已知三棱锥的三视图,则该三棱锥的体积是A .63B .263C .362D .62(第6题图)2222 2正视图侧视图俯视图7.椭圆2214x y +=两个焦点分别是F 1、F 2圆上任意一点,则12PF PF ⋅的取值范围是A .[]1,4B .[]1,3C .[]2,1-D .[]1,1-8.半径为1的球面上有四个点A 、B 、C 、D ,O 为球心,AB 过点O ,CA = CB ,DA = DB ,DC = 1,则三棱锥A - BCD 的体积为9.已知数列{}n a 满足312ln ln ln ln 32258312n a a a a n n +⋅⋅⋅⋅=-(*n N ∈),则a 10 =A .e 26B .e 29C .e 32D .e 3510.执行如图所示的程序框图,要使输出的S 值小于1,则输入的t 值不能是下面的A .8 A .3633C .3 6B .9C .10D .1111.若函数32()236f x x mx x =-+在区间()2,+∞上为增函数,则实数m 的取值范围是A .(),2-∞B .(],2-∞C .5(,)2-∞D .5(,]2-∞12.函数()lg(1)sin2f x x x =+-的零点个数为A .9B .10C .11D .12第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。
2015年大连市重点高中联考一模
1, ( x为有理数) 0, ( x为无理数)
,则 f ( x) 为偶函数
②函数 y ( x 1) 2 1, ( x 0) 与函数 y 1 x 1, ( x 1) 互为反函数.
③函数 f ( x) e x x 2 ( x R ) 在 x=2 处取得极大值 ④已知函数 y f ( x) 的图像在 M (1, f (1)) 处的切线方程是 y
B 'C ' x ' 轴,若 A' B ' = B 'C ' 3 ,设 ABC 的面积为 S,则 A' B 'C ' 的面积为 S ' ,记,执
行如图②的框图,则输出 T 的值( )
A.12 B.10 C.9 D.6
7.在 ABC 中,若 A.直角三角形 B.等腰三角形
a 2 tan A ,则 ABC 为() b 2 tan B
1 x 2 ,则 2
f (1) f (1)=3 .其中真命题的代号是:______________(写出所以真命题的代号).
二、 解答题:(本大题共 6 小题,满分 70 分,解答应写出文字说明,证明过程或 演 的等差数列,且 an 1 an (n N ) ,若 a3 a7 2 3a9 成等比数 , , 列. (1) 求数列 an 的通项公式; (2) 设数列 an 的前 n 项和为 S n , f (n) 最大?并求出 f (n) 的最大值.
3 3 a 6
B.
2 3 a 3 a3 3
C.
a3 D. 6
12. 已知 f ( x)
x ( x R ) ,若关于 x 的方程 f 2 ( x) mf ( x) m 1 0 恰好有 4 个不 x e
辽宁师范大学附属中学2015届高三模拟考试(精品卷) 数学(文)试题(word版)
2015年辽师大附中高三年级模拟考试(精品卷)数学文科试卷命题人:高三数学文科备课组一.选择题(每题5分,共60分) 1.设集合}0{,},{,}ln ,2{=⋂==B A y x B x A 若,则y 的值为( )A .eB .1C .e1 D .0 2.若复数Z 满足(1+i )Z=i ,则Z 的虚部为( ) A .i 21-B .21-C . 21D . i 21 3.下列结论正确的是( )A .若向量// ,则存在唯一实数λλ=使B .已知向量,为非零向量,则“,的夹角为钝角”的充要条件是“0<⋅”C .“若21cos ,3==θπθ则”的否命题为“若21cos ,3≠≠θπθ则” D .若命题01,:,01,:22>+-∈∀⌝<+-∈∃x x R x p x x R x p 则 4.将函数f(x)=sin ωx(其中ω>0)的图像向右平移π4个单位长度,所得图像经过点⎝⎛⎭⎫3π4,0,则ω的最小值是( ) A.13B .1 C.53D .25.已知向量c b a c b k a ⊥-===)32,)1,2(,)4,1(,)3,(且( ,则实数k 的值为( ) A .29-B .0C .3D .2156.执行如图所示的程序框图,输出的S 值为 ( )A.9B.16C.25D.36 7.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为( )(A (B(C (D )38.已知不等式组⎪⎩⎪⎨⎧≤-≥-≥+224x y x y x ,表示的平面区域为D ,点)0,1(),0,0(A O .若点M 是D 上的动)9.在△ABC 中,cos 2B 2=a +c2c (a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A . 直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形10.已知数列{a n }的通项公式a n =log 2n +1n +2(n ∈N *),设{a n }的前n 项和为S n ,则使S n <-5成立的自然数n ( )A .有最大值63B .有最小值63C .有最大值31D .有最小值3111.已知F 2,F 1是双曲线)0,0(12222>>=-b a by a y 的上,下两个焦点,点F 2关于渐近线的对称点恰好落在以F 1为圆心,|OF 1|为半径的圆上,则双曲线的离心率为( )A . 2B .3C . 3D .212.已知)(x f 的定义域为),0(+∞,)()(x f x f 为'的导函数,且满足)()(x f x x f '-<,则不等式)1()1()1(2-->+x f x x f 的解集是 ( )A .)1,0(B .),1(+∞C .(1,2)D .),2(+∞ 二.填空题(每题5分,共20分) 13一元二次不等式)(022b a b x ax >>++的解集为⎭⎬⎫⎩⎨⎧-≠a x x 1|,则b a b a -+22的最小值为__________14. 已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若 13,4,,12,A B A C A B A C A A ==⊥=,则球O 的半径为 __________.15.设S n 是数列{a n }的前n 项和,若S 2nS n(n ∈N *)是非零常数,则称数列{a n }为“和等比数列”.若数列{2b n }是首项为2,公比为4的等比数列,则数列{b n }__________(填“是”或“不是”)“和等比数列”.16数()2log 1f x a x =+(0a ≠),定义函数()()(),0F ,0f x x x f x x >⎧⎪=⎨-<⎪⎩,给出下列命题:①()()F x f x =;②函数()F x 是偶函数;③当0a <时,若01m n <<<,则有()()F F 0m n -<成立;④当0a >时,函数()F 2y x =-有4个零点.其中正确命题的个数为 .三.解答题17.(本题12分) 设n S 为数列{n a }的前项和,已知01≠a ,2n n S S a a ∙=-11,∈n N *(Ⅰ)求1a ,2a ,并求数列{n a }的通项公式; (Ⅱ) 求数列{n na }的前n 项和。
2015届高三一诊模拟数学(文)试题及答案
一 .选择题 (共 10 小题 ,每小题 5 分 ,满分 50 分 )
1.已知集合 A { x || x 1| 2} , B { x | log 2 x 2} ,则 A B (
A. ( 1,4)
B. ( 1,3)
C. (0,3)
a 3i
2.若复数
(a
1 2i
A. 6
,对其加工的零件进行检测 ,若两人
加工的合格零件个数之和大于 17 ,则称该车间“质量合格” ,求该车间“质量合格”的概率 .[来源:]
(注 :方差
s2=
1 [(
x1
x)2
( x2
x) 2
n
(xn x)2] ,其中 x 为数据 x1, x2 , , xn 的平均数 ).
19.(本小题满分 12 分 )
6
x02 ,
∴方程①为 x2 2 x0 x x02 0 ,即
0 ,∴直线 l 与椭圆 C 有唯一的公共点 .
(ⅱ )∵ F ( 2,0) ,∴过点 F 且与 l 垂直的直线方程为 3 y0 y x0x 6 0 .
∵联立方程组
x
3y0 y x0x 6 0
,∴
x0 x 3y0 y 6 0
y
6x0 18 y02 x0 2 9 y02
③ x2 f ( x1) x1 f ( x2 ) ;
④当 ln x1 1时 , x1 f ( x1) x2 f ( x2 ) 2x2 f (x1) .
其中所有正确命题的序号为
.
三 .解答题 (本大题共 6 小题 ,共 75 分 .解答应写出文字说明、证明过程或演算步骤 )
16.(本小题满分 12 分 )
l ,垂足为 A , | PF | 4,则直线 AF 的倾斜角等于 ( )
东北三三校2015届高三第一次高考模拟考试文科数学((扫描版含答案))
2015年东北三省三校第一次高考模拟考试文科数学参考答案二、填空题13.4030 14.-6 15.-16 16.②③④三、解答题 17.解:(1)设ΔABC 中,角A 、B 、C 的对边分别为 a 、b 、c ,则由已知:1sin 22bc θ=,0cos 4bcθ<≤,……4分可得,tan 1θ≥,所以:[,)42ππθ∈ ……6分(2)2()2sin ()[1cos(2)]42f ππθθθθθ=+=-+(1sin 2)sin 212sin(2)13πθθθθθ=+=+=-+ ……8分∵[,)42ππθ∈,∴22[,)363πππθ-∈,∴π22sin(2)133θ≤-+≤即当512πθ=时,max ()3f θ=;当4πθ=时,min ()2f θ= 所以:函数()f θ的取值范围是[2,3] ……12分 18.(本小题满分12分) 解:(1)150.00350100x x⨯=∴= 15401010035y y +++=∴= ……2分 400.00810050=⨯ 350.00710050=⨯ 100.00210050=⨯(3/g m μ)DCBAFE……5分(2)设A 市空气质量状况属于轻度污染3个监测点为1,2,3,空气质量状况属于良的2个监测点为4,5,从中任取2个的基本事件分别为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种, ……8分 其中事件A“其中至少有一个为良”包含的 基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)共7种, ……10分所以事件A“其中至少有一个为良”发生的概率是7()10P A =. ……12分 19.(本小题满分12分)(1)证明: ABCD 是菱形,//BC AD ∴. 又⊄BC 平面ADE ,AD ⊂平面ADE ,//BC ∴平面ADE . ……2分 又BDEF 是正方形,//BF DE ∴.BF ⊄平面ADE ,DE ⊂平面ADE ,//BF ∴平面ADE . ……4分 BC ⊂平面BCF ,BF ⊂平面BCF BC BF B =,∴平面BCF //平面AED .由于CF ⊂平面BCF ,知//CF 平面AED . ……6分 (2)解:连接AC ,记AC BD O =.ABCD 是菱形,AC ⊥BD ,且AO = BO .由DE ⊥平面ABCD ,AC ⊂平面ABCD ,DE AC ⊥.DE ⊂平面BDEF ,BD ⊂平面BDEF ,DE BD D =,∴AC ⊥平面BDEF 于O ,即AO 为四棱锥A BDEF -的高.……9分由ABCD 是菱形,60BCD ∠=,则ABD ∆为等边三角形,由AE =1AD DE ==,2AO =,1BDEF S =,136BDEF BDEF V S AO =⋅=, 23BDEF V V ==. ……12分 20.(本小题满分12分)解:(1)设动圆圆心坐标为(,)x y ,半径为r ,由题可知2222222(2)42x y r y x x r⎧-+=⎪⇒=⎨+=⎪⎩; ∴动圆圆心的轨迹方程为24y x = ……4分(2)设直线1l 斜率为k ,则12:2(1);:2(1).l y k x l y k x -=--=-- 点P (1,2)在抛物线24y x =上22448402(1)y xky y k y k x ⎧=∴⇒-+-=⎨-=-⎩设1122(,),(,)A x y B x y ,0>∆恒成立,即(),012>-k 有1≠k118442,2,,P P kky y y y kk--∴==∴=代入直线方程可得212(2)k x k-= ……6分 同理可得 2222(2)42,k kx y k k++==- ……7分 212221242421(2)(2)ABk ky y k k k k k x x k +----===-+--- ……9分 不妨设:AB l y x b =-+. 因为直线AB 与圆C2=解得3b =或1, 当3b =时, 直线AB 过点P ,舍 当1b =时, 由2216104y x x x y x=-+⎧⇒-+=⎨=⎩;32,||8AB ∆=P 到直线AB的距离为d =PAB的面积为 ……12分21.解:(1)由已知:()ln 12(0)f x x ax x '=++>,切点(1,)P a ……1分 切线方程:(21)(1)y a a x -=+-,把(0,2)-代入得:a = 1 ……3分 (2)(I )依题意:()0f x '=有两个不等实根设()ln 21g x x ax =++,则:1()2(0)g x a x x'=+> ①当0a ≥时:()0g x '>,所以()g x 是增函数,不符合题意; ……5分 ②当0a <时:由()0g x '=得:102x a=-> 列表如下:依题意:11()ln()022g a a -=->,解得:102a -<<综上所求:102a -<<,得证; ……8分(注:以下证明为补充证明此问的充要性,可使其证明更严谨,以此作为参考,学生证明步骤写出上述即可)方法一:当0>x 且0→x 时-∞→x ln ,112→+ax ,∴当0>x 且0→x 时-∞→)(x g)(x g ∴在1(0,)2a-上必有一个零点. 当a x 21->时,设x x x h -=ln )(,xx x x x h 22211)(/-=-=4>∴x 时,024ln )4()(<-=<h x h 即x x <ln 4>∴x 时,1221ln )(++<++=ax x ax x x g设x t =,12122++=++t at ax x 由0a <,+∞→x 时,0122<++t at0)(<∴x g )(x g ∴在1(,)2a-+∞上有一个零点 综上,函数)(x f y =有两个极值点时021<<-a ,得证.方法二2ln )(ax x x x f +=有两个极值点,即/()ln 12(0)f x x ax x =++>有两个零点,即xx a 1ln 2+=-有两不同实根. 设x x x h 1ln )(+=,2/ln )(x xx h -=,当0)(/>x h 时,10<<x ;当0)(/<x h 时,1>x当1=x 时)(x h 有极大值也是最大值为1)1(=f 12<-∴a ,2->a0)1(=eh ,故)(x h 在()1,0有一个零点当1>x 时,01ln 0ln >+∴>x x x 且011ln lim lim ==++∞→+∞→xx x x x 1>∴x 时1)1()(0=<<h x h0,02<∴>-∴a a综上函数)(x f y =有两个极值点时021<<-a ,得证.② 证明:由①知:/(),()f x f x 变化如下:由表可知:()f x 在12[,]x x 上为增函数,又/(1)(1)210f g a ==+> ,故211x x << (10)分所以:21)1()(,)1()(21->=><=<a f x f a f x f 即1()0f x <,21()2f x >-. ……12分22.选修4-1:几何证明选讲证明:(1)连结OE ,∵点D 是BC 的中点,点O 是AB 的中点,∴ OD 平行且等于12AC ,∴∠A =∠BOD , ∠AEO = ∠EOD , ∵OA = OE ,∴∠A = ∠AEO ,∴∠BOD = ∠EOD ……3分 在ΔEOD 和ΔBOD 中,∵OE = OB ,∠BOD= ∠EOD ,OD = OD , ∴ΔEOD ≌ ΔBOD ,∴∠OED = ∠OBD = 90°,即OE ⊥BD∵是圆O 上一点,∴DE 是圆O 的切线 ……5分 (II )延长DO 交圆O 于点F ∵ΔEOD ≌ ΔBOD ,∴DE = DB ,∵点D 是BC 的中点,∴BC = 2DB ,FC D MO BEA∵DE 、DB 是圆O 的切线,∴DE = DB ,∴DE ·BC = DE ·2DB = 2DE 2 ……7分 ∵AC = 2OD ,AB = 2OF ∴DM · AC + DM · AB = DM · (AC + AB ) = DM · (2OD + 2OF ) = 2DM · DF ∵DE 是圆O 的切线,DF 是圆O 的割线, ∴DE 2 = DM · DF ,∴DE · BC = DM · AC + DM · AB ……10分 23.选修4-4: 坐标系与参数方程解:(1)由 2cos ρθ=,得:22cos ρρθ=,∴ 222x y x +=,即22(1)1x y -+=, ∴曲线C 的直角坐标方程为22(1)1x y -+= ……3分由12x m y t⎧=+⎪⎪⎨⎪=⎪⎩,得x m +,即0x m -=,∴直线l的普通方程为0x m -= ……5分 (2)将12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩代入22(1)1x y -+=,得:221112m t ⎫⎛⎫+-+=⎪ ⎪⎪⎝⎭⎝⎭,整理得:221)20t m t m m +-+-=,由0∆>,即223(1)4(2)0m m m --->,解得:-1 < m < 3设t 1、t 2是上述方程的两实根,则121)t t m +=-,2122t t m m =- ……8分 又直线l 过点(,0)P m ,由上式及t 的几何意义得212|||||||2|1PA PB t t m m ⋅==-=,解得:1m =或1m =,都符合-1 < m < 3, 因此实数m 的值为1或11 ……10分 24.选修4-5: 不等式选讲解:(1)当x < -2时,()|21||2|1223f x x x x x x =--+=-++=-+, ()0f x >,即30x -+>,解得3x <,又2x <-,∴2x <-;当122x -≤≤时,()|21||2|12231f x x x x x x =--+=---=--, ()0f x >,即310x -->,解得13x <-,又122x -≤≤,∴123x -≤<-;当12x >时,()|21||2|2123f x x x x x x =--+=---=-, ()0f x >,即30x ->,解得3x >,又12x >,∴3x >. ……3分 综上,不等式()0f x >的解集为1,(3,)3⎛⎫-∞-+∞ ⎪⎝⎭. ……5分(2)3,21()|21||2|31,2213,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=---≤≤⎨⎪⎪->⎪⎩ ∴min 15()22f x f ⎛⎫==- ⎪⎝⎭. ……8分 ∵0x R ∃∈,使得20()24f x m m +<,∴2min 542()2m m f x ->=-, 整理得:24850m m --<,解得:1522m -<<,因此m 的取值范围是15(,)22-. ……10分。
辽宁省大连市第四十八中学2015届高三第一次模拟考试数学(文)试题
辽宁省大连市第四十八中学2015届高三第一次模拟考试数学(文)试题2.设20.34log 4log 30.3a b c -===,,,则a ,b ,c 大小关系是( ) A .a <b <c B .a <c <b C .c <b <a D .b <a <c3.已知α∈(π2,π),tan α=-34,则sin(α+π)=( )A.35 B .-35 C.45 D .-45 4.与-525°的终边相同的角可表示为( )A. 525°-k ·360°(k ∈Z )B. 165°+k ·360°(k ∈Z )C. 195°+k ·360°(k ∈Z )D. -195°+k ·360°(k ∈Z ) 5.在△ABC 中,若tanAtanB =tanA +tanB +1,则cosC 的值是 ( )A .-22 B.22 C.12 D .-126.下列命题错误的是( )A.对于命题R x p ∈∃:,使得012<++x x ,则p ⌝为:R x ∈∀,均有012≥++x xB.命题“若0232=+-x x ,则1=x ”的逆否命题为“若1≠x , 则0232≠+-x x ”C.若q p ∧为假命题,则q p ,均为假命题D.“2>x ”是“0232>+-x x ”的充分不必要条件7.已知函数()f x 是奇函数,当0x >时,21()2()log 2f x f x =+,则(2)f -=( ) A.1 B.3 C.1- D.3-8.若cos 2πsin 4αα=⎛⎫- ⎪⎝⎭cos sin αα+的值为( )A.B.12- C.129.将函数sin y x =的图象上所有的点横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动10π个单位长度,所得图象的函数解析式是( )A.sin(2)10y x π=-B.1sin()220y x π=-C.sin(2)5y x π=-D.1sin()210y x π=-10.已知直线0x =和2x π=是函数()sin())f x x x ωϕωϕ=++(0,||2πωϕ><)图象的两条相邻的对称轴,则( )A.()f x 的最小正周期为π,且在(0,)2π上为单调递增函数B.()f x 的最小正周期为π,且在(0,)2π上为单调递减函数C.6πϕ=,在()f x 在(0,)2π上为单调递减函数 D.6πϕ=,在()f x 在(0,)2π上为单调递增函数11.cos85°+sin25°cos30°cos25°=( )A .-32 B.22 C.12D .1 12.定义行列式运算11a b212212a ab a b b =-,将函数(f xsin 2cos 2x x的图象向左平移()0>t t 个单位,所得图象对应的函数为偶函数,则t 的最小值为( ) A .12πB .6πC .512πD .3π第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分。
大连市2015年高三第一次模拟考试文综
大连市2015年高三第一次模拟考试政治试卷参考答案和评分细则第I卷 (选择题,共48分〕本卷共12小题,每题4分,共48分第II卷〔非选择题,共52分〕本卷共2小题,每题26分,共52分38.〔26分〕【参考答案】〔1〕经济信息:长江经济带交通便捷、资源丰富、产业发达,〔具有明显的区位优势〕;市场广阔,开发潜力大,在我国经济发展中具有不可替代的战略地位和战略优势。
〔4分〕作用:加大交通基础设施建设,促进资源合理配置,为地区经济发展创造良好条件;〔2分〕不断提高自主创新能力,促进产业转型升级,推进经济结构战略性调整;〔2分〕提高开放型经济水平,开创新的发展空间,推进区域合作;〔2分〕推进生态文明建设,节约资源和保护环境,增强可持续发展能力;〔2分〕打造新型城镇连绵带,推进中国特色城镇化建设。
〔2分〕〔2〕①坚持以人为本,树立正确的政绩观,整体规划,加强协调;〔3分〕②推进经济建设、生态文明建设,打破行政垄断,有效发挥作用;〔3分〕③坚持科学民主依法决策,审慎用权,防止重复建设;〔3分〕④推进信息公开,增强透明度,优化公共服务。
〔3分【评分细则】〔1〕〔所有对应的评分点不可重复得分〕经济信息:长江经济带交通便捷、资源丰富、产业发达,〔假设考生答出“具有明显的区位优势”亦可〕;〔2分〕市场广阔,开发潜力大,在我国经济发展中具有不可替代的战略地位和战略优势。
〔2分〕作用:加大交通基础设施建设,促进资源合理配置,为地区经济发展创造良好条件;〔2分〕〔假设考生答出“财政促进资源合理配置”这一作用亦可〕不断提高自主创新能力,促进产业转型升级,推进经济结构战略性调整;〔2分〕〔假设考生答出有利于“实施创新驱动发展战略”或“转变经济发展方式”亦可〕提高开放型经济水平,开创新的发展空间,推进区域合作;〔2分〕〔假设考生答出有利于“推进区域协调发展”或“坚持对外开放”之一,均可给2分〕推进生态文明建设,节约资源和保护环境,增强可持续发展能力;〔2分〕〔假设考生答出“有利于建设资源节约型和环境友好型社会”亦可〕打造新型城镇连绵带,推进中国特色城镇化建设。
辽宁省大连市第二十四中学2015年高考模拟考试数学(文)试卷
2015年大连市第二十四中学高考模拟考试数学(文科)试卷注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷一.选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1、设集合{}062≤-+=x x x A ,集合B 为函数11-=x y 的定义域,则=B A ( )A. B. C. D.2、若复数z 满足i iz 42+=,则在复平面内z 对应的点的坐标是( ) A .()4,2 B .()4,2- C .()2,4- D .()2,43、一枚质地均匀的正方体骰子,六个面上分别刻着一点至六点.甲乙两人各掷骰子一次,则甲掷骰子向上的点数大于乙的概率为( ) A .29 B .14 C .512 D .124、变量x 、y 满足条件⎪⎩⎪⎨⎧->≤≤+-1101x y y x ,则22)2(y x +-的最小值为( )A .223 B .5 C .29 D .55、将函数sin()()6y x x R π=+∈的图象上所有的点向左平移4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈C .sin()()212x y x R π=-∈D .5sin()()224x y x R π=+∈6、某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到如下联表:附:22112212211212()n n n n n K n n n n ++++-=,则下列结论正确的是( )A .在犯错误的概率不超过1%的前提下,认为“该校学生能否做到…光盘‟与性别无关”B .有99%以上的把握认为“该校学生能否做到…光盘‟与性别有关”C .在犯错误的概率不超过10%的前提下,认为“该校学生能否做到…光盘‟与性别有关”D .有90%以上的把握认为“该校学生能否做到…光盘‟与性别无关”7、已知向量(sin 2)θ=-,a ,(1cos )θ=,b ,且⊥a b ,则2sin 2cos θθ+的值为 A .1 B .2 C .12D .3 8、如图所示程序框图中,输出=S ( ) A.45 B. 55- C. 66- D. 669、某几何体的三视图如图所示,且该几何体的体积是3, 则正视图中的x 的值是( ) A .2 B .29 C .23D .310、下图可能是下列哪个函数的图象( )A .221xy x =-- B .2sin 41x x xy =+C .2(2)xy x x e =- D .ln x y x=11、已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为12F F 、,这两第8题图第10题图 第9题图条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形。
辽宁省大连市2015届九年级毕业升学第一次模拟考试数学试题(扫描版)
大连市2015年初中毕业升学考试试测(一)数学参考答案与评分标准一、选择题1.D ; 2.A ; 3.C ; 4.B ; 5.C ; 6.C ; 7.B ; 8.D .二、填空题9.a (a -2); 10.110; 11.33; 12.y <-2; 13.41; 14.425>k ; 15.-5; 16.2500α-. 三、解答题17.解:原式=313245++--………………………………………………………8分 =325-. ………………………………………………………………9分18.解:⎪⎩⎪⎨⎧≤->+.265,312x x x 解不等式①得:x >1.…………………………………………………………………3分 解不等式②得:x ≤2.…………………………………………………………………6分 ∴不等式组的解集为1<x ≤2. ……………………………………………………9分 19.证明:∵四边形ABCD 是矩形,∴AB =DC ,∠B =∠C .…………………………………4分∵BE =FC ,∴BE +EF =FC +EF ,即BF =EC .………………………6分∴△ABF ≌△DCE .……………………………………8分∴∠F AB =∠EDC . ……………………………………9分20.(1)60,50; ………………………………………………………………………4分(2)200,30,5; …………………………………………………………………10分(3)解:960200100601200=+⨯. ……………………………………………………11分 答:估计全校学生平均每天参加体育锻炼时间不少于1 h 的有960人.…………12分四、解答题21.解:设现在平均每天生产x 台机器,则60540900-=x x .…………………………………………………………………………3分 ∴5(x -60)=3 x .① ②解得x =150........................................................................................6分 检验:当x =150时,x (x -60)≠0. ......................................................7分 ∴原分式方程的解为x =150...................................................................8分 答:现在平均每天生产150台机器. (9)分 22.解:(1)设直线OA 的解析式为y =kx ,则4=15k , 154=k .即x y 154=.………1分 设直线BC 的解析式为y =mx +n ,则⎩⎨⎧=+=+.045,430n m n m 解得⎪⎩⎪⎨⎧=-=.12,154n m ∴12154+-=x y .……………………………3分 ∴所求解析式为⎪⎪⎩⎪⎪⎨⎧≤≤+-<≤<≤=).4530(12154),3015(4),150(154x x x x x y ………………………………………5分 (2)设直线OD 的解析式为y =k′ x ,则4=45k ′,454'=k .即x y 454=.…………6分 ①当0≤x <15时,2454154=-x x ,解得445=x . ②当15≤x <30时,24544=-x ,解得245=x . 由题意知,甲离开学校245min 后到与乙相遇时,两人相距小于2 km . ∴在两人相遇前,甲离开学校445 min 、245 min 时与乙相距2 km .…………9分 23.(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°.………………………………………………………………………1分 ∵AC ∥OD ,∴∠OFB =∠ACB =90°.………………………………………………………………2分 ∵DE 是⊙O 的切线,∴∠ODE =90°. ………………………………………………………………………3分 ∴∠OFB =∠ODE .……………………………………………………………………4分 ∴CB ∥DE .……………………………………………………………………………5分(2)解:连接AD ,设AD 与CB 相交于点G .∵OA=OD ,AC ∥OD ,∴∠OAD =∠ODA =∠CAD =∠CBD .…………………………………………………7分 ∵AB 是⊙O 的直径,∴∠ADB =90°=∠BDG .∴△DGB ∽△DBA .……………………………8分G∴DA DB DB DG =,即10351010-=DG ,DG =2.…9分 ∴AG=AD -DG =5-2=3.由(1)知CB ∥DE . ∴GD AG BE AB =,即3352=⨯=AG DG AB BE .…………………………………………10分 五、解答题24.(1)23;………………………………………………………………………………1分 解:(2)当0<x ≤23时,S=x 2.由题意知BC=2.………………………………3分 当点E 恰好在AB 上时(如图1),∵四边形CDEF 是正方形,∴ED ∥BC .∴△AED ∽△ABC .…………………………………4分 ∴AC AD BC ED =,即6,23223=-=AC AC AC .…………………5分 当23<x ≤2时,设DE 、EF 与AB 分别相交于点G 、H (如图2).同理AC AD BC GD =,即()x DG x DG -=-=631,662. ………6分同理BCBF CA FH =,即()x FH x FH -=-=23,226. ………7分 ∴S =S △ABC -S △AGD -S △HBF ()()()()68352322163162126212-+-=-⨯---⨯--⨯⨯=x x x x x x .……8分 当2<x ≤6时,如图3.∴()()x x x x S S S AGD ABC 2163162126212+-=-⨯--⨯⨯=-=∆∆. ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤<=).62(261),223(6835),230(222x x x x x x x x S 即…………………9分(3)由(2)知,当x =2时,.5310628435<=-⨯+⨯-=S当x =6时,.56623661>=⨯+⨯-=S∴S 的值能为5,此时x 的范围为2<x <6.………………………………………10分当52612=+-x x 时,即.030122=+-x x 6661>+=x (舍去),.662-=x 即66-=x 时,S =5.……………………………………………………………11分25.(1)存在,CF =BE .…………………………………………………………………1分 证明:如图1,延长EF 、BA ,设两延长线相交于点G .∵AB =AC ,∴∠B =∠C .………………………………………2分又∵DE ∥AC ,∴∠BED =∠C =∠B ,∠DEG =∠EFC .…………3分∴ED=BD .∵BD= EF ,∴ED==EF .………………………………………4分∵∠BEF =∠BAC ,∴∠CEF =∠GAF .又∵∠CFE=∠GF A ,∴∠C =∠G .……………………………………………………………………………5分 ∴△ECF ≌△DGE .……………………………………………………………………6分 ∴CF =GE .又∵∠G =∠C =∠B ,∴GE =BE . ……………………………………………………………………………7分 ∴CF =BE . ……………………………………………………………………………8分(2)解:延长EF 、BA ,设两延长线相交于点G .作DH ⊥BC ,垂足为H .设BE =x . 由(1)知BD =ED ,GE =BE =x .在△BED 中,BE =2BH =2BD cos B , ∴32432x xBD =⨯=.………………………………………9分 同理BG =2BE cos B =x x 23432=⨯. …………………10分 ∵DE ∥AC ,∴DG DAEG EF =,即323232x x m x k x --=. 解得569+=k mk x .……………………………………………………………………12分 26.(1)(-1,0),(0,34). …………………………………………………………1分 (2)解:作AH ⊥直线l ′,CK ⊥x 轴,垂足分别为H 、K .∵直线l ′∥x 轴,∴KC =AH .∵直线l 与直线l ′关于直线CA 对称,∴∠DCA=∠ACH .……………………………………2分∵AD ⊥直线l ,∴DA =AH =KC . ………………………………………3分∵∠KEC=∠DEA ,∠CKE=∠ADE ,∴△KCE ≌△DAE . …………………………………4分∴KE =DE ,EC =EA . …………………………………6分设点C 的坐标为)3434,(+t t ,则KE CE ED CE CD +=+=,即()8)1()3434(122=--+⎥⎦⎤⎢⎣⎡+-+--t t t ∴,43434,4-=+-=t t即点C 的坐标为(-4,-4).………………………………………………………7分 ∴414)14(22=-++-=-=-=EO EC EO EA OA ,即点A 的坐标为(4,0).……………………………………………………………8分∴⎪⎪⎩⎪⎪⎨⎧-=+-=++.4313416,0313416n n m n n m 解得⎪⎪⎩⎪⎪⎨⎧=-=.21,9625n m ∴抛物线的解析式为6132196252++-=x x y . ……………………………………10分 (3)所求点P 的坐标⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛812817,2,或.…………………………………………12分 H K。
东北三省三校2015届高三第一次高考模拟考试 文科数学(扫描版含答案)
2015年东北三省三校第一次高考模拟考试文科数学参考答案13.4030 14.-6 15.-16 16.②③④三、解答题 17.解:(1)设ΔABC 中,角A 、B 、C 的对边分别为 a 、b 、c ,则由已知:1sin 22bc θ=,0cos 4bc θ<≤, ……4分可得,tan 1θ≥,所以:[,)42ππθ∈ ……6分(2)2()2sin ()[1cos(2)]42f ππθθθθθ=+=-+(1sin 2)sin 212sin(2)13πθθθθθ=+=+=-+ ……8分∵[,)42ππθ∈,∴22[,)363πππθ-∈,∴π22sin(2)133θ≤-+≤即当512πθ=时,max ()3f θ=;当4πθ=时,min ()2f θ= 所以:函数()f θ的取值范围是[2,3] ……12分 18.(本小题满分12分) 解:(1)150.00350100x x⨯=∴= 15401010035y y +++=∴= ……2分 400.00810050=⨯ 350.00710050=⨯ 100.00210050=⨯DCBAFE……5分(2)设A 市空气质量状况属于轻度污染3个监测点为1,2,3,空气质量状况属于良的2个监测点为4,5,从中任取2个的基本事件分别为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种, ……8分 其中事件A“其中至少有一个为良”包含的 基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)共7种, ……10分所以事件A“其中至少有一个为良”发生的概率是7()10P A =. ……12分 19.(本小题满分12分)(1)证明: ABCD 是菱形,//BC AD ∴. 又⊄BC 平面ADE ,AD ⊂平面ADE ,//BC ∴平面ADE . ……2分 又BDEF 是正方形,//BF DE ∴.BF ⊄平面ADE ,DE ⊂平面ADE ,//BF ∴平面ADE . ……4分 BC ⊂平面BCF ,BF ⊂平面BCF BC BF B =,∴平面BCF //平面AED .由于CF ⊂平面BCF ,知//CF 平面AED . ……6分 (2)解:连接AC ,记AC BD O =. ABCD 是菱形,AC ⊥BD ,且AO = BO .由DE ⊥平面ABCD ,AC ⊂平面ABCD ,DE AC ⊥.DE ⊂平面BDEF ,BD ⊂平面BDEF ,DE BD D =,∴AC ⊥平面BDEF 于O ,即AO 为四棱锥A BDEF-的高. ……9分由ABCD 是菱形,60BCD ∠=,则ABD ∆为等边三角形,由AE ,则(3/g m μ)1AD DE ==,2AO =,1BDEF S =,136BDEF BDEF V S AO =⋅=,23BDEF V V ==. ……12分 20.(本小题满分12分)解:(1)设动圆圆心坐标为(,)x y ,半径为r ,由题可知2222222(2)42x y r y x x r⎧-+=⎪⇒=⎨+=⎪⎩; ∴动圆圆心的轨迹方程为24y x = ……4分(2)设直线1l 斜率为k ,则12:2(1);:2(1).l y k x l y k x -=--=-- 点P (1,2)在抛物线24y x =上22448402(1)y xky y k y k x ⎧=∴⇒-+-=⎨-=-⎩ 设1122(,),(,)A x y B x y ,0>∆恒成立,即(),012>-k 有1≠k118442,2,,P P kky y y y kk--∴==∴=代入直线方程可得212(2)k x k -= ……6分同理可得 2222(2)42,k kx y k k++==- ……7分 212221242421(2)(2)ABk ky y k k k k k x x k +----===-+--- ……9分 不妨设:AB l y x b =-+. 因为直线AB 与圆C=解得3b =或1, 当3b =时, 直线AB 过点P ,舍当1b =时, 由2216104y x x x y x=-+⎧⇒-+=⎨=⎩;32,||8AB ∆===P 到直线AB 的距离为d =PAB 的面积为 ……12分21.解:(1)由已知:()ln 12(0)f x x ax x '=++>,切点(1,)P a ……1分 切线方程:(21)(1)y a a x -=+-,把(0,2)-代入得:a = 1 ……3分 (2)(I )依题意:()0f x '=有两个不等实根设()ln 21g x x ax =++,则:1()2(0)g x a x x'=+> ①当0a ≥时:()0g x '>,所以()g x 是增函数,不符合题意; ……5分 ②当0a <时:由()0g x '=得:102x a=->依题意:11()ln()022g a a -=->,解得:102a -<< 综上所求:102a -<<,得证; ……8分(注:以下证明为补充证明此问的充要性,可使其证明更严谨,以此作为参考,学生证明步骤写出上述即可)方法一:当0>x 且0→x 时-∞→x ln ,112→+ax ,∴当0>x 且0→x 时-∞→)(x g)(x g ∴在1(0,)2a-上必有一个零点. 当a x 21->时,设x x x h -=ln )(,xx x x x h 22211)(/-=-=4>∴x 时,024ln )4()(<-=<h x h 即x x <ln 4>∴x 时,1221ln )(++<++=ax x ax x x g设x t =,12122++=++t at ax x 由0a <,+∞→x 时,0122<++t at0)(<∴x g )(x g ∴在1(,)2a-+∞上有一个零点 综上,函数)(x f y =有两个极值点时021<<-a ,得证.方法二2ln )(ax x x x f +=有两个极值点,即/()ln 12(0)f x x ax x =++>有两个零点,即xx a 1ln 2+=-有两不同实根. 设x x x h 1ln )(+=,2/ln )(x xx h -=,当0)(/>x h 时,10<<x ;当0)(/<x h 时,1>x当1=x 时)(x h 有极大值也是最大值为1)1(=f 12<-∴a ,2->a 0)1(=eh ,故)(x h 在()1,0有一个零点当1>x 时,01ln 0ln >+∴>x x x 且011ln lim lim ==++∞→+∞→xx x x x 1>∴x 时1)1()(0=<<h x h0,02<∴>-∴a a综上函数)(x f y =有两个极值点时021<<-a ,得证.② 证明:由①知:/(),()f x f x 变化如下:由表可知:()f x 在12[,]x x 上为增函数,又/(1)(1)210f g a ==+> ,故211x x << (10)分所以:21)1()(,)1()(21->=><=<a f x f a f x f 即1()0f x <,21()2f x >-. ……12分22.选修4-1:几何证明选讲证明:(1)连结OE ,∵点D 是BC 的中点,点O 是AB 的中点,∴ OD 平行且等于12AC ,∴∠A =∠BOD , ∠AEO = ∠EOD , ∵OA = OE ,∴∠A = ∠AEO ,∴∠BOD = ∠EOD ……3分 在ΔEOD 和ΔBOD 中,∵OE = OB ,∠BOD= ∠EOD ,OD = OD , ∴ΔEOD ≌ ΔBOD ,∴∠OED = ∠OBD = 90°,即OE ⊥BD∵是圆O 上一点,∴DE 是圆O 的切线 ……5分 (II )延长DO 交圆O 于点F ∵ΔEOD ≌ ΔBOD ,∴DE = DB ,∵点D 是BC 的中点,∴BC = 2DB , ∵DE 、DB 是圆O 的切线,∴DE = DB ,∴DE ·BC = DE ·2DB = 2DE 2 ……7分 ∵AC = 2OD ,AB = 2OF ∴DM · AC + DM · AB = DM · (AC + AB ) = DM · (2OD + 2OF ) = 2DM · DF ∵DE 是圆O 的切线,DF 是圆O 的割线, ∴DE 2 = DM · DF ,∴DE · BC = DM · AC + DM · AB ……10分 23.选修4-4: 坐标系与参数方程FC D MO BEA解:(1)由 2cos ρθ=,得:22cos ρρθ=,∴ 222x y x +=,即22(1)1x y -+=, ∴曲线C 的直角坐标方程为22(1)1x y -+= ……3分由12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,得x m +,即0x m -=, ∴直线l的普通方程为0x m -= ……5分(2)将12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩代入22(1)1x y -+=,得:221112m t ⎫⎛⎫+-+=⎪ ⎪⎪⎝⎭⎝⎭,整理得:221)20t m t m m -+-=,由0∆>,即223(1)4(2)0m m m --->,解得:-1 < m < 3设t 1、t 2是上述方程的两实根,则121)t t m +=-,2122t t m m =- ……8分 又直线l 过点(,0)P m ,由上式及t 的几何意义得212|||||||2|1PA PB t t m m ⋅==-=,解得:1m =或1m =,都符合-1 < m < 3, 因此实数m 的值为1或11 ……10分24.选修4-5: 不等式选讲解:(1)当x < -2时,()|21||2|1223f x x x x x x =--+=-++=-+,()0f x >,即30x -+>,解得3x <,又2x <-,∴2x <-; 当122x -≤≤时,()|21||2|12231f x x x x x x =--+=---=--, ()0f x >,即310x -->,解得13x <-,又122x -≤≤,∴123x -≤<-; 当12x >时,()|21||2|2123f x x x x x x =--+=---=-, ()0f x >,即30x ->,解得3x >,又12x >,∴3x >. ……3分 综上,不等式()0f x >的解集为1,(3,)3⎛⎫-∞-+∞ ⎪⎝⎭. ……5分(2)3,21()|21||2|31,2213,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=---≤≤⎨⎪⎪->⎪⎩ ∴min 15()22f x f ⎛⎫==- ⎪⎝⎭. ……8分 ∵0x R ∃∈,使得20()24f x m m +<,∴2min 542()2m m f x ->=-, 整理得:24850m m --<,解得:1522m -<<,因此m 的取值范围是15(,)22-.……10分。
2015届高三数学(文)第一次联考试卷带答案
2015届高三数学(文)第一次联考试卷带答案绝密★启用前本试卷分第Ⅰ卷(选择题)和第II卷(非选择题)两部分,满分150分,时间120分钟第Ⅰ卷一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合,则是( ) A. B. C. D. 2.“ ”是“ ”的() A.充分不必要条件 B. 必要不充分条件 C.充分必要条件 D. 既不充分也不必要条件 3.当时,复数在复平面内对应的点位于() A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.命题“a, b都是偶数,则a与b的和是偶数”的逆否命题是() A. a与b的和是偶数,则a, b都是偶数 B. a与b的和不是偶数,则a, b不都是偶数 C. a, b不都是偶数,则a与b的和不是偶数 D. a 与b的和不是偶数,则a, b都不是偶数 5.如果 ( ). A. B.6 C. D.8 6.已知函数,若函数为奇函数,则实数为() A. B. C. D. 7.定义在上的函数满足 , ,则有() A. B. C. D. 关系不确定 8.设双曲线的渐近线与抛物线相切,则该双曲线的离心率为() A. 3 B. C. D. 9.函数在(m,n)上的导数分别为 ,且 ,则当时,有()A. . B. C. D. 10.若是上的奇函数,且在上单调递增,则下列结论:① 是偶函数;②对任意的都有;③ 在上单调递增;④ 在上单调递增.其中正确结论的个数为() A.1 B.2 C.3 D.4 第Ⅱ卷二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
11.函数的定义域为 12.设为定义在上的奇函数,当时,,则 13.若函数在上单调递增,那么实数的取值范围是 14. 已知存在实数使得不等式成立,则实数的取值范围是 15.给定方程:,下列命题中: (1) 该方程没有小于0的实数解; (2) 该方程有无数个实数解; (3) 该方程在(�C∞,0)内有且只有一个实数解;(4) 若是该方程的实数解,则.则正确命题的序号是三、解答题;本大题共6小题,共75分。
东北三省三校2015届高三第一次高考模拟考试_理科数学试卷_word版含答案
哈尔滨师大附中 2015年高三第一次联合模拟考试理科数学试卷东北师大附中 辽宁省实验中学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求)1.已知集合{|21}A x x =-<<,2{|20}B x x x =-≤,则A B I 等于A .{|01}x x <<B .{|01}x x ≤<C .{|01}x x <≤D .{|21}x x -<≤2=A.)i B .1 + i C .iD .-i3.点(1,1)M 到抛物线y = ax 2准线的距离为2,则a 的值为A .14B .112-C .14或112- D .14-或1124.设S n 是公差不为零的等差数列{}n a 的前n 项和,且a 1 > 0,若S 5 = S 9,则当S n 最大时,n =A .6B .7C .8D .9 5.执行如图所示的程序框图,要使输出的S 值小于1,则输入的t 值不能是下面的A .2012B .2013C .2014D .2015 6.下列命题中正确命题的个数是①对于命题p :x R ∃∈,使得210x x +-<,则p ⌝:x R ∀∈,均有210x x +->; ②p 是q 的必要不充分条件,则p ⌝是q ⌝的充分不必要条件;③命题“若x y =,则sin sin x y =”的逆否命题为真命题;④“1m =-”是“直线l 1:(21)10mx m y +-+=与直线l 2:330x my ++=垂直”的充要条件。
辽宁省沈阳市2015届高三数学一模试卷 文(含解析)
2015年某某省某某市高考数学一模试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2015•某某一模)若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合(∁U M)∩N等于()A. {2,3} B. {2,3,5,6} C. {1,4} D. {1,4,5,6}【考点】:交、并、补集的混合运算.【专题】:集合.【分析】:根据集合的基本运算即可得到结论.【解析】:解:由补集的定义可得∁U N={2,3,5},则(∁U N)∩M={2,3},故选:A【点评】:本题主要考查集合的基本运算,比较基础.2.(5分)(2015•某某一模)设复数z满足(1﹣i)z=2i,则z=() A.﹣1+i B.﹣1﹣i C. 1+i D. 1﹣i【考点】:复数代数形式的乘除运算.【专题】:计算题.【分析】:根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.【解析】:解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选A.【点评】:本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.3.(5分)(2014•某某)“x<0”是“ln(x+1)<0”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】:充要条件.【专题】:计算题;简易逻辑.【分析】:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.【解析】:解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.【点评】:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.4.(5分)(2015•某某一模)抛物线y=4ax2(a≠0)的焦点坐标是()A.(0,a) B.(a,0) C.(0,) D.(,0)【考点】:抛物线的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:先将抛物线的方程化为标准式,再求出抛物线的焦点坐标.【解析】:解:由题意知,y=4ax2(a≠0),则x2=,所以抛物线y=4ax2(a≠0)的焦点坐标是(0,),故选:C.【点评】:本题考查抛物线的标准方程、焦点坐标,属于基础题.5.(5分)(2015•某某一模)设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S n+2﹣S n=36,则n=()A. 5 B. 6 C. 7 D. 8【考点】:等差数列的性质.【专题】:等差数列与等比数列.【分析】:由S n+2﹣S n=36,得a n+1+a n+2=36,代入等差数列的通项公式求解n.【解析】:解:由S n+2﹣S n=36,得:a n+1+a n+2=36,即a1+nd+a1+(n+1)d=36,又a1=1,d=2,∴2+2n+2(n+1)=36.解得:n=8.故选:D.【点评】:本题考查了等差数列的性质,考查了等差数列的通项公式,是基础题.6.(5分)(2015•某某一模)已知某几何体的三视图如,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A. B. C. 2cm3 D. 4cm3【考点】:棱柱、棱锥、棱台的体积.【专题】:空间位置关系与距离.【分析】:由题目给出的几何体的三视图,还原得到原几何体,然后直接利用三棱锥的体积公式求解.【解析】:解:由三视图可知,该几何体为底面是正方形,且边长为2cm,高为2cm的四棱锥,如图,故,故选B.【点评】:本题考查了棱锥的体积,考查了空间几何体的三视图,能够由三视图还原得到原几何体是解答该题的关键,是基础题.7.(5分)(2015•某某一模)已知x,y满足约束条件,则z=2x+y的最大值为() A. 3 B.﹣3 C. 1 D.【考点】:简单线性规划.【专题】:计算题.【分析】:先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解析】:解:作图易知可行域为一个三角形,当直线z=2x+y过点A(2,﹣1)时,z最大是3,故选A.【点评】:本小题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.8.(5分)(2015•某某一模)执行如图所示的程序框图,则输出的k的值为()A. 4 B. 5 C. 6 D. 7【考点】:程序框图.【专题】:计算题;规律型;算法和程序框图.【分析】:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出输出不满足条件S=0+1+2+8+…<100时,k+1的值.【解析】:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:输出不满足条件S=0+1+2+8+…<100时,k+1的值.第一次运行:满足条件,s=1,k=1;第二次运行:满足条件,s=3,k=2;第三次运行:满足条件,s=11<100,k=3;满足判断框的条件,继续运行,第四次运行:s=1+2+8+211>100,k=4,不满足判断框的条件,退出循环.故最后输出k的值为4.故选:A.【点评】:本题考查根据流程图(或伪代码)输出程序的运行结果.这是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)(2015•某某一模)已知函数,若,则f(﹣a)=() A. B. C. D.【考点】:函数的值.【专题】:计算题.【分析】:利用f(x)=1+,f(x)+f(﹣x)=2即可求得答案.【解析】:解:∵f(x)==1+,∴f(﹣x)=1﹣,∴f(x)+f(﹣x)=2;∵f(a)=,∴f(﹣a)=2﹣f(a)=2﹣=.故选C.【点评】:本题考查函数的值,求得f(x)+f(﹣x)=2是关键,属于中档题.10.(5分)(2015•某某一模)在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=()A. B. C. D.【考点】:平面向量数量积的运算.【专题】:计算题;平面向量及应用.【分析】:运用向量的平方即为模的平方,可得=0,再由向量的三角形法则,以及向量共线的知识,化简即可得到所求.【解析】:解:若|+|=|﹣|,则=,即有=0,E,F为BC边的三等分点,则=(+)•(+)=()•()=(+)•(+)=++=×(1+4)+0=.故选B.【点评】:本题考查平面向量的数量积的定义和性质,考查向量的平方即为模的平方,考查向量共线的定理,考查运算能力,属于中档题.11.(5分)(2015•某某一模)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A. 2 B. 4 C. 6 D. 8【考点】:奇偶函数图象的对称性;三角函数的周期性及其求法;正弦函数的图象.【专题】:压轴题;数形结合.【分析】:的图象由奇函数的图象向右平移1个单位而得,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得函数y2=2sinπx的图象的一个对称中心也是点(1,0),故交点个数为偶数,且每一对对称点的横坐标之和为2.由此不难得到正确答案.【解析】:解:函数,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象如图当1<x≤4时,y1<0而函数y2在(1,4)上出现1.5个周期的图象,在和上是减函数;在和上是增函数.∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H相应地,y1在(﹣2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D且:x A+x H=x B+x G═x C+x F=x D+x E=2,故所求的横坐标之和为8故选D【点评】:发现两个图象公共的对称中心是解决本题的入口,讨论函数y2=2sinπx的单调性找出区间(1,4)上的交点个数是本题的难点所在.12.(5分)(2015•某某校级一模)定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞) B.(﹣∞,0)∪(3,+∞) C.(﹣∞,0)∪(0,+∞) D.(3,+∞)【考点】:利用导数研究函数的单调性;导数的运算.【专题】:导数的综合应用.【分析】:构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解析】:解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.【点评】:本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题纸上.)13.(5分)(2015•某某一模)若双曲线E的标准方程是,则双曲线E的渐进线的方程是y=x .【考点】:双曲线的简单性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:求出双曲线的a,b,再由渐近线方程y=x,即可得到所求方程.【解析】:解:双曲线E的标准方程是,则a=2,b=1,即有渐近线方程为y=x,即为y=x.故答案为:y=x.【点评】:本题考查双曲线的方程和性质:渐近线方程,考查运算能力,属于基础题.14.(5分)(2015•某某一模)已知{a n}是等比数列,,则a1a2+a2a3+…+a n a n+1=.【考点】:数列的求和;等比数列的通项公式.【专题】:计算题.【分析】:首先根据a2和a5求出公比q,根据数列{a n a n+1}每项的特点发现仍是等比数列,根据等比数列求和公式可得出答案.【解析】:解:由,解得.数列{a n a n+1}仍是等比数列:其首项是a1a2=8,公比为,所以,故答案为.【点评】:本题主要考查等比数列通项的性质和求和公式的应用.应善于从题设条件中发现规律,充分挖掘有效信息.15.(5分)(2015•某某一模)若直线l:(a>0,b>0)经过点(1,2)则直线l 在x轴和y轴的截距之和的最小值是3+2.【考点】:直线的截距式方程.【专题】:直线与圆.【分析】:把点(1,1)代入直线方程,得到=1,然后利用a+b=(a+b)(),展开后利用基本不等式求最值.【解析】:解:∵直线l:(a>0,b>0)经过点(1,2)∴=1,∴a+b=(a+b)()=3+≥3+2,当且仅当b=a时上式等号成立.∴直线在x轴,y轴上的截距之和的最小值为3+2.故答案为:3+2.【点评】:本题考查了直线的截距式方程,考查利用基本不等式求最值,是中档题.16.(5分)(2015•某某一模)在直三棱柱ABC﹣A1B1C1中,若BC⊥AC,∠A=,AC=4,AA1=4,M为AA1的中点,点P为BM中点,Q在线段CA1上,且A1Q=3QC.则异面直线PQ与AC所成角的正弦值.【考点】:异面直线及其所成的角.【专题】:空间角.【分析】:以C为原点,CB为x轴,CA为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能求出异面直线PQ与AC所成角的正弦值.【解析】:解:以C为原点,CB为x轴,CA为y轴,CC1为z轴,建立空间直角坐标系,则由题意得A(0,4,0),C(0,0,0),B(4,0,0),M(0,4,2),A1(0,4,4),P(2,2,1),==(0,4,4)=(0,1,1),∴Q(0,1,1),=(0,﹣4,0),=(﹣2,﹣1,0),设异面直线PQ与AC所成角为θ,cosθ=|cos<>|=||=,∴sinθ==.故答案为:.【点评】:本题考查异面直线PQ与AC所成角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.三、解答题:(解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.)17.(12分)(2015•某某一模)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求函数f(x)的最小正周期和单调递增区间;(Ⅱ)当x∈[0,]时,求函数f(x)的值域.【考点】:三角函数中的恒等变换应用;正弦函数的图象.【专题】:三角函数的求值;三角函数的图像与性质.【分析】:(I)先化简求得解析式f(x)=sin(2x﹣)+,从而可求函数f(x)的最小正周期和单调递增区间;(Ⅱ)先求2x﹣的X围,可得sin(2x﹣)的X围,从而可求函数f(x)的值域.【解析】:解:(I)f(x)=sin2x+sinxcosx=+sin2x …(2分)=sin(2x﹣)+.…(4分)函数f(x)的最小正周期为T=π.…(6分)因为﹣+2kπ≤2x﹣≤+2kπ,解得﹣+kπ≤x≤+kπ,k∈Z,所以函数f(x)的单调递增区间是[﹣+kπ,+kπ],k∈Z,.…(8分)(Ⅱ)当x∈[0,]时,2x﹣∈[﹣,]sin(2x﹣)∈[﹣,1],…(10分)所以函数f(x)的值域为f(x)∈[0,1+].…(12分)【点评】:本题主要考查了三角函数中的恒等变换应用,三角函数的图象与性质,属于基本知识的考查.18.(12分)(2015•某某一模)某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表所示参加社团活动不参加社团活动合计学习积极性高 17 8 25学习积极性一般 5 20 25合计 22 28 50(Ⅰ)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?(Ⅱ)试运用独立性检验的思想方法【分析】:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.x2=.P(x2≥k) 0.05 0.01 0.001K 3.841 6.635 10.828【考点】:独立性检验的应用.【专题】:计算题;概率与统计.【分析】:(Ⅰ)求出积极参加社团活动的学生有22人,总人数为50人,得到概率,不参加社团活动且学习积极性一般的学生为20人,得到概率.(Ⅱ)根据条件中所给的数据,代入求这组数据的观测值的公式,求出观测值,把观测值同临界值进行比较,得到有99.9%的把握认为学生的学习积极性与参加社团活动情况有关系.【解析】:解:(Ⅰ)积极参加社团活动的学生有22人,总人数为50人,所以随机从该班抽查一名学生,抽到参加社团活动的学生的概率是=;抽到不参加社团活动且学习积极性一般的学生为20人,所以其概率为=;(Ⅱ)x2=≈11.7∵x2>10.828,∴有99.9%的把握认为学生的学习积极性与参加社团活动情况有关系.【点评】:本题考查独立性检验的意义,是一个基础题,题目一般给出公式,只要我们代入数据进行运算就可以,注意数字的运算不要出错.19.(12分)(2015•某某一模)如图,设四棱锥E﹣ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=.(Ⅰ)证明:平面EAB⊥平面ABCD;(Ⅱ)求四棱锥E﹣ABCD的体积.【考点】:棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】:空间位置关系与距离.【分析】:(I)取AB的中点O,连结EO、CO,由已知得△ABC是等边三角形,由此能证明平面EAB⊥平面ABCD.(II)V E﹣ABCD=,由此能求出四棱锥E﹣ABCD的体积.【解析】:(I)证明:取AB的中点O,连结EO、CO.由AE=BE=,知△AEB为等腰直角三角形.故EO⊥AB,EO=1,又AB=BC,∠ABC=60°,则△ABC是等边三角形,从而CO=.又因为EC=2,所以EC2=EO2+CO2,所以EO⊥CO.又EO⊥AB,CO∩AB=O,因此EO⊥平面ABCD.又EO⊂平面EAB,故平面EAB⊥平面ABCD.…(8分)(II)解:V E﹣ABCD===.…(12分)【点评】:本题考查平面与平面垂直的证明,考查四棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.20.(12分)(2015•某某一模)已知椭圆C:+=1(a>b>0),e=,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A、B,点A,B的中点横坐标为,且=λ(其中λ>1).(Ⅰ)求椭圆C的标准方程;(Ⅱ)某某数λ的值.【考点】:直线与圆锥曲线的综合问题.【专题】:圆锥曲线中的最值与X围问题.【分析】:(I)由条件可知c=1,a=2,由此能求出椭圆的标准方程.(Ⅱ)由,可知A,B,F三点共线,设A(x1,y1),B(x2,y2),直线AB⊥x轴,则x1=x2=1,不合意题意.当AB所在直线l的斜率k存在时,设方程为y=k(x﹣1).由,得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出实数λ的值.【解析】:解:(I)由条件可知c=1,a=2,故b2=a2﹣c2=3,椭圆的标准方程是.…(4分)(Ⅱ)由,可知A,B,F三点共线,设A(x1,y1),B(x2,y2),若直线AB⊥x轴,则x1=x2=1,不合题意.当AB所在直线l的斜率k存在时,设方程为y=k(x﹣1).由,消去y得(3+4k2)x2﹣8k2x+4k2﹣12=0.①由①的判别式△=64k4﹣4(4k2+3)(4k2﹣12)=144(k2+1)>0.因为,…(6分)所以=,所以.…(8分)将代入方程①,得4x2﹣2x﹣11=0,解得x=.…(10分)又因为=(1﹣x1,﹣y1),=(x2﹣1,y2),,,解得.…(12分)【点评】:本题考查椭圆的标准方程的求法,考查满足条件的实数的值的求法,解题时要认真审题,注意函数与方程思想的合理运用.21.(12分)(2015•某某一模)已知函数f(x)=alnx(a>0),e为自然对数的底数.(Ⅰ)若过点A(2,f(2))的切线斜率为2,某某数a的值;(Ⅱ)当x>0时,求证:f(x)≥a(1﹣);(Ⅲ)在区间(1,e)上>1恒成立,某某数a的取值X围.【考点】:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】:导数的综合应用.【分析】:(Ⅰ)求函数的导数,根据函数导数和切线斜率之间的关系即可某某数a的值;(Ⅱ)构造函数,利用导数证明不等式即可;(Ⅲ)利用参数分离法结合导数的应用即可得到结论.【解析】:【解析】:(I)函数的f(x)的导数f′(x)=,∵过点A(2,f(2))的切线斜率为2,∴f′(2)==2,解得a=4.…(2分)(Ⅱ)令g(x)=f(x)﹣a(1﹣)=a(lnx﹣1+);则函数的导数g′(x)=a().…(4分)令g′(x)>0,即a()>0,解得x>1,∴g(x)在(0,1)上递减,在(1,+∞)上递增.∴g(x)最小值为g(1)=0,故f(x)≥a(1﹣)成立.…(6分)(Ⅲ)令h(x)=alnx+1﹣x,则h′(x)=﹣1,令h′(x)>0,解得x<a.…(8分)当a>e时,h(x)在(1,e)是增函数,所以h(x)>h(1)=0.…(9分)当1<a≤e时,h(x)在(1,a)上递增,(a,e)上递减,∴只需h(x)≥0,即a≥e﹣1.…(10分)当a≤1时,h(x)在(1,e)上递减,则需h(e)≥0,∵h(e)=a+1﹣e<0不合题意.…(11分)综上,a≥e﹣1…(12分)【点评】:本题主要考查导数的综合应用,要求熟练掌握导数的几何意义,函数单调性最值和导数之间的关系,考查学生的综合应用能力.选修4-1:几何证明选讲22.(10分)(2015•某某一模)如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE ⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧BD的中点;(Ⅱ)求证:BF=FG.【考点】:与圆有关的比例线段.【专题】:计算题.【分析】:(I)要证明C是劣弧BD的中点,即证明弧BC与弧CD相等,即证明∠CAB=∠DAC,根据已知中CF=FG,AB是圆O的直径,CE⊥AB于E,我们易根据同角的余角相等,得到结论.(II)由已知及(I)的结论,我们易证明△BFC及△GFC均为等腰三角形,即CF=BF,CF=GF,进而得到结论.【解析】:解:(I)∵CF=FG∴∠CGF=∠FCG∴AB圆O的直径∴∵CE⊥AB∴∵∴∠CBA=∠ACE∵∠CGF=∠DGA∴∴∠CAB=∠DAC∴C为劣弧BD的中点(5分)(II)∵∴∠GBC=∠FCB∴CF=FB同理可证:CF=GF∴BF=FG(10分)【点评】:本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据AB 是圆O的直径,CE⊥AB于E,找出要证明相等的角所在的直角三角形,是解答本题的关键.选修4-4:坐标系与参数方程23.(2015•某某一模)在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),直线l经过点P(1,2),倾斜角α=.(Ⅰ)写出圆C的标准方程和直线l的参数方程;(Ⅱ)设直线l与圆C相交于A、B两点,求|PA|•|PB|的值.【考点】:参数方程化成普通方程.【专题】:坐标系和参数方程.【分析】:(Ⅰ)利用同角的三角函数的平方关系消去θ,得到圆的普通方程,再由直线过定点和倾斜角确定直线的参数方程;(Ⅱ)把直线方程代入圆的方程,得到关于t的方程,利用根与系数的关系得到所求.【解析】:解:(I)消去θ,得圆的标准方程为2+y2=16.…(2分)直线l的参数方程为,即(t为参数)…(5分)(Ⅱ)把直线的方程代入x2+y2=16,得(1+t)2+(2+t)2=16,即t2+(2+)t﹣11=0,…(8分)所以t1t2=﹣11,即|PA|•|PB|=11.…(10分)【点评】:本题考查了圆的参数方程化为普通方程、直线的参数方程以及直线与圆的位置关系问题,属于基础题.选修4-5:不等式选讲24.(2015•某某一模)设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值X围.【考点】:绝对值不等式的解法;函数最值的应用.【专题】:计算题;压轴题;分类讨论.【分析】:(1)分类讨论,当x≥4时,当时,当时,分别求出不等式的解集,再把解集取交集.(2)利用绝对值的性质,求出f(x)+3|x﹣4|的最小值为9,故m<9.【解析】:解:(1)当x≥4时f(x)=2x+1﹣(x﹣4)=x+5>0得 x>﹣5,所以,x≥4时,不等式成立.当时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以,1<x<4时,不等式成立.当时,f(x)=﹣x﹣5>0,得x<﹣5,所以,x<﹣5成立综上,原不等式的解集为:{x|x>1或x<﹣5}.(2)f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当,所以,f(x)+3|x﹣4|的最小值为9,故 m<9.【点评】:本题考查绝对值不等式的解法,求函数的最小值的方法,绝对值不等式的性质,体现了分类讨论的数学思想.。
2015届辽宁省大连市高三第一次模拟考试试题 理综(扫描版)
大连市2015年高三一模理科综合化学试卷参考答案一、选择题二、选择题三、非选择题26. (15分)第四周期第 VIII 族(1分)(2)TiO2++2H2O =H2TiO3+2H+(2分)①防止Fe2+氧化为Fe3+②消耗溶液中H+,使TiO2+的水解向右进行(各1分)(3) 蒸发浓缩、冷却结晶、过滤(2分)(4) TiCl4 + (2+x)H2O = TiO2·xH2O+4HCl(2分)加入大量的水并加热,能促进水解趋于完全。
(1分)(5) 2Cl--2e- = Cl2↑(1分) 2TiCl4= 2TiCl3+ Cl2↑(1分)TiCl4= TiCl2+ Cl2↑(1分) TiCl2+TiCl4= 2TiCl3(2分)27.(14分) (1)0.15mol/(L·min)(2分)(2)①BCD(2分)②υ(C)> υ(B)> υ(A) (2分)③4L(2分)(3)2CH4(g)+O2(g)=2CH3OH(g) ΔH=(a+2b)kJ/mol (2分)(4)2CH3OH+3O2+4OH-=2CO32-+6H2O(2分)(5)C(K+)>C(CO32-)>C(HCO3-)>C(OH-)>C(H+)(2分)28. (14分)⑴ HCOOH 浓硫酸△ CO↑ + H2O(2分)⑵验纯、II(各1分)⑶隔绝空气(1分)⑷ 6种(2分)⑸ 12:1(2分)⑹长时间集中加热使局部温度达到还原生成铁所需要的温度(2分)(其它正确答案参照给分)3Fe2O3+ CO △2Fe3O4+ CO2Fe2O3+ CO △2FeO + CO2Fe2O3+ 3CO △2Fe + 3CO2(各1分)36. (15分)(1)合成塔(1分)A(2分)(2) C+H2O=CO+H2(2分)(3)防止催化剂中毒(2分)CO32-+CO2+H2O=HCO3-(2分)(4)在电磁场的作用下,氮氮三键更容易断裂,减少了合成氨反应所需的能量(1分)降低能耗,使反应更容易进行(其他合理答案也可)(1分)(5) 3(2分) 2NH3-6e-=N2+6H+(2分)37. (15分)(1)O N (各1分)(2)极性(1分)分子间可以形成氢键(2分)(3) SP2、SP3(各1分)(2分,只需标出中心原子、配体、配位键即可)(4)8 (2分)(2分)(2分)38. (15分)(1)消去反应;(2分)碳碳双键、羧基;(各1分)(2)(2分)(3)(2分)催化氧化 H2/Ni/△(4)CH2(OH)CH(OH)CH3———→CH3COCOOH———→ CH3CH(OH)COOHK2Cr2O7(H+)也给分(3分)(5)11种(2分);(2分,其它合理答案也可)参考答案及评分标准物理部分二、选择题:本题共8小题,每小题6分。
【数学】辽宁省大连市2015届高三第二次模拟考试(文)
大连市2015年高三第二次模拟考试数学(文科)能力测试本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第22题~第24题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.第I 卷一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)已知集合,,则等于( )A.{2}B.{3}C.{1}D.{1,3}(2)已知复数的共轭复数为,若||=4,则·=( )A.4B.2C.16D.±2(3)对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )A.变量x 与y 正相关,u 与v 正相关B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关D.变量x 与y 负相关,u 与v 负相关 (4)已知命题则是( )A. B. C.D.(5)已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( )A. 7B. 6C. 9D. 8(6)在△中,为边的中点,若,,则( )A.B. C.D.{}2,3A ={}2|430B x x x =-+=AB z z z zz ABC D BC (2,0)BC =(1,4)AC =AD =(2,4)--(0,4)-(2,4)(0,4)(7) 对于下列表格所示五个散点,已知求得的线性回归直线方程为则实数的值为( ) A.B.C.D.(8)如图所示的流程图,最后输出的n 的值是( )A.3B.4C.5D.6(9)设为抛物线 的焦点,过且倾斜角为的直线交曲线于 两点(点在第一象限,点在第四象限),为坐标原点,过作的准线的垂线,垂足为, 则与的比为( ) A.B. 2C. 3D. 4(10)已知等差数列{a n }的前n 项和为S n,a 2=4,S 10=110,则S n +64an的最小值为( )A.7B.152C.172 D.8(11) 已知三棱锥的外接球的球心在上,且平面,,若三棱锥的体积为,则该三棱锥的外接球的体积为( )A. (B) C. D. (12)设点在曲线上,点在曲线上,则的1558.0-=x y m 82.84.85.8F 2:2C y px =F 060C ,A B B A O A C M ||OB ||OM P ABC -O AB PO ⊥ABC 2AC =P ABC -32P )0(12≥+=x x y Q )1(1≥-=x x y ||PQ最小值为( ) A.B.C. D.第II 卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上) (13)已知圆O 的方程是x 2+y 2-8x -2y +10=0,过点M (3,0)的最短弦所在的直线方程是 .(14)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为 .(15) 已知变量满足约数条件,则的最小值为 .(16)如图在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的表面积为 .三.解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) (17)(本小题满分12分)如图,跳伞塔高4,在塔顶测得地面上两点的俯角分别是,又测得,求两地的距离.224232223y x ,⎪⎩⎪⎨⎧-≤--≥-≥21122x y x y x y y x z -=CD B A ,︒︒4530,︒=∠30ADB AB某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm )的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,结果如下表: 甲厂:乙厂: (Ⅰ)由以上统计数据填下面列联表,并问是否有99.9%的把握认为“生产的零件是否为优质品与不同的分厂有关”.附:(Ⅱ)现用分层抽样方法(按优质品和非优质品分二层)从乙厂抽取五件零件,求从这五件零件中任意取出两件,至少有一件优质品的概率.22⨯22()()()()()n ad bc a b c d a c b d κ-=++++162在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且.(Ⅰ)求证:; (Ⅱ)求证:平面.(20) (本小题满分12分)已知定点,为圆上一动点,点满足,. (Ⅰ)求动点的轨迹的方程; (Ⅱ)设点坐标为,求证:; (Ⅲ)过点作直线交于两点,求的值.12(1,0),(1,0)F F -P 221:(1)8F x y ++=M 22()0MP MF F P +⋅=11(01)FM F P λλ=≤≤M C M (,)xy 2||2MF x =2F l C ,A B 2211||||AF BF +(21)(本小题满分12分)设函数,()(Ⅰ)若函数在区间上不单调,求实数的取值范围;(Ⅱ)若对任意,都有唯一的,使得成立,求实数的取值范围.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图,⊙O 内切于△ABC 的边于D ,E ,F ,AB =AC ,连接AD 交⊙O 于点H ,直线HF 交BC 的延长线于点G .(Ⅰ)求证:圆心O 在直线AD 上; (Ⅱ)求证:点C 是线段GD 的中点.(23)(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系.(Ⅰ)求和的极坐标方程; (Ⅱ)已知射线,将逆时针旋转得到,且与交于两点,与交于两点,求取最大值时点的极坐标.(24)(本小题满分10分)选修4-5:不等式选讲 已知和是任意非零实数.xOy 1C ⎩⎨⎧=+=ααsin 2cos 22y x α2C ⎩⎨⎧+==ββsin 22cos 2y x βO x 1C 2C )20(:1πααθ<<=l 1l 6π2:6l πθα=+1l 1C P O ,2l 2C Q O ,||||OQ OP ⋅P a b(Ⅰ)求的最小值.(Ⅱ)若不等式恒成立,求实数的取值范围.|||2||2|a b a b a -++|)2||2(||||2||2|x x a b a b a -++≥-++x大连市2015年高三第二次模拟考试参考答案数学(文科)说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题(1)B ;(2)C ;(3)C ; (4)B ;(5) D ;(6)D ;(7) A ;(8)B ;(9)C ;(10)C ; (11) C ;(12)B . 二.填空题(13).x +y -3=0;(14)160;(15) ;(16)2128+. 三.解答题(17)解: ︒=︒-︒=∠454590BCD ,∴在BCD Rt ∆中,445tan 4=︒⨯=BD ,又 ︒=︒-︒=∠603090ACD ,∴在ACD Rt ∆中,3460tan 4=︒⨯=AD在ABD ∆中,1630cos 3442)34(4cos 222222=︒⨯⨯⨯-+=∠⋅⋅-+=ADB BD AD AD BD AB故4=AB(18)解: (Ⅰ)列联表如下222()1000(400200300100)47.61910.828()()()()500500700300n ad bc a b c d a c b d χ-⨯⨯-⨯==≈>++++⨯⨯⨯所以有99.9%的把握认为“生产的零件是否为优质品与分厂有关”. 6分(Ⅱ)乙厂抽取3件优质品,2件非优质品,优质品记为,,a b c ,非优质品记为1,2 8分从中任意抽取2件,抽取的情况构成的集合为{,,1,2,,1,2,1,2,12}ab ac a a bc b b c c ,至少有一件优质品的情况为为{,,1,2,,1,2,1,2}ab ac a a bc b b c c ,所以从这五件零件中任意取出两件,至少有一件优质品的概率为910. 12分 (19)解: (Ⅰ)证明:取BC 中点O ,因为底面ABC 是等边三角形,则AO ⊥BC , 又因为面⊥''B BCC 底面ABC ,所以AO ⊥面''BCC B ,所以'AO BB ⊥, 又因为AC BB ⊥',AOAC A =,所以'BB ⊥面ABC ,又因为底面ABC 是等边三角形,所以三棱柱'''C B A ABC -为正三棱柱, 4分四棱锥ACFE B -的体积为1(12)232+⨯⨯= 8分(Ⅱ)在''A B 如果存在一点M 使得//'M C 面BEF ,则过//'MN BB 交BE 于N ,连接FN , 因为//'M C 面BEF ,所以//'M C FN ,所以'C MNF 为平行四边形,所以'2C F MN ==,所以M 为''A B 的中点. 12分(20) 解(Ⅰ)因为点M 满足22()0MP MF F P +⋅=,22222()()0MP MF MP MF MP MF ∴+⋅-=-=,即2||=||MP MF又11F M F P λ=,1,,F M P ∴三点共线,由题意知M 在线段1F P 上,1||||FM MP ∴+=又2||=||MP MF 12||||FM MF ∴+=∴M 的轨迹是以12,F F 为焦点,长轴长为椭圆,所以M 的轨迹C 的方程为2212x y += 4分(Ⅱ)设(,)M x y,1||MF =,又因为2212x y +=,1||MF ∴=|2|2x - 22x -≤≤2||2M F x ∴-(Ⅲ)(1)当直线l 斜率不存在时,2||AF=2||2BF =,2211||||AF BF ∴+=,8分 (1) 当直线l 斜率存在时,设直线:(1)l y k x =-,1122(,),(,)A x y B x y直线l 与2212x y +=联立得:2222(12)4220k x k x k +-+-=, 韦达定理得:22121222422,,1212k k x x x x k k-+==++ 0∆>恒成立由(Ⅱ)问结论知2122||,||,22AF x BF x ==12221212)1121||||2()2x x AF BF x x x x +∴+==-++2222224)21241222()()12212k k k k k k +==--+⋅++=综上2211||||AF BF += 12分 (21)解:(Ⅰ)()x ax x x g 142'-+-= 且()x g 在区间⎪⎭⎫⎝⎛2,41上不单调,0142=-+-∴ax x 区间⎪⎭⎫⎝⎛2,41上有两不等实根或有一根,……………….3分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年大连市高三一模测试数学(文科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题(1)C ;(2)A ;(3)B ;(4)C ;(5)A ;(6)C ;(7)D ;(8)B ; (9)C ;(10)D ;(11) B ;(12)D . 二.填空题 (13)[0,]6π;(14)17;(15) (,1][3,)-∞+∞ ;(16)423π. 三.解答题(17)解:(Ⅰ)设数列}{n a 的公差为d ,则由已知条件可得:⎪⎩⎪⎨⎧-=+-=+29936996211d a d a ,………………3分解得⎪⎩⎪⎨⎧-=-=1231d a ,于是可求得212+-=n a n .………………6分 (Ⅱ)因为2)2(+-=n n S n ,故)211(21)2(1+--=+-=n n n n b n ,………8分 于是11111111[(1)()]2233452n T n n =-+++⋅⋅⋅+-+++⋅⋅⋅++………………10分1311()2212n n =---++又因为211123+-+-n n 23<,所以43->n T ,………………12分 (18)解:(Ⅰ)两个班数据的平均值都为7,………………1分(Ⅱ)甲班1到5号记作,,,,a b c d e ,乙班1到5号记作1,2,3,4,5,从两班中分别任选一个同学,得到的基本样本空间为Ω={1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5}a a a a a b b b b b c c c c c d d d d d e e e e e ,Ω由25个基本事件组成,基本事件是等可能的;………………8分 将“甲班同学投中次数高于乙班同学投中次数”记作事件A ,则{1,1,1,1,2,4,5,1,4,5}A a b c d d d d e e e =,………………10分A 由10个基本事件组成,所以甲班同学投中次数高于乙班同学投中次数的概率为102()255P A ==.…………12分 (19)解:(Ⅰ)证明:作FM ∥CD 交PC 于M . ∵点F 为PD 中点,∴CD FM 21=. ∵21=k ,∴FM AB AE ==21,又FM ∥CD ∥AB ∴AEMF 为平行四边形,∴AF ∥EM ,∵AF PEC EM PEC ⊄⊂平面,平面,∴直线AF //平面PEC . ……………6分(Ⅱ)存在常数22=k ,使得平面PED ⊥平面P AB .…………8分 ∵k AB AE =,1AB =,22=k ,∴2AE =, 又∵∠DAB =45°,∴AB ⊥DE . 又∵PD ⊥平面ABCD ,∴PD ⊥AB .又∵PD D E D ⋂=,∴AB ⊥平面PDE ,∵PAB AB 平面⊂,∴平面PED ⊥平面P AB . …………………12分MFE BDCAP(20) 解:(Ⅰ) 2b = ,3c e a =, 4,2a b ∴== ∴椭圆C 方程为221164x y +=.………………3分 (Ⅱ)当切线的斜率k 存在时,设切线方程为00()y y k x x -=- 又因为0x k y =-.………………4分 故切线方程为0000()x y y x x y -=--,200x x y y r ∴+=.………………6分 当k 不存在时,切点坐标为(),0r ±,对应切线方程为x r =±,符合200x x y y r +=, 综上,切线方程为200x x y y r +=.………………………………7分(Ⅱ)设点P 坐标为(,)p p x y ,,PA PB 是圆221x y +=的切线,切点1122(,),(,)A x y B x y ,过点A 的圆的切线为111x x y y +=, 过点B 的圆的切线为221x x y y +=.两切线都过P 点,112211p p p p x x y y x x y y ∴+=+=,. ∴切点弦AB 的方程为1p p x x y y +=,由题知0P P x y ≠ ,………………9分 1(,0)pM x ∴,1(0)p N y ,,22222221111=164p p p p p p x y MN x y x y ⎛⎫⎛⎫∴=++⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭………………10分2222222211111119=+++21641641646416p p p p p p p p x y x y y x y x ⋅+⋅≥+⋅⋅=,当且仅当2163P x =, 283P y =时取等号,34MN ∴≥,MN ∴的最小值为34.………………12分(21) 解:(Ⅰ)设切点P 为00(,)x y ,则P 处的切线方程为23200000(32)()y x x x x x x =--+-.………………2分 该直线经过点(1,0),所以有232000000(32)(1)x x x x x =--+-,化简得3200020x x x -+=, 解得00x =或01x =,所以切线方程为0y =和1y x =-.………………4分(Ⅱ)法一:由题得方程3210x ax x --+=只有一个根,设32()1g x x ax x =-++,则2'()321g x x ax =--,因为24120,a ∆=+>所以'()g x 有两个零点12,x x ,即23210i i x ax --=(1,2i =),且120x x <,2312i ix a x -=,………………6分不妨设120x x <<,所以()g x 在12(,),(,)x x -∞+∞单调递增,在12(,)x x 单调递减,1()g x 为极大值,2()g x 为极小值,方程3210x ax x --+=只有一个根等价于1()0g x >且2()0g x >,或者1()0g x <且2()0g x <,………………8分又232323311()111(1,2)222i i i iii ii i i i x x g x x ax x x x x x i x -=--+=--+=--+=,设31()122x h x x =--+,所以231'()022h x x =--<,所以()h x 为减函数, 又(1)0h =,所以1x <时()0h x >,1x >时()0h x <,………………10分 所以(1,2)i x i =大于1或小于1,由120x x <<知,(1,2)i x i =只能小于1, 所以由二次函数2'()321g x x ax =--性质可得'(1)3210g a =-->, 所以1a <.………………12分法二:曲线)(x f y =与直线1y x =-只有一个交点,等价于关于x 的方程231ax x x =-+只有一个实根.显然0x ≠,所以方程211a x x x=-+只有一个实根. ………………6分 设函数211()g x x x x =-+,则3233122'()1x x g x x x x+-=+-=. 设3()2h x x x =+-,2'()310h x x =+>,()h x 为增函数,又(1)0h =.……8分所以当0x <时,'()0g x >,()g x 为增函数;当01x <<时,'()0g x <,()g x 为减函数;当1x >时,'()0g x >,()g x 为增函数;所以()g x 在1x =时取极小值1.………………10分又当x 趋向于0时,()g x 趋向于正无穷;又当x 趋向于负无穷时,()g x 趋向于负无穷;又当x 趋向于正无穷时,()g x 趋向于正无穷.所以()g x 图象大致如图所示: 所以方程211a x x x =-+只有一个实根时,实数a 的取值范围为(,1)-∞.…12分 (22) 解: (Ⅰ)连接,,BD OD CB 是圆O 的切线,090ABC ∴∠=,,BOC A DOC ODA ∴∠=∠∠=∠, ……………2分∵OA OD =,A ODA ∴∠=∠,BOC DOC ∴∠=∠,∵,OB OD OC OC ==, ……………4分OBC ODC ∴∆≅∆,OC ∴平分BCD ∠. …………… 5分(Ⅱ)OD AO =∴, DOC DAO ∠=∠∴,AB 是直径, 090OBC ADB ∴∠=∠=.……………7分BAD ∴∆∽COD ∆,282AD OC AB OD R ⋅=⋅==.……………9分2R ∴= . …………… 10分(23)解:(Ⅰ)圆C 的参数方程为⎩⎨⎧+-=+=θθsin 24cos 23y x (θ为参数) 所以普通方程为4)4()3(22=++-y x . ……………2分∴圆C 的极坐标方程:021sin 8cos 62=++-θρθρρ. ……………5分(Ⅱ)点),(y x M 到直线AB 02=+-y x 的距离为……………6分2|9sin 2cos 2|+-=θθd ……………7分ABM ∆的面积|9)4sin(22||9sin 2cos 2|||21+-=+-=⨯⨯=θπθθd AB S | ……………9分 所以ABM ∆面积的最大值为229+ ……………10分(24) 解:(Ⅰ)4,1()3,124,2x x f x x x x x --<-⎧⎪=-≤<⎨⎪+≥⎩,……………2分 当1,42,6,6x x x x <---><-∴<- 当2212,32,,233x x x x -≤<>>∴<< 当2,42,2,2x x x x ≥+>>-∴≥ 综上所述 2|63x x x ⎧⎫><-⎨⎬⎩⎭或 .……………5分 (Ⅱ)易得min ()(1)3f x f =-=-,若R x ∈∀,t t x f 211)(2-≥恒成立, 则只需2min 7()32f x t t =-≥-,……………7分 232760,22t t t -+≤≤≤. 综上所述322t ≤≤. ……………10分。