D4-1 二项分布
第9节 二项分布、超几何分布与正态分布
A
[解析]由题意可知,P(X>2)=0.5,故P(X>2.5)=P(X>2)-P(2<X≤2.5)=0.14.
5. (2022年新高考全国Ⅱ卷)已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)= .
0.14
考点一 二项分布
【例 1】某大厦的一部电梯从底层出发后只能在第17,18,19,20层停靠,若该电梯在底层有5个乘客,且每位乘客在这四层的每一层下电梯的概率为,用ξ表示5位乘客在第20层下电梯的人数,则P(ξ=4)= .
D
(2)科研人员在另一个实验中发现,疫苗可多次连续注射,白兔多次注射疫苗后,每次注射的疫苗对白兔是否有效互相不影响,相互独立,试问:如果将实验一中未被感染新冠病毒的白兔的频率当作疫苗的有效率,那么一只白兔注射两次疫苗能否保证有效率达到96%?若能,请说明理由;若不能,请问每支疫苗的有效率至少要达到多少才能满足以上要求.
[解析]每一位乘客是在第20层下电梯为一次试验,且每一位乘客在第20层下电梯的概率都是,因此这是5次独立重复试验,故ξ~B(5,) ,所以P(ξ=4)=() 4×=.
二项分布满足的条件1.每次试验中,同一事件发生的概率是相同的;2.各次试验中的事件是相互独立的;3.每次试验只有两种结果,即事件要么发生,要么不发生;4.随机变量是这n次独立重复试验中事件发生的次数.解此类题时常用互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式.
一批产品的一等品率为0.9,从这批产品中每次随机抽取一件,有放回地抽取100次,Χ表示抽到的一等品件数,则D(X)= .
【高中数学选修第三册】第七章二项分布1
7.4 二项分布与超几何分布7.4.1 二项分布新版课程标准学业水平要求1.结合生活中的实例,了解二项分布;2.了解二项分布的均值和方差及其意义. 1.结合教材实例,了解二项分布的概念.(数学抽象)2.会利用公式求服从二项分布的随机变量的概率、均值以及方差.(数学运算)3.能利用二项分布概率模型解决实际问题.(数学建模)必备知识·素养奠基1.n重伯努利试验(1)伯努利试验:我们把只包含两个可能结果的试验叫做伯努利试验.(2)定义:我们将一个伯努利试验独立地重复进行n次所组成的随机试验称为n 重伯努利试验.(3)特征:①同一个伯努利试验重复做n次;②各次试验的结果相互独立.定义中“重复”的含义是什么?提示:“重复”意味着各次试验成功的概率相同.2.二项分布(1)定义:一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P=p k,k=0,1,2,…,n.如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布.(2)记法:X~B.(3)结论:P=1.(4)确定一个二项分布模型的步骤:①明确伯努利试验及事件A的意义,确定事件A发生的概率p;②确定重复试验的次数n,并判断各次试验的独立性;③设X为n次独立重复试验中事件A发生的次数,则X~B.3.二项分布的均值与方差如果,X~B,那么E=np,D=np.1.思维辨析(对的打“√”,错的打“×”)(1)依次投掷四枚质地不同的骰子,点数1出现2次的试验是4重伯努利试验.( )(2)若随机变量X~B,则X=1,2,…,n.()(3)若随机变量X~B,则P=·p k.( )提示:(1)×.因为骰子的质地不同,点数1出现的概率不同,因此不是4重伯努利试验.(2)×.X=0,1,2,…,n.(3)×.P=p k,k=0,1,2,…,n.2.(2020·钦州高二检测)某次抽奖活动中,参与者每次抽中奖的概率均为,现甲参加3次抽奖,则甲恰好有一次中奖的概率为( )A. B. C. D.【解析】选C.某次抽奖活动中,参与者每次抽中奖的概率均为,现甲参加3次抽奖,则甲恰好有一次中奖的概率为P=×=.3.某一批植物种子,如果每1粒发芽的概率为,那么播下3粒种子恰有2粒发芽的概率是( )A. B. C. D.【解析】选C.由n重伯努利试验恰有k次发生的概率公式得:P==.关键能力·素养形成类型一求n重伯努利试验的概率【典例】1.(2020·临汾高二检测)随着二胎政策的开放,越来越多中年女性选择放下手中的工作,为二胎做准备.某公司为了使广大中年女性安心备孕,且不影响公司的正常效益,对公司所有中年女性进行生育倾向调查.已知该公司共有6名中年女性,若每名中年女性倾向于生二胎的概率为,且各名中年女性之间不相互影响,则恰有4位中年女性倾向生二胎的概率为( )A. B. C. D.2.(2020·丰台高二检测)某篮球运动员在训练过程中,每次从罚球线罚球的命中率是,且每次罚球的结果相互独立.已知该名篮球运动员连续4次从罚球线罚球.(1)求他第1次罚球不中,后3次罚球都中的概率;(2)求他4次罚球恰好命中3次的概率.【思维·引】1.转化为6重伯努利试验,一次试验发生的概率为;2.(1)利用概率的乘法公式计算;(2)利用4重伯努利试验的概率公式计算.【解析】1.选C.依题意,所求概率为··=15××=.2.(1)设该篮球运动员第1次罚球不中,后3次罚球都中为事件A,则第i(i=1,2,3,4)次罚球命中为事件B i,则A=B2B3B4;因为每次罚球的结果相互独立,所以所求的概率为P(A)=P()P(B2)P(B3)P(B4)=×××=.(2)因为该名篮球运动员4次罚球恰好命中次数X是一个随机变量,则X~B,所以所求的概率为P(X=3)=··=.【内化·悟】你能列举出几个常见的n重伯努利试验的例子吗?提示:(1)反复抛掷一枚质地均匀的硬币.(2)正(次)品率的抽样.(3)有放回抽样.(4)射手射击目标命中率已知的若干次射击.【类题·通】关于n重伯努利试验概率的计算首先要判断是否符合n重伯努利试验的特征,其次求出一次试验的概率,最后用n 重伯努利试验的概率公式计算.【习练·破】某人射击一次击中目标的概率为0.6,经过3次射击,设X表示击中目标的次数,则P(X≥2)等于________.【解析】击中目标的次数X≥2,则击中次数为3次或2次.P(x=3)=0.63=,P(x=2)=0.62×0.4=,所以P(x≥2)=P(x=3)+P(x=2)=.答案:类型二求服从二项分布的随机变量的分布列【典例】某商场为了了解顾客的购物信息,随机在商场收集了100位顾客购物的相关数据如表:一次购物款[0,50) [50,100) [100,150) [150,200) [200,+∞) (单位:元)顾客人数20 a 30 20 b统计结果显示100位顾客中购物款不低于150元的顾客占30%,该商场每日大约有4 000名顾客,为了增加商场销售额度,对一次购物不低于100元的顾客发放纪念品.(1)试确定a,b的值,并估计每日应准备纪念品的数量;(2)现有4人前去该商场购物,求获得纪念品的数量ξ的分布列.【思维·引】(1)先计算购物款不低于150元的人数,再求b,a.(2)先计算1人获得纪念品的概率,再利用4重伯努利试验求概率、分布列.【解析】(1)由已知,100位顾客中购物款不低于150元的顾客有b+20=100×30%,b=10;a=100-(20+30+20+10)=20.该商场每日应准备纪念品的数量大约为4 000×=2 400.(2)由(1)可知1人购物获得纪念品的频率即为概率P==,故4人购物获得纪念品的数量ξ服从二项分布ξ~B,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,所以ξ的分布列为:ξ0 1 2 3 4P【内化·悟】利用二项分布求分布列的步骤是什么?提示:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n,p→写出二项分布的分布列→将k值代入求解概率.【类题·通】关于利用二项分布求分布列(1)关键是确定随机变量服从二项分布,以及二项分布中的相关参数;(2)利用二项分布求解“至少”“至多”问题的概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.【习练·破】高二(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为,该研究性学习小组又分成两个小组进行验证性试验.(1)第一小组做了5次这种植物种子的发芽试验(每次均种下一粒种子),求他们的试验中至少有3次发芽成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次试验中种子发芽成功就停止试验,否则将继续进行下次试验,直到种子发芽成功为止,但试验的次数最多不超过5次.求第二小组所做种子发芽试验的次数ξ的概率分布列.【解析】(1)至少有3次发芽成功,即有3次、4次、5次发芽成功.设5次试验中种子发芽成功的次数为随机变量X,则P(X=3)=××=,P(X=4)=××=,P(X=5)=××=.所以至少有3次发芽成功的概率P=P(X=3)+P(X=4)+P(X=5)=++==.(2)随机变量ξ的可能取值为1,2,3,4,5.P(ξ=1)=,P(ξ=2)=×=,P(ξ=3)=×=,P(ξ=4)=×=,P(ξ=5)=×1=.所以ξ的分布列为:ξ 1 2 3 4 5P【加练·固】在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X,求X不小于4的概率. 【解析】(1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击5次只击中一次或一次也没有击中,故该事件的概率为··+,所以所求的概率为1-=.(2)当X=4时记为事件A,则P(A)=···=.当X=5时,意味着前4次射击只击中一次或一次也未击中,记为事件B则P(B)=··+=,所以射击次数不小于4的概率为+=.类型三二项分布模型的应用角度1 求均值、方差【典例】(2020·广州高二检测)已知随机变量X~B,那么随机变量X的均值E(X)=( )A. B. C.2 D.【思维·引】利用二项分布的均值公式计算.【解析】选B.因为随机变量X~B,所以E(X)=4×=.答案:【素养·探】★本例考查二项分布的均值、方差的公差计算,同时考查了数学运算的核心素养.本例若随机变量X~B(n,p),若E(ξ)=3,D(ξ)=2,求n的值.【解析】因为随机变量X~B(n,p),所以E(ξ)=np,D(ξ)=np(1-p),因为E(ξ)=3,D(ξ)=2,所以np=3①;np(1-p)=2②.把①代入②得到1-p=,所以p=,把p的值代入①,得到n=9.答案:9角度2 解决实际问题【典例】(2020·海口高二检测)假定人们对某种特别的花粉过敏的概率为0.25,现在检验20名大学生志愿者是否对这种花粉过敏.(1)求样本中恰好有两人过敏的概率及至少有2人过敏的概率;(2)要使样本中至少检测到1人过敏的概率大于99.9%,则抽取的样本容量至少要多大?(3)若检验后发现20名大学生中过敏的不到2人,这说明了什么?试分析原因. 附:0.7518=0.005 6,0.7519=0.004 2,0.7520=0.003,lg 0.75=-0.124 9.【思维·引】(1)利用对立事件简化概率计算;(2)利用概率公式列出不等式,通过对数运算求样本容量的范围;(3)从假设、抽样检验的科学性分析.【解析】(1)设样本中对花粉过敏的人数为X,则X~B(20,0.25),所以P(X=2)=×0.252×0.7518=0.067,P(X≥2)=1-P(X=0)-P(X=1)=1-0.7520-×0.25×0.7519=1-0.003-0.021=0.976.所以样本中恰好有两人过敏的概率为0.067,至少有2人过敏的概率为0.976.(2)设样本容量为n,该样本中检测到对花粉过敏的人数为Y,则Y~B(n,0.25), 所以P(Y≥1)=1-P(Y=0)=1-0.75n>99.9%,解得0.75n<0.001,取对数得nlg0.75<-3,解得n>=24.02,所以抽取的样本容量至少为25人.(3)由(1)知检验的20人中不到2人过敏的概率为1-0.976=0.024,此概率非常小,在正常情况下一次试验中几乎不会发生,出现这种情况的原因可能有:①原假设不成立,即每个人对这种花粉过敏的概率不到0.25.②检验的样本只针对大学生,没有随机性.③检验的环节出现了问题.【类题·通】关于二项分布的应用(1)若随机变量符合二项分布,则可直接利用公式求均值和方差;(2)在一些综合性的问题中,二项分布模型要与其他的概率知识,如独立事件同时发生,抽样等知识相结合应用.解题过程中要分清随机变量取值的实际意义,利用相关的概率知识解题.【习练·破】甲、乙两人进行投篮比赛,两人各投3球,谁投进的球多谁获胜,已知每次投篮甲投进的概率为,乙投进的概率为,求:(1)甲投进2球且乙投进1球的概率;(2)在甲第一次投篮未进条件下,甲最终获胜的概率.【解析】(1)甲投进2球的概率是×=,乙投进1球的概率是×=.所以甲投进2球且乙投进1球的概率为×=.(2)甲第一次未进最终获胜的情况有:①甲后2球都投进,乙投进1球或都不进: P1=×·=×=.②甲后2球进1球,乙都不进.P2=×××=×=,所以甲第一次投篮未进,最终获胜的概率为P1+P2=.课堂检测·素养达标1.下列随机变量X不服从二项分布的是( )A.投掷一枚均匀的骰子5次,X表示点数为6出现的次数B.某射手射中目标的概率为p,设每次射击是相互独立的,X为从开始射击到击中目标所需要的射击次数C.实力相等的甲、乙两选手进行了5局乒乓球比赛,X表示甲获胜的次数D.某星期内,每次下载某网站数据被病毒感染的概率为0.3,X表示下载n次数据电脑被病毒感染的次数【解析】选B.选项A,试验出现的结果只有两种:点数为6和点数不为6,且点数为6的概率在每一次试验中都为,每一次试验都是独立的,故随机变量X服从二项分布;选项B,虽然随机变量在每一次试验中的结果只有两种,每一次试验事件相互独立且概率不发生变化,但随机变量的取值不确定,故随机变量X不服从二项分布;选项C,甲、乙的获胜率相等,进行5局比赛,相当于进行了5次独立重复试验,故X服从二项分布;选项D,由二项分布的定义,可知被感染次数X~B(n,0.3).2.在比赛中运动员甲获胜的概率是,假设每次比赛互不影响,那么在五次比赛中运动员甲恰有三次获胜的概率是( )A. B. C. D.【解析】选B.由n次独立重复试验的概率计算公式,得·=.3.现有5个人独立地破译某个密码,已知每人单独译出密码的概率均为p,且<p<1,则恰有三个人译出密码的概率是( )A.p3B.p2(1-p)3C.p3(1-p)2D.1-(1-p)2【解析】选C.由题意可知,恰有三个人译出密码的概率P=p3(1-p)2.4.为响应国家“足球进校园”的号召,某校成立了足球队,假设在一次训练中,队员甲有10次的射门机会,且他每次射门踢进球的概率均为0.6,每次射门的结果相互独立,则他最有可能踢进球的个数是( )A.5B.6C.7D.8【解析】选B.某校成立了足球队,假设在一次训练中,队员甲有10次的射门机会,且他每次射门踢进球的概率均为0.6,每次射门的结果相互独立,他踢进球的个数X~B(10,0.6),E(X)=10×0.6=6,则他最有可能踢进球的个数是6.5.设X~B(4,p),且P(X=2)=,那么一次试验成功的概率p是________.【解析】P(X=2)=p2(1-p)2=,即p2(1-p)2=,解得p=或p=.答案:或【新情境·新思维】设随机变量Y满足Y~B,则函数f(x)=x2-4x+4Y无零点的概率是( ) A. B. C. D.【解析】选A.因为函数f(x)=x2-4x+4Y无零点,所以Δ=(-4)2-4×1×4Y<0,所以Y>1,所以P(Y>1)=P(Y=2)+P(Y=3)+P(Y=4)=++=.。
高三第一轮复习 两点分布,二项分布及超几何分布
两点分布,二项分布及超几何分布【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)主干知识归纳1.两点分布:若随机变量X 的分布列是其中0<p <1,q =1-p ,则离散型随机变量X 服从两点分布,且称p =P (X =1)为成功概率.2.超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有ξ件次品,则事件{ξ=k}发生的概率为P(ξ=k)=C k M C n -kN -M C n N,k =0,1,2,…,m ,其中m =min {M ,n},且m ≤N ,M ≤N ,n ,M ,N ∈N *.称分布列为超几何分布.如果随机变量ξ的分布列为超几何分布列,则称随机变量ξ服从超几何分布. 3.二项分布(1)进行n 次试验,如果满足下列条件:①每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”; ② 每次试 验“成功”的 概 率 均为p ,“失败”的概率为1-p ; ③各次试验是相互独立的.用X 表示这n 次试验中成功的次数,则P (X =k )= .若一个随机变量X 的分布列如上所述,则称X 服从参数为n ,p 的二项分布,简记为 . (2)二项分布的期望与方差.若随机变量X ~B (n ,p ),则EX = ,DX = . 方法规律总结1.求超几何分布的分布列、期望的步骤:第一步,验证随机变量服从超几何分布,并确定参数N ,M ,n 的值;第二步,根据超几何分布的概率计算公式计算出随机变量取每一个值时的概率; 第三步,用表格的形式列出分布列; 第四步,根据定义求出期望2.二项分布的分布列问题一般遵循以下三个步骤: 第一步,先判断随机变量是否服从二项分布;第二步,若服从二项分布,一般是通过古典概型或相互独立事件的概率公式计算出试验中“成功”“不成功”的概率分别是多少;第三步,根据二项分布的分布列P(X =k)=C k n p k(1-p)n -k(k =0,1,2,…,n)列出相应的分布列.【指点迷津】【类型一】两点分布【例1】:某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 的分布列和数学期望.【解析】:(1)由题意知,参加集训的男、女生各有6名.参赛学生全部从B 中学中抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100. 因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100. (2)根据题意得,X 的可能取值为1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35,P (X =3)=C 33C 13C 46=15.所以X 的分布列为因此,X 的数学期望E (X )=1×P (X =1)+2×P (X =2)+3×P (X =3)= 1×15+2×35+3×15=2.答案:(1)99100. (2) 2. 【例2】:据IEC(国际电工委员会)调查显示,小型风力发电项目投资较少,且开发前景广阔,但受风力自然资源影响,项目投资存在一定风险.根据测算,风能风区分类标准如下:假设投资A 位于一类风区的A 项目获利30%的可能性为0.6,亏损20%的可能性为0.4;位于二类风区的B 项目获利35%的可能性为0.6,亏损10%的可能性是0.1,不赔不赚的可能性是0.3.(1)记投资A ,B 项目的利润分别为ξ和η,试写出随机变量ξ与η的分布列和期望E (ξ),E (η); (2)某公司计划用不超过100万元的资金投资A ,B 项目,且公司要求对A 项目的投资不得低于B 项目,根据(1)的条件和市场调研,试估计一年后两个项目的平均利润之和z =E (ξ)+E (η)的最大值. 【解析】: (1)投资A 项目的利润ξ则E (ξ)=0.18x -0.08x =0.1x . 投资B 项目的利润η则E (η)=0.21y -0.01y =0.2y (2)由题意可知x ,y 满足的约束条件为⎩⎪⎨⎪⎧x +y ≤100,x ≥y ,x ,y ≥0,其表示的可行域如图中阴影部分所示.由(1)可知,z =E (ξ)+E (η)=0.1x +0.2y ,当直线y =-0.5x +5z 过点(50,50)时,z 取得最大值,即当x =50,y =50时,z 取得最大值15. 故对A ,B 项目各投资50万元,可使公司获得最大利润,最大利润是15万元 答案:(1) ξ的分布列为E (ξ)=0.18x -0.08x =0.1x . η的分布列为E (η)=0.21y -0.01y =0.2y .(2) 对A ,B 项目各投资50万元,可使公司获得最大利润,最大利润是15万元【类型二】超几何分布【例1】:(2015·重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.【解析】: (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14.(2)X 的所有可能值为0,1,2,且 P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.综上知,X 的分布列为故EX =0×715+1×715+2×115=35(个).答案:(1) 14. (2) 35.【例2】:某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 的分布列和数学期望.【解析】: (1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100.因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100. (2)根据题意,X 的可能取值为1,2,3.P (X =1)=C 13C 33C 46=15,P (X =2)=C 23C 23C 46=35, P (X =3)=C 33C 13C 46=15,所以X 的分布列为因此,X 的数学期望为EX =1×15+2×35+3×15=2.答案:(1) 99100. (2) 2.【类型三】两项分布【例1】:某厂用鲜牛奶在某台设备上生产A ,B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产A ,B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列分别为 该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量.(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率. 【解析】:(1)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为z ,则有⎩⎪⎨⎪⎧2x +1.5y ≤W ,x +1.5y ≤12,2x -y ≥0,x ≥0,y ≥0.① 目标函数z =1000x +1200y .当W =12时,①表示的平面区域如图(1),三个顶点分别为A (0,0),B (2.4,4.8),C (6,0).将z =1000x +1200y 变形为y =-56x +z 1200,当x =2.4,y =4.8时,直线l :y =-56x +z 1200在y 轴上的截距最大,最大获利Z =z max =2.4×1000+4.8×1200=8160.当W =15时,①表示的平面区域如图(2),三个顶点分别为A (0,0),B (3,6),C (7.5,0).将z =1000x +1200y 变形为y =-56x +z 1200,当x =3,y =6时,直线l :y =-56x +z1200在y 轴上的截距最大,最大获利Z =z max =3×1000+6×1200=10 200.当W =18时,①表示的平面区域如图(3),四个顶点分别为A (0,0),B (3,6),C (6,4),D (9,0).将z =1000x +1200y 变形为y =-56x +z 1200,当x =6,y =4时,直线l :y =-56x +z1200在y 轴上的截距最大,最大获利Z =z max =6×1000+4×1200=10 800.故最大获利Z 的分布列为因此,E (Z )=8160×0.3+10 200×0.5+10 800×0.2=9708.(2)由(1)知,一天最大获利超过10 000元的概率P 1=P (Z >10 000)=0.5+0.2=0.7, 由二项分布,3天中至少有1天最大获利超过10 000元的概率为 P =1-(1-P 1)3=1-0.33=0.973. 答案:(1)最大获利Z 的分布列为E (Z )=8160×0.3+10 200×0.5+10 800×0.2=9708.(2) 0.973. 【例2】:在一次数学考试中,第22,23,24题为选做题,规定每位考生必须且只须在其中选一题,设5名同学选做这三题中任意一题的可能性均为13,每位同学对每题的选择是相互独立的,各学生的选择相互之间没有影响.(1)求其中甲、乙两人选做同一题的概率;(2)设选做第23题的人数为ξ,求ξ的分布列及数学期望.【解析】:(1)设事件A 1表示“甲选22题”,A 2表示“甲选23题”,A 3表示“甲选24题”,B 1表示“乙选22题”,B 2表示“乙选23题”,B 3表示“乙选24题”,由甲、乙选做同一题的事件为A 1B 1+A 2B 2+A 3B 3,且A 1与B 1,A 2与B 2,A 3与B 3相互独立, 所以P(A 1B 1+A 2B 2+A 3B 3)=P(A 1)P(B 1)+P(A 2)P(B 2)+P(A 3)P(B 3)=3×19=13.(2)ξ的可能取值为0,1,2,3,4,5,则ξ~B(5,13),所以P(ξ=k)=C k 5(13)k (23)5-k =C k 525-k35,k =0,1,2,3,4,5.所以ξ的分布列为所以E ξ=np =5×13=53.答案:(1) 13. (2) 53.【同步训练】【一级目标】基础巩固组一.选择题1.已知离散型随机变量X 的分布列为则X 的数学期望EX =( )A.32 B .2 C.52 D .3 【解析】:EX =1×35+2×310+3×110=32.答案:A.2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )A .C 1012⎝⎛⎭⎫3810⎝⎛⎭⎫582 B .C 912⎝⎛⎭⎫389⎝⎛⎭⎫582 C .C 911⎝⎛⎭⎫589⎝⎛⎭⎫382 D .C 911⎝⎛⎭⎫3810⎝⎛⎭⎫582【解析】:“X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P (X =12)=38×C 911⎝⎛⎭⎫389⎝⎛⎭⎫582=C 911⎝⎛⎭⎫3810⎝⎛⎭⎫582.答案:D .3.在四次独立重复试验中,随机事件A 恰好发生一次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1]B .(0,0.4]C .(0,0.6]D .[0.6,1]【解析】:由题知C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,故选A . 答案:A .4.随机变量X 的分布列为则E (5X +4)等于( )A .15B .11C .2.2D .2.3 【解析】:∵E(X)=1×0.4+2×0.3+4×0.3=2.2,∴E(5X +4)=5E(X)+4=11+4=15. 答案:A .5.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧,其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量X 为“|a -b |的取值”,则X 的数学期望E (X )为( )A.89B.35C.25D.13【解析】:对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 13C 13C 17=126(条),X 的可能取值有0,1,2.P(X =0)=6×7126=13,P(X =1)=8×7126=49,P(X =2)=4×7126=29,故E(X)=0×13+1×49+2×29=89.答案:A. 二.填空题6.设随机变量X ~B(6,12),则P(X =3)的值为 (用最简的分数作答)【解析】:P(X =3)=C 36(12)3(12)3=516. 答案:516. 7.10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品的概率是________.【解析】:由超几何分布的概率公式可得P (恰好取到一件次品)=C 13C 37C 410=12.答案:12.8.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.【解析】:∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59,解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927.答案:1927.三.解答题9.某校对参加“社会实践活动”的全体志愿者进行学分考核,因该批志愿者表现良好,学校决定考核只有合格和优秀两个等次.若考核为合格,则授予1个学分;若考核为优秀,则授予2个学分.假设该校志愿者甲、乙、丙考核为优秀的概率分别为45,23,23,且他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一人考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X ,求随机变量X 的分布列及数学期望. 【解析】:(1)记“甲考核为优秀”为事件A ,“乙考核为优秀”为事件B ,“丙考核为优秀”为事件C ,“甲、乙、丙三人中至少有一人考核为优秀”为事件D ,则P (D )=1-P (A B C )=1-P (A )P (B )P (C )=1-15×13×13=4445.(2)由题意,得X 所有可能的取值是3,4,5,6,P (X =3)=P (A B C )=P (A )P (B )P (C )=145,P (X =4)=P (A B C )+P (ABC )+P (A B C )=845,P (X =5)=P (ABC )+P (ABC )+P (ABC )=49,P (X =6)=P (ABC )=P (A )P (B )P (C )=1645,所以故E (X )=3×145+4×845+5×49+6×1645=7715.答案:(1) 4445.(2) X E (X )=3×145+4×845+5×49+6×1645=7715.10.某中学校本课程共开设了A ,B ,C ,D 共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生.(1)求这3名学生选修课所有选法的总数;(2)求恰有2门选修课没有被这3名学生选择的概率;(3)求这3名学生中选择A 选修课的人数X 的分布列和数学期望. 【解析】:(1)每个学生有4个不同的选择,根据分步计数原理,选法总数N =4×4×4=64.(2)设“恰有2门选修课没有被这3名学生选择”为事件E ,则P (E )=C 24C 23A 2243=916,即恰有2门选修课没有被这3名学生选择的概率为916. (3)方法一:X 所有可能的取值为0,1,2,3,P (X =0)=3343=2764,P (X =1)=C 13×3243=2764, P (X =2)=C 23×343=964,P (X =3)=C 3343=164,所以X 的分布列为所以X 的数学期望E (X )=0×2764+1×2764+2×964+3×164=34.方法二:因为A 选修课被每位学生选中的概率均为14,没被选中的概率均为34,所以X 的所有可能取值为0,1,2,3,且X ~B 3,14,P (X =0)=343=2764,P (X =1)=C 13×14×342=2764, P (X =2)=C 23×142×34=964,P (X =3)=143=164, 所以X故X 的数学期望E (X )=3×14=34.答案:(1) 64. (2) 916.(3) X 的分布列为E (X )=0×2764+1×2764+2×964+3×164=34.【二级目标】能力提升题组一.选择题1.已知集合A ={x |2x 2-x -3<0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪y =lg1-x x +3,在区间(-3,3)上任取一实数x ,则x ∈A ∩B 的概率为( )A.14B.18C.13D.112【解析】:由2x 2-x -3<0,得-1<x<32.由1-xx +3>0,得x -1x +3<0,∴-3<x<1.∴A ∩B ={x|-1<x<1},故所求概率P =26=13.答案:C.2.某同学做了10道选择题,每道题四个选项中有且只有一项是正确的,他每道题都随意地从中选了一个答案,记该同学至少答对9道题的概率为P ,则下列数据中与P 的值最接近的是( )A .3×10-4B .3×10-5C .3×10-6D .3×10-7【解析】:P =C 910·149×34+C 1010·1410=30×1410+1410=31×1410=31×12102=31×110242≈31×(10-3)2=31×10-6=3×10-5. 答案:B . 二.填空题3.[2014·浙江卷] 随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.【解析】:设P (ξ=1)=x ,P (ξ=2)=y ,则⎩⎨⎧x +y =45,x +2y =1⇒⎩⎪⎨⎪⎧x =35,y =15,所以D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.答案:25.三.解答题(1)求在未来连续三天里,有连续两天的日车流量都不低于10万辆且另一天的日车流量低于5万辆的概率;(2)用X 表示在未来三天时间里日车流量不低于10万辆的天数,求X 的分布列和数学期望. 【解析】:(1)设A 1表示事件“日车流量不低于10万辆”,A 2表示事件“日车流量低于5万辆”,B 表示事件“在未来连续三天里,有连续两天的日车流量都不低于10万辆且另一天的日车流量低于5万辆”,则P (A 1)=0.35+0.25+0.10=0.70,P (A 2)=0.05, 所以P (B )=0.70×0.70×0.05×2=0.049. (2)X 所有可能的取值为0,1,2,3,P (X =0)=C 03×(1-0.7)3=0.027,P (X =1)=C 13×0.7×(1-0.7)2=0.189,P (X =2)=C 23×0.72×(1-0.7)=0.441,P (X =3)=C 33×0.73=0.343, 所以X 的分布列为因为X ~B (3,0.7)答案:(1) 0.049.(2) X 的分布列为E (X )=3×0.7=【高考链接】1.[2015·福建卷] 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和数学期望. 【解析】:(1)设“当天小王的该银行卡被锁定”的事件为A ,则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3.又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23,所以X 的分布列为所以E (X )=1×16+2×16+3×23=52.答案:(1) 12.(2) X 的分布列为E (X )=1×16+2×16+3×23=52.2.[2014·北京卷] 李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x -为表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数,比较EX 与x -的大小.(只需写出结论)【解析】: (1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中,李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中,李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=AB∪AB,A,B相互独立.根据投篮统计数据,P(A)=35,P(B)=25.故P(C)=P(AB)+P(AB)=35×35+25×25=1325.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)EX=x-.答案:(1) 0.5. (2)1325. (3)EX=x-.3.[2014·全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.【解析】:记A1表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2.B表示事件:甲需使用设备.C表示事件:丁需使用设备.D表示事件:同一工作日至少3人需使用设备.(1)因为P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以EX=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.答案:(1) 0.31.(2)2.。
二项分布,超几何分布数学期望与方差公式的推导
二项分布,超几何分布数学期望与方差公式的推导数学期望与方差是概率论和统计学中常见的概念,它们可以帮助我们更准确地测量随机变量,了解概率分布的形状和特性。
本文将分别介绍二项分布和超几何分布的数学期望和方差的推导,并给出其计算公式,以便更深入地理解两个概率分布。
二、二项分布的数学期望二项分布是两个离散随机变量之间的统计分布。
假设有一个二进制试验,其实验结果只有两种情况,即可能出现的次数n有x次成功和(n-x)次失败,而成功的概率为p。
二项分布可以记作$B(n,p)$。
二项分布的数学期望记作$E(x)$,用如下公式表示:$$E(x)=np$$三、二项分布的方差二项分布的方差记作$D(x)$,用如下公式表示:$$D(x)=np(1-p)$$四、超几何分布的数学期望超几何分布是一种概率分布,它是描述一组有限类别,每类之间的不同的观察结果的概率分布,可以用来描述在一组概率分布中样本的数据。
它可以用如下式子来表示:$$P(X=i)=frac{C_i^n}{N^n}*frac{r_i}{N}$$其中,$C_i$表示第i类的总数,$r_i$表示第i类的选择次数,$N$表示总样本数,$n$表示总抽样次数。
超几何分布的数学期望记作$E(x)$,其计算公式为:$$E(x)=frac{sum_{i=1}^nr_iC_i^n}{N^nsum_{i=1}^n{C_i^n}}$$五、超几何分布的方差超几何分布的方差记作$D(x)$,其计算公式为:$$D(x)=frac{sum_{i=1}^nr_iC_i^n(N-r_i)}{N^{n+1}sum_{i=1}^n{ C_i^n}}$$六、结论本文介绍了二项分布和超几何分布的数学期望和方差推导,并给出了计算公式。
从上述内容可以看出,数学期望和方差是概率分布研究的两个重要概念,它们可以帮助我们更好地了解概率分布。
D4-1数学期望
3
我们看到有一些随机变量的分布列(密度)只依赖
于某些参数: 如泊松分布 X ~ .其中含有一个参数 λ 。
二项分布 X ~ Bn, p . 其中含有两个参数 n , р 。 因此,如果我们知道 这些参数恰好是X的数字特征, 则由数字特征就可以 某些随机变量的分布列的类型, 知道决定它的分布列。 随机变量的数字特征(即用数字表示随机变量的 分布特点), 在理论上和应用上都是有重要意义的。
6
引例2
某车间对工人的生产情况进行考察。
车工小张每天生产的废品数X 是一个随机变量. X 的取值为0,1,2,3。 如何定义X 的平均值呢? 若统计100天,可以得到这100天中每天的平均废品数为
பைடு நூலகம்
1 (0 0) (1 1) (2 2) (3 3) 100 32 17 21 30 32 30 17 21 0 1 2 3 1.27 100 100 100 100
表示第 1, 2,
, k 1次没有打开门,
而第 k 次才打开门。
n 1 n 2 P( X k ) n n 1
于是
n
n k 1 1 1 n k 2 n k 1 n
13
1 EX k 1 (1 n)n n 1 n k 1 n 2 2
3 p3
则以相应概率作为权的加权平均
0 p0 1 p1 2 p2 3 p3
一般在概率论里把这种加权平均称为数学期望。
9
概率论与数理统计
第十讲
主讲教师:
王升瑞
10
定义4.1 设离散型随机变量X 的分布列为
P{ X xk } pk , (k 1,2,3,)
初中数学 什么是二项分布
初中数学什么是二项分布
二项分布是概率论中一个重要的离散概率分布,描述了在n次独立重复的伯努利试验中成功次数的概率分布。
在初中数学中,学生通常会接触到二项分布的概念和应用。
首先,我们来看一下二项分布的基本概念。
在二项分布中,每次伯努利试验只有两种可能的结果,称为成功和失败。
成功的概率用p表示,失败的概率用q表示,其中q=1-p。
进行n 次独立重复的伯努利试验,我们可以得到成功的次数,记为X。
那么X的取值范围是0到n,即X=0,1,2,...,n。
二项分布的概率质量函数可以表示为:
P(X=k) = C(n,k) * p^k * q^(n-k)
其中,C(n,k)表示从n次试验中取k次成功的组合数,也可以写作C(n,k) = n! / (k! * (n-k)! )。
p^k表示成功的概率为p的k次方,q^(n-k)表示失败的概率为q的n-k次方。
在初中数学中,学生通常会通过具体的例题来理解二项分布的概念和计算方法。
通过计算二项分布的概率,可以帮助学生理解在一定条件下事件发生的可能性,并且可以应用到实际生活中的问题中。
此外,二项分布在实际应用中也有着广泛的应用。
比如在工程、医学、经济等领域中,常常会遇到需要计算多次试验中成功次数的概率分布的问题,而二项分布正是一种常用的工具。
总的来说,二项分布是初中数学中一个重要的概率分布,通过学习和掌握二项分布的概念和计算方法,可以帮助学生更好地理解概率论,并且为将来的学习和工作打下坚实的基础。
三大分布--二项分布
三、常见的题型:
1.
明考 暗考
单变量 2. 双变量 a b
多变量 a b
练习1.背定义、熟公式:
(1)若 X ~ B(n , 3) ,且 P(X 1) 96 ,则 n =_____
5
625
析:由题意得
PX
1
C1n
( 3 )(1 5
为ξ的数学期望或均值,简称为期望.
② 则称 D (x1 E )2 p1 (x2 E )2 p2 ... (xn E )2 pn
为ξ的方差 ,称 = D 为ξ的标准差
随机变量期望与方差的作用(目的)
(1)期望:将随机事件“虚拟”成一确定事件 体现了总体的平均水平(聚中性)
(2)方差:体现了总体的稳定性(波动性)
注1.三大步骤
S1.将样本空间Ω划分成n个基本事件
S2.计算出所求事件A中基本事件的个数
S3.套用公式
P(
A)
A中基本事件的个数 Ω中基本事件的个数
注2.使用的两前提
①有限性
②等可能性
古典概型个数比 几何概型测度比 有限无限分水岭 卅六整点二骰子 旋转问题用角度 模拟试验四大步
几何定义法(几何概型)求概率
③和积互补公式 P(A1 A2 An ) 1 P(A1 • A2 • • An ) 注:若A,B对立,则有 P( A) P(B) 1,反之则不然 ④对偶律 P(A• B •C) P(A B C) P(A• B •C) P(A B C)
古典定义法(等可能概型)求概率
一分二算三相除 有限等分是前提
2.表示:三大语言……
3.分类:
①
离散型 连续型
②
有限型 无限型
北师大版高中数学选择性必修第一册 第六章 4.1 二项分布
变式训练3某种种子每粒发芽的概率为0.9,现播种了1 000粒,对于没有发芽
的种子,每坑需再补种2粒,每个坑至多补种一次,补种的种子数记为X,则X
的数学期望为(
)
A.100 B.200 C.300 D.400
答案 B
解析 由题意可设,不发芽的种子数为Y,Y服从二项分布,即Y~B(1 000,0.1),所
Dξ=10×
课堂篇 探究学习
探究一
n重伯努利试验的概率
例1(1)某射手射击一次,击中目标的概率是0.9,他连续射击三次,且他每次
射击相互之间没有影响,有下列结论:
①他三次都击中目标的概率是0.93;
②他恰好在第三次击中目标的概率是0.9;
③他恰好2次击中目标的概率是2×0.92×0.1;
④他恰好2次未击中目标的概率是3×0.9×0.12.
∴P(AB+)=P(A)P(B)+P()P()
1 1
1
1 1
=2 × 2+(1-2)×(1-2)=2.
1 4-k
1
1 k
(2)随机变量 ξ 的可能取值为 0,1,2,3,4,且 ξ~B(4,2).∴P(ξ=k)=C4 (2) (1-2)
1 4
=C4 (2) (k=0,1,2,3,4).
k=0,1,2,3,4,
25
P(η=5)=P(5 个均为绿灯)=(3) .
故η的分布列为
η
0
1
2
3
4
5
P
1
3
2
9
4
27
8
81
16
243
32
243
反思感悟 1.本例属于二项分布,当X服从二项分布时,应弄清X~B(n,p)中的
2023年高考数学(理科)一轮复习——二项分布与正态分布
5.(2021·天津卷)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一
方猜错,则猜对的一方获胜,否则本次平局.已知每次活动中,甲、乙猜对的
概率分别为65和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影 2
响,则一次活动中,甲获胜的概率为____3____,3 次活动中,甲至少获胜 2 次 20
1 式,得 P(B|A)=PP((AAB))=120=14.
5
索引
法二 事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个. 事件AB发生的结果只有(2,4)一种情形,即n(AB)=1. 故由古典概型概率 P(B|A)=nn((AAB))=41.
索引
2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机
②P(μ-2σ<X≤μ+2σ)=__0_._9_5_4_5____;
③P(μ-3σ<X≤μ+3σ)=___0_.9_9_7__3___.
索引
常用结论
1.相互独立事件与互斥事件的区别 相互独立事件是指两个试验中,两个事件发生的概率互不影响,计算式为 P(AB)=P(A)P(B),互斥事件是指在同一试验中,两个事件不会同时发生,计 算公式为P(A∪B)=P(A)+P(B).
次数的概率分布.( √ )
(3)n 次独立重复试验要满足:①每次试验只有两个相互对立的结果,可以分别 称为“成功”和“失败”;②每次试验“成功”的概率为 p,“失败”的概率
为 1-p;③各次试验是相互独立的.( √ )
(4)正态分布中的参数 μ 和 σ 完全确定了正态分布,参数 μ 是正态分布的期望,
2.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线关于直线x=μ对称 和曲线与x轴之间的面积为1解题.
10.8 二项分布、超几何分布与正态分布
§10.8 二项分布、超几何分布与正态分布【一】独学:主干知识 知识梳理一、二项分布1.伯努利试验 只包含 试验叫作伯努利试验;将一个伯努利试验独立地重复进行n 次所组成的随机试验称为 。
2.二项分布若随机变量X 的分布列为 其中0<p <1,p +q =1,k =0,1,2,…,n ,则称X 服从参数为n ,p 的 ,记作X ~B (n ,p ).3.两点分布与二项分布的均值、方差 (1)若随机变量X 服从两点分布,则E (X )= ,D (X )=(2)若X ~B (n ,p ),则E (X )= D (X )=二、超几何分布1.定义:一般地,若一个随机变量X 的分布列为P (X =r )= ,其中r =0,1,2,3,…,l ,l =min{n ,M },则称X 服从 .记为X ~H (n ,M ,N ),并将P (X =r )=C r M C n -r N -M C n N 记为H (r ;n ,M ,N ). 2.E (X )=三、正态分布1.正态密度曲线函数 x ∈R ,其中实数μ(μ∈R )和σ(σ>0)为参数,该函数的图象称为 .2.正态密度曲线的特征:(1)当x <μ时,曲线 ;当x >μ时,曲线 .当曲线向左右两边无限延伸时,以 为渐近线.(2)曲线关于直线 对称.(3)σ越大,曲线越 ;σ越小,曲线越 .(4)在曲线 和 范围内的区域面积为1.3.正态分布若X 是一个随机变量,则对任给区间(a ,b ],P (a <X ≤b )是正态密度曲线下方和x 轴上(a ,b ]上方所围成的图形的面积,我们就称随机变量X 服从参数为μ和σ2的正态分布,简记为X ~N (μ,σ2).4.正态总体在三个特殊区间内取值的概率值考试要求学习重难点 1.理解二项分布、超几何分布的概念,能解决一些简单的实际问题.2.借助正态分布曲线了解正态分布的概念,并进行简单应用. 重点:二项分布、超几何分布、正态分布 难点:理解二项分布、超几何分布的概念,能解决一些简单的实际问题.(1)落在区间(μ-σ,μ+σ)内的概率约为(2)落在区间(μ-2σ,μ+2σ)内的概率约为(3)落在区间(μ-3σ,μ+3σ)内的概率约为 .5.正态分布的均值与方差若X ~N (μ,σ2),则E (X )=μ,D (X )=σ2.常用结论1.两点分布是二项分布当n =1时的特殊情形.2.“二项分布”与“超几何分布”的区别:有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体容量很大时,超几何分布可近似为二项分布来处理.3.在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为n 重伯努利试验,进而判定是否服从二项分布.4.超几何分布有时也记为 X ~H (n ,M ,N ),其均值E (X )=nM N ,D (X )=nM N ⎝⎛⎭⎫1-M N ⎝ ⎛⎭⎪⎫1-n -1N -1. 教材改编题1.已知X ~B (20,p ),且E (X )=6,则D (X )等于( )A .1.8B .6C .2.1D .4.22.在含有3件次品的10件产品中,任取4件,X 表示取到的次品的个数,则P (X =2)=________.3.某班有50名同学,一次数学考试的成绩X 服从正态分布N (110,102).已知P (100<X ≤110)=0.34,估计该班学生数学成绩在120分以上的有________人.【二】互学:核心题型题型一 二项分布例1出租车司机从饭店到火车站途中经过六个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13. (1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数X 的均值与方差.跟踪训练1 (2022·黄冈模拟)某公司为了解会员对售后服务(包括退货、换货、维修等)的满意度,从下半年的会员中随机调查了20个会员,得到会员对售后服务满意度评分的雷达图如图所示.规定评分不低于80分为满意,否则为不满意.(1)求这20个会员对售后服务满意的频率;(2)以(1)中的频率作为所有会员对该公司售后服务满意的概率,假设每个会员的评价结果相互独立,现从下半年的所有会员中随机选取3个会员.①求只有1个会员对售后服务不满意的概率;②记这3个会员中对售后服务满意的会员的个数为X ,求X 的均值与标准差(标准差的结果精确到0.1).题型二 超几何分布例2 为庆祝建军节的到来,某校举行“强国强军”知识竞赛.该校某班经过层层筛选,还有最后一个参赛名额要在A ,B 两名学生中产生,该班委设计了一个选拔方案:A ,B 两名学生各自从6个问题中随机抽取3个问题作答.已知这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23.A ,B 两名学生对每个问题回答正确与否都是相互独立的.(1)分别求A ,B 两名学生恰好答对2个问题的概率;(2)设A 答对的题数为X ,B 答对的题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.跟踪训练2 阳澄湖大闸蟹又名金爪蟹,产于江苏苏州,蟹身青壳白肚,体大膘肥,肉质膏腻,营养丰富,深受消费者喜爱.某水产品超市购进一批重量为100千克的阳澄湖大闸蟹,随机抽取了50只统计其重量,得到的结果如下表所示:(1))(2)某顾客从抽取的10只特大蟹中随机购买了4只,记重量在区间[260,280]上的大闸蟹数量为X ,求X 的概率分布和均值.题型三 正态分布例3 为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95,10.12,9.96,9.96,10.01,9.92,9.98,10.04,10.26,9.91,10.13,10.02,9.22,10.04,10.05,9.95经计算得16119.9716i i x x ===∑,16211()16i i s x x ==-∑162211=(16)0.21216i i x x =-=∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =.用样本平均数x 作为μ的估计值μ,用样本标准差s 作为σ的估计值σ,利用估计值判断是否需对当天的生产过程进行检查?剔除(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则0.9974=,160.99740.9592≈0.0080.09≈.跟踪训练3 (1)(2022·苏锡常镇四市调研)若随机变量X ~B (3,p ),Y ~N (2,σ2),若P (X ≥1)=0.657,P (0<Y <2)=p ,则P (Y >4)等于( )A .0.2B .0.3C .0.7D .0.8(2)为了解高三复习备考情况,某校组织了一次阶段考试.若高三全体考生的数学成绩近似服从正态分布N (100,17.52).已知成绩在117.5分以上(不含117.5分)的学生有80人,则此次参加考试的学生成绩低于82.5分的概率为________;如果成绩大于135分的为特别优秀,那么本次数学考试成绩特别优秀的大约有________人.(若X ~N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.68,P (μ-2σ≤X ≤μ+2σ)≈0.96)【三】悟学:总结提升1. 知识点总结:2. 方法小结:3. 存在的疑惑:【四】课后作业:1. 做本节对应的课后习题;2. 复习、订正今天上课内容;3. 预习下一节学案。
二项分布与超几何分布课件-2025届高三数学一轮复习
两个
只包含______可能结果的试验叫做伯努利试验;将一个伯努利试验独立地重复
n重伯努利试验
进行n次所组成的随机试验称为_______________.
2.二项分布
一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表
k
−
示事件A发生的次数,则X的分布列为P(X=k)=C p (1-p)
p
(1)若随机变量X服从两点分布,则E(X)=___,
p(1-p)
D(X)=_______.
np
np(1-p)
(2)若X~B(n,p),则E(X)=____,D(X)=________.
返回 8
二、超几何分布
一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不
放回),用X表示抽取的n件产品中的次品数,则X的分布列为
从口袋中连续4次取球(每次只取1个球),在4次取球中恰好2次取到红球的概率大
8
6
于 ,则n=____________.
27
返回 23
8
【解析】因为4次取球中恰好2次取到红球的概率大于 ,所以C42 p2
27
所以p2
1−
2> 4 ,
81
因为p 1 − >0,所以p 1 −
2
> ,
9
1
2
所以 <p< ,所以2<6p<4,
返回 26
【解析】①依题意知,该运动员在每个项目上“能打破世界纪录”为独立事件,并
且每个事件发生的概率相同.设“该运动员至少能打破2项世界纪录”为事件A,则
2
3 2 3 20
二项分布(教学课件)高二数学(人教A版2019选择性必修第三册)
解:设5只接种疫苗的鸡中感染病毒的只数为X , P( X 0) 0.85 0.32768.
(2)恰好有1只鸡感染病毒的概率为
P(X
1)
C
1 5
0.2 0.84
0.4096.
解:由题意知,X服从二项分布,即X ~ B(4,0.5).
(1) X的分布列为
P(X
k)
C
k 4
0.54 ,k
0,1,2,3,4.
(2) E( X ) 4 0.5 2,
D( X ) 4 0.5(1 0.5) 1.
2.鸡接种一种疫苗后,有80%不会感染某种病毒.如果5只鸡接种了疫 苗,求:
(1)当n=1时,X分布列为 P(X=0)=1-p,P(X=1)=p,则有
E(X)=p,D(X)=p(1-p). (2)当n=2时,X分布列为 P(X=0)=(1-p)2, P(X=1)=2p(1-p), P(X=2)=p2.
E(X)=0×(1-p)2+1×2p(1-p)+2p2 =2p. D(X)= 02×(1-p)2+12×2p(1-p)+22×p2-(2p)2=2p(1-p).
因为p2>p1, 所以采用5局3胜制对甲更有利.
例3 甲、乙两选手进行象棋比赛, 如果每局比赛甲获胜的概 率为0.6, 乙获胜的概率为0.4, 那么采用3局2胜制还是采用 5局3胜制对甲更有利? 解法2:采用3局2胜制, 不妨设赛满3局, 用X表示3局比赛中 甲获胜的局数, 则X~B(3, 0.6). 甲最终获胜的概率为 p1 = P(X=2)+P(X=3)= C32×0.62×0.4+C33 ×0.63= 0.648. 采用5局3胜制, 不妨设赛满5局, 用X表示5局比赛中甲获胜 的局数, 则X~B(5, 0.6). 甲最终获胜的概率为
概率论-常见的概率分布模型
概率论-常见的概率分布模型常见的概率分布模型离散概率分布函数 离散概率分布也称为概率质量函数(probability mass function),离散概率分布的例⼦有 伯努利分布(Bernoulli distribution) ⼆项分布(binomial distribution) 泊松分布(Poisson distribution) ⼏何分布(geometric distribution)等连续概率分布函数 连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如⼀条实线上的值)的函数,连续概率分布的例⼦有 正态分布(normal distribution) 指数分布(exponential distribution) β分布(beta distribution)等联合分布函数 给定⼀个随机变量(X,Y),称定义域为整个平⾯的⼆元实值函数F(x,y)=P(X≤x,Y≤y)−∞≥x,y≤∞该⼆元实值函数为随机变量(X,Y)的分布函数,也可以称为是(X,Y)的联合分布函数。
按照联合分布函数的定义,F(x,y)=P((X,Y)∈D xy),其中D xy如下图所⽰Processing math: 100%多项分布(Multinomial Distribution )多项分布简介 多项分布是⼆项分布的推⼴,他们的区别是⼆项分布的结果只有0和1两种,多项式的结果可以有多个值。
多项分布的典型例⼦是掷骰⼦,6个点对应6个不同的数,每个点的概率都为16 与⼆项分布类似,多项分布来⾃于(p 1+p 2+⋯+p k )n 多项式的展开多项分布公式解析 以掷骰⼦为例,掷骰⼦的时候掷1−6的概率都为16,记作p 1−p 6,可以发现p 1+p 2+p 3+p 4+p 5+p 6=1,现在把p 1+p 2+p 3+p 4+p 5+p 6记作做⼀次抽样各种事件发⽣的概率和,即可得(p 1+p 2+p 3+p 4+p 5+p 6)n =1n 为n 次抽样所有事件相互组合对应的概率和,之后使⽤多项式展开(注:使⽤多项式定理展开,由于多项式定理不在本节提及范围内,不多赘述),如果它不是掷骰⼦,⽽是⼀个有n 种可能的问题,会得到⼀个多项式展开的公式P (X 1=x 1,…,X k =x k )=n !x 1!⋯x k !(p x 1⋯p x k )when ∑k i =1x i =n0otherwise这个多项式表⽰X 1出现x 1次,X 2出现x 2次,…,X k 出现x k 次的出现概率,这样就得到了上述所⽰的多项分布的多项展开式公式。
二项分布的散点图与函数图方差及期望
⼆项分布的散点图与函数图⽅差及期望⼆项分布的散点图与函数图-⽅差及期望————————————————————————————————作者:————————————————————————————————⽇期:2012—2013学年第2学期合肥学院卓越⼯程师班实验报告课程名称: 概率论与数理统计实验项⽬:⼆项、⼏何分布分布的性质研究实验类别: 验证性专业班级: 11级⾃动化卓越班实验时间: 2013-6-10组别: 第六组指导教师:⼀.⼩组成员(具体分⼯)姓名学号具体分⼯台路 1105031008实验内容、实验步骤实验总结、实验程序与结果(分布图像)实验⽬的、实验程序与结果(期望与⽅差)⼆.实验⽬的1.掌握⼀些matlab中基本的绘图函数命令,并学会⽤matlab绘图。
2.学会⽤matlab软件绘制出在不同参数下⼆项分布律散点图。
3.学会⽤matlab计算⼆项分布的数学期望及⽅差。
三. 实验内容1.研究不同参数下⼆项分布的分布律的散点图,计算⼆项分布的数学期望及⽅差。
⼆项分布的概念:考虑只有两种可能结果的随机试验,当成功的概率(π)是恒定的,且各次试验相互独⽴,这种试验在统计学上称为贝努⾥试验(Bernoulli trial)。
如果进⾏n次贝努⾥试验,取得成功次数为X(X=0,1,…,n)的概率可⽤下⾯的⼆项分布概率公式来描述:四.实验步骤3.尝试编写⽤matlab软件绘制⼆项分布图像的代码。
3.分别改变不同的参数,分别⽤matlab绘制出⼆项分布的散点图。
4.计算⼆项分布的数学期望及⽅差。
5.撰写实验报告。
五.实验程序(经调试后正确的源程序)1.画出⼆项分布的分布律散点图(n=60,p=0.3)源程序:n=60p=0.3for k=1:1:ny=binocdf(k,n,p)plot(k,y,'*')hold on;title('⼆项分布散点图')End2.画⼆项分布的分布函数图(n=60 70 80 90 100 p=0.3时的⼆项分布散点图)>> n=60p=0.5for k=1:1:ny=binocdf(k,n,p)plot(k,y,'*')hold on;title('n=60 7080 90 100 p=0.3时的⼆项分布散点图')end按照运⾏提⽰,输⼊参数,但由于n有5个值,所以要分别执⾏5次该程序3. 画⼆项分布的分布律散点图(n=60,p=0.5)>> n=60p=0.5for k=1:1:ny=binocdf(k,n,p)plot(k,y,'*')hold on;title('n=60 p=0.5的⼆项分布散点图')endp=0.5for k=1:1:ny=binocdf(k,n,p)plot(k,y,'*')hold on;title('n=6070 8090 100 p=0.5时的⼆项分布散点图')end按照运⾏提⽰,输⼊参数,但由于n有5个值,所以要分别执⾏5次该程序8.计算超⼏何分布的数学期望及⽅差E,D]=binostat(n,p),n为发⽣次数,p为事件概率,它们的值是变化的}[E,D]=binostat(60,03)[E,D]=binostat(70,0.3)[E,D]=binostat(80,0.3)[E,D]=binostat(90,0.3)[E,D]=binostat(1000,0.3)[E,D]=binostat(60,0.5)[E,D]=binostat(70,0.5)[E,D]=binostat(80,0.5)[E,D]=binostat(90,0.5)[E,D]=binostat(100,0.5)六.实验结果1.画出⼆项分布的分布律散点图(n=60,70,80,90,100,p=0.3)Matlab程序运⾏如下:输⼊n,p的值运⾏结果:n=60p =0.3000y =1.3571e-008y=1.7873e-007y=9.9046e-006 y = 5.0020e-005y =2.0762e-004 y=7.2865e-004y=0.0022y=0.0059y=0.0139y=0.0295y =0.0568y=0.1000y=0.1621y=0.2438y=0.3422y =0.4514y =0.5632y =0.6692y =0.7622y=0.8959 y =0.9368y =0.9638y =0.9804y=0.9900y=0.9952y =0.9978y=0.9991 y =0.9996 y = 0.9999y =1.0000y =1.0000y=1.0000y =1.0000y=1.0000y =1.0000y=1.00001.0000y=1.0000y=1.0000y =1.0000y =1.0000y=1.0000y =1.0000y=1.0000y=1.0000y=1y =1y =1y =1y=1y=1y =1y =y=1y=1y=12.画出⼆项分布的分布律散点图(n=60,70,80,90,100,p=0.5) n =60p=0.5000y =5.2909e-017y =1.5881e-015y=3.1269e-014y =4.5423e-013y=5.1913e-012y =4.8615e-011y =3.8360e-010y=2.6028e-009y=1.5425e-008y =8.0819e-0081.5918e-006 y =6.0734e-006y=2.1119e-005 y =6.7257e-005y=1.9702e-004 y =5.3288e-004y=0.0013y =0.0031y =0.0067y =0.0137y=0.0259 y =0.0462y =0.0775 y= 0.1225y =0.1831y=0.2595y=0.3494y =0.6506 y= 0.7405y =0.8169y =0.8775y =0.9225y =0.9538y =0.9741 y =0.9863y =0.9933y =0.9969y =0.9987 y =0.9995 y =0.9998 y= 0.9999y =1.0000y =1.0000y =1.0000y = 1.0000y=1.0000y=1.0000y =1.0000y=1.0000y=1.0000y =1.0000y=1.0000y=1y=1y =13.计算超⼏何分布的数学期望及⽅差>> [E,D]=binostat(60,0.3) E =18D =12.6000>>[E,D]=binostat(70,0.3)E=21D=14.7000>>[E,D]=binostat(80,0.3)E=24>> [E,D]=binostat(90,0.3)E=27D =18.9000>>[E,D]=binostat(100,0.3) E =30D =21[E,D]=binostat(60,0.5)E =30D =15[E,D]=binostat(70,0.5)E =35D =17.5000E,D]=binostat(80,0.5)E =40D=20.0000E,D]=binostat(90,0.5) E =45D=27.5000E,D]=binostat(100,0.5)E=50D =25.0000由E(x)=np, D(x)=np(1-p)可得,E 1= 18,D1 =12.60E2 =21,D 2=14.7E 3=24,D 3=16.8E4 =27,D4 =18.90E5 =30,D5 =21E 6=30,D6 =15E7=35,D7 =17.50E8=40,D8= v20.0E9 =40,D9=27.5E10 =50,D10 =25通过公式法的计算⽐较,求出的期望和⽅差和matlab求出的值基本上⼀致,于是可得出matlab求解期望和⽅差还是很可靠的。
2023年高考数学一轮总复习第51讲:二项分布超几何分布正态分布
第1页共13页2023年高考数学一轮总复习第51讲:二项分布、超几何分布、正态分布【教材回扣】1.二项分布:(1)概念:一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=________________,k =0,1,2,…,n .如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从____________________,记作______________.(2)均值与方差:如果X ~B (n ,p ),那么E (X )=________,D (X )=________.2.超几何分布(1)概念:一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=____________,k =m ,m +1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }.如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布.(2)均值:E (X )=np .3.正态分布:(1)有关概念:对任意的x ∈R ,f (x )=1σ2πe -(x -μ)22σ2>0(μ∈R ,σ>0为参数),我们称f (x )为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,若随机变量X 的概率分布密度函数为f (x ),则称随机变量X 服从正态分布,记作__________________.特别地,当μ=__________,σ=________时称随机变量X 服从标准正态分布.(2)正态曲线的特点:①它的图象在□10________上方;②x 轴和曲线之间的区域的面积为□11________;③曲线是单峰的,它关于直线□12________对称;④曲线在x =μ处,达到峰值1σ2π;⑤当|x |无限增大时,曲线无限接近□13________.(3)均值与方差:若x ~N (μ,σ2),则E (X )=□14________,D (X )=□15________.【题组练透】题组一判断正误(正确的打“√”,错误的打“×”)1.二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.()2.二项分布和超几何分布都是放回抽样.()3.正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.()4.一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.()题组二教材改编。
二项分布-课件
3.对于正态分布N(μ,σ2),由x=μ是正态曲线的对称 轴知: (1)对任意的a,有P(X<μ-a)=P(X>μ+a); (2)P(X<x0)=1-P(X≥x0); (3)P(a<X<b)=P(X<b)-P(X≤a).
【基础自测】 题组一:走出误区 1.判断正误(正确的打“√”,错误的打“×”) (1)P(B|A)与P(A|B)的含义相同. ( ) (2)若事件A,B相互独立,则P(B|A)=P(B). ( )
【即时训练】将一个半径适当的小球放入如图所示的容
器最上方的入口处,小球将自由落下,小球在下落的过
程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,已
知小球每次遇到黑色障碍物时,向左、右两边下落的概
率分别为 2,1 , 则小球落入A袋中的概率为
33
A. 3B. 1C.1D. 2
4
4
3
3
A.1
B.2
C.3
D.4
(2)已知随机变量ξ服从正态分布N(2,σ2),且
P(ξ<4)=0.8,则P(0<ξ<4)=( )
A.0.6
B.0.4
C.0.3
D.0.2
命题角度2 3σ原则的应用
【典例】(1)(2018·茂名模拟) A.7 539 设X~N(1,1),其正态分布密 C.7 028
度曲线如图所示,那么向正方
考点三 正态分布 【明考点·知考法】
正态分布作为考查数学应用意识的重要载体,在 高考题中经常出现,试题常以选择题、填空题形式出 现,考查正态曲线的特点及应用、3σ原则的应用,解 题过程中常渗透数形结合的思想.
命题角度1 正态曲线的性质
【典例】(1)设随机变量X服从正态分布N(μ,σ2),
7.4二项分布与超几何分布(教师版) 讲义-2021-2022学年人教A版(2019)高中数学选择性
二项分布与超几何分布一n重伯努利试验1.n重伯努利试验:将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.2.n重伯努利试验的共同特征:(1)同一个伯努利试验重复做n次.(2)各次试验的结果相互独立.注意点:在相同条件下,n重伯努利试验是有放回地抽样试验.二二项分布的推导二项分布:一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布,记作X~B(n,p).注意点:(1)由二项式定理可知,二项分布的所有概率和为1.(2)两点分布与二项分布的关系:两点分布是只进行一次的二项分布.n重伯努利试验概率求法的三个步骤(1)判断:依据n重伯努利试验的特征,判断所给试验是否为n重伯努利试验.(2)分拆:判断所求事件是否需要分拆.(3)计算:就每个事件依据n重伯努利试验的概率公式求解,最后利用互斥事件概率加法公式计算.三二项分布的简单应用利用二项分布求解“至多”“至少”问题的概率,其实质是求在某一范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.四二项分布的均值与方差1.若X服从两点分布,则E(X)=p,D(X)=p(1-p).2.若X~B(n,p),则E(X)=np,D(X)=np(1-p).解决此类问题第一步是判断随机变量X服从什么分布,第二步代入相应的公式求五二项分布的实际应用二项分布的实际应用类问题的求解步骤(1)根据题意设出随机变量;(2)分析随机变量服从二项分布;(3)求出参数n和p的值;(4)根据二项分布的均值、方差的计算公式求解.六二项分布的性质二项分布概率最大问题的求解思路七超几何分布超几何分布:一般地,假设一批产品共有N件,其中有M件次品,从N件产品中随机抽取n 件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=C k M C n-kN-MC n N,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.注意点:(1)在超几何分布的模型中,“任取n件”应理解为“不放回地一次取一件,连续取n件”.(2)超几何分布的特点:①不放回抽样;②考察对象分两类;③实质是古典概型.八超几何分布的概率超几何分布的概率计算公式给出了求解这类问题的方法,可以直接运用公式求解,但是不能机械地记忆公式,要在理解公式意义的前提下进行记忆.九、超几何分布的分布列求超几何分布的分布列的步骤十超几何分布的均值求超几何分布均值的步骤(1)验证随机变量服从超几何分布,并确定参数N,M,n的值.(2)根据超几何分布的概率计算公式计算出随机变量取每一个值时的概率.(3)利用均值公式求解.十一、二项分布与超几何分布的区别与联系不放回抽样服从超几何分布,放回抽样服从二项分布,求均值可利用公式代入计算.十二超几何分布的综合应用超几何分布常应用在产品合格问题、球盒取球(两色)问题、男女生选举问题等,这类问题有一个共同特征,就是对每一个个体而言,只研究其相对的两种性质而不涉及其他性质,如产品的合格与不合格、球的红色与非红色、学生的性别等.考点一二项分布【例1】(2020·重庆市第七中学校高二月考)若随机变量14,2X B⎛⎫⎪⎝⎭~,则()21E X+=( )A.2B.3C.4D.5【答案】D【解析】因为14,2X B⎛⎫⎪⎝⎭~,所以1422EX=⨯=,所以()21215E X EX+=+=.故选:D.【练1】(2021·北京房山区·高二期末)已知某种药物对某种疾病的治愈率为34,现有3位患有该病的患者服用了这种药物,3位患者是否会被治愈是相互独立的,则恰有1位患者被治愈的概率为( )A.2764B.964C.364D.34【答案】B【解析】由已知3位患者被治愈是相互独立的,每位患者被治愈的概率为34,则不被治愈的概率为1 4所以3位患者中恰有1为患者被治愈的概率为12133194464P C⎛⎫⎛⎫=⨯⨯=⎪ ⎪⎝⎭⎝⎭故选:B考点二超几何分布【例2】(2020·全国高二单元测试)现对某高校16名篮球运动员在多次训练比赛中的得分进行统计,将每位运动员的平均成绩所得数据用频率分布直方图表示如下.(如:落在区间[10,15)内的频率/组距为0.0125)规定分数在[10,20),[20,30),[30,40)上的运动员分别为三级篮球运动员、二级篮球运动员、一级篮球运动员,现从这批篮球运动员中利用分层抽样的方法选出16名运动员作为该高校的篮球运动员代表.(1)求a的值和选出篮球运动员代表中一级运动员的人数;(2)若从篮球运动员代表中选出三人,求其中含有一级运动员人数X的分布列;(3)若从该校篮球运动员中有放回地选三人,求其中含有一级运动员人数Y的期望.【答案】(1)a=0.0250,4人;(2)答案见解析;(3)3 4 .【解析】(1)由频率分布直方图知:(0.0625+0.0500+0.0375+a+2×0.0125)×5=1,∴a=0.0250.其中为一级运动员的概率为(0.012 5+0.037 5)×5=0.25,∴选出篮球运动员代表中一级运动员为0.25×16=4人.(2)由已知可得X的可能取值分别为0,1,2,3,P(X=0)=312316CC=1128,P(X=1)=21243161C CC⋅=3370,P(X=2)=24113162C CC⋅=970,P(X=3)=34316CC=1140,∴X的分布列为X0123P 112833709701140(3)由已知得Y ~B 1(3,)4,∴E (Y )=np =3×14=34,∴含有一级运动员人数Y 的期望为34.【练2】(2020·辽宁沈阳市)在箱子中有10个小球,其中有3个红球,3个白球,4个黑球.从这10个球中任取3个.求:(1)取出的3个球中红球的个数为X ,求X 的数学期望; (2)取出的3个球中红球个数多于白球个数的概率. 【答案】(1)910;(2)13.【解析】(1)取出的3个球中红球的个数为X ,可能取值为:0,1,2,3, 所以()37310350120p X C C===, ()2731016331120p X C C C===,()1731022132120p X C C C===,()3103313120p X C C===. 所以X 的数学期望()35632119012312012012012010E X =⨯+⨯+⨯+⨯=. (2)设“取出的3个球中红球个数多于白球个数”为事件A ,“恰好取出1个红球和2个黑球”为事件1A ,“恰好取出2个红球”为事件2A ,“恰好取出3个红球”为事件3A ,而()12341310320C C P A C ==,()()21372310217212040C C P A P X C =====,()()3037331013120C C P A P X C ⋅====, 所以取出的3个球中红球个数多于白球个数的概率为:()()()()123371120401203P A P A P A P A =++=++=. 考点三 二项分布与超几何分布综合运用【例3】(2020·浙江台州市·高二期中)2020年五一期间,银泰百货举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球其中奖规则为:若摸到2个红球和1个白球,享受免单优惠;若摸出2个红球和1个黑球则打5折;若摸出1个白球2个黑球,则打7折;其余情况不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率角度比较该顾客选择哪一种抽奖方案更合算?【答案】(1)114400;(2)选择第二种方案更合算.【解析】(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则()21213101120C C P A C ==,所以两位顾客均享受到免单的概率为()()114400P P A P A =⋅=; (2)若选择方案一,设付款金额为X 元,则X 可能的取值为0、500、700、1000.()212131010120C C P X C ===,()21273107500120C C P X C ===,()1217310770040C C P X C ===,()177911000112012040120P X ==---=.故X 的分布列为,X0 500 700 1000P1120 7120 740 91120所以()177910500700100091012012040120E X =⨯+⨯+⨯+⨯=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~3,10Y B ⎛⎫ ⎪⎝⎭,故()3931010E Y =⨯=, 所以()()()10002001000200820E Z E Y E Y =-=-=(元). 因为()()EX E Z >,所以该顾客选择第二种抽奖方案更合算.【练3】(2020·甘肃省会宁县第四中学) 2.5PM 是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国 2.5PM 标准采用世卫组织设定的最宽限值,即 2.5PM 日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标,某试点城市环保局从该市市区2019年上半年每天的 2.5PM 监测数据中随机的抽取15天的数据作为样本,监测值如下茎叶图所示(十位为茎,个位为叶).(1)在这15天的 2.5PM 日均监测数据中,求其中位数;(2)从这15天的数据中任取2天数据,记ξ表示抽到 2.5PM 监测数据超标的天数,求ξ的分布列及数学期望;(3)以这15天的 2.5PM 日均值来估计该市下一年的空气质量情况,则一年(按365天计算)中平均有多少天的空气质量达到一级或二级. 【答案】(1)45;(2)分布列见解析,45;(3)219. 【解析】(1)由茎叶图可得中位数是45. (2)依据条件,ξ服从超几何分布:其中15N =,6M =,2n =,ξ的可能值为0,1,2,()026921512035C C P C ξ===,()116921518135C C P C ξ===,()2069215512357C C P C ξ====,所以ξ的分布列为:ξ12P 1235183517()121814012353575E ξ=⨯+⨯+⨯=. (3)依题意可知,一年中每天空气质量达到一级或二级的概率为93=155P =, 一年中空气质量达到一级或二级的天数为η, 则3365,5B η⎛⎫ ⎪⎝⎭,33652195E η=⨯=,∴一年中平均有219天的空气质量达到一级或二级.练习答案1.(2021高二下·顺德期末)某射手每次射击击中目标的概率固定,他准备进行n(n∈N∗)次射击,设击中目标的次数记为X,已知P(X=1)=P(X=n−1)且E(X)=4,则D(X)=()A.14B.12C.1D.2【答案】 D【考点】二项分布与n次独立重复试验的模型【解析】设某射手每次射击击中目标的概率为p(0<p<1),由题意可得击中目标的次数记为X∼B(n,p),因为P(X=1)=P(X=n−1),所以C n1p(1−p)n−1=C n n−1p n−1(1−p)整理可得(1−p)n−2=p n−2,所以1−p=p可得:p=12,因为E(X)=np=12n=4,可得:n=8,所以D(X)=np(1−p)=8×12×(1−12)=2,故答案为:D.【分析】根据题意由X∼B(n,p),利用二项分布的性质即可得出方程,由此求解出n和p 的值,从而计算出结果即可。
高考数学一轮复习第十二章概率4二项分布与正态分布课件新人教A版(理)
A
解析
答案
-11知识梳理
1
双基自测
2
3
4
5
5.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从
中随机取一件,其长度误差落在区间(3,6)内的概率
为
.
(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)≈68.27%,
P(μ-2σ<ξ<μ+2σ)≈95.45%)
个木质球;蓝球中有4个玻璃球,7个木质球.现从中任取一球,假设每
个球被取到的可能性相同.若取到的球是玻璃球,则它是蓝球的概
率为
.
关闭
记“取到蓝球”为事件 A,“取到玻璃球”为事件 B,则已知取到的球为玻
璃球,它是蓝球的概率就是在 B 发生的条件下 A 发生的条件概率,记
作 P(A|B).
4
1
因为 P(AB)= = ,
哪些常用的方法?
-18考点1
考点2
考点3
考点4
解:分别将甲、乙、丙第i次猜对歌名记为事件Ai,Bi,Ci(i=1,2,3),
则Ai,Bi,Ci相互独立.
(1)该小组未能进入第二轮的概率
P=P(1 )+P(A11 )+P(A1B11 )=P(1 )+P(A1)P(1 )+P(A1)P(B1)P(1 )
行统计,发现英语成绩的频率分布直方图形状与正态分布N(95,82)
的密度曲线非常拟合,据此估计在全市随机抽取的4名高三同学中,
恰有2名同学的英语成绩超过95分的概率是(
)
A.
1
6
B.
1
3
C.
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N 则 设 X 为 n 次抽样检查中抽到的废品数, X ~ B n, M 因此,所求概率为
N k N n−k P { X = k } = C ( ) (1 − ) . M M
k n
例2 一张考卷上有5道选择题,每道题列出4个可能 答案,其中只有一个答案是正确的.某学生靠猜 测至少能答对4道题的概率是多少? 解:每答一道题相当于做一次伯努利试验, 记 A={答对一道题} , 则 P ( A) = 1/ 4. 则答5道题相当于做5重伯努利试验.
1 设 X :该学生靠猜测能答对的题数, 则 X ~ B 5, , 4 P{ X ≥ 4} = P{ X = 4} + P{ X = 5}
1 3 1 = 1 . =C ⋅ + 4 4 4 64
4 5
4
5
例3 假设一厂家生产的每台仪器以概率0.7可以直接 出厂;以概率0.3需进一步调试,经调试后以概率0.8 可以出厂,以概率0.2定为不合格品不能出厂。现该 厂新生产了n (n ≥ 2)台仪器(假设每台仪器的生产过 程相互独立),求: (1)全部能出厂的概率 α ; (2)其中恰好有2台不能出厂的概率 β ; (3)其中至少有2台不能出厂的概率 θ ; 解: 记 A={仪器需进一步调试}, B={仪器能出厂},
k =0 k =0
n
n
k n
p q
k
n−k
= ( p + q) = 1
n
特别地, 当 n = 1 时,X 的分布律为: X 0 1
pi
q
p
称 X 服从参数为 p 的(0-1)分布,或两点分布.
例1 若在 M 件产品中有 N 件废品,现进行有放回的 n 次抽样检查,问共取得 k 件废品的概率。 解: 由于是有放回的抽样,因此这是 n 重伯努利试验。
k Pn ( k ) = Cn p k q n−k ,
证毕.
二、二项分布
在 n 重伯努利试验中, 用 X 表示事件 A 发生的次数, 则 X 是一离散型随机变量, 可能取值为: 0,1, 2,⋯, n. 其分布律为:
P{ X = k} = Pn (k ) = C p q
k n k
n−k
, k = 0,1,2,⋯, n
k Pn (k ) = Cn p k q n−k ,
的概率 Pn ( k ) 为:
k = 0,1,2,⋯, n
证明: 由于试验是相互独立的, 则事件 A 在指定 k 次 试验中发生而在其余 n-k 次试验中不发生的概率为:
p k (1 − p ) n−k = p k q n−k
由组合公式,事件 A 在 n 次试验中恰好发生 k 次的 数目应为 Cnk 种, 而这 Cnk 个事件是互不相容的, 所以
β = P{ X = n − 2} = Cn2 × 0.94n−2 × 0.062
三、二项分布的数学期望与方差
设 X ~ B (n, p ), 其分布律为:
P{ X = k} = Pn (k ) = Cnk p k q n−k (k = 0,1,2,⋯, n)
因 X 可看成 n 重伯努利试验中事件 A 发生的次数, 用 X i (i = 1, 2,⋯, n) 表示事件 A 在第 i 次试验中发生的 次数, X 1 , X 2 ,⋯, X n 相互独立, 同时服从参数为 p 则 的(0-1)分布,且
第四章 几类重要的概率分布
两点分布 离 散 型 二项分布 泊松分布 连 续 型 正态分布 均匀分布 指数分布
第四章
第一节 二项分布
一、伯努利概型 二、二项分布 三、二项分布的数学期望 与方差
伯努利概型( 一、伯努利概型(Bernoulli) )
在确定条件下进行 n 次独立重复试验, 每次试验只有两个相互独立的结果 A 与
AB 则 A={仪器能直接出厂}, ={仪器经调试后能出厂}
由题意知 B = A + AB,
P( A) = 0.3, P( B | A) = 0.8, P ( AB ) = P( A) P ( B | A) = 0.3 × 0.8 = 0.24, P( B) = P( A) + P( AB) = 0.7 + 0.24 = 0 + ⋯ + X n
而
E( X i ) = p
Xi pi
0 q
1 p
(i = 1, 2,⋯, n)
D ( X i ) = E ( X i2 ) − E 2 ( X i ) = p − p 2 = pq
由数学期望与方差的性质有
E ( X ) = ∑ E ( X i ) = np D ( X ) = ∑ D( X i ) = npq
A ,且
P ( A) = p, P ( A) = 1 − p = q (0 < p < 1)
则称这 n 次独立重复试验为 n 重伯努利试验 (概型)。 伯努利概型是应用十分广泛的一种概率模型, 如在相同条件下重复投掷一枚硬币 n 次, 在有一定 数量次品的产品中进行 n 次有放回抽取, ⋯
定理:
在 n 重伯努利试验中,事件 A 恰好发生 k 次
i =1 i =1 n
n
n pn
或写为: X
0 P{ X = k} q n
1 ⋯ k ⋯ 1 Cn pq n−1 ⋯ Cnk p k q n−k ⋯
则称 X 服从参数为n,p的二项分布, 记为 X ~ B(n, p).
显然满足: (1)非负性:
P{ X = k} ≥ 0, k = 0,1,2,⋯, n
(2)规范性:
∑ P{ X = k} = ∑ C
设 X 为所生产的 n 台仪器中能出厂的台数, 则 X ~ B(n,0.94), 所以
α = P{ X = n} = 0.94n
A={仪器需进一步调试}, B={仪器能出厂}, θ = P{ X ≤ n − 2} = 1 − P{ X = n − 1} − P{ X = n} AB A={仪器能直接出厂}, ={仪器经调试后能出厂} n −1 = 1 − n × 0.94 × 0.06 − 0.94n