2016湖南公务员考试行测备考:集合中的数量题,你了解吗?

合集下载

集合考试题及答案

集合考试题及答案

集合考试题及答案集合是数学中的一个基本概念,它在各个领域都有着广泛的应用。

以下是一些集合考试题及其答案,供参考:题目一:定义集合A={x | x是自然数,且1≤x≤10},集合B={y |y是偶数}。

求A∩B。

答案:集合A包含自然数1到10,即A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。

集合B包含所有的偶数。

A与B的交集是同时属于A和B的元素,即A∩B={2, 4, 6, 8, 10}。

题目二:集合C={x | x是整数,且-5≤x≤5},集合D={y | y是正整数}。

求C∪D。

答案:集合C包含从-5到5的所有整数,即C={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。

集合D包含所有的正整数,即D={1, 2, 3, ...}。

C与D的并集是包含C和D所有元素的集合,但去除重复元素。

因此,C∪D包含了从-5到无穷大的所有整数,由于题目限制,我们只列出到5,即C∪D={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。

题目三:集合E={x | x是奇数},集合F={y | y是3的倍数}。

求E∩F。

答案:集合E包含所有的奇数,集合F包含所有3的倍数。

E与F的交集是同时满足奇数和3的倍数的元素。

这些元素是3的奇数倍,即E∩F={3, 9, 15, ...},但题目中没有指定范围,我们只列出前三个元素。

题目四:集合G={x | x²=1},求G。

答案:集合G包含满足x²=1的所有x值。

解这个方程,我们得到x=1或x=-1。

因此,G={1, -1}。

题目五:集合H={x | x²-4=0},求H。

答案:集合H包含满足x²-4=0的所有x值。

解这个方程,我们得到x²=4,所以x=2或x=-2。

因此,H={2, -2}。

总结:集合论是数学的基础之一,它涉及到元素与集合之间的关系,包括交集、并集、补集等概念。

考公数量容斥问题

考公数量容斥问题

考公数量容斥问题容斥问题在公务员考试中是一种常见的数学问题,它涉及到集合和计数原理的应用。

在数量关系和资料分析中,容斥问题通常涉及到两个或多个集合,以及它们的交集和并集。

解决容斥问题时,首先需要明确各个集合的元素和范围,然后根据题目要求选择适当的集合运算方法。

常见的集合运算包括并集、交集、差集等。

下面是一个简单的容斥问题示例:一个班里有30个学生,其中10个是数学爱好者,8个是物理爱好者,5个是化学爱好者。

有些学生同时喜欢数学和物理,有些学生同时喜欢数学和化学,有些学生同时喜欢物理和化学。

请问这个班里有多少学生同时喜欢数学、物理和化学?首先,我们可以使用集合的概念来描述这个问题。

设A表示数学爱好者的集合,B表示物理爱好者的集合,C表示化学爱好者的集合。

根据题目,我们有以下信息:A = 10(数学爱好者的人数)B = 8(物理爱好者的人数)C = 5(化学爱好者的人数)A ∩ B(同时喜欢数学和物理的人数)A ∩ C(同时喜欢数学和化学的人数)B ∩ C(同时喜欢物理和化学的人数)我们需要求解的是同时喜欢数学、物理和化学的学生人数,即A ∩ B ∩ C。

根据容斥原理,我们有:A ∩B ∩C = A + B + C - A ∩ B - A ∩ C - B ∩ C + A ∩ B ∩ C将已知数值代入公式中,我们得到:A ∩B ∩C = 10 + 8 + 5 - A ∩ B - A ∩ C - B ∩ C + A ∩ B ∩ C由于题目没有给出同时喜欢数学、物理和化学的学生人数,我们需要使用其他方法来求解。

常用的方法是使用韦恩图来直观地表示集合之间的关系,从而得出结果。

2016湖南公务员考试行测备考:集合中的数量题,你了解吗?

2016湖南公务员考试行测备考:集合中的数量题,你了解吗?

专家解析最新湖南公务员历年真题<<<点这里!2016湖南公务员考试行测备考:集合中的数量题,你了解吗?湖南公务员考试《申论》是测查从事公务员职业应当具备的基本能力的考试科目。

《申论》材料通常涉及特定社会问题或社会现象,主要测查报考者的阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力。

更具体的,我们来看看湖南公务员考试课程是如何设置教学的。

还有疑问?点击这里>>>一对一在线咨询。

在公务员行测考试中有这样一种题型,它解题时主要利用集合间的关系,具体题目的考查主要有两种题型。

接下来,中公教育专家就给大家讲解这部分知识,希望能够帮助大家快速掌握。

集合最大值:未确定关系的所有集合加和,即得到结论。

集合最小值:几个未确定关系的集合中,选取数量最大的集合,即为结论。

其中,求最小值时,注意题干中所有集合描述是否能够完全重合。

1、已知题干若干条件,求人数最多/最少有多少人?例 1. 某家饭店中,一桌人边用餐边谈生意。

其中,一个哈尔滨人,两个北方人,一个广东人,两个人只做食品生意,三个人只做家电生意。

中公教育·给人改变未来的力量!点这里看最全汇总>>>湖南公务员历年真题!专家解析最新湖南公务员历年真题<<<点这里!如果以上介绍涉及餐桌上所有的人,那么这一桌最少可能是几个人?最多可能是几个人?A. 最少可能是3 人,最多可能是8 人。

B. 最少可能是5 人,最多可能是8 人。

C. 最少可能是5 人,最多可能是9 人。

D. 最少可能是3 人,最多可能是9 人。

【答案】B。

利用题干表述,进行集合关系确定,最大值:未确定关系的几个集合加和( 3+3+2=8 人)最小值:未确定关系的几个集合挑最大值,答案为 5 人。

2、已知题干有M 人,选项中哪项与题干表述矛盾/不矛盾?例 2. 某大学某寝室中住着若干个学生。

其中,一个是吉林人,两个是北方人,一个是广东人,两个研究哲学,三个研究历史。

公务员考试数量关系之三集合容斥问题

公务员考试数量关系之三集合容斥问题

公务员考试数量关系之三集合容斥问题在最近几年的公务员考试中,考察了相关的三集合容斥问题,对于这样的一个问题,华图教研中心提醒你,在复习三集合容斥问题时一定不能停留在表面,一定要从实质上理解它,因为现在在考察容斥问题时,考的比较细致。

但是题目难度并不是很大,只要能够掌握它的实质,熟练运用我们的解题方法,那么这种问题肯定能够轻松应对。

一浅识三集合容斥问题对于三集合容斥问题,一定要弄清楚它题目的关键词语及问法。

A+B+C-AB-AC-BC-ABC=总数-三个条件都不满足的情形A+B+C-满足两个条件-2满足三个条件=总数-三个条件都不满足的情形二真题回放1.某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为:A. 7人B. 8人C. 5人D. 6人【华图解析】根据题意,“按规定每人至多可投考两个职位”则表明这次招聘中不存在有人报考三个职位的情形,共有42人报名,也表明不存在一个人是三个职位都不报考的情形。

故可以直接代入三集合的标准形公式即可。

22+16+25-8-6-x=42 x=7,故选择A选项。

2.某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。

如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个?()A. 148B. 248C. 350D. 500【华图解析】设三种上网方式都使用的客户有x个,则使用两种上网方式的就有352-x,根据三集合容斥问题的公式,可以得到 1258+1852+932-(352-x)—2x=3542 解得x=148 故答案选择A3. 某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。

湖南历年公务员考试数量关系

湖南历年公务员考试数量关系

2019年61、如右图所示,一条河流的两岸分别有A、B两处景点,河面宽80米,A与B的直线距离是100米。

现需铺设一条观光栈道连接A与B。

已知陆地栈道的铺设费用是0.1万元/米,河面栈道的铺设费用是0.125万元/米,则最少需要铺设费用:A. 12.5万元B. 12万元C. 11.5万元D. 11万元62、林先生要将从故乡带回的一包泥土分成小包装送给占其朋友总数30%的老年朋友。

在分包装过程中发现,如果每包200克,则缺少500克,如果每包150克,则多余250克。

那么,林先生的朋友共有多少人?A. 15B. 30C. 50D. 10063、幼儿园老师设计了一个摸彩球游戏,在一个不透明的盒子里混放着红、黄两种颜色的小球,它们除了颜色不同,形状、大小均一致。

已知随机摸取一个小球,摸到红球的概率为三分之一。

如果从中先取出3红7黄共10个小球,再随机摸取一个小球,此时摸到红球的概率变为五分之二,那么原来盒中共有红球多少个?A. 5B. 10C. 15D. 2064、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。

那么,第二次开盘的车位平均价格为:A. 10万元/个B. 11万元/个C. 12万元/个D. 13万元/个65、甲乙两部参加军事演习。

甲部从大本营以60千米/小时的速度往西行进,乙部晚半小时由大本营往东行进,速度比甲部慢。

两部同时接到军令紧急集合,集合地位于大本营正北某处。

此时两部所在位置与集合地恰好构成有一角为30度的直角三角形。

若两部同时调整方向往集合地行军,且保持速度不变,则可同时到达集合地。

问集合地与大本营的距离约为多少千米?A. 38B. 41C. 44D. 4866、甲、乙两个工程队共同参与一项建设工程。

原计划由甲队单独施工30天完成该项工程三分之一后,乙队加入,两队同时再施工15天完成该项工程。

由于甲队临时有别的业务,其参加施工的时间不能超过36天,那么为全部完成该项工程,乙队至少要施工多少天?A. 30B. 24C. 20D. 1867、因装修需要,拟在边长为2m的正方形浴室正中央处安装圆形淋浴喷头,喷头直径为10cm,出水喷射角度与垂直方向的最大夹角为30°。

行测集合知识点总结

行测集合知识点总结

行测集合知识点总结一、集合的基本概念集合是指具有某种特定性质的对象的总体,这些对象称为集合的元素。

通常情况下,我们用大写字母A、B、C……来表示集合,用小写字母a、b、c……来表示集合中的元素。

集合中的元素是无序的,每个元素在集合中只能出现一次。

集合的基本概念包括以下几个方面:1. 集合的表示方法2. 集合的运算3. 集合的关系4. 集合的性质二、集合的表示方法集合的表示方法主要包括以下两种:1. 列举法2. 描述法1. 列举法表示集合时,直接把集合中的元素一一列举出来,用大括号{}括起来。

例如,集合A={1, 2, 3, 4, 5}表示集合A中有元素1、2、3、4、5。

2. 描述法表示集合时,用一个条件式来描述集合中的元素的性质,然后用大括号{}括起来。

例如,集合B={x|x是自然数,且x<6}表示集合B中的元素是小于6的自然数。

三、集合的运算集合的运算主要包括以下几种:1. 并集运算2. 交集运算3. 补集运算4. 差集运算1. 并集运算:设A和B是两个集合,它们的并集记作A∪B,表示由所有属于集合A或属于集合B的元素所组成的集合。

2. 交集运算:设A和B是两个集合,它们的交集记作A∩B,表示由所有属于集合A且属于集合B的元素所组成的集合。

3. 补集运算:设U是一个全集,A是U的一个子集,A关于U的补集记作U-A,表示U 中属于A的元素所对应的补集。

4. 差集运算:设A和B是两个集合,它们的差集记作A-B,表示由所有属于集合A但不属于集合B的元素所组成的集合。

四、集合的关系集合的关系主要包括以下几种:1. 包含关系2. 相等关系3. 互斥关系4. 空集关系1. 包含关系:集合A包含于集合B,表示为A⊆B,当且仅当A中的元素都是B中的元素时,称集合A包含于集合B。

2. 相等关系:集合A等于集合B,表示为A=B,当且仅当A包含于B且B包含于A时,称集合A等于集合B。

3. 互斥关系:集合A和集合B互斥,表示为A∩B=∅,当且仅当A和B没有公共元素时,称集合A和集合B互斥。

2016年公务员考试行测数量关系拉灯问题

2016年公务员考试行测数量关系拉灯问题

2016年公务员考试行测数量关系拉灯问题在公务员行测考试中,拉灯问题是困惑很多考生的难题,特别是当灯的总数量比较大的时候,如何来确定最终亮着的或灭掉的灯的数量是此类问题的关键。

1、初等拉灯问题——倍数、约数例1:走廊里有10盏电灯,从1到10编号,开始时电灯全部关闭。

有10个学生依次通过走廊,第1个学生把所有的灯绳都拉了一下,第2个学生把2的倍数号的灯绳都拉了一下,第3个学生把3的倍数号的灯绳都拉了一下……第10个学生把第10号灯的灯绳拉了一下。

假定每拉动一次灯绳,该灯的亮与不亮就改变一次。

试判定:当这10个学生通过走廊后,走廊里有多少盏灯是亮的?A.2B.3C.4D.5【解析】(1)原来电灯全部关闭,拉一下,亮着;拉两下,灭了;拉三下,亮着。

因此,灯绳被拉动奇数次的灯亮着。

(2)可从最简单的情况考虑,把拉过某号的学生号码写出来寻找规律,如1号是第1个学生拉过,4是1,2,4号拉过,6是1,2,3,4号学生拉过,10是1,2,5,10号学生拉过,也就是第i号灯的灯绳被拉的次数就是i的所有约数的个数。

由自然数因数分解的性质知,只有当i是平方数时,i的约数的个数才是奇数,所以只有1,4,9号灯亮着。

本题答案:1,4,9号灯亮着,共有3盏灯。

选B。

总结:此类拉灯问题比较简单,假如把数字扩大看起来会很麻烦,但思路还是相同的,在做题是要擅长归纳总结,提炼出基本模型。

2、拉登难题——三集合容斥原理型例2:有1000盏亮着的灯,各有一个拉线开关控制着。

现按其顺序编号为1、2、3、4、5······1000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的电灯有多少盏?A.468B.499C.501D.532【解析】(1) 原来电灯亮着,拉一下,灭了;拉两下,亮着;拉三下,灭了。

因此,灯绳被拉动奇数次的灯灭了。

集合练习题讲解

集合练习题讲解

集合练习题讲解本文将为读者提供有关集合练习题的详细讲解。

小节之间将按照题目的不同类型进行分隔,并给出解题步骤和答案,以帮助读者更好地理解和应用集合概念。

请注意,下文并不会再次提及标题或其他任何内容。

一、集合的基本概念在集合论中,集合是由一组特定对象组成的无序的整体。

它可以包含具有相同属性或关系的元素。

例如,对于集合A = {1, 2, 3, 4},其中的元素1,2,3和4具有相同的特征,即它们都是自然数。

二、集合的表示方式1. 列举法:利用大括号{}将元素逐个列出来。

例如,集合A = {1, 2, 3, 4}。

2. 描述法:利用条件描述元素的特征。

例如,集合B = {x | x是自然数,且1 ≤ x ≤ 10}表示由自然数1到10组成的集合。

三、集合间的关系1. 相等关系:若两个集合A和B的元素一一对应,并且集合A包含的元素都在集合B中,且集合B包含的元素都在集合A中,则称集合A和集合B相等,记作A = B。

2. 包含关系:若集合A的所有元素都在集合B中,则称集合A为集合B的子集,记作A ⊆ B。

若同时满足A ⊆ B和B ⊆ A,则称集合A和集合B相等,记作A = B。

3. 交集:两个集合A和B的交集,表示为A ∩ B,是包含同时属于A和B的所有元素的集合。

4. 并集:两个集合A和B的并集,表示为A ∪ B,是包含属于A 或B的所有元素的集合。

五、集合的运算1. 交集运算:若A和B是两个集合,则A ∩ B = {x | x ∈ A且x ∈B}。

2. 并集运算:若A和B是两个集合,则A ∪ B = {x | x ∈ A或x ∈B}。

3. 差集运算:若A和B是两个集合,则A - B = {x | x ∈ A且x ∉B}。

4. 补集运算:若U是全集,A是U的子集,则A的补集(或称余集),表示为A'或A^c,是所有不属于A的U中元素的集合。

五、练习题1. 已知集合A = {x | x是偶数,且1 ≤ x ≤ 10},集合B = {2, 4, 6},求A ∩ B。

集合问题常见题型及求解方法

集合问题常见题型及求解方法

集合问题常见题型及求解方法一、概念辨析型此类问题主要考察元素与集合、集合与集合的关系及有关运算,往往可通过观察元素的结构特征或借助图形寻求集合之间的关系,使问题直观准确地得到解决。

例1、 设Φ=B A ,{}A P P M ⊆=,{}B Q Q N ⊆=,则有A. Φ=N M ,B.{}Φ=N M ,C.B A N M ⊂,D.B A N M = 解: ∵Φ=B A ,∴B A ⊆Φ⊆Φ, ∴{}Φ=N M . 例 2.函数⎩⎨⎧∈-∈=M x x P x x x f ,,)(,其中P 、M 为实数集R 的两个非空子集,又规定{}P x x f y y P f ∈==),()(,{}M x x f y y M f ∈==),()(给出下列四个判断:(1)若Φ=P M ,则Φ=)()(M f P f ,(2)若Φ≠P M ,则Φ≠)()(M f P f(3)若R P M = ,则R M f P f =)()( ,(4)若R P M ≠ ,则R M f P f ≠)()( 其中正确的判定有 :A.1个 B.2个 C.3个 D.4个解:由函数定义知{}0=P M 或Φ=P M 。

若Φ≠P M 则{}0=P M 此时{}0)()(=M f P f 非空,∴(2)真;若R P M ≠ ,则必有R M f P f ≠)()( ,∴(4)真;若Φ=P M ,则)()(M f P f 不一定为空,∴(1)假;若R P M = ,则)()(M f P f 一定不等于R,∴(3)假.例3.集合A={直线},B={圆} 则B A 中有( )元素A.2个B.1个C.0个D.0或1或2个。

解:A 、B 中元素分别是直线和圆,不是直线上的点和圆上的点,B A 中元素是“既是直线又是圆的图形”。

二、基本运算型此类题型主要考察集合的基本概念和基本运算,常用解法有定义法、列举法、图示法及语言转换法等。

例4.设全集U=R,M={}132≤-x x ,N={}12-+=x y y x ,则=)(N C M R A.[- 2,2] B.[-2,2] C.[-2,-]2,2[]2 D.[ 2,2] 。

2016国家公务员考试行测数量关系

2016国家公务员考试行测数量关系

2016年国家公务员考试资料2016国家公务员考试行测数量关系来源江门中公教育一、平均数公式:平均数=总数量÷总份数,或者:总份数=平均数总数量例.A,B,C,D,E五个人在一次满分为100分的考试中,得分都是大于91的互不相同的整数。

如果A,B,C的平均分为95分,B,C,D的平均分为94分,A是第一名,E是第三名得96分。

则D的得分是多少?A.96分B.98分C.97分D.99分【答案】C。

解析:由于几个人得分不同,所以D得分不可能为96分,排除A。

A+B+C=95 3,B+C+D=94 3,联立两式得:A-D=3,由于A≤100,故D≤97,排除B、D,选择C。

二、质合数质数:一个数如果只有1和它本身两个因数,这样的数叫做质数。

如:2、3、5、7、都是质数,质数有无限多个,最小的质数是2。

合数:一个数如果除了1和它本身还有别的因数,这样的数叫做合数。

如: 4、6、15、49都是合数,合数也有无限多个,最小的合数是4。

例.一个星期天的早晨,母亲对孩子们说:“你们是否发现在你们中间,大哥的年龄等于两个弟弟年龄之和?”儿子们齐声回答说:“是的,我们的年龄和您年龄的乘积,等于您儿子人数的立方乘以1000加上您儿子人数的平方乘以10。

”从这次谈话中,你能否确定母亲在多大时,才生下第二个儿子?【答案】34。

解析:由题意可知,母亲有三个儿子。

母亲的年龄与三个儿子年龄的乘积等于:3 3×1000+32 ×10=27090把27090分解质因数:27090=43×7×5×32 ×2根据“大哥的年龄等于两个弟弟年龄之和”,重新组合上面的质因式得:43×14×9×5这个质因式中14就是9与5之和。

所以母亲43岁,大儿子14岁,二儿子9岁,小儿子5岁。

43-9=34(岁)三、奇偶数偶数±偶数=偶数,奇数±奇数=偶数。

国考行测三集合容斥原理

国考行测三集合容斥原理

国考行测三集合容斥原理
集合容斥原理是组合数学中的一种常用原理,常用于解决集合问题。

在国家公务员考试中,行测部分经常涉及与集合相关的题目,而集合容斥原理则是解决这类问题的一种有效方法。

集合容斥原理描述了多个集合之间的差集和交集的关系。

具体来说,对于给定的n个集合A1、A2、...、An,集合容斥原理
可以帮助我们计算出这些集合的并集的元素个数。

集合容斥原理的公式为:
|A1 ∪ A2 ∪ ... ∪ An| = |A1| + |A2| + ... + |An| - |A1 ∩ A2| - |A1
∩ A3| - ... + (-1)^n-1 |A1 ∩ A2 ∩ ... ∩ An|
其中,|A|表示集合A的元素个数。

在国考行测中,集合容斥原理常常可以用于解决关于人员分组、选修课程、考试通过等问题。

通过运用集合容斥原理,我们可以得到相应的计算式,从而求得准确的答案。

需要注意的是,在实际运用中,对于给定的具体问题,我们需要根据情况决定要包含哪些集合以及如何计算交集和差集。

并且,根据具体情况,可能需要结合其他的解题方法进行综合运用。

总的来说,集合容斥原理在国考行测中是一种非常有用的解题方法,能够帮助我们清晰地分析问题,准确地求解答案。

因此,对集合容斥原理的理解和掌握对于国考行测的备考非常重要。

湖南公务员05至16年数量关系

湖南公务员05至16年数量关系

湖南公务员05至16年数量关系第三部分:数量关系在这部分试题中,每道题呈现一段表述数字关系的文字,要求你迅速,准确的计算出答案。

61.某种商品原价25元,每半天可销售20个。

现知道每降价1元,销量即增加5个。

某日上午将该商品打八折,下午在上午价格的基础上再打八折出售,问其全天销售额为多少元?A.1760 B.1940 C.2160 D.256062.某高校艺术学院分音乐系和美术系两个系别,已知学院男生人数占人数的30%,且音乐系男女生人数之比为1:3,美术系男女生人数之比为2:3,问音乐系和美术系的总人数之比为多少?A.5:2 B.5:1 C.3:1 D.2:163.A.工程队的效率是B.工程队的2倍,某工程交给两队共同完成需要6天。

如果两队的工作效率均提高一倍,且B.队中途休息了1天,问要保证工程按原来的时间完成,A.队中途最多可以休息几天?A.4 B.3 C.2 D.164.某地居民用水价格分二级阶梯,户年用水量在0~180(含)吨的水价5元/吨;180吨以上的水价7元/吨。

户内人口在5人以上的,每多1人,阶梯水量标准增加30吨。

老张家5人,老李家6人,去年用水量都是210吨。

问老李家的人均水费比老张家少约多少元?A.12 B.35 C.47 D.6065.某企业原有职工110人,其中技术人员是非技术人员的10倍,今年招聘后,两类人员的人数之比未变,且现有职工中技术人员比非技术人员多153人。

问今年新招非技术人员多少名?A.7 B.8 C.9 D.1066.老王围着边长为50米的正六边形的草地跑步,他从某个角点出发,跑了500米之后,与出发点相距有多远?A. B. C. D.67.木匠加工2张桌子和4张凳子共需要10个小时,加工4张桌子和8张椅子需要22个小时。

问如果他加工桌子、凳子和椅子各10张,共需要多少小时?A.47.5 B.50 C.52.5 D.5568.如下图,正方形A.B.C.D.边长为10厘米,一只小蚂蚁E从A.点出发匀速移动,沿边A.B.,B.C.,C.D.前往D.点。

集合知识点汇总及题型解析

集合知识点汇总及题型解析

§1.1集合考试要求 1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.知识梳理1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合非负整数集(或自然数集)正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.集合的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集,记作A⊆B(或B⊇A).(2)真子集:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集,记作A B(或B A).(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集:不含任何元素的集合叫做空集,记为∅.空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算表示 运算集合语言图形语言记法并集{x |x ∈A ,或x ∈B }A ∪B交集 {x |x ∈A ,且x ∈B }A ∩B 补集{x |x ∈U ,且x ∉A }∁U A常用结论1.若集合A 有n (n ≥1)个元素,则集合A 有2n 个子集,2n -1个真子集. 2.A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)集合{x ∈N |x 3=x },用列举法表示为{-1,0,1}.( × ) (2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( × ) (3)若1∈{x 2,x },则x =-1或x =1.( × ) (4)对任意集合A ,B ,都有(A ∩B )⊆(A ∪B ).( √ ) 教材改编题1.(多选)若集合A ={x ∈N |2x +10>3x },则下列结论正确的是( ) A .22∉A B .8⊆A C .{4}∈A D .{0}⊆A答案 AD2.已知集合M ={a +1,-2},N ={b ,2},若M =N ,则a +b =________. 答案 -1解析 ∵M =N ,∴⎩⎪⎨⎪⎧a +1=2,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,∴a +b =-1.3.已知全集U =R ,集合A ={x |1≤x ≤3},B ={x |x 2≥4},则A ∩B =____________,A ∪(∁U B )=____________.答案 {x |2≤x ≤3} {x |-2<x ≤3}解析 ∵全集U =R ,集合A ={x |1≤x ≤3},B ={x |x 2≥4}={x |x ≤-2或x ≥2}, ∴∁U B ={x |-2<x <2},∴A ∩B ={x |2≤x ≤3},A ∪(∁U B )={x |-2<x ≤3}.题型一 集合的含义与表示例1 (1)(2020·全国Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .6 答案 C解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)},共4个元素. (2)若集合A ={a -3,2a -1,a 2-4},且-3∈A ,则实数a =________. 答案 0或1解析 ①当a -3=-3时,a =0, 此时A ={-3,-1,-4}, ②当2a -1=-3时,a =-1, 此时A ={-4,-3,-3}舍去,③当a 2-4=-3时,a =±1,由②可知a =-1舍去,则当a =1时,A ={-2,1,-3}, 综上,a =0或1. 教师备选若集合A ={x |kx 2+x +1=0}中有且仅有一个元素,则实数k 的取值集合是________. 答案 ⎩⎨⎧⎭⎬⎫0,14解析 依题意知,方程kx 2+x +1=0有且仅有一个实数根,∴k =0或⎩⎪⎨⎪⎧k ≠0,Δ=1-4k =0,∴k =0或k =14,∴k 的取值集合为⎩⎨⎧⎭⎬⎫0,14.思维升华 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.跟踪训练1 (1)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪4x -2∈Z,则集合A 中的元素个数为( ) A .3 B .4 C .5 D .6答案 C解析 ∵4x -2∈Z ,∴x -2的取值有-4,-2,-1,1,2,4, ∴x 的值分别为-2,0,1,3,4,6, 又x ∈N ,故x 的值为0,1,3,4,6. 故集合A 中有5个元素.(2)已知a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则a 2 023+b 2 023=________.答案 0解析 ∵{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b 且a ≠0,∴a +b =0,∴a =-b , ∴{1,0,-b }={0,-1,b }, ∴b =1,a =-1, ∴a 2 023+b 2 023=0.题型二 集合间的基本关系例2 (1)设集合P ={y |y =x 2+1},M ={x |y =x 2+1},则集合M 与集合P 的关系是( ) A .M =P B .P ∈M C .M P D .PM答案 D解析 因为P ={y |y =x 2+1}={y |y ≥1},M ={x |y =x 2+1}=R ,因此P M .(2)已知集合A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1},且B ⊆A ,则实数m 的取值范围是________. 答案 [-1,+∞)解析 ∵B ⊆A ,①当B =∅时,2m -1>m +1,解得m >2; ②当B ≠∅时,⎩⎪⎨⎪⎧ 2m -1≤m +1,2m -1≥-3,m +1≤4,解得-1≤m ≤2.综上,实数m 的取值范围是[-1,+∞).延伸探究 在本例(2)中,若把B ⊆A 改为B A ,则实数m 的取值范围是________. 答案 [-1,+∞)解析 ①当B =∅时,2m -1>m +1,∴m >2; ②当B ≠∅时,⎩⎪⎨⎪⎧2m -1≤m +1,2m -1≥-3,m +1<4或⎩⎪⎨⎪⎧2m -1≤m +1,2m -1>-3,m +1≤4.解得-1≤m ≤2.综上,实数m 的取值范围是[-1,+∞). 教师备选已知M ,N 均为R 的子集,若N ∪(∁R M )=N ,则( ) A .M ⊆N B .N ⊆M C .M ⊆∁R N D .∁R N ⊆M答案 D解析 由题意知,∁R M ⊆N ,其Venn 图如图所示,∴只有∁R N ⊆M 正确.思维升华 (1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.跟踪训练2 (1)已知集合A ={x |x 2-3x +2=0},B ={x ∈N |x 2-6x <0},则满足A C ⊆B 的集合C 的个数为( ) A .4 B .6 C .7 D .8答案 C解析 ∵A ={1,2},B ={1,2,3,4,5}, 且A C ⊆B ,∴集合C 的所有可能为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.(2)已知集合M ={x |x 2=1},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值为________. 答案 0,±1解析 ∵M ={-1,1},且M ∩N =N , ∴N ⊆M .若N =∅,则a =0;若N ≠∅,则N =⎩⎨⎧⎭⎬⎫1a ,∴1a =1或1a =-1, ∴a =±1综上有a =±1或a =0. 题型三 集合的基本运算 命题点1 集合的运算例3 (1)(2021·全国乙卷)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T 等于( )A .∅B .SC .TD .Z 答案 C解析方法一在集合T中,令n=k(k∈Z),则t=4n+1=2(2k)+1(k∈Z),而集合S中,s =2n+1(n∈Z),所以必有T⊆S,所以T∩S=T.方法二S={…,-3,-1,1,3,5,…},T={…,-3,1,5,…},观察可知,T⊆S,所以T∩S =T.(2)(2022·济南模拟)集合A={x|x2-3x-4≥0},B={x|1<x<5},则集合(∁R A)∪B等于() A.[-1,5) B.(-1,5)C.(1,4] D.(1,4)答案 B解析因为集合A={x|x2-3x-4≥0}={x|x≤-1或x≥4},又B={x|1<x<5},所以∁R A=(-1,4),则集合(∁R A)∪B=(-1,5).命题点2利用集合的运算求参数的值(范围)例4(1)(2022·厦门模拟)已知集合A={1,a},B={x|log2x<1},且A∩B有2个子集,则实数a的取值范围为()A.(-∞,0]B.(0,1)∪(1,2]C.[2,+∞)D.(-∞,0]∪[2,+∞)答案 D解析由题意得,B={x|log2x<1}={x|0<x<2},∵A∩B有2个子集,∴A∩B中的元素个数为1;∵1∈(A∩B),∴a∉(A∩B),即a∉B,∴a≤0或a≥2,即实数a的取值范围为(-∞,0]∪[2,+∞).(2)已知集合A ={x |3x 2-2x -1≤0},B ={x |2a <x <a +3},若A ∩B =∅,则实数a 的取值范围是( ) A .a <-103或a >12B .a ≤-103或a ≥12C .a <-16或a >2D .a ≤-16或a ≥2答案 B解析 A ={x |3x 2-2x -1≤0}=⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤1, ①B =∅,2a ≥a +3⇒a ≥3,符合题意;②B ≠∅,⎩⎪⎨⎪⎧a <3,a +3≤-13或⎩⎪⎨⎪⎧a <3,2a ≥1, 解得a ≤-103或12≤a <3.∴a 的取值范围是a ≤-103或a ≥12.教师备选(2022·铜陵模拟)已知A ={x |x ≤0或x ≥3},B ={x |x ≤a -1或x ≥a +1},若A ∩(∁R B )≠∅,则实数a 的取值范围是( ) A .1≤a ≤2 B .1<a <2 C .a ≤1或a ≥2 D .a <1或a >2答案 D解析 A ={x |x ≤0或x ≥3},B ={x |x ≤a -1或x ≥a +1}, 所以∁R B ={x |a -1<x <a +1}; 又A ∩(∁R B )≠∅, 所以a -1<0或a +1>3, 解得a <1或a >2,所以实数a 的取值范围是a <1或a >2.思维升华 对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn 图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.跟踪训练3 (1)(2021·全国甲卷)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤5,则M ∩N 等于( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪0<x ≤13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <4 C .{x |4≤x <5} D .{x |0<x ≤5}答案 B解析 因为M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤5, 所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <4. (2)(2022·南通模拟)设集合A ={1,a +6,a 2},B ={2a +1,a +b },若A ∩B ={4},则a =________,b =________. 答案 2 2解析 由题意知,4∈A ,所以a +6=4或a 2=4, 当a +6=4时,则a =-2,得A ={1,4,4},故应舍去; 当a 2=4时,则a =2或a =-2(舍去), 当a =2时,A ={1,4,8},B ={5,2+b }, 又4∈B ,所以2+b =4,得b =2. 所以a =2,b =2.题型四 集合的新定义问题例5 (1)已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( ) A .15 B .16 C .20 D .21 答案 D解析 由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.(2)非空数集A 如果满足:①0∉A ;②若∀x ∈A ,有1x∈A ,则称A 是“互倒集”.给出以下数集:①{x ∈R |x 2+ax +1=0};②{x |x 2-6x +1≤0};③⎩⎨⎧⎭⎬⎫y ⎪⎪y =2x,x ∈[1,4],其中是“互倒集”的序号是________. 答案 ②③解析 ①中,{x ∈R |x 2+ax +1=0},二次方程判别式Δ=a 2-4,故-2<a <2时,方程无根,该数集是空集,不符合题意; ②中,{x |x 2-6x +1≤0}, 即{x |3-22≤x ≤3+22}, 显然0∉A , 又13+22≤1x ≤13-22,即3-22≤1x ≤3+22,故1x也在集合中,符合题意; ③中,⎩⎨⎧⎭⎬⎫y ⎪⎪y =2x,x ∈[1,4], 易得⎩⎨⎧⎭⎬⎫y ⎪⎪12≤y ≤2,0∉A , 又12≤1y ≤2,故1y 也在集合A 中,符合题意. 教师备选对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={x |x ≥0},B ={x |-3≤x ≤3},则A *B =____________. 答案 {x |-3≤x <0或x >3}解析 ∵A ={x |x ≥0},B ={x |-3≤x ≤3}, ∴A -B ={x |x >3},B -A ={x |-3≤x <0}. ∴A *B ={x |-3≤x <0或x >3}. 思维升华 解决集合新定义问题的关键解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目所给定义和要求进行恰当转化,切忌同已有概念或定义相混淆.跟踪训练4若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)是集合A的同一种分拆.若集合A有三个元素,则集合A的不同分拆种数是________.答案27解析不妨令A={1,2,3},∵A1∪A2=A,当A1=∅时,A2={1,2,3},当A1={1}时,A2可为{2,3},{1,2,3}共2种,同理A1={2},{3}时,A2各有2种,当A1={1,2}时,A2可为{3},{1,3},{2,3},{1,2,3}共4种,同理A1={1,3},{2,3}时,A2各有4种,当A1={1,2,3}时,A2可为A1的子集,共8种,故共有1+2×3+4×3+8=27(种)不同的分拆.课时精练1.(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},集合N={3,4},则∁U(M∪N)等于()A.{5} B.{1,2}C.{3,4} D.{1,2,3,4}答案 A解析方法一(先求并再求补)因为集合M={1,2},N={3,4},所以M∪N={1,2,3,4}.又全集U={1,2,3,4,5},所以∁U(M∪N)={5}.方法二(先转化再求解)因为∁U(M∪N)=(∁U M)∩(∁U N),∁U M={3,4,5},∁U N={1,2,5},所以∁U(M∪N)={3,4,5}∩{1,2,5}={5}.2.已知集合U=R,集合A={x|x+3>2},B={y|y=x2+2},则A∩(∁U B)等于() A.R B.(1,2]C.(1,2) D.[2,+∞)答案 C解析 A ={x |x +3>2}=(1,+∞),B ={y |y =x 2+2}=[2,+∞),∴∁U B =(-∞,2),∴A ∩(∁U B )=(1,2).3.已知集合M ={1,2,3},N ={(x ,y )|x ∈M ,y ∈M ,x +y ∈M },则集合N 中的元素个数为( )A .2B .3C .8D .9答案 B解析 由题意知,集合N ={(1,1),(1,2),(2,1)},所以集合N 的元素个数为3.4.(2022·青岛模拟)已知集合A ={a 1,a 2,a 3}的所有非空真子集的元素之和等于9,则a 1+a 2+a 3等于( )A .1B .2C .3D .6 答案 C解析 集合A ={a 1,a 2,a 3}的所有非空真子集为{a 1},{a 2},{a 3},{a 1,a 2},{a 1,a 3},{a 2,a 3},则所有非空真子集的元素之和为a 1+a 2+a 3+a 1+a 2+a 1+a 3+a 2+a 3=3(a 1+a 2+a 3)=9,所以a 1+a 2+a 3=3.5.(2022·浙江名校联考)已知集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},若A ∪B =B ,则实数a 的取值范围是( )A .a <-2B .a ≤-2C .a >-4D .a ≤-4 答案 D解析 集合A ={x |-2≤x ≤2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-a 2,由A ∪B =B 可得A ⊆B ,作出数轴如图.可知-a 2≥2,即a ≤-4.6.(多选)已知集合P ={(x ,y )|x +y =1},Q ={(x ,y )|x 2+y 2=1},则下列说法正确的是( )A .P ∪Q =RB .P ∩Q ={(1,0),(0,1)}C .P ∩Q ={(x ,y )|x =0或1,y =0或1}D .P ∩Q 的真子集有3个答案 BD解析 联立⎩⎪⎨⎪⎧ x +y =1,x 2+y 2=1,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =1,∴P ∩Q ={(1,0),(0,1)},故B 正确,C 错误;又P ,Q 为点集,∴A 错误;又P ∩Q 有两个元素,∴P ∩Q 有3个真子集,∴D 正确.7.(多选)(2022·重庆北碚区模拟)已知全集U ={x ∈N |log 2x <3},A ={1,2,3},∁U (A ∩B )={1,2,4,5,6,7},则集合B 可能为( )A .{2,3,4}B .{3,4,5}C .{4,5,6}D .{3,5,6} 答案 BD解析 由log 2x <3得0<x <23,即0<x <8,于是得全集U ={1,2,3,4,5,6,7},因为∁U (A ∩B )={1,2,4,5,6,7},则有A ∩B ={3},3∈B ,C 不正确;对于A 选项,若B ={2,3,4},则A ∩B ={2,3},∁U (A ∩B )={1,4,5,6,7},矛盾,A 不正确;对于B 选项,若B ={3,4,5},则A∩B={3},∁U(A∩B)={1,2,4,5,6,7},B正确;对于D选项,若B={3,5,6},则A∩B={3},∁U(A∩B)={1,2,4,5,6,7},D正确.8.(多选)已知全集U的两个非空真子集A,B满足(∁U A)∪B=B,则下列关系一定正确的是()A.A∩B=∅B.A∩B=BC.A∪B=U D.(∁U B)∪A=A答案CD解析令U={1,2,3,4},A={2,3,4},B={1,2},满足(∁U A)∪B=B,但A∩B≠∅,A∩B≠B,故A,B均不正确;由(∁U A)∪B=B,知∁U A⊆B,∴U=A∪(∁U A)⊆(A∪B),∴A∪B=U,由∁U A⊆B,知∁U B⊆A,∴(∁U B)∪A=A,故C,D均正确.9.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.答案-3解析由题意可知,A={x∈U|x2+mx=0}={0,3},即0,3为方程x2+mx=0的两个根,所以m=-3.10.(2022·石家庄模拟)已知全集U=R,集合M={x∈Z||x-1|<3},N={-4,-2,0,1,5},则下列Venn图中阴影部分的集合为________.答案 {-1,2,3}解析 集合M ={x ∈Z ||x -1|<3}={x ∈Z |-3<x -1<3}={x ∈Z |-2<x <4}={-1,0,1,2,3}, Venn 图中阴影部分表示的集合是M ∩(∁R N )={-1,2,3}.11.已知集合A ={m 2,-2},B ={m ,m -3},若A ∩B ={-2},则A ∪B =________. 答案 {-5,-2,4}解析 ∵A ∩B ={-2},∴-2∈B ,若m =-2,则A ={4,-2},B ={-2,-5},∴A ∩B ={-2},A ∪B ={-5,-2,4};若m -3=-2,则m =1,∴A ={1,-2},B ={1,-2},∴A ∩B ={1,-2}(舍去),综上,有A ∪B ={-5,-2,4}.12.已知集合A ={x |y =lg(a -x )},B ={x |1<x <2},且(∁R B )∪A =R ,则实数a 的取值范围是________.答案 [2,+∞)解析 由已知可得A =(-∞,a ),∁R B =(-∞,1]∪[2,+∞),∵(∁R B )∪A =R ,∴a ≥2.13.若x ∈A ,则1x ∈A ,就称A 是“伙伴关系”集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有“伙伴关系”的集合的个数为( )A .15B .16C .32D .256答案 A解析 由题意知,满足“伙伴关系”的集合由以下元素构成:-1,1,12,2,13,3,其中12和2,13和3必须同时出现,所有满足条件的集合个数为24-1=15. 14.已知集合A ={x |8<x <10},设集合U ={x |0<x <9},B ={x |a <x <2a -1},若(∁U B )∩A ={x |8<x <9},则实数a 的取值范围是________________.答案 ⎝⎛⎦⎤-∞,92解析 当B =∅时,2a -1≤a ,解得a ≤1,此时∁U B =U ,(∁U B )∩A =U ∩A ={x |8<x <9},符合题意;当B ≠∅时,2a -1>a ,解得a >1,因为集合U ={x |0<x <9},B ={x |a <x <2a -1},所以∁U B ={x |0<x ≤a 或2a -1≤x <9},因为(∁U B )∩A ={x |8<x <9},所以2a -1≤8,解得a ≤92,所以B ≠∅时,1<a ≤92,综上所述,实数a 的取值范围是⎝⎛⎦⎤-∞,92.15.(多选)设集合A ={x |x =m +3n ,m ,n ∈N *},若x 1∈A ,x 2∈A ,x 1x 2∈A ,则运算可能是( )A .加法B .减法C .乘法D .除法答案 AC解析 由题意可设x 1=m 1+3n 1,x 2=m 2+3n 2,其中m 1,m 2,n 1,n 2∈N *,则x 1+x 2=(m 1+m 2)+3(n 1+n 2),x 1+x 2∈A ,所以加法满足条件,A 正确;x 1-x 2=(m 1-m 2)+3(n 1-n 2),当n1=n2时,x1-x2∉A,所以减法不满足条件,B错误;x1x2=m1m2+3n1n2+3(m1n2+m2n1),x1x2∈A,所以乘法满足条件,C正确;x1 x2=m1+3n1m2+3n2,当m1m2=n1n2=λ(λ>0)时,x1x2∉A,所以除法不满足条件,D错误.16.对班级40名学生调查对A,B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1人,问对A,B都赞成的学生有___________人.答案18解析赞成A的人数为40×35=24,赞成B的人数为24+3=27,设对A,B都赞成的学生有x人,则13x+1+27-x+x+24-x=40,解得x=18.。

国家公务员行测集合问题

国家公务员行测集合问题

国家公务员行测集合问题集合问题也称容斥原理,是出题频率最高的题型之一。

本类试题基本解题思路如下:1.利用集合原理公式法:适用于条件与问题都可直接代入公式的题目。

(1)两个集合:︱A∪B︱=︱A︱+︱B︱-︱A∩B︱(2)三个集合:︱A∪B∪C︱=︱A︱+︱B︱+︱C︱-︱A∩B︱-︱B∩C︱-︱C∩A︱+︱A∩B∩C︱2.文氏图示意法:用图形来表示集合关系,变抽象文字为形象图示。

真题一:某服装厂生产出来的一批衬衫中大号和小号各占一半。

其中25%是白色,75%是蓝色的。

如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?()A.15B.25C.35D.40【解析】C。

由题中可知大号衬衫、小号衬衫各50件,白色衬衫共25件,蓝色衬衫共75件。

题中已告诉大号白色衬衫有10件,可知大号蓝色衬衫有50-10=40件,则剩余的蓝色衬衫全是小号的,共75-40=35(件)。

真题二:某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是()。

A.22B.18C.28D.26【解析】A。

本题采用图示法更为简单。

如图:故两次都及格的人数为32-4-4-2=22人。

真题三:某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都及格的有22人,那么两次考试都没有及格的人数是()。

A.10B.4C.6D.8【解析】B。

两次考试都没有及格的人数=学生总数-两次都及格的人数-第一次未及格的人数-第二次未及格的人数=32-22-[32-22-(32-26)]-[32-22-(32-24)]=32-22-6=4。

真题四:对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。

其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有()。

集合考点和题型归纳

集合考点和题型归纳

集合考点和题型归纳一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎨⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎨⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A ∩B ,即A ∩B ={x |x ∈A ,且x ∈B }.(2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x |x ∈A ,或x ∈B }.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作∁U A ,即∁U A ={x |x ∈U ,且x ∉A }.求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为∁U A .二、常用结论(1)子集的性质:A ⊆A ,∅⊆A ,A ∩B ⊆A ,A ∩B ⊆B . (2)交集的性质:A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A .(3)并集的性质:A ∪B =B ∪A ,A ∪B ⊇A ,A ∪B ⊇B ,A ∪A =A ,A ∪∅=∅∪A =A . (4)补集的性质:A ∪∁U A =U ,A ∩∁U A =∅,∁U (∁U A )=A ,∁A A =∅,∁A ∅=A .(5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔A ⊇B . 考点一 集合的基本概念[典例] (1)(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1D .±1[解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.(2)由已知得a ≠0,则ba =0,所以b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1.[答案] (1)B (2)C[提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]1.设集合A ={0,1,2,3},B ={x |-x ∈A,1-x ∉A },则集合B 中元素的个数为( ) A .1 B .2 C .3D .4解析:选A 若x ∈B ,则-x ∈A ,故x 只可能是0,-1,-2,-3,当0∈B 时,1-0=1∈A ;当-1∈B 时,1-(-1)=2∈A ;当-2∈B 时,1-(-2)=3∈A ;当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a 等于( ) A.92 B.98C .0D .0或98解析:选D 若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意.当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的值为0或98.3.(2018·厦门模拟)已知P ={x |2<x <k ,x ∈N},若集合P 中恰有3个元素,则k 的取值范围为 .解析:因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. 答案:(5,6]考点二 集合间的基本关系[典例] (1)已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则( ) A .B ⊆A B .A =B C .A BD .B A(2)(2019·湖北八校联考)已知集合A ={x ∈N *|x 2-3x <0},则满足条件B ⊆A 的集合B 的个数为( )A .2B .3C .4D .8(3)已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________. [解析] (1)由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},比较A ,B 中的元素可知A B ,故选C.(2)∵A ={x ∈N *|x 2-3x <0}={x ∈N *|0<x <3}={1,2},又B ⊆A ,∴满足条件B ⊆A 的集合B 的个数为22=4,故选C.(3)当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3}. 若B ⊆A ,在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. [答案] (1)C (2)C (3)(-∞,1] [变透练清]1.(变条件)若本例(2)中A 不变,C ={x |0<x <5,x ∈N},则满足条件A ⊆B ⊆C 的集合B 的个数为( )A .1B .2C .3D .4解析:选D 因为A ={1,2},由题意知C ={1,2,3,4},所以满足条件的B 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.2.(变条件)若本例(3)中,把条件“B ⊆A ”变为“A ⊆B ”,其他条件不变,则m 的取值范围为________.解析:若A ⊆B ,由⎩⎨⎧-m ≤-1,m ≥3得m ≥3,∴m 的取值范围为[3,+∞). 答案:[3,+∞)3.已知集合A={1,2},B={x|x2+mx+1=0,x∈R},若B⊆A,则实数m的取值范围为________.解析:①若B=∅,则Δ=m2-4<0,解得-2<m<2;②若1∈B,则12+m+1=0,解得m=-2,此时B={1},符合题意;③若2∈B,则22+2m+1=0,解得m=-52,此时B=⎩⎨⎧⎭⎬⎫2,12,不合题意.综上所述,实数m的取值范围为[-2,2).答案:[-2,2)考点三集合的基本运算考法(一)集合的运算[典例](1)(2018·天津高考)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}(2)已知全集U=R,集合A={x|x2-3x-4>0},B={x|-2≤x≤2},则如图所示阴影部分所表示的集合为()A.{x|-2≤x<4}B.{x|x≤2或x≥4}C.{x|-2≤x≤-1}D.{x|-1≤x≤2}[解析](1)∵A={1,2,3,4},B={-1,0,2,3},∴A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.(2)依题意得A={x|x<-1或x>4},因此∁R A ={x |-1≤x ≤4},题中的阴影部分所表示的集合为(∁R A )∩B ={x |-1≤x ≤2}. [答案] (1)C (2)D考法(二) 根据集合运算结果求参数[典例] (1)已知集合A ={x |x 2-x -12>0},B ={x |x ≥m }.若A ∩B ={x |x >4},则实数m 的取值范围是( )A .(-4,3)B .[-3,4]C .(-3,4)D .(-∞,4](2)(2019·河南名校联盟联考)已知A ={1,2,3,4},B ={a +1,2a },若A ∩B ={4},则a =( )A .3B .2C .2或3D .3或1[解析] (1)集合A ={x |x <-3或x >4},∵A ∩B ={x |x >4},∴-3≤m ≤4,故选B. (2)∵A ∩B ={4},∴a +1=4或2a =4.若a +1=4,则a =3,此时B ={4,6},符合题意;若2a =4,则a =2,此时B ={3,4},不符合题意.综上,a =3,故选A.[答案] (1)B (2)A[题组训练]1.已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z},则A ∪B =( ) A .{1} B .{1,2} C .{0,1,2,3}D .{-1,0,1,2,3}解析:选C 因为集合B ={x |-1<x <2,x ∈Z}={0,1},而A ={1,2,3},所以A ∪B ={0,1,2,3}.2.(2019·重庆六校联考)已知集合A ={x |2x 2+x -1≤0},B ={x |lg x <2},则(∁R A )∩B =( )A.⎝⎛⎭⎫12,100 B.⎝⎛⎭⎫12,2 C.⎣⎡⎭⎫12,100 D .∅解析:选A 由题意得A =⎣⎡⎦⎤-1,12,B =(0,100),则∁R A =(-∞,-1)∪⎝⎛⎭⎫12,+∞,所以(∁R A )∩B =⎝⎛⎭⎫12,100.3.(2019·合肥质量检测)已知集合A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞) B.⎣⎡⎦⎤12,1 C.⎣⎡⎭⎫23,+∞ D .(1,+∞)解析:选A 因为A ∩B ≠∅,所以⎩⎨⎧2a -1≥1,2a -1≥12a ,解得a ≥1.[课时跟踪检测]1.(2019·福州质量检测)已知集合A ={x |x =2k +1,k ∈Z},B ={x |-1<x ≤4},则集合A ∩B 中元素的个数为( )A .1B .2C .3D .4解析:选B 依题意,集合A 是由所有的奇数组成的集合,故A ∩B ={1,3},所以集合A ∩B 中元素的个数为2.2.设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )=( ) A .{2,6} B .{3,6} C .{1,3,4,5}D .{1,2,4,6}解析:选A 因为A ={1,3,5},B ={3,4,5},所以A ∪B ={1,3,4,5}.又U ={1,2,3,4,5,6},所以∁U (A ∪B )={2,6}.3.(2018·天津高考)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2}D .{x |0<x <2}解析:选B ∵全集为R ,B ={x |x ≥1}, ∴∁R B ={x |x <1}. ∵集合A ={x |0<x <2}, ∴A ∩(∁R B )={x |0<x <1}.4.(2018·南宁毕业班摸底)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∩N =MB .M ∪(∁R N )=MC .N ∪(∁R M )=RD .M ∪N =M解析:选D 由题意可得,N =(0,2),M =(-∞,4),所以M ∪N =M .5.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤2x <2,B ={x |ln x ≤0},则A ∩B 为( ) A.⎝⎛⎭⎫0,12 B .[-1,0) C.⎣⎡⎭⎫12,1D .[-1,1]解析:选A ∵12≤2x <2,即2-1≤2x <2,∴-1≤x <12,∴A =⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x <12.∵ln x ≤0,即ln x ≤ln 1,∴0<x ≤1,∴B ={x |0<x ≤1},∴A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12. 6.(2019·郑州质量测试)设集合A ={x |1<x <2},B ={x |x <a },若A ∩B =A ,则a 的取值范围是( )A .(-∞,2]B .(-∞,1]C .[1,+∞)D .[2,+∞)解析:选D 由A ∩B =A ,可得A ⊆B ,又因为A ={x |1<x <2},B ={x |x <a },所以a ≥2. 7.已知全集U =A ∪B 中有m 个元素,()∁U A ∪()∁U B 中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D 因为()∁U A ∪()∁U B 中有n 个元素,如图中阴影部分所示,又U =A ∪B 中有m 个元素,故A ∩B 中有m -n 个元素.8.定义集合的商集运算为A B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =m n ,m ∈A ,n ∈B ,已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2-1,k ∈A ,则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9解析:选B 由题意知,B ={0,1,2},B A =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,则BA ∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2,共有7个元素. 129.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z},则A ∩B =________.解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z}={-1,0}.答案:{-1,0}10.已知集合U =R ,集合A =[-5,2],B =(1,4),则下图中阴影部分所表示的集合为 ________.解析:∵A =[-5,2],B =(1,4),∴∁U B ={x |x ≤1或x ≥4},则题图中阴影部分所表示的集合为(∁U B )∩A ={x |-5≤x ≤1}.答案:{x |-5≤x ≤1}11.若集合A ={(x ,y )|y =3x 2-3x +1},B ={(x ,y )|y =x },则集合A ∩B 中的元素个数为________.解析:法一:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.联立得方程组⎩⎪⎨⎪⎧y =3x 2-3x +1,y =x ,解得⎩⎨⎧x =13,y =13或⎩⎪⎨⎪⎧x =1,y =1, 故A ∩B =⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫13,13,(1,1),所以A ∩B 中含有2个元素. 法二:由集合的意义可知,A ∩B 表示曲线y =3x 2-3x +1与直线y =x 的交点构成的集合.因为3x 2-3x +1=x 即3x 2-4x +1=0的判别式Δ>0,所以该方程有两个不相等的实根,所以A ∩B 中含有2个元素.答案:212.已知集合A ={x |log 2x ≤2},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是__________. 解析:由log 2x ≤2,得0<x ≤4, 即A ={x |0<x ≤4},而B ={x |x <a },由于A ⊆B ,在数轴上标出集合A ,B ,如图所示,则a >4.答案:(4,+∞)13.设全集U=R,A={x|1≤x≤3},B={x|2<x<4},C={x|a≤x≤a+1}.(1)分别求A∩B,A∪(∁U B);(2)若B∪C=B,求实数a的取值范围.解:(1)由题意知,A∩B={x|1≤x≤3}∩{x|2<x<4}={x|2<x≤3}.易知∁U B={x|x≤2或x≥4},所以A∪(∁U B)={x|1≤x≤3}∪{x|x≤2或x≥4}={x|x≤3或x≥4}.(2)由B∪C=B,可知C⊆B,画出数轴(图略),易知2<a<a+1<4,解得2<a<3.故实数a的取值范围是(2,3).。

行政能力测试-集合的基础知识

行政能力测试-集合的基础知识

声明:本资料由大家论坛公务员考试专区/index.asp?boardid=66收集整理,转载请注明出自更多公务员考试信息,考试真题,模拟题:/index.asp?boardid=66大家论坛,学习的天堂!集合的基础知识一、概述集合——近代数学最基本内容之一.主要内容有集合、子集、全集、补集、交集和并集.集合是我们掌握和使用数学语言的基础,也是我们学习后续内容的基础和工具.第一部分主要是学习集合的概念,表示方法等;后一部分在介绍集合与集合之间的“包含”与“相等”关系的基础上,引出子集的概念以及集合的基本运算.二、重点知识归纳及讲解1.集合的有关概念一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素⑴集合中的元素具有以下的特性①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素;而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的.②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}.③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合.(2)集合的元素某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ.(3)集合的分类:有限集与无限集.(4)集合的表示法:列举法、描述法和图示法.列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集.描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集.使用描述法时,应注意六点:①写清集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”;⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切.图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示.如:A={1,2,3,4}例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值.分析:欲求c值,可列关于c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac两种情况.解析:(1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但c=1时,B中的三个元素也相同,舍去c=1,此时无解.(2)a+b= ac2且a+2b=ac,消去b得:2ac2-ac-a=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴2c2-c-1=0,即c=1或,但c=1时,B中的三个元素也相同,舍去c=1,∴.点评:两集合相等的意义是两集合中的元素都相同,在求集合中元素字母的值时,可能产生与互异性相矛盾的增解,这需要解题后进行检验,去伪存真.(5)常用数集及专用记号(1)非负整数集(或自然数集)N={0,1,2,……}(2)正整数集N*(或N+)={1,2,3,……}(3)整数集Z={0,±1,±2,……}(4)有理数集Q={整数与分数}(5)实数集R={数轴上的点所对应的数}.强调:实数集不可记为{R}或{实数集},0≠≠{} ,≠{0},≠{空集}.强调:排除0和负数的数集也可表示为R*、Z*、Q*或R+、Z+、Q+.2.基本运算1. 交集(1)定义:由所有属于集合A且属于集合B的元素所组合的集合叫A与B的交集.记作,即{,且}(2)交集的图示上图阴影部分表示集合A与B的交集.(3)交集的运算律,,,2. 并集(1)定义:由所有属于集合A或属于集合B的元素所组成的集合,记作,即{,或}(2)并集的图示以上阴影部分表示集合A与B的并集.(3)并集的运算律,,,3、补集(1)定义:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集).记作,即C S A=(2)补集的图示4、常用性质A A=A,AΦ=Φ,A B=B A,A B A,A B B.A A=A,AΦ=A,A B=B A,A B A,A B B.,,例2、集合{,且},A U,B U,且{4,5},{1,2,3},{6,7,8},求集合A和B.分析:利用集合图示较为直观.解:由{4,5},则将4,5写在中,由{1,2,3},则将1,2,3写在集A中,由{6,7,8},则将6,7,8写在A、B之外,由与中均无9,10,则9,10在B中,故A={1,2,3,4,5},B={4,5,9,10}.5、容斥原理:有限集A的元素个数记作card(A).对于两个有限集A,B,有card(A∪B)= card(A)+card(B)- card(A∩B).三、难点知识剖析1、要注意区分一些容易混淆的符号(1)与的区别:表示元素与集合之间的关系,例如1N,-1N等;表示集合与集合之间的关系,例如N R,等.(2)a与{a}的区别:一般在,a表示一个元素,{a}而表示只有一个元素a的集合.例如,0{0},{1}{1,2,3}等,不能写成0={0},{1}{1,2,3},1{1,2,3}.(3){0}与Φ的区别:是含有一个元素0的集合,Φ是不含任何元素的集合,因此Φ{0}但不能写成Φ={0},Φ{0}.例3、已知集合M={x|x≤3},集合P={x|x<2},设,则下列关系式中正确的一个是()A、P∈MB、a∈MC、P MD、{a-3}P解析:集合M、P都是部分实数组成的集合,而a是一个具体的实数,故M、P间的关系应用“包含”,“不包含”来确定,而对a与集合M、P的关系只能用“属于”,“不属于”来确定,比较实数的大小,易判断C正确.小结:正确使用集合的符号是正确分析、解答问题的关键.2.理解集合所表示的意义(1)对由条件给出的集合,要明白它所表示的意义,即元素指什么,是什么范围.如{y R|y=}表示的为函数y=中y的取值范围,故{yR|y=}={y R|y};而{x R|y=}表示y=的x的取值范围,故{x R|y=}=R.(2)用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或韦恩图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用韦恩图表示,容易被忽视,如在关系式B A中,易漏掉B=Φ的情况.例4、设A=,B=(1)若A B=B,求的值;(2)若A B=B,求的值.分析:明确A B=B和A B=B的含义,根据问题的需要,将A B=B和A B=B转化为等价的关系式:和,是解决本题的关键.解析:首先化简集合A,得A={-4,0}(1)由于A B=B,则有可知集合B或为空集Φ,或只含有根0或-4.①若B=Φ,由得②若,代入得:,当时,B=,合题意.当时,B=,也符合题意.③若,代入得:,当时,②中已讨论,合题意当时,B=不合题意.由①、②、③得,.(2)因为A B=B,所以,又A={-4,0},而B至多只有两个根,因此应有A=B.由(1)知,【点评】:一般对于A B=B和A B=B这种类型的问题,都要注意转化为等价的关系式:和,且在包含关系中,注意不要漏掉B=的情况.并且当A、B中的元素的个数相同时,还存在或的情况时,只有A=B这一种情况.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

2016国考必备-数量技巧——秒杀!

2016国考必备-数量技巧——秒杀!

2016国考必备-数量技巧——秒杀!华图教育大家都应该很清楚,公务员考试的一大特征就是,时间短,题量大,那么在考试当中如何得到高分,就需要我们节约该节约的时间,那么就需要我们掌握一些解题技巧。

华图教育为大家带来数字特性法,它是数学运算当中最具有技巧性的一个方法,在理解题意的基础上,观察答案应该要满足某种数字特性,从而选出正确答案,能够在考试当中起到秒杀的效果,并且在很多题型当中都可以用。

那么在平时的复习过程中应作为一个专题加以强化练习,以期达到考场上的“秒杀”。

数字特性即是数字的某些特殊的性质。

那么我们这一期为大家讲解关于整除的性质。

而在考试当中,考查最多的当属3,9这一组数据。

我们都需要掌握,判定一个数能否被3,9整除,只需要把数据的各个位数上的所有数字加和,如果和能够被3,9整除,则该数据就能被3,9整除。

那么我们来看看相应的做法:【例1】一个四位数“□□□□”分别能被15、12和10除尽,且被这三个数除尽时所得的三个商的和为1365,问四位数“□□□□”中四个数字的和是多少?A.17B.16C.15D.14【解析】观察到此题,正常的出题思路应该是问这个四位数为多少,可是只是问了这个四位数的四个数字的和是多少。

那么我们就应该考虑到,只有3、9的整除判定才会把数据的各个数字求和,就此找到突破口,找相应的条件,这个四位数能够被15除尽,那么就说明这个数能够被3整除,那么和应该是3的倍数。

则观察选项,选择C选项。

【例2】一个班级坐出租车出去游玩,出租车费用平均每人40元,如果增加7个人,平均每人35元,求这个班级一共花了()元A.1850B.1900C.1960D.2000【解析】此题问一共花了多少钱,我们知道,不管是多少人,租车费用是不变的,人数不同,则平均费用不同,那么总费用应该是40的倍数,同样也是35的倍数。

直接观察选项,只有C选项满足。

所以选择C。

【例3】某种汉堡包每个成本4.5元,售价10.5元,当天卖不完的汉堡包即不再出售。

公务员考试行测集合题解题公式及真题详解

公务员考试行测集合题解题公式及真题详解

>>两集合标准型核心公式满足条件I的个数+满足条件Ⅱ的个数-两者都满足的个数=总个数-两者都不满足的个数>>历年真题详解【例1】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有多少人?()【20XX 年国家公务员考试行政职业能力测验真题一类卷-42题】A.27 B.25 C.19 D.10[答案]B[解析]根据公式“物理实验做正确人数+化学实验做正确人数-两种实验都做正确人数=总人数-两种实验都做错人数”可得:40+31-x=50-4,解得x=25。

【例2】一个俱乐部,会下象棋的有69人,会下围棋的有58人,两种棋都不会下的有12人,两种棋都会下的有30人,问这个俱乐部一共有多少人?()【20XX年上半年广东省公务员考试行政职业能力测验真题-11题】A.109人B.115人C.127人D.139人[答案]A[解析]根据公式“会下象棋人数+会下围棋人数-两种都会下人数=总人数-两种都不会下人数”可得:69+58-30=x-12,解得x=109。

【例3】电视台向100人调查昨天收看电视情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。

问两个频道都没有看过的有多少人?()【20XX年北京市社会在职人员考试录用公务员行政职业能力测验真题-18题】A.4 B.15 C.17 D.28[答案]B[解析]根据公式“看过2频道人数+看过8频道人数-两个频道都看过人数=总人数-两个频道都没有看过人数”可得:62+34-11=100-x,解得x=15。

【例4】60个人上身着白上衣或黑上衣,下身着蓝裤子或黑裤子。

其中有12个人穿白上衣蓝裤子,有34个人穿黑裤子,有29个人穿黑上衣,求身着黑裤子黑上衣多少人?()【20XX 年广东省公务员考试行政职业能力测验真题-13题】A.13 B.14 C.15 D.20[答案]C[解析]根据公式“黑裤子数+黑上衣数-黑裤子黑上衣数=总数-白衣服蓝裤子数”可得:34+29-x=60-12,解得x=15。

2016公务员考试行测试题及答案:图形推理题

2016公务员考试行测试题及答案:图形推理题

2016公务员考试⾏测试题及答案:图形推理题 2016年深圳公务员考试已经开启了最后的备考模式,当你看到⼀道⾏测图形推理题你脑海中会⽴刻呈现出解题⽅法吗?如果你没有没有解题思路,关键是你没有掌握好的⽅法。

店铺公务员考试频道本次就为⼲⼤考⽣带来“2016年公务员考试⾏测每⽇⼀练:图形推理题,希望能够给你带来帮助。

⼀、按题型认真复习图形考点 图形推理考查的知识点⽐较琐碎,因此考⽣在备考初始阶段⼀定要对考点进⾏系统的复习,基本的题型要从何⼊⼿都要做到⼼中有数。

打好基础才能在解题时充分打开思路,⽽不是⼀旦在某个⽅⾯找不到规律就束⼿⽆策。

1.数量类: (1)五⼤要素:点、线、⾓、⾯、素 (2)数量规律:基本数列规律+运算规律 2.位置类: (1)三⼤传统题型(动态位置类):平移、翻转、旋转 (2)最新题型(静态位置类):连接位置、⽅位关系(平⾏、垂直)等 3.形状类: (1)叠加(直接叠加、去同存异、去异存同、⿊⽩叠加);(2)遍历 4.属性类: (1)曲直性(2)对称性(3)封闭开放性 5.图形重构+⽴体图形: (1)图形折叠(2)⽴体图形的截⾯问题、不同⽅位的视图 (3)平⾯图形组合+⽴体图形组合 备注:深圳公务员考试图形推理近⼏年都没有考察⽴体图形问题,因此考⽣朋友在备考时可以不作为重点,但是⼀定要进⾏了解,以防万⼀。

⼆、认真研究近5年深圳公务员考试真题和最新公务员考试真题 历年深圳公务员考试其考点有90%以上都是基础性考点,题型也是常⻅的传统题⺫,因此考⽣朋友在备考时认真研究深圳公务员历年真题是⾮常有必要的。

另外,考⽣在备考阶段做国考题⺫和各地最新公务员考试真题也是⾮常重要的⼀个环节,不仅可以练习基本的题⺫,也可以捕获到最新型的考点和⽅式。

三、严格按考试时间模拟⾃查 ⾏测考试时间紧,题量⼤,主要考查考⽣的做题速度和准确度。

因此在考试前⼀定要严格按照考试时间进⾏模拟,体验考场上的状态,合理分配好⾃⼰的时间及各模块的做题顺序,做到在规定的时间内得到最⾼的分数。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016湖南公务员考试行测备考:集合中的数量题,你了
解吗?
在公务员行测考试中有这样一种题型,它解题时主要利用集合间的关系,具体题目的考查主要有两种题型。

接下来,中公教育专家就给大家讲解这部分知识,希望能够帮助大家快速掌握。

集合最大值:未确定关系的所有集合加和,即得到结论。

集合最小值:几个未确定关系的集合中,选取数量最大的集合,即为结论。

其中,求最小值时,注意题干中所有集合描述是否能够完全重合。

1、已知题干若干条件,求人数最多/最少有多少人?
例 1. 某家饭店中,一桌人边用餐边谈生意。

其中,一个哈尔滨人,两个北方人,一个广东人,两个人只做食品生意,三个人只做家电生意。

如果以上介绍涉及餐桌上所有的人,那么这一桌最少可能是几个人?最多可能是几个人?
A. 最少可能是3 人,最多可能是8 人。

B. 最少可能是5 人,最多可能是8 人。

C. 最少可能是5 人,最多可能是9 人。

D. 最少可能是3 人,最多可能是9 人。

【答案】B。

利用题干表述,进行集合关系确定,最大值:未确定关系的几个集合加和( 3+3+2=8 人)
最小值:未确定关系的几个集合挑最大值,答案为 5 人。

2、已知题干有M 人,选项中哪项与题干表述矛盾/不矛盾?
例 2. 某大学某寝室中住着若干个学生。

其中,一个是吉林人,两个是北方人,一个是广东人,两个研究哲学,三个研究历史。

因此,该寝室中恰好有8 人。

以下各项关于该寝室的断定是真的,都能加强上述论证,除了( )
A. 题干中的介绍涉及了寝室中所有的人。

B. 广东学生在研究哲学。

C. 吉林学生在财经系。

D. 研究历史的都是南方人。

【答案】B。

(1)找必然包含的关系:两个北方人必然包含一个吉林人,因此这两个概念确定的就是2 个人;
(2) 找必然全异的关系:两个北方人(其中包含一个哈尔滨人)和一个广东人必然全异,所以已经确定了 3 个人;
(3) 此时两个研究哲学、三个研究历史不能确定关系本题已经告诉我们学生一共有8 人,那么我们就知道这里面如果两个研究哲学的和三个研究历史的关系全异且和前面确定的三个人也是全异。

而 B 选项出现两个概念重合了,所以B 是与题干矛盾的。

想必大家已经了解如何解决此类问题,那么大家接下来一定要多加练习,真正把这个知识点内化为自己的东西。

相关文档
最新文档