牛顿第二定律的应用2(经典、全面、实用) (1)
系统的牛顿第二定律及应用
系统的牛顿第二定律及应用一、系统的牛顿第二定律若将系统受到的每一个外力,系统内每一物体的加速度均沿正交坐标系的x轴与y轴分解,则系统的牛顿第二定律的数学表达式如下:F1x+F2x+…=m1a1x+m2a2x+…F1y+F2y+…=m1a1y+m2a2y+…与采用隔离法、分别对每一物体应用牛顿第二定律求解不同的是,应用系统的牛顿第二定律解题时将使得系统内物体间的相互作用力变成内力,因而可以减少不必求解的物理量的个数,导致所列方程数减少,从而达到简化求解的目的,并能给人以一种赏心悦目的感觉,现通过实例分析与求解,说明系统的牛顿第二定律的具体应用,并力图帮助大家领略到应用系统的牛顿第二定律求解的优势。
二、系统的牛顿第二定律的应用1、求系统所受到的外力例1 在图1中,A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M。
B为铁片,质量为m。
整个装置用轻绳悬挂于O点。
当电磁铁通电,铁片被吸引上升的过程,轻绳上的拉力F的大小为()A、F=MgB、Mg<F<(m+M)gC、F=(m+M)gD、F>(m+M)g分析与解以A、B、C系统为研究对象,它受到的外力为竖直向下的重力(m+M)g,绳对系统竖直向上的拉力F(电磁铁A与铁片B间的相互引力为内力)。
A、C的加速度为0,铁片上升时向上的加速度不为0。
若以竖直向上方向为正向,设某时刻铁片B向上的加速度为a,则由系统的牛顿第二定律得F-(m+M)g=ma∴F=(m+M)g+ma>(m+M)g因此,应选正确答案D。
例2 如图2所8示,一根长为l的轻杆,两端各固定一个质量均为m 的小球A和B。
若轻杆以它的中点O为轴在竖直平面内转动,求轻杆转到竖直位置时,杆对轴的作用力。
分析与解取小球A、B及杆为研究对象,它受到竖直向下的重力2mg,轴对它竖直向上的弹力N.A、B在最低点与最高点时向心加速度恰为反向。
若取竖直向上方向为正向,由系统的牛顿第二定律得:N-2mg=maA +maB∵aA =-aB∴N=2mg由牛顿第三定律知杆对轴的弹力大小为2mg,方向竖直向下。
牛顿第二定律的应用
牛顿第二定律的应用在物理学中,牛顿第二定律是描述力、质量和加速度之间关系的基本定律。
具体而言,它表明力是物体质量乘以加速度的乘积。
牛顿第二定律在力学问题的解决中扮演着重要的角色,并且在各种实际应用中经常被使用。
本文将讨论牛顿第二定律在不同领域中的应用。
1. 机械运动牛顿第二定律在机械运动中有着广泛的应用。
例如,我们可以利用牛顿第二定律来计算物体的加速度,从而确定物体的运动状态。
在简单的情况下,我们可以使用公式F=ma,其中F表示作用在物体上的力,m表示物体的质量,a表示物体的加速度。
根据这个公式,我们可以计算物体所受的合力,进而预测物体的运动轨迹。
2. 交通工程牛顿第二定律在交通工程中也有重要的应用。
例如,我们常常需要研究车辆在不同道路状况下的行驶情况。
通过使用牛顿第二定律,我们可以计算出车辆所受的合力,并进一步预测车辆的加速度和速度。
这样的信息可以用于改善道路设计,提高交通效率,确保交通安全。
3. 弹道学牛顿第二定律在弹道学中也被广泛应用。
弹道学研究的是物体在空中飞行的轨迹和性质。
利用牛顿第二定律,我们可以计算出物体在受到力的作用下的加速度和速度变化情况。
这些信息对于炮弹、导弹和火箭的轨迹计算和控制非常重要。
4. 工程设计牛顿第二定律对于工程设计中的力学分析也是至关重要的。
在建筑和结构设计中,我们需要确保建筑物的稳定性和安全性。
通过应用牛顿第二定律,我们可以计算出分布在结构上的力,并评估结构的强度和稳定性。
这可以帮助工程师确定所需的材料和构建方法,从而确保设计的可行性和长期的稳定性。
5. 运动控制牛顿第二定律在运动控制领域也发挥着重要的作用。
例如,在机器人技术中,我们需要精确控制机器人的运动和位置。
通过应用牛顿第二定律,我们可以计算出所需施加在机器人身上的力,从而控制机器人的加速度和速度。
这使得机器人能够准确地执行特定的任务,如自主导航、工业生产等。
总结:牛顿第二定律在各个领域中都有广泛的应用。
人教版物理必修1第四章第七节牛顿第二定律的应用Applications2
多过程情况
例题:如图所示,传送带与水平地面成 角 例题:如图所示,传送带与水平地面成37角,带 AB长为 米,传送带以 米/秒的速度沿逆时针 长为16米 传送带以10米 秒的速度沿逆时针 长为 方向转动,在上端A处无初速度放一质量为 处无初速度放一质量为0.5kg 方向转动,在上端 处无初速度放一质量为 的物体,它与传送带间的摩擦系数为0.5, 的物体,它与传送带间的摩擦系数为 ,求物 体A到B所用的时间。 到 所用的时间。 所用的时间 A
37
(绳与弹簧)状态突变问题
绳子与轻弹簧的弹力特点
项目 形变情况 施力情况 力的方向 力的变化 轻绳 伸长忽略不计 伸长忽略不计 忽略 只能受拉力 只能受拉力 始终沿绳 始终沿绳 可发生突变 可发生突变 轻弹簧 可伸长可缩短 伸长可 能受压力或 能受压力或拉力 压力 沿弹簧轴向 沿弹簧轴向 只能渐变 只能渐变
下列说法正确的是: 1、下列说法正确的是: ( C ) (A)静止或匀速直线运动的物体一定不受 力的作用 当物体的速度为零时, ( B) 当物体的速度为零时 , 物体一定不 受力的作用,或所受的合外力为零; 受力的作用,或所受的合外力为零; (C)当物体运动状态发生变化时物体一定 受到力的作用 (D)当物体受到合外力为零时物体的速度 也一定为零。 也一定为零。
x
3、求 x 轴,y 轴上的 Fx = F1x + F2 x = F1 cos θ + F2 cos α 、 合力 Fx 和 Fy ; Fy = F1 y − F2 y = F1 sin θ − F2 sin α 2 2 4、最后求 Fx和 Fy 的合 、 F = Fx + Fy 力F。
例题: 例题:质量为1kg的木块静止在水平地面上, 它与地面的摩擦系数为0.5,先用与竖直方 向成37º角的10N的力拉木块,2秒后突然使 该力改变180º,直至木块停止,求2秒内木 块的位移和2秒末木块的速度;木块最终的 位移。 F 0
牛顿第二定律的理解与方法应用
牛顿第二定律的理解与方法应用牛顿第二定律的理解与方法应用一、牛顿第二定律的理解。
1、矢量性合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。
其实牛顿第二定律的表达形式就是矢量式。
2、瞬时性加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
3、同一性(同体性)中各物理量均指同一个研究对象。
因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
4、相对性在中,a是相对于惯性系的而不是相对于非惯性系的即a是相对于没有加速度参照系的。
5、独立性理解一:F合产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。
牛顿第二定律分量式为:。
二、方法与应用1、整体法与隔离法(同体性)选择研究对象是解答物理问题的首要环节,在很多问题中,涉及到相连接的几个物体,研究对象的选择方案不惟一。
解答这类问题,应优先考虑整体法,因为整体法涉及研究对象少,未知量少,方程少,求解简便。
但对于大多数平衡问题单纯用整体法不能解决,通常采用“先整体,后隔离”的分析方法。
2、牛顿第二定律瞬时性解题法(瞬时性)牛顿第二定律的核心是加速度与合外力的瞬时对应关系,做变加速运动的物体,其加速度时刻都在变化,某时刻的加速度叫瞬时加速度,而加速度由合外力决定,当合外力恒定时,加速度也恒定,合外力变化时,加速度也随之变化,且瞬时力决定瞬时加速度。
解决这类问题要注意:(1)确定瞬时加速度的关键是正确确定瞬时合外力。
(2)当指定某个力变化时,是否还隐含着其它力也发生变化。
(3)整体法、隔离法的合力应用。
3、动态分析法4、正交分解法(独立性)(1)、平行四边形定则是矢量合成的普遍法则,若二力合成,通常应用平行四边形定则,若是多个力共同作用,则往往应用正交分解法(2)正交分解法:即把力向两个相互垂直的方向分解,分解到直角坐标系的两个轴上,再进行合成,以便于计算解题。
牛顿第二定律的应用(很全_自己上课用)
a
5.如图所示,质量为m的小 球用细绳挂在倾角为37°的 光滑斜面顶端,斜面静止时, 绳与斜面平行,现斜面向左 加速运动。 (1)当a1=g时,细绳对 小球的拉力多大? (2)当a2=2g呢?
Tcosθ-Nsinθ=ma Tsinθ+Ncosθ=mg解得 T=mgsinθ+macosθ 当a1=g时,T1=1.4mg;当a2=2g时, T2=2.2mg
F
m1 m2 FN1
[m1]
F1
m1g FN2
F
联立(1)、(2)可得
m2F F1 = m1 m 2
[m2]
F1
m2g
例题1:光滑的水平面上有质量分别为m1、m2的两物体 静 止靠在一起(如图) ,现对m1施加一个大小为 F 方向向 右的推力作用。求此时物体m2受到物体 m1的作用力F1 [ 解法二 ]: 对m1、m2视为整体作受力分析
一条轻弹簧上端固定在 天花板上,下端连接一物 体A,A的下边通过一轻绳 连接物体B.A,B的质量相 同均为m,待平衡后剪断 A,B间的细绳,则剪断细 绳的瞬间,物体A的加速 度和B的加速度?
A
B
如图,两个质量均 为m的重物静止,若 剪断绳OA,则剪断 瞬间A和B的加速度 分别是多少?
0
A
B
质量皆为m的A,B两球之间系 着一个不计质量的轻弹簧,放 在光滑水平台面上,A球紧靠墙 壁,今用力F将B球向左推压弹 簧,平衡后,突然将力F撤去的 瞬间A,B的加速度分别为多 少?.
m
θ
• 2.如图所示,在前进的车厢的竖直后壁上放一个 物体,物体与壁间的静摩擦因数μ=0.8,要使物 体不致下滑,车厢至少应以多大的加速度前进? (g=10m/s2)
牛顿第二定律的应用(经典、全面、实用)
t2
1
FN
F阻
t
代入数据可得: F阻=67.5N
F阻 方向沿斜面向上
解:滑雪的人滑雪时受力如图,
将G分解得: F1= mgsinθ F 1-F 阻=m a
① ②
θ mg
2 m ( x - v 0 t)
FN
F1
θ
F阻 F2
由①②③得F阻=F1-m a = mgsinθ-
代入数据可得: F阻=67.5N
37 °
例4:如图所示,传送带与地面倾角为37 ° ,从A到B长度为16m,传送带以v= 20m/s,变:(v= 10m/s)的速率逆时针 转动.在传送带上端A无初速地放一个质量 为m=0.5kg的物体,它与传送带之间的动 摩擦因数为μ=0.5.求物体从A运动到B 所需时间是多少.(sin37°=0.6)
B.tl>t2>t3
C.tl<t2<t3
D.t3>tl>t2
练习 如图,底板光滑的小车上用两 个量程为20N,完全相同的弹簧甲和乙 系住一个质量为1Kg的物体,当小车在 水平路面上匀速运动时,两堂皇秤的读 数均为10N,当小车做匀加速运动时, 甲的读数是8N,则小车的加速度 是 ,方向向 。(左、 右)
A
B
变式训练2:如图所示,一平直的传送带以速度V =2m/s匀速运动,传送带把A处的工件运送到B处, A、B相距L=10m.从A处把工件无初速地放到传送 带上,经时间t=6s能传送到B处,欲用最短时间 把工件从A处传到B处,求传送带的运行速度至少 多大.
A
B
例题分析:
例2:如图所示,一水平方向足够长的传 送带以恒定的速度V=2m/s沿顺时针方向 匀速转动,传送带传送带右端有一与传 送带等高的光滑水平面,一物体以恒定的 速率V’=4m/s沿直线向左滑上传送带,求 物体的最终速度多大?
牛顿第二定律的简单应用
牛顿第二定律的简单应用1.牛顿第二定律的用途:牛顿第二定律是联系物体受力情况与物体运动情况的桥梁.根据牛顿第二定律,可由物体所受各力的合力,求出物体的加速度;也可由物体的加速度,求出物体所受各力的合力.2.应用牛顿第二定律解题的一般步骤(1)确定研究对象.(2)进行受力分析和运动状态分析,画出受力分析图,明确运动性质和运动过程.(3)求出合力或加速度.(4)根据牛顿第二定律列方程求解.3.两种根据受力情况求加速度的方法(1)矢量合成法:若物体只受两个力作用,应用平行四边形定则求这两个力的合力,再由牛顿第二定律求出物体的加速度的大小及方向.加速度的方向就是物体所受合力的方向.(2)正交分解法:当物体受多个力作用时,常用正交分解法分别求物体在x 轴、y 轴上的合力F x 、F y ,再应用牛顿第二定律分别求加速度a x 、a y .在实际应用中常将受力分解,且将加速度所在的方向选为x 轴或y 轴,有时也可分解加速度,即⎩⎪⎨⎪⎧F x =ma x F y =ma y . 注意:在应用牛顿第二定律解决问题时要重点抓住加速度a 分析解决问题。
【题型1】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向的夹角θ=37°,小球和车厢相对静止,小球的质量为1 kg.sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.求:(1)车厢运动的加速度并说明车厢的运动情况;(2)悬线对小球的拉力大小.【题型2】(多选)如图所示,套在绳索上的小圆环P 下面用悬线挂一个重力为G 的物体Q 并使它们处于静止状态,现释放圆环P ,让其沿与水平面成θ角的绳索无摩擦下滑,在圆环P 下滑过程中绳索处于绷紧状态(可认为是一直线),若圆环和物体下滑时不振动,稳定后,下列说法正确的是( )A.Q 的加速度一定小于g sin θB.悬线所受拉力为G sin θC.悬线所受拉力为G cos θD.悬线一定与绳索垂直【题型3】如图所示,质量为m的人站在自动扶梯上,扶梯正以加速度a向上做减速运动,a与水平方向的夹角为α.求人受到的支持力和摩擦力.【题型4】如图所示,质量为m2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m1的物体1,跟物体1相连接的绳与竖直方向成θ角不变,下列说法中正确的是()A.车厢的加速度大小为g tanB.绳对物体1的拉力为m1g cosθC.车厢底板对物体2的支持力为(m2-m1)gD.物体2受车厢底板的摩擦力为0针对训练1.如图所示,一倾角为α的光滑斜面向右做匀加速运动,物体A相对于斜面静止,则斜面运动的加速度为()A.g sin αB.g cosC.g tan αD.gtan α2.如图所示,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态,现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。
牛顿第二定律及其应用 知识点总结与典例(最新)
牛顿第二定律及其应用知识点总结与典例【知识点梳理】知识点一牛顿第二定律、单位制1.牛顿第二定律(1)内容物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比。
加速度的方向与作用力的方向相同。
(2)表达式a=Fm或F=ma。
(3)适用范围①只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系)。
②只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。
2.单位制(1)单位制由基本单位和导出单位组成。
(2)基本单位基本量的单位。
力学中的基本量有三个,它们分别是质量、时间、长度,它们的国际单位分别是千克、秒、米。
(3)导出单位由基本量根据物理关系推导出的其他物理量的单位。
知识点二动力学中的两类问题1.两类动力学问题(1)已知受力情况求物体的运动情况。
(2)已知运动情况求物体的受力情况。
2.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如下:【方法技巧】两类动力学问题的解题步骤知识点三超重和失重1.实重和视重(1)实重:物体实际所受的重力,与物体的运动状态无关,在地球上的同一位置是不变的。
(2)视重①当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。
②视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。
2.超重、失重和完全失重的比较超重现象失重现象完全失重概念物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)等于零的现象产生条件物体的加速度方向向上物体的加速度方向向下物体的加速度方向向下,大小a=g原理方程F-mg=maF=m(g+a)mg-F=maF=m(g-a)mg-F=mgF=0运动状态加速上升或减速下降加速下降或减速上升无阻力的抛体运动;绕地球匀速圆周运动知识点四动力学中整体法、隔离法的应用1.外力和内力如果以物体系统为研究对象,受到系统之外的物体的作用力,这些力是该系统受到的外力,而系统内各物体间的相互作用力为内力。
牛顿第二定律的应用常见题型与解题方法(王老师原创)非常全面,经典..
牛顿第二定律的应用第一讲一、两类动力学问题1.1.已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma 求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
2.2.已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
进而求出某些未知力。
求解以上两类动力学问题的思路,可用如下所示的框图来表示:求解以上两类动力学问题的思路,可用如下所示的框图来表示:第一类第一类 第二类第二类典型例题: 例1、如图所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求:求:(1)物体加速度a 的大小;的大小; (2)物体在t =2.0s 时速度v 的大小.例2、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s.(1)求列车的加速度大小.)求列车的加速度大小.(2)若列车的质量是1.01.0××106kg kg,机车对列车的牵引力是,机车对列车的牵引力是1.51.5××105N ,求列车在运动中所受的阻力大小.,求列车在运动中所受的阻力大小.二、正交分解法在牛顿第二定律中的应用例3、如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向上减速运动,向上减速运动,a a 与水平方向的夹角为θ,求人所受到的支持力和摩擦力.求人所受到的支持力和摩擦力.三、整体法与隔离法在牛顿第二定律中的应用 物体的受力情况力情况 物体的加速度a 物体的运动情况动情况F 求内力:先整体后隔离求内力:先整体后隔离例4、如图所示,两个质量相同的物体1和2,紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F1和F2的作用,而且F1F1>>F2F2,则,则1施于2的作用力的大小为(的作用力的大小为( )A .F1B .F2C .(F1+F2F1+F2))/2D D..(F1-F2F1-F2))/2求外力:先隔离后整体求外力:先隔离后整体例5、如图所示,质量为m 的物块放在倾角为θ的斜面上,斜面的质量为M M ,斜面与物块无摩擦,地面光滑。
牛顿第二定律及其知识点
牛顿第二定律及其知识点牛顿第二定律是经典力学中的一个重要定律,描述了物体的运动与受力之间的关系。
它是牛顿三大运动定律之一,被广泛地应用于物理学和工程学中。
本文将以“step by step thinking”的方式,逐步介绍牛顿第二定律的概念和知识点。
1.牛顿第二定律的表述牛顿第二定律可以用数学公式来表示:F = ma,其中F表示物体所受的合外力,m表示物体的质量,a表示物体的加速度。
这个公式表明了物体的加速度与作用在它上面的力成正比,与物体的质量成反比。
换句话说,施加在物体上的力越大,物体的加速度就越大;物体的质量越大,物体的加速度就越小。
2.牛顿第二定律的应用牛顿第二定律在物理学和工程学中有着广泛的应用。
它可以用来计算物体的运动轨迹、力的大小和方向等问题。
例如,当我们知道物体的质量和加速度时,可以利用牛顿第二定律计算作用在物体上的合外力大小;当我们知道物体的质量和施加在物体上的力时,可以利用牛顿第二定律计算物体的加速度。
3.牛顿第二定律和惯性系牛顿第二定律的应用范围是惯性系中的物体。
惯性系是指没有受到任何力作用的参考系。
在惯性系中,牛顿第二定律成立;而在非惯性系中,物体可能受到惯性力或其他非惯性力的作用,牛顿第二定律不再成立。
4.牛顿第二定律和质量质量是物体所固有的一个属性,是描述物体惯性的量度。
牛顿第二定律告诉我们,物体的加速度与物体的质量成反比。
具有较大质量的物体,由于其惯性较大,所受到的力相同情况下加速度较小;而具有较小质量的物体,由于其惯性较小,所受到的力相同情况下加速度较大。
5.牛顿第二定律的局限性牛顿第二定律在某些极端条件下可能不适用。
例如,当物体接近光速时,由于相对论效应的影响,牛顿第二定律需要进行修正。
此外,在微观尺度下,量子力学的规律也可能取代牛顿第二定律。
总结:牛顿第二定律是经典力学中的一个基本定律,描述了物体的运动与受力之间的关系。
它的应用范围广泛,并在物理学和工程学中发挥着重要作用。
牛顿力学的应用
牛顿力学的应用牛顿力学是经典力学的重要分支,由伟大的科学家艾萨克·牛顿所创立。
它描述了物体在力的作用下的运动规律,广泛应用于各个领域,从天文学到机械工程,发挥着重要的作用。
一、牛顿第一定律的应用牛顿第一定律,也被称为惯性定律,指出“任何物体如果受力为零,将保持静止或匀速直线运动”。
这个定律的应用非常广泛。
首先,牛顿第一定律可以用来解释运动中出现的复杂现象。
例如,在车子突然刹车的情况下,乘客会因惯性而向前倾斜。
这是因为车子突然减速,使乘客的身体继续保持原先的匀速运动状态,而相对于车身来说就会出现向前倾斜的情况。
其次,牛顿第一定律对解释行星运动也起到了重要作用。
在天文学中,我们可以看到行星、卫星等天体在宇宙中的运动。
根据牛顿第一定律,我们知道因为它们所受到的引力与惯性力的平衡,所以它们能维持稳定的轨道运动。
二、牛顿第二定律的应用牛顿第二定律是物体运动的基本规律,描述了物体所受合力与加速度之间的关系,可以用公式F=ma表示。
牛顿第二定律的应用非常广泛,其中一个重要的应用领域是工程学。
例如,在建筑物的设计和桥梁的建造中,我们需要通过计算物体所受的力和加速度,以确定结构的强度和稳定性。
在这个过程中,牛顿第二定律是不可或缺的工具。
此外,牛顿第二定律也可以用于分析和设计运动物体的机械系统,如汽车和飞机。
例如,通过牛顿第二定律,我们可以计算车辆所需的引擎力来克服摩擦力和空气阻力,以保持稳定的运动速度。
三、牛顿第三定律的应用牛顿第三定律,也被称为作用反作用定律,指出“任何一个物体对另一个物体施加了一个力,另一个物体会同时对它施加一个大小相等、方向相反的力”。
这个定律在实际生活中有很多应用。
例如,在交通工具中,我们常常需要产生推力以克服摩擦力,使车辆加速。
根据牛顿第三定律,我们知道产生推力的方式是通过车辆向后喷出气体或向后喷射燃料。
这样,车辆就会受到向前的作用力,达到加速的效果。
此外,牛顿第三定律还解释了一些常见的现象。
牛顿第二定律的应用
牛顿第二定律的应用牛顿第二定律是物理学中的一个重要定律,描述了物体受力时加速度的变化。
它的数学表达式为F = ma,其中F是物体所受合力,m是物体的质量,a是物体的加速度。
牛顿第二定律在物理学中的应用非常广泛,下面我将详细介绍几个常见的应用。
1. 车辆运动牛顿第二定律在车辆运动中有着广泛的应用。
例如,当一个汽车加速时,发动机产生的力会使汽车产生加速度,加速度的大小取决于发动机产生的力和汽车的质量。
根据牛顿第二定律,F = ma,汽车受到的合力等于汽车的质量乘以加速度,从而可以推导出汽车的加速度。
同样地,当汽车刹车时,刹车产生的力会减小汽车的速度,根据牛顿第二定律,我们可以计算出刹车产生的力和汽车的减速度。
2. 自由落体运动自由落体是指物体在没有受到其他力的影响下自由下落的运动。
根据牛顿第二定律,自由落体运动的加速度只受到地球的引力影响,可以通过F = mg公式计算出来,其中m是物体的质量,g是地球的重力加速度。
由于在自由落体运动中物体所受的合力仅仅是重力,所以根据牛顿第二定律我们可以得到加速度的表达式。
在实际应用中,我们可以通过测量自由落体物体的位移和时间来计算出加速度。
3. 简谐振动简谐振动是指物体在受到恢复力作用下以一定频率在平衡位置附近来回振动的运动。
典型的例子是弹簧振子。
牛顿第二定律在描述简谐振动时也得到了应用。
对于一个弹簧振子,如果以平衡位置为参考点,把弹簧的伸长量或压缩量记为x,则弹簧的恢复力F与伸长量或压缩量x之间满足一个比例关系F = -kx,其中k是弹簧的劲度系数。
根据牛顿第二定律F = ma,我们可以得到描述弹簧振子运动的微分方程。
解这个微分方程可以得到弹簧振子的运动规律。
4. 力学分析牛顿第二定律在力学分析中也经常被应用。
通过将物体受力情况和质量代入牛顿第二定律的公式,我们可以计算物体的加速度。
在分析复杂力作用下的物体运动时,可以将物体受到的各个力分解为它们在不同方向上的分量,然后分别计算每个方向上的合力和加速度。
牛顿第二定律的应用
牛顿第二定律的应用牛顿第二定律是经典力学中重要的定律之一,它描述了物体在受力作用下的运动状态。
在本文中,我们将探讨牛顿第二定律的应用,并且通过具体案例来说明。
1. 牛顿第二定律的基本原理牛顿第二定律可以表述为:当一个物体受到外力作用时,它的加速度与作用力成正比,与物体的质量成反比,即 F = ma,其中 F 表示作用力,m 表示物体的质量,a 表示物体的加速度。
2. 牛顿第二定律在力学问题中的应用牛顿第二定律在力学问题中有广泛的应用,下面我们将分别介绍在直线运动和曲线运动中的具体应用案例。
2.1 直线运动中的应用假设有一个质量为 m 的物体在水平面上受到 F 作用力的推动,我们可以根据牛顿第二定律来计算物体的加速度。
如果我们知道物体的加速度和初始速度,可以求解出物体在某一时刻的速度和位移。
2.2 曲线运动中的应用在曲线运动中,牛顿第二定律也适用。
例如,一个质量为 m 的物体在竖直方向上受到重力和一个向上的支持力的作用,我们可以通过牛顿第二定律来计算物体在竖直方向上的加速度,从而推导出物体在曲线轨迹中的运动状态。
3. 牛顿第二定律的应用案例为了更好地理解牛顿第二定律的应用,我们来看几个具体的案例。
3.1 汽车的行驶假设有一辆质量为 m 的汽车,它受到一个恒定的驱动力 F,我们可以根据牛顿第二定律计算汽车的加速度。
通过这个案例,我们可以了解到驱动力对于汽车加速和制动的影响。
3.2 物体的自由落体当一个物体从高处自由落体时,只受到重力的作用。
根据牛顿第二定律,我们可以计算物体在竖直方向上的加速度,并且以此来描述物体的运动状态。
3.3 弹簧振子弹簧振子是一个经典的力学问题,它可以通过应用牛顿第二定律来求解。
在这个案例中,弹簧的弹性力将物体拉回到平衡位置,而质量则决定了物体的加速度。
4. 结论牛顿第二定律是力学问题中的重要工具,它可以帮助我们分析和解决各种运动问题。
通过适当的应用和计算,我们可以了解物体的加速度、速度和位移等运动状态量。
解读应用牛顿第二定律的常用方法
解读应用牛顿第二定律的常用方法
1.合成法
第一确定研究对象,画出受力分析图,沿着加速度方向将各个力按照力的平行四边形定则在加速度方向上合成,直截了当求出合力,再依照牛顿第二定律列式求解.此方法被称为合成法,具有直观简便的特点.
2.分解法
确定研究对象,画出受力分析图,依照力的实际作用成效,将某一个力分解成两个分力,然后依照牛顿第二定律列式求解.此方法被称为分解法.分解法是应用牛顿第二定律解题的常用方法.但此法要求对力的作用成效有着清晰的认识,要按照力的实际成效进行分解.
3.正交分解法
确定研究对象,画出受力分析图,建立直角坐标系,将相关作用力投影到相互垂直的两个坐标轴上,然后在两个坐标轴上分别求合力,再依照牛顿第二定律列式求解的方法被称为正交分解法.直角坐标系的选取,原则上是任意的.但建立的不合适,会给解题带来专门大的苦恼.如何快速准确的建立坐标系,要依据题目的具体情形而定.正交分解的最终目的是为了合成.
4.用正交分解法求解牛顿定律问题的一样步骤
①受力分析,画出受力图,建立直角坐标系,确定正方向;②把各个力向x轴、y轴上投影;③分别在x轴和y轴上求各分力的代数和Fx、Fy;④沿两个坐标轴列方程Fx=max,Fy=may.假如加速度恰好沿某一个坐标轴,则在另一个坐标轴上列出的是平稳方程.。
牛顿第二定律应用(2)
小结:物体自由沿斜面运动的时间(1)
1.在等高斜面上自由下滑的时间 加速度a=gsin 斜面长S=h/sin
下滑时间t=(2S/a)1/2= (2h/g sin2)1/2
结论:物体从等高斜面上自由下滑时, 倾角越小,下滑时间越长。
h
2.在等底斜面上自由下滑的时间 加速度a=gsin 斜面长S=L/cos
f=µN
Vt=V0+at=at
例3、一个滑雪的人,质量m=75kg,以V0=2m/s的初速度 沿山坡匀加速地滑下,山坡的倾角ß=300,在t=5s的时间内 滑下的路程s=60m,求滑雪人受到的阻力(包括滑动摩擦力 和空气阻力)。
思路:已知运动情况求受力。应先求出加速度a,再利 用牛顿第二定律F合=ma求滑雪人受到的阻力。
牛顿第二定律的应用
例题1:一个静止在水平地面上的物体,质量 是2Kg,在6.4N的水平拉力作用下沿水平地
Байду номын сангаас
面向右运动,物体与水平地面间的滑动摩擦
力是4.2N。求物体4s末的速度和4s内发生的
位移。
解:对物体进行受力分析画图如右
由图知:F合=F-f=ma
f F
a= F f 6.4 4.2 1.1m / s2
70cm,这相当于标准身高男性跳过210m高的
摩天大楼,其跳跃能力远远超过了人们以前
所公认的自然界跳高冠军——跳蚤。当沫蝉
起跳时,加速度可达到4000m/s2。求它起跳
N
时所承受的地面对它的支持力是其体重的多 少倍。(取g=10m/s2)
a F合=N-G=ma
F合 =ma=5×2N=10N 4。分析物体受力情况,建立直角坐标系,由力的合 成与分解求出F
X方向 Fcos 370 -f=ma= F合 Y方向 N+Fsin 370 -mg=0 又 f=uN 联立三式可得F=17.6N
牛顿第二定律的内容、表述方式及应用
牛顿第二定律的内容、表述方式及应用一、牛顿第二定律的内容牛顿第二定律是经典力学中的基本定律,通常表述为:一个物体的加速度与作用在它上面的外力成正比,与它的质量成反比,加速度的方向与外力的方向相同。
牛顿第二定律可以用数学公式表示为:[ F = ma ]其中,( F ) 表示作用在物体上的外力,( m ) 表示物体的质量,( a ) 表示物体的加速度。
二、牛顿第二定律的表述方式牛顿第二定律的表述方式可以从以下几个方面来理解:1. 力的作用牛顿第二定律说明了力对物体的作用效果,即力能够改变物体的运动状态。
这种改变表现为物体速度的变化,即加速度。
2. 力的量度牛顿第二定律表明,力是使物体产生加速度的原因,加速度的大小取决于作用力的大小。
因此,力可以作为物体运动状态改变的量度。
3. 质量的量度牛顿第二定律还表明,物体的质量越大,它对作用力的反应越迟钝。
也就是说,质量是物体抵抗运动状态改变的量度。
4. 作用力和反作用力牛顿第二定律只描述了作用力对物体加速度的影响,而没有直接涉及反作用力。
但根据牛顿第三定律,作用力和反作用力大小相等、方向相反。
因此,在考虑物体受到的合外力时,应同时考虑作用力和反作用力。
三、牛顿第二定律的应用牛顿第二定律在日常生活和科学研究中有着广泛的应用,以下是一些典型的例子:1. 运动物体的控制在体育运动中,运动员通过施加不同大小的力来控制物体的运动状态,如投掷、击打、踢球等。
了解牛顿第二定律可以帮助运动员更好地掌握运动技巧。
2. 机械设计在机械设计中,工程师需要根据牛顿第二定律来计算和选择合适的零件和材料,以确保机器正常工作。
例如,在设计汽车刹车系统时,需要根据汽车质量和刹车力来计算刹车距离。
3. 碰撞分析在碰撞分析中,牛顿第二定律可以帮助研究人员预测和评估碰撞过程中物体的加速度和速度变化。
这对于交通事故的调查和防范具有重要意义。
4. 火箭发射在火箭发射过程中,牛顿第二定律起到了关键作用。
精选牛顿第二定律的应用资料
G
x2=?
代入数据:
20 × 0.8- f =10a1
F支+ 20 × 0.6 -10 × 10
=0
f解=之0得.15:× F支
F支=88N , f =13.2N a1=0.28m / s2
由v1=v0+a1t可知:
v1=0.28×5m/s
=1.4m/s
由x1=a1t2 / 2可知:
f ’= µF支
代入数据: 解之得:
0 – f ’= 10a2
F支’ – 10×10 =0
F支’=100N f ’=15N
f ’ = 0.15 F支’ a2= – 1.5m / s2
方法一:
方法二:
由0=v1+a2t2可知:
0 = 1.4 +(– 1.5)×t2
t2 =0.93s
由2 a2 x2= 02 – v12 得: 2×(– 1.5) x2= – 1.42
x2=0.65m
由x2= v1t2+a2t22 / 2可知:
x2= 1.4× 0.93 +(– 1.5)× (0.93)2 / 2
=0.65m
一物块从光滑斜面顶端下滑,已知
斜面倾角为300,斜面长为2.5m,则物体
滑到底端时所用时间为多少? y
F
解:以物体为研究对象受
力如图,并建立如图坐标,
G2
由牛顿第二定律可知,
二、重点、难点:
1、重点:形成动力学问题的分析思路和解决方法。
2、难点:把动力学的分析思路和解决方法贯彻到 具体问题的解决之中。
三、教学过程:
复习:
下列说法正确的是:
( BCD )
A、由a= v 可知,a与v成正比,与t反比
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F1 Ff =ma ④
F f = μF N
v =at
⑤
③
F2 mg
由①②③④⑤ ⑥得
⑥ F cos - ( mg + F sin ) v= t m
代入数据可得: v =24m/s
θ
竖直方向: 水平方向:
FN ( F2 m g) 0
Ff
F1
F
二、从运动情况确定受力
已知物体运动情况确定受力情况,指的是在运动情 况(知道三个运动学量)已知的条件下,要求得出物体 所受的力或者相关物理量(如动摩擦因数等)。 处理这类问题的基本思路是:先分析物体的运动情 况,据运动学公式求加速度,再在分析物体受力情况的 基础上,用牛顿第二定律列方程求所求量(力)。
a
A,µmg
C,mF/(M+m)
B.ma
m M
F
D,F-Ma
8.在气垫导轨上用不可伸缩的细
绳,一端系在质量为m1 的滑块上 ,另一端系在质量为m2 的钩码上 ,如图所示。设导轨与滑块之间 a 、细绳与滑轮之间 m 无摩擦,求滑块的加 速度以及细绳的拉力。 m
1 2
a
传送带问题
学习重点、难点、疑点、突破
N
V0= 0 Vt=?
竖直方向 N– Fsinθ- G = 0
① ②
水平方向 Fcosθ- f = ma
二者联系 f=μN
③
f
Fsinθ
Fcosθ
θ
F
G
如果还要求经过 t 秒时木箱的速度vt=a t
ቤተ መጻሕፍቲ ባይዱ
F cos (mg F sin ) a m
练习:图中的AB、AC、AD都是光滑的轨 道,A、B、C、D四点在同一竖直圆周上, 其中AD是竖直的。一小球从A点由静止开 始,分别沿AB、AC、AD轨道滑下B、C、 D点所用的时间分别为tl、t2、t3。则( ) A.tl=t2=t3
例题:光滑的水平面上有质量分别为m1、m2的两物体 静 止靠在一起(如图) ,现对m1施加一个大小为 F 方向向 右的推力作用。求此时物体m2受到物体 m1的作用力F1
[ 解法一 ]:
分别以m1、m2为隔离体作受力分析 对 m 1有 : F – F 1 = m 1a 对 m 2有 : F 1 = m 2 a ( 1) ( 2)
甲 乙
V0
θ 物体以某一初速度v0冲上倾 角为θ的斜面,物体与斜面间 的动摩擦因数为μ,则物体经 多长时间上滑至最高点?
m
θ
判断车在做什么样的运动?
若m、θ已知,则车的 加速度多大?
连结体问题:
连结体:两个(或两个以上)物体相互连 结参与运动的系统。 隔离法:将各个物体隔离出来,分别对各个物 整体法与隔离法交叉使用:若连接体内各 体根据牛顿定律列式,并要注意标明各物体 物体具有相同的加速度时,应先把连接体 的加速度方向,找到各物体之间的速度制约 当成一个整体列式。如还要求连接体内物 关系。 体相互作用的内力,则把物体隔离,对单 整体法:若连结体内 (即系统内)各物体的加速 个物体根据牛顿定律列式。 度相同,又不需要系统内各物体间的相互作 用力时,可取系统作为一个整体来研究,
瞬时加速度的分析问题
分析物体在某一时刻的瞬时加速度,关键——分析瞬时 前后的受力情况及运动状态,再由牛顿第二定律求出瞬 时加速度。
有两种模型:
①刚性绳(或接触面):是一种不需要发生明显形变就 能产生弹力的物体,若剪断(或脱离)后,其中弹力立
即发生变化,不需要形变恢复的时间。
②弹簧(或橡皮绳):特点是形变量大,形变恢复需 要较长时间,在瞬时问题中,其弹力可以看成不变。
牛顿第二定律的应用
一、 从受力确定运动情况
已知物体受力情况确定运动情况,指的是 在受力情况已知的条件下,要求判断出物体的 运动状态或求出物体的速度、位移等。 处理这类问题的基本思路是:先分析物体 受力情况求合力,据牛顿第二定律求加速度, 再用运动学公式求所求量(运动学量)。
物体受 牛顿第 加速度 运动学 物体运
一条轻弹簧上端固定在 天花板上,下端连接一物 体A,A的下边通过一轻绳 连接物体B.A,B的质量相 同均为m,待平衡后剪断 A,B间的细绳,则剪断细 绳的瞬间,物体A的加速 度和B的加速度?
A
B
如图,两个质量均 为m的重物静止,若 剪断绳OA,则剪断 瞬间A和B的加速度 分别是多少?
0
A
B
质量皆为m的A,B两球之间系 着一个不计质量的轻弹簧,放 在光滑水平台面上,A球紧靠墙 壁,今用力F将B球向左推压弹 簧,平衡后,突然将力F撤去的 瞬间A,B的加速度分别为多 少?.
37 °
总结
传送带问题的分析思路: 初始条件→相对运动→判断滑动摩擦力的大小 和方向→分析出物体受的合外力和加速度大小 和方向→由物体速度变化再分析相对运动来判 断以后的受力及运动状态的改变。 难点是当物体与皮带速度出现大小相等、方向 相同时,物体能否与皮带保持相对静止。一般 采用假设法,假使能否成立关键看F静是否在 0- Fmax之间
用水平推力F 向左推 m1、 m2间的作用 力与原来相 同吗?
0 0
F a m1 m2
m2 F F1 = m2 a = m1 + m2
F (m1 m2 ) g a m1 m2
F1 - m2 g = m2a
F - (m1 + m2 ) g m2 F F1 = m2 + m2 g = m1 + m2 m1 + m2
A
B
例3:一传送带装置示意如图,传送带与地面倾 角为37 °,以4m/s的速度匀速运行,在传送带 的低端A处无初速地放一个质量为0.5kg的物体, 它与传送带间动摩擦因素μ=0.8,A、B间长度 为25m, 求: (1)说明物体的运动性质(相对地面)
(2)物体从A到B的时间为多少? (sin37° =0.6)
F m1 m2
FN F (m1 + m2)g FN2 [m2] F1
有 : F = ( m 1+ m 2) a
对m2作受力分析 有 : F1 = m 2 a
联立(1)、(2)可得
(1)
(2)
m2F F1 = m1 m 2
m2g
求m1对m2的作用力大小。
对m2受力分析: F N
m1 m2 Ff m2g F1
A
B
变式训练2:如图所示,一平直的传送带以速度V =2m/s匀速运动,传送带把A处的工件运送到B处, A、B相距L=10m.从A处把工件无初速地放到传送 带上,经时间t=6s能传送到B处,欲用最短时间 把工件从A处传到B处,求传送带的运行速度至少 多大.
A
B
例题分析:
例2:如图所示,一水平方向足够长的传 送带以恒定的速度V=2m/s沿顺时针方向 匀速转动,传送带传送带右端有一与传 送带等高的光滑水平面,一物体以恒定的 速率V’=4m/s沿直线向左滑上传送带,求 物体的最终速度多大?
5.四个相同的木块并排放 在光滑的水平地面上, 当 用力F推A使它们共同加速 运动时, A对B的作用力是 多少?
F
A B C D
6.如图所示,在光滑的地面上,水平 外力F拉动小车和木块一起做加速 运动,小车质量为M,木块质量为m, 设加速度大小为a,木块和小车之间 的动摩擦因数为µ ,则在这个过程中, 木块受到的摩擦力大小是:
力情况
二定律
a
公 式
动情况
练习:一木箱质量为m=10Kg,与水平地面间的动摩
擦因数为μ=0.2,现用斜向右下方F=100N的力推木箱, 使木箱在水平面上做匀加速运动。F与水平方向成 θ=37O角,求经过t=5秒时木箱的速度。 FN 解:木箱受力如图:将F正交分解,则: F1= F cosθ ① F2= F sinθ ②
:
a=
2 ( x - v0 t)
滑雪的人滑雪时受力如图,将G分解得: F1 θ F1= mgsinθ ② F2 θ 根据牛顿第二定律:F1-F阻=m a ③ mg 由①②③ 2 m( x - v0 t ) 得F阻=F1-ma = mgsinθ2
t2
1
FN
F阻
t
代入数据可得: F阻=67.5N
F阻 方向沿斜面向上
A
B
例题分析:
分析:题目的物理情景是,物体离皮带很近处轻轻 落到A处,视初速度为零,当物体刚放上传送带一段 时间内,与传送带之间有相对滑动,在此过程中, 物体受到传送带的滑动摩擦力是物体做匀加速运动 的动力,物体处于相对滑动阶段。然后当物体与传 送带速度相等时,物体相对传送带静止而向右以速度 υ做匀速运动直到B端,此过程中无摩擦力的作用。
应用牛顿运动定律解题的一般步骤
1、确定研究对象。 2 、分析研究对象的受力情况,必要时画受力 的示意图。 3 、分析研究对象的运动情况,必要时画运动 过程简图。 4 、利用牛顿第二定律或运动学公式求加速度。 5 、利用运动学公式或牛顿第二定律进一步求 解要求的物理量。
练习: 一木箱质量为m,与水平地面 间的动摩擦因数为μ,现用斜向右下方 与水平方向成θ角的力 F 推木箱,求经 过 t 秒时木箱的速度。
动力学的两类基本问题
一、 从受力确定运动情况
物体受 力情况 牛顿第 二定律 加速度 a 运动学 公 式 物体运 动情况
二、从运动情况确定受力
物体受 力情况 牛顿第 二定律 与分解 加速度 a 运动学 公 式 物体运 动情况
解题思路: 力的合成
受力情况 合力F合
运动学 公式
a
运动情况
F合 = m a
37 °
例4:如图所示,传送带与地面倾角为37 ° ,从A到B长度为16m,传送带以v= 20m/s,变:(v= 10m/s)的速率逆时针 转动.在传送带上端A无初速地放一个质量 为m=0.5kg的物体,它与传送带之间的动 摩擦因数为μ=0.5.求物体从A运动到B 所需时间是多少.(sin37°=0.6)