高一必修一数学-复合函数定义域
高中数学必修一-函数的定义域
函数的定义域知识集结知识元函数与映射的概念知识讲解1、一般地,设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合中A任意一个数x,在集合中B都有唯一确定的数f(x)和它对应,那么就称为A→B从集合A到集合B 的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合的子集.注意:(1)值域由定义域和对应关系唯一确定;(2)f(x)是函数符号,f表示对应关系,f(x)表示x对应的函数值,绝对不能理解为f与x 的乘积.在不同的函数中f的具体含义不同.2.设A、B是两个非空集合,如果存在一个法则f,使得对A中的每个元素a,按法则f,在B中有唯一确定的元素b与之对应,则称f为从A到B的映射,记作f:A→B。
其中,b称为元素a在映射f下的象,记作:b=f(a);a称为b关于映射f的原象。
集合A中所有元素的象的集合称为映射f的值域,记作f(A)。
注意:(1)对于A中不同的元素,在B中不一定有不同的象;(2)B中每个元素都有原象(即满射),且集合A中不同的元素在集合B中都有不同的象(即单射),则称映射f建立了集合A和集合B之间的一个一一对应关系,也称f是A到B上的一一映射。
例题精讲函数与映射的概念例1.给出下列四个对应:如图,其构成映射的是()A.只有①②B.只有①④C.只有①③④D.只有③④例2.A={1,2,3},b={a,b},则从A到B的可以构成映射的个数()A.4个B.6个C.8个D.9个例3.已知A={x|0≤x≤4},B={y|0≤y≤2},下列对应法则中可以是从A至B的函数的有.①f:x→y=②f:x→y=③f:x→y=x④f:x→y=2x.例4.下列图象中可作为函数y=f(x)图象的是()A.B.C.D.函数相等知识讲解判断两个函数是否为同一函数函数的构成要素:定义域、对应关系、值域.所以判断两个函数是不是同一函数,就看定义域和对应法则是否一样.注意:判断函数是否是同一个函数,一般是同解变形化简函数的表达式,考察两个函数的定义域是否相同,对应法则是否相同.例题精讲函数相等例1.下列四组中的f(x),g(x),表示同一个函数的是()A.f(x)=1,g(x)=x0B.f(x)=x﹣1,g(x)=﹣1C.f(x)=x2,g(x)=()4D.f(x)=x3,g(x)=例2.下列各组函数中,表示同一函数的是()A.f(x)=x和g(x)=B.f(x)=|x|和g(x)=C.f(x)=x|x|和g(x)=D.f(x)=和g(x)=x+1,(x≠1)例3.'试判断以下各组函数是否表示同一函数?(1)f(x)=,g(x)=;(2)f(x)=,g(x)=(3)f(x)=,g(x)=()2n﹣1(n∈N*);(4)f(x)=,g(x)=;(5)f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1.'例4.下列函数中与函数y=x是相同函数的是()A.B.y=C.D.例5.在下列四组函数中,f(x)与g(x)表示同一函数的是()A.B.C.D.具体函数的定义域知识讲解函数的定义域及其求法1.定义函数的定义域就是使函数有意义的自变量的取值范围.2.求解函数定义域的常规方法(1)如果f(x)是整式,其定义域是实数集R;(2)如果f(x)是分式,其定义域是使分母不为0的实数集合;(3)如果f(x)是二次根式(或偶次根式),其定义域是使根号内的式子不小于0的实数集合;(4)如果f(x)是由以上几个部分的数学式子构成的,其定义域是使各部分式子都有意义的实数集合;(5)如果f(x)=x^0的定义域是{x∈R|x≠0};(6)实际问题要具体分析.例题精讲具体函数的定义域例1.函数f(x)=+的定义域是()A.[﹣1,+∞)B.[2,+∞)C.[﹣1,2]D.(﹣1,2)例2.'求下列函数的定义域(1)(2).'例3.'求函数的定义域.'例4.函数的定义域为.复合函数的定义域知识讲解抽象函数的定义域(1)对在同一对应法则f下的量“x”“x+a”“x﹣a”所要满足的范围是一样的;(2)函数g(x)中的自变量是x,所以求g(x)的定义域应求g(x)中的x的范围.例题精讲复合函数的定义域例1.'设函数f(x)=.(1)当a=5时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,试求a的取值范围.'例2.已知函数y=f(x)定义域是[﹣2,3],则y=f(2x﹣1)的定义域是()A.B.[﹣1,4]C.D.[﹣5,5]例3.已知函数y=f(x+1)的定义域是[﹣2,3],则y=f(x2)的定义域是()A.[﹣1,4]B.[0,16]C.[﹣2,2]D.[1,4]例4.函数f(x2)的定义域为(﹣3,1],则函数f(x﹣1)的定义域为()A.[2,10)B.[1,10)C.[1,2]D.[0,2]备选题库知识讲解本题库作为知识点“函数的定义域”的题目补充.例题精讲备选题库例1.函数f(x)=的定义域为()A.[2,+∞)B.(2,+∞)C.[0,2)∪(2,+∞)D.[2,+∞)例2.已知函数f(x+3)的定义域为(-1,0),则函数f(2x+1)的定义域为()A.(-1,1)B.C.(-1,0)D.()例3.下列函数中,与函数y=的定义域相同的函数为()C.y=xe x D.A.B.例4.已知函数f(2x+1)的定义域为(0,3),则f(x)的定义域为()A.(1,3)B.(1,7)C.(1,3)D.(-,1)例5.已知f(x)的定义域为[-1,5],则f(2x+5)的定义域为()A.[-1,5]B.[3,15]C.[-3,0]D.[0,3]例6.设函数的定义域A,函数y=ln(1-x)的定义域为B,则A∩B=()A.(1,3)B.(1,3]C.[-3,1)D.(-3,1)例7.函数的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3)∪(1,+∞)D.(-∞,-3[∪[1,+∞)当堂练习单选题练习1.已知函数f(x)的定义域为(-1,1),则函数的定义域为()A.(1,2)B.(0,2)C.(0,1)D.(-1,1)练习2.函数的定义域为()A.(2,3)B.(3,4]C.(2,4]D.(2,3)∪(3,4]练习3.已知函数f(x)=lg的定义域为A,函数g(x)=lg(1+x)-lg(1-x)的定义域为B,则下述关于A、B的关系中,不正确的为()A.A⊇B B.A∪B=B C.A∩B=B D.B⊊A练习4.函数f(x-4)的定义域为[3,27],则函数f(x)的定义域为()A.[-2,7]B.[-1,7]C.[-2,-1]D.[3,27]若函数f(x)的定义域为[2,8],则函数的定义域为()A.(2,4]B.(2,3)∪(3,4]C.[1,4]D.[1,3)∪(3,4]练习6.若函数f(x)=ln(x+1),则函数g(x)=f(x)+f(-x)的定义域为()A.(-1,2]B.(-1,1)C.(-2,2)D.[-2,2]填空题练习1.若函数在区间(-∞,1]内有意义,则实数a的取值范围是______练习2.函数y=arccos(x-1)的定义域为_______.练习3.若函数在区间(-∞,1]上有意义,则实数a的取值范围是________.练习4.已知函数y=f(x-1)的定义域为[0,2],则f(ax)+f(),(a≥1)的定义域是__.练习5.函数y=(a>0,且a≠1)的定义域是(-∞,0],则实数a的取值范围为_______.练习1.'函数f(x)=,(1)若f(x)的定义域为[-2,1],求实数a的值.(2)若f(x)的定义域为R,求实数a的取值范围.'练习2.'设函数(a>0且a≠1).(Ⅰ)求函数f(x)的定义域,并判断它的奇偶性;(Ⅱ)若,求x的取值范围.'练习3.'已知函数(x>0),(1)是否存在实数a,b(a<b),使得函数y=f(x)的定义域和值域都是[a,b],若存在,求出a,b的值,若不存在,说明理由(2)若存在实数a,b(a<b),使得函数y=f(x)的定义域是[a,b]时,值域为[ma,mb],(m≠0),求m的取值范围.'练习4.'设函数.(Ⅰ)当a=5时,求函数f(x)的定义域;(Ⅱ)若函数f(x)的定义域为R,试求实数a的取值范围.'。
高一数学复合函数
高一数学复合函数复合函数是高一数学中的一个重要概念,它在函数学习的过程中起着关键作用。
本文将详细介绍复合函数的定义、性质以及其在实际问题中的应用。
1. 复合函数的定义复合函数是由两个函数相互组合而成的新函数。
设有函数f(x)和g(x),则复合函数记作f(g(x)),表示先用g(x)对x进行映射,然后再将结果代入f(x)进行映射。
2. 复合函数的性质(1)复合函数的定义域:复合函数的定义域取决于中间函数的定义域,要求中间函数的值域必须在f(x)的定义域内。
(2)复合函数的值域:复合函数的值域取决于最后一个函数的值域,要求最后一个函数的值域在f(x)的值域内。
(3)复合函数的可逆性:当复合函数中的所有函数都是可逆函数时,复合函数才是可逆的。
(4)复合函数的性质:复合函数满足结合律,即f(g(h(x)))=(f∘g)∘h(x)。
3. 复合函数的应用举例(1)物理问题:假设一辆汽车的速度与时间的函数关系为v(t),而时间与位置的函数关系为s(t),则汽车的位置随时间的变化可以用复合函数s(v(t))来表示。
(2)经济问题:假设某商品的价格与销量的函数关系为p(x),而销量与利润的函数关系为l(x),则利润随销量的变化可以用复合函数l(p(x))来表示。
(3)生物问题:假设某种细胞的密度与时间的函数关系为d(t),而时间与增长率的函数关系为r(t),则细胞的密度随时间的变化可以用复合函数d(r(t))来表示。
4. 复合函数的求导对于复合函数f(g(x)),可以利用链式法则来求导。
链式法则规定,复合函数的导数等于外函数对内函数的导数乘以内函数对自变量的导数。
通过链式法则,可以将复合函数的求导简化为对中间函数和最后一个函数的导数的求导。
5. 复合函数的图像复合函数的图像可以通过画出中间函数和最后一个函数的图像,并根据复合函数的定义进行变换得到。
具体来说,先画出中间函数的图像,然后根据复合函数的定义,将中间函数的输出作为最后一个函数的输入,再画出最后一个函数的图像。
必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)
函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合(2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零;☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。
(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。
例1.函数()1f x x =- 的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的定义域为(-∞,1)∪(1,4] 故选:D例2.函数y =( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y 可知: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。
高考数学复合函数基础理论总结
高考数学复合函数基础理论总结复合函数是高一数学学习的重点和难点之一,也是高考数学考试的常见考点。
理解和掌握复合函数的基础理论是学好高等数学、应用数学、物理、化学等学科的前提。
本文将围绕复合函数的定义、性质、运算规则以及应用进行总结和分析。
一、复合函数的定义复合函数的定义:设函数f的定义域为Df,值域为Rf,函数g的定义域为Dg,值域为Rg。
如果存在一个函数h(x)使得对于f的定义域Df中的每一个元素x,都有g的定义域Dg中恰有一个元素y与之对应,并且y是f(x)在g的范围内的唯一值,则称h(x)为f和g的复合函数,表示为h(x) = f(g(x))。
二、复合函数的性质1. 复合函数的定义域:复合函数的定义域由g的定义域和f的值域的交集构成,即Dh = {x|x∈Dg且g(x)∈Df}。
2. 复合函数的值域:复合函数的值域为f的值域的子集,即Rh ⊆ Rf。
3. 复合函数的单调性:若f(x)和g(x)在其定义域内单调增加(或单调减少),则h(x) = f(g(x))也在其定义域内单调增加(或单调减少)。
4. 复合函数的奇偶性:若f(x)为奇函数,g(x)为偶函数,则h(x) = f(g(x))为奇函数;若f(x)和g(x)均为偶函数,则h(x) = f(g(x))为偶函数。
5. 复合函数的周期性:若f(x)的周期为T1,g(x)的周期为T2,则当T2是T1的正整数倍时,h(x) = f(g(x))的周期为T1。
三、复合函数的运算规则1. 复合函数的加法:设h1(x) = f1(g1(x)),h2(x) = f2(g2(x)),且f1(x)和f2(x)的值域相等。
则有(h1 + h2)(x) = f1(g1(x))+f2(g2(x))。
2. 复合函数的减法:设h1(x) = f1(g1(x)),h2(x) = f2(g2(x)),且f1(x)和f2(x)的值域相等。
则有(h1 - h2)(x) = f1(g1(x))-f2(g2(x))。
复合函数概念精析
复合函数概念精析蓝田县泄湖中学王锦锋复合函数概念精析复合函数是中学数学深化函数概念,提高运用函数思想解决数学问题能力的重要工具,是进一步学习高等数学的重要基础,也是历届高考常考不衰的热点。
但高中数学教材未作介绍,而其他教辅材料上也仅给出描述性的非严格定义,因此,高一数学教学与高考数学复习中介绍有关内容很有必要。
一、复合函数的概念我们见到的复合函数的描述性定义是:如果y是u的函数,而u 又是x的函数,即y=f(u),u=g(x),那么y关于x的函数y=f[g(x)]叫做函数f和g的复合函数,u叫做中间变量。
例如y=sin2x它与y=sinx不同,不是基本初等函数,而是由三角函数y=sinu和一次函数u=2x经过“复合”而成的一个函数。
由于上述定义中对“复合”的定义没有明确界定,因而很多同学对复合函数的概念似是而非,含混不清,为此,我们精读这个定义,字斟句酌,纠错补缺,以使我们正确理解复合函数的概念。
1、由字面理解“复合”本来是指“合在一起,结合起来”的意思,但在复合函数的定义中,对复合步骤的方式有特殊的约定。
它不是泛指把几个简单函数随意地结合在一起,例如用四则运算把它们结合起来得到的形如a·f(x)±b·g(x)或a·f(x)·b·g(x)的函数,而是专指把几个映射,像工厂中的生产流水线,依先后顺序合在一起,对同一自变量逐次映射构作的一个复合映射确定的函数。
这里的几个映射可以相同,也可以不同,但只能是常数与基本初等函数间进行的幂的运算,指数运算,对数运算,三角运算,反三角运算。
自变量像被加工的零件依次通过第一个映射后到第二个映射,一直到通过全部映射。
例如,复合函数y=sin2x是自变量x先“乘2”(第一次映射),再“取正弦”(第二次映射),最后得到y关于x的一个函数sin2x。
因此有人说复合函数是函数的函数。
为了叙述和应用的方便,我们通常用“层”来描述上述不同的映射所对应的函数。
高一数学函数知识总结及例题
高一数学函数知识总结及例题高一数学函数知识总结及例题第一篇、复合函数问题一、复合函数定义:设y=f(u)的定义域为A,u=g(x)的值域为B,若AB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.二、复合函数定义域问题:(一)例题剖析:(1)、已知f(x)的定义域,求fg(x)的定义域思路:设函数f(x)的定义域为D,即xD,所以f的作用范围为D,又f 对g(x)作用,作用范围不变,所以g(x)D,解得xE,E为fg(x)的定义域。
例1.设函数f(u)的定义域为(0,1),则函数f(lnx)的定义域为_____________。
解析:函数f(u)的定义域为(0,1)即u(0,1),所以f 的作用范围为(0,1)又f对lnx作用,作用范围不变,所以0lnx1解得x(1,e),故函数f(lnx)的定义域为(1,e)1,则函数ff(x)的定义域为______________。
x11解析:先求f的作用范围,由f(x),知x1x1例2.若函数f(x)即f的作用范围为xR|x1,又f对f(x)作用所以f(x)R且f(x)1,即ff(x)中x应满足x1f(x)1x1即1,解得x1且x21x1故函数ff(x)的定义域为xR|x1且x2(2)、已知fg(x)的定义域,求f(x)的定义域思路:设fg(x)的定义域为D,即xD,由此得g(x)E,所以f的作用范围为E,又f对x作用,作用范围不变,所以xE,E为f(x)的定义域。
例3.已知f(32x)的定义域为x1,2,则函数f(x)的定义域为_________。
解析:f(32x)的定义域为1,2,即x1,2,由此得32x1,5所以f的作用范围为1,5,又f对x作用,作用范围不变,所以x1,5 即函数f(x)的定义域为1,5x2例4.已知f(x4)lg2,则函数f(x)的定义域为______________。
x82x2x20解析:先求f的作用范围,由f(x4)lg2,知2x8x82解得x44,f的作用范围为(4,),又f对x作用,作用范围不变,所以2x(4,),即f(x)的定义域为(4,)(3)、已知fg(x)的定义域,求fh(x)的定义域思路:设fg(x)的定义域为D,即xD,由此得g(x)E,f的作用范围为E,又f对h(x)作用,作用范围不变,所以h(x)E,解得xF,F为fh(x)的定义域。
高一数学必修1复合函数定义域的求法
解:
由y
k
x2
kx 7 4kx
3
的定义域为一切实数, 可知
分母kx2 4kx 3 0对x R恒成立
(1)当K=0时, 3≠0成立
(2)当K 0时 : 0,解得: 0 k 3 4
综上(1),(2)知,当0 k 3 时 4
y
Байду номын сангаас
kx 7 的定义域是一切实数 kx2 4kx 3
复合函数求定义域的几种题型:
题型(一):已知f (x)的定义域,求f [g(x)]的定义域
例1.若f (x)的定义域是[0,2],求f (2x 1)的定义域
解: 由题意知:
0 2x 1 2
1 x 3
2
2
故 : f (2x 1)的定义域是{x 1 x 3}
2
2
练习:若f (x)的定义域是0,2,求f (x2)的定义域
1.已知函数f (x)的定义域是[2, 2],求y f x 的定义域
题型(二):已知f g x的定义域,求f (x)的定义域
例2:已知f 2x 1的定义域(1,5],求f (x)的定义域
解: 由题意知:
1 x 5
3 2x 1 9
f (x)的定义域为 3,9
练习: 若函数 y ax2 ax 1 的定义域是R,
求实数a 的取值范围。
练习: 若函数 y ax2 ax 1 的定义域是R,
求实数a 的取值范围。
解:∵定义域是R, ax2 ax 1 0恒成立,
当 a 0 时,显然适合题意.
当
a
0
时
高一数学必修一函数知识点总结归纳
高一数学必修一函数知识点总结归纳1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
高一复合函数知识点总结
高一复合函数知识点总结复合函数是高中数学中的重要概念之一,它是由两个或多个函数组合而成的函数。
在高一阶段学习复合函数时,需要掌握一些基本知识点和技巧。
本文将对高一复合函数的相关知识进行总结,包括定义、性质和常见解题方法等方面。
1. 复合函数的定义复合函数是由两个函数构成的函数。
设有函数f(x)和g(x),则复合函数f(g(x))表示先对自变量进行g(x)的变换,再对结果进行f(x)的变换。
可以用以下形式表示:f(g(x)),也可以写作(f ∘g)(x)。
2. 复合函数的求解对于给定的复合函数f(g(x)),求解的方法如下:Step 1: 先确定内层函数g(x)的定义域和值域,保证f(g(x))有意义。
Step 2: 将g(x)的结果代入f(x)中,得到f(g(x))的表达式。
Step 3: 综合以上结果,确定f(g(x))的定义域和值域。
3. 复合函数的性质(1)复合函数的定义域:复合函数的定义域等于内层函数g(x)的定义域中,使得g(x) ∈ f(x)的值域。
(2)复合函数的值域:与内层函数g(x)的值域相对应,即g(x)的值域是f(g(x))的值域。
(3)复合函数的奇偶性:若f(x)是奇函数,g(x)是任意函数,则f(g(x))也是奇函数;若f(x)是偶函数,g(x)是任意函数,则f(g(x))也是偶函数。
(4)复合函数的单调性:若f(x)在[a, b]上单调增加(或单调减少),g(x)是单调函数,则f(g(x))在[a, b]上也单调增加(或单调减少)。
4. 复合函数的常见解题方法(1)求函数的复合逆:对于复合函数f(g(x)),若要求它的复合逆,可以先求g(x)的逆函数g^(-1)(x),然后将g^(-1)(x)代入f(x)中即可。
(2)复合函数的导数:若已知内层函数g(x)可导,外层函数f(x)在g(x)的值域上可导,则可以利用链式法则求得复合函数的导数。
(3)复合函数与反函数的关系:若复合函数f(g(x))恒等于x,且g(x)为f(x)的反函数,则f(x)和g(x)互为反函数。
高中数学复合函数定义域和值域学习中易错问题浅析
高中数学复合函数定义域和值域学习中易错问题浅析作者:宿志强来源:《新课程·下旬》2018年第11期摘要:函数问题集定义域、值域、单调性、奇偶性、周期性和图象于一身。
主要研究高考热点问题中抽象函数和复合函数的定义域和值域。
关键词:复合函数;定义域;值域一、复合函数的定义、定义域和值域问题抽象函数的定义:我们把没有给出具体解析式的函数称为抽象函数。
由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域、值域、单调性、奇偶性、周期性和图象集于一身,所以在高考中不断出现.记函数v=F(u)的定义域为u1,函数u=f(x)的值域为u2,记U=U1∩U2,D={x|x∈R,f(x)∈U},则以D为定义域,以F[f(x)]为对应法则的函数v=F[f(x)]叫做D上的复合函数.为叙述方便,构成复合函数的每一次复合步骤所形成的函数,可形象地称为该复合函数的一“层”函数,上述定义中的F(u)叫做f(x)的外层函数,u=f(x)叫做F(u)的内层函数或中间变量复合.1.已知f(x)的定义域,求f[g(x)]的定义域其解法是:若f(x)的定义域为a≤x≤b,则在f[g(x)]中,a≤g(x)≤b,从中解得x的取值范围即为f[g(x)]的定义域.例1:已知y=f(x)的定义域为[-1,1],求y=f(2x-1)的定义域.解:由题意可知-1≤2x-1≤1,解得0≤x≤1,所以次函数的定义域为[0,1].2.已知f[g(x)]的定义域,求f(x)的定义域其解法是:若f[g(x)]的定义域为m≤x≤n,则由m≤x≤n确定的g(x)的范围即为f(x)的定义域.例2:已知f(2x-1)的定义域为[-1,1],求f(x)的定义域.解:由于-1≤x≤1,解得-3≤x≤1,因此f(x)定义域为[-3,1].3.运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各个函数的定义域,然后再求交集.例3:若f(x)的定义域为[-3,5],求φ(x)=f(-x)+f(2x+5)的定义域.解:可知-3≤-x≤5,因此-5≤x≤3.同时,-3≤2x+5≤5,可得-4≤x≤0.因此,φ(x)的定义域为[-5,3]∩[-4,0]=[-4,0]4.已知函数f[g(x)]的定义域,求函数f[h(x)]的定义域其解法是,先由f[g(x)]的定义域,求出函数f(x)的定义域,再由f(x)的定义域,求出函数f[g(x)]的值域.例4:f()的定义域为[2,3],求f(x+5)的定义域.解:f()的定义域为[2,3]所以,-1≤≤所以,f(x)的定义域为[0,]所以,0二、对数函数的学习过程中,关于求对数函数与二次函数的复合函数的定义域和值域的问题具体模型是,设函数f(x)=logm(ax2+bx+c)(a≠0,m>0,且m≠1),二次方程ax2+bx+c=0对应的判别式?驻=b2+4ac.(1)若函数f(x)的定义域为R,则a>0,且?驻(2)若函数f(x)的值域为R,则a>0,且?驻≥0.例5设函数f(x)=log2(ax2+3x+5),其中a≠0(1)若此函数的定义域为R,求a的取值范围;(2)若此函数的值域为R,求a的取值范围.解:(1)由于此函数是复合函数,所以可令f(x)=log2μ,μ=ax2+3x+5.f(x)=log2μ中μ>0,所以二次函数μ=ax2+3x+5的值域大于零,且x取遍所有实数,只需保证a>0,且?驻=9-20a.(2)同理,可令f(x)=log2μ,μ=ax2+3x+5.则f(x)=log2μ,由于f(x)取遍所有实数,所以μ取遍所有大于0的实数.因此必须保证函数μ=ax2+3x+5与平面直角坐标系中x轴有交点.则对应的判别式?驻≥0.即有a>0,且?驻=9-20a≥0.即0练习1.已知函数y=f(x+1)的定义域是[-2,3],求y=f(2x-1)的定义域.解:依题可知x+1∈[-1,4],从而2x-1∈[-1,4],解得此函数的定义域为[0,].2.已知y=f(x)的定义域为[-1,1],求函数y=f(x+)·f(x-)的定义域.解:x+∈[-1,1],解得x∈[-,];x-∈[-1,1],解得x∈[-,].取交集可得此函数定义域为[-,].参考文献:[1]刘天好.复合函数定义域求法及其解题意义研究[J].考试周刊,2017(71):69.[2]赵铎皓.求函数定义域的常见题型例析[J].中学生数理化(学习研究),2017(6):60.?誗编辑李琴芳。
高一函数定义域和值域讲解
函数定义域、值域求法总结(一)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(二)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C 是B的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结一、定义域是函数()y f x =中的自变量x 的范围。
求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
(6)0x 中x 0≠二、值域是函数()y f x =中y 的取值范围。
高一数学函数的定义域与值域(讲义)(精)
高一数学函数的定义域与值域一、知识归纳:(一)函数的定义域与值域的定义:函数y=f(x 中自变量x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 的值叫做函数值。
函数值的集合{f(x│x∈A}叫做函数的值域。
(二)求函数的定义域一般有3类问题:1、已知解析式求使解析式有意义的x 的集合常用依据如下: ①分式的分母不等于0; ②偶次根式被开方式大于等于0;③对数式的真数大于0,底数大于0且不等于1; ④指数为0时,底数不等于02、复合函数的定义域问题主要依据复合函数的定义,其包含两类:①已知f[g(x]的定义域为x∈(a,b )求f(x 的定义域,方法是:利用a 求得 g(x 的值域,则 g(x 的值域即是 f(x 的定义域。
②已知f(x 的定义域为x∈(a,b )求f[g(x]的定义域,方法是:由a 求得x 的范围,即为 f[g(x] 的定义域。
3、实际意义的函数的定义域,其定义域除函数有意义外,还要符合实际问题的要求。
(三)确定函数的值域的原则1、当数y=f(x 用表格给出时,函数的值域是指表格中实数y 的集合。
2、当函数y=f(x 图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合。
3、当函数y=f(x 用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定。
常见函数的值域:函数y=kx +b y=ax2+b x+cy=ax y=logax值域 R a>0a<0{y|y ∈R{y|y>R0}且y≠0}4、当函数由实际问题给出时,函数的值域由问题的实际意义确定。
(四)求函数值域的方法:1、观察法,2、配方法,3、判别式法,4、反函数法,5、换元法,6、图象法等二、例题讲解:【例1】求下列函数的定义域(1)(2)(3y=lg(a x-kb x (a,b>0且a,b≠1,k∈R[解析](1)依题有∴函数的定义域为(2依题意有∴函数的定义域为(3)要使函数有意义,则a x-kb x>0,即①当k≤0时,定义域为R②当k>0时,(Ⅰ)若a>b>0,则定义域为{x|}(Ⅱ若0 ,则,定义域为 {x| }(Ⅲ若a=b>0,则当0 时定义域为 R ;当k ≥ 1 时,定义域为空集[评析]把求定义域的问题等价转化为关于x的不等式(组)的求解问题,其关键是列全限制条件(组。
高一数学知识点总结复合函数
高一数学知识点总结复合函数高一数学知识点总结:复合函数在高一数学学习中,复合函数是一个重要的概念。
复合函数结合了两个或多个简单函数,通过将一个函数的输出作为另一个函数的输入,进而产生了一个新的函数。
本文将对复合函数的概念、性质和应用进行总结。
一、复合函数的定义与表示复合函数是指将一个函数的输出作为另一个函数的输入,并得到一个新的函数。
设有函数f(x)和g(x),那么在定义域内存在h(x) = g(f(x)),其中h(x)表示函数f(x)和g(x)的复合函数。
我们可以将复合函数表示为h(x) = g(f(x)),其中f(x)为内函数,g(x)为外函数。
此时,内函数的定义域必须是外函数的值域。
二、复合函数的性质1. 交换律:f(g(x)) = g(f(x))。
即复合函数的结果与函数的先后顺序无关。
2. 结合律:(f(g(x))) • h(x) = f(g(h(x)))。
即复合函数连续运算的结果与加括号的方式无关。
3. 单位元:f(x) • 1 = 1 • f(x) = f(x)。
即复合函数与单位元的运算结果不变。
4. 复合函数不具有交换率。
5. 逆函数与复合函数:若f(g(x)) = x,g(f(x)) = x,则f(x)和g(x)互为逆函数。
三、复合函数的应用1. 函数的求值:复合函数可以用于求函数在特定点的值。
通过将内函数的输出作为外函数的输入,可以简化计算过程。
2. 函数的复合关系:复合函数可以帮助我们研究函数之间的关系。
通过分析复合函数的性质,可以得出函数的单调性、奇偶性等特征。
3. 函数的图像平移与变形:复合函数可以用于对函数图像进行平移、伸缩、镜像等操作,从而得到新的函数图像。
4. 物理问题的建模:复合函数在物理学中有广泛的应用。
例如,通过将距离与时间的函数复合,可以建立运动物体的位移函数。
总结:复合函数是数学中重要的概念之一,它将两个或多个函数进行组合,形成一个新的函数。
复合函数具有交换律、结合律和单位元等性质。
高一数学复合函数例题
高一数学复合函数例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一篇、复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题: (一)例题剖析:(1)、已知f x ()的定义域,求[]f g x ()的定义域例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。
解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1)又f 对lnx 作用,作用范围不变,所以01<<ln x 解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )例2. 若函数f x x ()=+11,则函数[]f f x ()的定义域为______________。
解析:先求f 的作用范围,由f x x ()=+11,知x ≠-1即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11()即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且 (2)、已知[]f g x ()的定义域,求f x ()的定义域例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。
解析:f x ()32-的定义域为[]-12,,即[]x ∈-12,,由此得[]3215-∈-x ,所以f 的作用范围为[]-15,,又f 对x 作用,作用范围不变,所以[]x ∈-15,即函数f x ()的定义域为[]-15,例4. 已知f x x x ()lg 22248-=-,则函数f x ()的定义域为______________。
(完整版)高一必修一数学-复合函数定义域
复合函数的定义域讲解内容:复合函数的定义域求法讲解步骤:第一步:函数概念及其定义域函数的概念:设是,A B 非空数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为集合A 到集合B 的函数,记作:(),y f x x A =∈。
其中x 叫自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值.第二步:复合函数的定义一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数.例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x ,22(())3()53(1)538f g x g x x x =+=++=+问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。
)第三步:介绍复合函数的定义域求法例1. 已知()f x 的定义域为](3,5-,求函数(32)f x -的定义域;解:由题意得35x -<≤Q3325x ∴-<-≤ 137x -<≤1733x ∴-<≤ 所以函数(32)f x -的定义域为17,33⎛⎤- ⎥⎝⎦. 练1.已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。
解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即⎩⎨⎧≤≤->-<⇔⎪⎩⎪⎨⎧≤+>+⇔≤+<13023202320222x x x x x x x x x ,或即23-<≤-x 或10≤<x故)2(2x x f +的定义域为[)(]1,02,3Y -- 例2. 若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域解:由题意得23x ∴-≤≤639x ∴-≤≤42311x ∴-≤+≤所以函数()f x 的定义域为:[]4,11-例3. 已知)1(+x f 的定义域为)32[,-,求()2-x f 的定义域。
高一数学复合函数专题
结论:
1、已知函数f(x)的定义域为[a,b],求其 复合函数f[g(x)]的定义域,应由不 等式a≤g(x)≤b解出x即得. 2、已知复合函数f[g(x)]的定义域为 [a,b],求原函数f(x)的定义域,应
求出g(x)的值域(x∈[a,b]),即得
y=f(x)的定义域.
三、复合函数的值域
例:求下列函数的定义域、值域: ⑴
则y=f[g(x)] 增函数 增函数
规律:
当两个函数的单调性相同时,其复合函数是增函数;
当两个函数的单调性不相同时,其复合函数是减函数
“同增异减”
设 y 3 ,u=x2-2x-1,由u∈R, 得原复合函数的定义域为x∈R. u y 3 因为 在定义域R内为增函数, 所以由二次函数u=x2-2x-1的单调性易知 u=x2-2x-1=(x-1)2-2在x≤1时单调减, 由 x∈R, (复合函数定义域) x≤1, (u减) 解得x≤1.所以(-∞,1]是该复合函数的单 调减区间. 同理[1,+∞)是该复合函数的单调增区间. 解:
三、复合函数的单调性
当两个函数的单调性相同时,其复合函数是增函数; 当两个函数的单调性不相同时,其复合函数是减函数
“同增异减” 四、复合函数的奇偶性 奇+奇=奇 偶+偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇 奇+偶=(不确定)
六、总结
一、求复合函数的定义域
1、已知函数f(x)的定义域为[a,b],求其复合函数f[g(x)]的定 义域,应由不等式a≤g(x)≤b解出x即得. 2、已知复合函数f[g(x)]的定义域为[a,b],求原函数f(x)的定 义域,应求出g(x)的值域(x∈[a,b]),即得f(x)的定义域.
二、求复合函数的值域
结论:
人教版高中数学必修1--第三章 抽象函数或复合函数的定义域 章末回顾与提升
故集合 M={m|0<m<4}.
高中数学 必修 第一册
返回导航
第三章 函数的概念与性质
[训练 4] 已知函数 f(x)=-x|x-a|+1(x∈R). (1)当 a=2 时,试写出函数 g(x)=f(x)-x 的单调区间; (2)当 a>1 时,求函数 f(x)在[1,3]上的最大值.
1<x≤4.故选 B.
高中数学 必修 第一册
返回导航
第三章 函数的概念与性质
二、求函数的解析式 1.求函数的解析式最常用的方法是换元法和待定系数法. 2.掌握常见的基本初等函数的类型和求解析式的方法,提升数学 运算和逻辑推理素养.
高中数学 必修 第一册
返回导航
第三章 函数的概念与性质
已知二次函数 f(x)的最小值为 1,且 f(0)=f(2)=3. (1)求函数 f(x)的解析式; (2)求 f(x)在-12,32 上的最大值. 解:(1)由题意,设 f(x)=a(x-1)2+1, 因为 f(0)=3,即 a(-1)2+1=3.解得 a=2, 所以函数 f(x)的解析式为 f(x)=2x2-4x+3.
高中数学 必修 第一册
返回导航
第三章 函数的概念与性质
(2)若函数 f(x)的定义域为[-1,2],则函数 g(x)=f(xx--21) 的定
义域是( B )
A.[1,4]
B.(1,4]
C.[1,2)
பைடு நூலகம்
D.(1,2]
解析:由函数 f(x)的定义域为[-1,2],令- x-11≤>x-0,2≤2, 解得
高中数学 必修 第一册
返回导航
第三章 函数的概念与性质
高一数学函数的定义域与值域的常用方法
高一数学求函数得定义域与值域得常用法一:求函数解析式1、换元法:题目给出了与所求函数有关得复合函数表达式,可将函数用一个变量代换。
例1. 已知,试求、解:设,则,代入条件式可得:,t ≠1、故得:。
说明:要注意转换后变量围得变化,必须确保等价变形。
2、构造程组法:对同时给出所求函数及与之有关得复合函数得条件式,可以据此构造出另一个程,联立求解。
例2。
(1)已知,试求;(2)已知,试求;解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。
(2)由条件式,以-x 代x 则得:,与条件式联立,消去,则得:。
说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数得定义域由解析式确定,不需要另外给出。
例4、 求下列函数得解析式:(1)已知就是二次函数,且,求;(2)已知,求,,;(3)已知,求;(4)已知,求。
【题意分析】(1)由已知就是二次函数,所以可设,设法求出即可。
(2)若能将适当变形,用得式子表示就容易解决了、(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。
(4),同时使得有意义,用代替建立关于,得两个程就行了。
【解题过程】⑴设,由得,由,得恒等式,得。
故所求函数得解析式为。
(2)1)1(112)(2)1(22-+=-++=+=+x x x x x x f ,又。
(3)设, 则1)1()1(111111)1()(22222+-=-+-+=++=++=+=t t t t x xx x x x x f t f 所以。
(4)因为 ①用代替得 ②解①②式得。
【题后思考】求函数解析式常见得题型有:(1)解析式类型已知得,如本例⑴,一般用待定系数法。
对于二次函数问题要注意一般式,顶点式与标根式得选择;(2)已知求得问题,法一就是配凑法,法二就是换元法,如本例(2)(3);(3)函数程问题,需建立关于得程组,如本例(4)、若函数程中同时出现,,则一般将式中得用代替,构造另一程。
高三数学有关复合函数单调性的定义和解题方法
有关复合函数单调性的定义和解题方法一、复合函数的定义设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、函数的单调区间1.一次函数y=kx+b(k ≠0).解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间.2.反比例函数y=x k(k ≠0).解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.3.二次函数y=ax 2+bx+c(a ≠0).解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b2,+∞)是它的单调增区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b2,+∞)是它的单调减区间;4.指数函数y=ax(a >0,a ≠1).解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间.5.对数函数y=log a x(a >0,a ≠1).解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间.三、复合函数单调性相关定理引理1 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.(本引理中的开区间也可以是闭区间或半开半闭区间.)证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为u=g(x)在区间(a,b)上是增函数,所以g(x 1)<g(x 2),记u1=g(x 1),u2=g(x 2)即u 1<u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)], 故函数y=f [g(x)]在区间(a,b)上是增函数.引理2 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f [g(x)]在区间(a,b)上是增函数.证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为函数u=g(x)在区间(a,b)上是减函数,所以g(x 1)>g(x 2),记u1=g(x 1),u2=g(x 2)即u 1>u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)],故函数y=f [g(x)]在区间(a,b)上是增函数.规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合函数的定义域
讲解内容:
复合函数的定义域求法
讲解步骤:
第一步:函数概念及其定义域
函数的概念:设是,A B 非空数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为集合A 到集合B 的函数,记作:(),y f x x A =∈。
其中x 叫自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值.
第二步:复合函数的定义
一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数.
例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x ,22
(())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。
)
第三步:介绍复合函数的定义域求法
例1. 已知()f x 的定义域为](3,5-,求函数(32)f x -的定义域;
解:由题意得
35x -<≤
3325x ∴-<-≤
137x -<≤
1
7
33x ∴-<≤
所以函数(32)f x -的定义域为17,33⎛
⎤- ⎥⎝⎦
. 练1.已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。
解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即
⎩⎨⎧≤≤->-<⇔⎪⎩⎪⎨⎧≤+>+⇔≤+<13023202320222
x x x x x x x x x ,或
即23-<≤-x 或10≤<x
故)2(2x x f +的定义域为[)(]1,02,3 --
例2. 若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域
解:由题意得
23x ∴-≤≤
639x
∴-≤≤ 42311
x ∴-≤+≤ 所以函数()f x 的定义域为:[]4,11-
例3. 已知)1(+x f 的定义域为)32[,-,求()2-x f 的定义域。
解 由)1(+x f 的定义域为)32[,-得32<≤-x ,故411<+≤-x
即得()x f 定义域为)41[,-,从而得到421<-≤-x ,所以61<≤x
故得函数()2-x f 的定义域为[)6,1
例4. 已知函数()x f 定义域为是],[b a ,且0>+b a ,求函数()()()m x f m x f x h -++=()0>m 的
定义域
解: ⎩
⎨⎧+≤≤+-≤≤-⇒⎩⎨⎧≤-≤≤+≤m b x m a m b x m a b m x a b m x a ,m a m a m +<-∴>,0 m b m b +<-,又m b m a +<-
要使函数()x h 的定义域为非空集合,必须且只需m b m a -≤+,即20a b m -≤
<,这时函数
()x h 的定义域为],[m b m a -+ 第四步:总结解题模板
1.已知)(x f 的定义域,求复合函数()][x g f 的定义域
由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。
2.已知复合函数()][x g f 的定义域,求)(x f 的定义域
方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。
3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域
结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。
4.已知()
f x的定义域,求四则运算型函数的定义域
若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。