模拟量信号干扰分析及11种解决秘诀
电子设计中常见的模拟信号干扰问题
电子设计中常见的模拟信号干扰问题在电子设计中,模拟信号干扰是一个常见且需要重视的问题。
模拟信号干扰可以导致系统性能下降甚至故障,因此在设计阶段需要充分考虑和预防各种干扰因素。
首先,我们需要了解模拟信号干扰的来源。
模拟信号干扰主要来自3个方面:电磁干扰、接地干扰和信号源本身。
电磁干扰包括来自电源线、开关电源、通信线路、射频设备等的干扰;接地干扰则是因为接地不良、接地回路共享等问题导致的干扰;信号源本身的不稳定或噪声也会对模拟信号产生干扰。
针对电磁干扰,我们可以通过良好的电磁兼容设计来减少干扰。
首先,在PCB 板设计中,要注意信号线和电源线的布局,尽量减少回路面积,降低信号回路的环路,减少干扰。
其次,在电路设计中,可以采用滤波器、抑制器等组件来抑制电磁干扰,提高系统的抗干扰能力。
此外,良好的地线设计也是减少接地干扰的关键,要保证各个模块的接地处于相同电位,减少共模电压。
对于信号源本身的干扰,我们可以在信号源前增加滤波电路或使用低噪声元件来减少干扰。
同时,合理选择工作电压范围、增益和带宽,减少信号源自身产生的噪声。
在设计放大器电路时,要考虑共模抑制比、带宽、噪声系数等指标,选择合适的放大器器件来提高系统的抗干扰能力。
另外,还有一些常见的方法可以帮助减少模拟信号干扰。
例如,使用屏蔽罩或屏蔽线缆来隔离干扰源;增加电源线滤波器和维持干净的供电;采用差分信号传输技术来减少共模干扰等。
总的来说,有效减少模拟信号干扰需要从电路设计阶段开始,综合考虑PCB布局、信号源设计、工作环境等因素,以提高系统的稳定性和抗干扰能力。
只有通过细致的设计和充分的预防,才能解决模拟信号干扰带来的各种问题,保证系统的正常运行和性能。
希望以上方法对您有所帮助。
电子电路中常见的模拟信号处理问题解决方法
电子电路中常见的模拟信号处理问题解决方法在电子电路中,模拟信号处理是一个重要的领域。
模拟信号是连续的电信号,它们可以表示声音、光、热等各种真实世界的现象。
然而,由于各种因素的干扰,模拟信号在传输和处理过程中常常会出现一些问题。
本文将介绍一些常见的模拟信号处理问题,并提供相应的解决方法。
一、噪声干扰的处理噪声干扰是模拟信号处理中最常见的问题之一。
它来源于各种环境因素,如电源干扰、电磁辐射和器件本身的噪声。
为了减小噪声干扰对模拟信号的影响,可以采取以下几种方法:1. 信号调节滤波器:合理选择滤波器可以抑制噪声干扰。
常见的滤波器包括低通滤波器、高通滤波器和带通滤波器等。
通过去除或减小噪声频率上的能量,可以有效降低噪声干扰。
2. 增加增益:通过增加信号增益可以提高信号的强度,使其相对于噪声更显著。
这样可以使得接收到的信号在噪声的影响下仍然能够正确解读。
3. 电源滤波:使用电源滤波器可以减小电源中的噪声干扰。
通过滤波器将电源中的高频噪声滤除,可以提供一个相对干净的电源给模拟信号处理电路。
二、失真和非线性问题的处理在模拟信号处理中,失真和非线性问题也是常见的挑战。
这些问题包括偏移误差、谐波失真和交调失真等。
为了解决这些问题,可以采取以下方法:1. 选用合适的器件:选择具有良好线性特性的器件对信号进行处理。
一些特殊的操作放大器、滤波器和电压参考器可以提供更准确的信号处理能力,减小失真和非线性。
2. 校正电路:使用校正电路可以对信号进行有效的校正,减小失真。
这些校正电路可以校正传感器的非线性,使其输出信号更加准确。
3. 负反馈:利用负反馈可以有效减小非线性和失真。
负反馈是一种将部分输出信号反馈到输入的技术,通过调整反馈信号的幅度和相位,可以实现对输入信号的校正。
三、信号采样和保持问题的处理在模拟信号处理过程中,信号的采样和保持是必不可少的步骤。
在高频信号或者快速变化信号的处理中,采样和保持过程可能会引入一些问题。
抗干扰处理方法
PLC抗干扰处理办法一、模拟量抗干扰处理办法1.1 、模拟量类型:1.1.1 模拟量输入类型(可根据客户需求定制)1.1.2 模拟量输出类型1.2 模拟量输入抗干扰处理办法特点:1. 测温范围广:2. K型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000C,短期1200 C。
3. E 型:在常用热电偶中,其热电动势最大,即灵敏度最高。
宜在氧化性、惰性气氛中连续使用4. J型:既可用于氧化性气氛(使用温度上限750C),也可用于还原性气氛(使用温度上限950C),并且耐H2及CO气体腐蚀,多用于炼油及化工;5.S型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400C,短期1600 C。
在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶;1 .热电偶不能和强电放在一个线槽内2. 使用隔离型热电偶(信号线与屏蔽线分开的热电偶)处理方法:1. 检测冷端温度,冷端(查看冷端寄存器)与室温(环境温度)是否一致,如有偏差,现将冷端修正准确;1. 冷端温度温度正常时,将EK热电偶放在外部,不接其他负载,且不能与强电放在一个线槽时检测温度(AD模拟量对应寄存器)2. 将机壳接地,EK模拟量的线上加锡箔纸,并与其它干扰源隔开3. 加104 瓷片电容、磁环做防干扰处理4. 开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线5. 集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。
6. 信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。
7. 交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设8. 采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLG9. 采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC。
1.2.2 PT100特点:1. 测温范围:-99.9~499.9 C,线距越长线损越大1. 三线制PT100需要并成两线制接线,AD端接信号线,其余两根接在GND端2. 线距1.5m 左右,若测温距离长需使用特殊的延长线(线损小)3. 滤波,(1)电容滤波:如果串模干扰频率比被测信号频率高,则采用输入低同滤波器来抑制高频串模干扰,(这里我们可以采用一个47UF\16V 的电解电容来处理)(2)数字滤波:PLC内部有特需寄存器,可以改变数值的大小来确定温度采集的频率。
模拟量干扰的11种解决方法
模拟量干扰的11种解决方法
模拟量干扰的11种解决方法
1、加1:1信号隔离器
2、加磁环
3、PLC供电加隔离变压器
4、开关量信号和模拟量信号分开走;
5、模拟信号最好采用单独屏蔽线。
信号类型最好采用4-20mA;
6、模拟信号负载是电磁阀类的,最好能选1.5的线;
7、模拟信号和数字信号不能合用同一根多芯电缆,更不能和电源线共用电缆;
8、PLC输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在PLC侧接地;
9、信号线缆要远离强干扰源,如变频器、大功率硅整流装置和大型动力设备;
10、模拟信号和数字信号不能合用同一根多芯电缆,更不能和电源线共用电缆;
11、为了减少电子干扰对于模拟信号应使用双绞屏蔽电缆模拟信号电缆的屏蔽层应该两端接地,但是如果电缆两端存在电位差将会在屏蔽层中产生等电线连接电流造成对模拟信号的干扰在这种情况下你应该让电缆的屏蔽层一端接地。
变频器对模拟量信号干扰故障
来越 被广 泛的 使用 , 已经成 为提高 能源 产 出和控 制特 性 、 改善机 械设 备性 能 的
一
个 强有 力 的途径 。 但 由于 其工 作过程 中, 输入 、 输 出端会 产生 高次谐 波 , 对 供
电系统 、 负 载及其 他邻 近 电气设 备产 生干 扰 , 尤其 是在对 防干 扰要 求 比较高 的 信 号传 输系 统 , 谐 波干 扰 问题 尤 为突 出 。
中图分 类号 : TN 7 7 文 献标 识码 : A 文章 编号 : 1 0 0 9 - 9 1 4 X( 2 0 1 3 ) 1 2 — 0 2 9 4 ~ 0 1
在 交流传动 与控 制技术 中 , 因为变频 器具有 高效 、 节能和 智能化 的特 点 , 越
屏 蔽 用铁 箱要 接地 。 ( 4 ) 接 触不 良干扰 : 指变 频器控 制 电缆 的 电接 点及继 电器接触 不 良、 电阻发 生变 化而 在 电缆 中产 生 的干扰 。
应 用技 术
I ■
变 频 器 对 模 拟 量 信 号 干 扰 故 障
童 毅
( 重庆 钢 铁股 份 公 司维 检部 4 0 1 2 0 0 ) [ 摘 要] 介 绍 了变频 器信 号 干扰 的基 本类 型 , 本 文简 述 了变频 器 控制 回路 的抗 干 扰措 施及 变 频器 常见 故 障分 析与 排 除 。 [ 关键 词] 变频器; 信号 干 扰 ; 处 理方 法
影响模拟量传感器的外界干扰因素和抗干扰措施
影响模拟量传感器的外界干扰因素和抗干扰措施模拟量传感器信号传输过程中干扰的形成必需具备三项因素,即干扰源、干扰途径以及对噪声敏感性较高的接收电路。
影响模拟量传感器的外界干扰主要有以下几种:1、静电感应干扰静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,有时候也被称为电容性耦合。
2、电磁感应干扰当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。
这种状况在传感器使用的时候常常遇到,尤为留意。
3、漏电流感应干扰由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特殊是传感器的应用环境湿度增大,导致绝缘体的绝缘电阻下降,这时漏电电流会增加,由此引发干扰。
尤其当漏电流流入到测量电路的输入级时,其影响就特殊严峻。
4、射频干扰干扰主要是大型动力设备的启动、操作停止时产生的干扰以及高次谐波干扰。
5、其他干扰主要指的是系统工作环境差,还简单受到机械干扰、热干扰和化学干扰等等。
通过以上概述,我们了解传感器的干扰来源主要有两种途径:一是由电路感应产生干扰;二是由外围设备以及通信线路的感应引入干扰。
我们得认真分析外界干扰的来源,信号传输线路以及敏感程度,做好接地处理和传感器信号线屏蔽措施,有可能的话远离干扰源。
模拟量传感器抗干扰技术1、屏蔽技术利用金属材料制成容器。
将需要爱护的电路包在其中,可以有效防止电场或磁场的干扰,此种方法称为屏蔽。
屏蔽又可分为静电屏蔽、电磁屏蔽和低频磁屏蔽等。
2、静电屏蔽依据电磁学原理,置于静电场中的密闭空心导体内部无电场线,其内部各点等电位。
用这个原理,以铜或铝等导电性良好的金属为材料,制作密闭的金属容器,并与地线连接,把需要爱护的电路值r其中,使外部干扰电场不影响其内部电路,反过来,内部电路产生的电场也不会影响外电路。
这种方法就称为静电屏蔽。
3、电磁屏蔽对于高频干扰磁场,利用电涡流原理,使高频干扰电磁场在屏蔽金属内产生电涡流,消耗干扰磁场的能量,涡流磁场抵消高频干扰磁场,从而使被爱护电路免受高频电磁场的影响。
抗干扰处理方法
PLC抗干扰处理办法一、模拟量抗干扰处理办法1.1、模拟量类型:1.1.1模拟量输入类型(可根据客户需求定制)1.1.2 模拟量输出类型1.2模拟量输入抗干扰处理办法特点:1.测温范围广:2.K型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。
3.E型:在常用热电偶中,其热电动势最大,即灵敏度最高。
宜在氧化性、惰性气氛中连续使用4.J型:既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度上限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工;5.S型:抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期1600℃。
在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶;注意:1.热电偶不能和强电放在一个线槽内2.使用隔离型热电偶(信号线与屏蔽线分开的热电偶)处理方法:1.检测冷端温度,冷端(查看冷端寄存器)与室温(环境温度)是否一致,如有偏差,现将冷端修正准确;1.冷端温度温度正常时,将EK热电偶放在外部,不接其他负载,且不能与强电放在一个线槽时检测温度(AD模拟量对应寄存器)2.将机壳接地,EK模拟量的线上加锡箔纸,并与其它干扰源隔开3.加104瓷片电容、磁环做防干扰处理4.开关量信号和模拟量信号分开走,模拟信号最好采用单独屏蔽线5.集成电路或晶体管设备的输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在控制器侧接地。
6.信号线缆要远离强干扰源,如电焊机、大功率硅整流装置和大型动力设备。
7.交流输入输出信号与直流输入输出信号应分别使用各自的电缆,并按传输信号种类分层敷设8.采用隔离器,把信号源与PLC隔离开,通过隔离器在把信号输入到PLC。
9.采用隔离变送器,将温度信号通过隔离变送器转换成电压信号或电流信号在送入到PLC。
1.2.2 PT100特点:1.测温范围:-99.9~499.9℃,线距越长线损越大注意:1.三线制PT100需要并成两线制接线,AD端接信号线,其余两根接在GND端2.线距1.5m左右,若测温距离长需使用特殊的延长线(线损小)3.滤波,(1)电容滤波:如果串模干扰频率比被测信号频率高,则采用输入低同滤波器来抑制高频串模干扰,(这里我们可以采用一个47UF\16V的电解电容来处理)(2)数字滤波:PLC内部有特需寄存器,可以改变数值的大小来确定温度采集的频率。
解决信号干扰的方法
解决信号干扰的方法(原创实用版4篇)《解决信号干扰的方法》篇1信号干扰是指信号在传输过程中受到其他信号的影响,导致信号的质量下降或丢失。
以下是几种常见的解决信号干扰的方法:1. 屏蔽:通过使用屏蔽材料或屏蔽器件,如金属箔或信号隔离器,来防止信号被干扰。
2. 滤波:使用滤波器来滤除信号中的干扰信号。
滤波器可以是硬件滤波器或软件滤波器,如低通滤波器或高通滤波器。
3. 调制:通过改变信号的调制方式,如频率调制或相位调制,来降低信号干扰的影响。
4. 解调:通过解调信号,可以将干扰信号从原始信号中分离出来,从而减少信号干扰的影响。
5. 抗干扰技术:使用抗干扰技术,如自适应滤波器或自适应信道均衡器,来抵消信号干扰的影响。
6. 信号放大:通过放大信号,可以增加信号的强度,从而降低信号干扰的影响。
7. 信号隔离:通过使用信号隔离器,可以将信号与干扰信号隔离开来,从而减少信号干扰的影响。
《解决信号干扰的方法》篇2信号干扰是指信号在传输过程中受到其他信号的影响,导致信号的质量下降或丢失。
以下是几种解决信号干扰的方法:1. 信号隔离器:信号隔离器是一种电子元件,用于隔离电路中的信号,防止信号互相干扰。
信号隔离器可以将输入信号与输出信号隔离,从而减小信号干扰的影响。
2. 滤波器:滤波器是一种用于信号处理的电路元件,用于滤除信号中的干扰信号。
滤波器可以通过选择合适的滤波器类型和参数,来滤除特定频率范围内的干扰信号,从而提高信号的质量。
3. 屏蔽:屏蔽是指在信号传输的路径上添加屏蔽层或屏蔽网,以防止信号受到外部干扰。
屏蔽可以采用金属箔或金属网,覆盖在信号传输线的表面或包裹在信号传输设备的外部。
4. 接地:接地是指将电路中的金属部件连接到地面,以减小电路中的干扰信号。
接地可以有效地消除电磁干扰和静电干扰,从而提高信号的质量。
5. 调整信号传输路线:调整信号传输路线可以避免信号受到干扰信号的影响。
例如,可以将信号传输线远离干扰源或调整信号传输线的走向,以减小信号干扰的影响。
模拟量检测抗干扰设计
检测装置的抗干扰设计检测装置是自动控制系统的“眼睛”,其送出的信号往往是微弱的模拟量的电压,而引线又很长。
极易受干扰影响。
应视检测信号情况分别处理。
1.毫伏级传感器信号传送方式(1)传感器输出信号放大若干倍后传送,在接收端缩小同样倍数后再输入控制系统。
若接收侧采用差动输人放大器方式,则能更好地抑制共模噪声,但是对于非对称信号源中的共模噪声不能充分抑制。
(2)在长距离传送或传输线附近有强磁场时,于线上将有较大的交流噪声。
若系统的动态响应要求不高时,可以在放大器的输入和输出之间并一个电容;在输入端接人有源低通滤波器,也可有效地抑制交流噪声。
(3)对于非线性传感器的输出信号(如热敏电阻)采用简单的电容滤波方式,会使信号电平发生偏移,应采用陷波滤波器或低通滤波器,以免信号发生失真。
(4)对十小信息,采用无源滤波器为好,对大信号,宜采用右源滤波器。
2.A/D转换器的一般抗扰设计(1)转换器各电源对地并电容,减少电源电压的扰动;(2)输入端设钳位二极管,防止异常过电压信号;(3)设缓冲放大器,削弱共模噪声:(4)数字电路与模拟电路零线分开;(5)选择合适的输出数据码制;(6)积分电容采用金属壳聚丙烯电容器;必要时将电容用接地钢箔包起来,积分电路阻抗应尽虽降低,以减少接受噪声的可能性; (7)在各级运算放大器前设置低通滤波器,可有效地抑制输人信号中混杂的噪声。
3.微伏级信号的A/D转换器抗丅扰由于信号微弱,易受时钟下扰,在传输过程中亦易混入噪声,为此应将转换器与微型计算机电路分别装于两个相隔儿米的机壳内;输出数据用中行方式,经光隔离后,用双绞线送至微型计算机。
4.隔离放大器在要求直流信号隔离传送,或者存在幅值高达几百伏的共模尖峰噪声时,采用隔离放大器是较好的方案。
压砖机模拟量的干扰测试分析及抑制措施
1前言陶瓷压砖机是陶瓷砖生产线最关键的设备,是机、电、液、计算机控制技术和陶瓷工艺技术相结合的现代高科技设备。
液压自动压砖机是陶瓷墙地砖生产在线重要的设备,压砖机一般采用模拟量压力传感器检测主缸压力,做好各项抗干扰措施,才能达到压力精准控制的目的。
因此了解干扰的来源,并从源头切断干扰的传导路径,显得尤为重要。
2电磁干扰按传播路径来分,电磁干扰可分为传导干扰、空间干扰;传导干扰又分共模干扰和差模干扰,空间干扰又分辐射干扰和感应干扰;感应干扰又分电场耦合和磁场耦合。
如图1所示:构成干扰要有三要素,骚扰源,传播途径,敏感设备。
骚扰源分两种,一种是电场的骚扰源,一种是磁场的骚扰源。
(1)射频辐射干扰,来自变频器的输入电缆和输出电缆。
当变频器的输入输出电缆上有射频干扰电流时,由于电缆相当于天线,会产生电磁波辐射,产生射频干扰。
变频器输出电缆上传输的电压,包含高频的成分,产丁亚辉(佛山市恒力泰机械有限公司,佛山528031)找出压机主缸压力受干扰的来源,归纳了变频干扰的类型,提供抑制干扰的措施。
PLC;主缸压力的示波分析;共地;辐射干扰图1电磁干扰的分类机械与设备Machine&Equipment图3主缸压力波形测试流程生电磁波辐射,形成辐射干扰。
射频辐射特性是受干扰的电子设备越近,干扰越严重。
(2)谐波干扰,整流电路产生谐波电流,这种谐波电流在供电系统的阻抗上产生电压降,导致电压波形发生畸变,这种畸变的电压对于许多电子设备形成干扰(大部分电子设备仅能工作在正弦波电压下),常见的电压畸变是正弦波的顶部变平,谐波电流一定时,电压畸变在弱电源的情况下更加严重,这种干扰的特征是会对使用同一个电网的设备形成干扰,与设备与变频器之间的距离无关。
(3)射频传导发射干扰,由于负载电压为脉冲状,因此变频器从电网吸取电流也是脉冲状,这种脉冲电流中包含了大量的高频成分,形成射频干扰,这种干扰的特征是会对使用同一电网的设备形成干扰,而与设备与变频器之间的距离无关。
变频器干扰PLC模拟量解决方法
变频器干扰PLC模拟量解决方法
当你在把系统全设计好,认为100%可以了,当你在调试的过程当中,往往会遇到变频器干扰plc系统,这时可能会头大了,本人最近也遇到过变频器干扰PLC的模拟量,在现场搞了许多天多解决不了问题,但自己却总结出一些阅历,盼望搞这行的可以仔细参考。
变频器是一个高频电器,什么叫高频了,高频的英文名简称RF,在工作时有干扰源是在所难免,干扰分为磁场干扰和高次谐波干扰,分别说明两种干扰的解决。
磁场干扰采纳隔离的方法
1,变频器的动力线与PLC信号线不能够走在一起,信号线要采纳屏蔽电缆,并加钢管进行隔离。
2,动力线的地线要与信号通道的地线不能连在一起,应为变频器工作时产生谐波电流通到大地有可能对信号通道产生干扰,所以建议分开。
3,变频器单独放一个柜子,不要同PLC放在同一个柜。
4,变频器加屏蔽网进行隔离。
5,变频器与信号通道的电源隔离,可在变频器主回路或信号通道回路加装隔离变压器。
6,在PLC模块与传感器中间加隔离放大器。
高次谐波干扰可采纳抑制法
1,在变频器输入或输出端加装电抗器滤波
2,在变频器输入端加RC型滤波器
3,在变频器输出与马达动力线之间加磁环
4,在变频器直流P+,P-之间对地加谐振电容去谐波5,降低变频器的载波频率准时间常数。
多种解决模拟量信号干扰的方法——第一个就很实用
多种解决模拟量信号干扰的方法——第一个就很实用原创 2018-02-04 胡 PLC工程师做PLC项目,基本都会涉及到模拟量的控制,使用频率多了,问题也就多了,觉得最棘手的问题莫过于干扰。
下面举一个网友所遇到过的变频器对模拟量干扰的例子。
上图为S7-200SMART系列的模拟量扩展模块(AM03和AM06)上图为西门子MM440的变频器端子接线介绍故障现象:西门子S7-200SMART PLC用AM03模拟量输出端与变频器模拟量输入端相连,通过AM03输出一路4-20mA电流控制信号,实现对电机的无级调速;可是在操作过程中,无法实现对变频器的控制,启动不了电机。
故障排查:1、考虑AM03模块的模拟量输出端问题,用万用表测量4-20mA 输出信号,信号正常。
2、用替换法,换了另一台MM440变频器,问题仍然如此。
3、用一台手持式信号发射器做4-20mA输出信号源,输出标准电流信号至变频器,这下变频器启动了,因而排除了模拟量输出板卡和变频器的故障。
由此推测是变频器的干扰信号传导至模拟量通道所致。
4、为了验证推测,在PLC模拟量4-20mA输出通道中加装了一台信号隔离模块TA3012,TA3012的输入端子5、6接模拟量输出模块,输出端子1、2端子接变频器,3、4端子接外部24VDC供电电源,变频器正常启动了。
故障点:据此断定,问题的根源在于变频器干扰模拟量通道所致,具体如何干扰到,后文有介绍。
上述第五点提到采用信号隔离模块,这确实是其中一种方法,既然提到了,就顺便科普下:1信号隔离器工作原理将接收的信号,通过半导体器件调制变换,然后通过光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号或不同信号,同时对隔离后信号的供电电源进行隔离处理。
保证变换后的信号、电源、地之间绝对独立。
(其实核心原理就是光电隔离)信号隔离器选择隔离器位于二个系统通道之间,所以选择隔离器首先要确定输入输出功能,同时要使隔离器输入输出模式(电压型、电流型、环路供电型等)适应前后端通道接口模式。
模拟量传感器的抗干扰措施
模拟量传感器的抗干扰措施1.选择合适的电缆和连接器:选择抗干扰性能好的电缆和连接器,可以有效减少外界电磁干扰对测量信号的影响。
抗干扰电缆和连接器通常使用屏蔽层和抗干扰材料以阻挡外界电磁干扰的进入。
2.电磁兼容设计:在传感器的设计阶段,应考虑电磁兼容性。
采用适当的电路布局和屏蔽措施,以减少外界电磁干扰对传感器的影响。
例如,在传感器电路设计中使用地线屏蔽和差动信号放大器,可有效减少共模干扰信号。
3.供电电源的稳定性:传感器的稳定工作需要稳定的供电电源。
因此,应选用电源稳定性好、抗干扰能力强的供电方案,如稳压电源或者电源滤波器,以减少电源波动对传感器测量信号的影响。
4.地线连结:保持传感器、仪表和系统的地电位连结良好,减小共模干扰信号对测量信号的干扰。
5.信号放大和滤波:对传感器的信号进行放大和滤波,以提高信号的稳定性和精确性。
例如,可以采用差动放大器,将差模信号放大,抑制共模干扰信号。
6.屏蔽和隔离:对传感器进行屏蔽和隔离是提高其抗干扰能力的有效手段。
可以在传感器外壳和电缆中添加金属屏蔽层,减少外界电磁干扰的侵入。
7.抗振设计:对于一些特定应用场景,传感器可能会受到振动的干扰。
在设计中应考虑传感器的机械抗振性能,避免振动对传感器测量信号的干扰。
可以采用机械隔振和防振结构等措施来解决这一问题。
8.温度补偿:温度是影响传感器测量信号稳定性和准确性的重要因素。
因此,采用适当的温度补偿技术来抵消温度变化对传感器的影响,可以提高其抗干扰能力。
9.数据处理和校准:传感器的测量信号需要进行数据处理和校准,以消除系统误差和干扰。
例如,可以采用滤波算法、校正算法等方法,提高传感器的测量精度和抗干扰能力。
总之,抗干扰措施对于保证传感器的测量信号稳定性和准确性至关重要。
通过合理的设计和选择合适的技术手段,可以有效减少外界干扰对传感器的影响,提高其抗干扰性能。
影响模拟量传感器的外界干扰因素和抗干扰措施
影响模拟量传感器的外界干扰因素和抗干扰措施外界干扰是指在模拟量传感器工作过程中,来自外部环境的电磁干扰或其它因素对传感器测量信号的附加影响。
外界干扰会引起传感器输出信号的波动、偏移甚至失真,降低传感器的测量精度和稳定性。
为了减少或消除外界干扰对传感器的影响,可以采取一系列的抗干扰措施。
一、影响模拟量传感器的外界干扰因素:1.电磁干扰:电磁辐射、电磁感应、电源电磁干扰等会导致传感器信号干扰;2.温度变化:温度变化会导致传感器材料的热胀冷缩,从而影响传感器的准确度;3.行程限制:在使用位置或环境中,由于传感器的安装或固定存在行程限制,会使得传感器的测量范围受限;4.液体介质:液体介质对传感器的影响由介质的种类、温度、压力、浓度、酸碱程度等因素决定;5.机械振动:传感器受到机械振动时,易产生误差,使传感器输出信号出现偏差;6.光照强度:光照强度的变化会对一些光电传感器产生影响,如光敏电阻、光电二极管等。
二、抗干扰措施:1.选择合适的传感器:根据实际应用场景和环境的特点,选择适合的传感器类型,例如抗干扰能力较强的电磁屏蔽传感器、温度补偿能力较强的温度传感器等;2.屏蔽设计:在传感器电缆、电源线等连接线路上进行屏蔽,减少电磁辐射和感应的干扰;3.地线连接:传感器与测量设备之间应有良好的地线连接,以减少干扰电压和电流的影响;4.使用滤波器:在传感器信号线路上加装滤波器,用于滤除高频干扰信号;5.增加隔离:在传感器与测量设备之间加装隔离设备以消除接地环路的干扰;6.电源稳定化:使用稳定、纹波小的电源,保持传感器工作的电源稳定;7.加装抗干扰电路:在接触式传感器的输入端加装适当的抗干扰电路,提高传感器的抗干扰能力;8.密封防护:对于受液体介质影响的传感器,采用密封防护措施,避免介质对传感器的侵蚀和干扰;9.防止机械振动:采用固定牢固、减振措施等方式,防止传感器受到机械振动的干扰;10.具体环境调整:针对不同的外界干扰因素,可针对具体环境进行调整,例如对温度进行补偿、增加隔离物等。
模拟量干扰的问题
1.模拟量干扰的问题(处理,明确一下)问:我用的SM331 8*12bit 模块信号有时正常有时不正常,后来我把COMP-跟信号的M-接起来就好了,但我同时发现他们之间接电容也可以,是怎么回事??模块的COMP-端、各信号的M-端和模块24伏供电的M端之间电气上有什么关系??答:对隔离输入模板,.摸板参考地Mana与CPU的电源地M没有电连接。
因此Mana 与M有电位差时,必须采用隔离输入模板。
但是,如果电位差超过Eiso,则必须建立Mana 与M之间的连接。
对SIEMENS的模板,Eiso=75VDC或60VAC。
对非隔离输入模板,则必须建立Mana与M之间的连接。
为抑止信号地M-与Mana 之间的共模干扰,不同传感器的接地方式不同,限于篇幅以及图解困难,难以细说。
一般原则是,建立信号地与模板的地、模板地与(CPU)系统地的连接。
如果有干扰环流,则将取消模板地与系统地的连接,让模拟地悬浮。
另外,屏蔽推荐双端接地,如果有干扰环流,则改为单端。
2.采用周期3.S7-300PID的FB41CONT_C功能及参数设定问:请教各位高手,本人现用到西门子S7-300(CPU315)做整流系统的PID控制,具体是由AI模块输入4-20MA信号(既A柜/B柜饱和电抗器控制电流信号反馈和机组A柜/B柜直流电流信号反馈),通过CPU调用PID功能块,实现自动闭环控制,最后由AO模块输出一个4-20MA的信号给稳流系统(既A柜/B柜电流给定反馈)。
现请教:1、具体应调用S7的PID中的哪些功能块。
我是直接在OB1里边调用FB41,不知可否。
2、PID标准块FB41的输入输出参数如何整定,PV_PER、SP_INT、PV_IN有何区别。
3、GAIN、TI、TD如何整定。
4、MAN_ON、PVPER_ON怎么用,是直接在FB41的输入端写吗?答:原理上,PID的调节节奏应该与其采样周期一致,这是数学模型应与物理过程一致的要求。
模拟传感器有哪些干扰现象及抗干扰措施
模拟传感器有哪些干扰现象及抗干扰措施传感器作为工业自动化领域中的重要设备,常常会面临各种干扰现象,这些干扰现象可能会影响其正常工作和准确度。
为了保证传感器的正常工作,需要采取一系列的抗干扰措施。
下面将介绍一些常见的传感器干扰现象以及相应的抗干扰措施。
1.电磁干扰:电磁干扰是指外部电磁场对传感器信号的干扰。
常见的电磁干扰源包括高压设备、电磁炉、电缆等。
电磁干扰会引起传感器输出信号的波动和误差。
抗干扰措施:1)电磁屏蔽:通过在传感器周围设置金属屏蔽罩,阻挡外部电磁场的干扰。
可以采用金属盖、金属箱体等形式进行屏蔽。
2)绝缘隔离:采用光电隔离、电磁隔离等方式,将传感器与干扰源进行隔离,减少电磁干扰的影响。
3)过滤器:通过在传感器输入和输出端口添加低通滤波器、带通滤波器等,减少高频电磁干扰的影响。
2.温度变化:温度变化会导致传感器内部零件的膨胀和收缩,从而影响传感器的准确度和灵敏度。
特别是一些精度要求较高的传感器,对温度变化的敏感性更高。
抗干扰措施:1)温度补偿:通过在传感器的设计中引入温度传感器或温度补偿器件,对温度变化引起的误差进行补偿,提高传感器的精度和稳定性。
2)精确匹配:在传感器的制造过程中,采用合适的材料和工艺,保证传感器零件的尺寸和性能能够在不同温度下保持匹配,减小温度变化对传感器的影响。
3.电源波动:传感器的正常工作需要稳定的电源供应,然而电源波动可能会导致传感器输出信号的不稳定和误差。
抗干扰措施:1)电源滤波:在传感器电源输入端添加电源滤波器,滤除电源中的高频噪声,提供稳定的电源给传感器。
2)稳压电源:使用稳压电源来为传感器供电,保证电源的稳定性和可靠性。
3)函数隔离:通过采用电隔离等技术手段,将传感器与电源进行隔离,减少电源波动对传感器的影响。
4.光干扰:对于光学传感器而言,光干扰可能会导致传感器误判或误触发。
抗干扰措施:1)屏蔽罩:在传感器光学部分周围设置屏蔽罩,防止外部光线干扰传感器的正常工作。
模拟量传感器的抗干扰措施
一、前言模拟传感器的应用非常广泛,不论是在工业、农业、国防建设,还是在日常生活、教育事业以及科学研究等领域,处处可见模拟传感器的身影。
但在模拟传感器的设计和使用中,都有一个如何使其测量精度达到最高的问题。
而众多的干扰一直影响着传感器的测量精度,如:现场大耗能设备多,特别是大功率感性负载的启停往往会使电网产生几百伏甚至几千伏的尖脉冲干扰;工业电网欠压或过压(涉县钢铁厂供电电压在160V~310V波动),常常达到额定电压的35%左右,这种恶劣的供电有时长达几分钟、几小时,甚至几天;各种信号线绑扎在一起或走同一根多芯电缆,信号会受到干扰,特别是信号线与交流动力线同走一个长的管道中干扰尤甚;多路开关或保持器性能不好,也会引起通道信号的窜扰;空间各种电磁、气象条件、雷电甚至地磁场的变化也会干扰传感器的正常工作;此外,现场温度、湿度的变化可能引起电路参数发生变化,腐蚀性气体、酸碱盐的作用,野外的风沙、雨淋,甚至鼠咬虫蛀等都会影响传感器的可靠性。
模拟传感器输出的一般都是小信号,都存在小信号放大、处理、整形以及抗干扰问题,也就是将传感器的微弱信号精确地放大到所需要的统一标准信号(如1VDC~5VDC或4 mADC~20mADC),并达到所需要的技术指标。
这就要求设计制作者必须注意到模拟传感器电路图上未表示出来的某些问题,即抗干扰问题。
只有搞清楚模拟传感器的干扰源以及干扰作用方式,设计出消除干扰的电路或预防干扰的措施,才能达到应用模拟传感器的最佳状态。
二、干扰源、干扰种类及干扰现象传感器及仪器仪表在现场运行所受到的干扰多种多样,具体情况具体分析,对不同的干扰采取不同的措施是抗干扰的原则。
这种灵活机动的策略与普适性无疑是矛盾的,解决的办法是采用模块化的方法,除了基本构件外,针对不同的运行场合,仪器可装配不同的选件以有效地抗干扰、提高可靠性。
在进一步讨论电路元件的选择、电路和系统应用之前,有必要分析影响模拟传感器精度的干扰源及干扰种类。
PLC调试中常见的模拟量输入输出问题及解决方法
PLC调试中常见的模拟量输入输出问题及解决方法在PLC(可编程逻辑控制器)调试过程中,模拟量输入输出问题是一种常见的挑战。
本文将探讨PLC调试中常见的模拟量输入输出问题,并提供一些解决方法。
1. 电源问题当PLC的电源供应不稳定或电源线路存在噪音时,模拟量输入输出的准确性可能会受到影响。
为了解决这个问题,可以考虑以下措施:- 确保PLC的电源电压稳定,使用稳定性高的电源设备。
- 使用滤波器或稳压器来减少电源噪音。
- 对电源线路进行绝缘和屏蔽,以减少外界干扰。
- 定期检查电源线路,确保连接良好。
2. 信号干扰模拟量信号容易受到电磁干扰或信号回路的交叉干扰。
以下方法可帮助解决信号干扰问题:- 使用防干扰的电缆或信号线,降低干扰的影响。
- 将模拟量输入线路与高压电源线路或高频电源线路保持一定的距离,以减少相互干扰。
- 如果信号线路较长,可以考虑使用信号放大器或信号隔离器来提高信号抗干扰能力。
3. 精度问题PLC模拟量输入输出模块的精度是保证系统运行准确的重要指标。
如果模块精度较低,可能导致输出信号不准确。
以下是几种解决方法:- 选择具有较高精度的模拟量输入输出模块。
- 校准模块,确保输入输出信号的准确度。
- 确保传感器的精度和测量范围与模块匹配,以避免精度损失。
- 定期检查模块的性能,确保其正常工作。
4. 信号转换问题在PLC系统中,有时需要将不同类型的信号进行转换,例如将电压信号转换为电流信号。
在进行信号转换过程中可能会出现问题。
以下是一些应对方法:- 理解信号转换的原理,确保正确连接转换装置。
- 检查转换装置的输入输出范围和转换精度,确保其满足系统要求。
- 验证信号转换后的准确性,可以通过比对与信号源的实际值来进行检查。
5. 信号采样频率信号采样频率是指PLC系统对模拟量输入信号的采样速率。
如果采样频率过低,可能无法准确捕捉到信号的快速变化。
以下方法可用于解决采样频率问题:- 确认PLC的采样频率是否满足系统需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟量信号干扰分析及11种解决秘诀
关键词:PLC 模拟量 信号干扰
1、概述
随着科学技术的发展,PLC 在工业控制中的应用越来越广泛。
PLC 控制系统的可靠性直接影响到工业企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。
自动化系统中所使用的各种类型PLC ,有的是集中安装在控制室,有的是安装在生产现场和各种电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。
要提高PLC 控制系统可靠性,设计人员只有预先了解各种干扰才能有效保证系统可靠运行。
2、电磁干扰源及对系统的干扰
影响PLC 控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。
干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。
其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。
共模干扰和差模干扰是一种比较常用的分类方法。
共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。
共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V 以上。
共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O 模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。
差模干扰是指用于信号两极间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。
3、PLC 控制系统中电磁干扰的主要来源有哪些呢?
(1) 来自空间的辐射干扰:
空间的辐射电磁场(EMI )主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。
若PLC 系统置于所射频场内,就回收到辐射干扰,其影响主要通过两条路径;一是直接对PLC 内部的辐射,由电路感应产生干扰;而是对PLC 通信内网络的辐射,由通信线路的感应引入干扰。
辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC 局部屏蔽及高压泄放元件进行保护。
(2) 来自系统外引线的干扰:
主要通过电源和信号线引入,通常称为传导干扰。
这种干扰在我国工业现场较严重。
(3)来自电源的干扰:
实践证明,因电源引入的干扰造成PLC 控制系统故障的情况很多,笔者在某工程调试中遇到过,后更换隔离性能更高的PLC 电源,问题才得到解决。
PLC 系统的正常供电电源均由电网供电。
由于电网覆盖范围广,
将受到所有空间电磁干扰而在线路上感应电压和电路。
尤其是电网内部的变化,开关操作浪涌、大型电力设备起停、交直流转动装置引起的谐波、电网短路暂态冲击等,都通过输电线路到电源边。
PLC 电源通常采用隔离电源,但其机构及制造工艺因素使其隔离性并不理想。
实际上,由于分布参数特别是分布电容的存在,绝对隔离是不可能的。
(4) 来自信号线引入的干扰:
与PLC 控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。
此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰,这往往被忽略;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。
由信号引入干扰会引起I/O 信号工作异常和测量精度大大降低,严重时将引起元器件损伤。
对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。
PLC 控制系统因信号引入干扰造成I/O 模件损坏数相当严重,由此引起系统故障的情况也很多。
(5)来自接地系统混乱时的干扰:
接地是提高电子设备电磁兼容性(EMC )的有效手段之一。
正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC 系统将无法正常工作。
PLC 控制系统的地线包括系统地、屏蔽地、交流地和保护地等。
接地系统混乱对 PLC 系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。
例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A 、B 都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态加雷击时,地线电流将更大。
此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。
若系统地与其它接地处理混乱,所产生的地环流可能在地线上产生不等电位分布,影响PLC 内逻辑电路和模拟电路的正常工作。
PLC 工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC 的逻辑运算和数据存储,造成数据混乱、程序跑飞或死机。
模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。
(6)来自PLC 系统内部的干扰:
主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。
这都属于PLC 制造厂对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门是无法改变,可不必过多考虑,但要选择具有较多应用实绩或经过考验的系统。
4、系统受干扰时,常会遇到以下几种主要干扰现象:
(1)系统发指令时,电机无规则地转动;
(2)信号等于零时,数字显示表数值乱跳;
(3)传感器工作时,PLC 采集过来的信号与实际参数所对应的信号值不吻合,且误差值是随机的、无规律的;
(4)与交流伺服系统共用同一电源(如显示器等)工作不正常。
5、怎样才能更好、更简单解决PLC 系统干扰?
(1)理想状态下是选用隔离性能较好的设备、选用优良的电源、动力线和信号线走线、电源接地要更加合理等等,但是需要不同设备厂商共同协作才能完成,很难做到,而且成本较高。
(2)利用模拟信号隔离器,有称作信号变送器、属于信号调理的范畴。
其主要起抗干扰作用。
正因为它有特强的抗干扰能力所以在自动化控制系统中应用非常广泛。
尤其对于复杂的工业现场,控制程序越来越复杂,信号隔离器对各种模拟量信号进行输入、输出、电源三端隔离,的确是当今自动化控制系统中抗干扰的有效措施之一。
6、为什么解决PLC 系统干扰首选信号隔离器呢?
(1)使用简单方便、可靠,成本低廉,可同时解决多种干扰。
(2)可大量减轻设计人员、系统调试人员工作量,即使复杂的系统在普通的设计人员手里,也会变的非常稳定可靠。
7、信号隔离器工作原理是什么?
首先将PLC 接收的信号,通过半导体器件调制变换,然后通过光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号或不同信号,同时对隔离后信号的供电电源进行隔离处理。
保证变换后的信号、电源、地之间绝对独立。
8、现在市场有那么多品牌的隔离器,价格参差不齐,该怎么选择呢?
隔离器位于二个系统通道之间,所以选择隔离器首先要确定输入输出功能,同时要使隔离器输入输出模式(电压型、电流型、环路供电型等)适应前后端通道接口模式。
此外尚有精度﹑功耗﹑噪音﹑绝缘强度﹑总线通讯功能等许多重要参数涉及产品性能,例如:噪音与精度有关、功耗热量与可靠性有关,这些需要使用者慎选。
总之,适用、可靠、产品性价比是选择隔离器的主要原则。
如果你对以上的分享还不太清楚,那接下来给大家敲黑板划重点(11种模拟量干扰解决办法):
1、加1:1信号隔离器;
2、加磁环;
3、PLC 供电加隔离变压器;
4、开关量信号和模拟量信号分开走;
5、模拟信号最好采用单独屏蔽线。
信号类型最好采用4-20mA ;
6、模拟信号负载是电磁阀类的,最好能选1.5的线;
7、模拟信号和数字信号不能合用同一根多芯电缆,更不能和电源线共用电缆;
8、PLC 输入输出信号线,必须使用屏蔽电缆,在输入输出侧悬空,而在PLC 侧接地;
9、信号线缆要远离强干扰源,如变频器、大功率硅整流装置和大型动力设备;
10、模拟信号和数字信号不能合用同一根多芯电缆,更不能和电源线共用电缆;
11、为了减少电子干扰对于模拟信号应使用双绞屏蔽电缆模拟信号电缆的屏蔽层应该两端接地,但是如果电缆两端存在电位差将会在屏蔽层中产生等电线连接电流造成对模拟信号的干扰在这种情况下你应该让电缆的屏蔽层一端接地。