2013年山东理科高考数学试卷word版本
2013山东高考数学理科试题与答案1
2013年普通高等学校招生全国统一考试(山东卷)理科数学第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足(3)(2)5z i --=(i 为虚数单位),则z 的共轭复数z 为 (A) 2i + (B) 2i - (C)5i + (D)5i -2. 已知集合A ={0,1,2},则集合B ={},x y x A y A -∈∈中元素的个数是 (A) 1 (B) 3 (C)5 (D)93.已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (A) 2- (B) 0 (C) 1 (D) 2 4.已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,的正三角形.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为(A) 512π (B) 3π (C)4π (D)6π 5.将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为(A)34π (B) 4π(C)0 (D) 4π- 6.在平面直角坐标系xoy 中,M 为不等式组220,210,380,x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM斜率的最小值为(A )2 (B )1 (C )13-(D )12- 7.给定两个命题p ,q .若p ⌝是q 的必要而不充分条件,则p 是q ⌝的(A )充分而不必要条件 (B ) 必要而不充分条件 (C )充要条件 (D ) 既不充分也不必要条件 8.函数cos sin y x x x =+的图象大致为9.过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为(A )230x y +-= (B )230x y --= (C )430x y --= (D )430x y +-= 10.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为 (A )243 (B ) 252 (C ) 261 (D )27911.已知抛物线1C :212y x p =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M 。
2013年高考理科数学山东卷试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学理工农医类(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013山东,理1)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( ).A .2+iB .2-IC .5+iD .5-i2.(2013山东,理2)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ).A .1B .3C .5D .9 3.(2013山东,理3)已知函数f (x )为奇函数,且当x >0时,f (x )=21x x+,则f (-1)=( ). A .-2 B .0 C .1 D .24.(2013山东,理4)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94的正三角形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( ).A .5π12B .π3C .π4D .π65.(2013山东,理5)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( ).A .3π4B .π4C .0D .π4-6.(2013山东,理6)在平面直角坐标系xOy 中,M 为不等式组220,210,380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为( ).A .2B .1C .13-D .12-7.(2013山东,理7)给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8.(2013山东,理8)函数y =x cos x +sin x 的图象大致为( ).9.(2013山东,理9)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ).A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=010.(2013山东,理10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ).A .243B .252C .261D .27911.(2013山东,理11)抛物线C 1:y =212x p(p >0)的焦点与双曲线C 2:2213x y -=的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ).A. B. C. D.12.(2013山东,理12)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xyz取得最大值时,212x y z +-的最大值为( ).A .0B .1C .94 D .3第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.(2013山东,理13)执行右面的程序框图,若输入的ε的值为0.25,则输出的n 的值为__________.14.(2013山东,理14)在区间[-3,3]上随机取一个数x ,使得|x +1|-|x -2|≥1成立的概率为__________.15.(2013山东,理15)已知向量AB 与AC 的夹角为120°,且|AB|=3,|AC |=2,若AP =λAB +AC ,且AP ⊥BC,则实数λ的值为__________.16.(2013山东,理16)定义“正对数”:ln +x =0,01,ln ,1,x x x <<⎧⎨≥⎩现有四个命题:①若a >0,b >0,则ln +(a b )=b ln +a ;②若a >0,b >0,则ln +(ab )=ln +a +ln +b ; ③若a >0,b >0,则ln +a b ⎛⎫⎪⎝⎭≥ln +a -ln +b ; ④若a >0,b >0,则ln +(a +b )≤ln +a +ln +b +ln 2. 其中的真命题有__________.(写出所有真命题的编号)三、解答题:本大题共6小题,共74分.17.(2013山东,理17)(本小题满分12分)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79. (1)求a ,c 的值;(2)求sin(A -B )的值.18.(2013山东,理18)(本小题满分12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.19.(2013山东,理19)(本小题满分12分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分、对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分,求乙队得分X的分布列及数学期望.20.(2013山东,理20)(本小题满分12分)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为T n,且12nn naTλ++=(λ为常数).令c n=b2n(n∈N*).求数列{c n}的前n项和R n.21.(2013山东,理21)(本小题满分13分)设函数f (x )=2e xx+c (e =2.718 28…是自然对数的底数,c ∈R ).(1)求f (x )的单调区间、最大值;(2)讨论关于x 的方程|ln x |=f (x )根的个数.22.(2013山东,理22)(本小题满分13分)椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别是F 1,F 2,离,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2.设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2.若k ≠0,试证明1211kk kk +为定值,并求出这个定值.2013年普通高等学校夏季招生全国统一考试数学理工农医类(山东卷) 第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 答案:D解析:由题意得z -3=52i-=2+i ,所以z =5+i.故z =5-i ,应选D. 2. 答案:C解析:当x ,y 取相同的数时,x -y =0;当x =0,y =1时,x -y =-1;当x =0,y =2时,x -y =-2;当x =1,y =0时,x -y =1;当x =2,y =0时,x -y =2;其他则重复.故集合B 中有0,-1,-2,1,2,共5个元素,应选C. 3. 答案:A解析:因为f (x )是奇函数,故f (-1)=-f (1)=2111⎛⎫-+ ⎪⎝⎭=-2,应选A. 4. 答案:B解析:如图所示,由棱柱体积为94.设P 在平面ABC上射影为O ,则可求得AO 长为1,故AP 2=故∠PAO =π3,即PA 与平面ABC 所成的角为π3. 5. 答案:B解析:函数y =sin(2x +φ)的图象向左平移π8个单位后变为函数πsin 28y x ϕ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦=πsin 24x ϕ⎛⎫++ ⎪⎝⎭的图象,又πsin 24y x ϕ⎛⎫++ ⎪⎝⎭=为偶函数,故πππ42k ϕ+=+,k ∈Z ,∴ππ4k ϕ=+,k ∈Z .若k =0,则π4ϕ=.故选B. 6. 答案:C解析:不等式组表示的区域如图阴影部分所示,结合斜率变化规律,当M 位于C 点时OM 斜率最小,且为13-,故选C.7. 答案:A解析:由题意:q ⇒⌝p ,⌝pq ,根据命题四种形式之间的关系,互为逆否的两个命题同真同假,所以等价于所以p 是⌝q 的充分而不必要条件.故选A. 8. 答案:D解析:因f (-x )=-x ·cos(-x )+sin(-x )=-(x cos x +sin x )=-f (x ),故该函数为奇函数,排除B ,又x ∈π0,2⎛⎫⎪⎝⎭,y >0,排除C ,而x =π时,y =-π,排除A ,故选D. 9. 答案:A解析:该切线方程为y =k (x -3)+1,即kx -y -3k +1=0=1,得k =0或43,切线方程分别与圆方程联立,求得切点坐标分别为(1,1),93,55⎛⎫- ⎪⎝⎭,故所求直线的方程为2x +y -3=0.故选A.10. 答案:B解析:构成所有的三位数的个数为11191010C C C =900,而无重复数字的三位数的个数为111998C C C =648,故所求个数为900-648=252,应选B. 11. 答案:D解析:设M 2001,2x x p ⎛⎫ ⎪⎝⎭,21''2x y x p p ⎛⎫== ⎪⎝⎭,故在M点处的切线的斜率为03x p =,故M 1,6p p ⎫⎪⎪⎝⎭.由题意又可知抛物线的焦点为0,2p ⎛⎫⎪⎝⎭,双曲线右焦点为(2,0),且1,36p p ⎛⎫ ⎪ ⎪⎝⎭,0,2p ⎛⎫ ⎪⎝⎭,(2,0)三点共线,可求得pD.12. 答案:B解析:由x 2-3xy +4y 2-z =0得2234x xy y z-+,即xy z≤1,当且仅当x 2=4y 2时成立,又x ,y 为正实数,故x =2y .此时将x =2y 代入x 2-3xy +4y 2-z =0得z =2y 2,所以222121211+1x y z y y y ⎛⎫+-=-+=-- ⎪⎝⎭,当1=1y ,即y =1时,212x y z+-取得最大值为1,故选B. 第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.答案:3解析:第1次运行将F 0+F 1赋值给F 1,即将3赋值给F 1,然后将F 1-F 0赋值给F 0,即将3-1=2赋值给F 0,n 增加1变成2,此时1113F =比ε大,故循环,新F 1为2+3=5,新F 0为5-2=3,n 增加1变成3,此时1115F =≤ε,故退出循环,输出n =3. 14.答案:13解析:设y =|x +1|-|x -2|=3,2,21,12,3,1,x x x x ≥⎧⎪--<<⎨⎪-≤-⎩利用函数图象(图略)可知|x +1|-|x -2|≥1的解集为[1,+∞).而在[-3,3]上满足不等式的x 的取值范围为[1,3],故所求概率为311333-=-(-).15.答案:712解析:∵AP =λAB +AC ,AP ⊥BC ,又BC =AC -AB ,∴(AC -AB )·(AC +λAB)=0.∴AC 2+λAB ·AC -AB ·AC -λAB 2=0,即4+(λ-1)×3×2×12⎛⎫- ⎪⎝⎭-9λ=0,即7-12λ=0,∴λ=712.16.答案:①③④三、解答题:本大题共6小题,共74分.17.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ), 又b =2,a +c =6,cos B =79, 所以ac =9,解得a =3,c =3. (2)在△ABC 中,sin B9=. 由正弦定理得sin A=sin 3a Bb =因为a =c ,所以A 为锐角. 所以cos A13=. 因此sin(A -B )=sin A cos B -cos A sin B=27. 18.(1)证明:因为D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点, 所以EF ∥AB ,DC ∥AB .所以EF ∥DC .又EF 平面PCD ,DC ⊂平面PCD , 所以EF ∥平面PCD .又EF ⊂平面EFQ ,平面EFQ ∩平面PCD =GH , 所以EF ∥GH .又EF ∥AB ,所以AB ∥GH .(2)解法一:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°,即AB ⊥BQ .因为PB ⊥平面ABQ , 所以AB ⊥PB.又BP ∩BQ =B , 所以AB ⊥平面PBQ .由(1)知AB ∥GH ,所以GH ⊥平面PBQ . 又FH ⊂平面PBQ ,所以GH ⊥FH . 同理可得GH ⊥HC ,所以∠FHC 为二面角D -GH -E 的平面角. 设BA =BQ =BP =2,连接FC ,在Rt △FBC 中,由勾股定理得FC在Rt △PBC 中,由勾股定理得PC又H 为△PBQ 的重心,所以HC=13PC =同理FH.在△FHC 中,由余弦定理得cos ∠FHC =5524995529+-=-⨯.故二面角D -GH -E 的余弦值为45-.解法二:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°.又PB ⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系. 设BA =BQ =BP =2,则E (1,0,1),F (0,0,1),Q (0,2,0),D (1,1,0),C (0,1,0),P (0,0,2).所以EQ =(-1,2,-1),FQ=(0,2,-1),DP=(-1,-1,2),CP =(0,-1,2).设平面EFQ 的一个法向量为m =(x 1,y 1,z 1),由m ·EQ =0,m ·FQ=0,得1111120,20,x y z y z -+-=⎧⎨-=⎩取y 1=1,得m =(0,1,2).设平面PDC 的一个法向量为n =(x 2,y 2,z 2),由n ·DP=0,n ·CP =0, 得2222220,20,x y z y z --+=⎧⎨-+=⎩取z 2=1,得n =(0,2,1). 所以cos 〈m ,n 〉=4||||5=·m n m n .因为二面角D -GH -E 为钝角, 所以二面角D -GH -E 的余弦值为45-. 19.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故P (A 1)=328327⎛⎫= ⎪⎝⎭,P (A 2)=2232228C 133327⎛⎫⎛⎫-⨯=⎪⎪⎝⎭⎝⎭, P (A 3)=22242214C 133227⎛⎫⎛⎫-⨯=⎪⎪⎝⎭⎝⎭. 所以,甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立,所以P (A 4)=22242214C 1133227⎛⎫⎛⎫⎛⎫-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627, 又P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427, P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327. 故X 的分布列为所以EX =0×1627+1×427+2×27+3×27=9.20.解:(1)设等差数列{a n }的首项为a 1,公差为d , 由S 4=4S 2,a 2n =2a n +1得11114684,21221 1.a d a d a n d a n d +=+⎧⎨+(-)=+(-)+⎩ 解得a 1=1,d =2.因此a n =2n -1,n ∈N *. (2)由题意知,T n =12n nλ--, 所以n ≥2时,b n =T n -T n -1=12112222n n n n n n ------+=. 故c n =b 2n =21222n n --=11(1)4n n -⎛⎫- ⎪⎝⎭,n ∈N *.所以R n =0×14⎛⎫ ⎪⎝⎭0+1×14⎛⎫ ⎪⎝⎭1+2×14⎛⎫ ⎪⎝⎭2+3×14⎛⎫ ⎪⎝⎭3+…+(n -1)×14⎛⎫ ⎪⎝⎭n -1,则14R n =0×14⎛⎫ ⎪⎝⎭1+1×14⎛⎫ ⎪⎝⎭2+2×14⎛⎫ ⎪⎝⎭3+…+(n -2)×14⎛⎫ ⎪⎝⎭n -1+(n -1)×14⎛⎫ ⎪⎝⎭n , 两式相减得34R n =14⎛⎫ ⎪⎝⎭1+14⎛⎫ ⎪⎝⎭2+14⎛⎫ ⎪⎝⎭3+…+14⎛⎫ ⎪⎝⎭n -1-(n -1)×14⎛⎫ ⎪⎝⎭n =11144(1)1414nn n ⎛⎫- ⎪⎛⎫⎝⎭--⨯ ⎪⎝⎭-=1131334nn +⎛⎫- ⎪⎝⎭, 整理得R n =1131494n n -+⎛⎫- ⎪⎝⎭,所以数列{c n }的前n 项和R n =1131494n n -+⎛⎫- ⎪⎝⎭.21.解:(1)f ′(x )=(1-2x )e -2x, 由f ′(x )=0,解得x =12. 当x <12时,f ′(x )>0,f (x )单调递增; 当x >12时,f ′(x )<0,f (x )单调递减.所以,函数f (x )的单调递增区间是1,2⎛⎫-∞ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭,最大值为111e 22f c -⎛⎫=+ ⎪⎝⎭.(2)令g (x )=|ln x |-f (x )=|ln x |-x e -2x-c ,x ∈(0,+∞).①当x ∈(1,+∞)时,ln x >0,则g (x )=ln x -x e -2x-c , 所以g ′(x )=22e e21x xx x -⎛⎫+- ⎪⎝⎭. 因为2x -1>0,2e xx>0,所以g ′(x )>0.因此g (x )在(1,+∞)上单调递增.②当x ∈(0,1)时,ln x <0,则g (x )=-ln x -x e -2x-c . 所以g ′(x )=22e e21x xx x -⎛⎫-+- ⎪⎝⎭. 因为e 2x∈(1,e 2),e 2x>1>x >0,所以2e xx -<-1.又2x -1<1,所以2e xx-+2x -1<0,即g ′(x )<0.因此g (x )在(0,1)上单调递减.综合①②可知,当x ∈(0,+∞)时,g (x )≥g (1)=-e -2-c .当g (1)=-e -2-c >0,即c <-e -2时,g (x )没有零点, 故关于x 的方程|ln x |=f (x )根的个数为0;当g (1)=-e -2-c =0,即c =-e -2时,g (x )只有一个零点, 故关于x 的方程|ln x |=f (x )根的个数为1;当g (1)=-e -2-c <0,即c >-e -2时, 当x ∈(1,+∞)时,由(1)知g (x )=ln x -x e -2x -c ≥11ln e 2x c -⎛⎫-+ ⎪⎝⎭>ln x -1-c ,要使g (x )>0,只需使ln x -1-c >0,即x ∈(e 1+c,+∞);当x ∈(0,1)时,由(1)知g (x )=-ln x -x e -2x -c ≥11ln e 2x c -⎛⎫--+ ⎪⎝⎭>-ln x -1-c ,要使g (x )>0,只需-ln x -1-c >0,即x ∈(0,e -1-c);所以c >-e -2时,g (x )有两个零点,故关于x 的方程|ln x |=f (x )根的个数为2. 综上所述,当c <-e -2时,关于x 的方程|ln x |=f (x )根的个数为0;当c =-e -2时,关于x 的方程|ln x |=f (x )根的个数为1;当c >-e -2时,关于x 的方程|ln x |=f (x )根的个数为2. 22.(1)解:由于c 2=a 2-b 2,将x =-c 代入椭圆方程2222=1x y a b+,得2b y a =±,由题意知22=1b a ,即a =2b 2.又2c e a ==,所以a =2,b =1.所以椭圆C 的方程为2214x y +=. (2)解法一:设P (x 0,y 0)(y 0≠0). 又F 1(0),F 2,0), 所以直线PF 1,PF 2的方程分别为lPF 1:y 0x -(x 0y0=0, lPF 2:y 0x -(x 0y0=0..由于点P 在椭圆上,所以220014x y +=,=.因为m2<x 0<2,=. 所以m =034x .因此3322m -<<.解法二:设P (x 0,y 0).当0≤x 0<2时,①当0x =时,直线PF 2的斜率不存在,易知P 12⎫⎪⎭或P 12⎫-⎪⎭.若P 12⎫⎪⎭,则直线PF 1的方程为0x -=.m =,因为m所以m =. 若P 12⎫-⎪⎭,同理可得m =.②当x 0时,设直线PF 1,PF 2的方程分别为y =k 1(x,y =k 2(x).=,2122111k k +=+.因为220014x y +=, 并且k 1k 2==,=.因为为m,0≤x 0<2且x 0=.整理得m =34x , 故0≤m <32且m≠4综合①②可得0≤m <32.当-2<x 0<0时,同理可得32-<m <0. 综上所述,m 的取值范围是33,22⎛⎫- ⎪⎝⎭.(3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立22001,4x y y y k x x ⎧+=⎪⎨⎪-=(-)⎩整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(20y -2kx 0y 0+220k x -1)=0. 由题意Δ=0,即220(4)x k -+2x 0y 0k +1-20y =0.又220014x y +=, 所以22016y k +8x 0y 0k +20x =0,故k =004xy -.由(2)知12000211x k k y +=+=, 所以121211111kk kk k k k ⎛⎫+=+ ⎪⎝⎭ =000042=8y xx y ⎛⎫-⋅- ⎪⎝⎭, 因此1211kk kk +为定值,这个定值为-8.。
2013年普通高考山东理科数学试题及详细答案
绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟,考试结束后,将本试卷和答题卡一并交回。
注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么P(A+B)=P(A)+P(B);如果事件A ,B 独立,那么P(AB)=P(A)·P(B);第Ⅰ卷(共60分)一、选择题:本大题共12题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1). 复数z 满足(3)(2)5z i --=(i 为虚数单位),则z 的共轭复数z 为(A) 2i + (B) 2i - (C) 5i + (D) 5i - (2). 已知集合{}0,1,2A =,则集合{},B x y x A y A =-∈∈中元素的个数是 (A) 1 (B) 3 (C) 5 (D) 9 (3). 已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -=(A) 2- (B) 0 (C) 1 (D) 2 (4). 已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94,若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 (A) 512π (B) 3π (C) 4π (D) 6π(5). 将函数()sin (2)f x x φ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则φ的一个可能取值为(A) 34π (B) 4π (C) 0 (D) 4π-(6). 在平面直角坐标系xOy 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为 (A) 2 (B) 1 (C) 13- (D) 12-(7). 给定两个命题,p q 。
2013年山东省高考数学试题及答案
2013年普通高等学校夏季招生全国统一考试数学(山东卷)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013山东,理1)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( ).A .2+iB .2-IC .5+iD .5-i2.(2013山东,理2)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ).A .1B .3C .5D .9 3.(2013山东,理3)已知函数f (x )为奇函数,且当x >0时,f (x )=21x x+,则f (-1)=( ). A .-2 B .0 C .1 D .24.(2013山东,理4)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94形.若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为( ).A .5π12B .π3C .π4D .π65.(2013山东,理5)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( ).A .3π4B .π4C .0D .π4-6.(2013山东,理6)在平面直角坐标系xOy 中,M 为不等式组220,210,380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩所表示的区域上一动点,则直线OM 斜率的最小值为( ).A .2B .1C .13-D .12-7.(2013山东,理7)给定两个命题p ,q ,若⌝p 是q 的必要而不充分条件,则p 是⌝q 的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8.(2013山东,理8)函数y =x cos x +sin x 的图象大致为( ).9.(2013山东,理9)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ).A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=010.(2013山东,理10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ).A .243B .252C .261D .27911.(2013山东,理11)抛物线C 1:y =212x p(p >0)的焦点与双曲线C 2:2213x y -=的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( ).A. B. C. D.12.(2013山东,理12)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,212x y z+-的最大值为( ).A .0B .1C .94 D .3第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.(2013山东,理13)执行右面的程序框图,若输入的ε的值为0.25,则输出的n 的值为__________.14.(2013山东,理14)在区间[-3,3]上随机取一个数x ,使得|x +1|-|x -2|≥1成立的概率为__________.15.(2013山东,理15)已知向量AB 与AC 的夹角为120°,且|AB |=3,|AC |=2,若AP =λAB +AC ,且AP ⊥BC ,则实数λ的值为__________.16.(2013山东,理16)定义“正对数”:ln +x =0,01,ln ,1,x x x <<⎧⎨≥⎩现有四个命题:①若a >0,b >0,则ln +(a b )=b ln +a ;②若a >0,b >0,则ln +(ab )=ln +a +ln +b ; ③若a >0,b >0,则ln +a b ⎛⎫⎪⎝⎭≥ln +a -ln +b ; ④若a >0,b >0,则ln +(a +b )≤ln +a +ln +b +ln 2. 其中的真命题有__________.(写出所有真命题的编号)三、解答题:本大题共6小题,共74分.17.(2013山东,理17)(本小题满分12分)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79. (1)求a ,c 的值;(2)求sin(A -B )的值.18.(2013山东,理18)(本小题满分12分)如图所示,在三棱锥P -ABQ 中,PB ⊥平面ABQ ,BA =BP =BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ =2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH . (1)求证:AB ∥GH ;(2)求二面角D -GH -E 的余弦值.19.(2013山东,理19)(本小题满分12分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分、对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分,求乙队得分X 的分布列及数学期望.20.(2013山东,理20)(本小题满分12分)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且12n n na T λ++=(λ为常数).令c n =b 2n (n ∈N *).求数列{c n }的前n 项和R n .21.(2013山东,理21)(本小题满分13分)设函数f (x )=2e xx+c (e =2.718 28…是自然对数的底数,c ∈R ).(1)求f (x )的单调区间、最大值;(2)讨论关于x 的方程|ln x |=f (x )根的个数.22.(2013山东,理22)(本小题满分13分)椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别是F 1,F 2,离心率为2,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2.设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2.若k ≠0,试证明1211kk kk +为定值,并求出这个定值.2013年普通高等学校夏季招生全国统一考试数学(山东卷) 第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 答案:D解析:由题意得z -3=52i-=2+i ,所以z =5+i.故z =5-i ,应选D. 2. 答案:C解析:当x ,y 取相同的数时,x -y =0;当x =0,y =1时,x -y =-1;当x =0,y =2时,x -y =-2;当x =1,y =0时,x -y =1;当x =2,y =0时,x -y =2;其他则重复.故集合B 中有0,-1,-2,1,2,共5个元素,应选C. 3. 答案:A解析:因为f (x )是奇函数,故f (-1)=-f (1)=2111⎛⎫-+ ⎪⎝⎭=-2,应选A. 4. 答案:B解析:如图所示,由棱柱体积为94设P 在平面ABC上射影为O ,则可求得AO 长为1,故AP 2=故∠PAO =π3,即PA 与平面ABC 所成的角为π3. 5. 答案:B解析:函数y =sin(2x +φ)的图象向左平移π8个单位后变为函数πsin 28y x ϕ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦=πsin 24x ϕ⎛⎫++ ⎪⎝⎭的图象,又πsin 24y x ϕ⎛⎫++ ⎪⎝⎭=为偶函数,故πππ42k ϕ+=+,k ∈Z ,∴ππ4k ϕ=+,k ∈Z .若k =0,则π4ϕ=.故选B. 6. 答案:C解析:不等式组表示的区域如图阴影部分所示,结合斜率变化规律,当M 位于C 点时OM 斜率最小,且为13-,故选C.7. 答案:A解析:由题意:q ⇒⌝p ,⌝pq ,根据命题四种形式之间的关系,互为逆否的两个命题同真同假,所以等价于所以p 是⌝q 的充分而不必要条件.故选A. 8. 答案:D解析:因f (-x )=-x ·cos(-x )+sin(-x )=-(x cos x +sin x )=-f (x ),故该函数为奇函数,排除B ,又x ∈π0,2⎛⎫⎪⎝⎭,y >0,排除C ,而x =π时,y =-π,排除A ,故选D. 9. 答案:A解析:该切线方程为y =k (x -3)+1,即kx -y -3k +1=0=1,得k =0或43,切线方程分别与圆方程联立,求得切点坐标分别为(1,1),93,55⎛⎫- ⎪⎝⎭,故所求直线的方程为2x +y -3=0.故选A.10. 答案:B解析:构成所有的三位数的个数为11191010C C C =900,而无重复数字的三位数的个数为111998C C C =648,故所求个数为900-648=252,应选B. 11. 答案:D解析:设M 2001,2x x p ⎛⎫ ⎪⎝⎭,21''2x y x p p ⎛⎫== ⎪⎝⎭,故在M点处的切线的斜率为0x p =故M 1,36p p ⎛⎫ ⎪ ⎪⎝⎭.由题意又可知抛物线的焦点为0,2p ⎛⎫⎪⎝⎭,双曲线右焦点为(2,0),且1,36p p ⎛⎫ ⎪ ⎪⎝⎭,0,2p ⎛⎫ ⎪⎝⎭,(2,0)三点共线,可求得pD. 12. 答案:B解析:由x 2-3xy +4y 2-z =0得2234x xy y z -+,即xy z≤1,当且仅当x 2=4y 2时成立,又x ,y 为正实数,故x =2y .此时将x =2y 代入x 2-3xy +4y 2-z =0得z =2y 2,所以222121211+1x y z y y y ⎛⎫+-=-+=-- ⎪⎝⎭,当1=1y ,即y =1时,212x y z+-取得最大值为1,故选B. 第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.答案:3解析:第1次运行将F 0+F 1赋值给F 1,即将3赋值给F 1,然后将F 1-F 0赋值给F 0,即将3-1=2赋值给F 0,n 增加1变成2,此时1113F =比ε大,故循环,新F 1为2+3=5,新F 0为5-2=3,n 增加1变成3,此时1115F =≤ε,故退出循环,输出n =3. 14.答案:13解析:设y =|x +1|-|x -2|=3,2,21,12,3,1,x x x x ≥⎧⎪--<<⎨⎪-≤-⎩利用函数图象(图略)可知|x +1|-|x -2|≥1的解集为[1,+∞).而在[-3,3]上满足不等式的x 的取值范围为[1,3],故所求概率为311333-=-(-).15.答案:712解析:∵AP =λAB +AC ,AP ⊥BC ,又BC =AC -AB ,∴(AC -AB )·(AC +λAB )=0.∴AC 2+λAB ·AC -AB ·AC -λAB 2=0,即4+(λ-1)×3×2×12⎛⎫- ⎪⎝⎭-9λ=0,即7-12λ=0,∴λ=712.16.答案:①③④三、解答题:本大题共6小题,共74分.17.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ), 又b =2,a +c =6,cos B =79, 所以ac =9,解得a =3,c =3. (2)在△ABC 中,sin B=. 由正弦定理得sin A=sin 3a Bb =因为a =c ,所以A 为锐角. 所以cos A13=. 因此sin(A -B )=sin A cos B -cos A sin B=27. 18.(1)证明:因为D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点, 所以EF ∥AB ,DC ∥AB .所以EF ∥DC .又EF 平面PCD ,DC ⊂平面PCD , 所以EF ∥平面PCD .又EF ⊂平面EFQ ,平面EFQ ∩平面PCD =GH , 所以EF ∥GH .又EF ∥AB ,所以AB ∥GH .(2)解法一:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°,即AB ⊥BQ .因为PB ⊥平面ABQ , 所以AB ⊥PB.又BP ∩BQ =B , 所以AB ⊥平面PBQ .由(1)知AB ∥GH ,所以GH ⊥平面PBQ . 又FH ⊂平面PBQ ,所以GH ⊥FH . 同理可得GH ⊥HC ,所以∠FHC 为二面角D -GH -E 的平面角. 设BA =BQ =BP =2,连接FC ,在Rt △FBC 中,由勾股定理得FC在Rt △PBC 中,由勾股定理得PC又H 为△PBQ 的重心,所以HC=13PC =. 同理FH在△FHC 中,由余弦定理得cos ∠FHC =5524995529+-=-⨯.故二面角D -GH -E 的余弦值为45-.解法二:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°.又PB ⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系. 设BA =BQ =BP =2,则E (1,0,1),F (0,0,1),Q (0,2,0),D (1,1,0),C (0,1,0),P (0,0,2). 所以EQ =(-1,2,-1),FQ =(0,2,-1),DP =(-1,-1,2),CP =(0,-1,2).设平面EFQ 的一个法向量为m =(x 1,y 1,z 1), 由m ·EQ =0,m ·FQ =0, 得1111120,20,x y z y z -+-=⎧⎨-=⎩取y 1=1,得m =(0,1,2).设平面PDC 的一个法向量为n =(x 2,y 2,z 2), 由n ·DP =0,n ·CP =0, 得2222220,20,x y z y z --+=⎧⎨-+=⎩取z 2=1,得n =(0,2,1). 所以cos 〈m ,n 〉=4||||5=·m n m n .因为二面角D -GH -E 为钝角, 所以二面角D -GH -E 的余弦值为45-. 19.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故P (A 1)=328327⎛⎫= ⎪⎝⎭,P (A 2)=2232228C 133327⎛⎫⎛⎫-⨯=⎪ ⎪⎝⎭⎝⎭, P (A 3)=22242214C 133227⎛⎫⎛⎫-⨯=⎪⎪⎝⎭⎝⎭. 所以,甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4,由题意,各局比赛结果相互独立,所以P (A 4)=22242214C 1133227⎛⎫⎛⎫⎛⎫-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627, 又P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427, P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327. 故X 的分布列为所以EX =0×1627+1×427+2×27+3×27=9.20.解:(1)设等差数列{a n }的首项为a 1,公差为d , 由S 4=4S 2,a 2n =2a n +1得11114684,21221 1.a d a d a n d a n d +=+⎧⎨+(-)=+(-)+⎩ 解得a 1=1,d =2.因此a n =2n -1,n ∈N *. (2)由题意知,T n =12n nλ--, 所以n ≥2时,b n =T n -T n -1=12112222n n n n n n ------+=. 故c n =b 2n =21222n n --=11(1)4n n -⎛⎫- ⎪⎝⎭,n ∈N *.所以R n =0×14⎛⎫ ⎪⎝⎭0+1×14⎛⎫ ⎪⎝⎭1+2×14⎛⎫ ⎪⎝⎭2+3×14⎛⎫ ⎪⎝⎭3+…+(n -1)×14⎛⎫ ⎪⎝⎭n -1,则14R n =0×14⎛⎫ ⎪⎝⎭1+1×14⎛⎫ ⎪⎝⎭2+2×14⎛⎫ ⎪⎝⎭3+…+(n -2)×14⎛⎫ ⎪⎝⎭n -1+(n -1)×14⎛⎫ ⎪⎝⎭n , 两式相减得34R n =14⎛⎫ ⎪⎝⎭1+14⎛⎫ ⎪⎝⎭2+14⎛⎫ ⎪⎝⎭3+…+14⎛⎫ ⎪⎝⎭n -1-(n -1)×14⎛⎫ ⎪⎝⎭n =11144(1)1414nn n ⎛⎫- ⎪⎛⎫⎝⎭--⨯ ⎪⎝⎭- =1131334nn +⎛⎫- ⎪⎝⎭, 整理得R n =1131494n n -+⎛⎫- ⎪⎝⎭,所以数列{c n }的前n 项和R n =1131494n n -+⎛⎫- ⎪⎝⎭.21.解:(1)f ′(x )=(1-2x )e -2x, 由f ′(x )=0,解得x =12. 当x <12时,f ′(x )>0,f (x )单调递增; 当x >12时,f ′(x )<0,f (x )单调递减.所以,函数f (x )的单调递增区间是1,2⎛⎫-∞ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭,最大值为111e 22f c -⎛⎫=+ ⎪⎝⎭.(2)令g (x )=|ln x |-f (x )=|ln x |-x e -2x-c ,x ∈(0,+∞).①当x ∈(1,+∞)时,ln x >0,则g (x )=ln x -x e -2x-c , 所以g ′(x )=22e e21x xx x -⎛⎫+- ⎪⎝⎭. 因为2x -1>0,2e xx>0,所以g ′(x )>0.因此g (x )在(1,+∞)上单调递增.②当x ∈(0,1)时,ln x <0,则g (x )=-ln x -x e -2x-c . 所以g ′(x )=22e e21x xx x -⎛⎫-+- ⎪⎝⎭. 因为e 2x∈(1,e 2),e 2x>1>x >0,所以2e xx -<-1.又2x -1<1,所以2e xx-+2x -1<0,即g ′(x )<0.因此g (x )在(0,1)上单调递减.综合①②可知,当x ∈(0,+∞)时,g (x )≥g (1)=-e -2-c .当g (1)=-e -2-c >0,即c <-e -2时,g (x )没有零点, 故关于x 的方程|ln x |=f (x )根的个数为0;当g (1)=-e -2-c =0,即c =-e -2时,g (x )只有一个零点, 故关于x 的方程|ln x |=f (x )根的个数为1;当g (1)=-e -2-c <0,即c >-e -2时, 当x ∈(1,+∞)时,由(1)知g (x )=ln x -x e -2x -c ≥11ln e 2x c -⎛⎫-+ ⎪⎝⎭>ln x -1-c ,要使g (x )>0,只需使ln x -1-c >0,即x ∈(e 1+c,+∞);当x ∈(0,1)时,由(1)知g (x )=-ln x -x e -2x -c ≥11ln e 2x c -⎛⎫--+ ⎪⎝⎭>-ln x -1-c ,要使g (x )>0,只需-ln x -1-c >0,即x ∈(0,e -1-c);所以c >-e -2时,g (x )有两个零点,故关于x 的方程|ln x |=f (x )根的个数为2. 综上所述,当c <-e -2时,关于x 的方程|ln x |=f (x )根的个数为0;当c =-e -2时,关于x 的方程|ln x |=f (x )根的个数为1;当c >-e -2时,关于x 的方程|ln x |=f (x )根的个数为2. 22.(1)解:由于c 2=a 2-b 2,将x =-c 代入椭圆方程2222=1x y a b+,得2b y a =±,由题意知22=1b a ,即a =2b 2.又2c e a ==,所以a =2,b =1.所以椭圆C 的方程为2214x y +=. (2)解法一:设P (x 0,y 0)(y 0≠0). 又F 1(0),F 20), 所以直线PF 1,PF 2的方程分别为lPF 1:y 0x -(x 0y0=0, lPF 2:y 0x -(x 0y0=0..由于点P 在椭圆上,所以220014x y +=,=.因为m2<x 0<2,=所以m =034x . 因此3322m -<<. 解法二:设P (x 0,y 0).当0≤x 0<2时,①当0x =时,直线PF 2的斜率不存在,易知P 12⎫⎪⎭或P 12⎫-⎪⎭. 若P 12⎫⎪⎭,则直线PF 1的方程为0x -=.由题意得|7m m =,因为m所以m =若P 12⎫-⎪⎭,同理可得m =②当x 0设直线PF 1,PF 2的方程分别为y =k 1(x,y =k 2(x.=21221111k k +=+. 因为220014x y +=, 并且k 1,k 2,222=22==.因为为mx 0<2且x 0=.整理得m =034x , 故0≤m <32且m≠4. 综合①②可得0≤m <32. 当-2<x 0<0时,同理可得32-<m <0. 综上所述,m 的取值范围是33,22⎛⎫- ⎪⎝⎭. (3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0). 联立22001,4x y y y k x x ⎧+=⎪⎨⎪-=(-)⎩整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(20y -2kx 0y 0+220k x -1)=0. 由题意Δ=0,即220(4)x k -+2x 0y 0k +1-20y =0. 又220014x y +=, 所以22016y k +8x 0y 0k +20x =0,故k =004x y -. 由(2)知00012000211x x x k k y y y +=+=, 所以121211111kk kk k k k ⎛⎫+=+ ⎪⎝⎭=000042=8y x x y ⎛⎫-⋅- ⎪⎝⎭, 因此1211kk kk +为定值,这个定值为-8.。
2013年高考理科数学山东卷
数学试卷 第1页(共4页) 数学试卷 第2页(共4页)绝密★启用前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+;如果事件A ,B 独立,那么()()()P AB P A P B = . 第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.复数z 满足32i 5()()z --=(i 为虚数单位),则z 的共轭复数z 为( ) A .2+i B .2i - C .5i + D .5i - 2.已知集合{0,1,2}A =,则集合{|,}B x y x A y A =-∈∈中元素的个数是( )A .1B .3C .5D .93.已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= ( )A .2-B .0C .1D .24.已知三棱柱111ABC A B C -的侧棱与底面垂直,体积为94的正三角形.若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 ( )A .5π12 B .π3 C .π4 D .π65.将函数sin(2)y x ϕ=+的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .3π4 B .π4 C .0D .π4- 6.在平面直角坐标系xOy 中,M 为不等式组220,210,380x y x y x y --⎧⎪+-⎨⎪+-⎩≥≥≤所表示的区域上一动点,则直线OM 斜率的最小值为 ( )A .2B .1C .13-D .12- 7.给定两个命题p ,q .若p ⌝是q 的必要而不充分条件,则p 是q ⌝的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 8.函数cos sin y x x x =+的图象大致为( )A .B .C .D .9.过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=10.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .27911.抛物线1C :21(0)2y x p p =>的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则p = ( )ABCD12.设正实数x ,y ,z 满足22340x xy y z -+-=.则当xy z 取得最大值时,212x y z+-的最大值为( ) A .0 B .1 C .94D .3 姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共4页) 数学试卷 第4页(共4页)第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.执行右面的程序框图,若输入的ε的值为0.25,则输出的n 的值为 .14.在区间[3,3]-上随机取一个数x ,使得|1||2|x x +--≥1成立的概率为 .15.已知向量AB 与AC 的夹角为120 ,且||3AB = ,||2AC =.若AP AB AC λ=+ ,且AP BC⊥,则实数λ的值为 .16.定义“正对数”:001,ln ln 1.x x x x +⎧=⎨⎩,<<,≥现有四个命题:①若0a >,0b >,则ln ()ln ba b a ++=; ②若0a >,0b >,则ln ()ln ln ab a b +++=+;③若0a >,0b >,则ln ()ln ln aa b b+++-≥;④若0a >,0b >,则ln ()ln ln ln 2a b a b ++++++≤. 其中的真命题有 .(写出所有真命题的编号) 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)设ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求a ,c 的值; (Ⅱ)求sin()A B -的值. 18.(本小题满分12分)如图所示,在三棱锥P ABQ -中,PB ⊥平面ABQ ,BA BP BQ ==,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,2AQ BD =,PD 与EQ 交于点G ,PC 与FQ交于点H ,连接GH . (Ⅰ)求证:AB GH ∥;(Ⅱ)求二面角D GH E --的余弦值.19.(本小题满分12分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分、对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X 的分布列及数学期望. 20.(本小题满分12分)设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列{}n b 的前n 项和n T ,且12n n na T λ++=(λ为常数).令*2()n n c b n =∈N ,求数列{}n c 的前n 项和n R .21.(本小题满分13分) 设函数2()e x xf x c =+(e 2.71828= 是自然对数的底数,c ∈R ).(Ⅰ)求()f x 的单调区间、最大值;(Ⅱ)讨论关于x 的方程|ln |()x f x =根的个数.22.(本小题满分13分)椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别是1F ,2F,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l. (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接1PF ,2PF .设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线1PF ,2PF ,的斜率分别为1k ,2k .若0k ≠,试证明1211kk kk +为定值,并求出这个定值.。
2013年高考理科数学试题(山东卷)—含答案
☆绝密级 试卷类型A2013年普通高等学校招生全国统一考试(山东卷)理 科 数 学 试 题本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共6页,满分150分。
考试用时150分钟.考试结束后,将本卷和答题卡一并交回。
【注意事项】:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.【参考公式】如果事件A ,B 互斥,那么P(A+B)=P(A)+P(B);如果事件A ,B 独立,那么P(AB)=P(A)*P(B)第I 卷 选择题(共60分)一、 选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若复数z 满足(z -3)(2-i )=5(i 为虚数单位),则z 的共轭复数z 为( )A .2+iB .2-iC .5+iD .5-i 2.已知集合A={0,1,2},则集合B={x-y |x ∈A, y ∈A }中元素的个数是( ) A .1 B .3 C .5 D .93.已知函数f (x )为函数设且x >0时, f (x )= x 2+x1,则f(-1)=( )A .-2B .0C .1D .24.已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 ( )A .125π.B .3πC .4πD .6π5.将函数y=sin(2x +Φ)的图象沿轴向左平移个单位后,得到一个偶函数的图象,则Φ的一个可能取值为( )A .43πB .4πC ..0D .-4π得分 评卷人学校 班级 姓名 准考证号6.面直角坐标系xOy 中,M 为不等式组220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .31- D .21-7.给定两个命题p,q.若﹃p 是q 的必要而不充分条件,则p 是﹃q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 8.函数y=xcosx+sinx 的图象大致为( )9.过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .032=-+y xB .032=--y xC .034=--y xD .034=-+y x10.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .27911.抛物线C 1:221x py =(p >0)的焦点与双曲线C 2:1322=-y x 的右焦点的连线交C 1于第一象限的点M 。
2013年高考全国Ⅰ理科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2013年全国Ⅰ,理1,5分】已知集合{}{2|20,|A x x x B x x =->=<,则( ) (A )A B =∅ (B )A B =R (C )B A ⊆ (D )A B ⊆ 【答案】B【解析】∵2()0x x ->,∴0x <或2x >.由图象可以看出A B =R ,故选B . (2)【2013年全国Ⅰ,理2,5分】若复数z 满足(34i)|43i |z -=+,则z 的虚部为( )(A )4- (B )45- (C )4 (D )45【答案】D【解析】∵(34i)|43i |z -=+,∴55(34i)34i 34i (34i)(34i)55z +===+--+.故z 的虚部为45,故选D . (3)【2013年全国Ⅰ,理3,5分】为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )(A )简单随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样 【答案】C【解析】因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样,故选C .(4)【2013年全国Ⅰ,理4,5分】已知双曲线C :()2222=10,0x y a b a b->>C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =± (D )y x =±【答案】C【解析】∵c e a ==,∴22222254c a b e a a +===.∴224a b =,1=2b a ±. ∴渐近线方程为12b y x x a =±±,故选C .(5)【2013年全国Ⅰ,理5,5分】执行下面的程序框图,如果输入的[]1,3t ∈-,则输出的s 属于( ) (A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]- 【答案】D【解析】若[)1,1t ∈-,则执行3s t =,故[)3,3s ∈-.若[]1,3t ∈,则执行24s t t =-,其对称轴为2t =.故当2t =时,s 取得最大值4.当1t =或3时,s 取得最小值3,则[]3,4s ∈. 综上可知,输出的[]3,4s ∈-,故选D .(6)【2013年全国Ⅰ,理6,5分】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm , 将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚 度,则球的体积为( )(A )35003cm π (B )38663cm π (C )313723cm π(D )320483cm π【答案】B【解析】设球半径为R ,由题可知R ,2R -,正方体棱长一半可构成直角三角形,即OBA ∆为直角三角形,如图,2BC =,4BA =,2OB R =-,OA R =,由()22224R R =-+,得5R =,所以球的体积为34500533ππ=(cm 3),故选B .(7)【2013年全国Ⅰ,理7,5分】设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )(A )3(B )4 (C )5 (D )6【答案】C 【解析】∵12m S -=-,0m S =,13m S +=,∴()1022m m m a S S -=-=--=,11303m m m a S S ++=-=-=.∴1321m m d a a +=-=-=.∵()11102m m m S ma -=+⨯=,∴112m a -=-. 又∵1113m a a m +=+⨯=,∴132m m --+=.∴5m =,故选C . (8)【2013年全国Ⅰ,理8,5分】某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ 【答案】A【解析】由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径2r =,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为24422816r ππ⨯⨯+⨯⨯=+,故选A .(9)【2013年全国Ⅰ,理9,5分】设m 为正整数,()2m x y +展开式的二项式系数的最大值为a , ()21m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )(A )5 (B )6 (C )7 (D )8 【答案】B【解析】由题意可知,2m m a C =,21mm b C +=,又∵137a b =,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得6m =,故选B .(10)【2013年全国Ⅰ,理10,5分】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( ) (A )2214536x y +=(B )2213627x y += (C )2212718x y += (D )221189x y +=【答案】D【解析】设11()A x y ,,22()B x y ,,∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①-②,得 1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为()1,1-,∴122y y +=-,122x x +=,而1212011=312AB y y k x x --(-)==--, ∴221=2b a .又∵229a b -=,∴218a =,29b =.∴椭圆E 的方程为22=1189x y +,故选D . (11)【2013年全国Ⅰ,理11,5分】已知函数()()220ln 10x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若()f x a x ≥|,则a 的取值范围是( ) (A )(],0-∞ (B )(],1-∞ (C )[2,1]- (D )[2,0]-【答案】D【解析】由()y f x =的图象知:①当0x >时,y ax =只有0a ≤时,才能满足()f x ax ≥,可排除B ,C .②当0x ≤时,()2222y f x x x x x ==-+=-.故由()f x ax ≥得 22x x ax -≥.当0x =时,不等式为00≥成立.当0x <时,不等式等价于2x a -≤.∵22x -<-,∴2a ≥-.综上可知:[]2,0a ∈-,故选D .(12)【2013年全国Ⅰ,理12,5分】设n n n A B C ∆的三边长分别为n a ,n b ,n c ,n n n A B C ∆的面积为n S ,1,2,3.n =⋯,若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )(A ){}n S 为递减数列 (B ){}n S 为递增数列(C ){}21n S -为递增数列,{}2n S 为递减数列 (D ){}21n S -为递减数列,{}2n S 为递增数列 【答案】B第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2013年全国Ⅰ,理13,5分】已知两个单位向量a ,b 的夹角为60°,()1t t =+-c a b .若·0=b c ,则t = . 【答案】2【解析】∵()1t t =+-c a b ,∴()2··1t t =+-bc ab b .又∵1==a b ,且a 与b 夹角为60°,⊥b c , ∴()0 601t cos t =︒+-a b ,1012t t =+-.∴2t =.(14)【2013年全国Ⅰ,理14,5分】若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a = .【答案】()12n --【解析】∵2133n n S a =+,① ∴当2n ≥时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-,即12n n aa -=-.∵1112133a S a ==+,∴11a =.∴{}n a 是以1为首项,-2为公比的等比数列,()12n n a -=-.(15)【2013年全国Ⅰ,理15,5分】设当x θ=时,函数()2f x sinx cosx =-取得最大值,则cos θ= .【答案】 【解析】()s 2x f x sinx cosx x ⎫⎪==⎭-,令cos α=,sin α=,则()()f x x α=+,当22()x k k ππα=+-∈Z 时,()sin x α+有最大值1,()f x,即22()k k πθπα=+-∈Z ,所以cos θ=πcos =cos 2π+cos sin 22k πθααα⎛⎫⎛⎫-=-=== ⎪ ⎪⎝⎭⎝⎭(16)【2013年全国Ⅰ,理16,5分】若函数()()()221f x x x ax b =-++的图像关于直线2x =-对称,则()f x 的最大值为 .【答案】16【解析】∵函数()f x 的图像关于直线2x =-对称,∴()f x 满足()()04f f =-,()()13f f -=-,即151640893b a b a b =-(-+)⎧⎨=-(-+)⎩,得815a b =⎧⎨=⎩∴()432814815f x x x x x =---++.由()324242880f x x x x '=---+=,得12x =-22x =-,32x =-.易知,()f x在(,2-∞-上为增函数,在()22--上为减函数,在(2,2--上为增函数,在()2-+-∞上为减函数.∴(((((222122821588806416f ⎡⎤⎡⎤-=---+-+=---=-=⎢⎥⎢⎥⎣⎦⎣⎦.()()()()()22212282153416915f ⎡⎤⎡-=---+⨯⎤==-⎣⎦⎣⎦-+--+(((((222122821588806416f ⎡⎤⎡⎤-=---++-++=-++=-=⎢⎥⎢⎥⎣⎦⎣⎦.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅰ,理17,12分】如图,在ABC ∆中,90ABC ∠=︒,AB =,1BC =,P为ABC ∆内一点,90BPC ∠=︒.(1)若12PB =,求PA ;(2)若150APB ∠=︒,求tan PBA ∠.解:(1)由已知得60PBC ∠=︒,30PBA ∴∠=︒.在PBA ∆中,由余弦定理得211732cos 30424PA =+-︒=.故PA =(2)设PBA α∠=,由已知得sin PB α=.在PBA ∆sin sin(30)αα=︒-,4sin αα=.所以tan α,即tan PBA ∠= (18)【2013年全国Ⅰ,理18,12分】如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=︒. (1)证明:1AB A C ⊥;(2)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.解:(1)取AB 的中点O ,连结OC ,1OA ,1A B .因为CA CB =,所以OC AB ⊥.由于1AB AA =,160BAA ∠=︒,故1AA B ∆为等边三角形,所以1OA AB ⊥.因为1OC OA O = ,所以AB ⊥平面1OA C . 又1A C 平面1OA C ,故1AB A C ⊥.(2)由(1)知OC AB ⊥,1OA AB ⊥.又平面ABC ⊥平面11AA B B ,交线为AB ,所以OC ⊥平面11AA B B ,故OA ,1OA ,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,OA为单位长,建立如图所示的空间直角坐标系O xyz -.由题设知()1,0,0A,1()0A ,(0,0C ,()1,0,0B -.则(1,03BC =,11()BB AA =-=,(10,A C = .设()n x y z =,,是平面11BB C C 的法向量,则100BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0x x ⎧=⎪⎨-=⎪⎩可取1)n =-.故111cos ,n AC n AC n AC ⋅==⋅ .所以1A C 与平面11BB C C. (19)【2013年全国Ⅰ,理19,12分】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件1A ,第一次取出的4件产品全是优质品为事件2A ,第二次取出的4件产品都是优质品为事件1B ,第二次取出的1件产品是优质品为事件2B ,这批产品通过检验为事件A ,依题意有()()1122A A B A B = ,且11A B 与22A B 互斥,所以 ()()()()()()()112211122241113||161616264P A P A B P A B P A P B A P A P B A ==⨯++⨯==+.(2)X 可能的取值为400,500,800,并且()41114001161616P X ==--=,()500116P X ==,()80140P X ==. 所以X 的分布列为()111400+500+800506.2516164E X =⨯⨯⨯=. (20)【2013年全国Ⅰ,理20,12分】已知圆()2211M x y ++=:,圆()2219N x y -+=:,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB . 解:由已知得圆M 的圆心为()1,0M -,半径11r =;圆N 的圆心为()1,0N ,半径23r =.设圆P 的圆心为(),P xy ,半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以()()12124PM PN R r r R r r +=++-=+=.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为()22=1243x y x +≠-.(2)对于曲线C 上任意一点()P x y ,,由于222PM PN R -=-≤,所以2R ≤,当且仅当圆P 的圆心为()2,0时,2R =.所以当圆P 的半径最长时,其方程为()2224x y -+=.若l 的倾斜角为90︒,则l 与y 轴重 合,可得AB =l 的倾斜角不为90︒,由1r R ≠知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得()4,0Q -,所以可设()4l y k x =+:.由l 与圆M ,解得k =. 当k =时,将y =+22=13x y +,并整理得27880x x +-=,解得1,2x =. 2118|7AB x x =-=.当k =时,由图形对称性可知187AB =.综上,AB =187AB =. (21)【2013年全国Ⅰ,理21,12分】设函数()2f x x ax b =++,()()x g x e cx d =+.若曲线()y f x =和曲线()y g x =都过点()0,2P ,且在点P 处有相同的切线42y x =+.(1)求a ,b ,c ,d 的值;(2)若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:(1)由已知得()02f =,()02g =,()04f '=,()04g '=.而()2f x x a '=+,()()x g x e cx d c '=++, 故2b =,2d =,4a =,4d c +=.从而4a =,2b =,2c =,2d =. (2)由(1)知,()242f x x x =++,()()21x g x e x =+.设函数()()()()22142x F x kg x f x ke x x x =-=+---,()()()()2224221x x F x ke x x x ke '=+--=+-.()00F ≥ ,即1k ≥.令()0F x '=得1ln x k =-,22x =-. ①若21k e ≤<,则120x -<≤.从而当12()x x ∈-,时,()0F x '<;当1()x x ∈+∞,时,()0F x '>. 即()F x 在1(2)x -,单调递减,在1()x +∞,单调递增.故()F x 在[)2-+∞,的最小值为()1F x . 而()()11111224220F x x x x x =+---=-+≥.故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ②若2k e =,则()()()2222x F x e x e e -'=+-.∴当2x >-时,()0F x '>,即()F x 在()2-+∞,单调递增. 而()20F -=,故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ③若2k e >,则()()22222220F k eek e ---=-+=--<.从而当2x ≥-时,()()f x kg x ≤不可能恒成立.综上,k 的取值范围是2[1]e ,. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2013年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,直线AB为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆 于点D . (1)证明:DB DC =;(2)设圆的半径为1,BC =CE 交AB 于点F ,求BCF ∆外接圆的半径. 解:(1)连结DE ,交BC 于点G .由弦切角定理得,ABE BCE ∠=∠.而ABE CBE ∠=∠,故CBE BCE ∠=∠,BE CE =.又因为DB BE ⊥,所以DE 为直径,90DCE ∠=︒,DB DC =.(2)由(1)知,CDE BDE ∠=∠,DB DC =,故DG 是BC的中垂线,所以BG =设DE 的中点为O ,连结BO ,则60BOG ∠=︒.从而30ABE BCE CBE ∠=∠=∠=︒,所以CF BF ⊥,故Rt BCF ∆.(23)【2013年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤<).解:(1)将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程()()224525x y -+-=,即221810160C x y x y +--+=:.将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得28cos 10sin 160ρρθρθ--+=. 所以1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=.由222281016020x y x y x y y ⎧+--+=⎨+-=⎩,解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩, 所以1C 与2C交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭.(24)【2013年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)已知函数()212f x x x a =-++,()3g x x =+.(1)当2a =-时,求不等式()()f x g x <的解集;(2)设1a >-,且当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围.解:(1)当2a =-时,()()f x g x <化为212230x x x -+---<.设函数21223y x x x =-+---,则y =15,212,1236,1x x y x x x x ⎧-<⎪⎪⎪=--≤≤⎨⎪->⎪⎪⎩,其图像如图所示.从图像可知,当且仅当()0,2x ∈时,0y <.所以原不等式的解集是{}2|0x x <<.(2)当1,22x a ⎡⎫-⎪⎢⎣⎭∈时,()1f x a =+.不等式()()f x g x ≤化为13a x +≤+.所以2x a ≥-,对1,22x a ⎡⎫-⎪⎢⎣⎭∈都成立.故22a a -≥-,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013山东高考数学试卷及答案(理科)
2013年普通高等学校招生全国统一考试(山东卷)理 科 数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2、第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3、第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
4、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B +=;如果事件A 、B 独立,那么()()()=∙P AB P A P B 。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为(A) 2+i (B) 2-i (C) 5+i (D) 5-i2、已知集合{}0,1,2=A ,则集合{},=-∈∈B x y x A y A 中元素的个数是(A) 1 (B) 3 (C) 5 (D) 93、已知函数()f x 为奇函数,且当0>x 时,21(),=+f x x x则(1)-=f (A) -2 (B) 0 (C) 1 (D) 24、已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为(A)512π (B) 3π (C) 4π (D) 6π5、将函数sin(2)ϕ=+y x 的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为(A)34π (B) 4π (C) 0 (D) 4π- 6、在平面直角坐标系xOy 中,M 为不等式组220210,380,--≥⎧⎪+-≥⎨⎪+-≤⎩x y x y x y 所表示的区域上一动点,则直线OM的斜率的最小值为(A) 2 (B) 1 (C) 13-(D) 12- 7、给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件8、函数cos sin =+y x x x 的图象大致为(A)(B) (C) (D)9、过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为(A) 230+-=x y (B) 230--=x y (C) 430--=x y (D) 430+-=x y10、用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A) 243 (B) 252 (C) 261 (D) 27911、抛物线211:(0)2=>C y x p p的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M 若1C 在点M 处的切线平行于2C 的一条渐近线,则=p(A)16 (B) 8 (C) 3 (D) 312、设正实数,,x y z 满足22340.-+-=x xy y z 则当xy z取得最大值时,212+-x y z 的最大值为(A) 0 (B) 1 (C)94(D) 3第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。
2013年山东高考理科数学
2013年普通高等学校招生全国统一考试(山东卷)理 科 数 学第Ⅰ卷(共60分)一、选择题: 本大题共12个小题, 每小题5分, 共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足5)2)(3(=--i z (i 为虚数单位),则z 的共轭复数z 为 .A i +2 .B i -2 .C i +5 .D i -52. 已知集合}2,1,0{=A ,则集合},{A y A x y x B ∈∈-=中元素的个数是 .A 1 .B 3 .C 5 .D 93. 已知函数)(x f 为奇函数,当0>x 时,xx x f 1)(2+=,在=-)1(f .A 2- .B 0 .C 1 .D 24. 已知三棱柱111C B A ABC -的侧棱与底面垂直,体积为49,底面是边长为3的正三角形,若P 为底面111C B A 的中心,则PA 与平面ABC 所成角的大小为 .A π125 .B 3π .C 4π .D 6π 5. 将函数)2sin(ϕ+=x y 的图像沿x 轴向左平移8π个单位后,得到一个偶函数,则ϕ的一个可能取值是 .A π43 .B 4π .C 0 .D 4π-6. 在平面直角坐标系xOy 中,M 为不等式组⎪⎩⎪⎨⎧≤-+≥-+≥--083012022y x y x y x 所表示的平面区域上一动点,则OM 斜率的最小值为.A 2 .B 1 .C 31- .D 21- 7. 给定两个命题q p ,,若p ⌝是q 的必要而不充分条件,在p 是p ⌝的 .A 充分而不必要条件 .B 必要而不充分条件.C 充要条件 .D 既不充分也不必要条件8. 函数x x x y sin cos +=的图像大致为.A .B .C .D9. 过点)1,3(作圆1)1(22=+-y x 的两条切线,切点分别为B A ,,则直线AB 的方程为 .A 032=+-y x .B 032=--y x .C 034=--y x .D 034=-+y x10. 用0,1,2,……,9十个数字,可以组成有重复数字的三位数的个数为 .A 243 .B 252 .C 261 .D 27911. 抛物线:1C )0(212>=p x py 的焦点与双曲线:2C 1322=-y x 的右焦点的连线交2C 于第一象限的点M 。
2013年高考理科数学山东卷(含详细答案)
数学试卷 第1页(共45页) 数学试卷 第2页(共45页) 数学试卷 第3页(共45页)绝密★启用前2014年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B );如果事件A ,B 独立,那么P (AB )=P (A )·P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b ∈R ,i 是虚数单位,若i a -与2i b +互为共轭复数,则2(i)a b += ( )A .54i -B .54i +C .34i -D .34i +2.设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则A B = ( )A .[0,2]B .(1,3)C .[1,3)D .(1,4) 3.函数()f x( )A .1(0,)2B .(2,)+∞C .1(0,)(2,)2+∞D .1(0,][2,)2+∞4.用反证法证明命题“设a ,b 为实数,则方程30x ax b ++=至少有一个实根”时,要做的假设是( )A .方程30x ax b ++=没有实根B .方程30x ax b ++=至多有一个实根C .方程30x ax b ++=至多有两个实根D .方程30x ax b ++=恰好有两个实根5.已知实数x ,y 满足x y a a <(01a <<),则下列关系式恒成立的是( )A .221111x y >++ B .22ln(1)ln(1)x y +>+ C .sin sin x y >D .33x y >6.直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( )A.B.C .2D .47.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 ( )A .6B .8C .12D .188.已知函数()|2|1f x x =-+,()g x kx =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,)+∞9.已知x ,y 满足约束条件10,230,x y x y --⎧⎨--⎩≤≥当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值时,22a b +的最小值为( )A .5B .4CD .210.已知>0a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C则2C 的渐近线方程为 ( )A.0x = B0y ±= C .20x y ±= D .20x y ±=第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.执行如图所示的程序框图,若输入的x 的值为1,则输出的n 的值为 .12.在ABC △中,已知t a n A B A C A =,当π6A =时,ABC △的面积为 .13.三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = . 14.若26()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为 .15.已知函数()()y f x x =∈R .对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为函数()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点(,())x h x ,(,())x g x关于点(,())x f x 对称.若()h x 是()g x =关于()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 .三、解答题:本大题共6小题,共75分.16.(本小题满分12分)已知向量a (,cos2)m x =,b (sin 2,)x n =,函数()f x =a b ,且()y f x =的图象过点π(12和点2π(,2)3-. (Ⅰ)求m ,n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0π)ϕ<<个单位后得到函数()y g x =的图象,若()y g x =图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.17.(本小题满分12分)姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共45页) 数学试卷 第5页(共45页) 数学试卷 第6页(共45页)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60DAB ∠=,AB =22CD =,M 是线段AB 的中点.(Ⅰ)求证:1C M 平面11A ADD ;(Ⅱ)若1CD 垂直于平面ABCD且1CD =求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.18.(本小题满分12分)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率; (Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.19.(本小题满分12分)已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .20.(本小题满分13分)设函数2e 2()(ln )x f x k x x x =-+(k 为常数,e 2.71828=⋅⋅⋅是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围.21.(本小题满分14分)已知抛物线C :22(0)y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF △为正三角形. (Ⅰ)求C 的方程; (Ⅱ)若直线1l l ,且1l 和C 有且只有一个公共点E .(ⅰ)证明:直线AE 过定点,并求出定点坐标;(ⅱ)ABE △的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.3 / 15数学试卷 第10页(共45页)数学试卷 第11页(共45页) 数学试卷 第12页(共45页)5 / 15【解析】双曲线2012k k = 又1y x p'=数学试卷第16页(共45页)数学试卷第17页(共45页)数学试卷第18页(共45页)7 / 15+AP AB AC λ=,AP BC ⊥,又B C A C A B =-,∴()(+)0AC AB AC AB λ-=.22+0AC AB AC AB AC AB λλ--=,即4+132902()-⨯⨯⨯-- ⎪⎝⎭,即7120λ-=,∴12λ=【提示】利用AB ,AC ,表示BC 向量,通过数量积为【考点】平面向量的四则运算. 【答案】①③④数学试卷 第22页(共45页)数学试卷 第23页(共45页) 数学试卷 第24页(共45页)EFQPCD 平面(步骤3)2AQ BD =BPBQ B =,所以,又FH ⊂D GH E --9 / 155(1,2,EQ =-,(0,2,FQ =,(1,DP =-,(0,CP =-设平面EFQ 的一个法向量为1(,)m x y z =,(步骤由0m EQ =,0m FQ =,11120,20,x y z y z -+-=⎧⎨-= ,得(0,1,2)m =的一个法向量为(,,n x y =,由0n DP =,0n CP =, ,得(0,2,1)n =4,5||||m n m n m n <>==,因为二面角所以二面角D GH E --的余弦值为数学试卷第28页(共45页)数学试卷第29页(共45页)数学试卷第30页(共45页)数学试卷第34页(共45页)数学试卷第40页(共45页)。
2013山东高考数学试卷(理科)及答案详解
2013年普通高等学校招生全国统一考试(山东卷) 理 科 数 学参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B += 如果事件A 、B 独立,那么()()()=∙P AB P A P B 。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为(A) 2+i (B) 2-i (C) 5+i (D) 5-i2、已知集合{}0,1,2=A ,则集合{},=-∈∈B x y x A y A 中元素的个数是(A) 1 (B) 3 (C) 5 (D) 93、已知函数()f x 为奇函数,且当0>x 时,21(),=+f x x x则(1)-=f (A) -2 (B) 0 (C) 1 (D) 2 4、已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94,的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 (A)512π (B) 3π (C) 4π (D) 6π 5、将函数sin(2)ϕ=+y x 的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 (A)34π (B) 4π (C) 0 (D) 4π- 6、在平面直角坐标系xOy 中,M 为不等式组220210,380,--≥⎧⎪+-≥⎨⎪+-≤⎩x y x y x y 所表示的区域上一动点,则直线OM的斜率的最小值为(A) 2 (B) 1 (C) 13- (D) 12- 7、给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件8、函数cos sin =+y x x x 的图象大致为(A)(B) (C) (D)9、过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为(A) 230+-=x y (B) 230--=x y (C) 430--=x y (D) 430+-=x y 10、用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A) 243 (B) 252 (C) 261 (D) 27911、抛物线211:(0)2=>C y x p p 的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M若1C 在点M 处的切线平行于2C 的一条渐近线,则=p(A)(B)(C)(D)12、设正实数,,x y z 满足22340.-+-=x xy y z 则当xy z取得最大值时,212+-的最大值为(A) 0 (B) 1 (C) 94(D) 3第Ⅱ卷(共90二、填空题:本大题共4小题,每小题4分,共16分。
2013年普通高等学校招生全国统一考试 山东理科数学试题
2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时150分钟.考试结束后,将本卷和答题卡一并交回。
注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B);如果事件A ,B 独立,那么P (AB )=P(A)*P(B)第Ⅰ卷 (共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z 满足(z-3)(2-i)=5(i 为虚数单位),则z 的共轭复数 为( )A. 2+iB.2-iC. 5+iD.5-i (2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9 (3)已知函数f(x)为奇函数,且当x>0时, xx x f 1)(2+= ,则)1(-f = ( ) (A )-2 (B )0 (C )1 (D )2 (4)已知三棱柱ABC-A 1B 1C 1的侧棱与底面垂直,体积为 49, 底面是边长为 3的正三角形, 若P 为底面A 1B 1C 1的中心,则PA 与平面ABC 所成角的大小为 ( ) (A )5π (B )π (C ) π (D ) π(5)将函数y=sin (2x +φ)的图像沿x 轴向左平移 个单位后,得到一个偶函数的图像,则φ的一个可能取值为 (A ) 43π (B )4π (C )0 (D ) 4π-(6)在平面直角坐标系xOy 中,M 为不等式组⎪⎩⎪⎨⎧≤-+≥-+≥--083012022y x y x y x 所表示的区域上一动点,则直线OM 斜率的最小值为(A )2 (B )1 (C ) 31- (D ) 21-(7)给定两个命题p ,q 。
2013年普通高等学校招生统一考试山东省数学(理)卷文档版
绝密★启用并使用完毕前2013年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时150分钟.考试结束后,将本卷和答题卡一并交回。
注意事项:1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( )A. 2+iB.2-iC. 5+iD.5-i(2)设集合A={0,1,2},则集合B={x-y|x∈A, y∈A }中元素的个数是( )A. 1B. 3C. 5D.9(3)已知函数f(x)为奇函数,且当x>0时,f(x) =x2+ ,则f(-1)= ()(A)-2(B)0 (C)1(D)2(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面积是边长为的正三棱柱,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )(A)(B)(C)(D)(5)将函数y=sin(2x +φ)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则φ的一个可能取值为(A)(B)(C)0 (D)(6)在平面直角坐标系xOy中,M为不等式组:2x-y-2≥0,x+2y-1≥0,3x+y-8≤0,所表示的区域上一动点,则直线OM斜率的最小值为(A)2 (B)1 (C)(D)(7)给定两个命题p,q。
2013年山东省高考数学试卷(理科)word版试卷及解析
2013年普通高等学校招生全国统一考试(山东卷) 理 科 数 学参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B += 如果事件A 、B 独立,那么()()()=•P AB P A P B 。
第Ⅰ卷(共60分)一、选择题:本大题共12小题。
每小题5分共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为(A) 2+i (B) 2-i (C) 5+i (D) 5-i2、已知集合{}0,1,2=A ,则集合{},=-∈∈B x y x A y A 中元素的个数是(A) 1 (B) 3 (C) 5 (D) 93、已知函数()f x 为奇函数,且当0>x 时,21(),=+f x x x则(1)-=f (A) -2 (B) 0 (C) 1 (D) 2 4、已知三棱柱111-ABC A B C 的侧棱与底面垂直,体积为94,的正三角形,若P 为底面111A B C 的中心,则PA 与平面ABC 所成角的大小为 (A)512π (B) 3π (C) 4π (D) 6π 5、将函数sin(2)ϕ=+y x 的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为 (A)34π (B) 4π (C) 0 (D) 4π- 6、在平面直角坐标系xOy 中,M 为不等式组220210,380,--≥⎧⎪+-≥⎨⎪+-≤⎩x y x y x y 所表示的区域上一动点,则直线OM的斜率的最小值为(A) 2 (B) 1 (C) 13- (D) 12- 7、给定两个命题,.p q若⌝p 是q 的必要不充分条件,则p 是⌝q 的(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件8、函数cos sin =+y x x x 的图象大致为(A)(B) (C) (D)9、过点(3,1)作圆22(1)1-+=x y 的两条切线,切点分别为,A B ,则直线AB 的方程为(A) 230+-=x y (B) 230--=x y (C) 430--=x y (D) 430+-=x y 10、用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A) 243 (B) 252 (C) 261 (D) 27911、抛物线211:(0)2=>C y x p p 的焦点与双曲线222:13-=x C y 的右焦点的连线交1C 于第一象限的点.M若1C 在点M 处的切线平行于2C 的一条渐近线,则=p(A)(B)(C)(D)12、设正实数,,x y z 满足22340.-+-=x xy y z 则当xyz取得最大值时,212+-的最大值为(A) 0 (B) 1 (C) 94(D) 3第Ⅱ卷(共90二、填空题:本大题共4小题,每小题4分,共16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用并使用完毕前
2013年普通高等学校招生全国统一考试(山东卷)
理科数学
本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时150分钟.考试结束后,将本卷和答题卡一并交回。
注意事项:
1. 答题前,考试务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明\证明过程或演算步骤.
参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P (AB)=P(A)*P(B)
第Ⅰ卷(共60分)
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)复数z满足(z-3)(2-i)=5(i为虚数单位),则z的共轭复数为( )
A. 2+i
B.2-i
C. 5+i
D.5-i
(2)设集合A={0,1,2},则集合B={x-y|x∈A, y∈A }中元素的个数是( )
A. 1
B. 3
C. 5
D.9
(3)已知函数f(x)为奇函数,且当x>0时,f(x) =x2+ ,则f(-1)= ( )(A)-2(B)0 (C)1(D)2
(4)已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面积是边长为
的正三棱柱,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )
(A)(B)(C)(D)
(5)将函数y=sin(2x +φ)的图像沿x轴向左平移个单位后,得到一个偶函数的图像,则φ的一个可能取值为
(A)(B)(C)0 (D)
(6)在平面直角坐标系xOy中,M为不等式组:2x-y-2≥0,x+2y-1≥0,3x+y-8≤0,所表示的区域上一动点,则直线OM斜率的最小值为
(A)2 (B)1 (C)(D)
(7)给定两个命题p,q。
若﹁p是q的必要而不充分条件,则p是﹁q的
(A)充分而不必条件(B)必要而不充分条件
(C)充要条件(D)既不充分也不必要条件
(8)函数y=xcosx + sinx 的图象大致为
(A)(B)
(9)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为
(A)2x+y-3=0 (B)2x-y-3=0
(C)4x-y-3=0 (D)4x+y-3=0
(10)用0,1,…,9十个数学,可以组成有重复数字的三位数的个数为(A)243 (B)252 (C)261 (D)279
(11)抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交
C 1于第一象限的点M.若C
1
在点M处的切线平等于C
2
的一条渐近线,则p=
(A)(B)(C)(D)
(12)设正实数x,y,z满足x2-3xy+4y2-z=0.则当取得最大值时,+-的最大值为
(A)0 (B)1 (C)(D)3
第Ⅱ卷(90分)
二.填空题:本大题共4小题,每小题4分,共16分
(13)执行右面的程序框图,若输入的∈的值为0.25,则输入的n的值为______.
(14)在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥成立的概率为____.
(15)已知向量与的夹角1200,且||=3,||=2,若,且
,则实数λ的值为_____.
(16)定义“正对数”:ln+x=现有四个命题:
①若a>0,b>0,则ln+(a b)=bln+a
②若a>0,b>0,则ln+(ab)=ln+a+ ln+b
③若a>0,b>0,则ln+()≥ln+a-ln+b
④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2
三、解答题:本大题共6小题,共74分。
(17)设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cosB=。
(Ⅰ)求a,c的值;
(Ⅱ)求sin(A-B)的值。
(18)(本小题满分12分)
如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH。
(Ⅰ)求证:AB//GH;
(Ⅱ)求二面角D-GH-E的余弦值
(19)本小题满分12分
甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲
队获胜的概率是外,其余每局比赛甲队获胜的概率是.假设每局比赛结果互相独立。
(1)分别求甲队以3:0,3:1,3:2胜利的概率
(2)若比赛结果为3:0或3:1,则胜利方得3:分,对方得0分;若逼骚结果为3:2,则胜利方得2分、对方得1分,求乙队得分x的分布列及数学期望。
(20)(本小题满分12分)
设等差数列{a n}的前n项和为S n,且S n=4S2,a n=2a n+1
(1)求数列{a n}的通项公式;
(2)设数列{b n}的前n项和T n,且T n+= λ(λ为常数),令c n=b2,(n∈N·).求数
列{c n}的前n项和R n。
(21)(本小题满分12分)
设函数(e=2.71828.....是自然对数的底数,c∈R)
(1)求f(x)的单调区间、最大值。
(2)讨论关于x的方程|lnx|=f(x)根的个数。
(22)(本小题满分13分)
椭圆C:+=1(a>b>0)的左、右焦点分别是F1.F2,离心率为,过F,且垂直于x轴的
直线被椭圆C截得的线段长为l.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线
PM交C的长轴于点M(m,0),求m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点p作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明1/k1+1/k2为定值,并求出这个定值。