高考理科数学常考题型训练考点一直线与圆
2024高考数学常考题型 第18讲 直线与圆常考6种题型总结(解析板)
第18讲直线与圆常考6种题型总结【考点分析】考点一:圆的定义:在平面上到定点的距离等于定长的点的轨迹是圆考点二:圆的标准方程设圆心的坐标()C a b ,,半径为r ,则圆的标准方程为:()()222x a y b r -+-=考点三:圆的一般方程圆的一般方程为220x y Dx Ey F ++++=,圆心坐标:()22D E --,,半径:r =注意:①对于F E D 、、的取值要求:2240D E F +->当2240D E F +-=时,方程只有实数解22D E x y =-=-,.它表示一个点()22D E--,当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.②二元二次方程220Ax Bxy Cy Dx Ey F +++++=,表示圆的充要条件是22040A C B D E AF =≠⎧⎪=⎨⎪+->⎩考点四:以1122()()A x y B x y ,,,为直径端点的圆的方程为1212()()()()0x x x x y y y y -⋅-+--=考点五:阿波罗尼斯圆设A B ,为平面上相异两定点,且||2(0)AB a a =>,P 为平面上异于A B ,一动点且||||PA PB λ=(0λ>且1λ≠)则P 点轨迹为圆.考点六:直线与圆的位置关系设圆心到直线的距离d ,圆的半径为r ,则直线与圆的位置关系几何意义代数意义公共点的个数①直线与圆相交r d <0>∆两个②直线与圆相切r d =0=∆一个③直线与圆相离r d >0<∆0个注:代数法:联立直线方程与圆方程,得到关于x 的一元二次方程2Ax Bx C ++=考点七:直线与圆相交的弦长问题法一:设圆心到直线的距离d ,圆的半径为r ,则弦长222d r AB -=法二:联立直线方程与圆方程,得到关于x 的一元二次方程20Ax Bx C ++=,利用韦达定理,弦长公式即可【题型目录】题型一:圆的方程题型二:直线与圆的位置关系题型三:直线与圆的弦长问题题型四:圆中的切线切线长和切点弦问题题型五:圆中最值问题题型六:圆与圆的位置关系问题【典型例题】题型一:圆的方程【例1】AOB 顶点坐标分别为()2,0A ,()0,4B ,()0,0O .则AOB 外接圆的标准方程为______.【答案】()()22125x y -+-=【解析】设圆的标准方程为()()222x a y b r -+-=,因为过点()2,0A ,()0,4B ,()0,0O 所以()()()()()()222222222200400a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩解得2125a b r =⎧⎪=⎨⎪=⎩则圆的标准方程为()()22125x y -+-=故答案为:()()22125x y -+-=【例2】已知圆22(1)(2)4x y +++=关于直线()200,0ax by a b ++=>>对称,则12a b+的最小值为()A .52B .92C .4D .8故选:B【例3】过点(1,1),(3,5)A B -,且圆心在直线220x y ++=上的圆的方程为_______.【例4】设甲:实数3a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例5】苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度100AB =米,拱高10OP =米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是()米.(注意:≈3.162)A .6.48B .5.48C .4.48D .3.48【答案】A【解析】以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系.设圆心坐标为(0,a ),则P (0,10),A (-50,0).可设圆拱所在圆的方程为()222x y a r +-=,由题意可得:()()222221050a r a r ⎧-=⎪⎨-+=⎪⎩解得:2120,16900a r =-=.所以所求圆的方程为()2212016900x y ++=.将x =-30代入圆方程,得:()290012016900y ++=,因为y >0,所以12040 3.162120 6.48y =≈⨯-=.故选:A.【例6】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:在平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 满足||||PA PB =,则PAB △面积的最大值是()AB .2C.D .4【答案】C【解析】设经过点A ,B 的直线为x 轴,AB的方向为x 轴正方向,线段AB 的垂直平分线为y 轴,线段AB 的中点O 为原点,建立平面直角坐标系.则()1,0A -,()10B ,.设(),P x y,∵PA PB==两边平方并整理得22610x y x +-+=,即()2238x y -+=.要使PAB △的面积最大,只需点P到AB (x 轴)的距离最大时,此时面积为122⨯⨯故选:C.【题型专练】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.2.经过三个点00()(02)()0A B C -,,,,的圆的方程为()A .(()2212x y ++=B .(()2212x y +-=C .(()2214x y ++=D .(()2214x y +-=中的三点的一个圆的方程为____________.【答案】22420x y x y +--=或22460x y x y +--=或22814033x y x y +--=或2216162055x y x y +---=(答案不唯一,填其中一个即可)【解析】设圆的方程为220x y Dx Ey F ++++=若圆过(0,0),(4,0),(4,2)三点,则0164020420F D F D E F =⎧⎪++=⎨⎪+++=⎩,解得420D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22420x y x y +--=;若圆过(0,0),(4,0),(1,1)-三点,则0164020F D F D E F =⎧⎪++=⎨⎪-++=⎩,解得460D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22460x y x y +--=;若圆过(0,0),(1,1)-,(4,2)三点,则02020420F D E F D E F =⎧⎪-++=⎨⎪+++=⎩,解得831430D E F ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,故圆的方程为22814033x y x y +--=;若圆过(4,0),(1,1)-,(4,2)三点,则16402020420D F D E F D E F ++=⎧⎪-++=⎨⎪+++=⎩,解得1652165D E F ⎧=-⎪⎪=-⎨⎪⎪=-⎩,故圆的方程为2216162055x y x y +---=.4.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是()A .()1,-+∞B .[)1,+∞C .(),1-∞D .(),1-∞-5.若两定点()1,0A ,()4,0B ,动点M 满足2MA MB =,则动点M 的轨迹围成区域的面积为().A .2πB .5πC .3πD .4π6.古希腊著名数学家阿波罗尼斯发现:平面内到两定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足PA PB=12.设点P 的轨迹为C ,则下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得PD PE=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得2MO MA =【答案】BC【分析】根据阿波罗尼斯圆的定义,结合两点间距离公式逐一判断即可.MA MO,则在O,A,M三点所能构成7.已知动点M与两个定点O(0,0),A(3,0)的距离满足2=的三角形中面积的最大值是()A.1B.2C.3D.4易知90MBO ∠=︒时,MOA S △取得最大值3.故选:C .题型二:直线与圆的位置关系【例1】直线:10l kx y k -+-=与圆223x y +=的位置关系是()A .相交B .相离C .相切D .无法确定【例2】(黑龙江哈尔滨市)若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .⎡⎣B .(C .,33⎡-⎢⎣⎦D .,33⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】由题意知,直线的斜率存在,设直线的斜率为k ,则直线方程为()43-=-x k y ,即043=-+-k y kx ,圆心为()3,2,半径为1,所以圆心到直线得距离1211433222+≤-⇒≤+-+-=k k k kk d ,解得3333≤≤-k【例3】直线:20l kx y --=与曲线1C x -只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬D .(-由图知,当24k <≤或故选:C【例4】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(),A a b ,则下列说法正确的是()A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相交C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】AD【分析】根据直线与圆的位置关系相应条件判断即可.【题型专练】1.直线():120l kx y k k R -++=∈与圆22:5C x y+=的公共点个数为()A .0个B .1个C .2个D .1个或2个【答案】D【解析】将直线l 变形为()012=+-+y x k ,令⎩⎨⎧=+-=+0102y x ,解得⎩⎨⎧=-=12y x ,所以直线过定点()1,2-P ,因为()51222=+-,所以点P 在圆上,所以直线与圆相切或者相交2.已知关于x 的方程2(3)1k x ++有两个不同的实数根,则实数k 的范围______.当直线与半圆相切时,圆心O 到直线1l 的距离d 解得:13265k -=(舍),或13265k +=当直线过点(2,0)-时,可求得直线2l 的斜率2k =则利用图像得:实数k 的范围为3261,5⎡⎫+⎪⎢⎪⎣⎭故答案为:3261,5⎡⎫+⎪⎢⎪⎣⎭3.(2022全国新高考2卷)设点A (-2,3),B (0(x +3)2+(y +2)2=1有公共点,则a 的取值范围为_______.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦题型三:直线与圆的弦长问题【例1】已知圆C :()()22210x y a a +-=>与直线l :x -y -1=0相交于A ,B 两点,若△ABC 的面积为2,则圆C 的面积为()A .πB .2πC .4πD .6π【答案】C 【解析】如图,由圆C 方程可知圆心()0,1C ,半径为a ,由点到直线的距离公式可知圆心C到直线l 的距离d =又△ABC 的面积为11222S AB d =⋅==,解得AB =2222a ⎛+= ⎝⎭,则a =2,即圆C 的半径为2.则圆C 的面积为24S a ππ==.故选:C.【例2】已知圆22:60M x y x +-=,过点()1,2的直线1l ,2l ,…,()*n l n ∈N 被该圆M 截得的弦长依次为1a ,2a ,…,n a ,若1a ,2a ,…,n a 是公差为13的等差数列,则n 的最大值是()A .10B .11C .12D .13【答案】D【分析】求出弦长的最小和最大值,根据等差数列的关系即可求出n 的最大值此时,直线DE 的解析式为:3y x =-+直线BC 的解析式为:=+1y x 圆心到弦BC 所在直线的距离:AM 连接BM ,由勾股定理得,()22=322=1AB -x y+=交于,A B两点,过,A B分别作l的垂线与x轴交于【例3】已知直线:10l mx y+--=与圆2216,C D两点,则当AB最小时,CD=()A.4B.C.8D.故选:D【例4】(多选题)若直线l 经过点0(3,1)P -,且被圆2282120x y x y +--+=截得的弦长为4,则l 的方程可能是()A .3x =B .3y =C .34130x y --=D .43150x y --=【题型专练】1.直线:l y x m =+与圆224x y +=相交于A ,B 两点,若AB ≥m 的取值范围为()A .[]22-,B .⎡⎣C .[]1,1-D .,22⎡⎤⎢⎥⎣⎦【答案】B【解析】令圆224x y +=的圆心(0,0)O 到直线l 的距离为d ,而圆半径为2r =,弦AB 长满足AB ≥,则有1d =,又d =1≤,解得m ≤≤所以实数m 的取值范围为⎡⎣.故选:B2.在圆22420x y x y +-+=内,过点()1,0E 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为()A .B .C .D .【答案】D【解析】圆22420x y x y +-+=化简为22(2)(1)5x y -++=可得圆心为(2,1),r -=易知过点()1,0E 的最长弦为直径,即||AC =而最短弦为过()1,0E 与AC 垂直的弦,圆心(2,1)-到()1,0E 的距离:d ==所以弦||BD ==所以四边形ABCD 的面积:12S AC BD =⋅=故选:D.3.若直线1y kx =+与圆221x y +=相交于B A ,两点,且60AOB ∠= (其中O 为原点),则k 的值为()A .3-或3B .3C .D 4.直线l :()()2110m x m y -+-+=与圆C :2260x x y -+=相交于A ,B 两点,则AB 的最小值是()A .B .2C .D .4【答案】D【解析】分别取1,2m m ==,则1010x y -+=⎧⎨-+=⎩,得11x y =⎧⎨=⎩,即直线l 过定点(1,1)P ,将圆C 化为标准方程:22(3)9x y -+=,圆心为(3,0),半径3r =.如图,因为AB =,所以当圆心到直线距离最大时AB 最小.当CP 不垂直直线l 时,总有d CP <,故当CP l ⊥时AB 最小,因为CP =所以AB的最小值为4=.故选:D题型四:圆中的切线切线长和切点弦问题【例1】直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________.【例2】已知圆C :228240x y y +--+=,且圆外有一点()0,2P ,过点P 作圆C 的两条切线,且切点分别为A ,B ,则AB =______.【例3】点P 在圆C :()()22334x y -+-=上,()2,0A ,()0,1B ,则PBA ∠最大时,PB =___________.【答案】3【分析】根据题意PBA ∠最大时,直线【详解】点P 在圆C :()23x -+如图将BA 绕点B 沿逆时针方向旋转,当刚好与圆当旋转到与圆相切于点2P 时,∠【例4】过点()2,1P 作圆O :221x y +=的切线,切点分别为,A B ,则下列说法正确的是()A.PA B .四边形PAOB 的外接圆方程为222x y x y +=+C .直线AB 方程为21y x =-+D .三角形PAB 的面积为85【题型专练】1.过点(0,2)作与圆2220x y x +-=相切的直线l ,则直线l 的方程为()A .3480x y -+=B .3480x y +-=C .0x =D .1x =2.直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【详解】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ =,故选:B.3.过点(2,2)P 作圆224x y +=的两条切线,切点分别为A 、B ,则直线AB 的方程为_______.【答案】2+-x y 0=【分析】由题知()0,2A 、()2,0B ,进而求解方程即可.【详解】解:方法1:由题知,圆224x y +=的圆心为()0,0,半径为2r =,所以过点(2,2)P 作圆224x y +=的两条切线,切点分别为()0,2A 、()2,0B ,所以1AB k =-,所以直线AB 的方程为2y x =-+,即2+-x y ;方法2:设()11,A x y ,()22,B x y ,则由2211111142.12x y y y x x ⎧+=⎪-⎨=-⎪-⎩,可得112x y +=,同理可得222x y +=,所以直线AB 的方程为2+-x y 0=.故答案为:2+-x y 题型五:圆中最值问题【例1】已知l :4y x =+,分别交x ,y 轴于A ,B 两点,P 在圆C :224x y +=上运动,则PAB △面积的最大值为()A .82-B .1682-C .842+D .162+【答案】C 【解析】如图所示,以AB 为底边,则PAB △面积最大等价于点P 到l 距离最大,而点P 到l 距离最大值等于O 到l 的距离加半径看,O 到l 的距离422d =O 的半径2r =,()4,0A -,()0,4B ,则42AB =PAB △面积的最大值为()14222822⨯=+故选:C【例2】已知点P 是圆()()2241625x y -+-=上的点,点Q 是直线0x y -=上的点,点R 是直线125240x y -+=上的点,则PQ QR +的最小值为()A .7B .335C .6D .295【答案】B【分析】设圆心()1,6C ,记点()6,1E ,作圆()()224:1625C x y -+-=关于直线0x y -=的对称圆()()224:6125E x y -+-=,计算出圆心E 到直线125240x y -+=的距离d ,结合对称性可得出PQ QR +的最小值为25d -,即可得解.【详解】设圆心()1,6C ,记点()6,1E ,作圆()()224:1625C x y -+-=关于直线0x y -=的对称圆()()224:6125E x y -+-=,由对称性可知CQ EQ =,点E 到直线125240x y -+=的距离为()221265247125d ⨯-+==+-,【例3】已知直线:320l x y ++=与x 、轴的交点分别为A 、B ,且直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,则PAB 面积的最大值是()A .103+B .103+C D【例4】已知圆()()22:254C x y -+-=的圆心为C ,T 为直线220x y --=上的动点,过点T 作圆C 的切线,切点为M ,则TM TC ⋅的最小值为()A .10B .16C .18D .20()2TM TC TC CM TC TC CM ⋅=+⋅=+ CM TM ⊥ ,CM CT CM CT ∴⋅=⋅ 24TM TC TC ∴⋅=- ,【例5】已知复数z 满足1i 1z +-=(i 为虚数单位),则z 的最大值为()A .2B 1C 1D .1【答案】B【解析】令i z x y =+,x ,y ∈R ,则()1i 11i 1z x y +-=++-=,即()()22111x y ++-=,表示点(),x y 与点()1,1-距离为1的点集,此时,i z x y =-()()22111x y ++-=上点到原点距离,所以z 的最大值,即为圆上点到原点的距离的最大值,,且半径为1,1.故选:B .【例6】若0x =,则2yx -的取值范围为【答案】11[,]22-【解析】因为0x +=x =-所以()2210x y x +=≤如图,此方程表示的是圆心在原点,半径为1的半圆,2yx -的几何意义是点(),x y 与点()2,0连线的斜率如图,()()0,1,0,1A B -,()2,0P101022PA k -==--,101022PB k --==-所以2y x -的取值范围为11[,]22-故选:D【例】AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为⊙C 上一动点,则PA PB ⋅的取值范围是()A .[0,100]B .[-12,48]C .[-9,64]D .[-8,72]【答案】D 【解析】【分析】取AB 中点为Q ,利用数量积的运算性质可得2||9PA PB PQ ⋅=- ,再利用圆的性质可得||PQ 取值范围,即求.【详解】取AB 中点为Q ,连接PQ2PA PB PQ ∴+= ,PA PB BA -= 221()()4PA PB PA PB PA PB ⎡⎤∴⋅=+--⎣⎦ 2214||||4PQ BA ⎡⎤=-⎣⎦ ,又||6BA = ,4CQ =2||9PA PB PQ ∴⋅=-,∵点P 为⊙C 上一动点,∴max min ||9,|5|15PQ Q P C Q Q C =+=-==PA PB ∴⋅的取值范围[-8,72].故选:D.【题型专练】1.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y ++=上,则ABP 面积的取值范围是()A .[]2,6B .[]4,8C .D .⎡⎣2.(多选题)已知点P 在圆O :224x y +=上,直线l :43120x y +-=分别与x 轴,轴交于,A B 两点,则()A .过点B 作圆O 的切线,则切线长为B .满足0PA PB ⋅=的点P 有3个C .点P 到直线l 距离的最大值为225D .PA PB +的最小值是1【答案】ACD【分析】对于A,根据勾股定理求解即可;对于B,0PA PB ⋅=即PA PB ⊥,所以点P 在以AB 为直径的圆上,设AB 的中点为M ,写出圆M 的方程,根据两个圆的交点个数即可判断正误;对于C,根据圆上一点到直线的最大3.已知动点A ,B 分别在圆1C :()2221x y ++=和圆2C :()2244x y -+=上,动点P 在直线10x y -+=上,则PA PB +的最小值是_______【答案】3-##3-+如图,设点()10,2C -关于直线10x y -+=对称的点为()030,C x y ,所以,00002121022y x x y +⎧=-⎪⎪⎨-⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得003,1x y =-=,即()33,1C -,所以,3252C C =所以,32523PA B C P C r R --+=-≥,即PA PB +的最小值是523-.故答案为:523-4.过直线3450x y +-=上的一点P 向圆()()22344x y -+-=作两条切线12l l ,.设1l 与2l 的夹角为θ,则θ的最大值为______.【答案】π3##60︒【分析】由题可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,根据圆的性质结合条件可得1sin sin22APC θ∠=≤,进而即得.【详解】由()()22344x y -+-=,可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,则2APB APC θ=∠=∠,在Rt APC △中,2AC =,2sin sin 2CA APC CP CPθ∠===又()3,4C 到直线3450x y +-=的距离为223344534⨯+⨯-+所以4CP ≥,1sin sin22APC θ∠=≤,所以APC ∠的最大值为π6,即θ的最大值为π3.故答案为:π3.5.已知圆22:410,+--=M x y x (),P x y 是圆M 上的动点,则3t x =+的最大值为_________;22x y +的最小值为____________.6.18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z --的最大值为()A .3B .5C .7D .9【答案】C【解析】2z = ,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z -- 的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴--==.故选:C.题型六:圆与圆的位置关系问题【例1】已知圆221:1C x y +=与圆222:(3)(4)4C x y -+-=,则圆1C 与2C 的位置关系是()A .内含B .相交C .外切D .相离【例2】已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【解析】【分析】设(,)P x y ,轨迹AP BP ⊥ 可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-= ,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.【例3】圆221:22260O x y x y +---=与圆222:820O x y y +--=的公共弦长为()A .B .C .D .【例4】已知圆C :()()22681x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为()A .12B .11C .10D .9【答案】B【分析】由题意得P 点轨迹,转化为有交点问题【详解】90APB ∠=︒,记AB 中点为O ,则||OP m =,故P 点的轨迹是以原点为圆心,m 为半径的圆,又P 在圆C 上,所以两圆有交点,则|1|||1m OC m -≤≤+,而||10OC =,得911m ≤≤.故选:B【题型专练】1.写出与圆221x y +=和圆()2264x y -+=都相切的一条直线的方程______.2.(2022全国新高考1卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程_______.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.3.(多选题)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有()A .公共弦AB 所在直线的方程为0x y -=B .公共弦AB 所在直线的方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 14.已知点()()2,3,5,1A B -,则满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数有()A .1B .2C .3D .4【答案】D【解析】【分析】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,将所求转化为求圆A 与圆B 的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,如图所示,由题意,满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数即为圆A 与圆B 的公切线条数,因为513AB ==>+,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D5.已知圆()()221:111C x y -++=,圆()()222:459C x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM -的最大值是()A .4B .9C .7D .2【答案】B【解析】【分析】分析可知()21max 4PN PM PC PC -=-+,设点()24,5C 关于x 轴的对称点为()24,5C '-,可得出22PC PC '=,求出21PC PC '-的最大值,即可得解.【详解】圆()()221:111C x y -++=的圆心为()11,1C -,半径为1,圆()()222:459C x y -+-=的圆心为()24,5C ,半径为3.()max min max PN PM PN PM -=- ,又2max 3PN PC =+,1min 1PMPC =-,()()()2121max 314PN PM PC PC PC PC ∴-=+--=-+.点()24,5C 关于x 轴的对称点为()24,5C '-,2121125PC PC PC PC C C ''-=-≤==,所以,()max 549PN PM -=+=,故选:B .。
高考数学高三一轮复习直线和圆经典小题汇总
1.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP ∆面积的取值范围是A .[2,6]B .[4,8]C .D .2. 一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 的正半轴上,则该圆的标准方程为_______. 3.在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离,当θ,m 变化时,d 的最大值为A .1B .2C .3D .44.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为A .3B .CD .25.一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为A .53-或35-B .32-或23-C .54-或45-D .43-或34- 6.平行于直线210x y ++=且与圆225x y +=相切的直线的方程是A .250x y ++=或250x y +-=B .20x y +=或20x y +=C .250x y -+=或250x y --=D .20x y -=或20x y -=7.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交于y 轴于M 、N 两点,则MN =A .26B .8C .46D .108.已知直线l :10()x ay a R +-=∈是圆C :224210x y x y +--+=的对称轴,过点(4,)A a -作圆C 的一条切线,切点为B ,则AB =A .2B .C .6D .9.设点0(,1)M x ,若在圆22:=1O x y +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是A .[]1,1-B .1122⎡⎤-⎢⎥⎣⎦,C .⎡⎣D .⎡⎢⎣⎦ 10.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为A .7B .6C .5D .412.若圆221:1C x y +=与圆222:680C x y x y m +--+=外切,则m =A .21B .19C .9D .11-13.过点P )(1,3--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是 A .]60π,( B .]30π,( C .]60[π, D .]30[π, 14.已知圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是A .-2B .-4C .-6D .-815.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是A .B .C .D .16.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为A .45πB .34πC .(6π-D .54π17.过点(3,1)作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=18.已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为A .4B 1C .6- D19.已知点(,)M a b 在圆221:O x y +=外, 则直线1ax by +=与圆O 的位置关系是A .相切B .相交C .相离D .不确定20.已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =A .12-B .1C .2D .1221.则“2-=m ”是“直线1l :0422=+-+m my x 与直线2l :022=+-+m y mx 平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件22.已知点A (0,2),B (2,0).若点C 在函数y = x 的图像上,则使得ΔABC 的面积为2的点C 的个数为A .4B .3C .2D .123.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是A .(3-,3)B .(-0)(0,3)C .[3-,3]D .(-∞,3-) (3,+∞)24.若圆心在x O 位于y 轴左侧,且与直线20x y += 相切,则圆O 的方程是A .22(5x y +=B .22(5x y +=C .22(5)5x y -+=D .22(5)5x y ++=25.已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且ABC ∆为等边三角形,则实数=a _________. 26.直线1l :y x a =+和2l :y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.27.圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为C 的标准方程为 .28.若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为____. 29.已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且BC AC ⊥,则实数a 的值为_________.30.已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .34.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( )A .(x +2)2+(y -2)2=2B .(x -2)2+(y +2)2=2C .(x +2)2+(y +2)2=2D .(x -2)2+(y -2)2=235.若曲线y =1+4-x 2与直线kx -y -2k +4=0有两个不同的交点,则实数k 的取值范围是( )A.⎝⎛⎭⎫0,512B.⎝⎛⎦⎤13,34C.⎝⎛⎦⎤512,34D.⎝⎛⎭⎫512,+∞ 36.已知P 是过三点O (0,0),A (1,1),B (4,2)的圆M 上一点,圆M 与x 轴、y 轴的交点(非原点)分别为S ,T ,则|PS |·|PT |的最大值为( )A .25B .50C .75D .10037.若过点P (2,1)的直线l 与圆C :x 2+y 2+2x -4y -7=0相交于两点A ,B ,且∠ACB =60°(其中C 为圆心),则直线l 的方程是( )A .4x -3y -5=0B .x =2或4x -3y -5=0C .4x -3y +5=0D .x =2或4x -3y +5=038.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ―→+OB ―→|≥33|AB ―→|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)39.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝⎛⎭⎫y ±332=43B .x 2+⎝⎛⎭⎫y ±332=13C.⎝⎛⎭⎫x ±332+y 2=43D.⎝⎛⎭⎫x ±332+y 2=13 40.在平面直角坐标系xOy 中,若圆(x -2)2+(y -2)2=1上存在点M ,使得点M 关于x 轴的对称点N 在直线kx +y+3=0上,则实数k 的最小值为________.41.直线x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 垂线与x 轴交于C ,D 两点,则|CD |=__.。
高考数学 必看之知识点总结 直线和圆的方程 试题
智才艺州攀枝花市创界学校高中数学第七章-直线和圆的方程 考试内容:直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的交角.点到直线的间隔.用二元一次不等式表示平面区域.简单的线性规划问题.曲线与方程的概念.由条件列出曲线方程.圆的HY 方程和一般方程.圆的参数方程.考试要求:〔1〕理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件纯熟地求出直线方程.〔2〕掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的间隔公式可以根据直线的方程判断两条直线的位置关系.〔3〕理解二元一次不等式表示平面区域.〔4〕理解线性规划的意义,并会简单的应用.〔5〕理解解析几何的根本思想,理解坐标法.〔6〕掌握圆的HY 方程和一般方程,理解参数方程的概念。
理解圆的参数方程.§07.直线和圆的方程知识要点一、直线方程.1.直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或者重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤.注:①当 90=α或者12x x =时,直线l 垂直于x 轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2.直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+by a x . 注:假设232--=x y 是一直线的方程,那么这条直线的方程是232--=x y ,但假设)0(232≥--=x x y 那么不是这条线.附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,假设b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点〔0,b 〕的直线束.②当k 为定值,b 变化时,它们表示一组平行直线.3.⑴两条直线平行:1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线.②在1l 和2l 的斜率都存在的前提下得到的.因此,应特别注意,抽掉或者无视其中任一个“前提〞都会导致结论的错误.〔一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,那么1l ∥212k k l =⇔,且21b b ≠或者21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21C C ≠〕推论:假设两条直线21,l l 的倾斜角为21,αα那么1l ∥212αα=⇔l .⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,那么有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在.②0121=⇔⊥k l l ,且2l 的斜率不存在或者02=k ,且1l 的斜率不存在.〔即01221=+B A B A 是垂直的充要条件〕4.直线的交角:⑴直线1l 到2l 的角〔方向角〕;直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当 90≠θ时21121tan k k k k +-=θ. ⑵两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当 90≠θ,那么有21121tan k k k k +-=θ. 5.过两直线⎩⎨⎧=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内〕6.点到直线的间隔:⑴点到直线的间隔公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的间隔为d ,那么有2200B A CBy Ax d +++=.注:1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的间隔公式:21221221)()(||y y x x P P -+-=.特例:点P(x,y)到原点O 的间隔:||OP = 2. 定比分点坐标分式。
2024年高考数学---直线和圆
D 2
,
E 2
,半径为
1)圆的一般方程的形式特点:
①x2和y2的系数相等且大于0.
②没有含xy的二次项.
③A=C≠0且B=0是二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的必要
不充分条件. 2)已知P(x1,y1),Q(x2,y2),则以PQ为直径的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)
例1 已知△ABC的一个顶点A(2,-4),且∠B,∠C的平分线所在直线的方
程分别为x+y-2=0,x-3y-6=0,则BC边所在直线的方程为
.
解析 由角平分线的性质知点A关于∠B,∠C的平分线所在直线的对称
点均在直线BC上,设点A关于直线x-3y-6=0的对称点为A1(x1,y1),
则有
2)范围:全体实数R.
3)斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为kP1P2 =
y2 y1 x2 x1 .
3.直线方程的形式
名称 点斜式 斜截式 两点式 截距式
一般式
条件
方程
斜率k与点(x0,y0) 斜率k与直线在y轴上的截距b
y-y0=k(x-x0) y=kx+b
k2 1
3
切线方程为-
4 3
x-y-4×
4 3
+3=0,即4x+3y-25=0.综上可知,过点Q的圆M的
切线方程为x=4或4x+3y-25=0.
∵|QM|= (4 1)2 (3 2)2 = 10 ,∴过点Q的圆M的切线长为 | QM |2 r2 =
10 9 =1.
历年高三数学高考考点之直线与圆必会题型及答案
历年高三数学高考考点之<直线与圆>必会题型及答案体验高考1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x +y +5=0或2x +y -5=0 B.2x +y +5=0或2x +y -5=0 C.2x -y +5=0或2x -y -5=0 D.2x -y +5=0或2x -y -5=0 答案 A解析 设所求直线方程为2x +y +c =0,依题意有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0,故选A.2.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |等于( ) A.26B.8C.46D.10 答案 C解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A ,B ,C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以|MN |=|y 1-y 2|=46,选C.3.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A.-53或-35B.-32或-23C.-54或-45D.-43或-34答案 D解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k , 则反射光线所在直线的方程为y +3=k (x -2), 即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34,故选D.4.已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离为______. 答案255解析 d =|1+1|22+12=255. 5.已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 答案 4解析 设AB 的中点为M ,由题意知, 圆的半径R =23,|AB |=23, 所以|OM |=3,解得m =-33, 由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0), 所以|CD |=4.高考必会题型题型一 直线方程的求法与应用例1 (1)若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线的方程为( ) A.2x +y -3=0 B.x -2y +1=0 C.x +2y -3=0 D.2x -y -1=0答案 D解析 由题意知圆心C (3,0),k CP =-12.由k CP ·k MN =-1,得k MN =2,所以弦MN 所在直线的方程是2x -y -1=0.(2)已知△ABC 的顶点A (3,-1),AB 边上的中线所在直线方程为6x +10y -59=0,∠B 的平分线所在直线方程为x -4y +10=0,求BC 边所在直线的方程. 解 设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:6·4y 1-72+10·y 1-12-59=0,y 1=5,∴B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′),则有⎩⎪⎨⎪⎧x ′+32-4·y ′-12+10=0,y ′+1x ′-3·14=-1⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴y -57-5=x -101-10,故BC 边所在直线的方程是2x +9y -65=0. 点评 (1)两条直线平行与垂直的判定①若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1; ②判定两直线平行与垂直的关系时,如果给出的直线方程中存在字母系数,不仅要考虑斜率存在的情况,还要考虑斜率不存在的情况. (2)求直线方程的常用方法①直接法:直接选用恰当的直线方程的形式,写出结果;②待定系数法:先由直线满足的一个条件设出直线方程,使方程中含有一个待定系数,再由题给的另一条件求出待定系数.变式训练1 已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0. (1)求直线l 的方程;(2)求直线l 关于原点O 对称的直线方程.解 (1)由⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0解得⎩⎪⎨⎪⎧x =-2,y =2.所以点P 的坐标是(-2,2),又因为直线x -2y -1=0, 即y =12x -12的斜率为k ′=12,由直线l 与x -2y -1=0垂直可得k l =-1k ′=-2, 故直线l 的方程为:y -2=-2(x +2),即2x +y +2=0.(2)直线l 的方程2x +y +2=0在x 轴、y 轴上的截距分别是-1与-2,则直线l 关于原点对称的直线在x 轴、y 轴上的截距分别是1与2, 所求直线方程为x 1+y2=1,即2x +y -2=0.题型二 圆的方程例2 (1)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.①圆C 的标准方程为________________.②圆C 在点B 处的切线在x 轴上的截距为________.答案 ①(x -1)2+(y -2)2=2 ②-2-1解析 ①由题意,设圆心C (1,r )(r 为圆C 的半径),则r 2=⎝ ⎛⎭⎪⎫|AB |22+12=2,解得r = 2.所以圆C 的方程为(x -1)2+(y -2)2=2.②方法一 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),所以直线BC 的斜率为k BC =-1,所以过点B 的切线方程为y -(2+1)=x -0,即y =x +(2+1). 令y =0,得切线在x 轴上的截距为-2-1.方法二 令x =0,得y =2±1,所以点B (0,2+1).又点C (1,2),设过点B 的切线方程为y -(2+1)=kx ,即kx -y +(2+1)=0.由题意,得圆心C (1,2)到直线kx -y +(2+1)=0的距离d =|k -2+2+1|k 2+1=r =2,解得k =1.故切线方程为x -y +(2+1)=0.令y =0,得切线在x 轴上的截距为-2-1.(2)已知圆C 经过点A (2,-1),并且圆心在直线l 1:y =-2x 上,且该圆与直线l 2:y =-x +1相切. ①求圆C 的方程;②求以圆C 内一点B ⎝ ⎛⎭⎪⎫2,-52为中点的弦所在直线l 3的方程. 解 ①设圆的标准方程为(x -a )2+(y -b )2=r 2,则⎩⎪⎨⎪⎧(2-a )2+(-1-b )2=r 2,b =-2a ,|a +b -1|2=r ,解得⎩⎨⎧a =1,b =-2,r = 2.故圆C 的方程为(x -1)2+(y +2)2=2. ②由①知圆心C 的坐标为(1,-2), 则k CB =-52-(-2)2-1=-12.设直线l 3的斜率为k 3,由k 3·k CB =-1,可得k 3=2. 故直线l 3的方程为y +52=2(x -2),即4x -2y -13=0.点评 求圆的方程的两种方法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数.变式训练2 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),连接BN . 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 题型三 直线与圆的位置关系、弦长问题例3 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A.2B.42C.6D.210 答案 C解析 根据直线与圆的位置关系求解.由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6.(2)已知圆C :x 2+y 2-2x +4y -4=0.①写出圆C 的标准方程,并指出圆心坐标和半径大小;②是否存在斜率为1的直线m ,使m 被圆C 截得的弦为AB ,且OA ⊥OB (O 为坐标原点).若存在,求出直线m 的方程;若不存在,请说明理由. 解 ①圆C 的标准方程为(x -1)2+(y +2)2=9, 则圆心C 的坐标为(1,-2),半径为3. ②假设存在这样的直线m , 根据题意可设直线m :y =x +b .联立直线与圆的方程⎩⎪⎨⎪⎧x 2+y 2-2x +4y -4=0,y =x +b得2x 2+2(b +1)x +b 2+4b -4=0, 因为直线与圆相交,所以Δ>0, 即b 2+6b -9<0,且满足x 1+x 2=-b -1,x 1x 2=b 2+4b -42,设A (x 1,y 1),B (x 2,y 2), 则y 1=x 1+b ,y 2=x 2+b ,由OA ⊥OB 得OA →·OB →=x 1x 2+y 1y 2=0,所以x 1x 2+(x 1+b )(x 2+b )=2x 1x 2+b (x 1+x 2)+b 2=0, 即b 2+3b -4=0得b =-4或b =1, 且均满足b 2+6b -9<0,故所求的直线m 存在,方程为y =x -4或y =x +1. 点评 研究直线与圆位置关系的方法(1)研究直线与圆的位置关系的最基本的解题方法为代数法,将几何问题代数化,利用函数与方程思想解题.(2)与弦长有关的问题常用几何法,即利用圆的半径r ,圆心到直线的距离d 及半弦长l2,构成直角三角形的三边,利用其关系来处理.变式训练3 已知以点C (t ,2t)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且|OC |2=t 2+4t2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12|OA |·|OB |=12×|4t |×|2t |=4,即△OAB 的面积为定值.(2)解 ∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),|OC |=5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),|OC |=5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.高考题型精练1.已知x ,y 满足x +2y -5=0,则(x -1)2+(y -1)2的最小值为( ) A.45B.25C.255 D.105 答案 A解析 (x -1)2+(y -1)2表示点P (x ,y )到点Q (1,1)的距离的平方.由已知可得点P 在直线l :x +2y -5=0上,所以|PQ |的最小值为点Q 到直线l 的距离,即d =|1+2×1-5|1+22=255, 所以(x -1)2+(y -1)2的最小值为d 2=45.故选A.2.“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案 A解析 由l 1⊥l 2得2(m +1)(m -3)+2(m -3)=0, ∴m =3或m =-2.∴m =3是l 1⊥l 2的充分不必要条件.3.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A.32B.22C.33D.4 2 答案 A解析 依题意知AB 的中点M 的集合是与直线l 1:x +y -7=0和l 2:x +y -5=0的距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离, 设点M 所在直线的方程为l :x +y +m =0, 根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.4.(2016·山东)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切B.相交C.外切D.相离 答案 B解析 ∵圆M :x 2+(y -a )2=a 2, ∴圆心坐标为M (0,a ),半径r 1=a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2. ∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1,∴|MN |=(1-0)2+(1-2)2=2,r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B.5.与圆x 2+y 2=1和圆x 2+y 2-8x +7=0都相切的圆的圆心轨迹是( ) A.椭圆B.椭圆和双曲线的一支C.双曲线和一条直线(去掉几个点)D.双曲线的一支和一条直线(去掉几个点) 答案 D解析 设所求圆圆心为M (x ,y ),半径为r , 圆x 2+y 2-8x +7=0⇒(x -4)2+y 2=9,圆心设为C (4,0),由题意得当动圆与两定圆外切时, 即|MO |=r +1,|MC |=r +3,从而|MC |-|MO |=2<|OC |, 因此为双曲线的一支,当动圆与两定圆一个外切一个内切时, 必切于两定圆切点,即M 必在x 轴上, 但需去掉O ,C 及两定圆切点,因此选D.6.(2015·课标全国Ⅱ)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53B.213 C.253 D.43 答案 B解析 由点B (0,3),C (2,3),得线段BC 的垂直平分线方程为x =1,① 由点A (1,0),B (0,3),得线段AB 的垂直平分线方程为y -32=33⎝⎛⎭⎪⎫x -12,②联立①②,解得△ABC 外接圆的圆心坐标为⎝ ⎛⎭⎪⎫1,233,其到原点的距离为12+⎝ ⎛⎭⎪⎫2332=213.故选B.7.(2016·山东)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________. 答案 34解析 由已知得,圆心(5,0)到直线y =kx 的距离小于半径,∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34.8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.9.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有三个点到直线12x -5y +c =0的距离为1,则实数c 的值为________. 答案 ±13解析 因为圆心到直线12x -5y +c =0的距离为|c |13,所以由题意得|c |13=1,c =±13.10.已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是________________. 答案 (-24,24) 解析 因为已知直线过点(-2,0),那么圆的方程x 2+y 2=2x 配方为(x -1)2+y 2=1,表示的是圆心为(1,0),半径为1的圆, 设过点(-2,0)的直线的斜率为k , 则直线方程为y =k (x +2), 则点到直线距离等于圆的半径1, 有d =|k -0+2k |k 2+1=1,化简得8k 2=1, 所以k =±24, 然后可知此时有一个交点,那么当满足题意的时候, 可知斜率的取值范围是(-24,24),故答案为(-24,24). 11.已知过点A (0,1),且方向向量为a =(1,k )的直线l 与圆C :(x -2)2+(y -3)2=1相交于M ,N 两点.(1)求实数k 的取值范围;(2)若O 为坐标原点,且OM →·ON →=12,求k 的值.解 (1)∵直线l 过点A (0,1)且方向向量为a =(1,k ),∴直线l 的方程为y =kx +1. 由|2k -3+1|k 2+1<1,得4-73<k <4+73.(2)设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入方程(x -2)2+(y -3)2=1,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2,∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8=12,∴4k (1+k )1+k 2=4,解得k =1.12.已知圆M ∶x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程;(2)求四边形QAMB 面积的最小值;(3)若|AB |=423,求直线MQ 的方程.解 (1)设过点Q 的圆M 的切线方程为x =my +1,则圆心M 到切线的距离为1,∴|2m +1|m 2+1=1,∴m =-43或0,∴切线QA ,QB 的方程分别为3x +4y -3=0和x =1.(2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA | =|MQ |2-|MA |2=|MQ |2-1 ≥|MO |2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于点P ,则MP ⊥AB .∵MB ⊥BQ ,∴|MP |=1-⎝ ⎛⎭⎪⎫2232=13.在Rt △MBQ 中,|MB |2=|MP |·|MQ |,即1=13|MQ |,∴|MQ |=3.设Q (x ,0),则x 2+22=9,∴x =±5,∴Q (±5,0),∴直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.。
高考大题专项板块5-1 直线与圆综合问题
(1)当 12x x =时,直线与x 轴垂直,直线的倾斜角90,斜率不存在;(2)斜率公式与两点坐标的顺序无关,横纵坐标的次序可以同时调换;0,直线与x 121l k ⇔=3、两条直线垂直的一般结论为:12121l l k k ⊥⇔⋅=−或一条直线的斜率不存在,同时另一条直线的斜率等于零.、直线方程过点00(,)P x y 和斜率k (已知一点+斜率):00()y y k x x −=− 的斜率为k 且在y 轴上的纵截距为b (已知斜率+纵截距):y kx b =+x 轴上的截距为a ,在y 轴上的截距为b :1x ya b+= 直线的一般式方程:0Ax By C ++= )平行直线系方程m 为参数且)垂直直线系方程0垂直的直线系方程都可表示为12l ),根据12//l l k ⇒到两直线的距离相等1d =b x a −−2,2(4)直线关于直线对称问题4.1直线1l :1110A x B y C ++=(22110A B +≠)和l :0Ax By C ++=(22220A B +≠)相交,求1l 关于直线l 的对称直线2l ①求出1l 与l 的交点P②在1l 上任意取一点M (非P 点),求出M 关于直线l 的对称点N ③根据P ,N 两点求出直线2l4.2直线1l :1110A x B y C ++=(22110A B +≠)和l :0Ax By C ++=(22220A B +≠)平行,求1l 关于直线l 的对称直线2l ①21k k =②在直线1l 上任取一点M ,求点M 关于直线l 的对称点N ,利用点斜式求直线2l .8、圆的标准方程我们把方程222()()x a y b r −+−=称为圆心为(,)A a b 半径为r 的圆的标准方程. 9、圆上的点到定点的最大、最小距离 设A 的方程222()()x a y b r −+−=,圆心(,)A a b ,点M 是A 上的动点,点P 为平面内一点;记||d PA =; ①若点P 在A 外,则max ||PM d r =+;min ||PM d r =− ②若点P 在A 上,则max ||2PM r =;min ||0PM =在A内,则设1C :(x a −2C :2(x a −联立作差得到:(3)公共弦长的求法代数法:将两圆的方程联立,解出两交点的坐标,利用两点间的距离公式求其长.几何法:求出公共弦所在直线的方程,利用勾股定理解直角三角形,求出弦长.【详解】10y k −−=恒过定点()1,1A −,且12MA k =−,NA k =C.2022·广东·深圳中学高二期中)已知点()2,1A −−,(3,0B ][)3,+∞()1,2Q −,则),y 在线段4.(2022·四川省泸县第四中学高二期中(文))已知直线242y x =−+有两个不同的交点,则实数【答案】30,3⎡⎫⎪⎢⎪⎣⎭【详解】由题意,将已知转化为直线直线()4y k x =+过定点(4,0)P −当直线()4y k x =+,即直线4kx y −+则有2421kk =+,解得213k =,k =±结合图形可得当直线与圆有两个不同的交点时,则有3⎡⎫)1320x y ++=的法向量(11,3n a =−的法向量()21,n b =两直线垂直得121n n a ⋅=−,即3a b +(133b aa b a b ⎫++++⎪⎭313,2b −=时取等号. 23+.1,2,半径0,,解得:根据将军饮马模型,作出点A 关于x 则()()()22min 3112f x A B =++'=+令0y =,则53x =,故当53x =时,故选:A.3.(2022·北京工业大学附属中学高二期中)著名数学家华罗庚曾说过:觉,形少数时难入微.”事实上,有很多代数问题可以转化为几何问题加以解决,如:)()3,+∞r,半径=5的某条半径的中点并垂直于该半径时,圆M上恰有,又对称点在直线故答案为:2.13.(2022·上海市嘉定区第二中学高二期中)已知,则ABC 的外接圆的方程是【详解】解:设ABC 外接圆的方程为224D E +−2833410E F E F E F ++++++=所以ABC 的外接圆方程为故答案为:2282x y x −−.(2022·江西上,点()2,3−在M 上,则M 的方程为【答案】(()21113x y −+−20320x y x y +−⎧⎨−+=⎩解得M设M的方程为所以M的方程为故答案为:(x.(2022·黑龙江到直线l:kx=上,则ABP面积的取值范围是(C.⎡⎣y=,令【详解】直线,得2点的距离为ABP 的高又圆的圆心为()2,1−,半径为2123221−=+的最大值为3222+则ABP 面积为最小值为12⨯,所以ABP 面积的取值范围为故选:D..(2022·河南民权县第一高级中学模拟预测(文))已知圆24y y +−上一动点,点A()22112BN =+−=故答案为:21−7.(2022·北京市第五十七中学高三阶段练习)若点上,过点P 作圆:(C x90,因此取得最小值,而点10x −≥当1x ≤−时,原方程化为2(1)(x −+所以方程2(1)(x −+有(1,1)P −,()1,1Q ,(3,1)D −,(3,1)E 当A 、B 分别与图中D 、E 两点重合时,当A 、B 分别与图中F 、G 、K 、25,2022·贵州·高三阶段练习(文))已知两点,且2⋅=−,若弦OA OB___________.16N−【详解】设点(3,4)由2OA OB ⋅=−⇒由切线性质知,PA AB ⊥,则切线长22(2PA PB AB =−=故选: C .22=+=5229, AC BC 所以2AB AC BC=−故选:B.【详解】22231x y的切线l221243101,所以,点当直线l斜率不存在时,直线l的方程为此时,圆心到直线l的距离2d=−214y x与直线【答案】53 124,【详解】直线l过点A(2,214y x的图象是以(径的半圆,即23221k k −=+,解得512k =当直线l 过点B (-2,1)时,直线的取值范围为53124,.)由直线方程()()211740,m x m y m m +++−−=∴70,40x y y +−=+−=解得定点()3,1P ,()()22311255PC =−+−=<,P ∴在圆内,无论m 取什么实数,直线l 与圆C 恒交于两点得证)由弦长公式22222AB r d r =−≥−1,2,f x,当x<)+∞上单调递增,在,232MC≥,则在ABC中,由余弦定理可得:∠=cos ACB故选:C.(2022·四川C后,与圆(:()4θ=∈R ,过圆,则PE PF ⋅的最小值是(C 的圆心为(1,0)而421>+,所以两圆相离,cos PE PF PE PF ⋅=∠,要使PE PF ⋅取得最小值,需要PE 和PF 越小,且越大才能取到,设直线CM 和圆M 交于两点(如下图),则PE PF ⋅的最小值是GE GF ⋅,222(42)GE GF GC EC ==−=−−则21cos 12sin 2EGF EGC ∠=−∠=, 所以3cos 2GE GF GE GF EGF ⋅=∠=,故选:C.11.(2022·江苏·南京市天印高级中学高二阶段练习)若圆关于直线30x y +−=对称,圆为坐标原点,则圆C 和圆C.AB AC⋅的取值范围是−+=,y2)30=,因为AB AC⋅|AB,即AB AC ⋅的取值范围是PMAS=取得最小值,则2PA MP =−∴当MP ⊥12d −−=此时S 四边形对于CD ,设当直线y x b =+与21,x y =−−12b =,解得2b =−,2b =(舍去).满足题意的直线y x b =+夹在y 21b ∴−≤−<.(12d d PA PB +=+120,求实数120,且30,=,r到直线32sin301==,所以实数的值为或。
(晨鸟)2020年高考理科数学《直线与圆》题型归纳与训练
8 ( 1) nm 0
m4
m4
或
.
n2
n2
即 m 4 , n 2 时或 m 4, n 2 时, l1 ∥ l 2 .
(3)当且仅当 2m
8m
0 ,即 m
0 时, l1 ⊥ l 2.又
n 8
1 ,∴ n 8 .
即 m 0 , n 8 时, l1⊥ l2 ,且 l1 在 y 轴上的截距为- 1.
【易错点】 忽略对 m 0 的情况的讨论
【答案】( 1) y 的最大值为 3 ,最小值为 x
(2) y x 的最大值为 2 6 ,最小值为
3. 2 6.
2
【解析】(1) 原方程化为 x 2 当直线 y kx 与圆相切时,斜率 为 3 ,最小值为 3 .
2
y
3 ,表示以点 2,0 为圆心,以 3 为半径的圆. 设 y
k ,即 y kx
,
x
k 取最大值和最小值,此时
得点 P 的坐标为 - 3 ,3 . 10 5
【易错点】 没有分类讨论 【思维点拨】 考查用点斜式、斜截式求直线的方法,利用分类讨论思想来解决问题 题型四 定点定值轨迹问题 例 1已知 t∈ R,圆 C: x2+y 2-2tx- 2t2y+ 4t-4= 0.
(1)若圆 C的圆心在直线 x-y+ 2= 0上,求圆 C的方程 .
=- 5.
综上, AM ·AN 与直线 l 的倾斜角无关,且 AM ·AN =- 5.
【易错点】 忽略对斜率不存在情况的讨论
【思维点拨】 一般地,涉及到圆的切线或考虑其弦长问题时,若需要求直线的方程,则务必要全面考虑问
题,即要考虑直线的斜率存在与不存在两种情况
.
2020届高考理数二轮复习常考题型大通关(全国卷):第11题 考点一 直线与圆
第11题 考点一 直线与圆1、P 为圆221x y +=上任一点,则P 与点(3,4)M 的距离的最小值是( ) A .1B .4C .5D .62、已知圆22:40C x y mx ++-=上存在两点关于直线30x y -+=对称,则实数m 的值为( ) A.8 B.-4 C.6 D.无法确定3、若x y 、满足2224200x y x y +--=+,则22x y +的最小值是( ) A 55B .55C .30105-D .无法确定4、直线20x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( ) A .[2,6]B .[4,8]C .[2,32]D .[22,32]5、在平面直角坐标系中,记d 为点()cos ,sinP θθ到直线20x my --=的距离,当,m θ变化时,d 的最大值为( ) A.1B.2C.3D.46、在圆225x y x +=内,过点53,22⎛⎫⎪⎝⎭有n 条弦的长度成等差数列,最小弦长为数列的首项1a ,最大弦长为n a ,若公差11,63d ⎡⎤∈⎢⎥⎣⎦,那么n 的取值集合为( )A.4,5,{6,7}B.{4,5,6}C.3,4,{5,6}D.3,4,5{,6,7}7、过点(1,)1-的圆2224200x y x y +---=的最大弦长与最小弦长的和为( ) A. 17 B. 18 C. 19 D. 208、设直线过点()0,a ,其斜率为1,且与圆222x y +=相切,则a 的值为( ) A.B .2±C .±D .4±9、已知圆22220x y x y a +-++=截直线40x y +-=所得弦的长度小于6,则实数a 的取值范围为( )A.(2+ B .()2- C .()15,-+∞D .()15,2-10、已知圆C 与直线0x y -=及40x y --=都相切,圆心在直线0x y +=上,则圆C 的方程为( )A .22(1)(1)2x y -++=B .22(1)(1)2x y ++-= C .22(1)(1)2x y -+-=D .22(1)(1)2x y +++= 11、若倾斜角为60︒的直线l 与圆22:630C x y y +-+=交于,M N 两点,且30CMN ∠=︒,则直线l 的方程为( )A 3360x y -++=3360x y -+=B 3260x y -+=3260x y -+-C 360x y -360x y --=D 3160x y -+=3160x y -+=12、若直线30x y a -+=过圆22240x y x y ++-=的圆心,则a 的值为( ) A.5B.3C.1D.1-13、已知圆22:1C x y +=,点P 为直线240x y +-=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点( )A . 11(,)24B . 11(,)42C . 3(D . 14、已知圆224x y +=与圆22260x y y +--=,则两圆的公共弦长为( )AB .C.2D.115、若圆2211:C x y +=与圆222680C :x y x y m +--+=外切,则m =( )A .21B .19C .9D .-11答案以及解析1答案及解析: 答案:B解析:因为(3,4)M 在圆221x y +=外,且圆心与(3,4)M 5=,又P 为圆221x y +=上任一点,所以P 与点(3,4)M 的距离的最小值等于圆心与M 的距离减去半径,因此最小值为514-=. 故选B2答案及解析: 答案:C解析:圆上存在关于直线30x y -+=对称的两点 则30x y -+=过圆心,02m ⎛⎫- ⎪⎝⎭即302m-+= ∴ 6m =3答案及解析: 答案:C解析:配方得22122)5()(x y ++=-,圆心坐标为(1,)2-,半径5,r =22x y +小值为半径减去原点到圆心的距离55-故可求22x y +的最小值为305-故选C .4答案及解析: 答案:A解析:∵直线20x y ++=分别与x 轴、y 轴交于,A B 两点∴()()2,0,0,2A B --,则AB =∵点P 在圆()2222x y -+=上∴圆心为()2,0,则圆心到直线距离1d ==故点P 到直线20x y ++=的距离的范围为则[]2212,62ABP S AB d =∈△故选A.5答案及解析: 答案:C解析:∵22cos sin 1θθ+=,∴P 为单位圆上一点,而直线20x my --= 过点()2,0A ,所以d 的最大值为1213OA +=+=,选C6答案及解析: 答案:A解析:圆的标准方程为2252524x y ⎛⎫-+=⎪⎝⎭,∴圆心为5,02⎛⎫ ⎪⎝⎭,半径52r =,则最大的弦为直径,即5n a =,当圆心到弦的距离为32,即点53,22⎛⎫⎪⎝⎭为垂足时,弦长最小为4,即14a =,由()11n a a n d =+-得1541111n a a d n n n --===---, ∵1163d ≤≤,∴111613n ≤≤-,即316n ≤-≤, ∴47n ≤≤,即4,5,6,7n =,选A7答案及解析: 答案:B解析:圆2224200x y x y +---=的圆心(1,2)C , 半径14168052r ++=, 设点(1,1)A -,3AC r =<,∴点A 在圆内, ∴最大弦长为210r =,最小弦长为8=,∴过点(1,1)-的圆2224200x y x y +---=的最大弦长与最小弦长的和为10818+=.8答案及解析: 答案:B解析:∵直线过点()0,a 且斜率为1,∴设直线为l ,得其方程为y x a =+,即0x y a -+=∵222x y +=的圆心为()0,0C ,半径r =由直线l 与圆相切,可得点C 到直线l 的距离等于半径,=2a =±故选:B9答案及解析: 答案:D解析:由题意知,圆的方程为:()()22112x y a -++=-,则圆心为()1,1-2a -则:20a ->,解得:2a <圆心到直线40x y +-=的距离为:114222d --==2286a ∴--<,解得:15a >-综上所述:()15,2a ∈- 本题正确选项:D10答案及解析: 答案:A 解析:∵圆心在直线x +y =0上,∴设所求圆的方程为222()()x a y a r -++=,r =,解得1,a r ==∴所求圆的方程为22(1)(1)2x y -++=11答案及解析: 答案:A解析:设直线0l y m -+=,由30CMN ∠=︒,且圆的半径r C 到直线l的距离为32m d -==,解得3m =,故直线l 的方程为30y -++=或30y -+=.12答案及解析: 答案:A解析:圆22240x y x y ++-=的标准方程为()()22125x y ++-= 圆心坐标为()1,2-,若直线30x y a -+=经过圆心,则3(1)20a ⨯--+=解得5a =,综上所述,答案选择A13答案及解析: 答案:B解析:设(42,)P m m -,,PA PB ∴是圆C 的切线,,CA PA CB PB ∴⊥⊥AB ∴是圆C 与以PC 为直径的两圆的公共弦,可得以PC 为直径的圆的方程为2222[(2)]()(2)24m m x m y m --+-=-+① 又221x y +=②①-②得:2(2)1AB m x my -+=,化为41(2)0x m y x -+-=由141042012x x y x y ⎧=⎪-=⎧⎪⇒⎨⎨-=⎩⎪=⎪⎩,可得11(,)42总满足直线方程,即AB 过定点11(,)42,故选B.14答案及解析: 答案:B011+=,圆224x y +=半径为2,由勾股定理求得弦长为=,故选B.15答案及解析: 答案:C解析:易知圆1C 的圆心坐标为()0,0,半径11r =.将圆2C 化为标准方程()()()22342525x y m m -+-=-<,得圆2C 的圆心坐标为()3,4,半径)225r m =<.由两圆相外切得121215||C C r r =+==,解方程得9m =.故选C .答案:C。
高考理数复习---直线、圆的综合问题考点与例题PPT课件
则圆心C到切线的距离d=|k-2k+2+1-1 3k|=r=2,解得k=34. ∴切线方程为y-1=34(x-3),即3x-4y-5=0. 综上可得,过点M的圆C的切线方程为x-3=0或3x-4y-5=0. ∵|MC|= (3-1)2+(1-2)2= 5, ∴过点M的圆C的切线长为 |MC|2-r2= 5-4=1. 当切线为x=3时,切线长为1.
4
(2)∵(3-1)2+(1-2)2=5>4, ∴点M在圆C外部. 当过点M的直线斜率不存在时,直线方程为x=3, 即x-3=0. 又点C(1,2)到直线x-3=0的距离d=3-1=2=r, 即此时满足题意,所以直线x=3是圆的切线. 当切线的斜率存在时,设切线方程为y-1=k(x-3), 即kx-y+1-3k=0,
(2)当直线AB⊥x轴时,x轴平分∠ANB.
当直线AB的斜率存在时,设直线AB的方程为y=k(x-1),N(t,
0),A(x1,y1),B(x2,y2),
x2+y2=4 由y=k(x-1)
得,(k2+1)x2-2k2x+k2-4=0,
所以x1+x2=k22+k21,x1x2=kk22- +41.
18
若x轴平分∠ANB,则kAN=-kBN⇒x1y-1 t+x2y-2 t=0⇒k(xx11--t1) +k(xx22--t1)=0⇒2x1x2-(t+1)(x1+x2)+2t=0⇒2(kk22+-14)- 2k2(k2+t+11)+2t=0⇒t=4,
所以当点N为(4,0)时,能使得∠ANM=∠BNM总成立.
19
本例是探索性问题,求解的关键是把几何问题代数化, 即先把条件“x 轴平分∠ANB”等价转化为“直线斜率的关系:kAN= -kBN”,然后借助方程思想求解.
20
已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y -3)2=1交于M,N两点.
高考数学总复习历年考点知识与题型专题讲解18---直线与圆、圆与圆的位置关系(解析版)
高考数学总复习历年考点知识与题型专题讲解直线与圆、圆与圆的位置关系考点一 直线与圆的位置的关系【例1】(2020·林芝市第二高级中学高二期末(文))若直线y b =+与圆221x y +=相切,则b =( )A .3± B .C .2± D .【答案】C【解析】由题得圆的圆心坐标为(0,0)1,2b =∴=±.故选C 【举一反三】1.(2018·福建高一期末)若直线 :1(0)l y kx k =+<与圆22:4230C x x y y ++-+=相切,则直线l 与圆22:(2)3D x y -+=的位置关系是( )A .相交B .相切C .相离D .不确定【答案】A【解析】圆C 的方程可化为()()22212x y ++-=,故圆心为()2,1C -,半径C r =.由于直线l :10kx y -+=和圆C=k 0<解得1k =-,所以直线l 的方程为10x y --+=,即10x y +-=.圆D 的圆心为()2,0D,半径为D r =D 到直线l2=<l 与圆D 相交.故选:A 2.(2020·包头市田家炳中学高二期中)直线y =x ﹣1与圆x 2+y 2=1的位置关系为( )A .相切B .相离C .直线过圆心D .相交但直线不过圆心【答案】D【解析】圆x 2+y 2=1的圆心坐标为(0,0)O ,半径为1,因为圆心(0,0)O 到直线y =x ﹣11=<, 所以直线y =x ﹣1与圆x 2+y 2=1相交,因为001≠-,所以直线y =x ﹣1与圆x 2+y 2=1的位置关系为相交但直线不过圆心. 故选:D3.(2020·辉县市第二高级中学高二期中(文))“点(),a b 在圆221x y +=内”是“直线10ax by ++=与圆221x y +=相离”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】若点(),a b 在圆221x y +=内,则221a b +<则圆心O 到直线10ax by ++=的距离1d =>则直线10ax by ++=与圆221x y +=相离反之直线10ax by ++=与圆221x y +=相离,则圆心O 到直线10ax by ++=的距离1d =>,即221a b +<,则点(),a b 在圆221x y +=内所以“点(),a b 在圆221x y +=内”是“直线10ax by ++=与圆221x y +=相离”的充分必要条件故选:C考点二 弦长【例2】(2020·全国高三其他(文))直线21y x =+被圆221x y +=截得的弦长为( )A .1BC .5D 【答案】C【解析】圆心()0,0到直线21y x =+,所求弦长为=故选:C .【举一反三】1.(2020·河南濮阳。
2020年高考理科数学《直线与圆》题型归纳与训练
2020年高考理科数学《直线与圆》题型归纳与训练【题型归纳】题型一直线方程、两直线的位置关系例1已知两直线1:80l mx y n ++=和2:210l x my +-=.试确定m 、n 的值,使: (1)1l 与2l 相交于点(),1P m -; (2)1l ∥2l ;(3)1l ⊥2l ,且1l 在y 轴上的截距为-1. 【答案】(1)1m =,7n =.(2)4m =,2n ≠-时或4m =-,2n ≠时,1l ∥2l . (3)0m =,8n =【解析】(1)由题意得280210m n m n ⎧-+=⎨--=⎩,解得1m =,7n =.(2)当0m =时,显然1l 不平行于2l ;当0m ≠时,由821m nm =-≠-,得⎩⎨⎧-≠=⇒⎩⎨⎧≠--⨯=⨯-⋅240)1(8028n m nm m m 或⎩⎨⎧≠-=24n m . 即4m =,2n ≠-时或4m =-,2n ≠时,1l ∥2l .(3)当且仅当280m m +=,即0m =时,1l ⊥2l .又18n-=-,∴8n =.即0m =,8n =时,1l ⊥2l ,且1l 在y 轴上的截距为-1.【易错点】忽略对0m =的情况的讨论【思维点拨】遇到直线类题型,首先要注意特殊情况如斜率不存在时或0k =时,并且对于直线平行和垂直时与12A A 和12B B 间的关系要熟练记忆。
例2如图,设一直线过点(-1,1),它被两平行直线l 1:x +2y -1=0,l 2:x +2y -3=0所截的线段的中点在直线l 3:x -y -1=0上,求其方程.【答案】2750x y +-=.【解析】与1l 、2l 平行且距离相等的直线方程为220x y +-=.设所求直线方程为()()2210x y x y λ+-+--=,即()()1220x y λλλ++---=.又直线过()1,1A -,∴()()()112120λλλ+-+-⋅--=.解13λ=-.∴所求直线方程为2750x y +-=.2【易错点】求错与1l 、2l 平行且距离相等的直线方程【思维点拨】本题的关键在于求到1l 、2l 平行且距离相等的直线方程,再利用这条直线求出和第三条支线的交点,从而求解本题.题型二 圆的方程(对称问题、圆的几何性质运用) 例1已知实数x 、y 满足方程22410x y x +-+=.(1)求yx的最大值和最小值; (2)求y x -的最大值和最小值.【答案】(1)yx(2)y x -的最大值为2-+,最小值为2-.【解析】(1)原方程化为()2223x y -+=,表示以点()2,0为圆心,为半径的圆.设yk x=,即y kx =,当直线y kx =与圆相切时,斜率k=k =.故yx 的最大值(2)设y x b -=,即y x b =+,当y x b =+与圆相切时,纵截距b取得最大值和最小值,此时=2b =-.故y x -的最大值为2-,最小值为2--. 【易错点】理解错给定要求结果的含义【思维点拨】正确理解给定结果的含义,在利用题中的条件解决问题。
高三高考数学总复习《直线与圆》题型归纳与汇总
高考数学总复习题型分类汇《直线与圆》篇经典试题大汇总目录【题型归纳】题型一倾斜角与斜率 (3)题型二直线方程 (3)题型三直线位置关系的判断 (4)题型四对称与直线恒过定点问题 (4)题型五圆的方程 (5)题型六直线、圆的综合问题 (6)【巩固训练】题型一倾斜角与斜率 (7)题型二直线方程 (8)题型三直线位置关系的判断 (9)题型四对称与直线恒过定点问题 (10)题型五圆的方程 (11)题型六直线、圆的综合问题 (12)高考数学《直线与圆》题型归纳与训练【题型归纳】题型一 倾斜角与斜率例1 直线l 310y +-=,则直线l 的倾斜角为( )A. 0150B. 0120C. 060D. 030【答案】 A【解析】由直线l 的方程为310y +-=,可得直线的斜率为33-=k ,设直线的倾斜角为[)πα,0∈,则33tan -=α,∴︒=150α. 故选:A .【易错点】基础求解问题注意不要算错【思维点拨】直线方程的基础问题(倾斜角,斜率与方程,注意倾斜角为α为2π,即斜率k 不存在的情况)应对相关知识点充分理解,熟悉熟练例2 已知三点()0,a A 、()7,3B 、()a C 9,2--在一条直线上,求实数a 的值.【答案】2=a 或92=a 【解析】597,35a k a k CB AB +=-= ∵A 、B 、C 三点在一条直线上,∴BC AB k k =,即59735a a +=-,解得2=a 或92=a .题型二 直线方程例1 经过点()1,1M 且在两坐标轴上截距相等的直线是( ).A. 2x y +=B. 1x y +=C. 1x =或1y =D. 2x y +=或x y =【答案】D【解析】若直线过原点,则直线为y x =符合题意,若直线不过原点设直线为1x y m m+=, 代入点()1,1解得2m =,直线方程整理得20x y +-=,故选D .【易错点】截距问题用截距式比较简单,但截距式1=+n y m x 中要求m ,n 均非零。
(完整)高三专题复习:直线与圆知识点及经典例题(含答案),推荐文档
专题:圆的方程、直线和圆的位置关系知识要点】圆的定义: 平面内与一定点距离等于定长的点的轨迹称为圆 一)圆的标准方程形如: (x a )2 (y b )2 r 2 这个方程叫做圆的标准方程 。
王新敞说明: 1、若圆心在坐标原点上,这时 a b 0 ,则圆的方程就是 x 2 y 2 r 2。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要 a,b,r 三个量确定了且 r >0,圆的方程就给定了。
圆的一般方程的特点: (i ) x 2和y 2 的系数相同,不等于零; (ii )没有 xy 这样的二次项。
三)直线与圆的位置关系1、直线与圆位置关系的种类 (1)相离 --- 求距离;2、直线与圆的位置关系判断方法:几何方法主要步骤:(1)把直线方程化为一般式,利用圆的方程求出圆心和半径 (2)利用点到直线的距离公式求圆心到直线的距离(3)作判断 : 当 d>r 时,直线与圆相离;当 d =r 时,直线与圆相切 ;当 d<r 时,直线与圆相交。
代数方法主要步骤:就是说要确定圆的方程,必须具备三个独立的条件王新敞确定 a,b,r ,可以根据 3 个条件,利用 待定系数法 来解决。
将圆的标准方程(x a)2 (y 的方 程都可以写成: x 2 2 y Dx问题: 形 如x 22 y Dx Ey将方程x 22yDx Ey F (1)当 D 2 E 24F 0时,方程D 2E 24F 为半径 的圆。
心以2(2)当 D 2 E 24F 0时,方程点( D , E)22(3)当 D2E 24F 0时, 方程圆的 一般方程的 定义:当 D 2 E 22 2 2 r ,展开可得 x y 2ax 2by 222a b r 0 。
可见,任何一个圆0 的方程的曲线是不是圆? 0左边配方得: (x 与标准方程比较,y 2 Dx Eyy 2 Dx Ey 20 时,方程 x 2 D 2 E D 2)2 (y E 2)D 2E 2 4F )2方程 x 2 y 2 Dx Ey F 0 只有实数解,解为 x0表示以 ( D, E)为圆22DE2,y 2, 所以表示一个F 0 没有实数解,因而它不表示任何图形。
2020年高考理科数学《直线与圆》题型归纳与训练
2020年高考理科数学《直线与圆》题型归纳与训练【题型归纳】题型一直线方程、两直线的位置关系例1已知两直线1:80l mx y n ++=和2:210l x my +-=.试确定m 、n 的值,使: (1)1l 与2l 相交于点(),1P m -; (2)1l ∥2l ;(3)1l ⊥2l ,且1l 在y 轴上的截距为-1. 【答案】(1)1m =,7n =.(2)4m =,2n ≠-时或4m =-,2n ≠时,1l ∥2l . (3)0m =,8n =【解析】(1)由题意得280210m n m n ⎧-+=⎨--=⎩,解得1m =,7n =.(2)当0m =时,显然1l 不平行于2l ;当0m ≠时,由821m nm =-≠-,得⎩⎨⎧-≠=⇒⎩⎨⎧≠--⨯=⨯-⋅240)1(8028n m nm m m 或⎩⎨⎧≠-=24n m . 即4m =,2n ≠-时或4m =-,2n ≠时,1l ∥2l .(3)当且仅当280m m +=,即0m =时,1l ⊥2l .又18n-=-,∴8n =.即0m =,8n =时,1l ⊥2l ,且1l 在y 轴上的截距为-1.【易错点】忽略对0m =的情况的讨论【思维点拨】遇到直线类题型,首先要注意特殊情况如斜率不存在时或0k =时,并且对于直线平行和垂直时与12A A 和12B B 间的关系要熟练记忆。
例2如图,设一直线过点(-1,1),它被两平行直线l 1:x +2y -1=0,l 2:x +2y -3=0所截的线段的中点在直线l 3:x -y -1=0上,求其方程.【答案】2750x y +-=.【解析】与1l 、2l 平行且距离相等的直线方程为220x y +-=.设所求直线方程为()()2210x y x y λ+-+--=,即()()1220x y λλλ++---=.又直线过()1,1A -,∴()()()112120λλλ+-+-⋅--=.解13λ=-.∴所求直线方程为2750x y +-=.2【易错点】求错与1l 、2l 平行且距离相等的直线方程【思维点拨】本题的关键在于求到1l 、2l 平行且距离相等的直线方程,再利用这条直线求出和第三条支线的交点,从而求解本题.题型二 圆的方程(对称问题、圆的几何性质运用) 例1已知实数x 、y 满足方程22410x y x +-+=.(1)求yx的最大值和最小值; (2)求y x -的最大值和最小值.【答案】(1)yx(2)y x -的最大值为2-+,最小值为2-.【解析】(1)原方程化为()2223x y -+=,表示以点()2,0为圆心,为半径的圆.设yk x=,即y k x =,当直线y kx =与圆相切时,斜率k=k =.故yx 的最大值(2)设y x b -=,即y x b =+,当y x b =+与圆相切时,纵截距b取得最大值和最小值,此时=2b =-.故y x -的最大值为2-,最小值为2--. 【易错点】理解错给定要求结果的含义【思维点拨】正确理解给定结果的含义,在利用题中的条件解决问题。
高考数学理科总复习9.1直线方程与圆的方程完美
疑难突破 要使∠OPM=∠OPN,只需直线PM与直线PN的斜率互为相反数.
考点二 圆的方程
1.(2016课标Ⅱ,4,5分)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a= ( )
A.- 4 B.- 3 C. 3 D.2
3
4
答案 A 圆的方程可化为(x-1)2+(y-4)2=4,则圆心坐标为(1,4),圆心到直线ax+y-1=0的距离为
点,|AB|=8.
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程. 解析 (1)由题意得F(1,0),l的方程为y=k(x-1)(k>0),
设A(x1,y1),B(x2,y2).
由
y y
k(x 2 4x
1),
得k2x2-(2k2+4)x+k2=0.
Δ=16k2+16>0,故x1+x2= 2kk2
为
x
3 2
2
+y2= 25 .
4
思路分析 由已知条件和椭圆的方程分析出圆所经过的顶点的坐标,然后求出圆心坐标,进一
步求出圆的半径,从而得到圆的标准方程.
解题关键 利用圆的几何性质求出圆心坐标是解题的关键.
3.(2018课标Ⅱ,19,12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两
则该圆的标准方程为
.
答案
x
3 2
2
+y2= 25
4
解析 由已知可得该圆经过椭圆的三个顶点A(4,0)、B(0,2)、C(0,-2).易知线段AB的垂直平分
高考数学考点归纳之 直线与圆、圆与圆的位置关系
高考数学考点归纳之 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D.2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案:6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24 C .± 2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a =±24. 6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B.3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。
2022年高考数学总复习考点培优——直线与圆、圆与圆的位置关系
第四节直线与圆、圆与圆的位置关系【教材回扣】1.直线与圆的位置关系设圆O的半径为r(r>0),圆心到直线l的距离为d,则直线与圆的位置关系可用下表表示:相离相切相交Δ______0Δ______0Δ______0若P(x0,y0)在圆x2+y2=r2(r>0)上,则以P为切点的切线方程为F7______________.3.圆与圆的位置关系设两圆的半径分别为R,r(R>r),两圆圆心间的距离为d,则两圆的位置关系可用下表表示:相离外切相交内切内含____________________________________【题组练透】题组一判断正误(正确的打“√”,错误的打“×”)1.“k=2”是“直线x+y+k=0与圆x2+y2=2相切”的必要不充分条件.() 2.若直线平分圆的周长,则直线一定过圆心.()3.若两圆相切,则有且只有一条公切线.()4.从两圆的方程中消掉二次项后得到二元一次方程是两圆的公共弦所在的直线方程.()题组二教材改编1.直线l:3x-y-6=0被圆C:x2+y2-2x-4y=0截得的弦AB的长为()A.102B.10C.265D.22652.已知直线4x+3y-35=0与圆心在原点的圆C相切,则圆C的方程为() A.x2+y2=1 B.x2+y2=5C.x2+y2=7 D.x2+y2=493.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦的长为________.题组三易错自纠1.若直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是()A.[-2,2] B.[-22,22]C.[-2-1,2-1] D.[-22-1,22-1]2.(多选题)直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个充分不必要条件是()A.0<m<1 B.-1<m<0C.m<1 D.-3<m<13.已知圆C:x2+y2=9,过点P(3,1)作圆C的切线,则切线方程为________.题型一直线与圆的位置关系的判断[例1](1)直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是()A.相交B.相切C.相离D.不确定(2)若圆x2+y2=r2(r>0)上恒有4个点到直线x-y-2=0的距离为1,则实数r的取值范围是()A.(2+1,+∞) B.(2-1,2+1)C.(0,2-1) D.(0,2+1)[听课记录]类题通法判断直线与圆的位置关系的一般方法1.几何法:圆心到直线的距离与圆半径比较大小,即可判断直线与圆的位置关系.这种方法的特点是计算量较小.2.代数法:将直线方程与圆方程联立方程组,再将二次方程组转化为一元二次方程,该方程解的情况即对应直线与圆的位置关系.这种方法具有一般性,适合于判断直线与圆锥曲线的位置关系.巩固训练1:(1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定(2)若无论实数a取何值时,直线ax+y+a+1=0与圆x2+y2-2x-2y+b=0都相交,则实数b的取值范围为________.题型二圆的切线与弦长问题高频考点角度|圆的切线问题[例2](1)[2020·浙江卷](一题两空)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x-4)2+y2=1均相切,则k=________,b=________.(2)从直线l:x+y=1上一点P向圆C:x2+y2+4x+4y+7=0引切线,则切线长的最小值为________.[听课记录]类题通法1.求过圆上的一点(x0,y0)的切线方程的方法先求切点与圆心连线的斜率k,若k不存在,则结合图形可直接写出切线方程为y=y0;若k=0,则结合图形可直接写出切线方程为x=x0;若k存在且k≠0,则由垂直关系知切线的斜率为-1k,由点斜式可写出切线方程.2.求过圆外一点(x0,y0)的圆的切线方程的2种方法(1)几何法:当斜率存在时,设为k,则切线方程为y-y0=k(x-x0)即kx-y+y0-kx0=0.由圆心到直线的距离等于半径,即可求出k的值,进而写出切线方程.(2)当斜率存在时,设为k,则切线方程y-y0=k(x-x0),即y=kx-kx0+y0,代入圆的方程,得到一个关于x的一元二次方程,由Δ=0,求得k,切线方程即可求出.[提醒]当点(x0,y0)在圆外时,一定要注意斜率不存在的情况.巩固训练2:(1)(多选题)过点P(2,4)引圆(x-1)2+(y-1)2=1的切线,则切线的方程为()A.x=-2 B.x=2C.4x-3y+4=0 D.4x+3y-4=0(2)直线l是圆x2+y2=4在(-1,3)处的切线,点P是圆x2-4x+y2+3=0上的动点,则点P到直线l的距离的最小值等于________.角度|圆的弦长问题[例3](1)(多选题)[2021·山东德州模拟]直线y=kx-1与圆C:(x+3)2+(y-3)2=36相交于A,B两点,则AB的长度可能为()A.6 B.8C.12 D.16(2)在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.5 2 B.102C.15 2 D.202(3)[2020·天津卷]已知直线x-3y+8=0和圆x2+y2=r2(r>0)相交于A,B两点,若|AB|=6,则r的值为________.[听课记录]类题通法有关弦长问题的2种求法1.几何法:直线被圆截得的半弦长l2,弦心距d和圆的半径r构成直角三角形,即r2=(l2)2+d2.2.代数法:联立直线方程和圆的方程,消元转化为关于x的一元二次方程,由根与系数的关系即可求得弦长|AB|=1+k2·|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2·|y1-y2|=1+1k2·(y1+y2)2-4y1y2.巩固训练3:(1)[2020·全国卷Ⅰ]已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1 B.2C.3 D.4(2)(多选题)设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3),且与圆C交于A,B两点,若|AB|=23,则直线l的方程为()A.4x-3y+9=0 B.x=0C.3x+4y-12=0 D.3x+4y+12=0(3)已知圆C:(x-1)2+(y-2)2=2截y轴所得线段与截直线y=2x+b所得线段的长度相等,则b=________.题型三圆与圆的位置关系[例4]已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.求:(1)m取何值时两圆外切?(2)m取何值时两圆内切,此时公切线方程是什么?(3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.[听课记录]类题通法(1)判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.重视两圆内切的情况,作图观察.(2)两圆相交时,公共弦所在直线方程的求法两圆的公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.(3)两圆公共弦长的求法求两圆公共弦长,常选其中一圆,由弦心距d,半弦长l2,半径r构成直角三角形,利用勾股定理求解.巩固训练4:(1)已知圆C1:x2+y2+2x+3y+1=0,圆C2:x2+y2+4x-3y-36=0,则圆C1和圆C2的位置关系为()A.相切B.内含C.外离D.相交(2)[2021·山东潍坊模拟]已知圆O:x2+y2=1,圆M:(x-a)2+(y-a+3)2=1.若圆M上存在点P,过点P作圆O的两条切线,切点为A,B,使得∠APB=60°,则实数a的取值范围是________.(3)若圆x2+y2=a2与圆x2+y2+ay-6=0的公共弦长为23,则a=________.[预测1] 核心素养——直观现象 过点P(x 0,y 0)作圆C 1:x 2+y 2=1与圆C 2:(x -2)2+(y -1)2=1的切线,切点分别为A ,B.若|PA|=|PB|,则x 20+y 20的最小值为( )A .52B .54C .54 D .5 [预测2] 新题型——多选题已知圆M 与直线x +y +2=0相切于点A(0,-2),圆M 被x 轴所截得的弦长为2,则下列结论正确的是( )A .圆M 的圆心在定直线x -y -2=0上B .圆M 的面积的最大值为50πC .圆M 的半径的最小值为1D .满足条件的所有圆M 的半径之积为10第四节 直线与圆、圆与圆的位置关系 课前基础巩固[教材回扣]< = > > = <x 0x +y 0y =r 2 d >R +r d =R +r R -r <d <R +r d =R -r 0≤d <R -r [题组练透] 题组一1.× 2.√ 3.× 4.× 题组二1.解析:由已知可知圆C 的圆心为(1,2),半径为5,圆心到直线的距离为d =|3×1-2-6|32+12=102.∴|AB |=2r 2-d 2=252-⎝⎛⎭⎫1022=10. 故选B. 答案:B2.解析:由题意知:圆心到直线4x +3y -35=0的距离d 等于半径r .即d =3542+32=7=r ,故所求圆的方程为x 2+y 2=49. 故选D.答案:D3.解析:联立方程组⎩⎪⎨⎪⎧x 2+y 2-4=0x 2+y 2-4x +4y -12=0, 得x -y +2=0.已知圆x 2+y 2-4=0的圆心(0,0),半径r 为2,且圆心(0,0)到直线x -y +2=0的距离d =22=2, 则公共弦长为2r 2-d 2=24-2=2 2.答案:22 题组三1.解析:已知圆的圆心坐标为(2,1),半径r =2. 则圆心到直线l 的距离为d =|2-1+m |2≤r =2. 解得-22-1≤m ≤22-1. 故选D. 答案:D2.解析:已知圆的圆心坐标为(1,0),半径r =2, 则圆心到直线的距离d =|1+m |2<2,解得-3<m <1,则-3<m <1的一个充分不必要条件是0<m <1或-1<m <0. 故选AB. 答案:AB3.解析:由题意知P 在圆外,当切线斜率不存在时,切线方程为x =3,满足题意;当切线斜率存在时,设斜率为k ,所以切线方程为y -1=k (x -3),即kx -y +1-3k =0,所以|k ×0-0+1-3k |k 2+1=3,解得k =-43,所以切线方程为4x +3y -15=0.综上,切线方程为x =3或4x +3y -15=0.答案:x =3或4x +3y -15=0课堂题型讲解题型一例1 解析:(1)法一 (代数法)由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5,消去y 得(1+m 2)x 2-2m 2x +m 2-5=0. 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二 (几何法)由题意知,圆心(0,1)到直线l 的距离d =|-m |m 2+1<1<5,故直线l 与圆相交.法三 易得直线l 过定点(1,1).把点(1,1)代入圆的方程有1+0< 5.∴点(1,1)在圆的内部,故直线l 与圆C 相交.(2)计算得圆心到直线l 的距离为22=2>1,如图,直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离2+1.故选A.答案:(1)A (2)A巩固训练1 解析:(1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O到直线ax +by =1的距离d =1a 2+b2<1.所以直线与圆相交.故选B.(2)∵x 2+y 2-2x -2y +b =0表示圆, ∴8-4b >0,即b <2.∵直线ax +y +a +1=0过定点(-1,-1), ∴点(-1,-1)在圆x 2+y 2-2x -2y +b =0的内部, ∴6+b <0,解得b <-6,∴b 的取值范围是(-∞,-6). 答案:(1)B (2)(-∞,-6) 题型二例2 解析:(1)解法一 因为直线y =kx +b (k >0)与圆x 2+y 2=1,圆(x -4)2+y 2=1都相切,所以|b |1+k 2=|4k +b |1+k 2=1,得k =33,b =-233. 解法二 因为直线y =kx +b (k >0)与圆x 2+y 2=1,圆(x -4)2+y 2=1都相切,所以直线y =kx +b 必过两圆心连线的中点(2,0),所以2k +b =0.设直线y =kx +b 的倾斜角为θ,则sin θ=12,又k >0,所以θ=π6,所以k =tan π6=33,b =-2k =-233. (2)如图:圆C :x 2+y 2+4x +4y +7=0的标准方程为:(x +2)2+(y +2)2=1.圆心C (-2,-2),半径r =1.∴圆心到直线l :x +y -1=0的距离|CP |=|-2-2-1|2=522,则切线长的最小值为:|CP |2-|CQ |2=252-1=462.答案:(1)33 -233 (2)462巩固训练2 解析:(1)根据题意,圆(x -1)2+(y -1)2=1的圆心为(1,1),半径r =1.过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,若切线的斜率不存在,此时切线的方程为x =2,符合题意;若切线的斜率存在,设此时切线的斜率为k ,则其方程为y -4=k (x -2),即kx -y -2k +4=0,则有|3-k |k 2+1=1,解得k =43,则切线的方程为4x -3y +4=0.综上可得,切线的方程为x =2或4x -3y +4=0.故选BC.(2)圆x 2+y 2=4在点(-1,3)处的切线为l :-x +3y =4,即l :x -3y +4=0,点P 是圆(x -2)2+y 2=1上的动点,圆心(2,0)到直线l :x -3y +4=0的距离d =|2-0+4|1+3=3,∴点P 到直线l 的距离的最小值等于d -1=3-1=2.答案:(1)BC (2)2例3 解析:(1)圆C 的圆心坐标为(-3,3),半径为6,所以弦长AB 的最大值为圆C 的直径12.又直线y =kx -1过点P (0,-1),当直线CP 与直线y =kx -1垂直时,弦长AB 最短,此时|AB |=262-|CP |2=262-52=211,所以211≤|AB |≤12,故选BC.(2)圆的标准方程为(x -1)2+(y -3)2=10,则圆心(1,3),半径r =10,由题意知AC ⊥BD ,且|AC |=210,|BD |=210-5=25,所以四边形ABCD 的面积为S =12|AC |·|BD |=12×210×25=10 2.故选B.(3)由题意得,圆心(0,0)到直线x -3y +8=0的距离d =82=4,因此r 2=d 2+|AB |22=25,又r >0,∴r =5.答案:(1)BC (2)B (3)5巩固训练3 解析:(1)将圆的方程x 2+y 2-6x =0化为标准方程(x -3)2+y 2=9,设圆心为C ,则C (3,0),半径r =3.设点(1,2)为点A ,过点A (1,2)的直线为l ,因为(1-3)2+22<9,所以点A (1,2)在圆C 的内部,则直线l 与圆C 必相交,设交点分别为B ,D .易知当直线l ⊥AC 时,直线l 被该圆所截得的弦的长度最小,设此时圆心C 到直线l 的距离为d ,则d =|AC |=(3-1)2+(0-2)2=22,所以|BD |min =2r 2-d 2=232-(22)2=2,即弦的长度的最小值为2,故选B.(2)将圆的方程化为标准形式为:(x -1)2+(y -1)2=4,所以圆心为C (1,1),圆的半径r =2,当直线l 的斜率不存在时,直线l 的方程为x =0,圆心到直线l 的距离为d =1,所以|AB |=24-1=23,符合题意;当直线l 的斜率存在时,设直线l 的方程为y =kx +3,易知圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,因为d 2+|AB |22=r 2,所以(k +2)2k 2+1+3=4,解得k =-34,所以直线l 的方程为y =-34x +3.即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0,故选BC.(3)记圆C 与y 轴的两个交点分别是A ,B ,由圆心C 到y 轴的距离为1,|CA |=|CB |=2可知,圆心C (1,2)到直线2x -y +b =0的距离也等于1才符合题意,于是|2×1-2+b |5=1,解得b =± 5.答案:(1)B (2)BC (3)±5 题型三例4 解析:两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6), 半径分别为11和61-m .(1)当两圆外切时, (5-1)2+(6-3)2 =11+61-m .解得m =25+1011.(2)当两圆内切时,因定圆的半径11小于两圆圆心间距离,故只有61-m -11=5.解得m =25-1011.因为k MN =6-35-1=34,所以两圆公切线的斜率是-43.设切线方程为y =-43x +b ,则有43×1+3-b 432+1=11.解得b =133±5113.容易验证,当b =133+5113,直线与后一圆相交,舍去.故所求公切线方程为y =-43x +133-5311,即4x +3y +511-13=0.(3)两圆的公共弦所在直线的方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0.由圆的半径、弦长、弦心距间的关系,得公共弦的长为 2×(11)2-|4+3×3-23|42+322=27.巩固训练4 解析:(1)圆C 1:x 2+y 2+2x +3y +1=0,即(x +1)2+y +322=94,∴C 1-1,-32,圆C 1的半径r 1=32.圆C 2:x 2+y 2+4x -3y -36=0,即(x +2)2+y -322=1694, ∴C 2-2,32,圆C 2的半径r 2=132.∴两圆的圆心距|C 1C 2|=(-2+1)2+32+322=10.又∵r 1+r 2=32+132=8,r 2-r 1=132-32=5,∴|C 1C 2|=10<r 2-r 1=5,故两圆内含.故选B.(2)由题意易得∠APO =12∠APB =30°,|OP |=|OA |sin ∠APO =1sin 30°=2,∴点P 在以O 为圆心,2为半径的圆上,∴此圆与圆M 有公共点,∴2-1≤|OM |≤2+1,即1≤|OM |2≤9.∵|OM |2=a 2+(a -3)2=2a 2-6a +9,∴1≤2a 2-6a +9≤9,即⎩⎪⎨⎪⎧2a 2-6a +8≥0,2a 2-6a ≤0,解得0≤a ≤3,∴a 的取值范围是[0,3]. (3)两圆作差得公共弦所在直线方程为a 2+ay -6=0.原点到a 2+ay -6=0的距离为d =6a-a .∵公共弦长为2 3.∴a 2=(3)2+6a-a 2,∴a 2=4,a =±2.答案:(1)B (2)[0,3] (3)±2高考命题预测预测1 解析:如图所示,由圆的切线的性质,得|P A |2=|PC 1|2-1,|PB |2=|PC 2|2-1.又|P A |=|PB |,所以|PC 1|=|PC 2|,所以点P 在线段C 1C 2的垂直平分线上.因为C 1C 2的垂直平分线为y =-21(x -1)+12,即y =-2x +52,点P (x 0,y 0)在y =-2x +52上,所以点P 的坐标满足y 0=-2x 0+52,所以x 20+y 20=x 20+-2x 0+522=5(x 0-1)2+54≥54,所以x 20+y 20的最小值为54.故选B. 答案:B预测2 解析:∵圆M 与直线x +y +2=0相切于点A (0,-2),∴直线AM 与直线x +y +2=0垂直,∴直线AM 的斜率为1,则点M 在直线y =x -2,即x -y -2=0上,A 正确;设M (a ,a -2),∴圆M 的半径r =|AM |=a 2+(a -2+2)2=2|a |,∴圆M 被x 轴截得的弦长为2r 2-(a -2)2=2a 2+4a -4=2,解得a =-5或a =1,当a =-5时,圆M 的面积最大,为πr 2=50π,B 正确;当a =1时,圆M 的半径最小,为2,C 错误;满足条件的所有圆M 的半径之积为52×2=10,D 正确.故选ABD.答案:ABD。
高考直线与圆知识点
高考直线与圆知识点直线与圆是高中数学中重要的几何概念之一,也是高考中常考的知识点。
了解直线和圆的性质,能够灵活运用相关定理和公式,对解题和理解几何问题有很大帮助。
本文将介绍高考直线与圆的一些重要知识点,帮助同学们更好地掌握相关内容。
一、直线的斜率直线的斜率是指直线在平面直角坐标系中与$x$轴正方向夹角的正切值。
设直线L的斜率为$k$,则有斜率公式:\[k = \tan \theta = \dfrac{y_2 - y_1}{x_2 - x_1}\]其中$(x_1, y_1)$和$(x_2, y_2)$为直线上的两个点。
直线的斜率决定了其在平面直角坐标系中的倾斜程度。
二、直线的方程直线的方程可以由直线上的一点和其斜率求得。
直线的一般方程形式为$Ax + By + C = 0$,其中$A$、$B$、$C$为常数。
而直线的斜截式方程为$y = kx + b$,其中$k$为斜率,$b$为截距。
根据已知信息,可以通过这两种形式的方程来确定直线的位置和性质。
三、圆的方程圆的方程可以用不同的方式表示。
设圆的圆心坐标为$(a, b)$,半径为$r$,则有以下三种常见的圆的方程形式:标准方程、一般方程和截距方程。
1. 标准方程:$(x-a)^2 + (y-b)^2 = r^2$2. 一般方程:$x^2 + y^2 + Dx + Ey + F = 0$,其中$D$、$E$、$F$为常数。
3. 截距方程:$\left(\dfrac{x}{a}\right)^2 + \left(\dfrac{y}{b}\right)^2 = 1$,其中$a$、$b$分别是$x$轴和$y$轴上的截距。
四、直线与圆的位置关系1. 直线与圆的位置关系主要有以下三种情况:- 直线与圆相离,即直线不交圆。
- 直线与圆相切,即直线与圆只有一个交点。
- 直线与圆相交,即直线与圆有两个交点。
2. 判断直线和圆的位置关系的方法有很多,常用的是判别式法和距离关系法。
高考数学真题分类汇编专题直线与圆理科及答案
题
八
直
线
与
圆
1. 【 2015 高考重庆,理 8】已知直线 l : x+ay-1=0 ( a R)是圆 C: x2 y2 4x 2 y 1 0
的对称轴 . 过点 A( -4 , a)作圆 C的一条切线,切点为 B,则 | AB|=
()
A、 2
B
、4 2
C
、6
D
、 2 10
【答案】 C
【解析】圆 C 标准方程为 ( x 2) 2 ( y 1)2 4 ,圆心为 C(2,1) ,半径为 r 2 ,因此
2 a 1 1 0 ,a 1 ,即 A( 4, 1) , AB
2
AC
r2
( 4 2)2 ( 1 1)2 4 6 .
选 C. 【考点定位】直线与圆的位置关系 . 【名师点晴】首先圆是一个对称图形,它关于圆心成中心对称,关于每一条直径所在直线都 是它的对称轴,当然其对称轴一定过圆心,其次直线与圆有相交、相切、相离三种位置关系, 判断方法可用几何与代数两种方法研究,圆的切线长我们用勾股定理求解,设圆外一点
2
2
x3
y 2 1 相切,则反射光线所在直线的斜率为(
)
( A)
5
或
3
35
3
4
【答案】 D
3
2
( B)
或
2
3
54
( C) 或
45
4
( D) 或
3
整理: 12 k2 25k 12 0 ,解得: k
4 ,或 k
3
3
, 故选 D.
4
【考点定位】 1、圆的标准方程; 2、直线的方程; 3、直线与圆的位置关系 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11题 考点一 直线与圆
1、P 为圆221x y +=上任一点,则P 与点(3,4)M 的距离的最小值是( ) A .1
B .4
C .5
D .6
2、已知圆22:40C x y mx ++-=上存在两点关于直线30x y -+=对称,则实数m 的值为( ) A.8 B.-4 C.6 D.无法确定
3、若x y 、满足2
2
24200x y x y +--=+,则2
2
x y +的最小值是( )
A 5
B .5
C .30-
D .无法确定
4、直线20x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( )
A .[2,6]
B .[4,8]
C .
D .
5、在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当,m θ变化时,d 的最大值为( ) A.1
B.2
C.3
D.4
6、在圆225x y x +=内,过点53,22⎛⎫
⎪⎝⎭
有n 条弦的长度成等差数列,最小弦长为数列的首
项1a ,最大弦长为n a ,若公差11,63d ⎡⎤
∈⎢⎥⎣⎦
,那么n 的取值集合为( )
A.4,5,{6,7}
B.{4,5,6}
C.3,4,{5,6}
D.3,4,5{,6,7}
7、过点(1,)1-的圆2224200x y x y +---=的最大弦长与最小弦长的和为( ) A. 17 B. 18 C. 19 D. 20
8、设直线过点()0,a ,其斜率为1,且与圆222x y +=相切,则a 的值为( ) A
.B .2±
C .±
D .4±
9、已知圆22220x y x y a +-++=截直线40x y +-=所得弦的长度小于6,则实数a 的取值范围为( )
A .(2+
B .()
2- C .()15,-+∞
D .()15,2-
10、已知圆C 与直线0x y -=及40x y --=都相切,圆心在直线0x y +=上,则圆C 的方程为( )
A .22(1)(1)2x y -++=
B .
22(1)(1)2x y ++-= C .22(1)(1)2x y -+-=
D .
22(1)(1)2x y +++= 11、若倾斜角为60︒的直线l 与圆22:630C x y y +-+=交于,M N 两点,且30CMN ∠=︒,则直线l 的方程为( )
A 30y -++=30y -+=
B 20y -+=20y -+-
C 0y -0y --=
D 10y -+=10y -+=
12、若直线30x y a -+=过圆22240x y x y ++-=的圆心,则a 的值为( ) A.5
B.3
C.1
D.1-
13、已知圆22:1C x y +=,点P 为直线240x y +-=上一动点,过点P 向圆C 引两条切线
,,,PA PB A B 为切点,则直线AB 经过定点( )
A . 11
(,)24
B . 11
(,)42
C .
D . 14、已知圆2
2
4x y +=与圆2
2
260x y y +--=,则两圆的公共弦长为( )
A
B .
C.2
D.1
15、若圆2211:C x y +=与圆22
2680C :x y x y m +--+=外切,则m =( )
A .21
B .19
C .9
D .-11
答案以及解析
1答案及解析: 答案:B
解析:因为(3,4)M 在圆221x y +=外,且圆心与(3,4)M 5=,又P 为圆221x y +=上任一点,所以P 与点(3,4)M 的距离的最小值等于圆心与M 的距离减去半径,因此最小值为514-=. 故选B
2答案及解析: 答案:C
解析:圆上存在关于直线30x y -+=对称的两点 则30x y -+=过圆心,02m ⎛⎫
- ⎪⎝⎭
即302
m
-
+= ∴ 6m =
3答案及解析: 答案:C
解析:配方得2
2
122)5()(x y ++=-,圆心坐标为(1,)2-,半径5,r =
小值为半径减去原点到圆心的距离5-故可求22
x y +的最小值为30-故选C .
4答案及解析: 答案:A
解析:∵直线20x y ++=分别与x 轴、y 轴交于,A B 两点
∴()()2,0,0,2A B --,则AB =∵点P 在圆()2
222x y -+=上
∴圆心为()2,0,则圆心到直线距离1d =
=
故点P 到直线20x y ++=的距离的范围为
则[]221
2,62
ABP S AB d =
∈△
故选A.
5答案及解析: 答案:C
解析:∵22cos sin 1θθ+=,∴P 为单位圆上一点,而直线20x my --= 过点()2,0A ,所以d 的最大值为1213OA +=+=,选C
6答案及解析: 答案:A
解析:圆的标准方程为2
2
52524x y ⎛
⎫-
+=
⎪⎝
⎭,∴圆心为5,02⎛⎫ ⎪⎝⎭
,半径52r =,则最大的弦为直径,即5n a =,当圆心到弦的距离为32,即点53,22⎛⎫
⎪⎝⎭
为垂足时,弦长最小为4,即14a =,由()11n a a n d =+-得1541
111
n a a d n n n --===
---, ∵
1163d ≤≤,∴111
613
n ≤≤-,即316n ≤-≤, ∴47n ≤≤,即4,5,6,7n =,选A
7答案及解析: 答案:B
解析:圆2224200x y x y +---=的圆心(1,2)C ,
半径5r =, 设点(1,1)A -,
3AC r =<,
∴点A 在圆内, ∴最大弦长为210r =,
最小弦长为8=,
∴过点(1,1)-的圆2224200x y x y +---=的最大弦长与最小弦长的和为10818+=.
8答案及解析: 答案:B
解析:∵直线过点()0,a 且斜率为1,
∴设直线为l ,得其方程为y x a =+,即0x y a -+=
∵222x y +=的圆心为()0,0C ,半径r =由直线l 与圆相切,可得点C 到直线l 的距离等于半径,
=2a =±
故选:B
9答案及解析: 答案:D
解析:由题意知,圆的方程为:()()22112x y a -++=-,则圆心为()1,1-
则:20a ->,解得:2a <
圆心到直线40x y +-=的距离为:d ==
6∴<,解得:15a >-
综上所述:()15,2a ∈- 本题正确选项:D
10答案及解析: 答案:A 解析:
∵圆心在直线x +y =0上,∴设所求圆的方程为222()()x a y a r -++=,
r =,解得1,a r ==∴所求圆的方程为22(1)(1)2x y -++=
11答案及解析: 答案:A
解析:设直线0l y m -+=,由30CMN ∠=︒,且圆的半径r C 到直线l
的距离为3
2
m d -=
=
,解得3m =,故直线l 的方程为30y -++=或
30y -+=.
12答案及解析: 答案:A
解析:圆22240x y x y ++-=的标准方程为()()2
2
125x y ++-= 圆心坐标为()1,2-,若直线30x y a -+=经过圆心,则3(1)20a ⨯--+=
解得5a =,综上所述,答案选择A
13答案及解析: 答案:B
解析:设(42,)P m m -,,PA PB ∴是圆C 的切线,,CA PA CB PB ∴⊥⊥
AB ∴是圆C 与以PC 为直径的两圆的公共弦,可得以PC 为直径的圆的方程为22
22
[(2)]()(2)24
m m x m y m --+-=-+
① 又221x y +=Q ②
①-②得:2(2)1AB m x my -+=,化为41(2)0x m y x -+-=
由14104201
2
x x y x y ⎧=⎪-=⎧⎪⇒⎨
⎨-=⎩⎪=⎪⎩,可得11(,)42总满足直线方程,即AB 过定点11(,)42,故选B.
14答案及解析: 答案:B
1=,圆22
4x y +=半径为2,
由勾股定理求得弦长为
=,故选B.
15答案及解析: 答案:C
解析:易知圆1C 的圆心坐标为()0,0,半径11r =.将圆2C 化为标准方程
()()
()22
342525x y m m -+-=-<,得圆2C 的圆心坐标为()3,4,半径
)
225r m =<.由两圆相外切得121215||C C r r =+==,解方程得
9m =.故选C .答案:C。