珊瑚中学初2008级中考数学模拟试题(二) (
2008年中考数学模拟试卷(四)-(2)
图130402010 2008年中考数学模拟试卷(四)本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列计算结果为负数的是 ( )A .(-1)0B .-∣-1∣C .(-1)2D .(-1)-2 2.下列计算正确的是( )A .623a a a =•B .4442b b b =•C .1055x x x =+D .87y y y =•3.函数y =x 的取值范围是( ) A .1x > B .0x ≥ C .01x <≤ D .0x ≥且1x ≠4.过一个钝角的顶点作这个角两边的垂线,若这两条垂线的夹角为40°,则这个钝角为( )A . 140°B .160°C . 120°D .110° 5.“五一”黄金周,人民商场“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价x 元,男装部购买了原价为y 元服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为( ) A.5800.80.85700x y x y +=⎧⎨+=⎩B.7000.850.8580x y x y +=⎧⎨+=⎩C.7000.80.85700580x y x y +=⎧⎨+=-⎩D.7000.80.85580x y x y +=⎧⎨+=⎩6.甲、乙两名同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图1,则符合这一结果的实验可能是( ) A .掷一枚正六面体的骰子,出现1点的概率B .从一个装有2个白球和1个红球的袋子中任取 一球,C .抛一枚硬币,出现正面的概率D .任意写一个整数,它能被2整除的概率7.下面四个图形中,经过折叠能围成如图5只有三个面上印有图案的正方体纸盒的是( )8.一块正方形的地板,由相同的小正方形瓷砖铺满,若地板两对角线上的瓷砖是黑色的,其余瓷砖是白色的,如果用了黑色瓷砖101块,那么白色瓷砖的总数是 ( )A BD图2C北β 北图4甲 乙 ABCDOE图3A .2500块B .2601块C .块2512D .块⎪⎪⎭⎫ ⎝⎛-10125129.如图3,在周长为20cm 的□ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A .4cmB .6cmC .8cmD .10cm 10.抛物线c bx x y ++-=2的部分图象如图4所示,若0>y ,则x 的取值范围是 ( )A .14<<-xB . 13<<-xC . 4-<x 或1>xD .3-<x 或1>x卷II (非选择题,共100分)题 号 二 三21 22 23 24 25 26 27 28 得 分二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.三峡工程是特大型水利水电工程,其防洪库容量约为22 150 000 000 m 3,这个数据用科学记数法表示为m 3.12.分解因式:a xy 2- a x 2y = .13.如图5,在甲、乙两地之间要修一条公路,从甲地测得公路的走向是北偏东55°,如果甲、乙两地同时开工,那么乙地按角β是 度施工时,才能使公路准确接通.14.已知△ABC 在直角坐标系中的位置如图5,如果△A 'B 'C ' 与△ABC 关于y 轴对称,那么点A 的对应点A '的坐标为 . 15.已知圆锥的底面积和它的侧面积之比为41,则侧面展开后所得扇形的圆心角的度数是 .16.图6中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为________. 17.已知:正方形的边长为2,以各边顶点为圆心,以正方形的边长为半径在正方形内画14圆,如图7所示.则图中阴影部分的面积为 .18.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到. 现在有一种编图7 y–113O x图42 3 图6 1 4 5 6图5码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数. 那么刻的数是36的钥匙所对应的原来房间应该是 号.三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)先化简,再求值:1)113(2-÷--+a aa a a a , 其中22+=a .20.(本小题满分8分)2007年某市国际车展期间,某公司对参观本次车展盛会的消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回.①根据调查问卷的结果,将消费者年收入的情况整理后,制成表格如下:年收入(万元) 4.8 6 7.2 9 10 被调查的消费者人数(人) 200 500 200 70 30②将消费者打算购买小车的情况整理后,作出频数分布直方图的一部分(如图4).注:每组包含最小值不包含最大值,且车价取整数.请你根据以上信息,回答下列问题. (1)根据①中信息可得,被调查消费者的年收入的众数是______万元. (2)请在图4中补全这个频数分布直方图. (3)打算购买价格10万元以下小车的消费者人数占被调查消费者人数的百分比是______.21.(本小题满分8分)某段笔直的限速公路上,规定汽车的最高行驶速度不能超过60 km/h (即503m/s ).交通管理部门在离该公路100 m 处设置了一速度监测点A ,在如图11所示的坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在点A 的北偏西60°方向上,点C 在点A 的北偏东45°方向上.(1)请在图11中画出表示北偏东45°方向的射线AC ,并标出点C 的位置; (2)点B 坐标为 ,点C 坐标为 ;(3)一辆汽车从点B 行驶到点C 所用的时间为15 s ,请通过计算,判断该汽车在限速公路上是否超速1.7)图422.(本小题满分8分)如图,已知:梯形ABCD 中,AD ∥BC ,E 为AC 的中点,连结DE 并延长交BC 于点F ,连结AF . (1)求证:AD =CF ;(2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD 成为菱形,并说明理由.23.(本小题满分10分)已知:甲、乙两个蓄水池的容积相同.甲池有一个注水管P ,乙池有两个注水管M 、N .如图12,AB 表示甲池开放P ,甲池中的注水量V /m 3与注水时间t /s 之间函数关系的图象;折线OCD 表示乙池先单独开放M 注水一段时间,然后再开放N (此时M 、N 同时开放),乙池中的注水量V /m 3与注水时间t /s 之间函数关系的图象.请你根据图象所提供的信息,解答下列问题:(1)甲池中注水前的水量为 m 3,水管P 的注水速度为 m 3/s ;(2)OC 所在直线的解析式为 ,CD 所在直线的解析式为 ;(3)若使得甲、乙两池同时注满,什么时刻开放N 恰好能满足要求?请说明理由.24.(本小题满分10分)在△ABC 中,AB =AC ,CG ⊥BA 交BA 的延长线于点G .一等腰直角三角尺按如图15-1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 边在一条直线上,另一条直角边恰好经过点B .(1)在图15-1中请你通过观察、测量BF 与CG 的长度,猜想并写出BF 与CG 满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC 方向平移到图15-2所示的位置时,一条直角边仍与AC 边在同一直线上,另一条直角边交BC 边于点D ,过点D 作DE ⊥BA 于点E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE +DF 与CG 之间满足的数量关系,然后证明你的猜想; (3)当三角尺在(2)的基础上沿AC 方向继续平移到图15-3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)25.(本小题满分12分)已知抛物线y =mx 2-2mx +n (m >0)与x 轴交于点A (x 1,0)、B (x 2,0)(x 2>x 1),与y 轴交于点C .点A 关于y 轴的对称点恰好落在抛物线的对称轴上,并且S △ABC =23. (1)试确定抛物线的解析式;图15-3 图15-1(2)将(1)中抛物线配方成y =a (x +a b 2)2+ab ac 442的形式,写出顶点坐标,并在图1所示的坐标系中画出该抛物线的草图(不要求列表),连结AC ,BC .试判断△AOC 与△OBC 是否相似?并说明理由;(3)将AC 所在的直线绕点C 按顺时针方向旋转,设旋转过程中AC 与x 轴交于点P ,试求出直线CP 平分△ABC 的面积时,点P 的坐标与直线AC 旋转的角度;(4)在(3)的前提下,点B 关于直线CP 的对称点P ˊ是否落在y 轴上?若落在y 轴上,请直接写出P ˊ点的坐标;若落不在y 轴上,请并说明理.26.(本小题满分12分)如图,直线EF 将矩形纸片ABCD 分成面积相等的两部分,E 、F 分别与BC 交于点E ,与AD 交于点F (E ,F 不与顶点重合),设AB=a,AD=b,BE=x .(1)求证:AF=EC ;(2)用剪刀将纸片沿直线EF 剪开后,再将纸片ABEF 沿AB 对称翻折,然后平移拼接在梯形ECDF 的下方,使一底边重合,直腰落在边DC 的延长线上,拼接后,下方的梯形记作EE′B′C .①求出直线EE ′分别经过原矩形的顶点A 和顶点D 时,所对应的 x ︰b 的值;②在直线EE ′经过原矩形的一个顶点的情形下,连接B E′,直线BE ′与EF 是否平行?你若认为平行,请给予证明;你若认为不平行,请你说明当a 与b 满足什么关系时,它们垂直?y -4 -2 O 2 4 x 4 2-2-4图1一、1.B ;2.D ;3.D ;4.A ;5.D ;6.B ;7.B ;8.A ;9.D ;10.B .二、11.2.215×1010;12.a xy (x -y );13.135°;14.(4,2);15.90°;16.13;17.4-π;18.13.三、19.解:原式=)1()1(3+--a a =42-a .当22+=a 时,原式=22. 20.解:(1)6;(2)略;(3)%52%100100036012040=⨯++21.解:(1)如图1所示,射线为AC ,点C 为所求位置.(2)(3100-,0); (100 ,0);(3)100BC BO OC =+==270(m ).270÷15=18(m/s ).∵18>503,∴这辆车在限速公路上超速行驶了. 22.(1)证明:在DEA ∆和FEC ∆中,∵BC AD ∥,∴ FCE DAE ∠=∠.又∵E 为AC 的中点,∴CE AE =.∴DEA ∆≌FEC ∆.∴CF AD =.(2)四边形AFCD 两邻边相等或对角线互相垂直或对角线平分一个内角.证明:∵BC AD ∥ 又∵CF AD =,∴四边形AFCD 为平行四边形.又∵DC DA =,∴四边形AFCD 为菱形.23.解:(1)20 m 3,8m 3/s ;(2)V =5t ,V =15t -20;(3)如图,将线段CD 向右平移,使点D 与点B 重合,点C 平移后的对应点为F ,设OC 的延长线与BC 相交于点E ,则F 点的坐标为(4,10).设BF 所在直线的解析式为V =kt + b ,由F (4,10)、B (10,100)得{,410.10100b k b k +=+=解得k =15,b =-50.∴V=15t -50.由{,5.5015t V t V =-=得E 点的坐标为(5,25).∴若使得甲、乙两池同时注满,在开始注水的第5s 的时刻开放N 就能满足要求.24.(1)BF =CG ;证明:在△ABF 和△ACG 中,∵∠F =∠G =90°,∠F AB =∠GAC ,AB =AC ,∴△ABF ≌△ACG ,∴BF =CG .(2)DE +DF =CG ;证明:过点D 作DH ⊥CG 于点H .∵DE ⊥BA 于点E ,∠G =90°,DH ⊥CG ,∴四边形EDHG 为矩形,∴DE =HG ,DH ∥BG .∴∠GBC =∠HDC .∵AB =AC ,∴∠FCD =∠GBC =∠HDC .又∵∠F =∠DHC =90°,CD =DC ,∴△FDC ≌△HCD (AAS ),∴DF =CH .∴GH +CH =DE +DF =CG ,即DE +DF =CG .(3)仍然成立. 25.解:(1)抛物线的对称轴x =1222=--=-mma b ,∴A 点的坐标为(-1,0),B 点的坐标为(3,0).∴AB =4.∵S △ABC =23,∴n =±3.∵m >0,∴n =-3.∵A (-1,0)在抛物线上,∴0= m ×(-1)2-2图1m ×(-1)-3,解得m =33.∴抛物线的解析式为y =33x 2-332x -3.(2)y =33x 2-332x -3=33(x -1)2-334.∴顶点坐标为(-1,-334).相似.理由:∵OA =1,OC =3,OB =3,∠OOC =∠COB =90°,OB OCOC OA ===3331,∴△AOC ∽△OBC . (3)在Rt △AOC 中,OA =1,OC =3,∴AC =2.在Rt △BOC 中,AB =3,AC =3,∴BC =23.又AB =4,∴△ABC 为直角三角形,且∠ABC =30°.易知AB 边上的中线平分△ABC 的面积,∴点P 的坐标为(1,0),直线AC 旋转的角度为60°.(4)落在y 轴上.P ˊ点的坐标(0,3).26.解:(1)证明:∵AB=a ,AD=b ,BE=x ,S 梯形ABEF = S 梯形CDFE .∴21a (x +AF )= 21a (EC +b -AF ),∴2AF =EC +(b -x ).又∵EC =b -x ,∴2AF =2EC ,即AF=EC ;(2)①当直线EE′经过原矩形的顶点D 时,∵EC ∥E ′B ′,∴B E EC ''=B D DC '.由EC =b -x ,E ′B ′=EB =x , DB ′=DC +CB ′=2a ,得aax x b 2=-,∴x ︰b =2︰3.当直线E′E 经过原矩形的顶点A 时,在梯形AE ′B ′D 中,∵EC ∥E ′B ′,点C 是DB ′的中点,∴CE =21(AD + E ′B ′), 即b -x =21(b +x ),∴x ︰b =31.②当直线EE′ 经过原矩形的顶点D 时,BE ′∥EF .证明:连结BF .∵FD ∥BE , FD =BE ,∴四边形FBED 是平行四边形,∴FB ∥DE ,FB =DE ,又∵EC ∥E ′B ′, 点C 是DB ′的中点,∴DE =EE ′,∴FB ∥EE ′, FB = EE ′,∴四边形BE ′EF 是平行四边形.∴BE ′∥EF .当直线EE′ 经过原矩形的顶点A 时,显然BE ′与EF 不平行,设直线EF 与BE′交于点G .过点E ′作E ′M ⊥BC 于M ,则E ′M =a ..∵x ︰b =31,∴EM =31BC =31b .若BE′与EF 垂直,则有∠GBE +∠BEG =90°,又∵∠BEG =∠FEC =∠MEE ′, ∠MEE ′+∠ME ′E =90°,∴∠GBE =∠ME ′E .在R t △BME ′中,tan ∠E ′BM = tan ∠GBE =BM M E '=b a 32.在R t △EME ′中,tan ∠ME ′E =M E EM '=a b 31,∴b a 32=a b31.又∵a >0,b >0,=b a 32,∴当=ba32时,BE′与EF 垂直.。
切线的证明
中考切线分析证明切线的方法:1.(已知一条切线证明另一条也是切线)通用的方法是三角形全等如果这两条切线相等可以运用两个等腰三角形进行证明,此种方法为等量代换法。
2.(已知中弦长和半径相等或者根据条件可以找到特殊角)通用的方法就是将要证明的角分为两部分去寻找特殊角的度数,然后证明相加为90°3.(已知角之间的相等关系)通用的方法就是在已知条件中寻找直角三角形,将角之间的相等关系转移到要证明的位置,进而得出90°这是切线证明中的三种类型,具体哪种要根据已知条件具体分析。
学会运用上面几种方法,切忌随便乱找关系导致题的分析思路不到位。
步骤方面需注意:经过半径的外端并且垂直与半径的直线是圆的切线。
因此写过程的时候最终要说明谁是半径,要证明的线与半径垂直。
切线中求长度的方法:(1)勾股定理。
直接由线段长度运用勾股定理和间接设未知数的方式运用勾股定理。
在圆中经常体现在垂径定理的运用中。
(2)相似三角形。
可以已知两条线段或三条线段就能求长度。
已知两条线段是在两个三角形有公共的一条边(不是对应边)的情况下,或者类似摄影定理的模型下就用到相似三角形。
(3)锐角三角函数。
已知中有角之间的相等关系,并且此角能够转移到直角三角形中才能运用。
备注:锐角三角函数和相似可以通用的情况是在直角三角形中,锐角三角函数更不容易出错,建议用三角函数去解决问题。
有时候在解决切线的题时,以上方法综合运用才能将问题解决。
切线的证明(09石景山一模)1.已知:如图,点A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,BC OC =,OB AC 21=. (1)求证:AB 是⊙O 的切线;(2)若︒=∠45ACD ,2=OC ,求弦CD 的长.(09西城一摸)2.已知:如图,AB 为⊙O 的弦,过点O 作AB 的平行线,交⊙O 于点C ,直线OC 上一点D 满足∠D =∠ACB .(1)判断直线BD 与⊙O 的位置关系,并证明你的结论;(2)若⊙O 的半径等于4,4tan 3ACB ∠=,求CD 的长.(09昌平一摸) 3.如图,点A B F 、、在O 上,30AFB ∠=︒,OB 的延长线交直线AD 于点D ,过点B 作BC AD ⊥于C ,60CBD ∠=︒,连接AB . (1)求证:AD 是O 的切线; (2)若6AB =,求阴影部分的面积.A第19题AA4.(本小题满分5分)如图,以等腰ABC∆中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE AC⊥,垂足为E.(I)求证:DE为⊙O的切线;(II)若⊙O的半径为5,60BAC∠=,求DE的长.(09房山一摸)5、(本小题满分5分)已知:如图,在△ABC中,90ACB∠=,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,过B、D、E三点作⊙O.(1)求证:AC是⊙O的切线;(2)设⊙O交BC于点F,连结EF,若BC=9, CA=12.求EFAC的值.(09门头沟一摸)6.(本小题满分5分)已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD 平分∠FAE,ED⊥AF交AF的延长线于点C.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若AF∶FC=5∶3,AE=16,求⊙O的直径ABO·ADC B7.(本小题满分5分)如图,点D 是⊙O 直径CA 的延长线上一点,点B 在⊙O 上,且AB =AD =AO . (1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,弦AE 与BC 相交于点F ,且CF =9,cos ∠BFA =32,求EF 的长.(09顺义一摸)8、 已知:如图,⊙O 的直径AB =8cm ,P 是AB 延长线上的一点,过点P 作⊙O 的切线,切点为C ,连接AC . (1) 若120ACP ∠=︒,求阴影部分的面积;(2)若点P 在AB 的延长线上运动,CPA ∠的平分线交AC 于点M ,∠CMP 的大小是否发生变化?若变化,请说明理由;若不变,求出∠CMP 的度数.(09东城一摸)9.已知:如图,在△ABC 中,AB = AC ,点D 是边BC 的中点.以BD 为直径作圆O ,交边AB 于点P ,联结PC ,交AD 于点E . (1)求证:AD 是圆O 的切线;(2)若PC 是圆O 的切线,BC = 8,求DE 的长.(09怀柔一摸) 10.(本小题满分5分)如图,ΔABC 中,AC=BC ,以BC 上一点O 为圆心、OB 为半径作⊙O 交AB 于点D ,已知经过点D 的⊙O 切线恰好经过点C .(1)试判断CD 与AC 的位置关系,并证明;(2)若ΔACB ∽ΔCDB ,且AC=3,求圆心O 到直线AB 的距离.AAB CD PE .O (第21题)DCE CB11.已知:如图,△ABC 内接于⊙O ,点D 是AB 边的中点,且∠BAC +∠DCB=90°. 试判断△ABC 的形状并证明.(09延庆一摸)12.(本题满分5分)在Rt △ABC 中,∠C=90, BC =9, CA =12,∠ABC 的平分线BD 交AC 于点D ,DE ⊥DB 交AB 于点E ,⊙O 是△BDE 的外接圆,交BC 于点F (1)求证:AC 是⊙O 的切线;(2)联结EF ,求EFAC的值.(09密云一摸)13.(本小题满分5分)如图,四边形ABCD 内接于O ,BD 是O 的直径,AE CD ⊥于E ,DA 平分∠BDE .(1)求证:AE 是O 的切线;(2)若30,1,DBC DE cm ∠=︒=求BD 的长.(09平谷一摸)14. 如图,AB 是⊙O 的直径,⊙O 交BC 的中点 于D ,DE AC ⊥,E 是垂足. (1)求证:DE 是⊙O 的切线; (2)如果AB=5,tan ∠B=21,求CE 的长.A (第19题)A15.如图,△ABC 中,AB =AE ,以AB 为直径作⊙O 交BE 于C ,过C 作CD ⊥AE 于D , DC 的延长线与AB 的延长线交于点P . (1)求证:PD 是⊙O 的切线; (2)若AE =5,BE =6,求DC 的长.(09通州二模)16. 如图:AB 是⊙O 的直径,AD 是弦,22.5DAB ∠=,延长AB 到点C , 使得2ACD DAB ∠=∠.(1)求证:CD 是⊙O的切线; (2)若AB =,求BC 的长.(09房山二模)17.(本小题满分5分)已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A . (1)求证: BC 是⊙O 的切线;(2)若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长.(09大兴二模)18.如图,点C 在以AB 为直径的⊙O 上,CD AB ⊥于P ,设AP a PB b ==,.(1)求弦CD 的长;(2)如果10a b +=,求ab 的最大值,并求出此时a b ,的值.(09东城二模)19. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线的一点,AE ⊥CD 交DC 的延长线于E ,CF ⊥AB 于F ,且CE =CF . (1) 求证:DE 是⊙O 的切线;(2) 若AB =6,BD =3,求AE 和BC 的长.A BADA20.如图,⊙O 的直径4=AB ,点P 是AB 延长线上的一点,过P 点作⊙O 的切线,切点为C ,联结AC .(1)若︒=∠30CPA ,求PC 的长;(2)若点P 在AB 的延长线上运动,CPA ∠的平分线交AC 于点M .你认为CMP ∠的大小是否发生变化?若变化,请说明理由;若不变化,求出CMP ∠的大小.(09昌平二模) 21.如图,点P 在半O 的直径BA 的延长线上,2AB PA =,PC 切半O 于点C ,连结BC .(1)求P ∠的正弦值;(2)若半O 的半径为2,求BC 的长度.(09门头沟二模)22. (本小题满分5分)已知:如图,AB 是⊙O 的直径,C 是⊙O 上的一点,且∠BCE =∠CAB ,CE 交AB 的延长线于点E ,AD ⊥AB ,交EC 的延长线于点D . (1)判断直线DE 与⊙O 的位置关系,并证明你的结论; (2)若CE =3,BE =2,求CD 的长.(09延庆二模)23. 点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB =AD =AO . ⑴求证:BD 是⊙O 的切线.⑵若点E 是劣弧BC 上一点,AE 与BC 相交于点F ,且△BEF 的面积为8,cos ∠BFA =32,求△ACF 的面积.第19题(第19题)24. (本小题7分)已知:在⊙O 中,AB 是直径,AC 是弦,OE ⊥AC 于点E ,过点C 作直线FC ,使∠FCA =∠AOE ,交 AB 的延长线于点D.(1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G ,若OG =2,求⊙O半径的长;(3)在(2)的条件下,当OE =3时,求图中阴影部分的面积.(09崇文二模)25.如图, AB 是⊙O 的直径,M 是线段OA 上一点,过M 作AB 的垂线交AC 于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且∠ECF =∠E . (1)证明CF 是⊙O 的切线;(2)设⊙O 的半径为1,且AC =CE AM 的长.(09西城二模)26.如图,等腰△ABC 中,AC=BC ,⊙O 为△ABC 的外接圆,D 为BC 上一点, CE ⊥AD 于E . 求证:AE= BD +DE .A27.如图,△ABC 中,AB =10,BC =8,AC =6,AD 是∠BAC 的角平分线,以AB 上一点O 为圆心,AD 为弦作⊙O . (1)求证:BC 是⊙O 的切线; (2)求⊙O 的半径.(08丰台一摸)28.已知:如图,以ABC △的边AB 为直径的O 交边AC 于点D ,且过点D 的切线DE平分边BC .(1)求证:BC 是O 的切线;(2)当ABC △满足什么条件时,以点O 、B 、E 、D 为顶点的四边形是正方形?请说明理由.(08大兴二模) 29.(本题满分5分)如图,AB 是半⊙O 的直径,弦AC 与AB 成30°的角,. (1)求证:CD 是半⊙O 的切线; (2)若2=OA ,求AC 的长.(08朝阳一摸)30.(本小题满分5分)已知:如图,在⊙O 中,弦CD 垂直直径AB ,垂足为M ,AB=4,CD=E 在AB 的延长线上,且tan 3E =. (1)求证:DE 是⊙O 的切线;(2)将△ODE 平移,平移后所得的三角形记为△O D E '''.求当点E '与点C 重合时,△O D E '''与⊙O 重合部分的面积.30.(本小题满分5分)已知:如图,AB 为⊙O 的直径,AC 、BC 为弦,点P 为 上一点,AB=10,AC ∶BC=3∶4. (1)当点P 与点C 关于直线AB 对称时(如图①),求PC 的长; (2)当点P 为 的中点时(如图②),求PC 的长. 解:(1) (2)(08石景山一摸) 31.(本小题满分5分)已知:如图,AB 是⊙O 的直径,D 是BC 的中点,DE ⊥AC 交AC 的延长线于E , (1)求证:DE 是⊙O 的切线;(2)若∠BAE =60°,⊙O 的半径为5,求DE 的长.(08顺义一摸)32.已知:如图,AB 为⊙O 的直径,D 是弧BC 的中点,DE ⊥AC 交AC 的延长线于点E ,⊙O 的切线BF 交AD 的延长线于点F .(1)求证:DE 是⊙O 的切线;(2)若DE =3,⊙O 的半径为5,求BF 的长.(第19题)ACBACA(08延庆二模)33. (本题满分6分)已知:如图6,以一底角为67.5°的等腰梯形ABCD 的一腰BC 为直径做⊙O ,交底AB 于E ,且恰与另一腰AD 相切于M; (1)求证:△EOM 为等腰直角三角形;(2)求AEBE 的值.(08昌平二模) 34. 如图,⊙O 的直径AB 交弦CD 于点M ,且M 是CD 的中点.过点B 作BE ∥ CD ,交AC的延长线于点E .连接BC . (1)求证:BE 为⊙O 的切线; (2)如果CD =6,tan ∠BCD=21,求⊙O 的直径的长.(08崇文一摸)35.如图1,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =动点O 在AC 边上,以点O 为圆心,OA 长为半径的⊙O 分别交AB 、AC 于点D 、E ,连结CD .(1)若点D 为AB 边的中点(如图2),请你判断直线CD 与⊙O 的位置关系,并证明你的结论; (2)当∠ACD =15°时,请你求出此时弦AD 的长.BA(08大兴一摸)36.(本小题满分5分)如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BECE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由.第18题图 (08东城二模)37. 如图,已知等边△ABC ,以边BC 为直径的半圆与边AB 、AC 分别交于点D 、点E 。
重庆市珊瑚初级中学2022-2023学年八年级下学期入学测试数学试题
(2)你认为 A,B 两村中哪个村的小土豆卖得更好?请选择一个方面说明理由;
(3)在该电商平台进行销售的 A,B 两村村民各有 225 户,若该电商平台把每月的小土豆 销售量 x 在 45 x 60 范围内的村民列为重点培养对象,估计两村共有多少户村民会被
列为重点培养对象?
23.阅读下列材料:
在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),
A. 5 10
B.10 3
C.10 5
D. 5 3
二、填空题
13.比较大小: 10
3.(填“>”、“=”或“<”)
14.因式分解: ax2 9a
.
15.如图,在 RtABC 中, AB BC 1,点 A,B 在数轴上对应的数分别为 1, AC 长
为半径画弧,交数轴的负半轴于点 D,则点 D 对应的数是 .
A.{x
y
1 4
250x 80y 2900
C.{x
y
1 4
80x 250y 2900
x y 15 B.{80x 250 y 2900
x y 15 D.{250x 80 y 2900
9.已知 x2 kx 36 可以用完全平方公式进行因式分解,则 k 的值为( )
A. 6
B. 12
重庆市珊瑚初级中学 2022-2023 学年八年级下学期入学测试 数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题 1.下列几个数中,属于无理数的数是(
A.0.1
B. 4
2.100 的算术平方根是( )
A. 10
B.10
(1)如图,点 D 在线段 CB 上时, ①求证:△AEF≌△ADC ; ②连接 BE,设线段 CD x , BE y ,求 y2 x2 的值; (2)当 DAB 15 时,求V ADE 的面积.
重庆市南岸区珊瑚初级中学2022-2023学年八年级上学期期中考试数学试卷(含答案)
2022-2023学年重庆市南岸区珊瑚初级中学八年级(上)期中数学试卷一、选择题:(本大题12个小题,每小题4分.共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.下列四个数中,无理数是()A.B.0C.0.12D.π2.由下列三条线段组成的三角形,不能构成直角三角形的是()A.2,3,4B.3,4,5C.5,12,13D.7,24,253.下列计算正确的是()A.B.C.D.4.估计在哪两个整数之间()A.3与4B.4与5C.5与6D.6与75.2021年,党中央国务院赋予浙江省建设“共同富裕示范区”的光荣使命,共同富裕的要求是:在消除两极分化和贫穷基础上实现普遍富裕.下列有关人均收入的统计量特征中()A.方差小B.平均数小,方差大C.平均数大,方差小D.平均数大,方差大6.如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),与小丽相邻且能比较方便地讨论交流的同学的座位是()A.(1,3)B.(3,4)C.(4,2)D.(2,4)7.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,折高者几何?意思是:一根竹子,原高一丈(一丈=十尺),竹梢恰好抵地,抵地处离竹子底部6尺远,可列方程为()A.x2+62=102B.(10﹣x)2+62=x2C.x2+(10﹣x)2=62D.x2+62=(10﹣x)28.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0()A.B.C.D.9.已知点M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,那么点M′的坐标是()A.(4,2)或(﹣4,2)B.(4,﹣2)或(﹣4,﹣2)C.(4,﹣2)或(﹣5,﹣2)D.(4,﹣2)或(﹣1,﹣2)10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1)(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2023次运动后()A.(2022,0)B.(2022,1)C.(2023,0)D.(2023,2)11.如图是一个长、宽、高分别为4cm,3cm,5cm的长方体,沿长方体的表面爬行至点B,爬行的最短路程是()A.5B.C.4 D.1212.某数学兴趣小组在学习二次根式的时候发现:有时候两个含有二次根式的代数式相乘,积不含有二次根式,例如,(﹣2)(+2),•=a,(2﹣)(2+)=10.通过查阅相关资料发现,分别得到了一个结论:甲:=;乙:设有理数a,b满足:+=﹣6,则a+b=6;丙:>;丁:已知﹣=2,则+=8;戊:+++…+=.以上结论正确的有()A.甲丙丁B.甲丙戊C.甲乙戊D.乙丙丁二、填空题:请将每小题的答案直接填在答题卡中对应的横线上。
重庆市南岸区珊瑚初级中学校2023-2024学年八年级上学期期中数学试题
重庆市南岸区珊瑚初级中学校2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....A .()506,506B .(506,506--二、填空题11.27的立方根为.12.已知一次函数1y kx =+的图像经过点13.已知点()2,A a 关于x 轴的对称点为点14.如图,Rt ABC △中,90ACB ∠=为1S ,2S ,若15S =,213S =,则BC15.关于x ,y 的方程组22x y x y +=⎧⎨+=⎩16.如图1,一只蚂蚁从圆锥底端点沿母线OA 剪开,其侧面展开图如图最短距离是.17.如图所示,四边形ABCD 是一张长方形纸片,将该纸片沿着点D 重合,点A 的对应点为点A ',若6AB =,9BC =,则18.如图,直线AB :12y x b =-+与坐标轴交于A 、B 两点,点连接BC 且BC x ∥轴,交直线3x =于点E ,连接AC ,折,得到ABD △,点D 正好落在直线3x =上,若BDE S 为.三、计算题四、解答题(1)作ABC 关于x 轴对称的111A B C △;(2)写出点1A 、1B 、1C 的坐标;(3)求111A B C △的面积.22.已知,一次函数132y x =-+的图象与(1)求A 、B 两点的坐标;(2)画出该函数图象;(3)求AB 的长.(1)求滑道BD 的长度;(2)若把滑梯BD 改成滑梯BF ,使BFA ∠数据:3 1.732≈)五、应用题24.甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图为甲、乙两个探测气球所在位置的海拔()m y 与气球上升时间()min x 的函数图象.(1)求两个气球上升过程中y 与x 函数解析式;(2)当这两个气球的海拔高度相差5m 时,求上升的时间.六、问答题25.如图,C 为线段BD 上的一个动点,分别过点B ,D 作AB BD ⊥,ED BD ⊥,连接AC ,EC .已知5AB =,1DE =,8BD =,设CD x =.(1)求直线AC 的解析式;(2)若点E 在x 轴上,且2ABE ABC S S =△△,求点E 坐标;。
重庆市珊瑚初级中学校2024-2025学年九年级上学期数学入学考试试题
重庆市珊瑚初级中学校2024-2025学年九年级上学期数学入学考试试题一、单选题1.以下四个数中,最小的数是()A.2-B.0 C.2 D.4-2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.赵爽弦图B.斐波那契螺旋线C.笛卡尔心形线D.科克曲线3.如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50°B.40°C.45°D.25°4.若两个相似三角形的周长比为23,则它们对应中线的比为()A.32B.23C.49D.945.如图运算程序中,若开始输入的x值为48,第一次输出的结果为24,第二次输入的结果为12.…… ,则第2023次输出的结果是()A.1 B.6 C.3 D.46.如图,在平面直角坐标系中,A(﹣1,0),B(0,2),以点A为圆心,AB为半径画弧,交x 轴正半轴于点C ,点C 的横坐标介于( )A .0到1之间B .1到2之间C .2到3之间D .3到4之间7.正比例函数(0)y kx k =≠函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .8.如图,点P 是菱形ABCD 对角线BD 上一点,PE AB ⊥于点E ,且2PE =.连接PC ,若菱形的周长为24.则BCP V 的面积为()A .4B .6C .8D .129.如图在平面直角坐标系中,矩形OACB 的边OB 在x 轴上,OA 在y 轴上,顶点C 的坐标是()3,4-,将矩形沿对角线AB 进行翻折,点C 落在点P 的位置,BP 交y 轴于点Q ,则点Q 的坐标是( )A .10,5⎛⎫ ⎪⎝⎭B .250,8⎛⎫ ⎪⎝⎭C .70,8⎛⎫ ⎪⎝⎭D .40,5⎛⎫ ⎪⎝⎭10.已知1a x =,23a x =,规定从第二个式子开始,每一个式子的2倍等于它前、后两个式子的和.例如:2132a a a =+,3242a a a =+,则下列说法正确的有( ) (1)181920111a a a x ++= (2)123866a a a a x ++++=L(3)()()24610013599100a a a a a a a a x ++++-++++=L LA .3个B .2个C .1个D .0个二、填空题11.计算:011()2π-+=. 12.因式分解:225ab a -=.13.六边形是中国传统形状,象征六合、六顺之意.比如首饰盒、古建的窗户、古井的口、佛塔等等.化学上一些分子结构、物理学上的螺母,也采用六边形.正六边形,从中心向各个顶点连线是等边三角形,从工程角度,是最稳定和对称的.正六边形外角和为.14.为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x ,根据题意,请列出方程.15.如图,扇形OAB 以O 为圆心,4为半径,圆心角60AOB ∠=︒,点C 为OB 的中点,连接AC .以C 为圆心,CB 为半径画弧,交AC 于点D ,则图中阴影部分的面积为.16.若关于y 的不等式组()2123523y y y y a +⎧+≥⎪⎨⎪-<+-⎩,至少有4个整数解,且关于x 的分式方程1222x a x x++=--有非负整数解,则所有符合条件的整数a 的和是. 17.如图,在菱形ABCD 中,60ABC ∠=︒,5AB =,E ,F 分别是边BC 和对角线BD 上的动点,且BE DF =,则AE AF +的最小值为.18.一个两位正整数n ,如果n 满足各数位上的数字互不相同且均不为0,那么称n 为“异能数”,将n 的两个数位上的数字对调得到一个新数n ',把n '放在n 的后面组成第一个四位数,把n 放在n '的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以11所得的商记为()F n ,例如:34n =时,43n '=,34434334(34)8111F -==-,则(57)F =;若s 、t 为“异能数”,其中10s a b =+,10(19t x y b a =+≤≤≤,1x ≤、5y ≤,且a ,b ,x ,y 为整数)规定:(,)s tK s t t-=,若()F s 能被7整除,且()()81162F s F t y +-=,求(,)K s t 的最大值为.三、解答题 19.计算(1)()()242x x y x y --+(2)2192122x x x x --⎛⎫-÷ ⎪++⎝⎭20.为提高居民防范电信诈骗意识,确保反诈宣传工作落地见效,某社区举行《2024年防诈骗知识》竞赛,社区管理员随机从甲、乙两个小区各抽取20份答卷,并对他们的成绩(单位:分)进行统计、分析,过程如下: 收集数据甲小区:85 80 95 100 90 95 85 65 75 85 89 90 70 90 100 80 80 90 96 75 乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90 整理数据分析数据(1)填空:a =,b =;(2)若甲小区共有1000人参与答卷,请估计甲小区成绩大于80分的人数;(3)根据以上数据分析,你认为甲、乙两个小区哪一个对防诈骗知识掌握更好?请写出其中一个理由.21.学习了平行四边形的知识后,同学们进行了拓展性研究.他们发现作平行四边形一组对角的角平分线与另一组对角的顶点所连对角线相交,则这两个交点与这条对角线两侧的对角顶点的连线所围成的封闭图形是一个特殊四边形.他的解决思路是通过证明对应线段平行且相等得出结论.请根据她的思路完成以下作图和填空.....: (1)用直尺和圆规,过点B 作ABC ∠的角平分线,交AC 于点F ,连接BE DF 、.(只保留作图痕迹)(2)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,DE 平分ADC ∠,交AC 于点E .求证:四边形BEDF 是平行四边形. 证明:∵四边形ABCD 是平行四边形,AD CB ∴=,①___________, DAC BCA ∴∠=∠.DE Q 平分ADC ∠,BF 平分CBA ∠,1122ADE ADC CBF ABC ∴∠=∠=∠,∠.ADC CBA ∠=∠Q ∴②___________(ASA)ADE CBF ∴△≌△.DE BF DEA BFC ∴=∠=∠,.∴③________________ ∴四边形BEDF 是平行四边形.同学们再进一步研究发现,过平行四边形任意一组对角的顶点作平行线与另一组对角顶点所连对角线相交,均具有此特征.请你依照题意完成下面命题:过平行四边形一组对角的顶点作平行线与另一组对角顶点所连对角线相交,则这两个交点与这条对角线两侧的对角顶点的连线所围成的封闭图形是一个④______________________________________________________.22.某商家计划购进A ,B 两种品牌的红酒进行销售,经调查,用30000元购买A 品牌红酒的数量是用9000元购买B 品牌红酒数量的3倍,一箱A 品牌红酒的进价比一箱B 品牌红酒的进价多20元.(1)求A ,B 两种品牌红酒一箱的进价分别为多少元;(2)若该商家购进A ,B 两种品牌的红酒共210箱进行试销,其中A 品牌红酒的数量不多于B 品牌红酒数量的2倍,且不少于100箱,已知A 品牌红酒的售价为320元/箱,B 品牌红酒的售价为280元/箱,且全部售出,设购进A 品牌红酒m 箱.求商家销售这批红酒的利润P 与m 之间的关系式,并写出利润最大时的进货方案.23.在正方形ABCD 中,3AB =,动点P 从点A 出发,沿着A B C →→匀速运动到点C 时停止运动,速度是每秒1个单位,设点P 的运动时间是x ,线段BP 的长度为y .(1)请直接写出y 与x 之间的函数表达式,并注明自变量的取值范围,在给定的平面直角坐标系中画出y 的函数图象; (2)请写出函数y 的一条性质;(3)结合函数图象,在点P 的运动过程中,当2y >时,自变量x 的取值范围为__________. 24.某动物园熊猫基地D 新诞生了一只小熊猫,吸引了大批游客前往观看.由于A 、B 之间的道路正在进行维护,暂时不能通行.游客由入口A 进入园区之后可步行到达点C ,然后可以选择乘坐空中缆车从C D →,也可选择乘坐观光车从C B D →→.已知点C 在点A 的北偏东45°方向上,点D 在点C 的正东方向,点B 在点A 的正东方向300米处,点D 在点B的北偏东60°方向上,且400BD =米. 1.414 1.732≈ 2.236≈)(1)求CD 的长度(精确到个位);(2)已知空中缆车的速度是每分钟200米,观光车的速度是每分钟320米,若游客想尽快到达熊猫基地D ,应选择乘坐空中缆车还是观光车?25.如图1,在平面直角坐标系中,直线1l :123y x =-+与x 轴交于点A ,与y 轴交于点B ,直线2l :2y x =与直线1l 交于点C .(1)求线段AB 的长度.(2)如图2,点P 是射线CA 上的任意一点,过点P 作PD y ∥轴且与2l 交于点D ,连接OP ,当5PD =时,求PCO △的面积.(3)如图3,在(2)的条件下,将OCP △先向右平移2个单位,再向上平移4个单位,点P 的对应点为点F ,在y 轴上确定一点G ,使得以点A ,F ,G 为顶点的三角形是等腰三角形,直接写出所有符合条件的点G 的坐标.26.已知,在ABC V 中,90C ∠=︒,AC BC E =,是BC 边上一点.(1)如图1,点D 是AC 边上一点,连接DE ,将DE 绕点E 逆时针旋转90︒至EF ,连接BF .若42AC BE ==,,求BEF △的面积.(2)如图2,连接AE ,将AE 绕点E 顺时针旋转90︒至EM ,连接BM ,取BM 的中点N ,连接EN .求证:2AB NE =.(3)如图3,连接AE P ,为AE 上一点,在AP 的上方以AP 为边作等边APQ △,刚好点Q 是点P 关于直线AC 的对称点,连接CP ,当12CP AP +取最小值的条件下,点G 是直线PQ 上一点,连接CG ,将CGP △沿CG 所在直线翻折得到CGK △(CGK △与ABC V 在同一平面内),连接AK ,当AK 取最小值时,请直接写出CGKAPQ S S △△的值.。
重庆市南岸区珊瑚中学2023-—2024学年八年级上学期数学期中模拟试卷(含答案)
重庆市南岸区珊瑚中学2023-2024学年八年级上学期数学期中模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)2的平方根是( )A.B.C.±2D.22.(4分)已知点P(﹣3,5),则点P到y轴的距离是( )A.5B.3C.4D.﹣33.(4分)使二次根式有意义的x的取值范围是( )A.B.C.x≤3D.x≤﹣34.(4分)下列各组数据中,不能作为直角三角形边长的是( )A.3,4,5B.5,12,13C.3,5,7D.1,2,5.(4分)下列等式正确的是( )A.B.C.D.6.(4分)已知方程组的解满足5x﹣y=4,则k的值是( )A.﹣1B.2C.﹣3D.﹣47.(4分)估计(+)的值应在( )A.7和8之间B.8和9之间C.9和10之间D.10和11之间8.(4分)关于x的正比例函数y=kx与一次函数y=kx+x﹣k的大致图象不可能是( )A.B.C.D.9.(4分)如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,则BC边上的高为( )A.B.C.D.10.(4分)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)…,那么点A2022的坐标为( )A.(1011,0)B.(1011,1)C.(2022,0)D.(2022,1)二.填空题(共8小题,满分32分,每小题4分)11.(4分)﹣的立方根是 .12.(4分)若点A(﹣1,m)在直线y=x+3上,则m= .13.(4分)已知点P在第四象限,且到x轴的距离为2,到y轴的距离为3,则点P的坐标为 .14.(4分)如图,△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形,面积分别为S1,S2,若S1=3,S2=5,则BC= .15.(4分)已知方程组的解是,则方程组的解 16.(4分)如图1,一只蚂蚁从圆锥底端点A出发,绕圆锥表面爬行一周后回到点A,将圆锥沿母线OA剪开,其侧面展开图如图2所示,若∠AOA′=120°,,则蚂蚁爬行的最短距离是 .17.(4分)如图,在长方形ABCD中,DC=9.在DC上找一点E,沿直线AE把△AED折叠,使D点恰好落在BC 上,设这一点为F,若△ABF的面积是54,则△FCE的面积= .18.(4分)如图,在平面直角坐标系中,点A的坐标为(10,8),过点A分别作AB⊥x轴于点B,AC⊥y轴于点C,点D在射线AB上.将△CAD沿直线CD翻折,使点A恰好落在坐标轴上,则点D的坐标为 .三.解答题(共8小题,满分78分)19.(12分)计算(1)(2)(π﹣3)0+|()﹣1(3)(2x+3)2+(3x﹣2)2 (4)(2a﹣b)(2a+b)(4a2+b2)20.(6分)解方程组:(1);(2).21.(8分)(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)直接写出△ABC关于x轴对称的三角形△A2B2C2的各点坐标.(3)直接写出△ABC的面积.22.(10分)已知,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)画出该函数图象;(3)求AB的长.23.(10分)某路段限速标志规定:小汽车在此路段上的行驶速度不得超过70km/h,如图,一辆小汽车在该笔直路段l上行驶,某一时刻刚好行驶到路对面的车速检测仪A的正前方30m的点C处,2s后小汽车行驶到点B处,测得此时小汽车与车速检测仪A间的距离为50m.(1)求BC的长.(2)这辆小汽车超速了吗?并说明理由.24.(10分)李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程S(米)与所用时间t(分)之间的关系如图所示.(1)求a、b、c的值;(2)求李老师从学校到家的总时间.25.(10分)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小,求出这个最小值;(3)根据(2)中的规律和结论,构图求出代数式的最小值.26.(12分)如图,在平面直角坐标系中,直线AB:y=﹣x+3,与x轴,y轴交于点A、B,直线x=﹣1与直线AB 交于点D,直线l过点A,与y轴交于点C,点C的纵坐标是﹣.(1)求直线AC的解析式;(2)在直线l上是否存在点P,点P在直线x=﹣1的左侧,使得S△ABC=S△PDB,若存在,请求出点P的坐标,若不存在,请说明理由.(3)在第(2)问的条件下,点Q是线段PD的动点,过点Q作QM∥x轴,交直线AB与点M,在x轴上是否存在点N,使得△QMN为等腰直角三角形,若存在,请直接写出点N的坐标,若不存在,请说明理由.重庆市南岸区珊瑚中学2023-2024学年八年级上学期数学期中模拟试卷(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)2的平方根是( )A.B.C.±2D.2【答案】B2.(4分)已知点P(﹣3,5),则点P到y轴的距离是( )A.5B.3C.4D.﹣3【答案】B3.(4分)使二次根式有意义的x的取值范围是( )A.B.C.x≤3D.x≤﹣3【答案】B4.(4分)下列各组数据中,不能作为直角三角形边长的是( )A.3,4,5B.5,12,13C.3,5,7D.1,2,【答案】C5.(4分)下列等式正确的是( )A.B.C.D.【答案】D6.(4分)已知方程组的解满足5x﹣y=4,则k的值是( )A.﹣1B.2C.﹣3D.﹣4【答案】B7.(4分)估计(+)的值应在( )A.7和8之间B.8和9之间C.9和10之间D.10和11之间【答案】B8.(4分)关于x的正比例函数y=kx与一次函数y=kx+x﹣k的大致图象不可能是( )A.B.C.D.【答案】D9.(4分)如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,则BC边上的高为( )A.B.C.D.【答案】C10.(4分)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)…,那么点A2022的坐标为( )A.(1011,0)B.(1011,1)C.(2022,0)D.(2022,1)【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)﹣的立方根是 ﹣ .【答案】见试题解答内容12.(4分)若点A(﹣1,m)在直线y=x+3上,则m= 2 .【答案】见试题解答内容13.(4分)已知点P在第四象限,且到x轴的距离为2,到y轴的距离为3,则点P的坐标为 (3,﹣2) .【答案】见试题解答内容14.(4分)如图,△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形,面积分别为S1,S2,若S1=3,S2=5,则BC= .【答案】.15.(4分)已知方程组的解是,则方程组的解 .【答案】.16.(4分)如图1,一只蚂蚁从圆锥底端点A出发,绕圆锥表面爬行一周后回到点A,将圆锥沿母线OA剪开,其侧面展开图如图2所示,若∠AOA′=120°,,则蚂蚁爬行的最短距离是 6 .【答案】6.17.(4分)如图,在长方形ABCD中,DC=9.在DC上找一点E,沿直线AE把△AED折叠,使D点恰好落在BC 上,设这一点为F,若△ABF的面积是54,则△FCE的面积= 6 .【答案】6.18.(4分)如图,在平面直角坐标系中,点A的坐标为(10,8),过点A分别作AB⊥x轴于点B,AC⊥y轴于点C,点D在射线AB上.将△CAD沿直线CD翻折,使点A恰好落在坐标轴上,则点D的坐标为 (10,3)或(10,﹣2)或(10,﹣12) .【答案】(10,3)或(10,﹣2)或(10,﹣12).三.解答题(共8小题,满分78分)19.(12分)计算(1)(2)(π﹣3)0+|()﹣1(3)(2x+3)2+(3x﹣2)2(4)(2a﹣b)(2a+b)(4a2+b2)【答案】20.(6分)解方程组:(1);(2).【答案】(1);(2).21.(8分)(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)直接写出△ABC关于x轴对称的三角形△A2B2C2的各点坐标.(3)直接写出△ABC的面积.【答案】(2)A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1);(3)6.5.22.(10分)已知,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)画出该函数图象;(3)求AB的长.【答案】(1)点A的坐标为(6,0),点B的坐标为(0,3);(2)如图;(3)3.23.(10分)某路段限速标志规定:小汽车在此路段上的行驶速度不得超过70km/h,如图,一辆小汽车在该笔直路段l上行驶,某一时刻刚好行驶到路对面的车速检测仪A的正前方30m的点C处,2s后小汽车行驶到点B处,测得此时小汽车与车速检测仪A间的距离为50m.(1)求BC的长.(2)这辆小汽车超速了吗?并说明理由.【答案】(1)40m;(2)这辆小汽车超速了,理由见解析.24.(10分)李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程S(米)与所用时间t(分)之间的关系如图所示.(1)求a、b、c的值;(2)求李老师从学校到家的总时间.【答案】(1)a=20,b=1100,c=20+30=50;(2)李老师从学校到家的共用60分钟.25.(10分)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小,求出这个最小值;(3)根据(2)中的规律和结论,构图求出代数式的最小值.【答案】(2)10(3)1726.(12分)如图,在平面直角坐标系中,直线AB:y=﹣x+3,与x轴,y轴交于点A、B,直线x=﹣1与直线AB 交于点D,直线l过点A,与y轴交于点C,点C的纵坐标是﹣.(1)求直线AC的解析式;(2)在直线l上是否存在点P,点P在直线x=﹣1的左侧,使得S△ABC=S△PDB,若存在,请求出点P的坐标,若不存在,请说明理由.(3)在第(2)问的条件下,点Q是线段PD的动点,过点Q作QM∥x轴,交直线AB与点M,在x轴上是否存在点N,使得△QMN为等腰直角三角形,若存在,请直接写出点N的坐标,若不存在,请说明理由.【答案】(1)y=x﹣;(2)在直线l上存在点P,使得S△ABC=S△PDB,P(﹣6,﹣);(3)在x轴上存在点N,使得△QMN为等腰直角三角形,N的坐标为:(﹣,0)或(,0)或(﹣,0).。
2008年中考数学试题及答案解析
2008年中等学校招生统一考试数学试卷*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( ) A .525.310⨯亩B .62.5310⨯亩C .425310⨯亩D .72.5310⨯亩2)3.下列各点中,在反比例函数2y x=-图象上的是()A .(21),B .233⎛⎫⎪⎝⎭,C .(21)--,D .(12)-,4.下列事件中必然发生的是( )A .抛两枚均匀的硬币,硬币落地后,都是正面朝上B .掷一枚质地均匀的骰子,朝上一面的点数是3C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取 值范围是( ) A .0x > B .0x <C .2x >D .2x <6.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或807.二次函数22(1)3y x =-+的图象的顶点坐标是( )A .(13),B .(13)-,C .(13)-,D .(13)--, 8.如图所示,正方形ABCD 中,点E 是CD 边上一点,连接AE , 交对角线BD 于点F ,连接CF ,则图中全等三角形共有( )正面第2题图A .B .C .D .第5题图xADCEFB第8题图A .1对B .2对C .3对D .4对二、填空题(每小题3分,共24分)9.已知A ∠与B ∠互余,若70A ∠=,则B ∠的度数为 . 10.分解因式:328m m -= .11.已知ABC △中,60A ∠=,ABC ∠,ACB ∠的平分线交于点O ,则BOC ∠的度数为 .12.如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补 充一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可). 13.不等式26x x -<-的解集为 .14.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE 为 米.15.观察下列图形的构成规律,根据此规律,第8第15题图16.在平面直角坐标系中,点A 的坐标为(11),,点B 的坐标为(111),,点C 到直线AB 的距离为4,且ABC △是直角三角形,则满足条件的点C 有 个.三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.计算:101(1)52-⎛⎫π-+-+- ⎪⎝⎭18.解分式方程:1233xx x=+--.19.先化简,再求值:222()()2y x y x y x y ++---,其中13x =-,3y =.第1个 ……第2个 第3个 第4个ADC BO 第12题图 B C DA 第14题图20.如图所示,在66⨯的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,如图①中的三角形是格点三角形. (1)请你在图①中画一条直线将格点三角形分割成两部分,将这两部分重新拼成两个不同的格点四边形,并将这两个格点四边形分别画在图②,图③中; (2)直接写出这两个格点四边形的周长.四、(每小题10分,共20分)21.如图所示,AB 是O 的一条弦,OD AB ⊥,垂足为C ,交O 于点D ,点E 在O 上.(1)若52AOD ∠=,求DEB ∠的度数;(2)若3OC =,5OA =,求AB 的长.22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C ,,分别表示小刚的象、虎、鼠三张牌,用1A ,1B ,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.图① 第20题图图②图③第21题图 小刚 小明A 1B 1C 1A B C 第22题图23.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2)请你将表格补充完整:(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩. 六、(本题12分)24.一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少升?(3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B 地.(货车在D 处加油过程中的时间和路程忽略不计)第23题图 一班竞赛成绩统计图 二班竞赛成绩统计图25.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AMN △是等腰三角形.(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.八、(本题14分) 26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.2008年沈阳市中等学校招生统一考试C E ND A BM图① C A EM B D N图② 第25题图第26题图数学试题参考答案及评分标准一、选择题(每小题3分,共24分) 1.B 2.A 3.D 4.C 5.C 6.D7.A8.C二、填空题(每小题3分,共24分) 9.2010.2(2)(2)m m m +-11.12012.90BAD ∠=(或AD AB ⊥,AC BD =等)13.4x >14.1215.65 16.8 三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.解:原式1(2)5=+-+- ···························································· 4分125=-+- ··················································································· 5分6= ······································································································ 6分18.解:12(3)x x =-- ·················································································· 2分126x x =--7x = ··········································································································· 5分 检验:将7x =代入原方程,左边14==右边 ························································ 7分所以7x =是原方程的根 ·················································································· 8分 (将7x =代入最简公分母检验同样给分)19.解:原式2222222xy y x xy y x y =++-+-- ················································ 4分 xy =- ········································································································· 6分 当13x =-,3y =时,原式1313⎛⎫=--⨯= ⎪⎝⎭······················································································ 8分 20.解:(1)答案不唯一,如分割线为三角形的三条中位线中任意一条所在的直线等.································· 2分拼接的图形不唯一,例如下面给出的三种情况:图① 图② 图③ 图④图①~图④,图⑤~图⑦,图⑧~图⑨,画出其中一组图中的两个图形. ······················ 6分 (2)对应(1)中所给图①~图④的周长分别为4+8,4+4+ 图⑤~图⑦的周长分别为10,8+8+图⑧~图⑨的周长分别为2+4+ ···································· 10分 四、(每小题10分,共20分) 21.解:(1)OD AB ⊥,AD DB ∴= ··························································· 3分 11522622DEB AOD ∴∠=∠=⨯= ································································· 5分 (2)OD AB ⊥,AC BC ∴=,AOC △为直角三角形, 3OC =,5OA =,由勾股定理可得4AC == ·············································· 8分 28AB AC ∴== ························································································· 10分 22.解:(1)1()3P =一次出牌小刚出象牌“” ··················································· 4分(2)树状图(树形图):·············································································· 8分图⑤ 图⑥图⑦图⑧ 图⑨A 1B 1C 1 AA 1B 1C 1 BA 1B 1C 1C开始小刚 小明或列表···························································· 8分 由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种. ········································································ 9分1()3P ∴=一次出牌小刚胜小明. ····································································· 10分 五、(本题12分) 23.解:(1)21······························································································ 2分 (2)一班众数为90,二班中位数为80 ······························································· 6分 (3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好; ···································································································· 8分 ②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; ················································································································· 10分 ③从B 级以上(包括B 级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班成绩好. ······························································································· 12分 六、(本题12分) 24.解:(1)设y 与x 之间的关系为一次函数,其函数表达式为y kx b =+ ················ 1分将(0100),,(180),代入上式得, 10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩20100y x ∴=-+ ·························································································· 4分验证:当2x =时,20210060y =-⨯+=,符合一次函数; 当 2.5x =时,20 2.510050y =-⨯+=,也符合一次函数.∴可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律. ··················································· 5分 y ∴与x 之间的关系是一次函数,其函数表达式为20100y x =-+ ··························· 6分 (2)当 4.2x =时,由20100y x =-+可得16y =即货车行驶到C 处时油箱内余油16升. ····························································· 8分 (3)方法不唯一,如:方法一:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 设在D 处至少加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯+=+, ··················································· 11分 解得,69a =(升) ····················································································· 12分方法二:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 汽车行驶18千米的耗油量:1820 4.580⨯=(升) D B ,之间路程为:63680 4.218282-⨯-=(千米)汽车行驶282千米的耗油量:2822070.580⨯=(升) ················································································· 11分 70.510(16 4.5)69+--=(升) ···································································· 12分 方法三:由(1)得,货车行驶中每小时耗油20升, ············································· 9分设在D 处加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯++≤,解得,69a ≥ ····························································································· 11分 ∴在D 处至少加油69升,货车才能到达B 地. ················································· 12分七、(本题12分) 25.证明:(1)①BAC DAE ∠=∠ BAE CAD ∴∠=∠AB AC =,AD AE = ABE ACD ∴△≌△BE CD ∴= ·································································································· 3分 ②由ABE ACD △≌△得ABE ACD ∠=∠,BE CD =M N ,分别是BE CD ,的中点,BM CN ∴= ················································· 4分 又AB AC = ABM ACN ∴△≌△AM AN ∴=,即AMN △为等腰三角形 ···························································· 6分 (2)(1)中的两个结论仍然成立. ···································································· 8分 (3)在图②中正确画出线段PD由(1)同理可证ABM ACN △≌△ CAN BAM ∴∠=∠ BAC MAN ∴∠=∠ 又BAC DAE ∠=∠MAN DAE BAC ∴∠=∠=∠AMN ∴△,ADE △和ABC △都是顶角相等的等腰三角形 ································· 10分 PBD AMN ∴∠=∠,PDB ADE ANM ∠=∠=∠PBD AMN ∴△∽△ ···················································································· 12分 八、(本题14分)26.解:(1)点E 在y 轴上 ·············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·················································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨+=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:2829y x x =--+ ·················································· 9分(3)存在符合条件的点P ,点Q . ································································· 10分。
珊瑚中学初2008级中考数学模拟试题(二)
珊瑚中学初2008级中考数学模拟试题(二)(全卷共四个大题,满分150分,考试时间120分钟)一、选择题(本大题共10个小题,每小题4分,共40分) 1.3的倒数是( )A .3B .-3C .13D .13-2.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是( )A .6.8×109元B .6.8×108元C . 6.8×107元D .6.8×106元3.在等边三角形、正五边形、正六边形、正七边形中,既是轴对称又是中心对称的图形是()A .等边三角形B .正五边形C .正六边形D .正七边形4.刘翔在出征北京奥运会前刻苦进行110米跨栏训练,教练对他20次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这20次成绩的( )A .众数B .平均数C .频数D .方差5.如图所示,右面水杯的俯视图是( )6.点M (2,-3)关于y 轴的对称点N 的坐标是( ) A .(-2,-3) B .(-2,3) C .(2,3)D .(-3,2)7.在函数y =x 和取值范围是( ) A .3x ≥- B .3x > C .3x ≤-D .3x <-8.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是( )A .0B .6C .快D .乐9.在半径为13厘米的圆中,弦AB 与弦CD 平行。
AB=24厘米,CD=10厘米,则两弦的距离为( )A .17厘米B .12厘米C .7厘米D .7厘米或17厘米10.函数y=ax+b 的图象经过一、二、三象限,则二次函数y=ax 2+bx 的大致图象是( )二、填空题(本大题10个小题,每小题3分,共30分) 11.方程(x+5)2=1的解为____________。
重庆珊瑚中学中考数学填空题专项练习经典测试
一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( ) A .()1119802x x += B .()1119802x x -= C .()11980x x += D .()11980x x -=2.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.一元二次方程的根是( )A .3x =B .1203x x ==-,C .1203x x =,D .1203x x ==,4.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .25.下列命题错误..的是 ( ) A .经过三个点一定可以作圆B .经过切点且垂直于切线的直线必经过圆心C .同圆或等圆中,相等的圆心角所对的弧相等D .三角形的外心到三角形各顶点的距离相等6.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >47.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( ) A .13B .14C .15D .168.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .12B .14C .16D .1129.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .4510.用配方法解方程x 2+2x ﹣5=0时,原方程应变形为( ) A .(x ﹣1)2=6B .(x+1)2=6C .(x+2)2=9D .(x ﹣2)2=911.二次函数2y (x 3)2=-++图象的开口方向、对称轴和顶点坐标分别为( )A .向下,直线x 3=,()3,2B .向下,直线x 3=-,()3,2C .向上,直线x 3=-,()3,2D .向下,直线x 3=-,()3,2-12.下列判断中正确的是( ) A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦13.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、314.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( ) A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=15015.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1B .m≤1C .m >1D .m <1二、填空题16.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.17.关于x 的230x ax a --=的一个根是2x =-,则它的另一个根是___.18.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为_______.19.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.20.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加______m.21.如图,在直角坐标系中,已知点30A -(,)、04B (,),对OAB 连续作旋转变换,依次得到1234、、、,则2019的直角顶点的坐标为__________.22.△ABC 中,∠A =90°,AB =AC ,以A 为圆心的圆切BC 于点D ,若BC =12cm ,则⊙A 的半径为_____cm .23.已知二次函数y =a (x +3)2﹣b (a ≠0)有最大值1,则该函数图象的顶点坐标为_____. 24.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y =−140x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米.(精确到1米)25.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.三、解答题26.在一个不透明的盒子里装有4个标有1,2,3,4的小球,它们形状、大小完全相同.小明从盒子里随机取出一个小球,记下球上的数字,作为点P的横坐标x,放回然后再随机取出一个小球,记下球上的数字,作为点P的纵坐标y.(1)画树状图或列表,写出点P所有可能的坐标;(2)求出点P在以原点为圆心,5为半径的圆上的概率.27.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE//BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.28.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.29.如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.30.如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.D4.D5.A6.D7.A8.C9.C10.B11.D12.C13.A14.B15.D二、填空题16.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410)(510)(610)(810)(910)(109)(417.6【解析】【分析】【详解】解:设方程另一根为x1把x=-2代入方程得(-2)2+2a-3a=0解得a=4∴原方程化为x2-4x-12=0∵x1+(-2)=4∴x1=6故答案为6点睛:本题考查了一元二18.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在19.8【解析】【分析】首先求出AB的坐标然后根据坐标求出ABCD的长再根据三角形面积公式计算即可【详解】解:∵y=x2﹣2x﹣3设y=0∴0=x2﹣2x﹣3解得:x1=3x2=﹣1即A点的坐标是(﹣1020.4-4【解析】【分析】根据已知建立平面直角坐标系进而求出二次函数解析式再通过把代入抛物线解析式得出水面宽度即可得出答案【详解】建立平面直角坐标系设横轴x通过AB纵轴y通过AB中点O且通过C点则通过画21.【解析】【分析】根据勾股定理列式求出AB的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第20122.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC=6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性23.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y24.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平25.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试1.D 解析:D 【解析】 【分析】根据题意得:每人要赠送(x-1)张贺卡,有x 个人,然后根据题意可列出方程:(x-1)x=1980. 【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x 个人, ∴全班共送:(x-1)x=1980, 故选:D . 【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x 个人是解决问题的关键.2.A解析:A 【解析】 【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数. 【详解】 ∵35C ∠=︒∴35BAD C =∠=︒∠ ∵AB 是圆O 的直径 ∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠ 故答案为:A . 【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.D解析:D 【解析】 x 2−3x=0, x(x−3)=0, ∴x 1=0,x 2=3. 故选:D.4.D【解析】 【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--,利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意. 【详解】解:由韦达定理,得:12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--, 所以,()2142(2)3k k ----+=-, 化简,得:24k =, 解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根, 所以,△=()214(2)k k ---+=227k k +-〉0, k =-2不符合, 所以,k =2 故选:D. 【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.5.A解析:A 【解析】选项A ,经过不在同一直线上的三个点可以作圆;选项B ,经过切点且垂直于切线的直线必经过圆心,正确;选项C ,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D ,三角形的外心到三角形各顶点的距离相等,正确;故选A.6.D解析:D 【解析】 【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x <4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围. 【详解】∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.7.A解析:A【解析】【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126=.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.9.C解析:C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C10.B解析:B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故选B.11.D解析:D【解析】【分析】已知抛物线解析式为顶点式,根据二次项系数可判断开口方向,根据解析式可知顶点坐标及对称轴.【详解】解:由二次函数y=-(x+3)2+2,可知a=-1<0,故抛物线开口向下;顶点坐标为(-3,2),对称轴为x=-3.【点睛】顶点式可判断抛物线的开口方向,对称轴,顶点坐标,最大(小)值,函数的增减性.12.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.13.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.14.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x)2=150,故选:B.本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”. 15.D解析:D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.二、填空题16.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410)(510)(610)(810)(910)(109)(4解析:715. 【解析】 【分析】列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可. 【详解】解:从6张牌中任意抽两张可能的情况有: (4,10) (5,10) (6,10) (8,10) (9,10) (10,9) (4,9) (5,9) (6,9) (8,9) (9,8) (10,8) (4,8) (5,8) (6,8) (8,6) (9,6) (10,6) (4,6) (5,6) (6,5) (8,5) (9,5) (10,5) (4,5)(5,4)(6,4)(8,4)(9,4)(10,4)∴一共有30种情况,点数和为偶数的有14个, ∴点数和是偶数的概率是1473015=; 故答案为715.本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求情况数与总情况数之比.17.6【解析】【分析】【详解】解:设方程另一根为x1把x=-2代入方程得(-2)2+2a-3a=0解得a=4∴原方程化为x2-4x-12=0∵x1+(-2)=4∴x 1=6故答案为6点睛:本题考查了一元二解析:6【解析】【分析】【详解】解:设方程另一根为x1,把x=-2代入方程得(-2)2+2a-3a=0,解得a=4,∴原方程化为x2-4x-12=0,∵x1+(-2)=4,∴x1=6.故答案为6.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+ x2=ba,x1·x2=ca.也考查了一元二次方程的解.18.【解析】【分析】设⊙O半径为r根据勾股定理列方程求出半径r由勾股定理依次求BE和EC的长【详解】连接BE设⊙O半径为r则OA=OD=rOC=r-2∵OD⊥AB∴∠ACO=90°AC=BC=AB=4在解析:213【解析】【分析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4,在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,r=5,∴AE=2r=10,∵AE为⊙O的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt△ECB中,EC==.故答案是:【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.19.8【解析】【分析】首先求出AB的坐标然后根据坐标求出ABCD的长再根据三角形面积公式计算即可【详解】解:∵y=x2﹣2x﹣3设y=0∴0=x2﹣2x﹣3解得:x1=3x2=﹣1即A点的坐标是(﹣10解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.20.4-4【解析】【分析】根据已知建立平面直角坐标系进而求出二次函数解析式再通过把代入抛物线解析式得出水面宽度即可得出答案【详解】建立平面直角坐标系设横轴x通过AB纵轴y通过AB中点O且通过C点则通过画解析:-4【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2y =-代入抛物线解析式得出水面宽度,即可得出答案. 【详解】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.-代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+, 当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出: 220.52x -=-+,解得:22x =±, 所以水面宽度增加到242 4. 故答案是: 42 4. 【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.21.【解析】【分析】根据勾股定理列式求出AB 的长再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环然后求出一个循环组旋转前进的长度再用2019除以3根据商为673可知第201 解析:()8076,0【解析】 【分析】根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),∴AB=2234=5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2019÷3=673,∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.22.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC =6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性解析:【解析】【分析】由切线性质知AD⊥BC,根据AB=AC可得BD=CD=AD=12BC=6.【详解】解:如图,连接AD,则AD⊥BC,∵AB=AC,∴BD=CD=AD=12BC=6,故答案为:6.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.23.(﹣31)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(hk)即可求解【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1∴﹣b=1根据二次函数的顶点式方程y解析:(﹣3,1)【解析】【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),即可求解.【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1,∴﹣b=1,根据二次函数的顶点式方程y=a(x+3)2﹣b(a≠0)知,该函数的顶点坐标是:(﹣3,﹣b),∴该函数图象的顶点坐标为(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了二次函数的性质,解答该题时,需熟悉二次函数的顶点式y=a(x-h)2+k中的h、k所表示的意义.24.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平解析:8√5【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.x2+10=8,故有−140即x2=80,x1=4√5,x2=−4√5.所以两盏警示灯之间的水平距离为:|x1−x2|=|4√5−(−4√5)|=8√5≈18(m)25.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13解析:【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=22,故答案为:22.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题26.(1)列表见解析,P所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4);(2)1 8【解析】【分析】(1)用列表法列举出所有可能出现的情况,注意每一种情况出现的可能性是均等的,(2)点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),由概率公式即可得出答案.【详解】(1)由列表法列举所有可能出现的情况:因此点P所有可能的坐标有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种.(2)点P在以原点为圆心,5为半径的圆上的结果有2个,即(3,4),(4,3),∴点P在以原点为圆心,5为半径的圆上的概率为21 168.【点睛】本题考查了列表法或树状图法求等可能事件发生的概率,利用这种方法注意每一种情况出现的可能性是均等的.27.(1)证明见解析;(2)3324π-. 【解析】 【分析】(1)求出∠ADB 的度数,求出∠ABD+∠DBC=90︒,根据切线判定推出即可;(2)连接OD ,分别求出三角形DOB 面积和扇形DOB 面积,即可求出答案. 【详解】 (1)AB 是O 的直径,90ADB ∴∠=︒,90A ABD ∴∠+∠=︒,A DEB ∠=∠,DEB DBC ∠=∠, A DBC ∴∠=∠,90DBC ABD ∠+∠=︒, BC ∴是O 的切线;(2)连接OD ,2BF BC ==,且90ADB ∠=︒, CBD FBD ∴∠=∠, //OE BD ,FBD OEB ∴∠=∠, OE OB =,OEB OBE ∴∠=∠,11903033CBD OEB OBE ADB ∴∠=∠=∠=∠=⨯︒=︒,60C ∴∠=︒,323AB BC ∴==,O ∴3,∴阴影部分的面积=扇形DOB 的面积-三角形DOB 的面积1336424ππ=⨯-=-. 【点睛】本题考查了切线判定的定理和三角形及扇形面积的计算方法,熟练掌握该知识点是本题解题的关键.28.(1)y =﹣2x +200 (40≤x ≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x ≤80,理由见解析【解析】【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.(3)求得W =1350时x 的值,再根据二次函数的性质求得W ≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案.【详解】(1)设y =kx +b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩, 解得:k 2b 200=-⎧⎨=⎩, ∴y =﹣2x +200 (40≤x ≤80);(2)W =(x ﹣40)(﹣2x +200)=﹣2x 2+280x ﹣8000=﹣2(x ﹣70)2+1800,∴当x =70时,W 取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W =1350时,得:﹣2x 2+280x ﹣8000=1350,解得:x =55或x =85,∵该抛物线的开口向下,所以当55≤x ≤85时,W ≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x ≤80,∴该商品每千克售价的取值范围是55≤x ≤80.【点睛】考查二次函数的应用,解题关键是明确题意,列出相应的函数解析式,再利用二次函数的性质和二次函数的顶点式解答.29.(1) y=-(x-1)2+8;对称轴为:直线x=1;(2) 当<x <时,y >0;(3) C 点坐标为:(-1,4).【解析】【分析】(1)根据待定系数法求二次函数解析式,再用配方法或公式法求出对称轴即可; (2)求出二次函数与x 轴交点坐标即可,再利用函数图象得出x 取值范围;(3)利用正方形的性质得出横纵坐标之间的关系即可得出答案.【详解】(1)∵二次函数y=-x 2+bx+c 的图象经过A (-2,-1),B (0,7)两点.∴1427b c c -=--+⎧⎨=⎩,解得:27b c =⎧⎨=⎩, ∴y=-x 2+2x+7,=-(x 2-2x )+7,=-[(x 2-2x+1)-1]+7,=-(x-1)2+8,∴对称轴为:直线x=1.(2)当y=0,0=-(x-1)2+8,∴x-1=±,x 1x 2,∴抛物线与x 轴交点坐标为:(,0),(,0),∴当<x <时,y >0;(3)当矩形CDEF 为正方形时,假设C 点坐标为(x ,-x 2+2x+7),∴D 点坐标为(-x 2+2x+7+x ,-x 2+2x+7),即:(-x 2+3x+7,-x 2+2x+7),∵对称轴为:直线x=1,D 到对称轴距离等于C 到对称轴距离相等,∴-x 2+3x+7-1=-x+1,解得:x 1=-1,x 2=5(不合题意舍去),x=-1时,-x 2+2x+7=4,∴C 点坐标为:(-1,4).【点睛】此题主要考查了待定系数法求二次函数解析式以及利用图象观察函数值和正方形性质等知识,根据题意得出C 、D 两点坐标之间的关系是解决问题的关键.30.(1)证明见解析;(2)阴影部分面积为43π【解析】【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=23,分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23,易求S△AOC=12×23×1=3S扇形OAC=12044 3603ππ⨯=,∴阴影部分面积为43 3π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.。
2008学年度第二学期初三数学第一次模拟考试卷
第3题俯视图左视图主视图j PACFEO(B)第12题图2008学年度第二学期初三数学第一次模拟考试卷一、选择题。
(每小题3分,共36分)1.哈市4月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温是( )℃。
A .-2B .8C .-8D .22.在正三角形、等腰梯形、矩形和圆这四种图形中,既是轴对称图形又是中心对称图形的有( )种。
A .1B .2C .3D .4 3.如图,是某一几何体的三视图,则这个几何体是( )。
4.据报道,改革开放以来,宁波对外经济合作的业务额处于全国领先地位,20多年来我市通过对处工程承包和劳务输出逾赚350亿元,把350亿元用科学记数法表示是( ) A .35×108B .35×109×109×10105.在围棋盒中有若干颗黑色和白色棋子,从中随机取出一颗黑棋的概率为53,则该盒中黑棋和白棋的颗数比是( ) A .52B .53 C .32 D .23 6.下列抛物线 ,对称轴是21-=x 的是( )。
A .221x y -=B .x x y 212-=C .x x x y 212-+=D .x x x y 212--=7.二次函数3)1(22+-=x y 的图象的顶点坐标是( )A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)a 的正六边形的面积等于( )。
A .243a B .2a C .2233a D .233a9.设一个锐角与这个角的补角的差的绝对值为a ,则( )。
A .︒<<︒900aB .︒≤<︒900aC .︒<<︒︒<<︒1800900a a 或D .︒<<︒1800a10.在平面直角坐标系中,已知点A (0,2),B (32-,0),C (0,-2),D (32,0),则以这四个点为顶点的四边形ABCD 是( )。
重庆珊瑚中学数学整式的乘法与因式分解章末练习卷(Word版 含解析)
重庆珊瑚中学数学整式的乘法与因式分解章末练习卷(Word 版 含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.248﹣1能被60到70之间的某两个整数整除,则这两个数是( )A .61和63B .63和65C .65和67D .64和67【答案】B【解析】【分析】248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1),即可求解.【详解】解:248﹣1=(224+1)(224﹣1)=(224+1)(212+1)(212﹣1)=(224+1)(212+1)(26+1)(26﹣1)=(224+1)(212+1)(26+1)(23+1)(23﹣1)=(224+1)(212+1)×65×63,故选:B .【点睛】此题考察多项式的因式分解,将248﹣1利用平方差公式因式分解得到(224+1)(212+1)×65×63,即可得到答案2.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.3.利用平方差公式计算(25)(25)x x ---的结果是A .245x -B .2425x -C .2254x -D .2425x +【答案】C【解析】【分析】平方差公式是(a+b )(a-b )=a 2-b 2.【详解】解:()()()()()2225252525425254x x x x x x ---=--+=--=-, 故选择C.【点睛】本题考查了平方差公式,应牢记公式的形式.4.下列计算正确的是( )A .3x 2 ·4x 2 =12x 2B .(x -1)(x —1)=x 2—1C .(x 5)2 =x 7D .x 4 ÷x =x 3【答案】D【解析】试题分析:根据单项式乘以单项式的法则,可知3x 2 ·4x 2 =12x 4,故A 不正确; 根据乘法公式(完全平方公式)可知(x -1)(x —1)=x 2—2x+1,故B 不正确; 根据幂的乘方,底数不变,指数相乘,可得(x 5)2 =x 10,故C 不正确;根据同底数幂的相除,可知x 4 ÷x =x 3,故D 正确. 故选:D.5.下列运算正确的是( )A .236•a a a =B .()325a a =C .23•a ab a b -=-D .532a a ÷=【答案】C【解析】【分析】根据同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法法则即可求出答案.【详解】A .原式=a 5,故A 错误;B .原式=a 6,故B 错误;C .23•a ab a b -=-,正确;D .原式=a 2,故D 错误.故选C .【点睛】本题考查了同底数幂乘法、幂的乘方、单项式乘法、同底数幂除法,解题的关键是熟练运用运算法则,本题属于基础题型.6.如果x m =4,x n =8(m 、n 为自然数),那么x 3m ﹣n 等于( )A .B .4C .8D .56【答案】C【解析】【分析】 根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x 3m ﹣n 可化为x 3m ÷x n ,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x 3m =(x m )3,再代入x m =4,x n =8,即可得到结果.【详解】解:x 3m ﹣n =x 3m ÷x n =(x m )3÷x n =43÷8=64÷8=8, 故选:C .【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.7.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1 【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误; D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.8.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .9.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++-由于不含一次项,m+8=0,得m=-8.10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是() A .3-,4- B .3-,4 C .3,4- D .3,4【答案】A【解析】【分析】根据题意可得规律为712a b ab +=-⎧⎨=⎩,再逐一判断即可.【详解】根据题意得,a ,b 的值只要满足712a b ab +=-⎧⎨=⎩即可, A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH ⊥DC ,垂足为H.将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是____.【答案】36.【解析】【分析】根据题意列出2232,8x y x y -=+=,求出x-y=4,解方程组得到x 的值即可得到答案.【详解】由题意得: 2232,8x y x y -=+=∵22()()x y x y x y -=+-,∴x -y=4, 解方程组48x y x y -=⎧⎨+=⎩,得62x y =⎧⎨=⎩, ∴正方形ABCD 面积为236x =,故填:36.【点睛】此题考查平方差公式的运用,根据题意求得x-y=4是解题的关键,由此解方程组即可.12.(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×________.【答案】(a-b+x-y )【解析】运用公因式的概念,把多项式(a-b )2(x-y )-(b-a )(y-x )2运用提取公因式法因式分解(a-b )2(x-y )-(b-a )(y-x )2=(a-b )(x-y )×(a-b+x-y ). 故答案为:(a-b+x-y ).点睛:此题主要考查了提公因式法分解因式,关键是根据找公因式的方法,确定公因式,注意符号的变化.13.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=______.【答案】()()2a b a b ++.【解析】【分析】根据图形中的正方形和长方形的面积,以及整体图形的面积进而得出恒等式.【详解】解:由面积可得:()()22a 3ab 2b a 2b a b ++=++. 故答案为:()()a 2b a b ++.【点睛】此题主要考查了十字相乘法分解因式,正确利用面积得出等式是解题关键.14.在实数范围内因式分解:22967x y xy --=__________.【答案】11933xy xy ⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭【解析】【分析】将原多项式提取9,然后拆项分组为222189399x y xy ⎛⎫-+- ⎪⎝⎭,利用完全平方公式将前一组分解后,再利用平方差公式继续在实数范围内分解.【详解】解:22967x y xy -- 2227=939x y xy ⎛⎫-- ⎪⎝⎭ 222117=9+3999x y xy ⎛⎫--- ⎪⎝⎭ 218=939xy ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦11=93333xy xy ⎛⎫⎛---+ ⎪ ⎪⎝⎭⎝⎭11=933xy xy ⎛+--- ⎝⎭⎝⎭故答案为:9xy xy ⎛⎝⎭⎝⎭【点睛】本题考查在实数范围内因式分解,利用分组分解法将原多项式“三一”分组后采用公式法因式分解,注意在实数范围内因式分解是指系数可以是根式.15.已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________.【答案】40【解析】【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96 可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可.【详解】∵22x y xy 96+=,∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4,∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24当xy(x+y)= 4⨯24时,无解,当xy(x+y)= 6⨯16时,无解,当xy(x+y)=8⨯12时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x 2+y 2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.16.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】 根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.17.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为______. 【答案】-15【解析】【分析】观察所求的式子以及所给的方程组,可知利用平方差公式进行求解即可得.【详解】∵x 2y 5x 2y 3-=⎧+=-⎨⎩, ∴22x 4y -=(x+2y )(x-2y )=-3×5=-15,故答案为:-15.【点睛】本题考查代数式求值,涉及到二元一次方程组、平方差公式因式分解,根据代数式的结构特征选用恰当的方法进行解题是关键.18.分解因式6xy 2-9x 2y -y 3 = _____________.【答案】-y(3x -y)2【解析】【分析】先提公因式-y ,然后再利用完全平方公式进行分解即可得.【详解】6xy 2-9x 2y -y 3=-y(9x 2-6xy+y 2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.19.因式分解:223ax 12ay -=______.【答案】()()3a x 2y x 2y +-【解析】【分析】先提公因式3a ,然后再利用平方差公式进行分解即可得.【详解】原式()223a x 4y =-()()3a x 2y x 2y =+-,故答案为:()()3a x 2y x 2y +-.【点睛】本题考查了综合提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.若a+b=4,ab=1,则a 2b+ab 2=________.【答案】4【解析】【分析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a 2b+ab 2=ab(a+b)=1×4=4.故答案为:4.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.。
北师版数学八年级上期一、二、三章检测题(新)
重庆市珊瑚中学八年级上期第一阶段模拟测试题(二)(时间:120分钟,满分:150分)班级 姓名: ;成绩: ;一、选择题(每小题4分,共48分) 1.下列实数中是无理数的是( )A.38.0B.πC. 4D.722-2.在平面直角坐标系中,点P (-1,l )关于x 轴的对称点在( )。
A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列四组数据中,不能..作为直角三角形的三边长是( ) A.9,12,15 B.7,24,25 C.6,8,10 D.3,4,6 4.实数0.5的算术平方根等于( ).A.2B.2C.22 D.215.下列计算正确的是( )A .632=⨯ B .532=+ C .248= D .224=-6.下列说法错误的个数是 ( )①无理数都是无限小数; ②2)2(-的平方根是±2 ;③ 2a =(a )2;④-9是81的一个平方根 ⑤与数轴上的点一一对应的数是实数。
A.1个B.2个C.3个D.4个 7.若2m-4与3m-1是同一个数两个不同的平方根,则m 的值( )A. -3B.1C.-3或1D.-1 8.若92y -x +与|x -3|互为相反数,则x+y 的值为( )A .3B .9C .12D .27 9.对平面上任意一点(a ,b ),定义f ,g 两种变换:f (a ,b )=(a ,﹣b ).如f (1,2)=(1,﹣2);g (a ,b )=(b ,a ).如g (1,2)=(2,1).据此得g (f (5,﹣9))=( ) A . (5,﹣9) B . (﹣9,﹣5) C . (5,9) D . (9,5)10.小刚准备测量河水的深度,他把一根竹竿插到岸边1.5m 远的河底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )A . 2 mB .2.5mC .2.25 mD .3m11.实数a 、b 在数轴上对应点的位置如图,则2a b a --的结果是( ) 11题图A.2a-bB.b-2aC.bD. -b12.如图所示,四边形OABC 为正方形,边长为6,点A 、C 分别在x 轴,y 轴的正半轴上, 点D在OA 上,且D点的坐标为(2,0),P 是OB 上的一个动点,试求PD +PA 和的最小值是( )A .102B .10C .4D .6 二、填空题(每小题4分,共24分)13.-8的立方根是_____;16的平方根是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
珊瑚中学初2008级中考数学模拟试题(二)(全卷共四个大题,满分150分,考试时间120分钟)一、选择题(本大题共10个小题,每小题4分,共40分)1.3的倒数是()A.3 B.-3 C.13D.13-2.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A.6.8×109元B.6.8×108元C.6.8×107元D.6.8×106元3.在等边三角形、正五边形、正六边形、正七边形中,既是轴对称又是中心对称的图形是()A.等边三角形B.正五边形C.正六边形D.正七边形4.刘翔在出征北京奥运会前刻苦进行110米跨栏训练,教练对他20次的训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这20次成绩的()A.众数B.平均数C.频数D.方差5.如图所示,右面水杯的俯视图是()6.点M(2,-3)关于y轴的对称点N的坐标是()A.(-2,-3)B.(-2,3)C.(2,3)D.(-3,2)7.在函数y=x和取值范围是()A.3x≥-B.3x>C.3x≤-D.3x<-8.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是()A.0 B.6 C.快D.乐9.在半径为13厘米的圆中,弦AB与弦CD平行。
AB=24厘米,CD=10厘米,则两弦的距离为()A.17厘米B.12厘米C.7厘米D.7厘米或17厘米10.函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是()二、填空题(本大题10个小题,每小题3分,共30分) 11.方程(x+5)2=1的解为____________。
12.在数据1,2,3,1,2,2,4中,众数是____________。
13.分解因式2x 2-4xy+2y 2____________14.二次函数2(1)y x =-+2的最小值是____________。
15.如图7,双曲线ky x=与直线y=mx 相交于A 、B 两点,B 点坐标为(-2,-3),则A 点坐标为____________。
16.菱形的对角线长分别是6厘米、817.已知:22222233445522,33,44,55338815152424+=⨯+=⨯+=⨯+=⨯,…,若21010b ba a+=⨯符合前面式子的规律,则a+b=____________。
18.右图是由8块相同的等腰直角三角形黑白瓷砖镶嵌而砀山正方形示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,蚂蚁留在黑色瓷砖上的概率是____________。
19.如图所示,已知△ABC 中,AB=AC ,∠BAC=90︒,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③S 四边形AEPF =12ABC S ;④EF=AP 。
当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的有____________。
20.在直角坐标系中,O 为坐标原点,已知点A (1,2),在y 轴的正半轴上确定点P ,使△AOP 为等腰三角形,则点P 的坐标为____________。
一、选择题答案(本大题共10个小题,每小题4分,共40分)二、填空题答案(本大题共10个小题,每小题3分,共30分) 11.____________ 12.____________ 13.____________________ 14.____________ 15.____________ 16.____________ 17.____________18.____________19.____________20.________________________三、解答题(本大题6个小题,每小题10分,共60分) 21.(每小题5分,共10分)(1)1201()(2)(1)|3-+-⨯--(2)解不等式组:20251x x -<⎧⎨+>⎩22.如图,在△ABC 中,已知B (-3,1)(1)将△ABC 向右平移4个单位,再向下平移两个单位,得到△A 1B 1C 1,画出△A 1B 1C 1,写出B 1的坐标; (2)画出△A 1B 1C 1关于x 轴对称的△A 2B 2C 2;(3)将△ABC 绕点B 逆时针方向旋转90︒,画出旋转后的△A 3B 3C 3。
23.化简求值:22221211a a a a a a a-+-÷+-+,其中a =24.桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字,不放回,乙从剩下的牌中任意抽出一张,记下卡片上的数字,然后将这两数相加;(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式作游戏,当两数之和为5时,甲得3分;反之则乙得1分;这个游戏对双方公平吗?请说明理由。
如果不公平,请你修改得分方案,使游戏公平。
25.如图,一次函数y=kx+b的图象与反比例函数myx=图象交于A(-2,1)、B(1,n)两点。
(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围。
26.如图,在矩形纸片ABCD中,AB=BC=6,沿EF折叠后,点C落在AB边上的点P处,点D落在点Q处,AD与PQ相交于点H,∠BPE=30︒。
(1)求BE、QF的长。
(2)求四边形PEFH的面积。
四、解答题:(本大题2个小题,每小题10分,共20分)27.我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨。
现将这些柑桔运到C、D两个冷藏室,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元。
设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔的运输费用分别为y A元和y B元。
(1)请填写下表,并求出y、y与x之间的函数关系式:(2)试讨论A、B两村中,哪个村的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元。
在这种情况下,请问怎样调动,才能使两村运费之和最小?求出这个最小值。
28.如图:已知抛物线213442y x x =+-与x 轴交于A 、B 两点,与y 轴交于点C ,O 为坐标原点。
(1)求A 、B 、C 三点的坐标;(2)已知矩形DEFG 的一条边DE 在AB 上,顶点F 、G 分别在BC 、AC 上,设OD=m ,矩形DEFG 的面积为S ,求S 与m 的函数关系式,并指出m 的取值范围;(3)当矩形DEFG 的面积S 取最大值时,连接对角线DF 并延长至点M ,使25FM DF =,试探究此时点M 是否在抛物线上,请说明理由。
参考答案一、精心的选一选(本大题10个小题,每小题4分,共40分)CBCDDAABDB二、细心的填一填(本大题10个小题,每小题3分,共30分)11.x 1=-6 x 2=-4 12.2 13. 2(x-y )2 14.215.(2,3)16.2417.10918.1219.①②③20.54),(0,)4三、认真的解一解(本大题7个小题,共80分)21.(1)解:原式=3+4-=7-(2).由①得:x<2由②得:2x>-4x>-2∴不等式组的解集为-2<x<2 22.(1)解:(1)如图△A 1B 1C 1为所画形B 1(1,-1) (2)如图△A 2B 2C 2为所画图形 (3)如图△A 3B 3C 3为所画图形 23.解:原式=2(1)12(1)(1)(1)a a a a a a a -+++--=12a a +=3a∴当a =原式24.解:(1)甲、乙分别抽取卡片,所有可能性如下两数和:3 4 5 3 5 6 4 5 7 5 6 7P (两数和为5)=41123=(2)P (两数和为5)=13P (两数和不为5)=23∴抽取二次卡片中平均得分:1313⨯=分 抽取二次卡片乙平均得分22133⨯= 213> ∴该游戏不公平,可改为若两数和为5,甲得3分,反之则乙得:32分。
25.解:(1) 点A 在my x=,则212m =-⨯=-。
∴反代例函数为:2y x-=点B 在2y x=-上,则n=-2,根据题意,得212k b k b -+=⎧⎨+=-⎩解方程组得:11k b =-⎧⎨=-⎩ ∴一次函数解析为:y=-x-1(2)当x<-2或0<x<1时,一次函数值大于反代例函数值。
26.解:(1)根据题意,得EC=PE , ①在Rt △PBE 中,∠BPE=30︒∴PE=2BE ②由①、②解得:42DE BE =⎧⎨=⎩∴PB=4,cos30︒∴在Rt △HPA 中,∠APH=60︒ ∠AHP=30︒,∴∴在Rt △QHF 中,∠QHF=30︒,tan=30︒=QFAQ,QF=1 (2)S 四边形PEFH =S 梯形PEFQ -S △QHF=(41)122+⨯-= 27.解:(1)Y A =20+25(200-x)=5000-5xY B =15(2400-x)+18(60+x)=4680+3x (2)Y A -Y B =5000-5x-4680-3x =320-8x①当Y A -Y B >0时,则320-8x>0,解得0<x<40②当Y A -Y B =0时,则320-8x=0,解得x=400 ③当Y A -Y B <0时,则320-8x<0,解得400<x<200 ∴当0<x<40时,B 村总运费较少, 当x=40时,A 、B 两村费用一致 当40<x<200时,A 村费用较少(3)根据设两村总费用为w 元,则W=YA+YB=5000-5x+4680+3x=-2x+9680 根据题意,得20002400468034830x x x x ≥⎧⎪-≥⎪⎨->⎪⎪+≤⎩ 解:050x ≤≤∴W 随x 的增大而减小, ∴当x=50时,Wax=9580(元)28.解:(1)当x=0时,y=-4∴y=0时,2134042x x +-=,解得:x 1=-8,x 2=2 ∴A (2,0),B (-8,0) ∴A (2,0),B (-8,0),C (10,-4) (2)设AC 直线所在解析式为:Y=k 1x+b 1,则1120k b +=⎧解方程组得:1124k b =⎧⎨=-⎩∴直线AC 的解析式为:y=2x-4设BC 的解析式为:22y k x b =+,则222804k b b +=⎧⎨=⎩ 解方程组,得221124k b ⎧=-⎪⎨⎪=-⎩∴直线BC 所在解析式为:142y x =--设G (m ,Ym )则 Ym=2m-4 ∴G (m,2m-4)设下(xF,2m-4),则2m-4=142xF -解得:xF=-4m ∴F(-4m,2m-4) ∴E (-4m,0) ∴DE=5m,DG=4-2m∴S 矩形DEFG =DE ·DG=5m(4-2m)=-10m 2+20m(0<m<2) (3)S 矩形DEFG ==-10(m 2+2m+12-12) =-10(m-1)2+10∴当m=1时,S 矩形DEFG 最大值为10。