【配套K12】北京市各区2017年中考数学二模试题汇编 代数综合题(无答案)
北京市各区2017届中考数学二模试题分类整理应用题无答案20170717398
应用题(2017昌平二模)22. 2016年共享单车横空出世,更好地解决了人们“最后一公里”出行难的问题,截止到2016年底,“ofo 共享单车”的投放数量是“摩拜单车”投放数量的1.6倍,覆盖城市也远超于“摩拜单车”,“ofo 共享单车”注册用户量约为960万人,“摩拜单车”的注册用户量约为750万人,据统计使用一辆“ofo 共享单车”的平均人数比使用一辆“摩拜单车”的平均人数少3人,假设注册这两种单车的用户都在使用共享单车,求2016年“摩拜单车”的投放数量约为多少万台?(2017房山二模)21.为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,且两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.(2017通州二模)23.某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发32小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.(2017西城二模)20.列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批的每件进价少了10元,且进货量是第一批进货量的一半,求第一批购进这种衬衫每件进价是多少元.(2017东城二模)22.列方程或方程组解应用题:某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且两队在独立完成面积为400m 2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2017丰台二模)25.2016年底以来,京城路边排满了各种颜色的共享单车,本着低碳出行与强身健体的理念,赵老师决定改骑共享单车上下班.通过一段时间的体验,赵老师发现每天上班所用时间只比自驾车多52小时.已知赵老师家距学校12千米,上下班高峰时段,自驾车的速度是自行车速度的2倍.求赵老师骑共享单车每小时行驶多少千米.(2017石景山二模)21.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?。
北京市海淀区2017年中考二模数学试题及答案
北京市海淀区2017年中考二模数学试题及答案海淀区九年级第二学期期末练数学试卷2017年6月学校:________ 班级:________ 姓名:________ 准考证号:________本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。
注意事项:1.在试卷和答题卡上准确填写学校名称、班级和姓名。
2.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
3.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
4.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)1.如图,用圆规比较两条线段A'B'和AB的长短,其中正确的是A。
A'B'。
ABB。
A'B' = ABC。
A'B' < ABD。
不确定2.如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是图略)3.下列计算正确的是A。
2a - 3a = aB。
a3/2 = a6C。
-2a = 32D。
a ÷ a = 14.如图,ABCD中,AD=5,AB=3,∠BAD的平分线AE 交BC于E点,则EC的长为图略)5.共享单车提供了便捷、环保的出行方式。
___同学在___打开某共享单车APP,如图,"-"为___同学的位置,"★"为检索到的共享单车停放点。
为了到达距离最近的共享单车停放点,下列四个区域中,___同学应该前往的是图略)6.在单词happy中随机选择一个字母,选到字母为p的概率是A。
1/5B。
2/5C。
3/5D。
1/47.如图,OA为⊙O的半径,弦BC⊥OA于P点。
若OA=5,AP=2,则弦BC的长为图略)8.在下列函数中,其图象与x轴没有交点的是A。
y = 2xB。
y = -3x + 1C。
y = x2D。
y = 1/x9.如图,在等边三角形三个顶点和中心处的每个"○"中各填有一个式子,使得每条边上的三个式子之和相等,则a/b的值为图略)10.利用量角器可以制作锐角正弦值速查卡。
2017年北京市西城区中考数学二模试卷-含详细解析
2017年北京市西城区中考数学二模试卷副标题一、选择题(本大题共10小题,共30.0分)1.据报道,到2020年北京地铁规划线网将由19条线路组成,总长度将达到561500米,将561500用科学记数法表示为()A. B. C. D.2.下列运算中,正确的是()A. B. C. D.3.将不等式x-1>0的解集表示在数轴上,下列表示正确的是()A. B.C. D.4.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是奇数的概率为()A. B. C. D.5.介于下列哪两个整数之间()A. 0与1B. 1与2C. 2与3D. 3与46.如图是由射线AB,BC,CD,DE,EA组成的平面图形,若∠1+∠2+∠3+∠4=225°,ED∥AB,则∠1的度数为()A.B.C.D.7.对于反比例函数y=,当1<x<2时,y的取值范围是()A. B. C. D.8.如图,AB为半圆O的直径,C为的中点,若AB=2,则图中阴影部分的面积是()A.B.C.D.9.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A的位置记作A(8,30°).用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在()A. 点B. 点C. 点D. 点10.某大型文体活动需招募一批学生作为志愿者参与服务,已知报名的男生有420人,女生有400人,他们身高均在150≤x<175之间,为了解这些学生身高的具体分别情况,从中随机抽取若干学生进行抽样调查,抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:根据图表提供的信息,有下列几种说法①估计报名者中男生身高的众数在D组;②估计报名者中女生身高的中位数在B组;③抽取的样本中,抽取女生的样本容量是38;④估计身高在160cm至170cm(不含170cm)的学生约有400人其中合理的说法是()A. ①②B. ①④C. ②④D. ③④二、填空题(本大题共6小题,共18.0分)11.如图,长方体中所有与棱AB平行的棱是______.12.关于x的方程x2-4x+k=0有两个相等的实数根,则实数k的值为______.13.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BED的度数是______度.14.在平面直角坐标系xOy中,⊙O的半径是5,点A为⊙O上一点,AB⊥x轴于点B,AC⊥y轴于点C,若四边形ABOC的面积为12,写出一个符合条件的点A的坐标______.15.如图是由三个直角三角形组成的梯形,根据图形,写出一个正确的等式______.16.《数书九章》中的秦九韶部算法是我国南宋时期的数学家秦九提出的一种多项式简化算法,现在利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x=8时,多项式3x3-4x2-35x+8的值”,按照秦九韶算法,可先将多项式3x3-4x2-35x+8进行改写:3x3-4x2-35x+8=x(3x2-4x-35)+8=x[x(3x-4)-35]+8按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法的次数,使计算量减少,计算当x=8时,多项式3x3-4x2-35x+8的值1008.请参考上述方法,将多项式x3+2x2+x-1改写为:______,当x=8时,这个多项式的值为______.三、计算题(本大题共3小题,共15.0分)17.计算:-2-1+(-π)0-4sin45°.18.解方程组.19.已知x2-3x-4=0,求代数式(x+1)(x-1)-(x+3)2+2x2的值.四、解答题(本大题共10小题,共57.0分)20.列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批衬衫的每件进价少了10元,且进货量是第一次进货量的一半,求第一批购进这种衬衫每件的进价是多少元?21.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.22.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.23.直线y=-2x+4与x轴交于点A,与y轴交于点B,直线y=kx+b(k,b是常数,k≠0)经过点A,与y轴交于点C,且OC=OA.(1)求点A的坐标及k的值;(2)点C在x轴的上方,点P在直线y=-2x+4上,若PC=PB,求点P的坐标.24.阅读下列材料:社会消费品零售总额是指批发和零售业,住宿和餐饮业以及其他行业直接售给城乡居民和社会集团的消费品零售额,在各类与消费有关的统计数据中,社会消费品零售总额是表现国内消费需求最直接的数据.2012年,北京市全年实现社会消费品零售总额7702.8亿元,比上一年增长11.6%,2013年,全年实现社会消费品零售总额8375.1亿元,比上一年增长8.7%,2014年,全年实现社会消费品零售总额9098.1亿元,比上一年增长8.6%,2015年,全年实现社会消费品零售总额10338亿元,比上一年增长7.3%.2016年,北京市实现市场总消费19926.2亿元,比上一年增长了8.1%,其中实现服务性消费8921.1亿元,增长10.1%;实现社会消费品零售总额11005.1亿元,比上一年增长了6.5%.根据以上材料解答下列问题:(1)补全统计表:(2)选择适当的统计图将2012-2016年北京市社会消费品零售总额比上一年的增长率表示出来,并在图中表明相应数据;(3)根据以上信息,估计2017年北京市社会消费品零售总额比上一年的增长率约为______,你的预估理由是______.25.如图,AB是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与AC延长线交于点D,连接BC,OE∥BC交⊙O于点E,连接BE交AC于点H.(1)求证:BE平分∠ABC;(2)连接OD,若BH=BD=2,求OD的长.26.学习了《平行四边形》一章以后,小东根据学习平行四边形的经验,对平行四边形的判定问题进行了再次探究.以下是小东探究过程,请补充完整:(1)在四边形ABCD中,对角线AC与BD相交于点O,若AB∥CD,补充下列条件中能判定四边形ABCD是平行四边形的是______(写出一个你认为正确选项的序号即可);(A)BC=AD(B)∠BAD=∠BCD(3)AO=CO(2)将(1)中的命题用文字语言表述为:①命题1______;②画出图形,并写出命题1的证明过程;(3)小东进一步探究发现:若一个四边形ABCD的三个顶点A,B,C的位置如图所示,且这个四边形满足CD=AB,∠D=∠B,但四边形ABCD不是平行四边形,画出符合题意的四边形ABCD,进而小东发现:命题2“一组对边相等,一组对角相等的四边形是平行四边形”是一个假命题.27.在平面直角坐标系xOy中,抛物线y=ax2+2ax-3a(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求抛物线的对称轴及线段AB的长;(2)抛物线的顶点为P,若∠APB=120°,求顶点P的坐标及a的值;(3)若在抛物线上存在一点N,使得∠ANB=90°,结合图象,求a的取值范围.28.△ABC是等边三角形,以点C为旋转中心,将线段CA按顺时针方向旋转60°得到线段CD,连接BD交AC于点O.(1)如图1.①求证:AC垂直平分BD;①点M在BC的延长线上,点N在线段CO上,且ND=NM,连接BN,判断△MND的形状,并加以证明;(2)如图2,点M在BC的延长线上,点N在线段AO上,且ND=NM,补全图2,求证:NA=MC.29.在平面直角坐标系xOy中,△ABC的顶点坐标分别是A(x1,y1),B(x2,y2),C(x3,y3),对于△ABC的横长、纵长、纵横比给出如下定义:将|x1-x2|,|x2-x3|,|x3-x1|中的最大值,称为△ABC的横长,记作D x;将|y1-y2|,|y2-y3|,|y3-y1|中的最大值,称为△ABC的纵长,记作D y;将叫做△ABC的纵横比,记作λ=.例如:如图1,△ABC的三个顶点的坐标分别是A(0,3),B(2,1),C(-1,-2),则D x=|2-(-1)|=3,D y=|3-(-2)|=5,所以λ==.(1)如图2,点A(1,0),①点B(2,1),E(-1,2),则△AOB的纵横比λ1=______△AOE的纵横比λ2=______;②点F在第四象限,若△AOF的纵横比为1,写出一个符合条件的点F的坐标;③点M是双曲线y=上一个动点,若△AOM的纵横比为1,求点M的坐标;(2)如图3,点A(1,0),⊙P以P(0,)为圆心,1为半径,点N是⊙P 上一个动点,直接写出△AON的纵横比λ的取值范围.答案和解析1.【答案】B【解析】解:将561500用科学记数法表示为:5.615×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】D【解析】解:A、a3+a3=2a3,错误;B、不是同类项,不能合并,错误;C、a2•a2=a4,错误;D、(a5)2=a10,正确;故选D根据幂的乘方、同类项合并、同底数幂的乘法的运算法则解答即可.此题考查幂的乘方、同类项合并、同底数幂的乘法问题,关键是根据幂的乘方、同类项合并、同底数幂的乘法法则计算.3.【答案】A【解析】解:x-1>0,所以x>1,用数轴表示为:.故选A.先解不等式得到x>1,然后利用数轴表示不等式的方法对各选项进行判断.本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.4.【答案】C【解析】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,∴从中随机摸出一个小球,其标号是奇数的概率为:.故选:C.由在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.【答案】C【解析】解:∵4<5<9,∴2<<3.故选:C.依据被开放数越大对应的算术平方根越大求解即可.本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.6.【答案】B【解析】解:如图,由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,又∵∠1+∠2+∠3+∠4=225°,∴∠5=135°,∴∠AED=45°,又∵ED∥AB,∴∠1=∠AED=45°,故选:B.根据多边形的外角和等于360°,即可得到∠5的度数,进而得出∠AED的度数,再根据平行线的性质进行解答即可.本题考查的是多边形的内角和外角以及平行线的性质,掌握多边形的外角和等于360°是解题的关键.7.【答案】D【解析】解:∵k=6>0,∴在每个象限内y 随x 的增大而减小,又∵当x=1时,y=6,当x=2时,y=3,∴当1<x <2时,3<y <6.故选D .利用反比例函数的性质,由x 的取值范围并结合反比例函数的图象解答即可. 本题主要考查反比例函数的性质,当k >0时,在每一个象限内,y 随x 的增大而减小;当k <0时,在每一个象限,y 随x 的增大而增大.8.【答案】C【解析】解:∵AB 为直径,∴∠ACB=90°, ∵C 为的中点, ∴=,∴AC=BC ,∴△ACB 为等腰直角三角形,∴OC ⊥AB ,∴△AOC 和△BOC 都是等腰直角三角形,∴S △AOC =S △BOC ,OA=OC ,∴S 阴影部分=S 扇形AOC ==.故选C .先利用圆周角定理得到∠ACB=90°,则可判断△ACB 为等腰直角三角形,接着判断△AOC 和△BOC 都是等腰直角三角形,于是得到S △AOC =S △BOC ,然后根据扇形的面积公式计算图中阴影部分的面积.本题考查了扇形面积的计算:(1)圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.9.【答案】A【解析】解:如图所示:连接BC,并延长,即可得出,观测点的位置应在点O1.故选:A.根据点A的位置记作A(8,30°),B(8,60°),C(4,60°),进而得出观测点位置.此题主要考查了坐标确定位置,正确利用已知点得出观测点是解题关键.10.【答案】B【解析】解:由直方图可知,男生身高人数最多的为D组,即众数在D组,故①正确;由A与B的百分比之和为10.5%+37.5%=48%<50%,则女生身高的中位数在C组,故②错误;∵男生身高的样本容量为4+8+10+12+8=42,∴女生身高的样本容量为40,故③错误;∵女生身高在160cm至170cm(不含170cm)的学生有40×(30%+15%)=18人,∴身高在160cm至170cm(不含170cm)的学生有(420+400)×=400(人),故④正确;故选:B.根据中位数的定义可判断①、②;由男生总人数及男生比女生多2人可判断③;用男女生身高的样本中160cm至170cm所占比例乘以男女生总人数可判断④.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11.【答案】DC,EF,HM【解析】解:由图可得,长方体中所有与棱AB平行的棱有3条:DC,EF,HM,故答案为:DC,EF,HM.根据平行线的性质以及正方体的特征进行判断即可.本题主要考查了平行线的性质以及正方体的特征,解题时注意:在平面内不相交的两条直线平行.12.【答案】4【解析】解:∵方程x2-4x+k=0有两个相等的实数根,∴△=(-4)2-4k=0,即-4k=-16,k=4故本题答案为:4.若一元二次方程有两等根,则根的判别式△=b2-4ac=0,建立关于k的方程,求出k的取值.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根13.【答案】135【解析】解:∵四边形ABCD是正方形,AC是对角线,∴AB=BC,∠BAE=45°,∵AE=BC,∴∠ABE=∠AED==67.5°,同理可求得:∠AED=67.5°,∴∠BED=2×67.5°=135°.故答案为135.根据正方形的性质可知:AB=BC,因为AE=BC,所以AB=AE,即三角形ABE 是等腰三角形,因为∠BAE是45°,所以可求出∠BEA,同理可求出∠AED的度数,进而求出∠BED的度数.本题考查了正方形的性质:四边相等、对角线平分对角以及等腰三角形的判定和性质和三角形内角和定理的运用.14.【答案】(3,4)【解析】解:设点A坐标为(x,y),则AO2=x2+y2=25,由xy=12或xy=-12,当xy=12时,可得(x+y)2-2xy=25,即(x+y)2-24=25,∴x+y=7或x+y=-7,①若x+y=7,即y=7-x,代入xy=12得x2-7x+12=0,解得:x=3或x=4,当x=3时,y=4;当x=4时,y=3;即点A(3,4)或(4,3);②若x+y=-7,则y=-7-x,代入xy=12得:x2+7x+12=0,解得:x=-3或x=-4,当x=-3时,y=-4;当x=-4时,y=-3;即点A(-3,-4)或(-4,-3);当xy=-12时,可得(x+y)2-2xy=25,即(x+y)2+24=25,∴x+y=1或x+y=-1,③若x+y=1,即y=1-x,代入xy=-12得x2-x-12=0,解得:x=-3或x=4,当x=-3时,y=4;当x=4时,y=-3;即点A(-3,4)或(4,-3);④若x+y=-1,则y=-1-x,代入xy=-12得:x2+x-12=0,解得:x=3或x=-4,当x=3时,y=-4;当x=-4时,y=3;即点A(3,-4)或(-4,3);故答案为:(3,4),(答案不唯一).设点A坐标为(x,y),由圆的半径为5可得x2+y2=25,根据矩形的面积为xy=12或xy=-12,分情况分别解和可得点A的坐标.本题主要考查坐标与图形的性质,熟练掌握两点的距离公式和解二元二次方程组是解题的关键.15.【答案】c2=a2+b2【解析】解:依题意得:ab+c2+ab=(a+b)(a+b),整理,得c2=a2+b2.故答案是:c2=a2+b2.该图形的面积与3个直角三角形组成一个直角梯形,根据三角形的面积公式、梯形的面积公式进行解答.本题考查了勾股定理的证明,解题时,采用了分割法求图形的面积.16.【答案】x[x(x+2)+1]-1;647【解析】解:x3+2x2+x-1=x[x(x+2)+1]-1,当x=8时,原式=647,故答案为:x[x(x+2)+1]-1;647仿照题中的方法将原式改写,把x的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,弄清题中的方法是解本题的关键.17.【答案】解:-2-1+(-π)0-4sin45°=3-+1-4×=3+-2=+【解析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.【答案】解:,把①代入②得:3x+2(x-1)=8,解得:x=2,把x=2代入①得:y=1,则方程组的解为.【解析】方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.【答案】解:原式=x2-1-x2-6x-9+2x2=2x2-6x-10=2(x2-3x-4)-2,当x2-3x-4=0时,原式=-2.【解析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.【答案】解:设第一批衬衫每件进价为x元,根据题意,得•=,解得x=150,经检验x=150是原方程的解,且满足题意,答:第一批衬衫每件进价为150元.【解析】设第一批衬衫每件进价为x元,则第二批每件进价为(x-10)元.根据第二批该款式的衬衫,进货量是第一次的一半,列出方程即可解决问题.本题考查分式方程的应用,解题的关键是学会设未知数、找等量关系、列出方程解决问题,注意分式方程必须检验,属于中考常考题型.21.【答案】证明:∵CD平分∠ACB,∴∠1=∠2,∵DE⊥AC,∠ABC=90°∴DE=BD,∠3=∠4,∵BF∥DE,∴∠4=∠5,∴∠3=∠5,∴BD=BF,∴DE=BF.【解析】根据角平分线的定义得到∠1=∠2,根据角平分线的性质得到DE=BD,∠3=∠4,由平行线的性质得到3=∠5,于是得到结论.本题考查了角平分线的性质,平行线的性质,等腰三角形的判定和性质,熟练掌握角平分线的性质是解题的关键.22.【答案】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.【解析】(1)只要证明三个角是直角即可解决问题;(2)作OF⊥BC于F.求出EC、OF的长即可;本题考查矩形的判定和性质、角平分线的定义、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,属于中考常考题型.23.【答案】解:(1)由直线y=-2x+4与x轴交于点A,与y轴交于点B,令y=0,则-2x+4=0,解得x=2,∴A(2,0),∵OC=OA,∴C(0,2)或(0,-2),∵直线y=kx+b(k,b是常数,k≠0)经过点A和点C,∴ 或,解得k=1或k=-1;(2)∵B(0,4),C(0,2),且PC=PB,∴P的纵坐标为3,∵点P在直线y=-2x+4上,把y=3代入y=-2x+4解得x=,∴P(,3).【解析】(1)令y=0,求得x的值,即可求得A的坐标为(2,0),由OC=OA得C(0,2)或(0,-2),然后根据待定系数法即可求得k的值;(2)由B、C的坐标,根据题意求得P的纵坐标,代入y=-2x+4即可求得横坐标.本题考查了一次函数图象上点点坐标特征,分类讨论思想运用是本题点关键.24.【答案】7702.8;8375.1;9098.1;10338;11005.1;5.45%;从2014到2016年北京市社会消费品零售总额比上一年的增长率的平均每年下降1.05%【解析】解:(1)补全统计表如下:(2)2012-2016年北京市社会消费品零售总额比上一年的增长率统计图如下:(3)从2014到2016年北京市社会消费品零售总额比上一年的增长率的平均每年下降1.05%,故2017年北京市社会消费品零售总额比上一年的增长率约为6.5%-1.05%=5.45%,故答案为:5.45%,从2014到2016年北京市社会消费品零售总额比上一年的增长率的平均每年下降1.05%.(1)根据2012-2016年北京市社会消费品零售总额完成统计表即可;(2)根据2012-2016年北京市社会消费品零售总额比上一年的增长率,画出2012-2016年北京市社会消费品零售总额比上一年的增长率折线统计图即可;(3)根据从2014到2016年北京市社会消费品零售总额比上一年的增长率的平均每年下降1.05%,即可得出2017年北京市社会消费品零售总额比上一年的增长率.本题主要考查了统计图、统计表的选择,解题时注意:折线统计图的特点:能清楚地反映事物的变化情况,显示数据变化趋势.25.【答案】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OE∥BC,∴OE⊥AC,∴=,∴∠1=∠2,∴BE平分∠ABC;(2)解:∵BD是⊙O的切线,∴∠ABD=90°,∵∠ACB=90°,BH=BD=2,∴∠CBD=∠2,∴∠1=∠2=∠CBD,∴∠CBD=30°,∠ADB=60°,∵∠ABD=90°,∴AB=2,OB=,∵OD2=OB2+BD2,∴OD=.【解析】(1)根据切线的性质得到∠ACB=90°,根据平行线的性质得到OE⊥AC,根据垂径定理即可得到结论;(2)根据切线的性质得到∠ABD=90°,根据等腰三角形的性质得到∠CBD=∠2,解直角三角形即可得到结论.本题考查了切线的性质,圆周角定理,垂径定理,角平分线的判定,勾股定理,正确的识别图形是解题的关键.26.【答案】B或C;一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形【解析】解:(1)在四边形ABCD中,对角线AC与BD相交于点O,若AB∥CD,则当∠BAD=∠BCD或AO=CO时,四边形ABCD是平行四边形;故答案为:B或C;(2)①选择C,文字语言表述为:一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形;故答案为:一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形;②已知:如图,在四边形ABCD中,AB∥CD,对角线AC与BD交于点O,AO=CO.求证:四边形ABCD是平行四边形.证明:∵AB∥CD,∴∠ABO=∠CDO,∠BAO=∠DCO,∵AO=CO,∴△AOB≌△COD,∴AB=CD,又∵AB∥CD,∴四边形ABCD是平行四边形.(3)如图所示,四边形ABCD满足CD=AB,∠D=∠B,但四边形ABCD不是平行四边形.(1)根据四边形ABCD中,对角线AC与BD相交于点O,AB∥CD,补充条件即可判定四边形ABCD是平行四边形;(2)先将符号语言转化为文字语言,再写出已知、求证和证明过程即可;(3)根据等腰三角形以及轴对称变换即可得到反例,或根据平行四边形以及圆周角定理即可得到反例.本题主要考查了平行四边形的判定以及命题与定理的运用,解决问题的关键是掌握平行四边形的判定方法,解题时注意:一组对边平行且相等的四边形是平行四边形.27.【答案】解:(1)令y=0得:ax2+2ax-3a=0,即a(x+3)(x-1)=0,解得:x=-3或x=1,∴A(-3,0)、B(1,0).∴抛物线的对称轴为直线x=-1,AB=4.(2)如图1所示:设抛物线的对称轴与x轴交于点H.∵∠APB=120°,AB=4,PH在对称轴上,∴AH=2,∠APB=60°.∴PH=.∴点P的坐标为(-1,-).将点P的坐标代入得:-=-4a,解得a=.(3)如图2所示:以AB为直径作⊙H.∵当∠ANB=90°,∴点N在⊙H上.∵点N在抛物线上,∴点N为抛物线与⊙H的交点.∴点P在圆上或点P在圆外.∴HP≥2.∵将x=-1代入得:y=-4a.∴HP=4a.∴4a≥2,解得a≥.∴a的取值范围是a≥.【解析】(1)令y=0得:ax2+2ax-3a=0,解关于x的方程可求得点A和点B的横坐标,然后可求得AB的长,利用抛物线的对称性可得到抛物线的对称轴方程;(2)如图1所示,利用抛物线的对称性可知:AH=2,∠APB=60°,然后可求得PH=,从而可的点P的坐标,最后将点P的坐标代入抛物线的解析式可求得a的值;(3)以AB为直径作⊙H,则点N在⊙H上,当点P在⊙H上或点P在⊙H外时,∠ANB=90°,故此HP≥2,接下来,依据HP≥2列不等式求解即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,二次函数的性质,找出∠ANB=90°的条件是解题的关键.28.【答案】证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠CAB=60°,①以点C为旋转中心,将线段CA按顺时针方向旋转60°得到线段CD,∴CD=CA,∠ACD=∠ACB=60°,∴BO=DO,CO⊥BD,∴AC垂直平分BD;②△MND是等边三角形,如图1,由①知AC垂直平分BD,∴NB=ND,∠CBD=∠ABC=30°,∴∠1=∠2,∴∠BND=180°-2∠2,∵ND=NM,∴NB=NM,∴∠3=∠4,∠BNM=180°-2∠4,∴∠DNM=360°-180°+2∠2-180°+2∠4=2(∠2+∠4)=60°,∴△MND是等边三角形;(2)连接AD,BN,如图2,由题意知,△ACD是等边三角形,∴∠ADC=60°,AD=CD,与(1)同理可证∠1=∠2,∠3=∠NBM,∠BND=180°-2∠2,∠BNM=180°-2∠NBM,∴∠MND=∠BND-∠BNM=2(∠NBM-∠2)=60°,∵ND=NM,∴△MND是等边三角形,∴DN=DM,∠NDM=60°,∠ADC=∠NDM,∴∠NDA=∠MDC,在△AND与△MDC中,∴△AND≌△CMD,∴NA=MC.【解析】(1)根据等边三角形的性质和旋转的性质证明即可;(2)根据等边三角形的性质和全等三角形的判定方法,证明△AND≌△CMD,再利用全等三角形的对应边相等证明即可.本题主要考查线段的旋转、全等三角形的性质和判定、等边三角形的性质等,解决此题的关键是能将三角形的判定和性质、等边三角形的相关性质灵活的应用.29.【答案】;1【解析】解:(1)由题意△AOB的纵横比λ1=,△AOE的纵横比λ2==1,故答案为,1.②由点F在第四象限,若△AOF的纵横比为1,则F(1,-1)(在第四象限的角平分线上即可).③如图设M(x M,y M).a、当0<x M≤1时,点M在y=上,则y M>0,此时△AOM的横长D x=1,△AOM的纵长为D y=y M,∵△AOM的纵横比为1,∴D y=1,∴y M=1或-1(舍弃),∴x M=,∴M(,1).b、当x M>1时,点M在y=上,则y M>0,此时△AOM的横长D x=x M,△AOM的纵长为D y=y M,∵△AOM的纵横比为1,∴D y=D x,∴x M=y M∴y M=±(舍弃),c、当x M<0时,点M在y=上,则y M<0,此时△AOM的横长D x=1-x M,△AOM的纵长为D y=-y M,∵△AOM的纵横比为1,∴1-x M=-y M,∴x M=或(舍弃),∴y M=-,∴M′(,-),综上所述,点M坐标为(,1)或(,-).(2)如图3中,当N(0,1+)时,可得△AON的纵横比λ的最大值==1+,当AN′与⊙P相切时,切点在第二象限时,可得△AON的纵横比λ的最小值,∵OP=,OA=1,∴PA=2.AN′==,∴tan∠APN′=,∴∠APN′=60°,易知∠APO=30°,作N′H⊥OP于H.∴∠HPN′=30°,∴N′H=,PH=,此时△AON的纵横比λ==,∴≤λ≤1+.(1)①根据纵横比的定义计算即可;②点F在第四象限的角平分线上即可;③分三种情形讨论即可.(2)如图3中,当N(0,1+)时,可得△AON的纵横比λ的最大值==1+,当AN′与⊙P相切时,切点在第二象限时,可得△AON的纵横比λ的最小值;本题考查反比例函数综合题、三角形的横长、纵长、纵横比λ的定义、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考创新题目.。
2017年北京中考二模数学28题汇总(几何综合9个区)
2017年北京中考二模数学28题汇总(几何综合9个区)1.(2017北京昌平中考二模_28)(7分) 如图,在正方形ABCD 中,E 为AB 边上一点,连接DE ,将△ADE绕点D 逆时针旋转90°得到△CDF ,作点F 关于CD 的对称点,记为点G ,连接DG . (1)依题意在图1中补全图形;(2)连接BD ,EG ,判断BD 与EG 的位置关系并在图2中加以证明; (3)当点E 为线段AB 的中点时,直接写出∠EDG 的正切值.EDCBA图2图1ABCDE2.(2017北京通州中考二模_28)(7分)在△ABC 中,AB =BC ,∠ABC =90°. 以AB 为斜边作等腰直角三角形ADB . 点P 是直线DB 上一个动点,连接AP ,作PE ⊥AP 交BC 所在的直线于点E.备用图A B CD(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证P A=PE;(3)点P在DB的延长线上,依题意,将图3补全,并判断P A=PE是否仍然成立.3.(2017北京房山中考二模_28)(7分)在Rt△ABC中,∠ACB=90°,AC=BC=2,点P为BC边上的一个动点(不与B、C重合). 点P关于直线AC、AB的对称点分别为M、N,连结MN交AB于点F,交AC于点E.(1)当点P为BC的中点时,求∠M的正切值;图2图1MEFNNFE MABCP P CBA (2)当点P 在线段BC 上运动(不与B 、C 重合)时,连接AM 、AN ,求证: ① △AMN 为等腰直角三角形;②△AEF ∽△BAM .4.(2017北京朝阳中考二模_28)(7分)在△ABC 中,∠ACB =90°,以AB 为斜边作等腰直角三角形ABD ,且点D 与点C 在直线AB 的两侧,连接CD .(1) 如图1,若∠ABC =30°,则∠CAD 的度数为 . (2)已知AC =1,BC =3. ①依题意将图2补全;②求CD 的长;小聪通过观察、实验、提出猜想,与同学们进行交流,通过讨论,形成了求CD 长的几种想法: 想法1:延长CB ,在CB 延长线上截取BE =AC ,连接DE .要求CD 的长,需证明 △ACD ≌△BED ,△CDE 为等腰直角三角形.想法2:过点D 作DH ⊥BC 于点H ,DG ⊥CA ,交CA 的延长线于点G ,要求CD 的长,需证明△BDH ≌△ADG ,△CHD 为等腰直角三角形. ……请参考上面的想法,帮助小聪求出CD 的长(一种方法即可). (3)用等式表示线段AC ,BC ,CD 之间的数量关系(直接写出即可).5.(2017北京海淀中考二模_28)(7分)在锐角△ABC 中,AB=AC ,AD 为BC 边上的高,E 为AC 中点. (1)如图1,过点C 作CF ⊥AB 于F 点,连接EF .若∠BAD =20°,求∠AFE 的度数;(2)若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 于N 点,射线EN ,AB交于P 点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD .图1图2小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法: 想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α. 想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ . ……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)EFB D CA6.(2017北京石景山中考二模_28)(7分)已知在Rt BAC △中,90BAC ∠=°,AB AC =,点D 为射线BC 上一点(与点B 不重合),过点C 作CE ⊥BC 于点C ,且CE BD =(点E 与点A 在射线BC 同侧),连接AD ,ED .(1)如图1,当点D 在线段BC 上时,请直接写出ADE ∠的度数.(2)当点D 在线段BC 的延长线上时,依题意在图2中补全图形并判断(1)中结论是否成立?若成立,请证明;若不成立,请说明理由.(3)在(1)的条件下,ED 与AC 相交于点P ,若2AB =,直接写出CP 的最大值.图1 图2图1 图2 备用图7.(2017年北京平谷中考二模_28)(7分)在△ABC中,AB=AC,∠A=60°,点D是BC边的中点,作射线DE,与边AB交于点E,射线DE绕点D顺时针旋转120°,与直线AC交于点F.(1)依题意将图1补全;(2)小华通过观察、实验提出猜想:在点E运动的过程中,始终有DE=DF.小华把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:由点D是BC边的中点,通过构造一边的平行线,利用全等三角形,可证DE=DF;想法2:利用等边三角形的对称性,作点E关于线段AD的对称点P,由∠BAC与∠EDF互补,可得∠AED与∠AFD互补,由等角对等边,可证DE=DF;想法3:由等腰三角形三线合一,可得AD是∠BAC的角平分线,由角平分线定理,构造点D到AB,AC的高,利用全等三角形,可证DE=DF…….请你参考上面的想法,帮助小华证明DE=DF(选一种方法即可);(3)在点E运动的过程中,直接写出BE,CF,AB之间的数量关系.8.(2017年北京怀柔中考二模_28)(7分)在△ABN 中,∠B =90°,点M 是AB 上的动点(不与A,B 两点重合),点C 是BN 延长线上的动点(不与点N 重合),且AM=BC ,CN=BM ,连接CM 与AN 交于点P.(1)在图1中依题意补全图形;(2)小伟通过观察、实验,提出猜想:在点M ,N 运动的过程中,始终有∠APM=45°.小伟把这个猜图1 A B N 备用图 A B N想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:要想解决这个问题,首先应想办法移动部分等线段构造全等三角形,证明线段相等,再构造平行四边形,证明线段相等,进而证明等腰直角三角形,出现45°的角,再通过平行四边形对边平行的性质,证明∠APM=45°.他们的一种作法是:过点M在AB下方作MD⊥AB于点M,并且使MD=CN.通过证明△AMD≅△CBM,得到AD=CM,再连接DN,证明四边形CMDN是平行四边形,得到DN=CM,进而证明△ADN是等腰直角三角形,得到∠DNA=45°.又由四边形CMDN是平行四边形,推得∠APM=45°.使问题得以解决.请你参考上面同学的思路,用另一种方法证明∠APM=45°.9.(2017年北京顺义中考二模_28)(7分)在平面直角坐标系xOy中,对于点和⊙C给出如下定义:若⊙O上存在两个点,,使得,则称为⊙C的关联点.已知点,,,(1)当⊙O的半径为1时,①在点M,N,,中,⊙O的关联点是___________________________ ;②过点作直线l交轴正半轴于点,使,若直线l上的点是⊙O的关联点,求的取值范围;(2)若线段上的所有点都是半径为的⊙O的关联点,求半径的取值范围.。
北京市各区2017届中考数学二模试题分类整理 生活实际问题(无答案)
生活实际问题(2017房山二模)12. 如图,公园内有一小湖,为了测量湖边B、C两点间的距离,小明设计如下方案,选取一个合适的A点,分别找到AB、AC的中点D、E,若测得DE的长为35米,则B、C两点间的距离为________米.(2017房山二模)13.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.一位家住十渡地区的张老师持卡乘车,上车时站名上对应的数字是6,下车时站名上对应的数字是24,那么,张老师乘车的费用是_________元.(2017朝阳二模)15.在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数基本相同,他随机记录了其中某些天上学所用的时间,整理如下表:下面有四个推断:①平均来说,乘坐公共汽车上学所需的时间较短②骑自行车上学所需的时间比较容易预计③如果小军想在上学路上花的时间更少,他应该更多地乘坐公共汽车④如果小军一定要在16 min内到达学校,他应该乘坐公共汽车其中合理的是(填序号).(2017朝阳二模)22.调查作业:了解你所在学校学生本学期社会实践活动的情况.小明、小亮和小天三位同学在同一所学校上学.该学校共有三个年级,每个年级都有6个班,每个班的人数在30~40之间.为了了解该校学生本学期社会实践活动的情况,他们各自设计了如下的调查方案:小明:我给每个班学号分别为1、2、11、12、21、22的同学各发一份问卷,一两天就可以得到结果.小亮:我把要调查的问题放在某两个班的微信群里,这样群里的大部分人就可以完成调查的问题,并很快就可以反馈给我.小天:我给每个班发一份问卷,一两天也就可以得到结果了.根据以上材料回答问题:小明、小亮和小天三人中,哪一位同学的调查方案能较好地获得该校学生本学期社会实践活动的情况,并简要说明其他两位同学调查方案的不足之处.(2017怀柔二模)22.为倡导市民绿色出行,提高市民环保意识和健康意识,怀柔区建立了城市公共自行车系统,共建64个站点,投放2300辆自行车.并于2016年8月15日正式投入运营.办理借车卡和借车服务费标准如下:首次办理借车卡免收工本费,本地居民收取300元保证金及预充值消费50元、外地居民收取500元保证金及预充值消费50元.借车服务费用实行分段合计,还车刷卡时,从借车卡中结算扣取,每次借车1小时(含)为免费租用期;超过免费租用期1小时以内(含)的收取1元;超过免费租用期2小时到4小时以内(含)的,每小时收取2元;超过免费租用期4个小时以上的,每小时收取3元;一天20元封顶(不足一小时按1小时计).刘亮妈妈到点首次办了一张借车卡.第一次,她用了5小时20分钟后才还车.后来妈妈又借车出行了30次,卡中预充值的费用就全部用完了,妈妈说后来的这30次,每次从卡中扣除的服务费都是1元或3元.请你通过列方程或方程组的方法帮刘亮妈妈算一算她扣除1元和3元服务费各几次.(2017怀柔二模)26. 某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查,每降价1元,每星期可多卖出20件,在确保盈利的前提下,解答下列问题:(1)若设每件降价x (x 为整数)元,每星期售出商品的利润为y 元,请写出x 与y 之间的函数关系式,并求出自变量x 的取值范围;(2)请画出上述函数的大致图象.(3)当降价多少元时,每星期的利润最大?最大利润是多少?小丽解答过程如下:解:(1)根据题意,可列出表达式:y=(60-x)(300+20x)-40(300+20x),即y=-20x 2+100x+6000.∵降价要确保盈利,∴40<60-x ≤60.解得0≤x <20.(2)上述表达式的图象是抛物线的一部分,函数的大致图象如图1:(3)∵a=-20<0, ∴当x=2b a-=2.5时,y 有最大值,y=244ac b a -=6125. 所以,当降价2.5元时,每星期的利润 最大,最大利润为6125.老师看了小丽的解题过程,说小马第(1)问的表达式是正确的,但自变量x 的取值范围不准确.(2)(3)问的答案,也都存在问题.请你就老师说的问题,进行探究,写出你认为(1)(2)(3)中正确的答案,或说明错误原因.。
各区中考数学二模试题汇编 代数综合题(无答案)(2021年整理)
北京市各区2017年中考数学二模试题汇编代数综合题(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北京市各区2017年中考数学二模试题汇编代数综合题(无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北京市各区2017年中考数学二模试题汇编代数综合题(无答案)的全部内容。
x y-x y=-–111-1O代数综合题【2017昌平二模】27. 在平面直角坐标系xOy 中,抛物线)0(42≠-=m mx mx y 与x 轴交于A ,B 两点(点A 在点B的左侧).(1)求点A ,B 的坐标及抛物线的对称轴;(2)过点B 的直线l 与y 轴交于点C ,且2tan =∠ACB ,直接写出直线l 的表达式; (3)如果点)(1n x P ,和点)(2n x Q ,在函数)0(42≠-=m mx mx y 的图象上,PQ=2a 且21x x >,求26221+-+a ax x 的值.【2017房山二模】27. 对于一个函数,如果它的自变量x 与函数值y —1≤x ≤1时,-1≤y ≤1,则称这个函数为“闭函数”. 例如:y =x ,y =-x 均是“闭函数”(如右图所示). 已知()02≠++=a c bx ax y 是“闭函数”,且抛物线经过点A (1,-1)和点B (-1, 1) . (1)请说明a 、c 的数量关系并确定b 的取值; (2)请确定a 的取值范围.【2017通州二模】27.已知:二次函数1422-++=m x x y ,与x 轴的公共点为A ,B . (1)如果A 与B 重合,求m 的值;(2)横、纵坐标都是整数的点叫做整点; ①当1=m 时,求线段AB 上整点的个数;②若设抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)整点的个数为n ,当1<<8n 时,结合函数的图象,求m 的取值范围.【2017朝阳二模】27.在平面直角坐标系xOy中,抛物线y=mx2—2mx+2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)点C,D在x轴上(点C在点D的左侧),且与点B的距离都为2,若该抛物线与线段CD 有两个公共点,结合函数的图象,求m的取值范围.【2017海淀二模】27.抛物线22=-+-与x轴交于A,B两点(A点在B点的左侧),与y轴交于点C,抛物y x mx m24线的对称轴为x =1. (1)求抛物线的表达式;(2)若CD ∥x 轴,点D 在点C 的左侧,12CD AB =,求点D 的坐标;(3)在(2)的条件下,将抛物线在直线x =t 右侧的部分沿直线x =t 翻折后的图形记为G ,若图形G 与线段CD 有公共点,请直接写出t 的取值范围.【2017东城二模】27。
2017北京市西城区初三数学二模试题及答案(word版)
2017北京市西城区初三数学二模试题及答案(word版)D3. 不等式x-1>0的解集在数轴上表示正确的是(A) (B) (C) (D)4.在一个不透明的袋子里装有5个完全相同的乒乓球,把它们标号分别记为1,2,3,4,5,从中随机摸出一个小球,标号为奇数的概率为(A) 15(B) 25(C) 35(D) 4555(A) 0与1 (B) 1与2 (C) 2与3 (D) 3与46.右图是由射线AB,BC,CD,DE,EA组成的平面图形,若∠1+∠2+∠3+∠4=225°,ED∥AB,则∠1的度数为(A)55°(B)45°(C)35°(D)25°7.已知反比例函数6y x =,当1<x <2时,y 的取值范围是(A) 1<y <3 (B) 2<y <3 (C) 1<y <6 (D) 3<y <68.如图,以点O 为圆心,AB 为直径的半圆经过点C ,若C 为弧AB 的中点,若AB =2,则图中阴影部分的面积是( )(A) 2π (B) 122π+(C) 4π (D) 124π+9. 如图,点A 在观测点的北偏东方向30 °,且与观测点的距离为8千米,将点A 的位置记作A (8,30°),用同样的方法将点B ,点C 的位置分别记作B (8,60°),C (4,60°),则观测点的位置应在(A) O 1 (B)O 2 (C) O 3 (D) O 410.某大型文体活动需要招募一批学生作为志愿者参与服务.已知报名的男生有420人,女生有400人,他们身高在155≤x<175,随机抽取该校男生、女生进行抽样调查.已知该校共有女生400人,男生420人,抽取的样本中,男生比女生多2人,利用所得数据绘制如下统计图表:根据统计图表提供的信息,下列说法中①估计报名者中男生的身高的众数在D组;②估计报名者中女生的身高的中位数在B组;③抽取的样本中,抽取女生的样本容量是38;④估计报名者中身高在160≤x<170之间的学生约有400人其中合理的是(A)①②(B) ) ①④(C)②④(D) ③④二、填空题(本题共18分,每小题3分) 11. 如图, 在长方体中,所有与棱AB 平行的棱是 .12.关于x 的方程240x x k -+=有两个相等的实数根,则k 的值为 .13.如图,正方形ABCD ,AC 为对角线,点E 在AC 上,且AE =AB ,则∠BED 的度数为 °.14. 在平面直角坐标系xOy 中,⊙O 半径是5,点A 为⊙O 上一点,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,若四边形ABOC 面积为12,写出一个符合条件的点A 坐标 .15. 右图是由三个直角三角形组成的梯形,根据图形,A C EMHFD写出一个正确的等式 .16.《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如在计算“当8=x 时,多项式8354323+--x x x 的值”,按照秦九昭算法,可先将多项式8354323+--x x x 一步地进行改写:()8354383543223+--=+--x x x x x x ()[]83543+--=x x x按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少. 计算当8x =时,多项式的值为1008. 请参考上述方法,将多项式3221x x x ++-改写为: ,当8x =时,多项式的值为 .三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17112()4sin 453π----. 18.方程组为1328y x x y =-⎧⎨+=⎩19.已知2340x x --=,求代数式22(1)(1)(3)2x x x x +--++的值.20.列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批的每件进价少了10元,且进货量是第一批进货量的一半,求第一批购进这种衬衫每件进价是多少元.21.如图, 在Rt △ABC 中,∠ABC =90 °,CD 平分∠ACB 交AB 于点D ,DE ⊥AC 于点E , BF ∥DE 交CD 于点F . 求证: DE =BF .22.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ACB=90 °. 对角线AC,BD交于点O,DE平分∠ADC 交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)CD=2,∠COD=60 °.求△BED的面积.23.直线24=-+与x轴交于点A,与y轴交于点B,直线y x=+(k,b是常数,k≠0)经过点A,与y轴交于y kx b点C,且OC=OA.(1)求点A的坐标及k的值;(2)点C在x轴上方,上点P在第一象限,且在直线24=-+上,若PC=PB,求点P的坐标.y x24.阅读下列材料:社会消费品零售总额是指批发和零售业,住宿和餐饮业以及其他行业直接售给城乡居民和社会集团的消费品零售额.在各类与消费有关的统计数据中,社会消费品零售总额是表现国内消费需求最直接的数据.2012年,北京市全年实现社会消费品零售额7702.8.5亿元,比上一年增长11.6%。
北京市各城区中考二模数学——几何综合题24题汇总
图2图1ED C B AA C EDBC EDBC MBC北京市各城区中考二模数学——几何综合题24题汇总1、(门头沟二模)24. 在△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,M 是BC 边中点中点,连接MD 和ME(1)如图24-1所示,若AB=AC ,则MD 和ME 的数量关系是(2)如图24-2所示,若AB ≠AC 其他条件不变,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程;(3) 在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧..作等腰直角三角形,M 是BC 的中点,连接MD 和ME ,请在图24-3中补全图形,并直接判断△MED 的形状.2、(丰台二模)24.如图1,在ABC △中,90ACB ∠=°,2BC =,∠A=30°,点E ,F 分别是线段BC ,AC 的中点,连结EF .(1)线段BE 与AF 的位置关系是________, AFBE =________.(2)如图2,当CEF △绕点C 顺时针旋转α时(0180α<<),连结AF ,BE ,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当CEF △绕点C 顺时针旋转α时(0180α<<),延长FC 交AB 于点D ,如果63AD =-α的度数.3、(平谷二模)24.(1)如图1,在四边形ABCD 中,∠B =∠C =90°,E 为BC 上一点,且CE =AB ,BE =CD ,连结AE 、DE 、AD ,则△ADE 的形状是_________________________.(2)如图2,在90ABC A ∆∠=︒中,,D 、E 分别为AB 、AC 上的点,连结BE 、CD ,两线交于点P .①当BD=AC ,CE=AD 时,在图中补全图形,猜想BPD ∠的度数并给予证明. ②当3BD CEAC AD==时, BPD ∠的度数____________________.4、(顺义二模) 24.在△ABC 中, AB = AC ,∠A =30︒,将线段 BC 绕点 B 逆时针旋转 60︒得到线段 BD ,再将线段BD 平移到EF ,使点E 在AB 上,点F 在AC 上. (1)如图 1,直接写出 ∠ABD 和∠CFE 的度数; (2)在图1中证明: A E =CF ; (3)如图2,连接 CE ,判断△CEF 的形状并加以证明.5、(石景山二模)24.将△ABC 绕点A 顺时针旋转α得到△ADE ,DE 的延长线与BC 相交于点F ,连接AF .(1)如图1,若BAC ∠=α=︒60,BF DF 2=,请直接写出AF 与BF 的数量 关系;(2)如图2,若BAC ∠<α=︒60,BF DF 3=,猜想线段AF 与BF 的数量关 系,并证明你的猜想;(3)如图3,若BAC ∠<α,图2A BCDEF F EDBA DEAAFA图24-1图24-2图24-3EQPDCB AmBF DF =(m 为常数),请直接写出BFAF的值 (用含α、m 的式子表示). 解:6、(海淀二模)24.在ABC △中,90ABC ∠=,D 为平面内一动点,AD a =,AC b =,其中a , b 为常数,且 a b <. 将ABD △沿射线BC 方向平移,得到FCE △,点A 、B 、D 的对应点分别为点F 、C 、E .连接BE .(1)如图1,若D 在ABC △内部,请在图1中画出FCE △;(2)在(1)的条件下,若AD BE ⊥,求BE 的长(用含, a b 的式子表示);(3)若=BAC α∠,当线段BE 的长度最大时,则BAD ∠的大小为__________;当线段BE 的长度最小时,则BAD ∠的大小为_______________(用含α的式子表示).图1 备用图7、(西城二模)24.在△ABC ,∠BAC 为锐角,AB >AC , AD 平分∠BAC 交BC 于点D .(1)如图1,若△ABC 是等腰直角三角形,直接写出线段AC ,CD ,AB 之间的数量关系;(2)BC 的垂直平分线交AD 延长线于点E ,交BC 于点F .①如图2,若∠ABE =60°,判断AC ,CE ,AB 之间有怎样的数量关系并加以证明;②如图3,若3AC AB +,求∠BAC 的度数.8、(通州二模)23.已知:△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ),点E 、F 分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 于点G .(1)如图l ,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF =12∠BAF ,AF =23AD ,请你判断线段FM 和FN 之间的数量关系,并证明你的判断是正确的.9、(东城二模)24.如图,等腰Rt △ABC 中,∠ACB =90°,AC =BC =4,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE ⊥AB 于E ,连接PQ 交AB 于D .(1)当∠BQD =30°时,求AP 的长;(2)当运动过程中线段ED 的长是否发生变化?如果不变,求出AB CDAB D图1 图2图3ABCDE F FEDCBAFEDCBAGFBD ENG FDBA EM图2线段ED 的长;如果变化请说明理由;(3)在整个运动过程中,设AP 为x ,BD 为y ,求y 关于x 的函数关系式,并求出当△BDQ为等腰三角形时BD 的值.10、(朝阳二模)24. 已知∠ABC =90°,D 是直线AB 上的点,AD =BC .(1)如图1,过点A 作AF ⊥AB ,并截取AF =BD ,连接DC 、DF 、CF ,判断△CDF 的形状并证明;(2)如图2,E 是直线BC 上的一点,直线AE 、CD 相交于点P ,且∠APD =45°,求证BD =CE .11、(密云二模)24.已知等腰Rt ABC ∆和等腰Rt AED ∆中,∠ACB=∠AED=90°,且AD=AC (1)发现:如(图1),当点E 在AB 上且点C 和点D 重合时,若点M 、N 分别是DB 、EC 的中点,则MN 与EC 的位置关系是 ,MN 与EC 的数量关系是(2)探究:若把(1)小题中的△AED 绕点A 旋转一定角度,如(图2)所示,连接BD 和EC,并连接DB 、EC 的中点M 、N,则MN 与EC 的位置关系和数量关系仍然能成立吗?若成立,以顺时针旋转45°得到的图形(图3)为例给予证明数量关系成立,若不成立,请说明理由;请以逆时针旋转45°得到的图形(图4)为例给予证明位置关系成立,12、(延庆二模)13、(房山二模) 24. 边长为2的正方形ABCD 的两顶点A 、C 分别在正方形EFGH 的两边DE 、DG 上(如图1),现将正方形ABCD 绕D 点顺时针旋转,当A 点第一次落在DF 上时停止旋转,旋转过程中,AB 边交DF 于点M ,BC 边交DG 于点N . (1)求边DA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时(如图2),求正方形ABCD 旋转的度数;(3)如图3,设MBN ∆的周长为p ,在旋转正方形ABCD 的过程中,p 值是否有变化?请证明你的结论.14、(昌平二模)24.【探究】如图1,在△ABC 中, D 是AB 边的中点,AE ⊥BC 于点E ,BF⊥AC 于点F ,AE ,BF 相交于点M ,连接DE ,DF . 则DE ,DF 的数量关系为 .【拓展】如图2,在△ A B C 中 ,C B = C A ,点 D 是AB 边的 中点 ,点M 在 △ A B C 的内部 ,且 ∠MBC =∠MAC . 过点M 作ME ⊥BC 于点E ,MF ⊥AC 于点F ,连接DE ,DF . 求证:DE =DF ;【推广】如图3,若将上面【拓展】中的条件“CB =CA ”变为“CB ≠CA ”,其他条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.ADB EC M FADBE CMF MABCDF E图3图2图1P EC 图2 C B 图115、(怀柔二模)24.已知△ABC是等边三角形,E是AC边上一点,F是BC边延长线上一点,且CF=AE,连接BE、EF.(1)如图1,若E是AC边的中点,猜想BE与EF的数量关系为 .(2)如图2,若E是线段AC上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发生变化,写出你的猜想并加以证明.(3)如图3,若E是线段AC延长线上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发生变化,写出你的猜想并加以证明.16、(大兴二模)25. 已知:E是线段AC上一点,AE=AB,过点E作直线EF,在EF上取一点D,使得∠EDB=∠EAB,联结AD.(1)若直线EF与线段AB相交于点P,当∠EAB=60°时,如图1,求证:ED =AD+BD;(2)若直线EF与线段AB相交于点P,当∠EAB= α(0º﹤α﹤90º)时,如图2,请你直接写出线段ED、AD、BD之间的数量关系(用含α的式子表示);(3)若直线EF与线段AB不相交,当∠EAB=90°时,如图3,请你补全图形,写出线段ED、AD、BD之间的数量关系,并证明你的结论. 17、(燕山二模)24.如图1,已知ABC∆是等腰直角三角形,︒=∠90BAC,点D是BC 的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系是;(2)将正方形DEFG绕点D逆时针方向旋转)3600(︒≤<︒αα,①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若4==DEBC,当AE取最大值时,求AF的值.图1 图2ABEF图AB CEF图ABCEF图3FGED CAB BACDEGF。
北京市海淀区2017年中考二模数学试题及答案.pdf
C
A . y 2x
B. y 3x 1
2
C. y x
1 D. y
x
9.如图,在等边三角形三个顶点和中心处的每个
―○中‖各填有一个式子,
若图中任意三个 ―○中‖的式子之和均相等,则 a 的值为
A.3 C.1
B.2 D.0
3a
b
2a
2
10.利用量角器可以制作 ―锐角正弦值速查卡 ‖.制作方法如下:如图,设 OA=1 ,以 O 为圆 心,分别以 0.05, 0.1, 0.15, 0.2, …, 0.9, 0.95 长为半径作半圆,再以 OA 为直径作
2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共 30 分,每小题 3 分) 下面各题均有四个选项,其中只有一个 ..是符合题意的.请将正确选项填涂在答题卡相
应的位置.
1.如图,用圆规比较两条线段 A B 和 AB 的长短,其中正确的是
⊙ M .利用 ―锐角正弦值速查卡 ‖可以读出相应锐角正弦的近似值. 例如: sin 60 0.87 ,
sin 45 0.71 .下列角度中正弦值最接近 0.94 的是
70 80 90 100 110
60 110 100 1 A 80 70 120
50 120
0.960 ຫໍສະໝຸດ 30130 400.8
50 140
C.D 5
D.F7
6.在单词 happy 中随机选择一个字母,选到字母为 p 的概率是
1 A.
5
2 B.
5
3 C.
5
4 D.
5
7.如图, OA 为⊙ O 的半径,弦 BC⊥ OA 于 P 点.若 OA=5, AP=2,则弦 BC 的长为
【配套K12】北京市通州区2017年中考数学二模试卷(含解析)
2017年北京市通州区中考数学二模试卷一、选择题(共10小题,每小题3分,满分30分)1.大运河森林公园位于北京市通州区的北运河两侧,占地面积约为10700亩,公园沿水系长达8公里,分别建有潞河桃柳、月岛闻莺、明镜移舟等六大景区和长虹花雨、半山人家、皇木古渡等十八处景点.将10700用科学记数法表示应为()A.1.07×104B.10.7×103C.1.07×105D.0.107×1052.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是()A.a B.b C.c D.d3.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.4.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=∠2=36°,则∠3的度数为()A.60° B.90° C.108°D.150°5.如图多边形ABCDE的内角和是()A.360°B.540°C.720°D.900°6.下列图形中,正方体展开后得到的图形不可能是()A.B.C.D.7.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1,S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A.S1<S2B.S1>S2C.S1=S2 D.S1≥S28.甲、乙、丙三车从A城出发匀速前往B城.在整个行程中,汽车离开A城的距离s与时刻t的对应关系如图所示.那么8:00时,距A城最远的汽车是()A.甲车 B.乙车 C.丙车 D.甲车和乙车9.如图,直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移2个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是()A.(3,﹣1)B.(1,﹣3)C.(﹣2,﹣1)D.(2+1,2+1)10.甲,乙,丙三种作物,分别在山脚,山腰和山顶三个试验田进行试验,每个试验田播种二十粒种子,农业专家将每个试验田成活的种子个数统计如条形统计图,如图所示,下面有四个推断:①甲种作物受环境影响最小;②乙种作物平均成活率最高;③丙种作物最适合播种在山腰;④如果每种作物只能在一个地方播种,那么山脚,山腰和山顶分别播种甲,乙,丙三种作物能使得成活率最高.其中合理的是()A.①③ B.①④ C.②③ D.②④二、填空题(本题共18分,每小题3分)11.分解因式:a3﹣4a= .12.若把代数式x2﹣4x﹣5化成(x﹣m)2+k的形式,其中m,k为常数,则m+k= .13.2002年8月,在北京召开国际数学家大会,大会的会标取材于我国古代数学家赵爽的《勾股圆方图》.其中的“弦图”是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,如图所示.如果直角三角形的直角边分别为a,b(a>b),斜边为c,那么小正方形的面积可以表示为.14.某班学生分组做抛掷同一型号的一枚图钉的实验,大量重复实验的结果统计如下表:(顶尖朝上频率精确到 0.001)根据表格中的信息,估计掷一枚这样的图钉落地后顶尖朝上的概率为.15.如图,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为.16.阅读下面材料:尺规作图:作一条线段等于已知线段.已知:线段AB.求作:线段CD,使CD=AB.在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:()﹣2+(π+)0﹣|2﹣|+3tan30°.18.已知3a2+2a+1=0,求代数式2a(1﹣3a)+(3a+1)(3a﹣1)的值.19.解方程组:.20.如图,在四边形ABCD中,∠A=∠B,CB=CE.求证:CE∥AD.21.在平面直角坐标系xOy中,直线y=2x+1与双曲线y=的一个交点为A(m,﹣3).(1)求双曲线的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y=的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.22.如图,在菱形ABCD中,CE垂直对角线AC于点C,AB的延长线交CE于点E.(1)求证:CD=BE;(2)如果∠E=60°,CE=m,请写出求菱形ABCD面积的思路.23.某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.24.如图,AB是⊙O的直径,PC切⊙O于点C,AB的延长线与PC交于点P,PC的延长线与AD交于点D,AC平分∠DAB.(1)求证:AD⊥PC;(2)连接BC,如果∠ABC=60°,BC=2,求线段PC的长.25.阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012﹣2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是 亿元(结果精确到1亿元),并补全条形统计图;(2)截至2015年底,约有5亿网民使用互联网进行学习,互联网学习用户的年龄分布如图所示,请你补全扇形统计图,并估计7﹣17岁年龄段有 亿网民通过互联网进行学习; (3)根据以上材料,写出你的思考、感受或建议(一条即可). 26.有这样一个问题:探究函数y=﹣x 的图象与性质.小东根据学习函数的经验,对函数y=﹣x 的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题: (1)函数y=﹣x 的自变量x 的取值范围是 ;(2)下表是y 与x 的几组对应值,求m 的值;(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(﹣2,),结合函数的图象,写出该函数的其它性质(一条即可) . (5)根据函数图象估算方程﹣x=2的根为 .(精确到0.1)27.已知:二次函数y=2x2+4x+m﹣1,与x轴的公共点为A,B.(1)如果A与B重合,求m的值;(2)横、纵坐标都是整数的点叫做整点;①当m=1时,求线段AB上整点的个数;②若设抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)整点的个数为n,当1<n<8时,结合函数的图象,求m的取值范围.28.在△ABC中,AB=BC,∠ABC=90°.以AB为斜边作等腰直角三角形ADB.点P是直线DB 上一个动点,连接AP,作PE⊥AP交BC所在的直线于点E.(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证:PA=PE;(3)点P在DB的延长线上,依题意,将图3补全,并判断PA=PE是否仍然成立.29.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A 到图形G的距离跨度为R=D﹣d.(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:A(1,0)的距离跨度;B(﹣,)的距离跨度;C(﹣3,﹣2)的距离跨度;②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是.(2)如图2,在平面直角坐标系xOy中,图形G2为以D(﹣1,0)为圆心,2为半径的圆,直线y=k(x﹣1)上存在到G2的距离跨度为2的点,求k的取值范围.(3)如图3,在平面直角坐标系xOy中,射线OP:y=x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,直接写出圆心E的横坐标x E的取值范围.2017年北京市通州区中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.大运河森林公园位于北京市通州区的北运河两侧,占地面积约为10700亩,公园沿水系长达8公里,分别建有潞河桃柳、月岛闻莺、明镜移舟等六大景区和长虹花雨、半山人家、皇木古渡等十八处景点.将10700用科学记数法表示应为()A.1.07×104B.10.7×103C.1.07×105D.0.107×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将10700用科学记数法表示为:1.07×104.故选:A.2.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最小的是()A.a B.b C.c D.d【考点】2A:实数大小比较;29:实数与数轴.【分析】哪个数在数轴上的对应点离原点越近,则哪个数的绝对值越小,据此判断出这四个数中,绝对值最小的是哪个即可.【解答】解:∵数b表示的点离原点最近,∴这四个数中,绝对值最小的是b.故选:B.3.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A .B .C .D .【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解. 【解答】解:A 、不是轴对称图形,故本选项错误; B 、不是轴对称图形,故本选项错误; C 、不是轴对称图形,故本选项错误; D 、是轴对称图形,故本选项正确. 故选D .4.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=∠2=36°,则∠3的度数为( )A .60°B .90°C .108°D .150°【考点】JA :平行线的性质.【分析】根据平行线的性质和三角形的内角和即可得到结论. 【解答】解:∵直线l 4∥l 1, ∴∠4=∠1=36°, ∵∠2=36°,∴∠3=180°﹣∠4﹣∠2=108°, 故选C .5.如图多边形ABCDE 的内角和是( )A.360°B.540°C.720°D.900°【考点】L3:多边形内角与外角.【分析】根据多边形的内角和,可得答案.【解答】解:多边形ABCDE的内角和是(5﹣2)×180°=540°,故选:B.6.下列图形中,正方体展开后得到的图形不可能是()A.B.C.D.【考点】I6:几何体的展开图.【分析】根据正方体的特征,或者熟记正方体的11种展开图求解.【解答】解:根据分析可得:A、B、C这三个图属于正方体展开图,能够折成一个正方体;而D图不是正方体展开图.故选:D.7.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1,S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A.S1<S2B.S1>S2C.S1=S2 D.S1≥S2【考点】VD:折线统计图;W7:方差.【分析】各数据与平均值的离散程度越大,稳定性就越小;反之,各数据与其平均值的离散程度越小,稳定性就越好.【解答】解:根据图形可得,小明、小华两名射箭运动员在某次测试中各射箭10次所得的成绩中,小明的成绩与平均成绩离散程度小,而小华的成绩与平均成绩离散程度大,故S1<S2故选:A.8.甲、乙、丙三车从A城出发匀速前往B城.在整个行程中,汽车离开A城的距离s与时刻t的对应关系如图所示.那么8:00时,距A城最远的汽车是()A.甲车 B.乙车 C.丙车 D.甲车和乙车【考点】E6:函数的图象.【分析】根据图象解答即可.【解答】解:8:00时,距A城最远的汽车是乙车,故选B9.如图,直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移2个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是()A.(3,﹣1)B.(1,﹣3)C.(﹣2,﹣1)D.(2+1,2+1)【考点】Q3:坐标与图形变化﹣平移.【分析】根据题意画出图形,利用平移的特征结合图形即可求解.【解答】解:如图,由题意,可得O1M=O1N=1.∵将点O1平移2个单位长度到点O2,∴O1O2=2,O1P=O2P=2,∴PM=3,∴点A的坐标是(3,﹣1).故选A.10.甲,乙,丙三种作物,分别在山脚,山腰和山顶三个试验田进行试验,每个试验田播种二十粒种子,农业专家将每个试验田成活的种子个数统计如条形统计图,如图所示,下面有四个推断:①甲种作物受环境影响最小;②乙种作物平均成活率最高;③丙种作物最适合播种在山腰;④如果每种作物只能在一个地方播种,那么山脚,山腰和山顶分别播种甲,乙,丙三种作物能使得成活率最高.其中合理的是()A.①③ B.①④ C.②③ D.②④【考点】VC:条形统计图.【分析】根据条形统计图中提供的数据进行计算,即可得到农作物的成活数量以及三种作物平均成活率,根据农作物的成活数量判断播种的位置即可.【解答】解:由图可得,乙种作物受环境影响最小,故①错误;甲种作物平均成活率为15,乙种作物平均成活率为16,丙种作物平均成活率约为15.67,故乙种作物平均成活率最高,故②正确;丙种作物最适合播种在山脚,故③错误;如果每种作物只能在一个地方播种,那么山脚,山腰和山顶分别播种甲,乙,丙三种作物能使得成活率最高,故④正确.故选:D.二、填空题(本题共18分,每小题3分)11.分解因式:a3﹣4a= a(a+2)(a﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)12.若把代数式x2﹣4x﹣5化成(x﹣m)2+k的形式,其中m,k为常数,则m+k= ﹣7 .【考点】AE:配方法的应用.【分析】根据配方法的步骤先把x2﹣4x﹣5的形式,求出m,k的值,再代入进行计算即可.【解答】解:x2﹣4x﹣5=(x﹣2)2﹣9,所以m=2,k=﹣9,所以m+k=2﹣9=﹣7.故答案是:﹣7.13.2002年8月,在北京召开国际数学家大会,大会的会标取材于我国古代数学家赵爽的《勾股圆方图》.其中的“弦图”是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,如图所示.如果直角三角形的直角边分别为a,b(a>b),斜边为c,那么小正方形的面积可以表示为c2﹣2ab .【考点】KR:勾股定理的证明.【分析】小正方形的面积=大正方形的面积﹣4个直角三角形的面积.【解答】解:依题意得:小正方形的面积=c2﹣4×ab=c2﹣2ab.故答案是:c2﹣2ab.14.某班学生分组做抛掷同一型号的一枚图钉的实验,大量重复实验的结果统计如下表:(顶尖朝上频率精确到 0.001)根据表格中的信息,估计掷一枚这样的图钉落地后顶尖朝上的概率为0.530 .【考点】X8:利用频率估计概率.【分析】根据用频率估计概率解答即可.【解答】解:观察发现,随着实验次数的增多,顶尖朝上的频率逐渐稳定到常数0.530,故掷一枚这样的图钉落地后顶尖朝上的概率为0.530.故答案为:0.530.15.如图,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为 1.5 .【考点】KA:全等三角形的性质;LB:矩形的性质.【分析】先根据条件判定四边形ABCD是矩形,再根据矩形的性质可得OD=BD=AC=1.5,【解答】解:如图,连接AD,∵Rt△ABC≌Rt△DCB,∴∠ABC=∠BCD=90°,且AB=CD,∴AB∥CD,∴四边形ABCD是矩形,∴OD=BD=AC=1.5,故答案为:1.516.阅读下面材料:尺规作图:作一条线段等于已知线段.已知:线段AB.求作:线段CD,使CD=AB.在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是圆的半径相等.【考点】N2:作图—基本作图.【分析】利用圆的半径相等可判断CD=AB.【解答】解:小亮的作图依据为圆的半径相等.故答案为圆的半径相等.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:()﹣2+(π+)0﹣|2﹣|+3tan30°.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=4+1﹣2++=3+2.18.已知3a2+2a+1=0,求代数式2a(1﹣3a)+(3a+1)(3a﹣1)的值.【考点】4J:整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵3a2+2a+1=0,∴原式=2a﹣6a2+9a2﹣1=3a2+2a﹣1=﹣1﹣1=﹣2.19.解方程组:.【考点】98:解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,解得:x=1,把x=1代入①得:y=﹣3,则方程组的解为.20.如图,在四边形ABCD中,∠A=∠B,CB=CE.求证:CE∥AD.【考点】J9:平行线的判定.【分析】先根据等边对等角,得出∠B=∠CEB,再根据等量代换,即可得出∠A=∠CEB,进而判定CE∥AD.【解答】证明:∵CB=CE,∴∠B=∠CEB,又∵∠A=∠B,∴∠A=∠CEB,∴CE∥AD.21.在平面直角坐标系xOy中,直线y=2x+1与双曲线y=的一个交点为A(m,﹣3).(1)求双曲线的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+1和双曲线y=的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据点A的纵坐标利用一次函数图象上点的坐标特征,可求出点A的坐标,根据点A的坐标利用待定系数法,即可求出双曲线的表达式;(2)依照题意画出函数图象,根据两函数图象的上下位置关系,即可找出n的取值范围.【解答】解:(1)当y=2x+1=﹣3时,x=﹣2,∴点A的坐标为(﹣2,﹣3),将点A(﹣2,﹣3)代入y=中,﹣3=,解得:k=6,∴双曲线的表达式为y=.(2)依照题意,画出图形,如图所示.观察函数图象,可知:当﹣2<x<0时,直线y=2x+1在双曲线y=的上方,∴当点B位于点C上方时,n的取值范围为﹣2<x<0.22.如图,在菱形ABCD中,CE垂直对角线AC于点C,AB的延长线交CE于点E.(1)求证:CD=BE;(2)如果∠E=60°,CE=m,请写出求菱形ABCD面积的思路.【考点】L8:菱形的性质.【分析】(1)连接BD.只要证明四边形CDBE是平行四边形即可解决问题;(2)求出菱形的对角线即可解决问题;【解答】(1)证明:连接BD.∵四边形ABCD是菱形,∴BD⊥AC,CD∥AB,∵CE⊥AC,∴CE∥BD,∴四边形BECE为平行四边形,∴CD=BE.(2)求菱形ABCD面积的思路:只要求出对角线AC、BD即可.BD可以利用四边形CDBE是平行四边形求得,AC 在Rt△ACE中,AC=EC求得.S=•AC•BD.23.某校组织同学到离校15千米的社会实践基地开展活动.一部分同学骑自行车前往,另一部分同学在骑自行车的同学出发小时后,乘汽车沿相同路线行进,结果骑自行车的与乘汽车的同学同时到达目的地.已知汽车速度是自行车速度的3倍,求自行车的速度.【考点】B7:分式方程的应用.【分析】设自行车的速度为x千米/小时,则汽车的速度为3x千米/小时,根据时间=路程÷速度结合骑车和乘骑车两种交通方式所需时间之间的关系,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设自行车的速度为x千米/小时,则汽车的速度为3x千米/小时,根据题意得:﹣=,解得:x=15,经检验,x=15是原分式方程的解.答:自行车的速度是15千米/小时.24.如图,AB是⊙O的直径,PC切⊙O于点C,AB的延长线与PC交于点P,PC的延长线与AD交于点D,AC平分∠DAB.(1)求证:AD⊥PC;(2)连接BC,如果∠ABC=60°,BC=2,求线段PC的长.【考点】MC:切线的性质.【分析】(1)连接OC,根据角平分线的定义得到∠DAC=∠BAC,根据等腰三角形的性质得到∠OAC=∠ACO,推出AD∥OC,于是得到结论;(2)根据已知条件得到△BOC是等边三角形,解直角三角形即可得到结论.【解答】解:(1)连接OC,∵AC平分∠DAB,∴∠DAC=∠BAC,∵OA=OC,∴∠OAC=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∵PC切⊙O于点C,∴OC⊥PC,∴AD⊥PC;(2)∵∠ABC=60°,OC=OB,∴△BOC是等边三角形,∴OC=2,∴∠COP=60°,∵PC切⊙O于点C,∴∠OCP=90°,∴PC=2.25.阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012﹣2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是1610 亿元(结果精确到1亿元),并补全条形统计图;(2)截至2015年底,约有5亿网民使用互联网进行学习,互联网学习用户的年龄分布如图所示,请你补全扇形统计图,并估计7﹣17岁年龄段有 1.6 亿网民通过互联网进行学习;(3)根据以上材料,写出你的思考、感受或建议(一条即可).【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据条形统计图和折线统计图可以求得2015年互联网教育市场规模,然后即可把条形统计图补充完整;(2)根据扇形统计图可以求得7﹣17岁年龄段所占的比例,从而可以将扇形统计图补充完整,根据5亿网民使用互联网进行学习,可以求得7﹣17岁年龄段的人数;(3)根据要求说的只要合理即可.【解答】解:(1)由题意可得,2015年互联网教育市场规模是:1220×(1+32%)=1610.4≈1610亿,故答案为:1610,补全的条形统计图如下图1所示,(2)由扇形统计图可得,7﹣17岁年龄段使用互联网学习所占的比例为:1﹣56%﹣3%﹣9%=32%,补全的扇形统计图如下图2所示,7﹣17岁年龄段使用互联网学习人数为:5×32%=1.6亿,故答案为:1.6;(3)互联网与我们的生活学习越来越密切,我们运用互联网可以获得很多有用的信息,在今后的生活学习中我们要更好的运用互联网,使我们的生活更加丰富多彩.26.有这样一个问题:探究函数y=﹣x的图象与性质.小东根据学习函数的经验,对函数y=﹣x的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:(1)函数y=﹣x的自变量x的取值范围是x≠0 ;(2)下表是y与x的几组对应值,求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(﹣2,),结合函数的图象,写出该函数的其它性质(一条即可)当x>0时,y随x的增大而减小.(5)根据函数图象估算方程﹣x=2的根为x1=﹣3.8,x2=﹣1.8 .(精确到0.1)【考点】HB:图象法求一元二次方程的近似根;G4:反比例函数的性质;H2:二次函数的图象;H3:二次函数的性质.【分析】(1)根据分母不为零分式有意义,可得答案;(2)根据自变量与函数值得对应关系,可得答案;(3)根据描点法画函数图象,可得答案;(4)根据图象的变化趋势,可得答案;(5)根据图象,可得答案.【解答】解:(1)函数y=﹣x的自变量x的取值范围是:x≠0,故答案为:x≠0;(2)把x=4代入y=﹣x得,y=﹣×4=﹣,∴m=﹣,(3)如图所示,(4)当x>0时,y随x的增大而减小;故答案为当x>0时,y随x的增大而减小;(5)由图象,得x1=﹣3.8,x2=﹣1.8.故答案为:x1=﹣3.8,x2=﹣1.8.27.已知:二次函数y=2x2+4x+m﹣1,与x轴的公共点为A,B.(1)如果A与B重合,求m的值;(2)横、纵坐标都是整数的点叫做整点;①当m=1时,求线段AB上整点的个数;②若设抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)整点的个数为n,当1<n<8时,结合函数的图象,求m的取值范围.【考点】HA:抛物线与x轴的交点;H5:二次函数图象上点的坐标特征.【分析】(1)当A、B重合时,抛物线与x轴只有一个交点,此时△=0,从可求出m的值.(2)①m=1代入抛物线解析式,然后求出该抛物线与x轴的两个交点的坐标,从而可求出线段AB上的整点;②根据二次函数表达式可以用带m表达出两根之差,根据1<两根之差<8,即可解题.【解答】解:(1)∵A与B重合,∴二次函数y=2x2+4x+m﹣1的图象与x轴只有一个公共点,∴方程2x2+4x+m﹣1=0有两个相等的实数根,∴△=42﹣4×2(m﹣1)=24﹣8m=0,解得:m=3.∴如果A与B重合,m的值为3.(2)①当m=1时,原二次函数为y=2x2+4x+m﹣1=2x2+4x,令y=2x2+4x=0,则x1=0,x2=﹣2,∴线段AB上的整点有(﹣2,0)、(﹣1,0)和(0,0).故当m=1时,线段AB上整点的个数有3个.②由点A,B之间的部分与线段AB所围成的区域内(包括边界)可用以下不等式表示(3)如图,y=2x2+4x+m﹣1=0时,二次函数求根公式可得x;∴两个根之差为==;∵整点的个数为n,当1<n<8时,1<<8;解得:﹣29<m.28.在△ABC中,AB=BC,∠ABC=90°.以AB为斜边作等腰直角三角形ADB.点P是直线DB 上一个动点,连接AP,作PE⊥AP交BC所在的直线于点E.(1)如图1,点P在BD的延长线上,PE⊥EC,AD=1,直接写出PE的长;(2)点P在线段BD上(不与B,D重合),依题意,将图2补全,求证:PA=PE;(3)点P在DB的延长线上,依题意,将图3补全,并判断PA=PE是否仍然成立.【考点】KY:三角形综合题.【分析】(1)根据等腰直角三角形的性质得到∠ABP=45°,根据勾股定理得到AB==,推出四边形ABEP是矩形,得到四边形ABEP是正方形,于是得到结论;(2)根据等腰直角三角形的性质得到∠ADB=90°,∠DAB=∠DBA=45°,求得∠PBN=45°过P作PM⊥AB于点M,过P作PN⊥BC于点N,于是得到PM=PN,∠BPN=45°根据全等三角形的性质即可得到结论;(3)根据等腰直角三角形的性质得到∠ABD=45°,得到∠PBN=45°,∠ABC=90°,过P作PM⊥AB于点M,过P作PN⊥BC于点N,得到四边形BMPN是矩形,推出四边形BMPN是正方形,得到PM=PN,根据全等三角形的性质即可得到结论.【解答】解:(1)∵AD=DB=1,∠ADB=90°,∴∠ABP=45°,AB==,∵PE⊥AP,AB⊥BC,∴PA∥EC,∴PA⊥AB,∴四边形ABEP是矩形,∵∠ABP=45°,∴PA=AB,∴四边形ABEP是正方形,∴PE=AB=(2)∵△ABC和△ADB是等腰直角三角形,∴∠ADB=90°,∠DAB=∠DBA=45°,∴∠PBN=45°∴PE⊥AP,∠DAP=∠BPE=90°﹣∠DPA,∵∠PAM=45°﹣∠DAP,∠PEN=45°﹣∠BPE,∴∠PAM=∠PEN,过P作PM⊥AB于点M,过P作PN⊥BC于点N,则PM=PN,∠BPN=45°,在△APM和△EPN中,,∴△APM≌△EPN,∴PA=PE;(3)∵△ABC和△ADB是等腰直角三角形,∴∠ABD=45°,∴∠PBN=45°,∠ABC=90°,过P作PM⊥AB于点M,过P作PN⊥BC于点N,则四边形BMPN是矩形,∵∠NBP=45°,∴四边形BMPN是正方形,∴PM=PN,∵AB⊥BC,∴∠BAN=∠APN,∵AP⊥PE,∴∠APN=∠E,∴∠BAP=∠E,在△AMP与△ENP中,,∴△AMP≌△ENP,∴AP=PE.29.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A 到图形G的距离跨度为R=D﹣d.(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:A(1,0)的距离跨度 2 ;B(﹣,)的距离跨度 2 ;C(﹣3,﹣2)的距离跨度 4 ;②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是圆.(2)如图2,在平面直角坐标系xOy中,图形G2为以D(﹣1,0)为圆心,2为半径的圆,直线y=k(x﹣1)上存在到G2的距离跨度为2的点,求k的取值范围.(3)如图3,在平面直角坐标系xOy中,射线OP:y=x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,直接写出圆心E的横坐标x E的取值范围﹣1≤x E≤2 .。
2017北京中考数学各区二模26题汇编
()(1) 当k =1时,使得原等式成立的x 的个数为 _______; (2) 当0<k <1时,使得原等式成立的x 的个数为_______; (3) 当k >1时,使得原等式成立的x 的个数为 _______. 参考小明思考问题的方法,解决问题:关于x 的不等式240 ()x a a x+-<>0只有一个整数解,求a 的取值范围. 26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=CDEACB ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于,线段CD 与线段 的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题:在Rt △OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠.请写出画图步骤,并在答题卡上完成相应的画图过程.(画一个即可,保留痕迹,不必证明)26 .阅读材料如图1,若点P 是⊙O 外的一点,线段PO 交⊙O 于点A,则PA 长是点P 与⊙O 上各点之间的最短距离.图1 图2 证明:延长PO 交⊙O 于点B ,显然PB>PA .如图2,在⊙O 上任取一点C (与点A ,B 不重合),连结PC ,OC .,,,,PO PC OC PO PA OA OA OC PA PC <+=+=∴<且∴PA 长是点P 与⊙O 上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差. 请用上述真命题解决下列问题.(1)如图3,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于D ,P 是上的一个动点,连接AP ,则AP 长的最小值是.图3(2)如图4,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△MN A ',连接C A ',①求线段A ’M 的长度; ②求线段C A '长的最小值. 图426.问题背景:在△ABC 中,AB ,BC ,AC,小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC 的高,借用网格就能计算出它的面积.CBA图1 图2 (1)请你直接写出△ABC 的面积________; 26.阅读下面材料:小玲遇到这样一个问题:如图1,在等腰三角形ABC 中,AC AB =,︒=∠45BAC ,22=BC ,BC AD ⊥于点D ,求AD 的长.图3小玲发现:分别以AB ,AC 为对称轴,分别作出△ABD ,△ACD 的轴对称图形,点D 的对称点分别为E ,F ,延长EB ,FC 交于点G ,得到正方形AEGF ,根据勾股定理和正方形的性质就能求出AD 的长.(如图2) 请回答:BG 的长为,AD 的长为; 参考小玲思考问题的方法,解决问题:如图3,在平面直角坐标系xOy 中,点()0,3A ,()4,0B ,点P 是△OAB 的外角的角平分线AP和BP 的交点,求点P 的坐标. E FB图1 图226.阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O , AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为 (用含a 、b 、α的式子表示).26.【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tan α=13,求sin2α的值.小娟是这样解决的:如图1,在⊙O 中,AB 是直径,点C 在⊙O 上,∠BAC =α,所以∠ACB =90°,tan α=BC AC =13. 易得∠BOC =2α.设BC =x ,则AC =3x ,则AB.作CD ⊥AB 于D ,求出CD = (用含x 的式子表示),可求得sin2α=CDOC= . 【问题解决】已知,如图2,点M 、N 、P 为圆O 上的三点,且∠P =β,tan β =12,求sin2β的值.图1图2图3图1图226. 如图,在平面直角坐标系xOy 中,矩形ABCD 各边都平行于坐标轴,且A (-2,2),C (3,-2).对矩形ABCD 及其内部的点进行如下操作:把每个点的横坐标乘以a ,纵坐标乘以b ,将得到的点再向右平移k (0k >)个单位,得到矩形''''A B C D 及其内部的点(''''A B C D 分别与ABCD 对应).E (2,1)经过上述操作后的对应点记为'E .(1)若a =2,b =-3,k =2,则点D 的坐标为 ,点'D 的坐标为 ; (2)若'A (1,4),'C (6,-4),求点'E 的坐标.26.阅读下面的材料:小明遇到一个问题:如图1,在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G . 如果3AF EF =,求CDCG的值. 他的做法是:过点E 作EH ∥AB 交BG 于点H ,那么可以得到△BAF ∽△HEF . 请回答:(1)AB 和EH 之间的数量关系是 ,CG 和EH 之间的数量关系是 ,CDCG的值为 . (2)参考小明思考问题的方法,解决问题:如图2,在四边形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F .如果2ABCD=,2BC AFH G F ECD BAFECB A D图1 图2个角度26.在平面内,将一个图形G 以任意点O 为旋转中心,逆时针...旋转一θ,得到图形'G ,再以O 为中心将图形'G 放大或缩小得到图形''G ,使图形''G 与图形G 对应线段的比为k ,并且图形G 上的任一点P ,它的对应点''P 在线段'OP 或其延长线上;我们把这种图形变换叫做旋转相似变换,记为()O θ,k ,其中点O 叫做旋转相似中心,θ叫做旋转角,k 叫做相似比. 如图1中的线段''OA 便是由线段OA 经过()302︒O ,得到的.(1)如图2,将△A B C 经过☆ ()901,︒后得到△'''A B C ,则横线上“☆”应填下列四个点()00O ,、()01D ,、()0E ,-1、()12C ,中的点 .(2)如图3,△ADE 是△ABC 经过()A θ,k 得到的,90︒=EAB ∠,12cos EAC =∠ 则这个图形变换可以表示为(),A .26.如图1,在□ABCD 中,点E 是BC 边上的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若AB =6,3AF EF =,求DG 的长.小米的发现,过点E 作EH AB ∥交BG 于点H (如图2),经过推理和计算能够使问题得到解决.则图2图3O如图3,四边形ABCD 中,AD ∥BC ,点E 是射线DM 上的一点,连接BE 和AC 相交于点F ,若BC aAD =,CD bCE =,求BFEF的值(用含,a b26.如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.(1)如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. (2)如图③,在△ABC 中,∠A <∠B <∠C .①利用尺规作出△ABC 的自相似点P (不写出作法,保留作图痕迹);②如果△ABC 的内心P 是该三角形的自相似点,请直接写出该三角形三个内角的度数.参考答案26. (本小题满分5分)解:(1)当k =1时,使得原等式成立的x 分(2)当0<k <1时,使得原等式成立的分(3)当k >1时,使得原等式成立的x 图1图2图3 BBC ①②CBC③解决问题:将不等式240 ()x a a x +-<>0转化为24()x a a x+<>0, 研究函数2(0)y x a a =+>与函数4y x=的图象的交点. ∵函数4y x=的图象经过点A (1,4),B (2,2), 函数2y x =的图象经过点C (1,1),D (2,4),若函数2(0)y x a a =+>经过点A (1,4),则3a =, ………………………………………………4分 结合图象可知,当03a <<时,关于x 的不等式24(0)x a a x+<>只有一个整数解.也就是当03a <<时,关于x 的不等式240 ()x a a x+-<>0只有一个整数解. ………………5分26.解:(1)CAD,BC . …………………………………………………………… 3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分26. 解:(1)△ABC 的面积是4.5;…….2分(2)如右图: …….4分△MNP 的面积是7. …….5分26.解:BG 的长为2,AD 的长为22+;…………………2分如图,过点P 分别作x PC ⊥轴于点C ,y PD ⊥轴于点D ,AB PE ⊥于点E …………………3分∵AP 和BP 是△OAB 的外角的角平分线 ∴CAP EAP ∠=∠,EBP DBP ∠=∠ ∴PD PE PC ==∴四边形OCPD 是正方形,AE AC =,BE BD =…………4分∴DO PD CP OC === ∵()0,3A ,()4,0B ∴5=AB∴12=++=+BO AB OA OD OC∴6==OD OC ,∴6==PD CP ∴()6,6P ……………………5分26. 解:(1)3m ;……………………………………………………………………………1分∵ AO = m ,∠AOB =30°, ∴AE =12m . ∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -. ∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分 解决问题:αsin 21⋅ab .………………………………………………………………5分26.解:10103xCD =. ……………………………………………………………………… 1分Sin2α=CD OC =53. ……………………………………………………………………… 2分如图,连接NO ,并延长交⊙O 于Q ,连接MQ ,MO ,作NO MH ⊥于H . 在⊙O 中,∠NMQ =90°. ∵ ∠Q=∠P =β,OM=ON,∴ ∠MON=2∠Q=2β. ………………………………………… 3分∵ tan β=21,∴ 设MN =k ,则MQ =2k , ∴ NQ =k MQ MN 522=+.∴ OM=21NQ=k 25. ∵ MH NQ MQ MN S NMQ ⋅=⋅=∆2121, ∴ MH k k k ⋅=⋅52 .∴ MH=k 552. ………………………………………………………………………………… 4分N在MHO Rt ∆中,sin2β=sin ∠MON =5425552==kkOM MH . …………………………………… 5分 26. 解:(1)D (3,2),'D (8,-6),..................................................................................2分(2)依题可列:21,3 6.a k a k -+=⎧⎨+=⎩则a =1,k =3,2b =4,b =2,.........................................................4分(a ,b ,k 求出一个给1分) ∵点E (2,1),∴'E (5,2)......................................................................................................5分26.(本小题满分5分)解:(1)A B =3E H ,C G =2E H ,32.………………………………………………3分 (2)如图,过点E 作EH ∥AB 交BD 的延长线于点H .∴ EH ∥AB ∥CD . ∵ EH ∥CD , ∴23CD BC EH BE ==, ∴ CD =23EH . 又∵2AB CD =,∴ AB =2CD =43EH . ∵ EH ∥AB ,∴ △ABF ∽△EHF . ∴4433AF AB EH EH EF EH ===.……………………………………5分 26.(1)E ………………………………………………………………………………2分 (2)60,k︒………………………………………………………5分26.答案:DG =2;……………………………………………………………………………………2 如图(画图正确,正确标出点E 、F )………………………………………………………………3 过E 作EG ∥AD ,延长CA 交于点G ∴△CAD ∽△CGE .HF E CB AD∴AD CD GE CE=.∵CD bCE=,∴ADb GE=.∴AD bEG=. (4)∵AD∥BC,∴BC∥EG.∴△GEF∽△CBF.∴BC BF EG EF=.∵BC aAD=,∴BC abEG=.∴BFabEF= (5)26.解:⑴在Rt△ABC中,∠ACB=90°,CD是AB上的中线,∴12CD AB=,∴CD=BD.∴∠BCE=∠ABC.……………………………….(1分)∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.……………………………….(2分)∴△BCE∽△ABC.∴E是△ABC的自相似点.………………………….(3分)⑵①作图略.(方法不唯一)……………………….(5分)②连接PB、PC.∵P为△ABC的内心,∴12PBC ABC∠=∠,12PCB ACB∠=∠.∵P为△ABC的自相似点,∴△BCP∽△ABC.∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.∴∠A+2∠A+4∠A=180°.∴1807A∠=.∴该三角形三个内角的度数分别为1807、3607、7207.…………….(6分)。
2017年北京市丰台区中考数学二模试卷
2017年北京市丰台区中考数学二模试卷副标题一、选择题(本大题共10小题,共30.0分)1.五边形的内角和是A. 180°B. 360°C. 540°D. 600°2.在下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.3.如图是几何体的三视图,该几何体是A. 圆锥B. 圆柱C. 正三棱锥D. 正三棱柱4.如图,AB∥CD,∠B=56°,∠E=22°,则∠D的度数为()A. 22°B. 34°C. 56°D. 78°5.梅梅以每件6元的价格购进某商品若干件到市场去销售,销售金额y(元)与销售量x(件)的函数关系的图象如图所示,则降价后每件商品销售的价格为A. 5元B. 15元C. 12.5元D. 10元6.已知,则的值为A. 6B. 6C. 18D. 307.如图,A,B,E为⊙O上的点,⊙O的半径OC⊥AB于点D,已知∠CEB=30°,OD=1,则⊙O的半径为A.B. 2C.D. 48.某企业1~5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是A. 1~5月份利润的众数是130万元B. 1~4月份利润的极差与1~5月份利润的极差不同C. 1~2月份利润的增长快于2~3月份利润的增长D. 1~5月份利润的中位数是130万元9.如图,直线l 1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p,q,则称有序实数对(p,q)是点M的"距离坐标".根据上述定义,“距离坐标”是(5,3)的点的个数是A. 2B. 3C. 4D. 510.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计.图1与图2是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是()A. 由这两个统计图可知喜欢“科普常识”的学生有90人B. 若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C. 由这两个统计图不能确定喜欢“小说”的人数D. 在扇形统计图中,“漫画”所在扇形的圆心角为72°二、填空题(本大题共6小题,共18.0分)11.分解因式:_______.12.某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵数:依此估计这种幼树成活的概率约是_______.(结果用小数表示,精确到0.1)13.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进10m到达点D处,又测得点A的仰角为60°,那么建筑物AB的高度是______m.14.三国时期吴国赵爽创制了“勾股圆方图”(如图)证明了勾股定理.在这幅“勾股圆方图”中,大正方形ABCD是由4个全等的直角三角形再加上中间的一个小正方形EFGH组成的.已知小正方形的边长是2,每个直角三角形的短直角边长是6,则大正方形ABCD的面积是_______.15.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,无贴纸部分AD的长为10cm,则贴纸部分的面积等于_______ cm2.16.阅读下面材料:如图,AB是半圆的直径,点C在半圆外,老师要求小明用无刻度的直尺画出△ABC 的三条高.小明的作法如下:小明的作图依据是_______.三、计算题(本大题共2小题,共12.0分)17.计算:.18.已知关于x的一元二次方程(m-2)x2+2mx+m+3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.四、解答题(本大题共11小题,共88.0分)19.解方程组:20.如图,在△ABC中,AB=AC,过点A作AD⊥BC于点D,过点D作AB的平行线交AC于点E.求证: DE=EC=AE.21.如图,在平面直角坐标系xOy中,双曲线与直线交于点A(-1,a).(1)求a,m的值;(2)点P是双曲线上一点,且OP与直线平行,求点P的横坐标.22.为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.(1)你认为哪位学生抽取的样本不合理?请说明理由.(2)专家建议每周上网2小时以上(含2小时)的学生应适当减少上网的时间,估计该校全体初二学生中有多少名学生应适当减少上网的时间.23.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边三角形ACD及等边三角形ABE.已知∠BAC = 30º,EF⊥AB于点F,连接DF .(1)求证:AC=EF;(2)求证:四边形ADFE是平行四边形.24.阅读下列材料:随着互联网的快速发展,中国的网民数量每年都以惊人的速度在增长,电子商务在中国得以迅猛发展. 据《中国电子商务市场运行态势及投资战略报告》显示:2012年我国电子商务市场交易规模为8.2万亿;2013年交易规模达10.5万亿,比上一年增长28.0%;2014年比上一年增长26.7%;2015年交易规模为16.4万亿,比上一年增长23.3%;2016年交易规模达19.7万亿,比上一年增长20.1%.请根据以上信息解答下列问题(计算结果精确到0.1万亿):(1)①2014 年“电子商务市场交易规模”约为_________万亿;②用条形统计图或折线统计图将2012~2016年电子商务市场交易规模表示出来,并在图中标明相应的数据.(2)请你估计2017年“电子商务市场交易规模”约为________万亿,你的预估理由是________________________.25.2016年底以来,京城路边排满了各种颜色的共享单车,本着低碳出行与强身健体的理念,赵老师决定改骑共享单车上下班.通过一段时间的体验,赵老师发现每天上班所用时间只比自驾车多小时.已知赵老师家距学校12千米,上下班高峰时段,自驾车的速度是自行车速度的2倍.求赵老师骑共享单车每小时行驶多少千米.26.如图,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过点C的切线,垂足为点D,AB的延长线交切线CD于点E.(1)求证:AC平分∠DAB;(2)若AB =4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长.27.在平面直角坐标系xOy中,抛物线与y轴交于点C,与x轴交于A,B两点(点A在点B左侧),且点A的横坐标为﹣1.(1)求a的值;(2)设抛物线的顶点P关于原点的对称点为P′,求点P′的坐标;(3)将抛物线在A,B两点之间的部分(包括A,B两点),先向下平移3个单位,再向左平移m()个单位,平移后的图象记为图象G,若图象G与直线PP′无交点,求m的取值范围.28.已知正方形ABCD,点E,F分别在射线AB,射线BC上,AE=BF,DE与AF交于点O.图1 图2(1)如图1,当点E,F分别在线段AB,BC上时,则线段DE与AF的数量关系是___________,位置关系是___________.(2)如图2,当点E在线段AB延长线上时,将线段AE沿AF进行平移至FG,连接DG.①依题意将图2补全;②小亮通过观察、实验提出猜想:在点E运动的过程中,始终有.小亮把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:连接EG,要证明,只需证四边形FAEG是平行四边形及△DGE是等腰直角三角形.想法2:延长AD,GF交于点H,要证明,只需证△DGH是直角三角形.请你参考上面的想法,帮助小亮证明.(一种方法即可)29.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为____________;(2)若点P在函数的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数()的图象上,其“可控变点”Q的纵坐标y′的取值范围是,求实数a的取值范围.答案和解析1.【答案】C【解析】【分析】本题考查的是多边形内角和定理有关知识,利用多边形内角和定理进行计算即可解答.【解答】解:由.故选C.2.【答案】D【解析】【分析】本题考查的是轴对称图形及中心对称图形有关知识,利用轴对称图形及中心对称图形的定义进行解答即可.【解答】解:A项是轴对称图形不是中心对称图形;B.是中心对称图形,不是轴对称图形;C.是轴对称图形不是中心对称图形;D.是轴对称图形也是中心对称图形.故选D.3.【答案】D【解析】【分析】本题考查的是三视图判断几何体有关知识,该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.【解答】解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选D.4.【答案】B【解析】解:∵AB∥CD,∴∠EFC=∠B=56°,∵∠E=22°,∴∠D=∠EFC-∠E=34°.由平行线的性质得出同位角相等∠EFC=∠B=52°,再由三角形的外角性质即可求出∠E的度数.本题考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质,并能进行推理计算是解决问题的关键.5.【答案】D【解析】【分析】本题考查了函数图象的性质有关知识,由图象可知40件销售金额为600元,80件的销售金额为1000元,所以降价后买了80-40=40件,销售金额为1000-600=400元,则降价后每件商品销售的价格为400÷40=10元.【解答】解:∵由图象可知40件销售金额为600元,80件的销售金额为1000元,∴降价后买了80-40=40件,销售金额为1000-600=400元,∴降价后每件商品销售的价格为400÷40=10元.故选D.6.【答案】B【解析】【分析】本题考查的是代数式求值,整体代入法等有关知识,首先对已知条件进行变形,然后再代入代数式进行解答即可.【解答】解:∵,∴,原式======6.故选B.7.【答案】B【解析】【分析】本题主要考查了垂径定理,锐角三角函数及圆周角定理有关知识,连接OB,由垂径定理可知,AB=2BD,由圆周角定理可得,∠COB=60°,在Rt△DOB中,OD=1,则,然后再利用勾股定理进行解答即可.【解答】解:连接OB,如图,∵AB是⊙O的一条弦,OC⊥AB,∴AD=BD,即AB=2BD,∵∠CEB=30°,∴∠COB=60°,∵OD=1,∴,在Rt△DOB中,.故选B.8.【答案】A【解析】【分析】本题考查的是折线统计图,众数,极差,中位数等有关知识,根据折线统计图对选项逐一分析即可.【解答】解:A.1~5月份的利润分别为100万元,110万元,130万元,115万元,130万元,显然众数是130万元,故正确,B.1~4月份利润的极差为130-100=30(万元),而1~5月份利润的极差也为130-100=30(万元),显然B不正确,C.1~2月份利润的增长慢于2~3月份利润的增长,故错误,D.将1~5月份的利润从小到大排序:100,110,115,130,130,显然中位数为115万元,故错误.故选A.9.【答案】C【解析】【分析】本题主要考查的是点到直线的距离,平行线之间的距离,有序数对确定位置的有关知识,“距离坐标”是(5,3)的点表示的含义是该点到直线、的距离分别为5、3,由于到直线的距离是5的点在与直线平行且与的距离是5的两条平行线、上,到直线的距离是3的点在与直线平行且与的距离是3的两条平行线、上,它们有4个交点,即为所求.【解答】解:如图,∵到直线的距离是5的点在与直线平行且与的距离是5的两条平行线、上,到直线的距离是3的点在与直线平行且与的距离是3的两条平行线、上,∴“距离坐标”是(5,3)的点是、、、,一共4个.故选C.10.【答案】C【解析】解:A、∵喜欢“其它”类的人数为:30人,扇形图中所占比例为:10%,∴样本总数为:30÷10%=300(人),∴喜好“科普常识”的学生有:300×30%=90(人),故此选项不符合题意;B、若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有:×90=360(人),故此选项不符合题意;C、喜好“小说”的人数为:300-90-60-30=120(人),故此选项错误符合题意;D、“漫画”所在扇形的圆心角为:×360°=72°,故此选项不符合题意.故选:C.首先根据“其它”类所占比例以及人数,进而求出总人数,即可得出喜好“科普常识”的学生人数,再利用样本估计总体得出该年级喜爱“科普常识”的学生总数,进而得出喜好“小说”的人数,以及“漫画”所在扇形的圆心角.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.11.【答案】【解析】【分析】本题考查的是提取公因式,公式法分解因式有关知识,首先对该式提取公因式2y,然后再利用平方差公式进行解答即可.【解答】解:原式==.故答案为.12.【答案】0.9【解析】【分析】本题利用了用大量试验得到的频率可以估计事件的概率有关知识,成活的总棵树除以移栽的总棵树即为所求的概率.【解答】解:根据抽样的意义可得幼树成活的概率为. 故答案为0.9.13.【答案】5【解析】解:设DB=xm,在Rt△ADB中,AB=xtan60°=xm,在Rt△ACB中,=tan30°,整理得,=,解得,3x=x+10,x=5,则AB=5m.故答案为5.设DB=xm,在Rt△ADB中,得到AB=xtan60°=xm,再在Rt△ACB中,得到=tan30°,据此即可解答.本题考查了解直角三角形的应用--仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.14.【答案】100【解析】【分析】本题考查了三角形的面积以及正方形的面积有关知识,由BF=BE+EF结合“小正方形的边长是1,每个直角三角形的短的直角边长是3”即可得出直角三角形较长直角边的长度,结合三角形的面积公式以及正方形面积公式即可得出结论.【解答】解:∵EF=2,BE=6,∴BF=BE+EF=8,.故答案为100.15.【答案】【解析】【分析】本题主要考查扇形面积的计算的应用有关知识,贴纸部分的面积等于扇形ABC减去小扇形ADE的面积,已知圆心角的度数为120°,扇形的半径为30cm和10cm,可根据扇形的面积公式求出贴纸部分的面积.【解答】解:设AB=R,AD=r,则====().答:贴纸部分的面积为.故答案为.16.【答案】半圆(或直径)所对的圆周角是直角,三角形三条高线相交于一点【解析】【分析】本题考查的是圆周角定理及推论,三角形的高线有关知识,利用圆周角定理及推论,三角形的高线进行解答即可.【解答】解:根据题意可得:小明的作图依据为半圆(或直径)所对的圆周角是直角,三角形三条高线相交于一点.故答案为半圆(或直径)所对的圆周角是直角,三角形三条高线相交于一点.17.【答案】解:原式==5.【解析】本题考查的是绝对值,立方根,特殊三角函数值,负指数幂有关知识,首先对该式进行变形,然后再进行计算即可解答.18.【答案】解:(1)根据题意得m-2≠0且△=4m2-4(m-2)(m+3)>0,解得m<6且m≠2;(2)m满足条件的最大整数为5,则原方程化为3x2+10x+8=0,∴(3x+4)(x+2)=0,∴x1=-,x2=-2.【解析】(1)根据一元二次方程的定义和判别式的意义得到m-2≠0且△=4m2-4(m-2)(m+3)>0,然后解不等式即可;(2)根据(1)的结论得到m满足条件的最大整数为5,则原方程化为3x2+10x+8=0,然后利用因式分解法解方程.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.19.【答案】解:①×3-②可得:2x=8,解得:x=4,把x=4代入①可得:8+y=5,解得:y=-3,则该方程组的解为.【解析】本题考查的是二元一次方程组的解法有关知识,利用加减消元法消去y得出x,然后再代入计算即可解答.20.【答案】证明:∵AB=AC,AD⊥BC于点D,∴∠B=∠C,∠BAD=∠CAD,又∵DE∥AB,∴∠EDC=∠B,∠ADE=∠BAD,∴∠EDC=∠C,∠ADE=∠CAD,∴DE=EC,AE=DE,∴DE=EC=AE.【解析】本题考查的是平行线的性质,等腰三角形的判定与性质有关知识,根据题意得出∠B=∠C,∠BAD=∠CAD,DE//AB,得出∠ADE=∠BAD=∠CAD,然后再进行解答即可.21.【答案】解:(1)∵点A的坐标是(-1,a),在直线y=-2x+1上,∴a=-2×(-1)+1=3,∴点A的坐标是(-1,3),代入反比例函数,∴m=-3.(2)∵OP与直线y=-2x+1平行,∴OP的解析式为y=-2x,∵点P是双曲线上一点,∴设点P坐标为,代入到y=-2x中,∴,∴∴点P的横坐标为.【解析】此题考查了一次函数与反比例函数的交点问题有关知识.(1)将A坐标代入一次函数解析式中即可求得a的值,将A(-1,3)坐标代入反比例解析式中即可求得m的值;(2)根据题意求得直线OP的解析式,然后根据直线OP的解析式和反比例函数的解析式即可求得P的坐标.22.【答案】解:(1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有代表性.(2)该校全体初二学生中应适当减少上网的时间的人数是:(名).答:该校全体初二学生中有80名同学应适当减少上网的时间.【解析】本题考查读频数分布直方图的能力和利用统计图获取信息的能力有关知识. (1)根据抽样调查时,抽取的样本要有代表性,即可作出判断;(2)利用总人数400乘以对应的比例即可.23.【答案】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF,∴AF=BC,在Rt△AFE和Rt△BCA中,∵,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF.(2)证明:∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°,又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∵AD∥EF,AD=EF,∴四边形ADFE是平行四边形.【解析】本题考查了平行四边形的判定、等边三角形的性质以及全等三角形的判定与性质有关知识.(1)先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后证得△AFE≌△BCA,继而证得结论;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.24.【答案】(1)①13.3;②2012-2016年电子商务市场交易规模折线统计图:(2)22.5,上年的增长率是20%.【解析】【分析】本题考查的是折线统计图,用样本估计总体,条形统计图有关知识.(1)①根据增长率可得答案;②根据每天的交易规模,可得答案;(2)根据近几年交易的增长率可得2017年的增长率.【解答】解:(1)①2014年“电子商务市场交易规模”约为万亿. 故答案为13.3.②见答案;(2)解:估计2017年“电子商务市场交易规模”约为22.5万亿,你的预估理由是上年的增长率是20%.故答案为22.5,上年的增长率是20%.25.【答案】解:设赵老师骑共享单车每小时行驶x千米,依题意得解方程得x=15,经检验,x=15是原方程的解且符合实际意义.答:赵老师骑共享单车每小时行驶15千米.【解析】本题考查的是分式方程的应用有关知识,首先根据题意找出数量关系,然后列出分式方程即可解答.26.【答案】(1)证明:连结OC,如图,∵DE与⊙O切于点C,∴OC⊥DE,∵AD⊥DE,∴OC∥AD,∴∠2=∠3,∵OA=OC,∴∠1=∠3,∴∠1=∠2,即AC平分∠DAB;(2)解:∵直径AB=4,B为OE的中点,∴OB=BE=2,OC=2,在Rt△OCE中,OE=2OC,∴∠OEC=30°,∴∠COE=60°,∵CF⊥AB,∴∠OFC=90°,∴∠OCF=30°,∴OF=OC=1,CF=OF=.【解析】本题考查了切线的性质、平行线的性质和等腰三角形的性质以及含30°的直角三角形三边的关系等知识.(1)连结OC,如图,根据切线的性质得OC⊥DE,而AD⊥DE,根据平行线的性质得OC∥AD,所以∠2=∠3,加上∠1=∠3,则∠1=∠2,所以AC平分∠DAB;(2)如图,由B为OE的中点,AB为直径得到OB=BE=2,OC=2,在Rt△OCE 中,由于OE=2OC,根据含30°的直角三角形三边的关系得∠OEC=30°,则∠COE=60°,由CF⊥AB得∠OFC=90°,所以∠OCF=30°,再根据含30°的直角三角形三边的关系得OF=OC=1,CF=OF=.27.【答案】解:(1)∵A(-1,0)在抛物线上,∴,解得:a=-2.(2)抛物线的表达式为,顶点P的坐标为(1,4),∵点P关于原点的对称点为P',∴P'的坐标为(-1,-4).(3)如图:由题意可知:直线PP'的表达式为y=4x,图象向下平移3个单位后,A'的坐标为(-1,-3),B'的坐标为(3,-3),设A'B与PP'的交点为点M,若图象G与直线PP'无交点,则B '要左移到M及左边,令y=-3代入直线PP'的解析式,则,M的坐标为,∴,∴.【解析】本题考查的是待定系数法求二次函数解析式,对称中的坐标变换,平移的性质等有关知识.(1)把点A代入抛物线解析式中求出a即可;(2)先根据抛物线的表达式求出点P的坐标,然后再利用对称中的坐标变换求出P'即可;(3)根据题意可知直线PP'的表达式,然后再利用平移的性质进行解答即可.28.【答案】(1)DE=AF,;(2)解:①依题意补全图形,②法1:证明:连接GE.由平移可得AE=FG,AE∥FG,∴四边形AEGF是平行四边形,∴AF=EG,AF∥EG,∴∠1=∠2,∵四边形ABCD是正方形,∴AD = AB,∠DAE=∠ABC= 90°,∵AE=BF,∴△AED≌△BFA,∴∠3=∠4,AF = DE,∴EG=DE,∵∠2+∠4=90°,∴∠1+∠3=90°,∴∠DEG=90°,∴,又∵,∴;法2:证明:延长AD,GF交于点H,由平移可得AE=FG,AE∥FG,∴∠H+∠DAB= 180°,∵四边形ABCD是正方形,∴∠DAB= 90°,AD=DC,∴∠H = 90°,∴,∵∠HDC=∠DCF= 90°,∴四边形HDCF是矩形,∴HF=DC,∴HF=AD,∵HG=FG+HF,∴HG=AE+HF=AE+AD,∵易证BF=AH且BF=AE,∴HD=AE–AD,∴.【解析】【分析】本题主要考查的是平行四边形的判定及性质,勾股定理,矩形的性质,正方形的性质,全等三角形的判定及性质,平移的性质等有关知识.(1)根据正方形的性质和全等三角形的判定定理证明,再利用全等三角形的性质进行求解即可;(2)①根据题意补全图形即可;②想法1:根据平移的性质证明四边形AFEG是平行四边形,得到AF=EG,根据勾股定理得到,证明,根据等腰直角三角形的性质解答;想法2:延长AD、GF交于点H,证出∠H=90°,由勾股定理得到,再证出DH=AE-AD,GH=AE+AD,即可得出结论.【解答】解:(1)∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,在△DAE和△ABF中,∴,∴DE=AF,∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠BAF+∠AED=90°,即∠AOE=90°,∴.故答案为DE=AF,.(2)①见答案;②见答案.29.【答案】(1)(-5,2);(2)解:依题意,函数图象上的点P的“可控变点”必在函数的图象上,∵“可控变点”Q的纵坐标y'是7,∴当时,解得x=3,当时,解得.则“可控变点”Q的横坐标为3或;(3)解:依题意,函数图象上的点P的“可控变点”必在函数的图象上,∵-16≤y'≤16,∴,∴,∴由题意可知,a的取值范围是.【解析】【分析】本题考查二次函数的性质,一次函数的性质等知识.(1)根据“可控变点”的定义即可解决问题;(2)根据“可控变点”的定义即可解决问题;(3)y=-16时,求出x的值,再根据“可控变点”的定义即可解决问题. 【解答】解:(1)由题意可得点(-5,-2)的“可控变点”坐标为(-5,2),故答案为(-5,2);(2)见答案;(3)见答案.。
北京市各区2017届中考数学二模试题分类整理 圆的证明与计算(无答案)
圆的证明与计算(2017昌平二模)25.如图,AB 为⊙O 的直径,点D ,E 为⊙O 上的两个点,延长AD 至C ,使∠CBD=∠BED .(1)求证:BC 是⊙O 的切线;(2)当点E 为弧AD 的中点且∠BED=30°时,⊙O 半径为2,求DF 的长度.BCA(2017房山二模)25.如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 相交于点D ,与CA 的延长线相交于点E ,DF 过点D 作⊙O 的切线交AC 于点F . (1)求证:DF⊥AC;(2)如果sin cAE 的长为2.求⊙O 的半径.(2017通州二模)24.如图,AB 是⊙O 的直径,PC 切⊙O 于点C ,AB 的延长线与PC 交于点P ,PC 的延长线与AD 交于点D ,AC 平分∠DAB . (1)求证:AD ⊥PC ;(2)连接BC ,如果∠ABC =60°,BC =2,求线段PC 的长.PA(2017西城二模)25.如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点B 作⊙O 的切线,与AC 延长线交于点D ,连接BC ,OE ∥BC 交⊙O 于点E ,连接BE 交AC 于点H . (1)求证:BE 平分∠ABC ;(2)连接OD ,若BH =BD =2,求OD 的长.(2017东城二模)25. 如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD 交AD 的延长线于点E . (1)求证:∠BDC =∠A ;(2)若CE =4,DE =2,求AD 的长.(2017丰台二模)26.如图,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过点C 的切线,垂足为点D ,AB 的延长线交切线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长.A(2017平谷二模)25.如图,已知△ABC 内接于⊙O ,AB 是⊙O 的直径,点F 在⊙O 上,且点C 是BF 的中点,过点C 作⊙O 的切线交AB 的延长线于点D ,交AF 的延长线于点E . (1)求证:AE ⊥DE ;(2)若∠BAF =60°,AF=4,求CE 的长.(2017顺义二模)25.如图,在Rt △ABC 中,∠CA B =90︒,以AB 为直径的⊙O 交BC 于点D ,点E 是AC 的中点,连接DE .(1)求证:DE 是⊙O 的切线;(2)点P 是BD 上一点,连接AP ,DP ,若BD :CD=4:1,求sin ∠APD 的值.BE(2017怀柔二模)25. 如图,AB 是⊙O 的直径,CD 为⊙O 的弦,过点B 作⊙O 的切线,交AD 的延长线于点E ,连接AC 并延长,过点E 作EG ⊥AC 的延长线于点G ,并且∠GCD = ∠GAB . (1)求证:AC BD =;(2)若AB =10,sin ∠ADC =35,求AG 的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y
-x y=-
–11
1
-1O
代数综合题
【2017昌平二模】
27. 在平面直角坐标系xOy 中,抛物线)0(42
≠-=m mx mx y 与x 轴交于A ,B 两点(点A 在点B 的左侧). (1)求点A ,B 的坐标及抛物线的对称轴;
(2)过点B 的直线l 与y 轴交于点C ,且2tan =∠ACB ,直接写出直线l 的表达式;
(3)如果点)(1n x P ,和点)(2n x Q ,在函数)0(42
≠-=m mx mx y 的图象上,PQ=2a 且21x x >,求
2622
1+-+a ax x 的值.
【2017房山二模】
27. 对于一个函数,如果它的自变量x 与函数值y 满足:当-1≤x ≤1时, -1≤y ≤1,则称这个函数为“闭函数”. 例如:y =x ,y =-x 均是“闭函数”(如右图所示). 已知()02≠++=a c bx ax y 是“闭函数”,且抛物线
经过点A (1,-1)和点B (-1, 1) .
(1)请说明a 、c 的数量关系并确定b 的取值; (2)请确定a 的取值范围.
【2017通州二模】
27.已知:二次函数1422
-++=m x x y ,与x 轴的公共点为A ,B . (1)如果A 与B 重合,求m 的值; (2)横、纵坐标都是整数的点叫做整点; ①当1=m 时,求线段AB 上整点的个数;
②若设抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(包括边界)整点的个数为n ,当1<<8n 时,
结合函数的图象,求m 的取值范围.
【2017朝阳二模】
27.在平面直角坐标系xOy 中,抛物线y =mx 2
-2mx +2(m ≠0)与y 轴交于点A ,其对称轴与x 轴交于点B . (1)求点A ,B 的坐标;
(2)点C ,D 在x 轴上(点C 在点D 的左侧),且与点B 的距离都为2,若该抛物线与线段CD 有两个公共点,结合函数的图象,求m 的取值范围.
【2017海淀二模】
27.抛物线2
2
24y x mx m =-+-与x 轴交于A ,B 两点(A 点在B 点的左侧),与y 轴交于点C ,抛物线的对称轴
为x =1.
(1)求抛物线的表达式;
(2)若CD ∥x 轴,点D 在点C 的左侧,1
2
CD AB =
,求点D 的坐标; (3)在(2)的条件下,将抛物线在直线x =t 右侧的部分沿直线x =t 翻折后的图形记为G ,若图形G 与线段
CD 有公共点,请直接写出t 的取值范围.
【2017东城二模】
27.在平面直角坐标系xOy 中,抛物线22
21y x mx m m =-+--+.
(1)当抛物线的顶点在x 轴上时,求该抛物线的解析式;
(2)不论m 取何值时,抛物线的顶点始终在一条直线上,求该直线的解析式;
(3)若有两点()1,0A -,()1,0B ,且该抛物线与线段AB 始终有交点,请直接写出m 的取值范围.
【2017燕山二模】
27. 在平面直角坐标系xoy 中,抛物线c bx x y ++=2
经过点
A(0,-3),B(4,5).
(1)求此抛物线表达式及顶点M 的坐标;
(2)设点M 关于y 轴的对称点是N ,此抛物线在A ,B 两点之间的部分记为
图象W(包含A,B 两点),经过点N 的直线l :n mx y +=与图象W 恰一个有公共点,结合图象,求m 的取值范围.
【2017西城二模】
27.在平面直角坐标系xOy 中,抛物线y =ax 2
+2ax -3a (a >0)与x 轴交于A ,B 两点(点A 在点B 的左侧).
(1)求抛物线的对称轴及线段AB 的长;
(2)若抛物线的顶点为P ,若∠APB =120 °,求顶点P 的坐标及a 的值; (3)若在抛物线上存在点N ,使得∠ANB =90 °,结合图形,求a 的取值范围.
【2017石景山二模】
27.在平面直角坐标系xOy 中,抛物线1C :2
y x bx c =++与x 轴交于点A ,B (点A 在点B 的左侧),对称轴
与x 轴交于点3,0(),且4AB =.
(1)求抛物线1C 的表达式及顶点坐标;
(2)将抛物线1C 平移,得到的新抛物线2C 的顶点为(0,1)-,
抛物线1C 的对称轴与两条抛物线1C ,2C 围成的封闭图形为M .
直线:(0)l y kx m k =+≠经过点B .若直线l 与图形M 有公共点,
求k 的取值范围.
【2017怀柔二模】
27. 在平面直角坐标系xOy 中,直线1y x =+与y 轴交于点A ,并且经过点B(3,n). (1)求点B 的坐标;
(2)如果抛物线2
441y ax ax a =-+- (a >0)与线段AB 有唯一公共点,求a 的取值范围.
【2017顺义二模】
27.如图,在平面直角坐标系xOy 中,抛物线2
y x bx c =-++经过A (﹣1,0),B (3,0)两点. (1)求抛物线的表达式;
(2)抛物线2
y x bx c =-++在第一象限内的部分记为图象G ,如果过点P
(-3,4)的直线y =mx +n (m ≠0)与图象G 有唯一公共点,请结合图
象,求n 的取值范围.
【2017平谷二模】
27.在平面直角坐标系xOy 中,抛物线()2
4440y mx mx m m =-++≠的顶点为P .P ,M 两点关于原点O 成中
心对称.
(1)求点P ,M 的坐标;
(2)若该抛物线经过原点,求抛物线的表达式;
(3)在(2)的条件下,将抛物线沿x 轴翻折,翻折后的图象在05x ≤≤的部分记为图象H ,点N 为抛物线对称轴上的一个动点,经过M ,N 的直线与图象H 有两个公共点,结合图象求出点N 的纵坐标n 的取值范围.
【2017门头沟二模】
27.在平面直角坐标系xOy 中,抛物线2
2
234y x mx m m =-+-+-的对称轴是直线x =1 (1)求抛物线的表达式;
(2)点1()D n y ,,2(3)E y ,
在抛物线上,若12y y >,请直接写出n 的取值范围; (3)设点()M p q ,为抛物线上的一个动点,当12p -<<时,点M 关于y 轴的对称点形成的图象与直线
4y k x =-(0k ≠)有交点,求k 的取值范围.
【2017丰台二模】
27.在平面直角坐标系xOy 中,抛物线122
12
+-+=a x ax y 与y 轴交于点C ,与x 轴交于A ,B 两点(点A
在
点B 左侧),且点A 的横坐标为﹣1. (1)求a 的值;
(2)设抛物线的顶点P 关于原点的对称点为P′,求点P′的坐标; (3)将抛物线在A ,B 两点之间的部分(包括A ,B 两点),先向下平移 3个单位,再向左平移m (0 m )个
单位,平移后的图象记为图象G ,若图象G 与直线PP′无交点,求m 的取值范围.。