旋转导向钻井工具的研制原理
旋转导向钻井工具的研制原理
第26卷 第5期2005年9月石油学报AC TA PETROL EI SIN ICAVol.26 No.5Sept.2005 基金项目:国家高技术研究发展计划(863)“旋转导向钻井系统关键技术研究”(2003AA602013)和中国石油化工集团公司重大攻关项目(J P01005)联合资助。
作者简介:闫文辉,男,1965年9月生,1999年获西安石油学院硕士学位,现为西安石油大学副教授,硕士生导师,主要从事石油机械设计及设备检测与故障诊断方面的教学和科研工作。
E 2mail :ywh369@文章编号:0253Ο2697(2005)05Ο0094Ο04旋转导向钻井工具的研制原理闫文辉 彭 勇 张绍槐(西安石油大学机械工程学院 陕西西安 710065)摘要:介绍了旋转导向钻井工具的工作原理及结构,指出了研制该工具的主要技术特点。
旋转导向钻井工具主要由稳定平台单元、工作液控制分配单元和偏置执行机构单元3部分组成,其测试元件将测得的井眼参数通过短程通讯传输到随钻测量仪,再由随钻测量仪将信息传输到地面。
同时,旋转导向钻井工具接收由地面发出的指令,并通过稳定平台单元调控工作液来控制分配单元中的上盘阀高压孔的位置。
工作液控制分配单元将过滤后的泥浆依次分配到3个柱塞,给推板提供推靠动力,并使该推靠力的合力方向始终保持在上盘阀高压孔所对应的位置,在近钻头处形成拍打井壁的侧向力。
通过对侧向力的大小、方向和拍打频率的调整,可直接控制该工具的导向状态。
关键词:旋转导向钻井工具;测试元件;导向控制;井眼参数;随钻测量中图分类号:TE82 文献标识码:AMechanism of rotary steering drilling toolYAN Wen 2hui PEN G Y ong ZHAN G Shao 2huai(College of Mechanical Engineering ,X i πan S hi you Universit y ,X i πan 710065,China )Abstract :The working principle and structure of a rotary steering drilling tool are introduced.The main technical properties of the tool are described.The tool mainly includes three parts :①unit of stabilization platform ;②unit for controlling and assigning work 2ing liquid ;③unit of Push 2the 2Bit working structure.The wellbore data can be transmitted to measurement while drilling (MWD )u 2nit f rom the test component in the tool through a short distance communication component and then transmitted to the instrument on ground by MWD unit.At the same time ,the receiver in the component receives the instruction f rom the instrument on ground ,and then control the high 2pressure hole located on the upper plate hose by controlling and assigning working liquid with a controller in the stabilization platform unit.The unit for controlling and assigning working liquid takes the filtered mud as the working liquid distribu 2ted in three mud pipes in turn.The mud provides the “pad ”with a motive force and maintains the direction of the join force on the position in accord with the high 2pressure hole on the upper valve all the time.Thus there will form a side force near the bit flapping the wall of the well.The adjustment of the size and direction of the side force acted on the wall and the flapping f requency could di 2rectly control the steering state of the drilling tool.K ey w ords :rotary steering drilling tool ;measurement unit ;steering control ;wellbore data ;measurement while drilling 旋转导向钻井技术是20世纪90年代初发展起来的一项自动化钻井新技术。
旋转导向钻井系统原理简介 (1)
扶正器 非旋转套筒 钻头轴
钻头
导向
旋转导向系统的“三巨头” 钻井
目前市场上比较成熟的旋转导向钻井系统有三种:
1. Halliburton’s rotary steerable drilling system, dubbed GeoPilot 。由Sperry Sun 和Japan National Oil Corporation 联合 设计。指引钻头原理(Point the bit)。在北海进行裸眼侧钻,从 两个主井眼中侧钻出6个分支水平井。在第二口的四分支水平井 中,垂深误差在±1英尺之内。
旋转导向钻井系统原理简介 (1)
导向
早期的旋转导向钻井思想
钻井
这是1955年申请专利的 旋转导向系统。
一个非旋转套筒,指向钻 头的一个特定方位。
该专利描述其目的是:使 钻铤相对井眼轴线有一个 很小的偏离,从而使钻头 具有横向前进。
导向
早期的旋转导向钻井思想
钻井
这是1959年申请专利的旋 转导向系统。
PowerDrive
二. 大位移井的轨迹控制技术
• 总运行情况:
• 基本数据:
– 井数:47 口;
– 长度:4.9米;
– 下井次数:138次;
– 排量:500~1000gpm
– 液压作用导向鞋; hydraulically activated guide shoes, – 偏心非旋转套筒; nonrotating sleeves, – 嵌套的偏心剑套筒; nested eccentric cam sleeves – 间歇作用的桨叶; intermittently activated paddles
2. Baker Hughes’ AutoTrack Rotary Closed Loop 。由Baker Hughes和ENI-AGIP S.p.A. 联合开发的。侧推钻头原理(Push the bit)。在北海的一个井眼钻进中,钻进了4383英尺,垂深误 差在± 8英寸之内。
旋转导向钻井技术介绍-图文
旋转导向钻井技术介绍-图文引言近十几年来,水平井、大位移井、多分支井等复杂结构井和“海油陆采”的迅速发展。
为了节约开发成本和提高石油产量,对那些受地理位置限制或开发后期的油田,通常通过开发深井、超深井、大位移井和长距离水平井来实现,进而造成复杂结构的井不断增多。
目前通行的滑动钻井技术已经不能满足现代钻井的需要。
于是,自20世纪80年代后期,国际上开始加强对旋转导向钻井技术的研究;到90年代初期,旋转导向钻井技术已呈现商业化。
国外钻井实践证明,在水平井、大位移井、大斜度井、三维多目标井中推广应用旋转导向钻井技术,既提高了钻井速度,也减少了钻井事故,从而降低了钻井成本。
旋转导向钻井技术是现代导向钻井技术的发展方向。
旋转导向钻井法是在用转盘旋转钻柱钻井时随钻实时完成导向功能。
钻进时的摩阻与扭阻小、钻速高、钻头进尺多、钻井时效高、建井周期短、井身轨迹平滑易调控。
此外,其极限井深可达15km,钻井成本低。
旋转导向钻井技术的核心是旋转自动导向钻井统,如图1所示。
它主要由地面监控系统、地面与井下双向传输通讯系统和井下旋转自动导向钻井系统3部分组成。
1、地面监控系统旋转导向钻井系统的地面监控系统包括信号接收和传输子系统及地面计算存储分析模拟系统,有的还具有智能决策支持系统。
旋转导向钻井系统的主要功能通过闭环信息流监视并随钻调控井身轨迹,其关键技术是从地面发送到井下的下行控制指令系统。
2、地面与井下双向传输通讯系统目前已提出的信号传输方式有4种,即钻井液脉冲、绝缘导线、电磁波和声波。
通过比较分析,笔者发现这4种传输方式各有优缺点和应用局限,如表1所示。
3、井下旋转自动导向钻井系统井下旋转自动导向钻井系统是旋转自动导向系统的核心,它主要由3部分构成,即测量系统、导向机构、CPU和控制系统。
(1)测量系统测量系统主要用于监测井眼轨迹的井斜、方位及地层情况等基本参数,使钻井过程中井下地质参数、钻井参数和井眼参数能够实时测量、传输、分析和控制。
旋转导向造斜能力工具介绍 -回复
旋转导向造斜能力工具介绍-回复什么是旋转导向造斜能力工具?旋转导向造斜能力工具是一种用于在石油和天然气钻井过程中实现井眼偏斜的工具。
它通过旋转方向的改变和摆动的运动来实现钻井井眼倾斜的目标。
这种工具通常由一系列旋转导向工具组成,包括导向翼、模块短节、固定尾节和导向电缆。
旋转导向造斜能力工具的工作原理:1. 导向翼:导向翼通过改变旋转方向来实现井眼的偏斜。
导向翼带有特殊的翼片,当工具旋转时,翼片会向外张开,使整个工具发生摆动运动。
通过控制翼片的摆动程度和空间角度,可以实现井眼的倾斜。
2. 模块短节:模块短节是旋转导向造斜能力工具中的关键部件。
它由多个独立的模块组成,每个模块都配有导向翼和连接机构。
当模块短节暴露在井眼中时,它们可以相互连接,并形成一个稳定的整体。
通过改变短节的数量和排列方式,可以调整井眼的倾斜程度。
3. 固定尾节:固定尾节是连接在模块短节后部的部件。
它通常由金属材料制成,并具有保持整个工具稳定的作用。
固定尾节的特殊形状可以帮助工具在钻进的过程中控制井眼的方向。
4. 导向电缆:导向电缆是连接在旋转导向造斜能力工具上的电器线,在钻进过程中传输控制指令和数据。
导向电缆通过与地面上的控制台通信,使钻井工程师能够实时监控工具的位置和状态,并做出相应的调整。
旋转导向造斜能力工具的应用范围:旋转导向造斜能力工具在石油和天然气钻井工程中具有广泛的应用。
以下是一些常见的应用场景:1. 建立水平井眼:在水平井眼中,旋转导向造斜能力工具可以通过控制翼片的旋转方向和摆动程度来使井眼偏斜,从而实现水平井眼的构建。
这可以提高井眼的排水能力和采油效果。
2. 侧向钻进:旋转导向造斜能力工具可以在垂直井眼中实现侧向钻进。
通过调整导向翼的摆动程度和空间角度,可以将钻头引导到目标油气层的侧向位置,增加钻探范围和采油效率。
3. 水平井段控制:在水平井眼中,旋转导向造斜能力工具可以实现水平段的控制。
通过控制导向翼的旋转和摆动,可以调整井眼的方向和轨迹,使其与目标油气层的位置保持一致。
贝克休斯旋转导向原理
贝克休斯旋转导向原理贝克休斯旋转导向原理是指在石油钻井中,通过旋转钻具来实现钻井方向控制的一种方法。
该原理是由美国工程师贝克和休斯在20世纪30年代提出的,是钻井技术中的重要突破之一。
在传统的钻井方法中,钻井工具靠施加扭矩和推力来实现钻井,但是在某些情况下,需要改变钻井的方向,以便达到特定的目标。
贝克休斯旋转导向原理就是为了解决这一问题而提出的。
该原理的关键是利用钻杆的扭转来改变钻井方向。
在钻井过程中,通过在钻杆上加装一种叫做导向装置的工具,可以使钻杆在钻井过程中产生不同的方向偏差。
这种导向装置通常由可调节的导向翼片组成,可以根据需要进行调整。
当钻杆旋转时,导向装置会产生一个由切向力和摩擦力组成的向下施加的力,这个力会使钻杆发生弯曲,从而改变钻井方向。
通过调整导向装置的角度和位置,可以实现钻井方向的精确控制。
贝克休斯旋转导向原理的优点在于可以实现高精度的钻井方向控制。
相比传统的钻井方法,旋转导向技术可以实现更小的偏差角度和更精确的方向控制。
这对于一些需要在地下目标点附近进行操作的任务非常重要,比如在石油开采中需要在油层下方进行侧向钻井。
贝克休斯旋转导向原理也可以提高钻井的效率和安全性。
传统的钻井方法需要频繁地停工和更换钻具,而旋转导向技术可以减少停工时间,提高钻井的连续性。
同时,由于钻井方向的精确控制,可以避免一些潜在的危险情况,提高钻井作业的安全性。
贝克休斯旋转导向原理的应用范围非常广泛。
除了石油开采领域,旋转导向技术还可以应用于其他领域,比如地质勘探、水井钻探、盐井钻探等。
在这些领域中,旋转导向技术可以帮助钻井工程师更好地了解地下地层的情况,提高勘探和钻探的效率。
总的来说,贝克休斯旋转导向原理是钻井技术中一项重要的突破,通过旋转钻具来实现钻井方向控制。
该原理具有高精度、高效率和高安全性的优点,广泛应用于石油开采和其他领域。
随着技术的不断发展,相信旋转导向技术将会在未来的钻井领域中发挥更大的作用。
旋转导向钻井技术(简版)
扩大应用范围
03
旋转导向钻井技术的应用范围不断扩大,不仅适用于直井和斜
井,还可应用于水平井、分支井和多分支井的钻井作业。
旋转导向钻井技术的发展前景
技术创新
随着科技的不断进步,旋转导向钻井技术将不断创新和完善,提高 钻井效率和精度。
智能化发展
未来旋转导向钻井技术将与智能化技术相结合,实现钻井过程的自 动化和智能化,进一步提高钻井效率和安全性。
操作难度大
旋转导向钻井技术的操作 难度较大,需要专业技术 人员进行操作和维护。
维护保养成本高
旋转导向钻井技术的维护 保养成本较高,需要定期 进行检测和维修。
03
技术应用
旋转导向钻井技术在石油工业中的应用
水平井和复杂结构井的钻井
旋转导向钻井技术能够实现水平井和复杂结构井的高效钻井,提 高油藏的采收率。
案例概述
某研究机构致力于旋转导向钻井技术的研发,经过多年的 研究与实践,成功开发出具有自主知识产权的旋转导向钻 井系统。
技术研发
该研究机构在旋转导向钻井技术方面取得了多项突破,包 括高精度导航控制、钻头稳定器设计、信号传输技术等关 键技术。
成果与效益
该研究机构的旋转导向钻井技术成果得到了广泛应用,为 国内外石油公司提供了技术支持与解决方案,推动了该技 术的发展与进步。
地热能开发
在地热能开发领域,旋转导向钻 井技术有助于实现地热井的高效、 精确钻进。
地下水开采
在地下水开采领域,旋转导向钻 井技术能够优化井位布局,提高 开采效率。
旋转导向钻井技术的未来发展技术将不断 进行技术创新和改进,提高钻井精度和效率。
智能化与自动化
分析认为旋转导向钻井技术在该地区油气田开发中取得了良好的应用效 果,建议进一步推广该技术,提高油气勘探开发水平。
旋转导向钻井技术应用研究及其进展
旋转导向钻井技术应用研究及其进展旋转导向钻井技术是一种在钻井过程中用于控制井眼轨迹的技术,通过改变钻头方向和位置,实现井眼的控制和导向。
随着石油勘探和开发的不断深入,旋转导向钻井技术逐渐成为了一种重要的技术手段,为了更好地应用和研究这一技术,不断推动技术的进步和发展。
本文将对旋转导向钻井技术的应用研究及其进展进行探讨。
一、旋转导向钻井技术的基本原理旋转导向钻井技术是通过改变钻头的方向,使其与地层轴线或者指定方向的夹角保持在一定范围内,从而控制井眼的轨迹。
这种技术可以通过改变钻头的旋转速度、倾角和方向来实现。
通常情况下,利用导向工具和传感器,实时监测钻头的方向和位置,通过相应的调节和控制,使井眼达到预期的轨迹。
旋转导向钻井技术的核心是通过控制钻头的方向和位置,使井眼轨迹符合设计要求,达到钻井工程的预期目标。
1. 技术在海上油气田的应用随着石油勘探开发的不断深入,海上油气田的开发成为了一个重要的方向。
受到海上环境的影响,钻井过程会遇到一系列的技术难题,如井眼轨迹控制、井下工具的使用等。
旋转导向钻井技术通过控制井眼轨迹,使得钻井作业更加精准、可靠,同时也降低了钻井事故的发生概率,大大提高了海上油田的开发效率。
在一些油气地质复杂的区块,地层构造复杂,易出现井眼偏斜变形、打偏或打岔等问题。
旋转导向钻井技术通过实时监测井眼轨迹,及时调整钻头的方向和位置,可以有效避免井眼的偏离,提高了钻井的效率和成功率,减少了钻井事故的发生。
3. 技术在水平井和定向井的应用水平井和定向井的发展对井眼轨迹的控制提出了更高的要求,对旋转导向钻井技术的应用提出了更高的挑战。
通过对传统技术的改进和创新,结合现代的导向工具和传感器,旋转导向钻井技术在水平井和定向井的应用中取得了显著的成果,为这类井眼的钻探提供了可靠的技术支持。
1. 数据采集与处理技术的创新数据采集与处理技术是旋转导向钻井技术的关键。
随着信息技术的不断进步,传感器和导向工具的精度和灵敏度大大提高,实时数据的采集和处理能力也得到了明显的改善,提高了对钻头位置和方向的监测精度,为井眼轨迹的控制提供了可靠的数据支持。
探讨石油定向井钻井中的旋转导向技术
探讨石油定向井钻井中的旋转导向技术石油定向井钻井是一种在石油勘探和开采过程中十分重要的技术。
而在定向井钻井中,旋转导向技术则是一种常用的技术手段,能够有效地实现井眼轨迹的设计和控制。
本文将从旋转导向技术的基本原理、发展历史、应用现状和未来发展趋势等方面进行探讨,以期为相关领域的研究和实践提供一些有益的参考。
一、旋转导向技术的基本原理旋转导向技术是指通过改变钻头在井眼中的转向,来实现井眼轨迹的设计和控制。
其基本原理是利用钻头的钻进能力和操作钻柱的旋转力矩,通过旋转钻柱使钻头在井眼中产生一定的转角,从而使井眼偏离原先的方向,实现定向钻井的目的。
旋转导向技术主要包括下列几种常用方法:1. 旋转导向器技术:是利用在井下安装的旋转导向器来改变钻头的转向,以实现井眼轨迹的设计和控制。
3. 旋转钻杆技术:是通过钻杆的旋转来实现井眼轨迹的设计和控制,其原理是通过改变钻杆的旋转方向和速度来使钻头产生一定的转角。
旋转导向技术起源于20世纪初期的石油勘探和开采过程中的定向钻井需求。
最早的旋转导向技术是采用手工操作井口的方式进行控制,随着钻井技术的发展,人们开始尝试利用机械设备和电子技术来实现旋转导向,逐渐形成了现代旋转导向技术体系。
在20世纪70年代至80年代,随着计算机技术的应用,旋转导向技术得到了进一步的发展和完善,成为定向井钻井中的一项重要技术手段。
目前,旋转导向技术已成为石油勘探和开采中定向井钻井的主要手段之一,在陆地、海洋和深水等各种复杂地质条件下得到了广泛的应用。
旋转导向技术的应用效果主要表现在以下几个方面:1. 提高钻井效率:旋转导向技术能够实现井眼轨迹的控制和设计,从而提高了钻井的效率和成功率,减少了钻井成本。
2. 提高生产收益:通过精确控制井眼轨迹,旋转导向技术能够实现油气井的有效开发和生产,提高了生产收益。
3. 减少环境影响:旋转导向技术能够减少井下钻井活动对地下水和环境的影响,降低了环境风险。
4. 提高安全性:通过旋转导向技术的应用,可以有效减少井下事故和安全隐患,提高了钻井作业的安全性。
旋转导向工具导向模块部件组成及原理
旋转导向工具导向模块部件组成及原理摘要:本文主要对旋转导向钻井工具研发的关键技术之一导向模块的研究情况作了简要介绍,并对目前导向模块的机械设计结构、供电、通讯、控制系统的工作原理、非接触供电部分的试验设计做了详细的说明,确定了存在的技术难点及下一步我们要主攻的研究方向。
关键词:旋转导向工具导向模块非接触供电电磁感应定向控制一、旋转导向结构旋转导向钻井工具由双向通讯系统、MWD随钻测井系统以及导向系统三部分组成。
导向系统是其主要执行机构,是能否实现定向自动控制的重要部件。
导向头设计结构,如图1所示。
图1:导向头结构图导向头从结构上分为旋转轴和不旋转导向外套两大部分。
旋转轴从导向套中间穿过与钻头连接,带动钻头与钻柱一起旋转,导向套与旋转轴之间镶有金刚石耐磨片的硬质合金滑动轴承,以保证相对转动时产生较小的磨损。
三个可伸缩翼肋布置在导向套中,由地面大控制闭环或地下小控制闭环控制其伸缩量以进行方位和井斜的控制。
二、导向头各部件组成与工作原理(一)导向头各部件组成导向头部分由初级电路模块、非接触供电及通讯模块、次级电路及近钻头井斜工具面测量模块、液压模块等组成。
其中初级电路模块、非接触供电的内套部分和中心轴一起旋转,而非接触供电的外套部分、次级电路及近钻头井斜工具面测量模块、液压模块置于不旋转导向套中。
1.初级电路模块包括信号解调电路、信号与能量载波调制电路。
它用于接收上部泥浆发电机向下传递的电能及地面给出的命令信号给出的轨迹井斜方位信号并经过处理后输出。
再通过信号与能量载波调制电路与命令信号、轨迹井斜方位信号进行相应的调制,输出给非接触供电及通讯模块。
2.非接触供电及通讯模块信号与电能的共同传递还会带来信号调制和双向同步传输能量与信号的问题。
信号调制的关键是如何进行优化调制以达到最小的错码率。
双向同时传输的主要问题是在一条通路上如何进行下传150W交流电能的同时上传控制信号。
这些方面都需要进行深入的理论研究及实验。
旋转导向钻井技术应用研究及其进展
旋转导向钻井技术应用研究及其进展
旋转导向钻井技术是指利用钻头本身的旋转引导钻柱前进方向的一种钻井技术。
它具
有导向准确、操作简单、钻井速度快、成本相对较低等优点,在油气田、地热井、水井等
领域有广泛应用。
本文将对旋转导向钻井技术的原理、分类、应用现状及未来发展趋势进
行分析和探讨。
一、旋转导向钻井技术原理
旋转导向钻井技术是以钻头的旋转运动为基础实现钻井方向控制的。
钻头旋转运动产
生了副反力,同时地层阻力又使得钻头产生推力,将钻柱不断向前推进。
当钻头稍微偏离
钻井轨迹时,钻柱的副反力和阻力不再共线,形成了一个力矩,使得钻柱产生了角转动,
从而实现了钻井方向的调整。
旋转导向钻井技术按照操作方式可以分为手动导向钻井和自动导向钻井两类;按照应
用领域可以分为油气田开发导向钻井、地热井导向钻井、水井导向钻井等。
根据所需导向
精度可分为低精度导向、中精度导向和高精度导向。
旋转导向钻井技术已经广泛应用于油气田开发、地热井和水井钻探等领域。
在油气田
开发中,旋转导向钻井技术可以实现复杂井型和多层次钻探,提高采气采油效率。
在地热
井和水井钻探中,旋转导向钻井技术可以提高钻井效率、降低钻井成本。
未来旋转导向钻井技术将继续朝着快速、高效、低成本、高精度的方向发展。
一方面,钻井技术将逐渐自动化,实现更加精准和高效的导向钻井;另一方面,随着油气田、地热
井和水井等应用领域的不断扩大,导向精度将会更加重要。
因此,未来旋转导向钻井技术
将面临更高的技术挑战和发展机遇。
旋转导向钻井系统原理
旋转导向钻井系统原理旋转导向钻井系统原理是:旋转钻井是从顿钻钻井演变而来的,它的应用最为广泛。
转盘钻井是通过一套地面设备,即钻机、井架以及一套提升系统,通过提升系统将井下钻具提起、下放、靠转盘转动。
钻具转动带动下边钻头转动,钻头转动时就可破碎岩石,破碎了的岩屑被泥浆泵泵人井内的泥浆循环带到地面。
钻头磨损了,再将钻具起出来换上新钻头,再下钻钻进,这样井不断加深直到将井钻到预计井深。
石油和天然气埋藏在地下几十m到几km深度不等的有孔隙、裂缝或溶洞的岩石中,为了寻找和开采石油天然气,从地面向地下的油气层之间,钻凿出一个通道的过程称之为石油天然气钻井。
其工序为:①钻井前,要在地面确定钻井的位置,然后在井位处打好安装钻机的基础并安装井架和钻机。
②钻井作业时,依靠钻机带动钻杆和钻头旋转,钻头逐次向下破碎岩层,形成一个井眼(钻井井眼尺寸的大小是由钻头大小来决定的)。
钻头在破碎岩层的同时,通过空心的钻杆向地下注人钻井液,将钻头破碎地层而产生的大量岩屑由循环的钻井液带到地面。
地面的固控装置将钻井液中的岩屑清除后,通过钻井泵再次将钻井液打入井内。
③钻达设计深度后,要在井眼内下入专用仪器进行测井作业,目的是确定井下地层岩性和各个油、气、水层的位置。
然后再下入小于钻井井眼的套管,并在套管与井壁缝隙间内注入水泥浆将套管固定在井壁上。
④最后一道工序是对油层位置的套管进行射孔,形成一个井下油气流人套管内的孔道。
油气的地层压力高时可自行流出地面,这种井称为自喷油气井r油气压力较低时借助外力从井下抽吸,这种井称之为非自喷井。
钻井时要有一套配套完整、功能齐全的钻机,有质量优异不易发生事故的钻杆、套管和钻头,有性能优良和钻遇地层岩性相匹配的钻井液等。
总之,石油天然气钻井的目的就是要凿穿岩石,发现和保护好油气层,并钻成一个通道确保石油和天然气通畅地流到地面。
探讨石油定向井钻井中的旋转导向技术
探讨石油定向井钻井中的旋转导向技术引言石油勘探和开采是一个复杂的工程,需要使用各种技术和装备来完成。
在石油勘探中,常常需要通过钻井来获取地下石油资源。
而对于特定地质情况下,需要进行钻井方向的控制,这就需要使用定向井钻井技术。
而在定向井钻井中,旋转导向技术是一种常用的技术手段。
本文将探讨石油定向井钻井中的旋转导向技术,包括其原理、应用以及发展趋势。
一、旋转导向技术的原理旋转导向技术是一种通过控制钻头旋转来改变钻井方向的技术手段。
在传统的定向井钻井中,通过改变钻头的倾角和方向来实现钻井方向的控制,而旋转导向技术则是通过控制钻头的旋转速度和方向来实现对钻井方向的控制。
旋转导向技术的实现原理主要依靠两个方面的因素:一是地下方向控制装置,二是地面控制系统。
地下方向控制装置主要包括传感器、激光测距装置等,用于实时监测井眼的方向和位置;而地面控制系统主要包括控制台、计算机系统等,用于接收、处理并下达指令。
在实际应用中,通过地下方向控制装置获取井眼方向和位置的数据,然后传输到地面控制系统中进行分析和处理,最终下达控制钻头旋转方向和速度的指令,从而实现对钻井方向的控制。
旋转导向技术在石油定向井钻井中具有广泛的应用。
它可以用于在地质构造复杂的地区,如地层倾角大、构造复杂的地区中,实现对钻井方向的控制。
它可以用于在水平井和超长水平井的钻井中,实现对钻井方向的精确控制。
它还可以用于在特定地质条件下,如高压地层、薄弱地层等条件下的钻井中,实现对钻井方向的安全控制。
通过旋转导向技术,可以实现对井眼方向和位置的实时监测和控制,从而大大提高了钻井作业的效率和安全性。
尤其是在复杂地质条件下的钻井作业中,旋转导向技术更是发挥了重要作用。
随着石油勘探和开采技术的不断发展,对定向井钻井技术的需求也在不断增加。
旋转导向技术作为定向井钻井技术的重要组成部分,其发展也受到了广泛的关注。
未来,随着地下方向控制装置和地面控制系统的技术不断进步,旋转导向技术将更加精确和可靠。
动旋转导向钻井工具结构原理及特点
动旋转导向钻井工具结构原理及特点
一、结构原理:
1.器身:器身是工具的主要结构,由一根中空管组成。
中空管通常由高强度合金钢材料制成,具有足够的强度和刚度,以承受旋转和转向的作用力。
2.钻头:钻头位于器身的下端,用于切削岩层。
钻头一般采用合金钢制造,表面覆盖硬质合金,以提高抗磨损性能。
3.钻领:钻领位于钻头的上部,用于连接导向系统和起下钻工具。
钻领一般由海洋合金钢材料制造,具有足够的强度和刚度,以承受导向系统的作用力。
4.导向系统:导向系统是动旋转导向钻井工具的关键部分,通过控制导向力和扭矩,使钻头能够沿着预定方向前进。
导向系统主要由测量装置和调整机构组成,测量装置用于测量钻井工具与井眼的位置关系,调整机构用于调整钻井工具的导向力和扭矩。
5.起下钻工具:起下钻工具用于传递旋转力和推进力,使钻头能够切削岩层。
二、特点:
1.高效性:动旋转导向钻井工具能够实现同钻井作业,既可以完成钻井又可以进行导向,提高了钻井效率。
2.精确性:动旋转导向钻井工具通过测量装置和调整机构实现精确的导向控制,能够准确定位和导向井眼,提高了钻井的准确性。
3.可控性:动旋转导向钻井工具能够通过调整导向力和扭矩,实现对钻头的精确控制,能够适应不同的地质条件和井眼要求。
4.安全性:动旋转导向钻井工具能够实现对井眼的实时监测和控制,减少了钻井事故的发生概率,提高了作业安全性。
5.经济性:动旋转导向钻井工具能够提高钻井效率和准确性,降低钻井成本,提高经济效益。
总体而言,动旋转导向钻井工具结构简单,操作方便,能够提高钻井效率和准确性,降低钻井成本,是目前广泛应用的一种钻井工具。
斯伦贝谢旋转导向PowerV 原理简介
54 7࣪ ᄝᇕPowerVၮ؏一. PowerV 简介和应用范围旋转导向系统的产品名称,它只是斯伦贝PowerV是斯伦贝谢公司发明的一种旋转导向系统旋转导向系统谢旋转导向系统PowerDrive家族中的一员。
所谓旋转导向系统,是指让钻柱在旋转钻进过程中实现过去只有传统泥浆马达才能实现的准确增斜、稳斜、降斜或者纠方位功能,但相对于泥浆马达,PowerDrive有非常明显的优点,稍后进行比较。
旋转导向系统广泛用于使用泥浆马达进行滑动钻进时比较困难的深井、大斜度井、大位移井、水平井、分枝井(包括鱼刺井),以及易发生粘卡的情况。
二. 旋转导向系统PowerDrive的优点1. 反映和降低了所钻井段的真正狗腿度,使井眼更加平滑。
例如:用泥浆马达打30米井段,滑动钻进15米,转动钻进15米,井斜角增加4度,得到平均狗腿度4度/30米。
实际上,转钻15米井斜角几乎没有变化,这15米的实际狗腿度是零;而4度的井斜角变化是由滑钻15米产生的,这15米的实际狗腿度是8度/30米。
而用PowerV在同一设置下打出的每一米都是同样均匀和平滑的,减少了井眼轨迹的不均匀度,从而减少了在起下钻和钻进过程中钻具实际所受的拉力和扭矩,减少了以后下套管和起下完井管串的难度。
2. 使用PowerV钻出的井径很规则。
而使用传统泥浆马达在滑动井段的井径扩大很多,而转动井段的井径基本不扩大。
这种井径的忽大忽小为是井下事故的隐患,也不利于固井时水泥量的计算。
3. 由于PowerV钻具组合中的所有部分都在不停的旋转,大大降低了卡钻的机会。
而使用传统泥浆马达在滑动钻进时除钻头外,其它钻具始终贴在下井壁上,容易造成卡钻。
4. 在钻进过程中,由于PowerV组合中的所有钻具都在旋转,这有利于岩屑的搬移,大大减少了形成岩屑床的机会,从而更好的清洁井眼。
这对于大斜度井、大位移井、水平井意义很大。
5. 由于PowerV钻具组合一直在旋转,特别有利于水平井、大斜度井和3000米以下深井中钻压的传递,可以使用更高的钻压和转盘转速,有利于提高机械钻速。
旋转导向钻井技术应用研究及其进展
旋转导向钻井技术应用研究及其进展旋转导向钻井技术是一种通过旋转钻杆来改变钻头在井眼中的方向的钻井方法。
该技术通过控制钻杆和钻头的旋转方向和速度,从而控制钻头在井眼中的前进方向,实现井眼的弯曲和定向钻井。
旋转导向钻井技术在石油勘探和开发中得到了广泛应用,同时也在地热能、地下储气库等领域得到了应用。
一、旋转导向钻井技术的原理及特点1. 高效性:旋转导向钻井技术可以实现井眼的弯曲和定向钻井,可以快速地改变井眼的方向,提高钻井效率。
2. 灵活性:旋转导向钻井技术可以根据具体的钻井需求来灵活调整钻杆和钻头的旋转方向和速度,适应不同的地质条件和井眼形状。
3. 精准性:旋转导向钻井技术可以实现高精度的定向钻井,能够满足复杂地质条件下的钻井需求。
1. 旋转导向钻井技术在石油勘探中的应用在石油勘探中,旋转导向钻井技术可以帮助勘探公司快速地找到潜在的油气储层,提高勘探效率。
通过控制钻头的旋转方向和速度,可以实现垂直井眼向水平井眼的转变,同时可以实现井眼的弯曲,应对不同地质条件下的勘探需求。
地热能开发需要在地下岩石中进行钻井,以获取地热能资源。
在这种情况下,由于地下岩石的复杂性和不同地质条件,传统的钻井方法往往难以满足需求。
而旋转导向钻井技术可以根据地质条件和井眼形状,灵活地调整钻头的方向和速度,使钻井过程更加灵活和高效。
地下储气库需要在地下进行大规模的储气钻井,为城市供应天然气。
在这种情况下,旋转导向钻井技术可以帮助储气库公司实现良好的储气井眼设计,并在钻井过程中提高钻井效率和精度。
在技术方面,随着石油工程技术的不断发展,旋转导向钻井技术已经实现了自动化和智能化。
通过加装传感器和控制系统,可以实现对钻头运动的实时监测和控制,实现钻井过程的智能化管理。
还可以通过井下遥控系统,实现对钻井过程的远程控制,提高了钻井的安全性和效率。
在应用方面,旋转导向钻井技术已经被广泛应用于复杂地质条件和水平井眼的钻井中。
通过对钻井工艺和设备的调整和优化,可以更好地满足不同地质条件下的钻井需求。
旋转导向钻井技术介绍
2020/9/5
1
主要内容
1. 旋转导向钻井技术概述 2. 井下旋转导向钻井系统分类 3. 典型的旋转导向钻井系统
(1)AutoTrak RCLS系统: Baker Hughes公司 (2)PowerDrive SRD系统:Schlumberger公司 (3) Geo-Pilot系统:Halliburton公司
②为稳定器设置了多个控制位置,采用钻井液脉冲遥控技术、电 子及液压技术对稳定器的径向位置进行控制。
29
PowerDrive 结构及工作参数
• 长度:16 ft [4.9 m] • 排量:500 - 1000 gpm [1900 - 3800 lpm] • 转速:40 - 220 rpm • 工具压降:少于100 psi [6 bar] • 最小钻头所需压降:500 psi [34 bar] • 现最高运行温度:250ºF [120º C] • 泥浆比重:7.5 - 20 ppg [0.9 - 2.4 sg] • LCM :使用MWD 指示
16
Application Areas
Directional / Geosteering wells in 8.1/2” - 12.1/4” hole size Where the operator wants:
– better hole cleaning, less circulation time, less wiper trips – extented run lengths by using PDC bits – better hole quality to ease logging and completion – superior geometrical steering & geosteering to maximise
旋转导向钻井技术及Power-V
旋转导向钻井技术及Power-V第一篇:旋转导向钻井技术及Power-V旋转导向钻井技术及Power-V导向系统介绍摘要:旋转导向钻井技术主要指井眼轨迹自动控制的闭环自动钻井技术,是20世纪90年代初期发展起来的一项钻井新技术,代表着当今国际钻井技术的最新发展方向,对超深井、超薄油层水平井、大位移井、分支水平井等轨迹控制具有独特效果。
本文分析了旋转导向钻井系统的技术特点,介绍了国内外旋转导向钻井系统的发展、应用情况。
并详细介绍了斯伦贝谢公司旋转导向系统Power-V的组成和工作原理。
1.概述所谓旋转导向钻井,是指钻柱在旋转钻进过程中实现过去只有传统泥浆马达才能实现的准确增斜、稳斜、降斜或者纠方位功能。
旋转导向钻井技术的核心是旋转导向钻井系统,如图1所示。
它主要由井下旋转自动导向钻井系统、地面监控系统和将上述2部分联系在一起的双向通讯技术3部分组成。
旋转导向钻井系统的核心是井下旋转导向工具,旋转导向钻井系统主要由以下几部分组成:①测量系统:包括近钻头井斜测量、地层评价测量,MWD/LWD 随钻测量仪器等,用于监测井眼轨迹的井斜、方位及地层情况等基本参数。
②控制系统:接收测量系统的信息或对地面的控制指令进行处理,并根据预置的控制软件和程序,控制偏置导向机构的动作。
图1 旋转自动导向钻井系统功能框图2.旋转导向钻井技术的特点旋转导向钻井技术与传统的滑动导向方式相比有如下突出特点:①旋转导向代替了传统的滑动钻进:一方面大大提高了钻井速度,另一方面解决了滑动导向方式带来的诸如井身质量差、井眼净化效果差及极限位移限制等缺点,从而大大提高了钻井安全性,解决了大位移井的导向问题;②具有不必起下钻自动调整钻具导向性能的能力,大大提高了钻井效率和井眼轨迹控制的灵活性,可满足高难特殊工艺井的导向钻井需要;③具有井下闭环自动导向的能力,结合地质导向技术使用,使井眼轨迹控制精度大大提高。
旋转导向钻井技术的上述特点,使其可以大大提高油气开发能力和开发效率,降低钻井成本和开发成本,满足了油气勘探开发形势的需要。
探讨石油定向井钻井中的旋转导向技术
探讨石油定向井钻井中的旋转导向技术石油定向井钻井中的旋转导向技术,是指通过利用钻杆和测斜仪等设备,根据地层情况,调整钻头的方向,使钻孔符合设计要求,达到预期的钻井效果。
在石油勘探开发中,定向井钻井技术在复杂地层条件下的应用越来越广泛,因此旋转导向技术在定向井钻井中起着重要的作用。
本文将着重探讨石油定向井钻井中的旋转导向技术的原理、方法和应用。
一、旋转导向技术的原理1.测斜仪测量原理测斜仪通过误差电源悬挂在井下,利用地磁测量方法来测量孔道或孔周地层和孔轴的方向,然后通过电缆传输数据到地面。
测斜仪中的磁敏传感器和加速度计感应地磁场和重力场的指向,然后通过数据传输到记录仪,最后分析数据,获取目标地层的信息。
2.旋转导向原理旋转导向原理是通过旋转钻柱,在地面控制测斜仪旋转角度,使其测量方向相对于地面保持稳定不变,从而实现在井下连续测量的目标井眼方向、孔斜和方位信息。
并根据上位机的数据计算,做出合理的钻头位移方向,从而保持井眼垂直或者按设计的轨迹方向钻井。
1.受控钻头旋转通过传统的受控钻头旋转技术来实现,就是通过调整钻井工具、钻头和管柱的旋转方向,使井眼朝向地质构造的方向。
2.自转模块技术自转模块技术是通过在钻杆中安装自转装置,实现钻杆在井下自转,并通过调整自转方向,使钻井孔斜度及方位满足设计要求。
3.测斜仪数据采集及处理通过在测斜仪上加装数据采集卡,将地面指令传输至井下测斜仪进行数据采集和处理,实现钻井的旋转导向。
1.复杂地质条件下的钻井在复杂地质条件下,如地层变化频繁、地质构造错综复杂等情况下,传统的定向钻井技术往往难以满足钻井设计要求。
而旋转导向技术由于其灵活性和精准度高,可以有效地应对这些挑战,提高钻井的成功率。
2.提高钻井效率旋转导向技术可以帮助钻井人员及时调整钻头的方向,使钻孔在设定的方向内保持,提高了钻井的效率和质量。
3.节约钻井成本由于旋转导向技术可以帮助钻井在较短的时间内完成目标孔,避免了不必要的多次调整,节约了钻井成本。
探讨石油定向井钻井中的旋转导向技术
探讨石油定向井钻井中的旋转导向技术石油定向井钻井是一种在地下目标层中定向开采各种石油资源的工程技术。
它通常用于解决传统直井钻井难以达到的开采效果。
旋转导向技术是定向井钻井中的一种重要技术手段,它能够帮助油田工程师在地下多层地层中进行精准定向,实现精准钻井和开发。
本文将探讨石油定向井钻井中的旋转导向技术,介绍其原理、应用和发展趋势。
一、旋转导向技术的原理旋转导向技术是指通过旋转钻杆和导向工具来改变钻杆的方向,调整井眼轨迹,以实现井眼的定向目标。
其原理是通过在钻井时实时监测井下情况,根据目标地层的方位和倾角,不断调整钻井方向,使钻井井眼在地下目标层中垂直或斜向打入,实现精准定向。
旋转导向技术通常采用陀螺仪、磁定向仪等导向装置来实现对井眼方向的监测和调整。
通过这些导向装置采集的地下方向信息,再经过数据处理和计算,以指导钻井作业人员进行井眼调整,从而实现精确定向。
旋转导向技术主要应用于地层复杂、地质构造繁杂、油气分布不均匀的油气田。
通过旋转导向技术,工程师可以在井眼设计中考虑地质构造和地层分布的复杂性,实现在地下不同地层中进行有效定向,并解决传统直井难以达到的开采效果。
这种技术在增强油气田开发效果、提高产量、降低成本和减少井数方面有着重要作用。
旋转导向技术还广泛应用于水平井和水平段井的钻井中。
通过旋转导向技术,工程师可以实现水平井、S形井等复杂井眼的精确定向,从而实现地下储层的有效开采。
这种技术在提高井眼质量、提高井底定向效果、提高完井质量等方面具有重要作用。
随着油气勘探开发技术的不断进步和油气田开采难度的不断增加,旋转导向技术也在不断发展和完善。
未来,旋转导向技术将朝着更高精度、更高效率、更智能化的方向发展。
随着导向装置和测量技术的不断进步,旋转导向技术将实现更高精度的定向。
通过采用更精密的导向设备和更先进的数据处理技术,可以实现对井眼方向的更准确监测和调整,从而实现更精确的定向目标。
随着自动化技术的不断发展,旋转导向技术将实现更高效率的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
件等构成了稳定平台单元。 上、 下盘阀, 上盘阀的轴向力调节弹簧与控制轴, 以 及相应的密封部件共同构成了工作液控制分配单元。 带泥浆喷嘴的柱塞和推靠 井壁的推板构成 了偏置执行机构。 三、 旋 转导 向钻 井 工具 的设 计 特点 旋转导 向钻井工具设计, 在复杂的井下工作条件和国内现有的条件下 , 设
计 特 点有下 面几 个方 面 : ( 一) 稳定 平 台的上部 支撑与 下部支 撑分别 采用 圆锥 滚子轴承保护器能够把轴承密封在润滑油内, 对轴承 进 行保 护 , 并对 轴承 之 间的游 隙进行 了详尽 的设 计 , 有效 的对 轴承 的工 作环 境
进 行 了改善 , 进而 提 高了轴 承 的使 用 时间 。 ( 二) 通 过实 践模拟 试验 以及理论 分析得 出 , 上盘 阀高压 孔的 圆心角 为2 0 0 0
旋转导 向钻 井工 具依 据井下 工程 、 地 质 以及几 何参数 的监 测与 要求 , 根 据 已经设定好的程序指令, 对井斜与方位进行调整。 旋转导 向钻井工具的核心部 件 由推靠柱 塞 、 推板 、 工作 液控制 阀 以及 稳定 平台等部 件构 成 , 是 属于 机 电一 体 化的智能导向工具。 泥浆通过钻头水眼产生的钻柱内外压差是推板的动力 。 稳 定平台控制调节并稳定工作液控制阀。 三个推板之间的相位差应保持1 2 0 o 旋转 状态下的钻柱 , 推板在特定的方位的伸出, 必须需要工作液控制阀的压力对其 进行同步调整, 使推板与井壁接触 , 产生侧向力推动钻头的方向发生改变 , 进而 使井斜与方位发生改变 。 达到旋转导向钻井的目的。 钻柱导向钻井工具及推板 的工具 面 角在旋 转 时 , 旋转 导 向钻 井工 具 中的 稳定 平 台单 元能 够使 其保 持 稳 定。 涡 轮发 电机 、 测 控 电子 系统 以及 电子 仓共 同构成 了稳定 平 台单元 。 工作液 控 制单元是由上、 下盘阀两部分构成的开关系统。 上盘阀又称为高压阀孔 , 为弧形 长孔状 , 对高压钻井液作用在推板上的力保持一定的时间, 使侧向控制力的作 用 效果 得 到保证 。 柱塞 和推 靠井 壁 的推 板共 同构 成 了偏置 执行 单元 。 旋转钻井条件下近钻头处的井斜角、 方位角和工具面角等参数 , 由井眼几 何 参数 传感 器进 行测量 , 短程 通讯 元件 对其进 行 传输 , 随 钻测量 仪 收到数 据后 再把数据传输到地面。 信息智能处理综合决策系统 , 通过实钻井眼与设计井眼 相对位置的偏差 , 对工具面角参数机械能改变。 井下信息处理中心收到泥浆泵 排量载波下传的决策代码后, 进行识别、 解释并处理。 然后, 井下控制器对稳定 平台 的控 制轴进 行调 整 。 工具 面 角得到 调整 , 导 向执 行机 构推靠 井壁 的方 向 同 时得到改变, 钻柱在连续旋转状态下的三维导向也相应的得到实现。 :, 旋 转 导向钻 井 工具 的结 构分 析 稳定平台单元、 工作液控制分配单元及偏置执行机构三部分构成了旋转导
工业 技 术
I ■
C h i n a s c i e n c e a n d T e c h n o l o g y R e v i e w
旋 转 导 向钻 井 工 具 的 研 制 原 理
成 仁杰 闫 林 李 鹏
陕西 西安) ( 川庆钻探工程有 限公司长庆钻井总公司 [ 摘 要】 稳定平台单元 、 工作液控制分配单元和偏置执行机构单元是构成旋转导 向钻井工具的主要组成部分。 井眼参数通过旋转导 向钻井工具的测试元件 测得后 , 由短程 通讯传 输 到随钻 测量 仪 , 地 面再 接受 随钻 测量 仪传输 的信息 。 同时 , 地面对 旋 转导 向钻井 工具进 行控 制 , 通过 稳定平 台 单元调 控工 作液 , 对 单元 中的 上盘f 珂高压 孔 的位置 进行控 制 分配 。 过滤 后 的泥 浆被 工作液 控 制分配 单元 按照 一定 的顺序 依 次分配 到对 应 的三个柱 塞 , 使 推板 得到 动力 及合 力 , 使上 盘 阀高压 孔 所对 应的 位置得 到保 持 , 进 而形 成 近钻 头处 对井 壁 的侧 向力 。 工 具 的导 向状态 由旋转 导 向钻 井 工具对 侧 向力 的大 小 、 方 向与拍 打频 率 的调整 得 到控 制 。 [ 关键词] 旋转导向钻井工具 井眼参数 导向控制 中图分类号 : T E 9 2 文献标识码 : A 文章编号: 1 0 0 9 — 9 1 4 X ( 2 0 1 5 ) 3 3 — 0 0 1 4 — 0 l
旋转 导 向钻井 技术 是一 项 自动 化钻 井新 技术 , 形 成于二 十世 纪九 十年 代 。 旋转导 向钻井技术在水平井、 大位移井、 大斜度井以及三维多 目标井 中应用较 广, 不仅使钻井速度得到了提高, 而且使钻井中的事故减少 了。 同时, 使钻井成
本得 到 了降低 。 旋 转 导向钻 井 工具 工作 原理 分析 1 、 旋 转 导 向钻 井 工 具功 能 分析 旋 转导 向钻 井工 具具有 导 向功 能与稳 斜 ( 不 导 向) 功能 。 导 向功能指 稳定平 台把工 具面 角调整 到与所需 导 向的井斜及 方位相 反 的位置上 , 实施 向需要 的井 斜或 方位 导 向。 钻 具 的钻进方 向按照需 要 的井斜 及方 位实施 , 随钻 测试仪 器对 井 眼轨迹 及时监 测 。 稳斜( 不导 向 ) 功能 指上盘 阀在 稳定 平 台的带 动下 , 上盘 阀 与钻柱 按不 同的转 速进行 匀速转 动 , 让推板 在3 缸 具面 角的方 向上 , 伸 出并推 靠井 壁 , 综 合作 用是 不导 向 的 , 这 就 是稳 斜钻 进 。 2、 旋 转导 向钻井 工 具 结构 及 工作 原 理 分析