数学---广东省深圳高级中学2017-2018学年高一(上)期中试卷(解析版)

合集下载

深圳市高级中学2017-2018学年第一学期期中考试高二文科数学(附答案)

深圳市高级中学2017-2018学年第一学期期中考试高二文科数学(附答案)

深圳市高级中学2017-2018学年第一学期期中考试高二文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}2,4,6B =,则)(B C A ⋃⋂= A .{}1B .{}2C .{}4D .{}1,22.已知向量()1,1λ=+m ,()2,2λ=+n ,若()()+⊥-m n m n ,则λ= A .4-B .3-C .2-D .1-3.已知命题p :0x ∀>,总有()1e 1xx +>,则p ⌝为A .00x ∃≤,使得()001e 1xx +≤B .00x ∃>,使得()001e 1xx +≤C .0x ∀>,总有()1e 1x x +≤D .0x ∀≤,总有()1e 1xx +≤4.已知函数()222,02,0x x x f x x x x ⎧+≥=⎨-<⎩.若()()22f a f a ->,则实数a 的取值范围是 A .()(),21,-∞-+∞ B .()1,1-C .()2,1-D .()1,2-5.为了得到函数πsin 26y x ⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象 A .向右平移π6个单位长度 B .向右平移π3个单位长度 C .向左平移π6个单位长度D .向左平移π3个单位长度6.已知,过点()2,2P 的直线与圆()2215x y -+=相切,且与直线10ax y -+=垂直,则a =A .2B .1C .12-D .127.已知双曲线()222210,0x y a b a b-=>>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为A .2233125100x y -= B .2233110025x y -= C .221520x y -= D .221205x y -=8.若()42f x ax bx c =++满足()12f '=,则()1f '-=A .1-B .2-C .2D .09.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭cos sin αα+的值为 A.B .12-C .12D10.设集合{}260A x x x =+-=,{}10B x mx =+=,则B 是A 的真子集的一个充分不...必要..的条件是 A .11,23m ⎧⎫∈-⎨⎬⎩⎭B .0m ≠C .110,,23m ⎧⎫∈-⎨⎬⎩⎭D .10,3m ⎧⎫∈⎨⎬⎩⎭11.若正数,x y 满足315x y+=,则34x y +的最小值为 A .245B .285C .5D .612.椭圆M :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆上任一点,且12PF PF ⋅的最大值的取值范围是22,3c c ⎡⎤⎣⎦,其中c =M 的离心率e 的取值范围是A .11,42⎡⎤⎢⎥⎣⎦B.12⎡⎢⎣⎦C.⎫⎪⎪⎝⎭D .1,12⎛⎫⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。

广东省深圳高级中学2017届高三(上)第一次考试数学(理)试卷(解析版).doc

广东省深圳高级中学2017届高三(上)第一次考试数学(理)试卷(解析版).doc

2016-2017学年广东省深圳高中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列函数中,既是偶函数又在(0,+∞)上单调递增的是()A.y=e x B.y=lnx2C.y=D.y=sinx【考点】奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】根据函数奇偶性和单调性的定义分别进行判断即可.【解答】解:y=,y=e x为(0,+∞)上的单调递增函数,但不是偶函数,故排除A,C;y=sinx在整个定义域上不具有单调性,排除D;y=lnx2满足题意,故选:B.【点评】本题主要考查函奇偶性和单调性的判断,要求熟练掌握常见函数的性质:单调性、奇偶性等性质,比较基础.2.函数f(x)=sinx﹣cos(x+)的值域为()A.[﹣2,2] B.[﹣,] C.[﹣1,1] D.[﹣,] 【考点】三角函数中的恒等变换应用;正弦函数的定义域和值域.【专题】三角函数的图像与性质.【分析】通过两角和的余弦函数化简函数的表达式,利用两角差的正弦函数化为一个角的一个三角函数的形式,求出函数的值域.【解答】解:函数f(x)=sinx﹣cos(x+)=sinx﹣+=﹣+=sin(x﹣)∈.故选B.【点评】本题考查三角函数中的恒等变换应用,正弦函数的定义域和值域,考查计算能力.3.若函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是()A.(﹣1,2)B.(﹣∞,﹣3)∪(6,+∞)C.(﹣3,6)D.(﹣∞,﹣1)∪(2,+∞)【考点】利用导数研究函数的极值.【专题】计算题;导数的综合应用.【分析】由题意求导f′(x)=3x2+2ax+(a+6);从而化函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值为△=(2a)2﹣4×3×(a+6)>0;从而求解.【解答】解:∵f(x)=x3+ax2+(a+6)x+1,∴f′(x)=3x2+2ax+(a+6);又∵函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,∴△=(2a)2﹣4×3×(a+6)>0;故a>6或a<﹣3;故选B.【点评】本题考查了导数的综合应用,属于中档题.4.若f(x)=x2+2f(x)dx,则f(x)dx=()A.﹣1 B.﹣C.D.1【考点】定积分.【专题】导数的综合应用.【分析】利用回代验证法推出选项即可.【解答】解:若f(x)dx=﹣1,则:f(x)=x2﹣2,∴x2﹣2=x2+2(x2﹣2)dx=x2+2()=x2﹣,显然A不正确;若f(x)dx=,则:f(x)=x2﹣,∴x2﹣=x2+2(x2﹣)dx=x2+2()=x2﹣,显然B正确;若f(x)dx=,则:f(x)=x2+,∴x2+=x2+2(x2+)dx=x2+2()=x2+2,显然C不正确;若f(x)dx=1,则:f(x)=x2+2,∴x2+2=x2+2(x2+2)dx=x2+2()=x2+,显然D不正确;故选:B.【点评】本题考查定积分以及微积分基本定理的应用,回代验证有时也是解答问题的好方法.5.在△ABC中,AC=,BC=2,B=60°则BC边上的高等于()A.B.C.D.【考点】解三角形.【专题】计算题;压轴题.【分析】在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB可求AB=3,作AD ⊥BC,则在Rt△ABD中,AD=AB×sinB【解答】解:在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB把已知AC=,BC=2 B=60°代入可得,7=AB2+4﹣4AB×整理可得,AB2﹣2AB﹣3=0∴AB=3作AD⊥BC垂足为DRt△ABD中,AD=AB×sin60°=,即BC边上的高为故选B【点评】本题主要考查了余弦定理在解三角形中的应用,解答本题的关键是求出AB,属于基础试题6.函数y=lncosx()的图象是()A.B.C.D.【考点】函数的图象与图象变化.【专题】数形结合.【分析】利用函数的奇偶性可排除一些选项,利用函数的有界性可排除一些个选项.从而得以解决.【解答】解:∵cos(﹣x)=cosx,∴是偶函数,可排除B、D,由cosx≤1⇒lncosx≤0排除C,故选A.【点评】本小题主要考查复合函数的图象识别.属于基础题.7.将函数y=sin(6x+)的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心()A.B.C.()D.()【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的对称性.【专题】计算题.【分析】先根据三角函数图象变换规律写出所得函数的解析式,再根据三角函数的性质进行验证:若f(a)=0,则(a,0)为一个对称中心,确定选项.【解答】解:函数的图象上各点的横坐标伸长到原来的3倍得到图象的解析式为再向右平移个单位得到图象的解析式为=sin2x当x=时,y=sinπ=0,所以是函数y=sin2x的一个对称中心.故选A.【点评】本题考查了三角函数图象变换规律,三角函数图象、性质.是三角函数中的重点知识,在试题中出现的频率相当高.8.设147()9a-=,159()7b=,27log9c=,则a, b, c的大小顺序是()A、b a c<<B、c a b<<C、c b a<<D、b c a<<【考点】对数值大小的比较.【专题】数形结合;转化思想;函数的性质及应用.【分析】利用指数函数的单调性即可得出.【解答】解:∴a>b>c.故选:B.【点评】本题考查了指数函数的单调性,考查了推理能力与计算能力,属于基础题.9.(2016•江门模拟)若f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0)的最小正周期为π,f(0)=,则()A.f(x)在单调递增B.f(x)在单调递减C.f(x)在单调递增D.f(x)在单调递减【考点】函数y=Asin(ωx+φ)的图象变换.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由周期求出ω,由f(0)=求出φ的值,可得函数的解析式;再利用余弦函数的单调性得出结论.【解答】解:∵f(x)=sin(ωx+ϕ)+cos(ωx+ϕ)=sin(ωx+ϕ+)(ω>0)的最小正周期为=π,可得ω=2.再根据=sin(ϕ+),可得sin(ϕ+)=1,ϕ+=2kπ+,k∈Z,故可取ϕ=,y=sin(2x+)=cos2x.在上,2x∈(﹣,),函数f(x)=cos2x 没有单调性,故排除A、B;在上,2x∈(0,π),函数f(x)=cos2x 单调递减,故排出C,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由f (0)=求出φ的值;余弦函数的单调性,属于基础题.10.(2011•湖南)设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B.C.D.【考点】导数在最大值、最小值问题中的应用.【专题】计算题;压轴题;转化思想.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.11.(2016•湖南校级模拟)已知函数(x∈R),若关于x的方程f(x)﹣m+1=0恰好有3个不相等的实数根,则实数m的取值范围为()A.B.C.D.【考点】根的存在性及根的个数判断.【专题】数形结合;转化思想;转化法;函数的性质及应用.【分析】讨论x的范围,求函数的导数,研究函数的单调性和极值,利用数形结合进行求解即可.【解答】解:当x≤0时,为减函数,f(x)min=f(0)=0;当x>0时,,,则时,f'(x)<0,时,f'(x)>0,即f(x)在上递增,在上递减,.其大致图象如图所示,若关于x的方程f(x)﹣m+1=0恰好有3个不相等的实数根,则,即,故选:A.【点评】本题主要考查函数根的个数的判断,利用函数与方程之间的关系转化为两个函数的交点问题,求函数的导数,利用数形结合进行求解是解决本题的关键.12.(2016•湖南模拟)设,若对任意的正实数x,y,都存在以a,b,c为三边长的三角形,则实数p的取值范围是()A.(1,3)B.(1,2] C.D.以上均不正确【考点】基本不等式;简单线性规划.【专题】转化思想;转化法;不等式.【分析】由基本不等式可得a≥,c≥2,再由三角形任意两边之和大于第三边可得,+2>,且+>2,且+2>,由此求得实数p的取值范围.【解答】解:对于正实数x,y,由于≥=,c=x+y≥2,,且三角形任意两边之和大于第三边,∴+2>,且+>2,且+2>.解得1<p<3,故实数p的取值范围是(1,3),故选:A.【点评】本题主要考查基本不等式的应用,注意不等式的使用条件,以及三角形中任意两边之和大于第三边,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分.)13.(2009•锦州一模)函数f(x)=,不等式f(x)>2的解集为{x|1<x<2或x>}.【考点】分段函数的解析式求法及其图象的作法;其他不等式的解法.【专题】计算题.【分析】先分两段分别解不等式,最后所求将不等式解集合并即可【解答】解:不等式f(x)>2⇔①或②由①得1<x<2,由②得x>∴不等式f(x)>2的解集为{x|1<x<2或x>}故答案为{x|1<x<2或x>}【点评】本题考查了函数与不等式的关系,特别是分段函数与不等式,解题时要分辨清楚何时求交集何时求并集,认真解不等式才可顺利解题14.(2016秋•深圳校级月考)已知,则=﹣.【考点】两角和与差的正弦函数;同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】由已知利用两角差的正弦公式展开化简,然后结合辅助角公式可求sin(),最后利用诱导公式=﹣sin()即可求解【解答】解:∵,展开可得,=∴由辅助角公式可得sin()=则=﹣sin()=﹣故答案为:【点评】本题主要考查了两角差的正弦公式、辅助角公式及诱导公式在三角函数的化简求值中的应用.15.(2015秋•哈尔滨校级期末)在△ABC中,内角A、B、C的对边分别为a、b、c,且c=2,b=a,则△ABC面积的最大值为2.【考点】三角形的面积公式.【专题】方程思想;综合法;解三角形.【分析】先利用余弦定理求出cosC的值然后利用三角形面积公式可知S=a2sinC,然后化简变形求出S的最大值,注意取最大值时a的值.【解答】解:由公式c2=a2+b2﹣2abcosC和c=2,b=a得4=a2+2a2﹣2a2cosC可推出cosC=,又由公式S面积=absinC和b= a 得S=a2sinC=•=,当a2=12时,S面积取最大值2.三角形三边a+b>c,b﹣a<c所以得2+2>a>2﹣2,所以a=2.故答案是:2.【点评】本题主要考查了三角形中的几何计算,同时考查了余弦定理和二次函数的最值等有关基础知识,属于中档题.16.(2016秋•深圳校级月考)已知定义在R上的函数f(x)同时满足以下三个条件(1)f(x)+f(2﹣x)=0,(2)f(x)=(﹣2﹣x)(3)f(x)=则函数f(x)与函数g(x)=的图象在区间[﹣3,3]上公共点个数为6个.【考点】根的存在性及根的个数判断.【专题】数形结合;数形结合法;函数的性质及应用.【分析】根据f(x)的周期性和对称性做出f(x)在[﹣3,3]上的函数图象,再做出g(x)的函数图象,根据图象判断交点个数.【解答】解:∵f(x)=f(﹣2﹣x),∴f(x)的图象关于x=﹣1对称,又∵f(x)+f(2﹣x)=0,∴f(x)的图象关于点(1,0)对称,做出f(x)和g(x)在[﹣3,3]上的函数图象如图所示:由图象可知当x≤0时,f(x)与g(x)的图象有4个交点,设g(x)在(1,0)处的切线斜率为k,则k=﹣<﹣1,又g(2)=f(2)=﹣1,∴当x>0时,f(x)与g(x)只有两个交点(1,0)和(2,﹣1).综上,f(x)与g(x)在[﹣3,3]上有6个交点.故答案为:6.【点评】本题考查了分段函数的图象,函数性质的应用,属于中档题.三、解答题:本大题共5小题,满分60分.解答应写出文字说明,证明过程或演算步骤.17.(12分)(2014•郑州一模)如图△ABC中,已知点D在BC边上,满足•=0.sin ∠BAC=,AB=3,BD=.(Ⅰ)求AD的长;(Ⅱ)求cosC.【考点】余弦定理的应用;正弦定理.【专题】计算题;解三角形.【分析】(I)通过向量的数量积,判断垂直关系,求出cos∠BAD的值,在△ABD中,由余弦定理求AD的长;(Ⅱ)在△ABD中,由正弦定理,求出sin∠ADB,通过三角形是直角三角形,即可求cosC.【解答】解:(Ⅰ)∵•=0,∴AD⊥AC,∴,∵sin∠BAC=,∴….(2分)在△ABD中,由余弦定理可知BD2=AB2+AD2﹣2AB•ADcos∠BAD,即AD2﹣8AD+15=0,解之得AD=5或AD=3 ….(6分)由于AB>AD,∴AD=3…..(7分)(Ⅱ)在△ABD中,由正弦定理可知,又由,可知,∴=,∵∠ADB=∠DAC+∠C,∠DAC=,∴.…(12分)【点评】本题考查解三角形,余弦定理以及正弦定理的应用,考查计算能力.18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】概率的应用;离散型随机变量的期望与方差.【专题】综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)(2016•广州一模)如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.(I)证明:平面A1CO⊥平面BB1D1D;(Ⅱ)若∠BAD=60°,求二面角B﹣OB1﹣C的余弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【专题】综合题;向量法;空间位置关系与距离;空间角;空间向量及应用.【分析】(1)根据面面垂直的判定定理进行证明即可.(2)建立空间直角坐标系,求平面的法向量,利用向量法进行求解.【解答】证明:(1)∵A1O⊥面ABCD,且BD,AC⊂面ABCD,∴A1O⊥BD,又∵在菱形ABCD中,AC⊥BD,∵A1O∩AC=O,∴BD⊥面A1AC,∵BD⊂平面平面BB1D1D,∴平面A1CO⊥平面BB1D1D(2)建立以O为坐标原点,OA,OB,OA1分别为x,y,z轴的空间直角坐标系如图:∵AB=AA1=2,∠BAD=60°,∴OB=1,OA=,∵AA1=2,∴A1O=1.则A(,0,0),B(0,1,0),A1(0,0,1),C(﹣,0,0),==(﹣,1,0),=(0,1,0),=(﹣,0,0),=(0,0,1),则=+=(﹣,1,1),设平面BOB1的一个法向量为=(x,y,z),则,令x=,则y=0,z=3,即=(,0,3),设平面OB1C的一个法向量为=(x,y,z),则,令y=1,则z=﹣1,x=0,则=(0,1,﹣1),cos<,>===﹣,∵二面角B﹣OB1﹣C是钝二面角,∴二面角B﹣OB1﹣C的余弦值是﹣.【点评】本小题主要考查面面垂直的判断和二面角的求解,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力,综合性较强,运算量较大.20.(12分)(2016•蚌埠三模)设函数f(x)=ln(x﹣1)+(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当x>2,xln(x﹣1)>a(x﹣2)恒成立,求实数a的取值范围.【考点】利用导数研究函数的单调性;函数恒成立问题.【专题】转化思想;综合法;导数的综合应用.【分析】(Ⅰ)求得函数的定义域,求导,根据二次函数图象及性质,利用△≤0,再对a 分类讨论即可求f(x)的单调区间;(Ⅱ)xln(x﹣1)>a(x﹣2)恒成立,等价于f(x)﹣a>0,构造辅助函数,根据(Ⅰ)讨论a的取值,判断f(x)的单调区间,即可求得实数a的取值范围.【解答】解:(Ⅰ)由题易知函数f(x)的定义域为(1,+∞),∴,…(2分)设g(x)=x2﹣2ax+2a,△=4a2﹣8a=4a(a﹣2),①当△≤0,即0≤a≤2时,g(x)≥0,∴f'(x)≥0,f(x)在(1,+∞)上是增函数,…(3分)②当a<0时,g(x)的对称轴x=a,当x>1时,g(x)>g(1)>0,∴g(x)>0,函数f(x)在(1,+∞)上是增函数,③当a>2时,设x1,x2(x1<x2)是方程x2﹣2ax+2a=0的两个根,则x1=a﹣>1,x2=a+,当1<x<x1或x>x2时,f′(x)>0,f(x)在(1,x1),(x2,+∞)上增函数,…(4分)当x1<x<x2时,f′(x)<0,f(x)在(x1,x2)上是减函数;…综合以上可知:当a≤2时,f(x)的单调递增区间为(1,+∞),无单调减区间;当a>2时,f(x)的单调递增区间为,单调减区间为;…(6分)(Ⅱ)当x>2时,,…(7分)令h(x)=f(x)﹣a,由(Ⅰ)知:①当a≤2时,f(x)在(1,+∞)上是增函数,∴h(x)在(2,+∞)上增函数,∵当x>2时,h(x)>h(2)=0,上式成立;当a>2时,f(x)在(a﹣,a+)是减函数,∴h(x)在(2,a+)是减函数,x∈(2,a+)时,h(x)<h(2)=0,上式不成立,综上,a的取值范围是(﹣∞,2].…(12分)【点评】本题考查利用函数的导数求函数的单调性及恒成立问题综合应用,关键是通过分类讨论得到函数的单调区间及会转化利用已证的结论解决问题,属于难题.21.(12分)(2016秋•深圳校级月考)已知函数f(x)=5+lnx,g(x)=(k∈R).(I)若函数f(x)在点(1,f(1))处的切线与函数y=g(x)的图象相切,求k的值;(II)若k∈N*,且x∈(1,+∞)时,恒有f(x)>g(x),求k的最大值.(参考数据:ln5≈1.61,ln6≈1.7918,ln(+1)=0.8814)【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【专题】计算题;转化思想;综合法;导数的综合应用.【分析】(I)由f(1)=5,且,f′(1)=1,利用导数的几何意义得到函数f(x)在点(1,f(1))处的切线方程为y=x+4,设直线y=x+4与g(x)=,(k∈R)相切于点P(x0,y0),得g′(x0)=1,g(x0)+4,由此利用导当数性质能求出k的值.(II)当x∈(1,+∞)时,5+lnx>恒成立,等价于当x∈(1,+∞)时,k<恒成立,设h(x)=,(x>1),则,(x>1),记p(x)=x﹣4﹣lnx,(x>1),则p′(x)=,由此利用导数性质能求出k的最大值.【解答】解:(I)∵函数f(x)=5+lnx,∴f(1)=5,且,从而得到f′(1)=1.∴函数f(x)在点(1,f(1))处的切线方程为:y﹣5=x﹣1,即y=x+4.…(2分)设直线y=x+4与g(x)=,(k∈R)相切于点P(x0,y0),从而可得g′(x0)=1,g(x0)+4,又,∴,解得或.∴k的值为1或9.…(II)当x∈(1,+∞)时,5+lnx>恒成立,等价于当x∈(1,+∞)时,k<恒成立.…(6分)设h(x)=,(x>1),则,(x>1)记p(x)=x﹣4﹣lnx,(x>1),则p′(x)=1﹣=,∴p(x)在x∈(1,+∞)递增.又p(5)=1﹣ln5<0,p(6)=2﹣ln6>0,…(8分)∴p(x)在x∈(1,+∞)存在唯一的实数根m∈(5,6),使得p(m)=m﹣4﹣lnm=0,①∴当x∈(1,m)时,p(x)<0,即h′(x)<0,则h(x)在x∈(1,m)递减;当x∈(m,+∞)时,p(x)>0,即h′(x)>0,则h(x)在x∈(m,+∞)递增;所以x∈(1,+∞)时,h min=h(m)=,由①可得lnm=m﹣4,∴h(m)=,…(10分)而m∈(5,6),m+(),又h(3+2)=8,p(3+2)=2﹣1﹣ln(3+2)>0,∴m∈(5,3+2),∴h(m)∈(,8).又k∈N*,∴k的最大值是7.…(12分)【点评】本题考查实数值的求法,考查实数的最大值的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.[选修4-1:几何证明选讲]22.(10分)(2016•佛山二模)如图,点A,B,D,E在⊙O上,ED、AB的延长线交于点C,AD、BE交于点F,AE=EB=BC.(1)证明:=;(2)若DE=2,AD=4,求DF的长.【考点】与圆有关的比例线段.【专题】选作题;转化思想;综合法;推理和证明.【分析】(1)证明∠BAD=∠EAD,即可证明=;(2)证明△EAD∽△FED,可得.即可求DF的长.【解答】(1)证明:∵EB=BC,∴∠C=∠BEC.∵∠BED=∠BAD,∴∠C=∠BED=∠BAD.∵∠EBA=∠C+∠BEC=2∠C,AE=EB,∴∠EAB=∠EBA=2∠C又∠C=∠BAD,∴∠EAD=∠C,∴∠BAD=∠EAD.∴=;(2)解:由(1)知∠EAD=∠C=∠FED,∵∠EAD=∠FDE,∴△EAD∽△FED,∴.∵DE=2,AD=4,∴DF=1.【点评】本题考查两角相等的证明,考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.[选修4-4:坐标系与参数方程]23.(2015秋•石家庄校级期末)在极坐标系中,已知曲线C:ρ=sin(θ﹣),P为曲线C上的动点,定点Q(1,).(Ⅰ)将曲线C的方程化成直角坐标方程,并说明它是什么曲线;(Ⅱ)求P、Q两点的最短距离.【考点】简单曲线的极坐标方程.【专题】方程思想;分析法;直线与圆;坐标系和参数方程.【分析】(Ⅰ)运用两角差的正弦公式和极坐标与直角坐标的关系:x=ρcosθ,y=ρsinθ,x2+y2=ρ2,化简即可得到所求方程及轨迹;(Ⅱ)求得Q的直角坐标,以及Q到圆心的距离,由最小值d﹣r,即可得到所求值.【解答】解:(Ⅰ)曲线C:ρ=sin(θ﹣)=2(sinθ﹣cosθ)=2sinθ﹣2cosθ,即有ρ2=2ρsinθ﹣2ρcosθ,由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,可得曲线C:x2+y2+2x﹣2y=0,即为以(﹣1,1)为圆心,为半径的圆;(Ⅱ)Q(1,),即为Q(cos,sin),即Q(,),Q到圆心的距离为d==,即有PQ的最短距离为d﹣r=﹣.【点评】本题考查极坐标和直角坐标的互化,点与圆的位置关系,注意运用两点的距离公式,考查运算能力,属于基础题.[选修4-5:不等式选讲]24.(2014•赤峰模拟)设函数f(x)=|2x+1|﹣|x﹣2|.(1)求不等式f(x)>2的解集;(2)∀x∈R,使f(x)≥t2﹣t,求实数t的取值范围.【考点】一元二次不等式的应用;分段函数的解析式求法及其图象的作法;函数的最值及其几何意义.【专题】不等式.【分析】(1)根据绝对值的代数意义,去掉函数f(x)=|2x+1|﹣|x﹣2|中的绝对值符号,求解不等式f(x)>2,(2)由(1)得出函数f(x)的最小值,若∀x∈R,恒成立,只须即可,求出实数t的取值范围.【解答】解:(1)当,∴x<﹣5当,∴1<x<2当x≥2,x+3>2,x>﹣1,∴x≥2综上所述{x|x>1或x<﹣5}.(2)由(1)得,若∀x∈R,恒成立,则只需,综上所述.【点评】考查了绝对值的代数意义、一元二次不等式的应用、分段函数的解析式等基本,去绝对值体现了分类讨论的数学思想,属中档题.。

最新-广东省深圳高级中学2018学年高一上学期期中考试物理试题 精品

最新-广东省深圳高级中学2018学年高一上学期期中考试物理试题 精品

广东省深圳高级中学2018—2018学年第一学期期中测试高一物理本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷为1-10题,共50分,第II 卷为11-15题,共50分。

全卷共100分。

考试时间为90分钟。

注意事项:考生把答案写在答题卷上,考试结束监考人员只需收答题卷。

第I 卷(本卷共50分)一、单项选择题(本题共5小题,每小题4分,共20分。

在每小题的四个选项中,只有一个选项正确)1.下列叙述中,正确的是:A .研究物体运动时,参照物只能选择地面B .质点就是体积很小,质量很小的物体C .在直线运动中位移就是路程D .位移有方向,而路程无方向2.如图所示:物体沿两个半径为R 的圆弧由A 到C ,则它的位移和路程分别为:A .R 25π,A 指向C ;R 10 B .R 25π,A 指向C ;R 25π C .R 10, A 指向C ;R 25π D .R 10,C 指向A ;R 25π 3.有一个物体做加速度与速度方向一致的直线运动,下列说法中不可能的是:A .物体的某时刻的瞬时速度很大,但加速度却很小B .物体的某时刻加速度很大,但瞬时速度却很小C .物体的加速度在增大,但速度却在减小D .物体的速度不断增大,加速度保持不变4 从高为20米的屋檐下每隔0.2秒落下一个小水滴,把这些小水滴的运动都看成是自由落体运动,则当第一个水滴恰好落地时,第3滴和第4滴水之间相距为:(取g=10m/s 2)A .6米B .5米C .4米D .3米5 一质点沿直线ox 做加速运动,它离开O 点的距离随时间t 的变化关系为x =5+2t 3,其中x 的单位是m ,t 的单位是s ,它的速度v 随时间t 的变化关系是v =6t 2 ,其中t 的单位是s 。

设该质点在t =0到t =2s 间的平均速度为v 1,t =2s 到t =3s 间的平均速度为v 2,则:A .v 1=12m/s v 2=39m/sB .v 1=8m/s v 2=38m/sC .v 1=12m/s v 2=19.5m/sD .v 1=8m/s v 2=13m/s二、双项选择题(本题共5小题,每小题6分,共30分。

深圳市2017-2018学年高一数学上学期期中试题(实验班)

深圳市2017-2018学年高一数学上学期期中试题(实验班)

广东省深圳市2017-2018学年高一数学上学期期中试题(实验班)本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

2.选择题每小题选出答案后,请将答案填写在答题卷上对应的题目序号后,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

不按要求填涂的,答案无效。

3.非选择题必须用黑色字迹的签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。

4.考生必须保持答题卷的整洁,考试结束后,将答题卷交回.一、选择题:本大题共12小题,每小题5分,满分60分.1.设全集{}5,4,3,2,1=U ,{}5,3,1=A ,{}4,3,2=B ,则()U A B =A . {}2B .{}4C . {}4,2 D.∅2.函数()xx y --=21ln 的定义域为 A .()2,1- B .()2,1 C .()+∞,2 D .()2,∞- 3.化简)31()3)((656131212132b a b a b a ÷-的结果 A .a 6B .a -C .a 9-D .29a 4.已知偶函数()f x 在[)0+∞,上单调递减,则)4()2()1(f f f 、、-之间的大小关系为 A .)4()2()1(f f f >->B .)4()2()1(f f f <-<C .)2()1()4(->>f f fD .)4()1()2(f f f >>- 5.已知集合{}2log ,1A y y x x ==>,集合1(),12x B y y x ==<⎧⎫⎨⎬⎩⎭,则A B = A .12y y >⎧⎫⎨⎬⎩⎭ B .102y y <<⎧⎫⎨⎬⎩⎭ C .{}1y y > D .112y y <<⎧⎫⎨⎬⎩⎭6.若10,1<<>>a y x ,则下列各式中正确的是A . y x aa 11log log < B .y x a a > C .a a y x --> D. a a y x > 7.函数54)(2+-=mx xx f 在区间+∞-,2[)上是增函数,在区间]2,(--∞上是减函数,则)1(f 等于 A .-7B .1C .17D .25 8.下列四个图象中,是函数图象的是A .①B .①③④C .①②③D .③④9.设1()2x f x ⎛⎫= ⎪⎝⎭,x ∈R ,那么()f x 是A .奇函数且在(0,+∞)上是增函数B .偶函数且在(0,+∞)上是增函数x① ② ③ ④C .奇函数且在(0,+∞)上是减函数D .偶函数且在(0,+∞)上是减函数10.若lg 2a =,lg3b =,则4log18= A .23a b a + B .32a b a + C .22a b a + D .22a b a+ 11.某公司为激励创新,计划逐年加大研发奖金投入。

广东省深圳市高级中学2017_2018学年高一数学下学期期中试题理(含答案)

广东省深圳市高级中学2017_2018学年高一数学下学期期中试题理(含答案)

44 分; 106分1.112x x ⎧⎫≤≤⎨⎬⎩⎭2.3.若(1,3),(2,4),a b ==-则在方向上的投影是A. B. C.D.4. A5. 设A. C.6. 中,1AN NC=,上的一点,若2AP mAB AC=+,则实数m7.面积的最小值为A. C.8 D.28.若为第一象限角,且,则的值为9.A10.已知两个单位向量,a b的夹角为120a kb-的最小值为11.12.120,AB=2=,D是边上的一点,则DC BD⋅=__________AD BCf x在区间③()17.((2设两个向量a b 、,满足2a =,1b =. ()()21a b a b +⋅-=,求a b 、的夹角;)若a b 、夹角为607ta b +与a tb +的夹角为钝角,求实数t 的取值范围. 已知PA ⊥矩形ABCD 别为AB PC 、的中点,045,2,1A B A D ==. )ϕ(0A >,0ω>,ϕ)的部分图象如图所示. 的解析式; ()x 的图象向右平移π6个单位,再将所得图象的横坐标伸长到原来的2倍,纵坐标不变,得到()g x 的图象,求不等式()1g x ≥的解集.(本小题满分12分)上的最大值,并求出取得最大值时x 的值.22.a>。

为奇函数,且实数0(1)(2)的单调性,并写出证明过程;(3)恒成立,求实数m的取值范围.2017--2018学年第二学期期中考试高一数学(理科)命题人:彭仕主审题人:李媛雪第一部分:高一数学第一学期期末前的基础知识和能力考查,共44 分;第二部分:高一数学第一学期期末后的基础知识和能力考查,共 106分题,第10题.题,共20分题,共46分分.在每小题给出的四个选项中,只有一项1.D 2.A 3.C 4.C 5.A 6.B7.B8.B 9.B 10.B 11.D 12.D三.解答题:解答应写出文字说明,证明过程或演算步骤.sin αα=-()()21a b a b +⋅-=得,2221a a b b +⋅-=, 又24a =,21b =, 1a b ⋅=-∴1cos ,2a b a b a b⋅==-⋅,,180a b ≤︒,∴a b 、的夹角为120°)由已知得21cos601a b ⋅=⨯⨯︒=.)()()227227ta b a tb ta t a b +⋅+=++⋅227215tb t t +=+7ta b +与a tb +的夹角为钝角∴()()7,0ta b a tb λλ+=+<. 14=-. 142t =-时,向量7ta b +与a tb +的夹角为∴向量27ta b +与a tb +的夹角为钝角时,中点为E ,易得EN )证明:如图,取PD 2EN CD =, 是平行四边形.,MN ⊄平面PAD ,PAD ;所以,PC与面PAD减区间为。

广东省深圳市高级中学2017-2018学年高一下学期期中考试数学(文)试题(有答案)

广东省深圳市高级中学2017-2018学年高一下学期期中考试数学(文)试题(有答案)

深圳高级中学(集团)2017-2018学年第二学期期中考试高一文科数学命题人: 吕梦婷 审题人: 郑方兴一、单选题: 本题共12小题, 每小题5分, 共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的一项。

1.设集合 , , 则 ( )A. B. C. D.2.若 , 则 的值为( )A. B. C. D.3. 已知向量 , , 则 ( )A........B........C......D.4. 函数 的定义域是( )A. B. C. D.5.函数()142sin 42cos 22-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=ππx x x f 是 ( ) A.周期为 的奇函..........B.周期为 的偶函.C.周期为 的奇函.........D.周期为 的偶函数6.已知 、 为单位向量, 其夹角为 , 则 与 的关系( )A. 相等B. 垂直C. 平行D. 共线7. 点 为圆 的弦的中点, 则该弦所在直线的方程是 ( )A. ..B. ...C.....D.8.函数 的图象如图所示, 则 的表达式是( )A. B.C. D.9. 已知一棱锥的三 视图如图所示, 其中侧视图和俯视图都是等腰直角三角形, 正视图为直角梯形, 正视图为直角梯形, 则该棱锥的 体积为( )A.8B.16C.32D.4810. 在 中, 是 的中点, ,点 在 上且满足学 ,则 等于 ( )A......B........C.......D.11.设函数 , 若 的取值范围是( )A. B.C. D.12. 已知函数 的图象关于直线 对称, 将 的图象向右平移 个单位, 再向上平移1个单 位可以得到函数 的图象, 则 在区间 上的值域是( )A.....B.....C.....D.二、填空题: 本题共4小题, 每小题5分, 共20分。

13. 已知 = , 那么 =________.14.已知 为第二象限角, ,则 =_____________.15.已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c 则的最大值是--=________.16. 方程 有解, 则 的取值范围是__________.三、解答题: 共70分, 应写出文字说明, 证明过程或演算 步骤。

广东省深圳市高级中学2017-2018学年高一上学期期中考试英语

广东省深圳市高级中学2017-2018学年高一上学期期中考试英语

深圳市高级中学2017-2018学年第一学期期中测试高一英语命题人:高二英语科组审题人: 侯婷婷姜慧明周杨本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第7页,第Ⅱ卷第7至第10页。

全卷满分150分:第Ⅰ卷70分;第Ⅱ卷80分。

考试时间120分钟。

注意事项:1、答题前,考生将自己的姓名、准考证号、考试科目涂写在答题卡上。

2、答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上。

3、答第Ⅱ卷时,使用黑色墨水签字笔在答题卡指定区域书写,要求字体工整,笔迹清晰。

4、考试结束,监考人员将答题卡按座位号、页码顺序收回。

第I卷(共70分)第一部分阅读理解 (共20小题;每小题2分,满分40分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。

A1. What is going to take place on 2 February, 2013?A. A big event to welcome a Chinese new year.B. A social gathering to raise money for wildlife.C. A party for close friends to meet and have fun.D. A meeting of Kwun Tong High School students.2. How much do you have to pay in total if four of you go together?A. $20.B. $40.C. $60.D. $80.3. Which of the following statements is TRUE?A. Tickets are sold in Kwun Tong High School.B. It is unnecessary to take soft drinks with you.C. Free digital cameras are provided for everybody.D. Festival food will be served without paying extra money.BLisa loved to read! Every time her mom took her to the bookstore, she would buy two books. By the time she went to bed, Lisa had already read one of them.Mom said to Lisa the next day, “I think we need to get you your own library card.” “Wow!” cried Lisa. “I’ve always wanted a library card.”The next day after school, Mom took Lisa to the library to get her a card. The lady at the desk asked Mom to fill out a paper and then asked Lisa to print her name. She then told Lisa how many books she could borrow on her card. Lisa could hardly wait to search the many shelves of books. Lisa loved some books about mysteries best of all. She liked to solve the mystery in her head and see if she was right when she got to the end of the story. Her other favorite books were ones that took her to faraway places.Lisa had three books to return the next day and was excited to take out three more. However, when Lisa got to the library, she didn’t have her card. “Oh no!” Lisa said to the lady at the desk. “I can’t find my library card!” “I’m sorry,” said the lady. “I can’t let you take any books without your card.” Lisa left the library, kind of worried.When Lisa got home, Mom told Lisa that a boy came to the house with her library card. “You were lucky that the boy found your card,”said Mom. “You need to be very careful.” “Having a library card is a big responsibility.” Lisa said, “I think I will keep it in my wallet.” Mom said, “Let’s go back to the library and get those books you wanted.” “Sounds great,” said Lisa.When they got to the library, Mom decided to get some books too. While they were in the library, Mom told Lisa the boy that found her card was sitting at the round table. Lisa went over to him and said, “Thank you for finding my card.” He told Lisa he was glad to help, and they both looked for some mystery books together. Lisa had her books, her card, and a new friend too!4. What did Lisa do after Mom filled out the paper?A. Check out books.B. Use the computer.C. Print her name.D. Watch a movie.5. What are Lisa’s favorite types of books to read?A. Adventures.B. Mysteries.C. True Stories.D. Tall Tales.6. What can we conclude from the passage?A. Lisa felt sad when she lost her card.B. Mom bought Lisa two kinds of book.C. There is a private library in Lisa’s house.D. One of Lisa’s friends found her card.7. What is the best title for the text?A. Lisa and Her MomB. The Lost Library CardC. Lisa’s R eading HobbyD. Making a New FriendCIt feels like every time my mother and I start to have a conversation, it turns into an argument. We talk about something as simple as dinner plans and suddenly, my mother will push the conversation into World War 3. She’ll talk about my lack(缺少) of bright future because I don’t plan to be a doctor. And much to her disappointment, I don’t want to do any job related to(和……相关) science, either. In fact, when I was pushed to say that I planned to major(主修) in English and communications, she nearly had a heart attack.“Why can’t you be like my co-worker’s son?” she bemoans all the time. Her coworker’s son received a four-year scholarship and is now earning 70,000 dollars a year as an engineer. I don’t know what to answer. I simply can’t be like Mr.Perfect as I’ve called the unnamed co-worker’s son.I can’t be like him. I am the type of the person who loved to help out in the community, write until the sun goes down, and most of all, wants to achieve a career because I love it, not because of a fame or salary.I understand why my mother is worried about my future major. I’ve seen my mother struggle to raise me on her small salary and work long hours. She leaves the house around 6:30 am and usually comes home around 5:00 p.m. or even 6:00 p.m.. However, I want her to know that by becoming a doctor, it doesn’t mean I’ll be successful. I’d rather follow my dreams and create my own future.8. Which of the following topics do the writer and his mother often talk about?A. T he writer’s dreams.B. T he writer’s future job.C. Dinner plans.D. Wars around the world.9. What can we infer from Paragraph 1 about the writer’s mother?A. T he writer’s mother doesn’t want the writer to major in English.B. T he writer’s mother doesn’t think the writer should be a doctor.C. T he writer’s mother gets along very well with the writer.D. T he writer’s mother doesn’t think working in the scientific field is a good idea.10. What does t he underlined word “bemoans” in Paragr aph 2 most probably mean?A. Agrees.B. Shouts.C. Complains.D. Smiles.11. Which of the following statements is probably TRUE about the writer?A. He wants to be like his mother’s co-worker’s son.B. He wants to find a job in his community in the future.C. He doesn’t think his mother’s co-worker’s son is perfect.D. He wants to do something he really likes in the future.DTim Richter and his wife, Linda, had taught for over 30 years near Buffalo, New York---he in computer s, she in special education. “Teaching means everything to us,” Tim would say. In April 1998, he learned he would need a heart operation. It was the kind of news that leads to some serious thinking about life’s purpose.Not long after the surgery, Tim saw a brochure describing Imagination Library, a program started by Dolly Parton’s found ation(基金会) that mailed a book every month to children from birth t o age five in the singer’s home town of Sevier, Tennessee. “I thought, maybe Linda and I could do somethi ng like this when we retire,”Tim recalls. He placed the brochure on his desk, “as a reminder”.Five years later, now retired and with that brochure(小册子) still on the desk, Tim clicked on . The program had been opened up to partners who could take advantage of book and postage discounts(折扣).The quality of the books was of great concern to the Richters. Rather than sign up online, they went to Dollywood for a look-see. “We didn’t want to give the children rubbish,” says Linda. The books---reviewed each year by teachers, literacy specialists and Dollywood board members (董事)---included classics such as Ezra Jack Keats’s The Snowy Day and newer books like Anna Dewdney’s Llama Llama series.Satisfied, the couple set up the Richter Family Foundation and got to work. Since 2004, they have shipped more than 12,200 books to preschoolers in their area. Megan Williams, a mother of four, is more than appreciative: “This program introduces us to books I’ve never heard of.”The Richters spend about $400 a month sending books to 200 children. “Some people sit there and wait to die,” says Tim. “Others get as busy as they can in the time they have left.”12. What led Tim to think seriously about the meaning of life?A. His health problem.B. His love for teaching.C. The influence of his wife.D. The news from the Web.13. What did Tim want to do after learning about Imagination Library?A. Give out brochures.B. Do something similar.C. Write books for childrenD. Retire from being a teacher.14. Why did the Richters go to Dollywood?A. To avoid signing up online.B. To meet Dollywood board members.C. To make sure the books were the newest.D. To see if the books were of good quality.15. What can we learn from Tim’s words in the last paragraph?A. He needs more money to help the children.B. He wonders why some people are so busy.C. He tries to save those waiting to die.D. He considers his efforts worthwhile.EWhether in the home or the workplace, social robots are going to become a lot more common in the next few years. Social robots are about to bring technology to the everyday world in a more humanized way, said Cynthia Breazeal, chief scientist at the robot company Jibo.While household robots today do the normal housework, social robots will be much more like companions than mere tools. For example, these robots will be able to distinguish(区分) when someone is happy or sad. This allows them to respond(回应) more appropriately(合适地) to the user.The Jibo robot, which was planned to ship later this year, is designed to be a personalized assistant. You can talk to the robot, ask it questions and make requests for it to perform different tasks. The robot doesn’t just deliver(给出) general answers to questions; it responds based on what it learns about each individual in the household. It can do things such as reminding(提醒) an elderly family member to take medicine or taking family photos.Social robots are not just finding their way into the home. They have potential(潜在的) applications in everything from education to health care and are already finding their way into some of these spaces.Fellow Robots is one company bringing social robots to the market. The company’s “Oshbot” robot is built to help customers in a store, which can help the customers find items and help guide them to the product’s location in the store. It can also speak different languages and make recommendations(推荐) for different items based on what the customer is shopping for.The more interaction(互动) the robot has with humans, the more it learns. But Oshbot, like other social robots, is not plann ed to replace workers, but to work alongside other employees. “We have technologies to train social robots to do things not for us, but with us,” said Breazeal.16. How are social robots different from household robots?A. They can control their emotions.B. They are more like humans.C. They do the normal housework.D. They respond to users more slowly.17. What can a Jibo robot do according to Paragraph 3?A. Communicate with you and perform operations.B. Answer your questions and make requests.C. Take your family pictures and deliver milk.D. Obey your orders and remind you to take pills.18. What can Oshbot work as?A. A language teacher.B. A tour guide.C. A shop assistant.D. A private nurse.19. What will social robots do according to the last paragraph?A. They will train employees.B. They will be our workmates.C. They will improve technologies.D. They will take the place of workers.20. What does the passage mainly present?A. A new design idea of household robots.B. Marketing methods for social robots.C. Information on household robots.D. An introduction to social robots.第二部分英语知识应用第一节完形填空(共20小题;每小题1.5分,满分30分)阅读下面短文,从短文后各题所给的A、B、C、D四个选项中,选出可以填入空白处的最佳选项。

2017-2018学年广东省深圳高级中学高一(上)期中数学试卷

2017-2018学年广东省深圳高级中学高一(上)期中数学试卷

2017-2018学年广东省深圳咼级中学咼一(上)期中数学试卷一 .选择题:本大题共 12小题,每小题 5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的A .定义域是[-2 , 2]B .定义域是[0 , 2]C .定义域是[-2 , 0]D .以上都有可能 5. ( 5分)下列四个函数:② y =3x ③ y =log ! x2+ x (x, 0)④ y = 1— (x 〉0) x 其中值域为R 的函数有()A . 1个B . 2个C . 3个6. ( 5分)下列函数在[0, •::)上单调递增的是()1A . y =| x ■ 1|B . y =log 2(x-1)C . y =1 -x 37. ( 5分)下列函数 ① y =log 2 x ② y =lg 戶1十X2. (5分) 已知集合A ={x|1 :::x :::2} ,B ={x|x :::log23},则 =A . {x|1 ::: x :: e}B . {x |^:: x ::: log2 3}C . {x | x ::: log2 3}D .3.(5分)已知函数2x—4,x …2 f (x )二 1PX :2 B .兰 6f (a )二6,则a 的值为(4. (5分)已知函数y = x 2的值域是[0 , 4],则关于函数定义域的判断正确的是()/_k -D . y③y =lg ( x2 1 x)④h 汹有理数 1,x 为无理数 为奇函数的有( C . 3个& ( 5分)已知函数 f (x )的定义域为[3 ,1;),则函数f (1)的定义域为( )x1C . (0,— ]21([]9. ( 5分)下列三个数 a =log a 6, ^log 510, c=log 7l4的大小顺序是( B . a ::: c :. b C . c ::: a :::b b ■a :: cA . c ::: b ::: a x-X的图象大致为()是指汽车每消耗( )乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是 燃油效率(心江) 15 - 10 ■甲车 “乙车 丙车 40 80速度伽②A •消耗1升汽油,乙车最多可行驶5千米B •以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C •某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油D .甲车以80千米/小时的速度行驶1小时,消耗10升汽油12. (5分)已知函数f(x) =a -1 log a x(a .0,a=1),则函数的零点个数为()A . 0个B . 1个C. 2个D. 3个二. 填空题(本大题共4小题,每小题5分,共20分•请把正确答案填在答题卡中横线上)13. ______________________________________________________________ ( 5分)已知幕函数f(x)过点(4,2),则函数的单调递增区间为__________________________________ .14 . (5分)已知y =f(x)是定义在(-::,0) -(0, •::)上的偶函数,当x 0时f (x^ x 1 , 则x ::: 0 时f (x)土___________________ .215.( 5分)若关于x的不等式8-4x-3a 0在[-2 , -1]上有解.则实数a的取值范围是_____________16 . (5 分)已知f (x) x 2x(x 0),关于x 的不等式[f (x)]2• af (x) —b2 ::: 0 有且只有一Q x—1| —1(x v0)个整数解,则实数a的最大值是_______ .三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17 . ( 10 分)已知三个集合:A={x R|log2(x2-5x 8)=1} , B={x R| 2“2心=1},2 2C ={ x 二R | x —ax a 一19 二0}.(I)求创B ;(n)已知A A C , B「|C=._ ,求实数a的取值范围.18. (12 分)已知函数f(x)=x|x-4|(1)在坐标系内画出函数f(x)大致图象;(2)指出函数f(x)的单调递减区间.Vi431Illi 1 1L 1-2迪-1 2 3 4 5 6*219. (12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a,通过x块玻璃后强度为y .(1)写出y关于x的函数关系式;1(2)通过多少块玻璃后,光线强度减弱到原来的—以下?( lg3 :■ 0.4771)3a20. (12分)已知函数f x 2a x -a_ (其中a . 0且a =1) •a —1(1 )判断函数y = f (x)的单调性和奇偶性;(2)当(-1,1)时,有f (1—m) • f (1 _m2) :::0 .求实数m的取值范围.21 . (12分)有一种比较复杂的函数y = f[g(x)],我们定义其为复合函数.比如函数y =lg(x 1),可以令g(x) =x 1 , y =lg[g(x)].关于其值域,可以先求出g(x)・[1,•::),则y =ig[g(x)] • [0 , :);关于其单调性,很显然,在其定义域内,若f(x)和g(x)的单调性的方向相同,则y=f[g(x)]单调增,若方向相反,则y = f[g(x)]单调减,可知该函数在(-二,0]上单调减,在[0 , ■::)上单调增.依据以上方法解决下列问题:设函数f(x)=lg(x2 ax-a-1).(1 )求函数的值域;(2)若f(x)在区间[2 , ■::)上单调递增,求实数a的取值范围.222. (12分)设二次函数f(x)=ax bx c满足下列条件:当R时,f(x)的最小值为0,且f(X 一1) =f (_x-1)成立;当X.二(0,5)时,x剟f(x) 2|x_1| ・1 恒成立.(1)求 f (x)的解析式;(2)若对(2,;),不等式4f(x)・・・(n • 2)x -n -15恒成立,求实数n的取值范围.(3)求最大的实数m(m 1),使得存在实数t ,只要当[1 , m]时,就有f (x • t), x成立.20仃-2018学年广东省深圳高级中学高一(上)期中数学试卷参考答案与试题解析一.选择题:本大题共 12小题,每小题 5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的2.( 5 分)已知集合 A 二{x|1 :::x :::2} , B 二{x|x :::log23},则)A . {x |1 ::: x ::: e}B . {x |^:: x ::: log2 3}C. {x | x ::: log2 3}D.:';'【解答】解:集合 A ={x|1 :::x :::2} , B ={x|x :::log 2 3}, 由 1 ::: log 2 3 :: 2 , 可得则 A 「|B 二{x|1 ::x ::log2 3}, 故选:B .综上,a 的值为5. 故选:A .24. ( 5分)已知函数y=x 的值域是[0 , 4],则关于函数定义域的判断正确的是( )2 - 33 - 2-32x -4,x (2)3. ( 5分)已知函数 f(x)二 1[n ,x <2B .空f (a ) = 6,则a 的值为(6 2x 「4,x (2)【解答】解:T 函数f (X )=13 C . 5 或6f ( a ) = 6 ,x -2.当 a 0 时,f (a ) = 2a -4=6,解得a =5 ; 当 a ::: 2 时,f 1——=6,解得 a —2a 二空,不成立.a故选:B .\17 3 - 2 /_k - --3A .定义域是[-2 , 2]B .定义域是[0 , 2] C.定义域是[-2 , 0] D.以上都有可能【解答】解:函数y =x2的值域是[0 , 4],由x2, 4,解得:2剟X 2 ,故A , B , C都有可能,故选:D .5. (5分)下列四个函数:i①y M②y =3X③y =log! x2-X (x, 0)④y二1(X 0) X其中值域为R的函数有()A . 1个B . 2个C. 3个1【解答】解:①y , y =o ,②y =3X, y (0,::),③y =叫x , y R ,2-X (x, 0)④y 二1, y R(X 0).x其中值域为R的函数有③④,故选:B .6. (5分)下列函数在[0, •::)上单调递增的是()_1A . y =| x ■ 1|B . y=log2(x-1)C. y =1-x3【解答】解:对于A,函数在[0 ,::)上单调递增,符合题意; 对于B,函数在[0 , 1)无意义,不合题意;对于C ,函数在[0 , •::)上单调递减,不合题意;对于D,函数在[0 , •::)上单调递减,不合题意;故选:A.7. (5分)下列函数第7页(共16页)① y =iog 2 x ② y =lg 上1 +x③ y =lg( X 21 x)J l,x 为有理数④ y = ■:厂1,x 为无理数为奇函数的有()A . 1个B . 2个C . 3个D . 4个【解答】 解:根据题意,依次分析 4个函数:对于①,y=log 2X ,其定义域为(0,;),不关于原点对称,不是奇函数;对于②,y =lg —,有匚X .0,解可得- 1:::x :::1,即函数的定义域为(一 1,1),1+x 1+x 则 f(_x) =lgd =lgd x )」=_|gU = _f(x),1 -x 1 +x 1 +x 即函数y =lg 匕为奇函数, 1 +x对于③,y =lg (• x 2 • 1 • x),其定义域为R , f (「x) =lg ( x 2 1 —x),有 f (x) f (-x) =lg (. x 21 —x) lg (. x 21 x) =lg1 = 0 , 即f(_x) - -f(x),即函数为奇函数;对于④,若x 为无理数,则-X 也为无理数,则f(_x) = f(x)=:「1, 同理当x 为有理数时,也有 f(-x) =f(x) =0, 即函数f (x)为偶函数;则②③为奇函数;1 1 1 由 1…3,得 --- 2,则0 ::: x, x x 211 ■函数f (-1)的定义域为(0 ,-].x2& ( 5分)已知函数 f(x)的定义域为[3 ,44A . (-::,#3B. (1,3]— 1;),则函数fG 1)的定义域为()x11C . (0,;]D .(」:,]22故选:B .【解答】 解:T 函数f (x)的定义域为[3 ,第10页(共16页)故选:C .9. (5分)下列三个数^log 3 6 , b=log5l0, c=log7l4的大小顺序是()A . c ::: b ::: aB . a ::: c b C. c ::: a ::: b D. b :. a ■■ c 【解答】解:a = log 36 =1 Tog 3 2 , b =log510 =1 Tog5 2 , c = log714 = 1 Tog7 2 .:log3 2 . log5 2 . log7 2 ..c ::: b ::: a . = -f(x),所以函数为奇函数,图象关于原点故选:A.对称,所以排除A .)第7页(共16页)第12页(共16页)丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是 ( )当x =1时,y .0 ,所以排除C .x -x x -x x e -e e e —2e 因为y x xe +e -x x e e字匚/ -二壬,所以当排除D .故选:B . 11. ( 5分)汽车的 “燃油效是指汽车每消耗1升汽油行驶的里程, 如图描述了甲、 乙。

广东省深圳市高级中学2017-2018学年高一下学期期中考试数学(文)试题(精编含解析)

广东省深圳市高级中学2017-2018学年高一下学期期中考试数学(文)试题(精编含解析)

深圳高级中学(集团)2017-2018学年第二学期期中考试高一文科数学一、单选题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1. 设集合,,则()A. B. C. D.【答案】D【解析】试题分析:由题意可知集合A表示的三个实数-1,0,1,而集合B表示的是大于0的所有实数,所以两个集合的交集为只含一个元素的集合即。

考点:集合的运算2. 若,则的值为()A. B. C. D.【答案】A【解析】试题分析:由,所以,故选A.考点:诱导公式.3. 已知向量,,则()A. B. C. D.【答案】B【解析】试题分析:,,∴(3-1,1-2)=(2,-1),故选B.考点:考查了向量的减法.点评:解本题的关键是掌握向量减法的坐标表示,代入向量的坐标进行计算即可.4. 函数的定义域是()A. B. C. D.【答案】C【解析】试题分析:由题可知且,可得.考点:函数的定义域.5. 函数是( )A. 周期为的奇函数B. 周期为的偶函数C. 周期为的奇函数D. 周期为的偶函数【答案】C【解析】分析:把解析式化为的形式后再进行判断可得结论.详解:由题意得.∴函数周期为的奇函数.故选C.点睛:研究三角函数的性质时,先根据三角变换公式把所给的函数化成或的形式,然后把作为一个整体,并结合正弦或余弦函数的性质进行求解.6. 已知、为单位向量,其夹角为,则向量与向量的关系是( )A. 相等B. 垂直C. 平行D. 共线【答案】B【解析】分析:先求出向量与的数量积,然后结合选项可得到结论.详解:由题意得,∴.故选B.点睛:本题考查向量的数量积运算和向量位置关系的判断,其中向量的运算是解题的基础,主要考查学生向量的运算能力.7. 点为圆的弦的中点,则该弦所在直线的方程是( )A. B. C. D.【答案】B【解析】分析:根据弦的中点与圆心的连线与该弦垂直可得弦所在直线的斜率,然后再根据点斜式方程可得所求.详解:由题意得圆心坐标为,∵点为圆的弦的中点,∴该弦所在直线与垂直,∴弦所在直线的斜率为,∴弦所在直线的方程为,即.故选B.点睛:在解决与圆有关的问题时要注意平面几何知识的运用,如垂径定理、圆心在弦的垂直平分线上、圆心在过切点和切线垂直的直线上等,解题时不要单纯依靠代数计算,这样既简单又不容易出错.8. 函数的图象如图所示,则的表达式是()A. B.C. D.【答案】A【解析】分析:由图象可得和周期,进而可得,然后通过代入最高点的坐标可得,从而可得表达式.详解:由图象可得,解得.又周期,所以.∴.∵点在函数的图象上,∴,∴,又,∴.∴.故选A.点睛:根据的图像求其解析式的问题,主要从以下三个方面来考虑:①的确定:根据图像的最高点和最低点,即等于最高点的纵坐标,等于最低点的纵坐标;②的确定:结合图像,先求出周期,然后由来确定;③的确定:由函数最开始与x轴的交点(最靠近原点)的横坐标为 (即令)确定.9. 已知一棱锥的三视图如图所示,其中侧视图和俯视图都是等腰直角三角形,正视图为直角梯形,正视图为直角梯形,则该棱锥的体积为()A. B. C. D.【答案】B【解析】试题分析:由三视图可得,该几何体是以底面为直角梯形的四棱锥,其底面积为,高故体积为故选B.考点:由三视图求体积.10. 在中, 是的中点,,点在上且满足学,则等于( )A. B. C. D.【答案】A=·(+++)=·(2+2)=22+2·=2×+2×cos180°=-,故选A.视频11. 设函数,若的取值范围是()A. B.C. D.【答案】D【解析】试题分析:或解得或,故选。

广东省深圳市高级中学2018-2019学年高一上学期期中考试 数学 Word版含答案

广东省深圳市高级中学2018-2019学年高一上学期期中考试 数学 Word版含答案

深圳市高级中学2018-2109学年第一学期期中考试高一数学命题人:李浩宾 审题人:余小玲一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的. 1.已知函数()f x 的定义域为M ,()ln(1)g x x =+的定义域为N ,则M N =( )A .{}1x x >B .{}1x x <C .{}11x x -<<D .φ2.函数2-=x y 在区间1[,2]2上的最大值是 ( )A .41B .1-C .4D .4- 3.下列函数中,既是奇函数,在定义域内又为增函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .1y x =C .2y x =D .)1(log 22x x y ++=4.已知2()22xf x x =-,则在下列区间中,()f x 有零点的是( )A .(3,2)-- B .(1,0)- C .(2,3) D .(4,5)5.设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( )A .a b c << B.c b a << C .c a b <<D.b a c <<6.函数)1,0(log ≠>=a a x y a 的反函数的图象过)22,21(点,则a 的值为( )A.2B.21 C.2或21D.3 7.已知y =f (x )是定义在R 上的奇函数,当0x >时,()2f x x =-,那么不等式1()2f x <的解集是( ) A .502xx ⎧⎫<<⎨⎬⎭⎩ B .302x x ⎧⎫-<≤⎨⎬⎭⎩C .350,022xx x ⎧⎫-<<≤<⎨⎬⎭⎩或 D .35,022x x x ⎧⎫<-≤<⎨⎬⎭⎩或 8.函数lg(1)y x =+的大致图像是 ( )9.已知函数()35bf x ax x=++,且()79f =,则()7f -= ( ) A .12 B .9 C .1 D .1-10.已知函数|21|,2()3,21x x f x x x ⎧-<⎪=⎨≥⎪-⎩,若方程()0f x a -=有三个不同的实数根,则实数a 的取值范围是( ) A .()1,3 B .()0,3 C .()0,2 D .()0,111.已知函数()f x 是R 上的偶函数,它在[0,)+∞上是减函数,若(ln )(1),f x f >则x 的取值范围是( ) A .1(,1)e- B .1(,)e e - C .1(0,)(1,)e -+∞ D .(0,1)(,)e +∞12.已知函数()()210f x ax x a =-+≠,若任意[)12,1,x x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,则实数a 的取值范围( )A .[)1,+∞ B .(]0,1 C .[)2,+∞ D .()0,+∞二、填空题:本大题共4小题,每小题5分,满分20分. 13.已知幂函数()y f x =的图象过点12⎛ ⎝⎭,则()2log 8f =__________.14.函数2()23f x x x =--的单调增区间是 .15.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,若()3f x =,则x = .16.若()f n 为()2*1n n N +∈的各位数字之和,如2141197,19717+=++=,则(14)17f =;记1()()f n f n =,21()(())f n f f n =,…,1()(())k k f n f f n +=,*k N ∈,则2018(8)f = .三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分10分)(10.539log 9()4--+(2)已知25100ab ==,求11a b+的值.18.(本小题满分12分) 设()f x 是定义在R 上的函数,且对任意实数x ,有2(1)33f x x x -=-+.(1)求函数()f x 的解析式;(2)若()()(12)1()g x f x m x m R =-++∈在3[,)2+∞上的最小值为2-,求m 的值.19.(本小题满分12分) 已知函数()f x 是定义域为R 上的奇函数,当0x ≥时,()()f x x x m =-且()20f =.(1)求函数()f x 在R 上的解析式;(2)作出函数()f x 的图象并写出函数()f x 的单调区间.20.(本小题满分12分)(1)判断函数)(x f 的奇偶性,并说明理由;(2)判断函数)(x f 在()1,1-上的单调性,并说明理由.21.(本小题满分12分)某创业团队拟生产两种产品,根据市场预测,产品的利润与投资额成正比(如图1),产品的利润与投资额的算术平方根成正比(如图2).(注: 利润与投资额的单位均为万元)图1图2(注:利润与投资额的单位均为万元)(1)分別将两种产品的利润、表示为投资额的函数;(2)该团队已筹集到10 万元资金,并打算全部投入两种产品的生产,问:当产品的投资额为多少万元时,生产两种产品能获得最大利润,最大利润为多少?22.(本小题满分12分) 已知函数2()21(0)g x mxmx n n =-++≥在[]1,2上有最大值1和最小值0.(1)求m n 、的值; (2)设()()g x f x x=,若不等式22(log )2log 0f x k x -≥在[]2,4x ∈上有解,求实数k 的取值范围.深圳市高级中学2018-2109学年第一学期期中考试高一数学参考答案命题人:李浩宾 审题人:余小玲一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的. 1.已知函数()f x 的定义域为M ,()ln(1)g x x =+的定义域为N ,则M N =( C )A .{}1x x >B .{}1x x <C .{}11x x -<<D .φ2.函数2-=x y 在区间1[,2]2上的最大值是 ( C )A .41B .1-C .4D .4- 3.下列函数中,既是奇函数,在定义域内又为增函数的是( D )A .12xy ⎛⎫= ⎪⎝⎭B .1y x =C .2y x =D .)1(log 22x x y ++=4.已知2()22xf x x =-,则在下列区间中,()f x 有零点的是( B )A .(3,2)--B .(1,0)-C .(2,3)D .(4,5)5.设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( A )A .a b c << B.c b a << C .c a b <<D.b a c <<6.函数)1,0(log ≠>=a a x y a 的反函数的图象过)22,21(点,则a 的值为(B )A.2B.21 C.2或21D.3 7.已知y =f (x )是定义在R 上的奇函数,当0x >时,()2f x x =-,那么不等式1()2f x <的解集是( D ) A .502xx ⎧⎫<<⎨⎬⎭⎩ B .302x x ⎧⎫-<≤⎨⎬⎭⎩C .350,022xx x ⎧⎫-<<≤<⎨⎬⎭⎩或 D .35,022x x x ⎧⎫<-≤<⎨⎬⎭⎩或 8.函数lg(1)y x =+的大致图像是 ( C )9.已知函数()35bf x ax x=++,且()79f =,则()7f -= ( C ) A .12 B .9 C .1 D .1-10.已知函数|21|,2()3,21x x f x x x ⎧-<⎪=⎨≥⎪-⎩,若方程()0f x a -=有三个不同的实数根,则实数a 的取值范围是( D ) A .()1,3 B .()0,3 C .()0,2 D .()0,111.已知函数()f x 是R 上的偶函数,它在[0,)+∞上是减函数,若(ln )(1),f x f >则x 的取值范围是( B ) A .1(,1)e- B .1(,)e e - C .1(0,)(1,)e -+∞ D .(0,1)(,)e +∞12.已知函数()()210f x ax x a =-+≠,若任意[)12,1,x x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,则实数a 的取值范围( A )A .[)1,+∞ B .(]0,1 C .[)2,+∞ D .()0,+∞二、填空题:本大题共4小题,每小题5分,满分20分.13.已知幂函数()y f x =的图象过点12⎛ ⎝,则()2log 8f =__________.32【解析】设()()f x x R αα=∈,因为点12⎛ ⎝ 在函数()y f x =的图象上,所以12α⎛⎫= ⎪⎝⎭,解得12α=,故()()113222,882f x x f ===,∴()32223log 8log 22f ==.14.函数2()23f x x x =--的单调增区间是 ()()1,1,3,-+∞ .15.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,若()3f x =,则2,x =或16.若()f n 为()2*1n n N +∈的各位数字之和,如2141197,19717+=++=,则(14)17f =;记1()()f n f n =,21()(())f n f f n =,…,1()(())k k f n f f n +=,*k N ∈,则2018(8)f =5 .三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分10分)(10.539log 9()4--+(2)已知25100ab ==,求11a b+的值.解:(1) 原式= +1-2+32+e-=13e -; -----------5分(2) 由已知,a =2lg 2, b =5lg 2,∴ + =21(lg2 + lg5) =21-------10分 18. (本小题满分12分) 设()f x 是定义在R 上的函数,对任意实数x ,有2(1)33f x x x -=-+(1)求函数()f x 的解析式;(2)若()()(12)1()g x f x m x m R =-++∈在3[,)2+∞上的最小值为2-,求m 的值.解:令1x t -=得2()(1)3(1)3f t t t =---+即2()1f t t t =++即2()1,f x x x x R =++∈,------------------------------------4(2)令222()22()2g x x mx x m m =-+=-+- (32x ≥) 若32m ≥,当x m =时,2min ()222g x m m =-=-∴= --------------------8 若32m <,当32x =时,min 17253()324122g x m m =-=-∴=>舍去 综上可知2m = --------------------------------------------------------12 19.(本小题满分12分) 已知函数()f x 是定义域为R 上的奇函数,当0x ≥时,()()f x x x m =-且()20f =.(1)求函数()f x 在R 上的解析式;(2)作出函数()f x 的图象并写出函数()f x 的单调区间.解:(1)由()20f =得,2m =, ------------1分若0x <,则0x ->, 所以()()()()22f x f x x x x x -=-=---=+()()2,0f x x x x =-+<故,()()2,0()2,0x x x f x x x x -≥⎧⎪=⎨-+<⎪⎩ ------------5 (2)函数()f x 的图象如图所示-----------9单调增区间:()(),1,1,-∞-+∞单调减区间:()1,1- ------------12分 20.(本小题满分12分)(1)判断函数)(x f 的奇偶性,并说明理由;(2)判断函数)(x f 在()1,1-上的单调性,并说明理由.解:(1)因为)(x f 的定义域为R ........ ...............................................1分............................................4分 (2)由(1任取12,(1,1)x x ∈- ,设12x x < ,则()()122110x x x x --<........5分因为()()()()12211212222212121()()01111x x x x x x f x f x x x x x ---=-=<++++.......10分12()()f x f x ∴<()f x ∴ 在()1,1- 上是增函数. ................................. . (12)分21.(1),;(2)6.25, 4.0625.【解析】试题分析:(1)由产品的利润与投资额成正比,产品的利润与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;(2)由(1)的结论,我们设产品的投资额为万元,则产品的投资额为万元,这时可以构造出一个关于收益的函数,然后利用求函数最大值的方法进行求解.试题解析:(1) ,.(2)设产品的投资额为万元,则产品的投资额为万元,创业团队获得的利润为万元,则,令,,即,高中数学资料共享群:294110736,每天都有更新,无限下载数学教学资料关注公众号“品数学”,专供学习干货的公众号。

2017-2018学年广东省实验中学高一数学上期中考试试卷

2017-2018学年广东省实验中学高一数学上期中考试试卷

广东实验中学2017 —2018学年(上)高一级模块考试数学本试卷共4页.满分为150分。

考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷上,并用2B铅笔填涂学号.2•选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3•非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液•不按以上要求作答的答案无效.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1•设A ={a|a ::: 1},则()B . {0} A C. {0}』A D .⑺;A2B中3在A中对应的原象是()2.已知集合A到B的映射f : x— y =2x 1,那么集合A. 0B. 1C. -1D. -13. 下列四个函数中,在(0「:)上是增函数的是( )2 1A. f(x)=3-2xB. f(x)二x -3x C . f (x) D . f(x) = -|x|x +1/ 1 \ X -(-),X <04. 设函数f(x)=«0, x=0 ,且f (x)为奇函数,则g(2)=( )g(x), XAO11A .-B .C . 4D . -4445.函数f (x)=X2 - 2x的零点个数为()A . 0B . 1C . 2D . 36.已知点在幕函数f(x)的图象上,则f (x)是(A .奇函数B .偶函数C.定义域内的减函数 D .定义域内的增函数。

2017-2018年广东深圳高一(上)必修一、二期末试卷(解析版)

2017-2018年广东深圳高一(上)必修一、二期末试卷(解析版)

高一(上)期末数学试卷(必修一、二)一、选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,选择一个符合题目要求的选项涂在答题卡相应的位置。

)1.已知集合M={x∈Z|x(x﹣3)≤0},N={x|lnx<1},则M∩N=()A.{1,2} B.{2,3} C.{0,1,2}D.{1,2,3}2.函数f(x)=lnx﹣的零点所在的大致区间是()A.B.(1,2)C.(2,3) D.(e,+∞)3.若m,n是两条不同的直线,α,β,γ是三个不同的平面,下些说法正确的是()A.若m⊂β,α⊥β,则m⊥αB.若m⊥β,m∥α,则α⊥βC.若α∩γ=m,β∩γ=n,m∥n,则α∥βD.若α⊥γ,α⊥β,,则γ⊥β4.已知函数,设,则有()A.f(a)<f(b)<f(c) B.f(a)<f(c)<f(b)C.f(b)<f(c)<f(a)D.f(b)<f(a)<f(c)5.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.6.一种专门侵占内存的计算机病毒,开机时占据内存2KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,若该病毒占据64MB内存(1MB=210KB),则开机后经过()分钟.A.45 B.44 C.46 D.477.若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=log a||的图象大致为()A.B.C.D.8.在平面直角坐标系中,下列四个结论:①每一条直线都有点斜式和斜截式方程;②倾斜角是钝角的直线,斜率为负数;③方程与方程y+1=k(x﹣2)可表示同一直线;④直线l过点P(x0,y0),倾斜角为90°,则其方程为x=x°;其中正确的个数为()A.1 B.2 C.3 D.49.如图所示,圆柱形容器的底面直径等于球的直径2R,把球放在在圆柱里,注入水,使水面与球正好相切,然后将球取出,此时容器中水的深度是()A.2R B.C.D.10.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.11.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是()A.点H是△A1BD的垂心B.AH垂直平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成角为45°12.已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同实数根,则实数a的取值范围是()A.B.C. D.二、填空题:(本大题共4小题,每小题5分,共20分。

广东省深圳市深圳重点中学2017-2018学年高一年级期中考试数学试题及答案

广东省深圳市深圳重点中学2017-2018学年高一年级期中考试数学试题及答案

深圳市重点中学2017-2018学年度第一学期期中考试高一年级数学科试卷本试卷分选择题和非选择题两部分,共4页,满分为150分.考试用时120分钟.注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上。

2、选择题每小题选出答案后,有2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。

3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4、考生必须保持答题卡的整洁和平整。

考试结束后,将答题卷和答题卡交回。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A ={0,1,2,3},B ={1-,1,2,4},则集合A ⋂B =( )A .{0}B .{1,2}C .{1,2,3,4}D .{0,1,2,3,4}2.若0)](log [log log 432=x ,则x =( )A .4B .16C .64D .2563.已知x x x x f lg 2017)1(2016++=-,则(0)f =( )A . 2015B .2016C .2017D .20184.设1(x)0e f e +⎧⎪=⎨⎪⎩000x x x >=<,则f(f((1)))f -=( )A . 1e +B .0C .eD .1-5.下列各组函数是同一函数的是( )①()f x =()g x = ②f(x)=x 与()g x =③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。

广东省深圳市高级中学2017-2018学年高一上学期期中考试试卷

广东省深圳市高级中学2017-2018学年高一上学期期中考试试卷

广东省深圳市高级中学2017-2018学年高一上学期期中考试化学试卷本试卷由二部分组成。

第一部分:客观题60分,第二部分:主观题40分全卷共计100分。

考试时间为90分钟。

注意事项:1、答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2、每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动用橡皮擦干净后再涂其它答案,不能答在试卷上。

3、考试结束,监考人员将答题卡收回。

可能用到的相对原子质量:H-1 N-14 O-16 Ne-20 Na-23 S-32 Cu-64第I卷(本卷共计60分)一.选择题:(每小题只有一个选项,每小题2分,共计30分)1、在生产生活中,对于易燃、易爆、有毒的化学物质,按规定会在其包装上面贴上危险警告标签。

下面所列物质,贴错了包装标签的是()2、下列说法中正确的是()A.不慎将酸或碱液溅入眼内,立即闭上眼睛,用手揉擦B. 衣服沾上大量的浓氢氧化钠溶液,需将此衣服浸泡在盛水的盆中C. 皮肤上溅有较多的浓硫酸,直接用水冲洗即可D. 实验桌上的酒精灯倾倒了燃烧起来,马上用湿布扑灭3、我们常用“往伤口上撒盐”来比喻某些人乘人之危的行为,其实从化学的角度来说,“往伤口上撒盐”的做法并无不妥,甚至可以说并不是害人而是救人。

那么,这种做法的化学原理是()A.胶体的电泳B.血液的氧化还原反应C.血液中发生复分解反应D.胶体的聚沉4、下列过程中,涉及化学变化的是()A.四氯化碳萃取碘水中的碘B.生石灰被用作干燥剂后失效C.过滤除去粗盐中的不溶性杂质D.蒸馏法将海水淡化为饮用水5、下列仪器常用于物质分离的是()①漏斗②试管③蒸馏烧瓶④天平⑤分液漏斗⑥研钵A、①③⑤B、①③④C、①②⑥D、①③⑥6、下列实验操作或记录正确的是()A.常温常压下测得1molN2的质量为28gB.用量筒测得排水法收集制得的氢气体积为50.28mLC.将洗净的锥形瓶和容量瓶放入烘箱中烘干D.用托盘天平称取2.50g胆矾,受热充分失水后,固体质量减轻0.90g7、下列说法正确的是()A.NaCl晶体中含有Na+、Cl-,所以NaCl晶体能导电B.CO2溶于水能导电,所以CO2是电解质C.BaSO4难溶于水,BaSO4是非电解质D.Cl2的水溶液能够导电,但Cl2既不是电解质也不是非电解质8、下列有关物质分类的说法正确的是()A.二氧化硫、二氧化硅、一氧化碳均为酸性氧化物B.雾、稀豆浆、氯化钠溶液均为胶体C.分子中含三个氢原子的酸不一定是三元酸D.烧碱、醋酸、稀硫酸均属于电解质9、配制一定物质的量浓度的溶液时,下列操作会使所配得的溶液物质的量浓度偏高的是()A、省去洗涤烧杯的步骤B、定容时俯视刻度C、定容时仰视刻度D、定容、摇匀、静置后发现凹液面低于刻度线又加水至刻度10、需要分离下列两种混合物,选用最合适的实验装置是()a.汽油中不小心混入了大量的水;b.水与丙酮的混合物,已知:丙酮是一种可与水混溶的无色液体,密度小于水,沸点约为56℃。

广东省深圳市高一上学期期中考试英语试卷及参考答案

广东省深圳市高一上学期期中考试英语试卷及参考答案

深圳市高级中学2017-2018学年第一学期期中测试高一英语本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第7页,第Ⅱ卷第7至第10页。

全卷满分150分:第Ⅰ卷70分;第Ⅱ卷80分。

考试时间120分钟。

注意事项:1、答题前,考生将自己的姓名、准考证号、考试科目涂写在答题卡上。

2、答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上。

3、答第Ⅱ卷时,使用黑色墨水签字笔在答题卡指定区域书写,要求字体工整,笔迹清晰。

4、考试结束,监考人员将答题卡按座位号、页码顺序收回。

第I卷(共70分)第一部分阅读理解 (共20小题;每小题2分,满分40分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。

A1. What is going to take place on 2 February, 2013?A. A big event to welcome a Chinese new year.B. A social gathering to raise money for wildlife.C. A party for close friends to meet and have fun.D. A meeting of Kwun Tong High School students.2. How much do you have to pay in total if four of you go together?A. $20.B. $40.C. $60.D. $80.3. Which of the following statements is TRUE?A. Tickets are sold in Kwun Tong High School.B. It is unnecessary to take soft drinks with you.C. Free digital cameras are provided for everybody.D. Festival food will be served without paying extra money.BLisa loved to read! Every time her mom took her to the bookstore, she would buy two books. By the time she went to bed, Lisa had already read one of them.Mom said to Lisa the next day, “I think we need to get you your own library card.” “Wow!” cried Lisa. “I’ve always wanted a li brary card.”The next day after school, Mom took Lisa to the library to get her a card. The lady at the desk asked Mom to fill out a paper and then asked Lisa to print her name. She then told Lisa how many books she could borrow on her card. Lisa could hardly wait to search the many shelves of books. Lisa loved some books about mysteries best of all. She liked to solve the mystery in her head and see if she was right when she got to the end of the story. Her other favorite books were ones that took her to faraway places.Lisa had three books to return the next day and was excited to take out three more. However, when Lisa got to the library, she didn’t have her card. “Oh no!” Lisa said to the lady at the desk. “I can’t find my library card!” “I’m sorry,” said the lady. “I can’t let you take any books without your card.” Lisa left the library, kind of worried.When Lisa got home, Mom told Lisa that a boy came to the house with her library card. “You were lucky that the boy found your card,” said Mom. “You need to be very careful.” “Having a library card is a big responsibility.” Lisa said, “I think I will keep it in my wallet.” Mom said, “Let’s go back to the library and get those books you wanted.” “Sounds great,” said Lisa.When they got to the library, Mom decided to get some books too. While they were in the library, Mom told Lisa the boy that found her card was sitting at the round table. Lisa went over to him and said, “Thank you for finding my card.” He told Lisa he was glad to help, and they both lo oked for some mystery books together. Lisa had her books, her card, and a new friend too!4. What did Lisa do after Mom filled out the paper?A. Check out books.B. Use the computer.C. Print her name.D. Watch a movie.5. What are Lisa’s favor ite types of books to read?A. Adventures.B. Mysteries.C. True Stories.D. Tall Tales.6. What can we conclude from the passage?A. Lisa felt sad when she lost her card.B. Mom bought Lisa two kinds of book.C. There is a private library in Lisa’s house.D. One of Lisa’s friends found her card.7. What is the best title for the text?A. Lisa and Her MomB. The Lost Library CardC. Lisa’s Reading HobbyD. Making a New FriendCIt feels like every time my mother and I start to have a conversation, it turns into an argument. We talk about something as simple as dinner plans and suddenly, my mother will push the conversation into World War 3. She’ll talk about my lack(缺少) of bright futu re because I don’t plan to be a doctor. And much to her disappointment, I don’t want to do any job related to(和……相关) science, either. In fact, when I was pushed to say that I planned to major(主修) in English and communications, she nearly had a heart attack.“Why can’t you be like my co-worker’s son?” she bemoans all the time. Her coworker’s son received a four-year scholarship and is now earning 70,000 dollars a year as an engineer. I don’t know what to answer. I simply can’t be like Mr. Perfect as I’ve called the unnamed co-worker’s son. I can’t be like him. I am the type of the person who loved to help out in the community, write until the sun goes down, and most of all, wants to achieve a career because I love it, not because of a fame or salary.I understand why my mother is worried about my future major. I’ve seen my mother struggle to raise me on her small salary and work long hours. She leaves the house around 6:30 am and usually comes home around 5:00 p.m. or even 6:00 p.m.. However, I want he r to know that by becoming a doctor, it doesn’t mean I’ll be successful. I’d rather follow my dreams and create my own future.8. Which of the following topics do the writer and his mother often talk about?A. T he writer’s dreams.B. The wr iter’s future job.C. Dinner plans.D. Wars around the world.9. What can we infer from Paragraph 1 about the writer’s mother?A. T he writer’s mother doesn’t want the writer to major in English.B. T he writer’s mother doesn’t th ink the writer should be a doctor.C. T he writer’s mother gets along very well with the writer.D. T he writer’s mother doesn’t think working in the scientific field is a good idea.10. What does t he underlined word “bemoans” in Paragraph 2 most proba bly mean?A. Agrees.B. Shouts.C. Complains.D. Smiles.11. Which of the following statements is probably TRUE about the writer?A. He wants to be like his mother’s co-worker’s son.B. He wants to find a job in his community in the future.C. He doesn’t think his mother’s co-worker’s son is perfect.D. He wants to do something he really likes in the future.DTim Richter and his wife, Linda, had taught for over 30 years near Buffalo, New York---he in computers, she in specia l education. “Teaching means everything to us,” Tim would say. In April 1998, he learned he would need a heart operation. It was the kind of news that leads to some serious thinking about life’s purpose.Not long after the surgery, Tim saw a brochure describing Imagination Library, a program started by Dolly Parton’s foundation(基金会) that mailed a book every month to children from birth to age five in the singer’s hometown of Sevier, Tennessee. “I thought, maybe Linda and I could do something like this when we retire,” Tim recalls. He placed the brochure on his desk, “as a reminder”.Five years later, now retired and with that brochure(小册子) still on the desk, Tim clicked on . The program had been opened up to partners who could take advantage of book and postage discounts(折扣).The quality of the books was of great concern to the Richters. Rather than sign up online, they went to Dollywood for a look-see. “We didn’t want to give the children rubbish,” says Linda. The books---reviewed each year by teachers, literacy specialists and Dollywood board members (董事)---included classics such as Ezra Jack Keats’s The Snowy Day and newer books like Anna Dewdney’s Llama Llama series.Satisfied, the couple set up the Richter Family Foundation and got to work. Since 2004, they have shipped more than 12,200 books to preschoolers in their area. Megan Williams, a mother of four, is more than appreciative: “This program introduces us to books I’ve never heard of.”The Richters spend about $400 a month sending books to 200 children. “Some people sit there and wait to die,” says Tim. “Others get as busy as they can in the time they have left.”12. What led Tim to think seriously about the meaning of life?A. His health problem.B. His love for teaching.C. The influence of his wife.D. The news from the Web.13. What did Tim want to do after learning about Imagination Library?A. Give out brochures.B. Do something similar.C. Write books for childrenD. Retire from being a teacher.14. Why did the Richters go to Dollywood?A. To avoid signing up online.B. To meet Dollywood board members.C. To make sure the books were the newest.D. To see if the books were of good quality.15. What can we learn from Tim’s words in the las t paragraph?A. He needs more money to help the children.B. He wonders why some people are so busy.C. He tries to save those waiting to die.D. He considers his efforts worthwhile.EWhether in the home or the workplace, social robots are going to become a lot more common in the next few years. Social robots are about to bring technology to the everyday world in a more humanized way, said Cynthia Breazeal, chief scientist at the robot company Jibo.While household robots today do the normal housework, social robots will be much more like companions than mere tools. For example, these robots will be able to distinguish(区分) when someone is happy or sad. This allows them to respond(回应) more appropriately(合适地) to the user.The Jibo robot, which was planned to ship later this year, is designed to be a personalized assistant. You can talk to the robot, ask it questions and make requests for it to perform different tasks. The robot doesn’t just deliver(给出) general answers to questions; it responds based on what it learns about each individual in the household. It can do things such as reminding(提醒) an elderly family member to take medicine or taking family photos.Social robots are not just finding their way into the home. They have potential(潜在的) applications in everything from education to health care and are already finding their way into some of these spaces.Fellow Robots is one company bringing social robots to the market. The company’s “Oshbot” robot is built to help customers in a store, which can help the customers find items and help guide them to the product’s location in the store. It can also speak different languages and make recommendations(推荐) for different items based on what the customer is shopping for.The more interaction(互动) the robot has with humans, the more it learns. But Oshbot, like other social robots, is not plann ed to replace workers, but to work alongside other employees. “We have technologies to train social robots to do things not for us, but with us,” said Breazeal.16. How are social robots different from household robots?A. They can control their emotions.B. They are more like humans.C. They do the normal housework.D. They respond to users more slowly.17. What can a Jibo robot do according to Paragraph 3?A. Communicate with you and perform operations.B. Answer your questions and make requests.C. Take your family pictures and deliver milk.D. Obey your orders and remind you to take pills.18. What can Oshbot work as?A. A language teacher.B. A tour guide.C. A shop assistant.D. A private nurse.19. What will social robots do according to the last paragraph?A. They will train employees.B. They will be our workmates.C. They will improve technologies.D. They will take the place of workers.20. What does the passage mainly present?A. A new design idea of household robots.B. Marketing methods for social robots.C. Information on household robots.D. An introduction to social robots.第二部分英语知识应用第一节完形填空(共20小题;每小题1.5分,满分30分)阅读下面短文,从短文后各题所给的A、B、C、D四个选项中,选出可以填入空白处的最佳选项。

广东省深圳市高级中学2018-2019学年高一上学期期中考试 数学 Word版含答案

广东省深圳市高级中学2018-2019学年高一上学期期中考试 数学 Word版含答案

深圳市高级中学2018-2109学年第一学期期中考试高一数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的. 1.已知函数()f x 的定义域为M ,()ln(1)g x x =+的定义域为N ,则M N =( )A .{}1x x >B .{}1x x <C .{}11x x -<<D .φ2.函数2-=x y 在区间1[,2]2上的最大值是 ( )A .41B .1-C .4D .4- 3.下列函数中,既是奇函数,在定义域内又为增函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .1y x =C .2y x =D .)1(log 22x x y ++=4.已知2()22xf x x =-,则在下列区间中,()f x 有零点的是( )A .(3,2)--B .(1,0)-C .(2,3)D .(4,5)5.设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( )A .a b c << B.c b a << C .c a b <<D.b a c <<6.函数)1,0(log ≠>=a a x y a 的反函数的图象过)22,21(点,则a 的值为( )A.2B.21 C.2或21D.3 7.已知y =f (x )是定义在R 上的奇函数,当0x >时,()2f x x =-,那么不等式1()2f x <的解集是( )A .502x x ⎧⎫<<⎨⎬⎭⎩B .302x x ⎧⎫-<≤⎨⎬⎭⎩C .350,022xx x ⎧⎫-<<≤<⎨⎬⎭⎩或 D .35,022x x x ⎧⎫<-≤<⎨⎬⎭⎩或 8.函数lg(1)y x =+的大致图像是 ( )9.已知函数()35bf x ax x=++,且()79f =,则()7f -= ( ) A .12 B .9 C .1 D .1-10.已知函数|21|,2()3,21x x f x x x ⎧-<⎪=⎨≥⎪-⎩,若方程()0f x a -=有三个不同的实数根,则实数a 的取值范围是( ) A .()1,3 B .()0,3 C .()0,2 D .()0,111.已知函数()f x 是R 上的偶函数,它在[0,)+∞上是减函数,若(ln )(1),f x f >则x 的取值范围是( ) A .1(,1)e- B .1(,)e e - C .1(0,)(1,)e -+∞ D .(0,1)(,)e +∞12.已知函数()()210f x ax x a =-+≠,若任意[)12,1,x x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,则实数a 的取值范围( )A .[)1,+∞ B .(]0,1 C .[)2,+∞ D .()0,+∞二、填空题:本大题共4小题,每小题5分,满分20分. 13.已知幂函数()y f x =的图象过点12⎛ ⎝⎭,则()2log 8f =__________.14.函数2()23f x x x =--的单调增区间是 .15.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,若()3f x =,则x = .16.若()f n 为()2*1n n N +∈的各位数字之和,如2141197,19717+=++=,则(14)17f =;记1()()f n f n =,21()(())f n f f n =,…,1()(())k k f n f f n +=,*k N ∈,则2018(8)f = .三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分10分)(10.539log 9()4--+(2)已知25100ab ==,求11a b+的值.18.(本小题满分12分) 设()f x 是定义在R 上的函数,且对任意实数x ,有2(1)33f x x x -=-+.(1)求函数()f x 的解析式;(2)若()()(12)1()g x f x m x m R =-++∈在3[,)2+∞上的最小值为2-,求m 的值.19.(本小题满分12分) 已知函数()f x 是定义域为R 上的奇函数,当0x ≥时,()()f x x x m =-且()20f =.(1)求函数()f x 在R 上的解析式;(2)作出函数()f x 的图象并写出函数()f x 的单调区间.20.(本小题满分12分)(1)判断函数)(x f 的奇偶性,并说明理由;(2)判断函数)(x f 在()1,1-上的单调性,并说明理由.21.(本小题满分12分)某创业团队拟生产两种产品,根据市场预测,产品的利润与投资额成正比(如图1),产品的利润与投资额的算术平方根成正比(如图2).(注: 利润与投资额的单位均为万元)图1图2(注:利润与投资额的单位均为万元)(1)分別将两种产品的利润、表示为投资额的函数;(2)该团队已筹集到10 万元资金,并打算全部投入两种产品的生产,问:当产品的投资额为多少万元时,生产两种产品能获得最大利润,最大利润为多少?22.(本小题满分12分) 已知函数2()21(0)g x mxmx n n =-++≥在[]1,2上有最大值1和最小值0.(1)求m n 、的值; (2)设()()g x f x x=,若不等式22(log )2log 0f x k x -≥在[]2,4x ∈上有解,求实数k 的取值范围.深圳市高级中学2018-2109学年第一学期期中考试高一数学参考答案命题人:李浩宾 审题人:余小玲一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的. 1.已知函数()f x 的定义域为M ,()ln(1)g x x =+的定义域为N ,则M N =( C )A .{}1x x >B .{}1x x <C .{}11x x -<<D .φ2.函数2-=x y 在区间1[,2]2上的最大值是 ( C )A .41B .1-C .4D .4- 3.下列函数中,既是奇函数,在定义域内又为增函数的是( D )A .12xy ⎛⎫= ⎪⎝⎭B .1y x =C .2y x =D .)1(log 22x x y ++=4.已知2()22xf x x =-,则在下列区间中,()f x 有零点的是( B )A .(3,2)--B .(1,0)-C .(2,3)D .(4,5)5.设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( A )A .a b c << B.c b a << C .c a b <<D.b a c <<6.函数)1,0(log ≠>=a a x y a 的反函数的图象过)22,21(点,则a 的值为(B )A.2B.21 C.2或21D.3 7.已知y =f (x )是定义在R 上的奇函数,当0x >时,()2f x x =-,那么不等式1()2f x <的解集是( D ) A .502xx ⎧⎫<<⎨⎬⎭⎩ B .302x x ⎧⎫-<≤⎨⎬⎭⎩C .350,022xx x ⎧⎫-<<≤<⎨⎬⎭⎩或 D .35,022x x x ⎧⎫<-≤<⎨⎬⎭⎩或 8.函数lg(1)y x =+的大致图像是 ( C )9.已知函数()35bf x ax x=++,且()79f =,则()7f -= ( C ) A .12 B .9 C .1 D .1-10.已知函数|21|,2()3,21x x f x x x ⎧-<⎪=⎨≥⎪-⎩,若方程()0f x a -=有三个不同的实数根,则实数a 的取值范围是( D ) A .()1,3 B .()0,3 C .()0,2 D .()0,111.已知函数()f x 是R 上的偶函数,它在[0,)+∞上是减函数,若(ln )(1),f x f >则x 的取值范围是( B ) A .1(,1)e- B .1(,)e e - C .1(0,)(1,)e -+∞ D .(0,1)(,)e +∞12.已知函数()()210f x ax x a =-+≠,若任意[)12,1,x x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,则实数a 的取值范围( A )A .[)1,+∞ B .(]0,1 C .[)2,+∞ D .()0,+∞二、填空题:本大题共4小题,每小题5分,满分20分.13.已知幂函数()y f x =的图象过点12⎛ ⎝,则()2log 8f =__________.32【解析】设()()f x x R αα=∈,因为点12⎛ ⎝ 在函数()y f x =的图象上,所以12α⎛⎫= ⎪⎝⎭,解得12α=,故()()113222,882f x x f ===,∴()32223log 8log 22f ==.14.函数2()23f x x x =--的单调增区间是 ()()1,1,3,-+∞ .15.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,若()3f x =,则2,x =或16.若()f n 为()2*1n n N +∈的各位数字之和,如2141197,19717+=++=,则(14)17f =;记1()()f n f n =,21()(())f n f f n =,…,1()(())k k f n f f n +=,*k N ∈,则2018(8)f =5 .三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分10分)(10.539log 9()4--+(2)已知25100ab ==,求11a b+的值.解:(1) 原式= +1-2+32+e-=13e -; -----------5分(2) 由已知,a =2lg 2, b =5lg 2,∴ + =21(lg2 + lg5) =21-------10分 18. (本小题满分12分) 设()f x 是定义在R 上的函数,对任意实数x ,有2(1)33f x x x -=-+(1)求函数()f x 的解析式;(2)若()()(12)1()g x f x m x m R =-++∈在3[,)2+∞上的最小值为2-,求m 的值.解:令1x t -=得2()(1)3(1)3f t t t =---+即2()1f t t t =++即2()1,f x x x x R =++∈,------------------------------------4(2)令222()22()2g x x mx x m m =-+=-+- (32x ≥) 若32m ≥,当x m =时,2min ()222g x m m =-=-∴= --------------------8 若32m <,当32x =时,min 17253()324122g x m m =-=-∴=>舍去 综上可知2m = --------------------------------------------------------12 19.(本小题满分12分) 已知函数()f x 是定义域为R 上的奇函数,当0x ≥时,()()f x x x m =-且()20f =.(1)求函数()f x 在R 上的解析式;(2)作出函数()f x 的图象并写出函数()f x 的单调区间.解:(1)由()20f =得,2m =, ------------1分若0x <,则0x ->, 所以()()()()22f x f x x x x x -=-=---=+()()2,0f x x x x =-+<故,()()2,0()2,0x x x f x x x x -≥⎧⎪=⎨-+<⎪⎩ ------------5 (2)函数()f x 的图象如图所示-----------9单调增区间:()(),1,1,-∞-+∞单调减区间:()1,1- ------------12分 20.(本小题满分12分)(1)判断函数)(x f 的奇偶性,并说明理由;(2)判断函数)(x f 在()1,1-上的单调性,并说明理由.解:(1)因为)(x f 的定义域为R ........ ...............................................1分............................................4分 (2)由(1任取12,(1,1)x x ∈- ,设12x x < ,则()()122110x x x x --<........5分因为()()()()12211212222212121()()01111x x x x x x f x f x x x x x ---=-=<++++.......10分12()()f x f x ∴<()f x ∴ 在()1,1- 上是增函数.................................. ..................................12分21.(1),;(2)6.25, 4.0625.【解析】试题分析:(1)由产品的利润与投资额成正比,产品的利润与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;(2)由(1)的结论,我们设产品的投资额为万元,则产品的投资额为万元,这时可以构造出一个关于收益的函数,然后利用求函数最大值的方法进行求解.试题解析:(1) ,.(2)设产品的投资额为万元,则产品的投资额为万元,创业团队获得的利润为万元,则,令,,即,当,即时,取得最大值4.0625.答:当产品的投资额为6.25万元时,创业团队获得的最大利润为4.0625 万元.22.解:(1)2()(1)1g x m x n m =-++-, 当0m >时,()g x 在[]1,2上是增函数,∴(1)0(2)1g g =⎧⎨=⎩,即1011n m n +-=⎧⎨+=⎩,解得10m n =⎧⎨=⎩,当0m =时,()1g x n =+,无最大值和最小值;当0m <时,()g x 在[]1,2上是减函数,∴(1)1(2)0g g =⎧⎨=⎩,即1110n m n +-=⎧⎨+=⎩,解得11m n =-⎧⎨=-⎩, ∵0n ≥,∴1n =-舍去.综上,,m n 的值分别为1、0.(2)由(1)知1()2f x x x =+-, ∴22(log )2log 0f x k x -≥在[]2,4x ∈上有解等价于 2221log 22log log x k x x +-≥在[]2,4x ∈上有解, 即2221221(log )log k x x≤-+在[]2,4x ∈上有解, 令21log t x =,则2221k t t ≤-+,∵[]2,4x ∈,∴1,12t ⎡⎤∈⎢⎥⎣⎦, 记2()21t t t ϕ=-+,∵112t ≤≤,∴max 1()4t φ=, ∴k 的取值范围为1,8⎛⎤-∞ ⎥⎝⎦.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省深圳高级中学2017-2018学年高一(上)期中数学试卷一.选择题1.(5分)=()A.B.C.D.2.(5分)已知集合A={x|1<x<2},B={x|x<log23},则A∩B=()A.{x|1<x<e} B.{x|1<x<log23} C.{x|1<x<log23} D.∅3.(5分)已知函数,f(a)=6,则a的值为()A.5 B.C.5或D.2或64.(5分)已知函数y=x2的值域是[0,4],则关于函数定义域的判断正确的是()A.定义域是[﹣2,2] B.定义域是[0,2] C.定义域是[﹣2,0] D.以上都有可能5.(5分)下列四个函数:①②y=3x③④其中值域为R的函数有()A.1个B.2个C.3个D.4个6.(5分)下列函数在[0,+∞)上单调递增的是()A.y=|x+1| B.y=log2(x﹣1)C.D.7.(5分)下列函数①y=log2x②③④为奇函数的有()A.1个B.2个C.3个D.4个8.(5分)已知函数f(x)的定义域为[3,+∞),则函数的定义域为()A.B. C. D.9.(5分)下列三个数a=log36,b=log510,c=log714的大小顺序是()A.c<b<a B.a<c<b C.c<a<b D.b<a<c10.(5分)函数y=的图象大致为()A.B.C.D.11.(5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油12.(5分)已知函数f(x)=a x﹣1+log a x(a>0,a≠1),则函数的零点个数为()A.0 个 B.1 个 C.2 个 D.3个二.填空题13.(5分)已知幂函数f(x)=x n过点(4,2),则函数的单调递增区间为.14.(5分)已知y=f(x)是定义在(﹣∞,0)∪(0,+∞)上的偶函数,当x>0时f(x)=x+1,则x<0时f(x)=.15.(5分)若关于x的不等式8﹣4x﹣3a2>0在[﹣2,﹣1]上有解.则实数a的取值范围是.16.(5分)已知,关于x的不等式[f(x)]2+af(x)﹣b2<0有且只有一个整数解,则实数a的最大值是.三、解答题17.(10分)已知三个集合:A={x∈R|log2(x2﹣5x+8)=1},B={x∈R|2=1},C={x ∈R|x2﹣ax+a2﹣19=0}.(Ⅰ)求A∪B;(Ⅱ)已知A∩C≠∅,B∩C=∅,求实数a的取值范围.18.(12分)已知函数f(x)=x|x﹣4|(1)在坐标系内画出函数f(x)大致图象;(2)指出函数f(x)的单调递减区间.19.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a,通过x块玻璃后强度为y.(1)写出y关于x的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的以下?(lg3≈0.4771)20.(12分)已知函数f(x)=.(1)判断函数y=f(x)的单调性和奇偶性;(2)当x∈(﹣1,1)时,有f(1﹣m)+f(1﹣m2)<0.求实数m的取值范围.21.(12分)有一种比较复杂的函数y=f[g(x)],我们定义其为复合函数.比如函数y=lg(x2+1),可以令g(x)=x2+1,y=lg[g(x)].关于其值域,可以先求出g(x)∈[1,+∞),则y=lg[g(x)]∈[0,+∞);关于其单调性,很显然,在其定义域内,若f(x)和g(x)的单调性的方向相同,则y=f[g(x)]单调增,若方向相反,则y=f[g(x)]单调减,可知该函数在(﹣∞,0]上单调减,在[0,+∞)上单调增.依据以上方法解决下列问题:设函数f(x)=lg(x2+ax﹣a﹣1).(1)求函数的值域;(2)若f(x)在区间[2,+∞)上单调递增,求实数a的取值范围.22.(12分)设二次函数f(x)=ax2+bx+c满足下列条件:当x∈R时,f(x)的最小值为0,且f(x﹣1)=f(﹣x﹣1)成立;当x∈(0,5)时,x≤f(x)≤2|x﹣1|+1恒成立.(1)求f(x)的解析式;(2)若对x∈(2,+∞),不等式4f(x)≥(n+2)x﹣n﹣15恒成立,求实数n的取值范围.(3)求最大的实数m(m>1),使得存在实数t,只要当x∈[1,m]时,就有f(x+t)≤x成立.【参考答案】一.选择题1.B【解析】.故选:B.2.B【解析】集合A={x|1<x<2},B={x|x<log23},由1<log23<2,可得则A∩B={x|1<x<log23},故选:B.3.A【解析】∵函数,f(a)=6,∴当a>0时,f(a)=2a﹣4=6,解得a=5;当a<2时,f(a)==6,解得a=,不成立.综上,a的值为5.故选:A.4.D【解析】函数y=x2的值域是[0,4],由x2≤4,解得:﹣2≤x≤2,故A,B,C都有可能,故选:D.5.B【解析】①,y≠0,②y=3x,y∈(0,+∞),③,y∈R,④,y∈R,其中值域为R的函数有③④,故选:B.6.A【解析】对于A,函数在[0,+∞)上单调递增,符合题意;对于B,函数在[0,1)无意义,不合题意;对于C,函数在[0,+∞)上单调递减,不合题意;对于D,函数在[0,+∞)上单调递减,不合题意;故选:A.7.B【解析】根据题意,依次分析4个函数:对于①,y=log2x,其定义域为(0,+∞),不关于原点对称,不是奇函数;对于②,,有>0,解可得﹣1<x<1,即函数的定义域为(﹣1,1),则f(﹣x)=lg=lg()﹣1=﹣lg=﹣f(x),即函数为奇函数,对于③,,其定义域为R,f(﹣x)=,有f(x)+f(﹣x)=+=lg1=0,即f(﹣x)=﹣f(x),即函数为奇函数;对于④,若x为无理数,则﹣x也为无理数,则f(﹣x)=f(x)=﹣1,同理当x为有理数时,也有f(﹣x)=f(x)=0,即函数f(x)为偶函数;则②③为奇函数;故选:B.8.C【解析】∵函数f(x)的定义域为[3,+∞),∴由,得,则0.∴函数的定义域为(0,].故选:C.9.A【解析】a=log36=1+log32,b=log510=1+log52,c=log714=1+log72.∵log32>log52>log72.∴c<b<a.故选:A.10.B【解析】因为,所以函数为奇函数,图象关于原点对称,所以排除A.当x=1时,y>0,所以排除C.因为,所以当x→+∞时,y→1,所以排除D.故选B.11.D【解析】对于选项A,从图中可以看出当乙车的行驶速度大于40千米每小时时的燃油效率大于5千米每升,故乙车消耗1升汽油的行驶路程远大于5千米,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正确.12.B【解析】令f(x)=0可得a x﹣1=﹣log a x,(1)作a>1,作出y=a x﹣1与y=﹣log a x的函数图象如图所示:由图象可知两函数图象有1个交点,故而f(x)只有1个零点;(2)作a<1,作出y=a x﹣1与y=﹣log a x的函数图象如图所示:由图象可知两函数图象有1个交点,故而f(x)只有1个零点;综上,f(x)只有1个零点.故选B.二.填空题13.[0,+∞)【解析】设幂函数为f(x)=xα,因为幂函数的图象过点(4,2),所以f(4)=4α=2=22α,解得α=,所以f(x)=,所以幂函数的单调递增区间为[0,+∞).故答案为:[0,+∞).14.﹣x+1【解析】根据题意,设x<0,则﹣x>0,f(﹣x)=(﹣x)+1,又由函数为偶函数,则f(﹣x)=f(x),则f(x)=﹣x+1;故答案为:﹣x+1.15.【解析】不等式8﹣4x﹣3a2>0在[﹣2,﹣1]上有解.令f(x)=﹣4x+8﹣3a2>0在[﹣2,﹣1]上有解.则f(﹣2)>0即可,解得:,故答案为:.16.8【解析】作出f(x)的函数图象如图所示:(1)若b=0,则[f(x)]2+af(x)<0,当a=0时,f[f(x)]2<0无解;当a<0时,0<f(x)<﹣a,由图象可知0<f(x)<﹣a不可能只有一个整数解;当a>0时,﹣a<f(x)<0,若﹣a<f(x)<0只有一个整数解,由图象可知此整数解必为x=3.又f(3)=﹣3,f(4)=﹣8,故而﹣8≤﹣a<﹣3,即3<a≤8.(2)若b≠0,由[f(x)]2+af(x)﹣b2<0可得<f(x)<.当a≤0时,由(1)可知a的最大值为8,当a>0时,<0<,由图象可知f(x)=0有两个整数解x=0,x=2,∴<f(x)<至少含有两个整数解,不符合题意.综上,a的最大值为8.故答案为:8.三、解答题17.解:(I)A={x∈R|log2(x2﹣5x+8)=1}={x|x=2,x=3}={2,3},B={x∈R|2=1}={x|x2+2x﹣8=0}={x|x=2或x=﹣4}={2,﹣4},∴A∪B={2,3,﹣4};(II)A∩C≠∅,B∩C=∅,∴2∈C,﹣4∉C,3∈C;又C={x∈R|x2﹣ax+a2﹣19=0},∴;即,解得﹣3≤a<﹣2,所以实数a的取值范围是[﹣3,﹣2).18.解:(1)函数f(x)=x|x﹣4|=,f(x)大致图象如上;(2)由图知:函数f(x)的递减区间是[2,4]19.解:(1)依题意:y=a(0.9)x,x∈N+,(2)依题意:,即:,得:答:通过至少11块玻璃后,光线强度减弱到原来的以下.20.解:(1)当a>1时,>0,若x1>x2,则a>a,﹣a>﹣a,则f(x1)>f(x2),可得f(x)在R上递增;同理可得,当0<a<1时,f(x)在R上也单调递增.由,∴f(x)为R上的奇函数;(2)由f(x)为奇函数,且在R上递增,可得f(1﹣m2)<﹣f(1﹣m)=f(m﹣1),即有﹣1<1﹣m2<m﹣1<1,可得,解得1<m<,则m的范围为(1,).21.解:令g(x)=x2+ax﹣a﹣1=(x﹣1)(x+a+1),令g(x)=0,解得:x=1或x=﹣a﹣1,y=lg[g(x)],(1)根据二次函数的性质,g(x)能取完(0,+∞)内的所有值.∴函数的值域为R.(2)由题意,函数g(x)在[2,+∞)上恒大于0且单调增,因为其零点为1和﹣a﹣1,∴﹣a﹣1≤1或,解得:a>﹣3.22.解:(1)由题意,函数的顶点坐标为(﹣1,0),解析式可设为f(x)=a(x+1)2当x=1时,可得1≤f(x)≤1,∴f(1)=1=4a,∴∴经检验,当x∈(0,5)时,x≤f(x)≤2|x﹣1|+1恒成立.∴.(2)不等式变形为:x2﹣nx+n+16≥0令g(x)=x2﹣nx+n+16,其对称轴x=,当,即n≤4时,g(x)在x∈(2,+∞)上递增,可得g(2)=20﹣n≥0,解得n≤20.∴n≤4;即n≤4时当即n>4时,g(x)min=g()=,解得:.∴≥n>4.综上可得:n∈(﹣∞,)(3)∵当x∈[1,m]时,就有f(x+t)≤x成立,∴f(1+t)≤1,即(1+t+1)2≤1,解得:﹣4≤t≤0.而y=f(x+t)=f[x﹣(﹣t)]是函数y=f(x)向右平移(﹣t)个单位得到的,显然,f(x)向右平移的越多,直线y=x与二次曲线y=f(x+t)的右交点的横坐标越大,∴当t=﹣4,﹣t=4时直线y=x与二次曲线y=f(x+t)的右交点的横坐标最大.∴(m+1﹣4)2≤m,∴1≤m≤9,∴m max=9.。

相关文档
最新文档