Very fine structures in scalar mixing
【国家自然科学基金】_微纳米_基金支持热词逐年推荐_【万方软件创新助手】_20140801
裂纹扩展 被动式直接甲醇燃料电池(dmfc) 蠕变速率敏感指数 螺旋藻 螺旋结构 虚拟仪器 自组装单层膜 自旋电子学 能量引导微结构 能量平衡方洙 胶原 肿瘤 聚酰胺-胺型树枝状高聚合物 聚苯胺 聚碳酸酯 聚甲基丙烯酸甲酯基片 耐磨性 综述 结直肠癌 细菌纤维素 细胞黏附 细胞行为 细胞图案化 细胞传感器 细胞 组织工程 纳米结构 纳米管 纳米材料 纳米压痕 紫外同化技术 粘着接触 粘弹性热 稀土金属 移动liga 神经导管 磨损量 磁控微生物 磁场 碳化钨 硫 矿物颗粒 真皮模板单元 真皮模板 盐酸掺杂 瘢痕 电纺 电磁一悬浮 电滞回线 电渗流 电感耦合等离子体(icp)刻蚀 电子束曝光 电喷雾 电喷
科研热词 推荐指数 超疏水 3 复合材料 3 边界滑移 2 表面润湿性 2 表面形貌 2 薄膜 2 相变材料 2 润湿性 2 接触角 2 微纳米间隙 2 微纳米结构 2 微纳米材料 2 微机电系统 2 固相反应 2 受限液体 2 偶联剂 2 zno 2 afm 2 高能球磨 1 高深宽比 1 飞秒脉冲激光 1 非线性 1 非晶态合金 1 静电纺丝 1 阶层结构 1 镍酸镧薄膜 1 锥 1 铝粉 1 铝热反应 1 铜材 1 金刚石涂层拉拔模具 1 还原反应热力学 1 近场 1 轨迹综合 1 超精密齿轮 1 超亲水 1 谐波成分 1 计算机模拟 1 表面镀覆 1 表面结构 1 表面电极 1 表面形态 1 表面张力 1 表面包覆 1 虚拟样机 1 虚拟建模 1 自组装单分子膜 1 自支撑金刚石膜 1 脂肪酸 1 聚酰胺-胺型树枝状高聚合物 1 聚苯胺 1 聚甲基丙烯酸甲酯 1
声学超构材料术语
声学超构材料术语1范围本文件规定了包括声子晶体、声超材料等人工微结构的声学超构材料等相关术语的定义。
本文件适用于声学超构材料及其相关领域的活动。
2规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T32005-2015电磁超材料术语GB/T3947-1996声学名词术语3基础定义3.1超构材料metamaterials一种特种复合材料或结构,通过对材料关键物理尺度上进行一定序构设计,使其获得常规材料所不具备的超常物理性能。
3.2声学超构材料acoustic metamaterials具备超常声学特性的一类超构材料3.3声子晶体phononic crystal由两种以上具有不同弹性参数的材料按一定空间序构周期排列的复合人工介质形成的一种声学超构材料。
4分类4.1固体弹性波超构材料solid elastic wave metamaterials用于调控固体中弹性波的声学超构材料。
4.2水声超构材料underwater acoustic metamaterials用于调控水中声波的声学超构材料。
4.3空气声超构材料用于调控空气中声波的声学超构材料。
4.4次声声学超构材料infrasound metamaterials工作频率在20Hz以下的声学超构材料4.5超声声学超构材料ultrasonic metamaterials工作频率在20kHz以上的声学超构材料4.6可听声超构材料audible sound metamaterials工作频率在20Hz-20kHz范围的声学超构材料4.7局域共振型声学超构材料resonant acoustic metamaterials基于局域共振原理的声学超构材料4.8非局域共振型声学超构材料non-resonant acoustic metamaterials 不基于局域共振原理的声学超构材料4.9线性声学超构材料linear metamaterials具有线性动力学效应的声学超构材料4.10非线性声学超构材料nonlinear metamaterials具有非线性动力学效应的声学超构材料4.11各向同性声学超构材料isotropic acoustic metamaterials具有各向同性的声学特性的声学超构材料4.12各向异性声学超构材料anisotropic acoustical metamaterials具有各向异性的声学特性的声学超构材料4.13复合声学超构材料composite acoustic metamaterials与其他材料复合的声学超构材料4.14可重构声学超构材料reconfigurable acoustic metamaterials宏观或微观结构可重构的声学超构材料4.15可编程声学超构材料programmable acoustic metamaterials利用逻辑基元对声场进行程序化调控的声学超构材料4.16微纳声学超构材料micro-scale acoustic metamaterials微观结构的绝对尺度在微米或纳米级的声学超构材料4.17多物理场耦合型超构材料multi-physical coupled metamaterials 声场与其他物理场相互耦合的声学超构材料4.18吸声超构材料sound absorption metamaterials能够有效控制噪声且尺寸小巧的声学超构材料。
重庆理工大学材料科学基础双语翻译第3章modified翻译
Review
1. Atomic structure结构 2. The two atomic models cited引用, and note the differences between them.
3. The important quantum-mechanical 量子力学principle原理 that relates to electron energies.
Fundamentals of Materials Science and Engineering
Learing Objectives目的
Understand the concept概念 of unit cell (晶包) and know how to utilize使用 it to explain the crystal structures晶体 结构 of metals金属. Know what are the main three metallic crystal structures 金属晶体结构 and illustrate举例 how the atoms are arranged for为 做安排 FCC, BCC and HCP structures. Understand the concepts概念 of the crystallographic 结晶 的directions and planes (晶向和晶面); grasp 抓住the general 一般的steps in插入 determining 决定the index指 数 of a given crystal direction结晶定向 or plane面.
用密度函数理论和杜比宁方程研究活性炭纤维多段充填机理
密度函数理论和杜比宁方程可以用来研究活性炭纤维在多段充填过程中的吸附行为。
密度函数理论是一种分子统计力学理论,它建立在分子统计学和热力学的基础上,用来研究一种系统中分子的分布。
杜比宁方程是一种描述分子吸附行为的方程,它可以用来计算吸附层的厚度、吸附速率和吸附能量等参数。
在研究活性炭纤维多段充填过程中,可以使用密度函数理论和杜比宁方程来研究纤维表面的分子结构和吸附行为。
通过分析密度函数和杜比宁方程的解,可以得出纤维表面的分子结构以及纤维吸附的分子的种类、数量和能量。
这些信息有助于更好地理解活性炭纤维的多段充填机理。
在研究活性炭纤维的多段充填机理时,还可以使用其他理论和方法来帮助我们更好地了解这一过程。
例如,可以使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术来观察纤维表面的形貌和结构。
可以使用X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)等技术来确定纤维表面的化学成分和结构。
还可以使用氮气吸附(BET)和旋转氧吸附(BJH)等技术来测量纤维表面的比表面积和孔结构。
通过综合运用密度函数理论、杜比宁方程和其他理论和方法,可以更全面地了解活性炭纤维的多段充填机理,从而更好地控制和优化多段充填的过程。
在研究活性炭纤维多段充填机理时,还可以使用温度敏感性测试方法来研究充填过程中纤维表面的动力学性质。
例如,可以使用动态氧吸附(DAC)或旋转杆氧吸附(ROTA)等技术来测量温度对纤维表面吸附性能的影响。
通过对比不同温度下纤维表面的吸附性能,可以更好地了解充填过程中纤维表面的动力学性质。
此外,还可以使用分子动力学模拟方法来研究纤维表面的吸附行为。
例如,可以使用拉曼光谱或红外光谱等技术来测量纤维表面的分子吸附构型。
然后,使用分子动力学模拟方法来模拟不同分子吸附构型下的纤维表面的动力学性质,帮助我们更好地了解活性炭纤维的多段充填机理。
富水软弱围岩隧道全断面帷幕注浆变形机理及控制研究
河南科技Henan Science and Technology交通与土木工程总第873期第2期2024年1月收稿日期:2023-12-15作者简介:王荣飞(1965—),男,本科,高级工程师,研究方向:结构设计。
富水软弱围岩隧道全断面帷幕注浆变形机理及控制研究王荣飞(镇江市规划勘测设计集团有限公司,江苏镇江212004)摘要:【目的】为进一步揭示富水软弱围岩隧道全断面帷幕注浆浆液扩散规律以及地层加固、防渗止水原理。
【方法】以莞惠城际GZH-4标暗挖隧道穿越人工湖底全风化岩层为工程背景,通过现场取样及数值计算分析,对全断面帷幕注浆隧道的掌子面变形、岩层取芯率、地层水平收敛及地表沉降等进行探讨,深入分析隧道帷幕注浆浆液扩散规律及地层加固、防渗止水原理。
【结果】结果表明:注浆浆脉构成的浆脉骨架可与周围岩体相黏接形成结石体,能有效提高岩体强度及地层抗渗透性能;高压注浆导致掌子面易于鼓胀或开裂,精准控制注浆初始条件和超前预测,可有效避免这一现象的发生;隧道的全断面帷幕注浆可增强岩体自承载能力,能有效抑制隧道的水平净空收敛变形;全断面帷幕注浆对富水软弱地层隧道开挖时的地表沉降有很好的抑制作用。
【结论】研究成果揭示了富水软弱围岩隧道全断面帷幕注浆的变形机理,并提出了相应的控制方法,可为类似地质环境下岩体注浆提供理论支撑与技术指导。
关键词:富水软弱围岩;隧道全断面帷幕注浆;加固地层;防渗止水中图分类号:TU94+1文献标志码:A文章编号:1003-5168(2024)02-0052-07DOI :10.19968/ki.hnkj.1003-5168.2024.02.010The Deformation Mechanism and Control of Full-Section CurtainGrouting in Tunnels with Rich Water and Weak Surrounding RocksWANG Rongfei(Zhenjiang Planning Survey and Design Group Co.,Ltd.,Zhenjiang 212004,China)Abstract:[Purposes ]In order to further elucidate the diffusion law of grouting fluid and the mechanismof ground reinforcement and water stopping in the full section curtain of a tunnel with rich water andweak surrounding rock.[Methods ]Taking the GZH-4mined tunnel crossing the artificial lake bottomfully weathered rock layer in the Guan-Hui intercity as the background,the deformation of the tunnel face,the rate of core recovery,the horizontal convergence of the strata,and the surface subsidence were studied through on-site sample and numerical calculation analysis.In-depth analyses were done of the stratum reinforcement,water sealing,and the grouting slurry´s diffusion law.The corresponding preven⁃tive measures were proposed.[Findings ]The results show that the grouting veins´framework could unite with the nearby rock to form a stone body,which significantly increased the strength and permeability of the formation.High-pressure grouting caused the tunnel face to swell or crack.This phenomenon could be effectively avoided by precisely managing the initial grouting conditions and forecasting in advance.The full-section grouting of the tunnel could enhance the self-bearing capacity of the rock mass and ef⁃fectively suppress the horizontal clearance convergence of the tunnel.[Conclusions ]The results of thisstudy reveal the deformation mechanism of full-section curtain grouting in tunnels with rich water and weak surrounding rocks and propose corresponding control methods that can provide theoretical support and techni⁃cal guidance for rock mass grouting in similar geological environments.Keywords:water-rich and weakly fractured rock mass;full-section curtain grouting of the tunnel; strengthening the formation;impermeability performance0引言由于富水软弱破碎岩体的不稳定性,其在地下工程尤其是隧道工程的施工中具有极大的工程风险隐患。
天津市测绘院成功中标国家会展中心工程“多测合一”综合测绘项目
城市勘测2019年4月夯工程(150T·m)实际的加固深度约为5m。
现将夯击能E=150T·m代入回归方程:H=-4ˑ10-5E2+0.0334E-0.0346计算得到加固深度H=4.1m。
由于该公式是根据单次夯击能数值分析所得,而实际工程中需经过多次夯击,因此根据回归方程计算的结果较实际工程要稍小,说明数值模拟的结果是基本准确的。
6结论本文主要通过数值模拟分析方法对填土地基强夯有效加固深度进行了研究,并与实际工程进行了比较,得到了如下结论:(1)以数值分析理论为基础,运用ANSYS/LS-DYNA软件模拟强夯精度较高,能得出地基中各点的动反应数据,具有较高的可靠性,对强夯设计施工具有参考价值和指导意义。
(2)针对不同夯击能,同一深度处的竖向位移随着夯击能的增大而增大,并且在4m深度内,土体中竖向位移急剧变化,说明4m以内土体受强夯影响较明显。
(3)强夯有效加固深度的回归方程为:H=-4ˑ10-5E2+0.0334E-0.0346(4)本文结合工程实例,综合分析了强夯前后地基土的动探击数和压缩模量的变化,得出实际工程的有效加固深度,并与数值模拟得到的加固深度进行对比,根据回归方程计算的结果较实际工程要稍小,说明数值模拟的结果是基本准确的。
参考文献[1]张利洁,聂文波,刘贵应等.强夯效果浅析[J].土工基础,2002,16(1):24 27.[2]左名麒.震动波与强夯法机理[J].岩土工程学报,1998,8(3):55 62.[3]龚晓南.土塑性力学[M].杭州:浙江大学出版社,1997.[4]何君毅,林样都.工程结构非线性问题的数值解法[M].北京:国防工业出版社,1994.[5]吴铭炳,王钟琦.强夯机理的数值分析[J].工程勘察,1989(3):1 5.[6]王铁宏,新编全国重大工程项目地基处理工程实录[M].北京:中国建筑工业出版社,2005:32.Numerical Simulation Study on EffectiveReinforcement Depthof Dynamic Compaction of Filled FoundationLuo Wei(Changsha Planning and Design SurveyResearch Institute,Changsha410007,China)Abstract:This paper conduct numerical simulation of effective reinforcement depth in the filled foundation after dy-namic compaction which is based in the use of ANSYS/LS-DYNA simulation software,concluded the curve of vertical displacement with depth in soils after dynamic compaction,and summarizes the distribution characteristics and variation law。
Evolution of the Fine Structure Constant Driven by Dark Matter and the Cosmological Constan
Physics Department, McGill University, 3600 University St, Montreal,Quebec H3A 2T8, Canada
D´ epartement de Physique, Universit´ e du Qu´ ebec ` a Montr´ eal C.P. 8888, Succ. Centre-Ville, Montr´ eal, Qu´ ebec, Canada, H3C 3P8
1
Introduction
Speculations that fundamental constants may vary in time and/or space go back to the original idea of Dirac [1]. Despite the reputable origin, this idea has not received much attention during the last fifty years for the two following reasons. First, there exist various sensitive experimental checks that coupling constants do not change (See, e.g. [2]). Second, for a long time there has not been any credible theoretical framework which would predict such changes. Our theoretical mindset, however, has changed since the advent of the string theory. One of the most interesting low-energy features of string theory is the possible presence of a massless scalar particle, the dilaton, whose vacuum expectation value defines the size of the effective gauge coupling constants. A change in the dilaton v.e.v. induces a change in the fine structure constant as well as the other gauge and Yukawa couplings. The stabilization of the dilaton v.e.v., which usually renders the dilaton massive, represents one of the fundamental challenges to be addressed before string theory can aspire to describe the observable world. Besides the dilaton, string theory often predicts the presence of other massless or nearly massless moduli fields, whose existence may influence particle physics and cosmology and may also change the effective values of the coupling constants as well. Independent of the framework of string theory, Bekenstein [3] formulated a dynamical model of “changing α”. The model consists of a massless scalar field which has a linear −1 φFµν F µν , where M∗ is an associated coupling to the F 2 term of the U (1) gauge field, M∗ mass scale and thought to be of order the Planck scale. A change in the background value of φ, can be interpreted as a change of the effective coupling constant. Bekenstein noticed that F 2 has a non-vanishing matrix element over protons and neutrons, of order (10−3 − 10−2 )mN . This matrix element acts as a source in the φ equation of motion and naturally leads to the cosmological evolution of the φ field driven by the baryon energy density. Thus, the change in φ translates into a change in α on a characteristic time scale comparable to the lifetime of the Universe or larger. However, the presence of a massless scalar field φ in the theory leads to the existence of an additional attractive force which does not respect Einstein’s weak universality principle. The extremely accurate checks of the latter [4] lead to a firm lower limit on M∗ , M∗ /MPl > 103 that confines possible changes of α to the range ∆α < 10−10 − 10−9 for 0 < z < 5 [3, 5]. This range is five orders of magnitude tighter than the change ∆α/α ≃ 10−5 indicated in the observations of quasar absorption spectra at z = 0.5 − 3.5 and recently reported by Webb et al. [6]. Given the potential fundamental importance of such a result, one should remain cautious until this result is independently verified. Nevertheless, leaving aside the issue regarding the reliability of the conclusions reached by Webb et al. [6], it is interesting to explore the possibility of constructing a dynamical model, including 1
常用材料分析方法中英文对照
1. Elemental Analysis 元素分析Atomic absorption spectroscopy 原子吸收光谱Auger electron spectroscopy (AES) 俄歇电子能谱Electron probe microanalysis (EPMA) 电子探针微分析Electron spectroscopy for chemical analysis (ESCA) 化学分析电子能谱Energy dispersive spectroscopy (EDS) 能量色散谱Flame photometry 火焰光度法Wavelength dispersive spectroscopy (WDS)X-ray fluorescence X射线荧光2. Molecular and Solid State Analysis 分子与固态分析Chromatography [gas chromatography (GC), size exclusion chromatography (SEC)]色谱[气相色谱,体积排除色谱]Electron diffraction 电子衍射Electron microscopy [scanning electron microscopy (SEM),transmission electron microscopy (TEM),scanning TEM (STEM)] 电子显微镜Electron spin resonance (ESR) 电子自旋共振Infrared spectroscopy (IR) 红外光谱Mass spectrometry 质谱Mercury porosimetry 压汞法Mossbauer spectroscopy 穆斯堡尔谱Nuclear magnetic resonance (NMR) 核磁共振Neutron diffraction 中子衍射Optical microscopy 光学显微镜Optical rotatory dispersion (ORD) 旋光色散Raman spectroscopy 拉曼光谱Rutherford back scattering (RBS) 卢瑟福背散射Small angle x-ray scattering (SAXS) 小角X射线散射Thermal analysis [differential scanning calorimetry (DSC),thermal gravimetric analysis (TGA),differential thermal analysis (DTA) temperature desorption spectroscopy (TDS),thermomechanical analysis (TMA)]热分析[差示扫描量热计法,热-重分析,微分热分析,升温脱附,热机械分析]UV spectroscopy 紫外光谱X-ray techniques [x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), x-ray emission,x-ray absorption] X射线技术[x射线光电子能谱,x射线衍射,x射线发射,x射线吸收]3. Surface Characterization Techniques 表面表征技术Electron energy loss spectroscopy (EELS) 电子能量损失谱Ellipsometry 椭圆偏振术Extended x-ray absorption fine structure (EXAFS) 扩展X射线吸收精细结构Helium (or atom) diffractionLateral (or frictional) force microscopy (LFM) 横向(摩擦)力显微镜Low-energy electron diffraction (LEED) 低能电子衍射Magnetic force microscopy (MFM) 磁力显微镜Near-edge x-ray adsorption fine structure (NEXAFS) 近边X射线吸收精细结构Near field scanning 近场扫描Reflection high-energy electron diffraction (RHEED) 反射高能电子衍射Scanning tunneling microscopy (STM) 扫描隧道显微镜Scanning force microscopy (SFM) 扫描力显微镜Secondary ion mass spectroscopy (SIMS) 二次离子质谱Surface enhanced raman spectroscopy (SERS) 表面增强拉曼光谱Surface extended x-ray adsorption fine structure (SEXAFS) 表面扩展X射线吸收精细结构Surface force apparatus 表面力仪器。
【国家自然科学基金】_粒子动力学_基金支持热词逐年推荐_【万方软件创新助手】_20140731
科研热词 分子动力学 纳米粒子 耗散粒子动力学 数值模拟 光滑粒子流体动力学 粒子群算法 稀溶液 静电吸附 速度场 行星际介质 聚集 纳米通道 纳米流动 相对论 相变 热稳定性 流场 桥梁断面 核函数 机电耦合系统 技术:其他诸多方面 悬浮粒子 布朗动力学方法 天体测量 多重散射 单晶铁 动力学优化 动力学 分子动力学模拟 仿真 介质阻挡放电 gpu 黏附 高速碰撞 驱动装置 马传染性贫血病毒 飞机蒙皮 风力机 顶盖驱动流 韧性剪切带 非连续 非谐势垒 非规则颗粒模型 非平衡等离子体 非平衡分子动力学 静风荷载 静三分力系数 雷诺数效应 隔步搜索法 随机平均法 锚固改性 银纳米粒子
2009年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
TW 142数学名词-中小学教科书名词中英对照术语
一种混合变量板壳有限元的新算法
一种混合变量板壳有限元的新算法
陈南;陈绍汀;杜庆华
【期刊名称】《固体力学学报》
【年(卷),期】1992(13)1
【摘要】1、介绍本文的工作在于发展了一种计及几何和物理非线性及材料各向异性的9节点Lagrangian 混合变量板壳元,它建立在文[1]推导的广义变分原理基础上.对文[2]提出的处理混合元的方法作改进,提出一种新算法,使得可以理论上较合理地使用统一“减阶”积分法则.考虑到在物理及几何非线性情况下数值积分点减少会很大地减少计算量.因此,本方法的使用使混合元计算量大的缺点有了很大改善.此法被归结为“独立应变补偿”的新概念.它不同于“零能模式约束”或“秩补偿”概念,在理论和实践上都有自己的特点.2、“自然”
【总页数】4页(P55-58)
【关键词】混合有限元;板壳元;几何非线性
【作者】陈南;陈绍汀;杜庆华
【作者单位】东南大学;西安交通大学;清华大学
【正文语种】中文
【中图分类】TU330.1
【相关文献】
1.一种有限元结构动态计算的过渡元—9节点板壳—实体元 [J], 李树庭
2.复合材料板壳结构的杂交/混合有限元分析 [J], 洪志泉;张国安
3.一种钢制桌椅的腿套/组合旅行凳/换热式热水器/高温蒸汽冷却器/积木式拼装柜/油水混合处理机/暖气片腹腔换热器/塑料壳花炮/葡萄酒酒柜/一种室内空气净化器/微型多孔板逆流热交换器/新型带弯管除污过滤器 [J],
4.一种利用混合算法选择变量的天牛须优化神经网络风速预测方法 [J], 李大中; 李昉; 张克延
5.加筋板壳稳定性分析中一种简单的有限元模式 [J], 朱菊芬;周承芳
因版权原因,仅展示原文概要,查看原文内容请购买。
乙腈不同温度下的表面蒸气压_概述及解释说明
乙腈不同温度下的表面蒸气压概述及解释说明1. 引言1.1 概述乙腈(化学式CH3CN)是一种常用的有机溶剂,广泛应用于化学实验室、工业生产和科研领域。
乙腈的表面蒸气压是其在不同温度下从液态向气态转变时产生的压强。
了解乙腈在不同温度下的表面蒸气压变化规律对于科学研究及工业应用有着重要意义。
1.2 文章结构本文将首先介绍乙腈的物性特点,包括分子结构、物理性质和化学性质等方面。
接着将对表面蒸气压的概念进行解释,并探讨影响乙腈表面蒸气压变化的因素。
最后,通过实验方法与结果分析,详细讨论不同温度下乙腈表面蒸气压的变化规律,并总结归纳实验结果。
1.3 目的本文旨在深入探讨乙腈在不同温度下的表面蒸气压变化规律,并通过实验结果分析验证相关理论模型。
通过研究乙腈的表面蒸气压,可以拓宽我们对乙腈及相关有机溶剂的认识,并为实验室操作、工业生产以及科学研究提供技术参考和应用前景展望。
2. 正文2.1 乙腈的物性介绍乙腈是一种常见的有机溶剂,化学式为CH3CN。
它具有无色、透明、有刺激性气味以及良好的溶解性等特点,在化工、制药等多个领域广泛应用。
乙腈的分子量为41.05 g/mol,密度为0.786 g/cm^3。
它的沸点为81.6°C,熔点为-45°C。
2.2 表面蒸气压的概念和影响因素表面蒸气压指在一定温度下,液体与其饱和蒸气之间达到动态平衡时所对应的气相压强。
表面蒸气压受多种因素影响,包括温度、分子间吸引力以及液体分子挥发速率等。
较高温度和较强分子间相互作用力会提高液体表面上的分子挥发速率,从而增加表面蒸气压。
2.3 不同温度下乙腈表面蒸气压的变化规律随着温度升高,乙腈的表面蒸气压将增加。
根据饱和蒸气压与温度之间的关系,一般而言,液体的饱和蒸气压随着温度的升高而增加。
对于乙腈来说也是如此。
以常规大气压下为例,乙腈在25°C时的表面蒸气压约为76.15 mmHg,在50°C时增至131.3 mmHg。
FCC金属滑移形变冷轧织构模拟
FCC金属滑移形变冷轧织构模拟
刘燕声;王福
【期刊名称】《东北工学院学报》
【年(卷),期】1992(013)003
【摘要】采用Taylor 模型和 Van Houtte 算法模拟了 FCC 金属冷轧织构。
模拟
中以{111}滑移为微观形变机制,并采用等面积分割形式表示理想无规初始条件。
模拟结果与铜和铝的实测冷轧织构符合良好。
【总页数】4页(P263-266)
【作者】刘燕声;王福
【作者单位】不详;不详
【正文语种】中文
【中图分类】TG111.7
【相关文献】
1.高纯铜冷轧形变组织及织构演变规律研究 [J], 张志清;张静;刘庆
2.基于耦合有限元的晶体塑性力学模型的FCC,BCC和HCP晶体织构演化的模拟[J], 黄诗尧;张少睿;李大永;彭颖红
3.冷轧压下率对双辊铸轧硅钢形变和再结晶织构的影响 [J], 孙超;沙玉辉;张芳;左
良
4.冷轧形变量对异步轧制高纯铝箔织构的影响 [J], 黄涛;刘沿东;陈金玉;高明;王福;左良
5.用有限元多晶体弹塑性模型预测FCC金属冲压变形后的织构和塑性各向异性 [J], 苏世忠;李明哲;李东平;高桥宽
因版权原因,仅展示原文概要,查看原文内容请购买。
聚酰亚胺泡沫制备及其回收工艺探讨
聚酰亚胺泡沫制备及其回收工艺探讨发布时间:2021-06-16T16:32:01.807Z 来源:《科学与技术》2021年2月6期作者:杨大磊丁泽[导读] 随着军工和民用高科技领域对聚合物泡沫性能提出越来越高的要求杨大磊丁泽贵州航天天马机电科技有限公司贵州省遵义市 563000摘要:随着军工和民用高科技领域对聚合物泡沫性能提出越来越高的要求,聚酰亚胺泡沫材料因其突出的综合性能受到了各行业的广泛关注。
本文介绍了聚酰亚胺泡沫的性能特点和主要制备工艺,并就聚酰亚胺泡沫材料回收再利用的工艺性进行了探讨。
关键词:聚酰亚胺泡沫;制备工艺;泡沫回收聚酰亚胺泡沫(Polyimide foams)是在20世纪60年代由美国杜邦公司首先开发出来的特种塑料发泡材料[1],其分子主链上含有重复的酰亚胺单元,与传统高分子泡沫材料相比具有耐高低温、阻燃自熄、耐辐射、发烟率低和分解释放有害气体少等特点[2,3]。
根据酰亚胺基团在分子链上的位置可以分为主链型和侧链型聚酰亚胺泡沫。
聚甲基丙烯酰亚胺泡沫(PMI)是目前使用最广泛的硬质侧链型聚酰亚胺泡沫之一,但PMI侧链六元环酰亚胺结构使其热变形温度只有180~200oC,耐热和环境适应性差,限制了PMI作为结构支撑材料在极端环境下的使用。
因此,开发具有耐温等级更高、力学性能和环境适应性更好的主链型芳香型聚酰亚胺泡沫成为近年来研究的热点,基于芳香结构的聚酰亚胺泡沫已经作为保温隔热、吸声降噪和结构减震等功能材料在航空航天和高新科技领域得到应用。
芳香结构聚酰亚胺泡沫主要的制备方法有溶液缩合法和粉末法。
本文将围绕两种主要的制备方法和聚酰亚胺泡沫的回收再利用作如下探讨。
1.聚酰亚胺泡沫制备工艺溶液缩合法[4](一步法)是将芳香二酐或其衍生物与异氰酸酯在溶液中反应,利用反应放出的小分子发泡一步成型的方法,具有生产快速、流程简单和成本低的特点,但一步法中缩聚凝胶化反应和发泡成型同时进行会产生大量的热,热量反过来催化反应体系进一步加速反应进程,整个发泡过程在几分钟内完成,容易出现泡孔坍塌(发泡过快)或泡沫内部开裂(凝胶过早),尤其是生产大尺寸泡沫时,反应生成热和小分子气体难以从泡沫体内部及时排除,使生产工艺控制更加困难。
中英文力学对准
一般力学类:分析力学 analytical mechanics拉格朗日乘子 Lagrange multiplier拉格朗日[量] Lagrangian拉格朗日括号 Lagrange bracket循环坐标 cyclic coordinate循环积分 cyclic integral哈密顿[量] Hamiltonian哈密顿函数 Hamiltonian function正则方程 canonical equation正则摄动 canonical perturbation正则变换 canonical transformation正则变量 canonical variable哈密顿原理 Hamilton principle作用量积分 action integral哈密顿-雅可比方程 Hamilton-Jacobi equation作用--角度变量 action-angle variables阿佩尔方程 Appell equation劳斯方程 Routh equation拉格朗日函数 Lagrangian function诺特定理 Noether theorem泊松括号 poisson bracket边界积分法 boundary integral method并矢 dyad运动稳定性 stability of motion轨道稳定性 orbital stability李雅普诺夫函数 Lyapunov function渐近稳定性 asymptotic stability结构稳定性 structural stability久期不稳定性 secular instability弗洛凯定理 Floquet theorem倾覆力矩 capsizing moment自由振动 free vibration固有振动 natural vibration暂态 transient state环境振动 ambient vibration反共振 anti-resonance衰减 attenuation库仑阻尼 Coulomb damping同相分量 in-phase component非同相分量 out-of -phase component超调量 overshoot 参量[激励]振动 parametric vibration模糊振动 fuzzy vibration临界转速 critical speed of rotation阻尼器 damper半峰宽度 half-peak width集总参量系统 lumped parameter system 相平面法 phase plane method相轨迹 phase trajectory等倾线法 isocline method跳跃现象 jump phenomenon负阻尼 negative damping达芬方程 Duffing equation希尔方程 Hill equationKBM方法 KBM method, Krylov-Bogoliu- bov-Mitropol'skii method马蒂厄方程 Mathieu equation平均法 averaging method组合音调 combination tone解谐 detuning耗散函数 dissipative function硬激励 hard excitation硬弹簧 hard spring, hardening spring谐波平衡法harmonic balance method久期项 secular term自激振动 self-excited vibration分界线 separatrix亚谐波 subharmonic软弹簧 soft spring ,softening spring软激励 soft excitation邓克利公式 Dunkerley formula瑞利定理 Rayleigh theorem分布参量系统 distributed parameter system优势频率 dominant frequency模态分析 modal analysis固有模态natural mode of vibration同步 synchronization超谐波 ultraharmonic范德波尔方程 van der pol equation频谱 frequency spectrum基频 fundamental frequencyWKB方法 WKB methodWKB方法Wentzel-Kramers-Brillouin method缓冲器 buffer风激振动 aeolian vibration嗡鸣 buzz倒谱cepstrum颤动 chatter蛇行 hunting阻抗匹配 impedance matching机械导纳 mechanical admittance机械效率 mechanical efficiency机械阻抗 mechanical impedance随机振动 stochastic vibration, random vibration隔振 vibration isolation减振 vibration reduction应力过冲 stress overshoot喘振surge摆振shimmy起伏运动 phugoid motion起伏振荡 phugoid oscillation驰振 galloping陀螺动力学 gyrodynamics陀螺摆 gyropendulum陀螺平台 gyroplatform陀螺力矩 gyroscoopic torque陀螺稳定器 gyrostabilizer陀螺体 gyrostat惯性导航 inertial guidance 姿态角 attitude angle方位角 azimuthal angle舒勒周期 Schuler period机器人动力学 robot dynamics多体系统 multibody system多刚体系统 multi-rigid-body system机动性 maneuverability凯恩方法Kane method转子[系统]动力学 rotor dynamics转子[一支承一基础]系统 rotor-support- foundation system静平衡 static balancing动平衡 dynamic balancing静不平衡 static unbalance动不平衡 dynamic unbalance现场平衡 field balancing不平衡 unbalance不平衡量 unbalance互耦力 cross force挠性转子 flexible rotor分频进动 fractional frequency precession半频进动half frequency precession油膜振荡 oil whip转子临界转速 rotor critical speed自动定心 self-alignment亚临界转速 subcritical speed涡动 whirl固体力学类:弹性力学 elasticity弹性理论 theory of elasticity均匀应力状态 homogeneous state of stress 应力不变量 stress invariant应变不变量 strain invariant应变椭球 strain ellipsoid均匀应变状态 homogeneous state of strain应变协调方程 equation of strain compatibility拉梅常量 Lame constants各向同性弹性 isotropic elasticity旋转圆盘 rotating circular disk 楔wedge开尔文问题 Kelvin problem布西内斯克问题 Boussinesq problem艾里应力函数 Airy stress function克罗索夫--穆斯赫利什维利法 Kolosoff- Muskhelishvili method基尔霍夫假设 Kirchhoff hypothesis板 Plate矩形板 Rectangular plate圆板 Circular plate环板 Annular plate波纹板 Corrugated plate加劲板 Stiffened plate,reinforcedPlate中厚板 Plate of moderate thickness弯[曲]应力函数 Stress function of bending 壳Shell扁壳 Shallow shell旋转壳 Revolutionary shell球壳 Spherical shell[圆]柱壳 Cylindrical shell锥壳Conical shell环壳 Toroidal shell封闭壳 Closed shell波纹壳 Corrugated shell扭[转]应力函数 Stress function of torsion 翘曲函数 Warping function半逆解法 semi-inverse method瑞利--里茨法 Rayleigh-Ritz method松弛法 Relaxation method莱维法 Levy method松弛 Relaxation量纲分析 Dimensional analysis自相似[性] self-similarity影响面 Influence surface接触应力 Contact stress赫兹理论 Hertz theory协调接触 Conforming contact滑动接触 Sliding contact滚动接触 Rolling contact压入 Indentation各向异性弹性 Anisotropic elasticity颗粒材料 Granular material散体力学 Mechanics of granular media热弹性 Thermoelasticity超弹性 Hyperelasticity粘弹性 Viscoelasticity对应原理 Correspondence principle褶皱Wrinkle塑性全量理论 Total theory of plasticity滑动 Sliding微滑Microslip粗糙度 Roughness非线性弹性 Nonlinear elasticity大挠度 Large deflection突弹跳变 snap-through有限变形 Finite deformation 格林应变 Green strain阿尔曼西应变 Almansi strain弹性动力学 Dynamic elasticity运动方程 Equation of motion准静态的Quasi-static气动弹性 Aeroelasticity水弹性 Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波 Cylindrical wave水平剪切波 Horizontal shear wave竖直剪切波Vertical shear wave体波 body wave无旋波 Irrotational wave畸变波 Distortion wave膨胀波 Dilatation wave瑞利波 Rayleigh wave等容波 Equivoluminal wave勒夫波Love wave界面波 Interfacial wave边缘效应 edge effect塑性力学 Plasticity可成形性 Formability金属成形 Metal forming耐撞性 Crashworthiness结构抗撞毁性 Structural crashworthiness 拉拔Drawing破坏机构 Collapse mechanism回弹 Springback挤压 Extrusion冲压 Stamping穿透Perforation层裂Spalling塑性理论 Theory of plasticity安定[性]理论 Shake-down theory运动安定定理 kinematic shake-down theorem静力安定定理 Static shake-down theorem 率相关理论 rate dependent theorem载荷因子load factor加载准则 Loading criterion加载函数 Loading function加载面 Loading surface塑性加载 Plastic loading塑性加载波 Plastic loading wave简单加载 Simple loading比例加载 Proportional loading卸载 Unloading卸载波 Unloading wave冲击载荷 Impulsive load阶跃载荷step load脉冲载荷 pulse load极限载荷 limit load中性变载 nentral loading拉抻失稳 instability in tension加速度波 acceleration wave本构方程 constitutive equation完全解 complete solution名义应力 nominal stress过应力 over-stress真应力 true stress等效应力 equivalent stress流动应力 flow stress应力间断 stress discontinuity应力空间 stress space主应力空间 principal stress space静水应力状态hydrostatic state of stress对数应变 logarithmic strain工程应变 engineering strain等效应变 equivalent strain应变局部化 strain localization应变率 strain rate应变率敏感性 strain rate sensitivity应变空间 strain space有限应变 finite strain塑性应变增量 plastic strain increment 累积塑性应变 accumulated plastic strain 永久变形 permanent deformation内变量 internal variable应变软化 strain-softening理想刚塑性材料 rigid-perfectly plastic Material刚塑性材料 rigid-plastic material理想塑性材料 perfectl plastic material 材料稳定性stability of material应变偏张量deviatoric tensor of strain应力偏张量deviatori tensor of stress 应变球张量spherical tensor of strain应力球张量spherical tensor of stress路径相关性 path-dependency线性强化 linear strain-hardening应变强化 strain-hardening随动强化 kinematic hardening各向同性强化 isotropic hardening强化模量 strain-hardening modulus幂强化 power hardening塑性极限弯矩 plastic limit bending Moment塑性极限扭矩 plastic limit torque弹塑性弯曲 elastic-plastic bending弹塑性交界面 elastic-plastic interface弹塑性扭转 elastic-plastic torsion粘塑性 Viscoplasticity非弹性 Inelasticity理想弹塑性材料 elastic-perfectly plastic Material极限分析 limit analysis极限设计 limit design极限面limit surface上限定理 upper bound theorem上屈服点upper yield point下限定理 lower bound theorem下屈服点 lower yield point界限定理 bound theorem初始屈服面initial yield surface后继屈服面 subsequent yield surface屈服面[的]外凸性 convexity of yield surface截面形状因子 shape factor of cross-section 沙堆比拟 sand heap analogy屈服Yield屈服条件 yield condition屈服准则 yield criterion屈服函数 yield function屈服面 yield surface塑性势 plastic potential能量吸收装置 energy absorbing device能量耗散率 energy absorbing device塑性动力学 dynamic plasticity塑性动力屈曲 dynamic plastic buckling塑性动力响应 dynamic plastic response塑性波 plastic wave运动容许场 kinematically admissible Field静力容许场 statically admissibleField流动法则 flow rule速度间断 velocity discontinuity滑移线 slip-lines滑移线场 slip-lines field移行塑性铰 travelling plastic hinge塑性增量理论 incremental theory ofPlasticity米泽斯屈服准则 Mises yield criterion普朗特--罗伊斯关系 prandtl- Reuss relation特雷斯卡屈服准则 Tresca yield criterion洛德应力参数 Lode stress parameter莱维--米泽斯关系 Levy-Mises relation亨基应力方程 Hencky stress equation赫艾--韦斯特加德应力空间Haigh-Westergaard stress space洛德应变参数 Lode strain parameter德鲁克公设 Drucker postulate盖林格速度方程Geiringer velocity Equation结构力学 structural mechanics结构分析 structural analysis结构动力学 structural dynamics拱 Arch三铰拱 three-hinged arch抛物线拱 parabolic arch圆拱 circular arch穹顶Dome空间结构 space structure空间桁架 space truss雪载[荷] snow load风载[荷] wind load土压力 earth pressure地震载荷 earthquake loading弹簧支座 spring support支座位移 support displacement支座沉降 support settlement超静定次数 degree of indeterminacy机动分析 kinematic analysis 结点法 method of joints截面法 method of sections结点力 joint forces共轭位移 conjugate displacement影响线 influence line三弯矩方程 three-moment equation单位虚力 unit virtual force刚度系数 stiffness coefficient柔度系数 flexibility coefficient力矩分配 moment distribution力矩分配法moment distribution method力矩再分配 moment redistribution分配系数 distribution factor矩阵位移法matri displacement method单元刚度矩阵 element stiffness matrix单元应变矩阵 element strain matrix总体坐标 global coordinates贝蒂定理 Betti theorem高斯--若尔当消去法 Gauss-Jordan elimination Method屈曲模态 buckling mode复合材料力学 mechanics of composites 复合材料composite material纤维复合材料 fibrous composite单向复合材料 unidirectional composite泡沫复合材料foamed composite颗粒复合材料 particulate composite层板Laminate夹层板 sandwich panel正交层板 cross-ply laminate斜交层板 angle-ply laminate层片Ply多胞固体 cellular solid膨胀 Expansion压实Debulk劣化 Degradation脱层 Delamination脱粘 Debond纤维应力 fiber stress层应力 ply stress层应变ply strain层间应力 interlaminar stress比强度 specific strength强度折减系数 strength reduction factor强度应力比 strength -stress ratio横向剪切模量 transverse shear modulus 横观各向同性 transverse isotropy正交各向异 Orthotropy剪滞分析 shear lag analysis短纤维 chopped fiber长纤维 continuous fiber纤维方向 fiber direction纤维断裂 fiber break纤维拔脱 fiber pull-out纤维增强 fiber reinforcement致密化 Densification最小重量设计 optimum weight design网格分析法 netting analysis混合律 rule of mixture失效准则 failure criterion蔡--吴失效准则 Tsai-W u failure criterion 达格代尔模型 Dugdale model断裂力学 fracture mechanics概率断裂力学 probabilistic fracture Mechanics格里菲思理论 Griffith theory线弹性断裂力学 linear elastic fracturemechanics, LEFM弹塑性断裂力学 elastic-plastic fracture mecha-nics, EPFM断裂 Fracture脆性断裂 brittle fracture解理断裂 cleavage fracture蠕变断裂 creep fracture延性断裂 ductile fracture晶间断裂 inter-granular fracture准解理断裂 quasi-cleavage fracture穿晶断裂 trans-granular fracture裂纹Crack裂缝Flaw缺陷Defect割缝Slit微裂纹Microcrack折裂Kink椭圆裂纹 elliptical crack深埋裂纹 embedded crack[钱]币状裂纹 penny-shape crack预制裂纹 Precrack 短裂纹 short crack表面裂纹 surface crack裂纹钝化 crack blunting裂纹分叉 crack branching裂纹闭合 crack closure裂纹前缘 crack front裂纹嘴 crack mouth裂纹张开角crack opening angle,COA裂纹张开位移 crack opening displacement, COD裂纹阻力 crack resistance裂纹面 crack surface裂纹尖端 crack tip裂尖张角 crack tip opening angle,CTOA裂尖张开位移 crack tip openingdisplacement, CTOD裂尖奇异场crack tip singularity Field裂纹扩展速率 crack growth rate稳定裂纹扩展 stable crack growth定常裂纹扩展 steady crack growth亚临界裂纹扩展 subcritical crack growth 裂纹[扩展]减速 crack retardation止裂crack arrest止裂韧度 arrest toughness断裂类型 fracture mode滑开型 sliding mode张开型 opening mode撕开型 tearing mode复合型 mixed mode撕裂 Tearing撕裂模量 tearing modulus断裂准则 fracture criterionJ积分 J-integralJ阻力曲线 J-resistance curve断裂韧度 fracture toughness应力强度因子 stress intensity factorHRR场 Hutchinson-Rice-Rosengren Field守恒积分 conservation integral有效应力张量 effective stress tensor应变能密度strain energy density能量释放率 energy release rate内聚区 cohesive zone塑性区 plastic zone张拉区 stretched zone热影响区heat affected zone, HAZ延脆转变温度 brittle-ductile transitiontemperature剪切带shear band剪切唇shear lip无损检测 non-destructive inspection双边缺口试件double edge notchedspecimen, DEN specimen单边缺口试件 single edge notchedspecimen, SEN specimen三点弯曲试件 three point bendingspecimen, TPB specimen中心裂纹拉伸试件 center cracked tension specimen, CCT specimen中心裂纹板试件 center cracked panelspecimen, CCP specimen紧凑拉伸试件 compact tension specimen, CT specimen大范围屈服large scale yielding小范围攻屈服 small scale yielding韦布尔分布 Weibull distribution帕里斯公式 paris formula空穴化 Cavitation应力腐蚀 stress corrosion概率风险判定 probabilistic riskassessment, PRA损伤力学 damage mechanics损伤Damage连续介质损伤力学 continuum damage mechanics细观损伤力学 microscopic damage mechanics累积损伤 accumulated damage脆性损伤 brittle damage延性损伤 ductile damage宏观损伤 macroscopic damage细观损伤 microscopic damage微观损伤 microscopic damage损伤准则 damage criterion损伤演化方程 damage evolution equation 损伤软化 damage softening损伤强化 damage strengthening 损伤张量 damage tensor损伤阈值 damage threshold损伤变量 damage variable损伤矢量 damage vector损伤区 damage zone疲劳Fatigue低周疲劳 low cycle fatigue应力疲劳 stress fatigue随机疲劳 random fatigue蠕变疲劳 creep fatigue腐蚀疲劳 corrosion fatigue疲劳损伤 fatigue damage疲劳失效 fatigue failure疲劳断裂 fatigue fracture疲劳裂纹 fatigue crack疲劳寿命 fatigue life疲劳破坏 fatigue rupture疲劳强度 fatigue strength疲劳辉纹 fatigue striations疲劳阈值 fatigue threshold交变载荷 alternating load交变应力 alternating stress应力幅值 stress amplitude应变疲劳 strain fatigue应力循环 stress cycle应力比 stress ratio安全寿命 safe life过载效应 overloading effect循环硬化 cyclic hardening循环软化 cyclic softening环境效应 environmental effect裂纹片crack gage裂纹扩展 crack growth, crack Propagation裂纹萌生 crack initiation循环比 cycle ratio实验应力分析 experimental stressAnalysis工作[应变]片 active[strain] gage基底材料 backing material应力计stress gage零[点]飘移zero shift, zero drift应变测量 strain measurement应变计strain gage应变指示器 strain indicator应变花 strain rosette应变灵敏度 strain sensitivity机械式应变仪 mechanical strain gage 直角应变花 rectangular rosette引伸仪 Extensometer应变遥测 telemetering of strain横向灵敏系数 transverse gage factor 横向灵敏度 transverse sensitivity焊接式应变计 weldable strain gage 平衡电桥 balanced bridge粘贴式应变计 bonded strain gage粘贴箔式应变计bonded foiled gage粘贴丝式应变计 bonded wire gage 桥路平衡 bridge balancing电容应变计 capacitance strain gage 补偿片 compensation technique补偿技术 compensation technique基准电桥 reference bridge电阻应变计 resistance strain gage温度自补偿应变计 self-temperature compensating gage半导体应变计 semiconductor strain Gage集流器slip ring应变放大镜 strain amplifier疲劳寿命计 fatigue life gage电感应变计 inductance [strain] gage 光[测]力学 Photomechanics光弹性 Photoelasticity光塑性 Photoplasticity杨氏条纹 Young fringe双折射效应 birefrigent effect等位移线 contour of equalDisplacement暗条纹 dark fringe条纹倍增 fringe multiplication干涉条纹 interference fringe等差线 Isochromatic等倾线 Isoclinic等和线 isopachic应力光学定律 stress- optic law主应力迹线 Isostatic亮条纹 light fringe 光程差optical path difference热光弹性 photo-thermo -elasticity光弹性贴片法 photoelastic coating Method光弹性夹片法 photoelastic sandwich Method动态光弹性 dynamic photo-elasticity空间滤波 spatial filtering空间频率 spatial frequency起偏镜 Polarizer反射式光弹性仪 reflection polariscope残余双折射效应 residual birefringent Effect应变条纹值 strain fringe value应变光学灵敏度 strain-optic sensitivity 应力冻结效应 stress freezing effect应力条纹值 stress fringe value应力光图 stress-optic pattern暂时双折射效应 temporary birefringent Effect脉冲全息法 pulsed holography透射式光弹性仪 transmission polariscope 实时全息干涉法 real-time holographicinterfero - metry网格法 grid method全息光弹性法 holo-photoelasticity全息图Hologram全息照相 Holograph全息干涉法 holographic interferometry 全息云纹法 holographic moire technique 全息术 Holography全场分析法 whole-field analysis散斑干涉法 speckle interferometry散斑Speckle错位散斑干涉法 speckle-shearinginterferometry, shearography散斑图Specklegram白光散斑法white-light speckle method云纹干涉法 moire interferometry[叠栅]云纹 moire fringe[叠栅]云纹法 moire method云纹图 moire pattern离面云纹法 off-plane moire method参考栅 reference grating试件栅 specimen grating分析栅 analyzer grating面内云纹法 in-plane moire method脆性涂层法 brittle-coating method条带法 strip coating method坐标变换 transformation ofCoordinates计算结构力学 computational structuralmecha-nics加权残量法weighted residual method有限差分法 finite difference method有限[单]元法 finite element method配点法 point collocation里茨法 Ritz method广义变分原理 generalized variational Principle最小二乘法 least square method胡[海昌]一鹫津原理 Hu-Washizu principle 赫林格-赖斯纳原理 Hellinger-Reissner Principle修正变分原理 modified variational Principle约束变分原理 constrained variational Principle混合法 mixed method杂交法 hybrid method边界解法boundary solution method有限条法 finite strip method半解析法 semi-analytical method协调元 conforming element非协调元 non-conforming element混合元 mixed element杂交元 hybrid element边界元 boundary element强迫边界条件 forced boundary condition 自然边界条件 natural boundary condition 离散化 Discretization离散系统 discrete system连续问题 continuous problem广义位移 generalized displacement广义载荷 generalized load广义应变 generalized strain广义应力 generalized stress界面变量 interface variable 节点 node, nodal point[单]元 Element角节点 corner node边节点 mid-side node内节点 internal node无节点变量 nodeless variable杆元 bar element桁架杆元 truss element梁元 beam element二维元 two-dimensional element一维元 one-dimensional element三维元 three-dimensional element轴对称元 axisymmetric element板元 plate element壳元 shell element厚板元 thick plate element三角形元 triangular element四边形元 quadrilateral element四面体元 tetrahedral element曲线元 curved element二次元 quadratic element线性元 linear element三次元 cubic element四次元 quartic element等参[数]元 isoparametric element超参数元 super-parametric element亚参数元 sub-parametric element节点数可变元 variable-number-node element拉格朗日元 Lagrange element拉格朗日族 Lagrange family巧凑边点元 serendipity element巧凑边点族 serendipity family无限元 infinite element单元分析 element analysis单元特性 element characteristics刚度矩阵 stiffness matrix几何矩阵 geometric matrix等效节点力 equivalent nodal force节点位移 nodal displacement节点载荷 nodal load位移矢量 displacement vector载荷矢量 load vector质量矩阵 mass matrix集总质量矩阵 lumped mass matrix相容质量矩阵 consistent mass matrix阻尼矩阵 damping matrix瑞利阻尼 Rayleigh damping刚度矩阵的组集 assembly of stiffnessMatrices载荷矢量的组集 consistent mass matrix质量矩阵的组集 assembly of mass matrices 单元的组集 assembly of elements局部坐标系 local coordinate system局部坐标 local coordinate面积坐标 area coordinates体积坐标 volume coordinates曲线坐标 curvilinear coordinates静凝聚 static condensation合同变换 contragradient transformation形状函数 shape function试探函数 trial function检验函数test function权函数 weight function样条函数 spline function代用函数 substitute function降阶积分 reduced integration零能模式 zero-energy modeP收敛 p-convergenceH收敛 h-convergence掺混插值 blended interpolation等参数映射 isoparametric mapping双线性插值 bilinear interpolation小块检验 patch test非协调模式 incompatible mode 节点号 node number单元号 element number带宽 band width带状矩阵 banded matrix变带状矩阵 profile matrix带宽最小化minimization of band width波前法 frontal method子空间迭代法 subspace iteration method 行列式搜索法determinant search method逐步法 step-by-step method纽马克法Newmark威尔逊法 Wilson拟牛顿法 quasi-Newton method牛顿-拉弗森法 Newton-Raphson method 增量法 incremental method初应变 initial strain初应力 initial stress切线刚度矩阵 tangent stiffness matrix割线刚度矩阵 secant stiffness matrix模态叠加法mode superposition method平衡迭代 equilibrium iteration子结构 Substructure子结构法 substructure technique超单元 super-element网格生成 mesh generation结构分析程序 structural analysis program 前处理 pre-processing后处理 post-processing网格细化 mesh refinement应力光顺 stress smoothing组合结构 composite structure流体动力学类:流体动力学 fluid dynamics连续介质力学 mechanics of continuous media介质medium流体质点 fluid particle无粘性流体 nonviscous fluid, inviscid fluid连续介质假设 continuous medium hypothesis流体运动学 fluid kinematics水静力学 hydrostatics 液体静力学 hydrostatics支配方程 governing equation伯努利方程 Bernoulli equation伯努利定理 Bernonlli theorem毕奥-萨伐尔定律 Biot-Savart law欧拉方程Euler equation亥姆霍兹定理 Helmholtz theorem开尔文定理 Kelvin theorem涡片 vortex sheet库塔-茹可夫斯基条件 Kutta-Zhoukowskicondition布拉休斯解 Blasius solution达朗贝尔佯廖 d'Alembert paradox 雷诺数 Reynolds number施特鲁哈尔数 Strouhal number随体导数 material derivative不可压缩流体 incompressible fluid 质量守恒 conservation of mass动量守恒 conservation of momentum 能量守恒 conservation of energy动量方程 momentum equation能量方程 energy equation控制体积 control volume液体静压 hydrostatic pressure涡量拟能 enstrophy压差 differential pressure流[动] flow流线stream line流面 stream surface流管stream tube迹线path, path line流场 flow field流态 flow regime流动参量 flow parameter流量 flow rate, flow discharge涡旋 vortex涡量 vorticity涡丝 vortex filament涡线 vortex line涡面 vortex surface涡层 vortex layer涡环 vortex ring涡对 vortex pair涡管 vortex tube涡街 vortex street卡门涡街 Karman vortex street马蹄涡 horseshoe vortex对流涡胞 convective cell卷筒涡胞 roll cell涡 eddy涡粘性 eddy viscosity环流 circulation环量 circulation速度环量 velocity circulation 偶极子 doublet, dipole驻点 stagnation point总压[力] total pressure总压头 total head静压头 static head总焓 total enthalpy能量输运 energy transport速度剖面 velocity profile库埃特流 Couette flow单相流 single phase flow单组份流 single-component flow均匀流 uniform flow非均匀流 nonuniform flow二维流 two-dimensional flow三维流 three-dimensional flow准定常流 quasi-steady flow非定常流unsteady flow, non-steady flow 暂态流transient flow周期流 periodic flow振荡流 oscillatory flow分层流 stratified flow无旋流 irrotational flow有旋流 rotational flow轴对称流 axisymmetric flow不可压缩性 incompressibility不可压缩流[动] incompressible flow 浮体 floating body定倾中心metacenter阻力 drag, resistance减阻 drag reduction表面力 surface force表面张力 surface tension毛细[管]作用 capillarity来流 incoming flow自由流 free stream自由流线 free stream line外流 external flow进口 entrance, inlet出口exit, outlet扰动 disturbance, perturbation分布 distribution传播 propagation色散 dispersion弥散 dispersion附加质量added mass ,associated mass收缩 contraction镜象法 image method无量纲参数 dimensionless parameter几何相似 geometric similarity运动相似 kinematic similarity动力相似[性] dynamic similarity平面流 plane flow势 potential势流 potential flow速度势 velocity potential复势 complex potential复速度 complex velocity流函数 stream function源source汇sink速度[水]头 velocity head拐角流 corner flow空泡流cavity flow超空泡 supercavity超空泡流 supercavity flow空气动力学 aerodynamics低速空气动力学 low-speed aerodynamics 高速空气动力学 high-speed aerodynamics 气动热力学 aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流 conical flow楔流wedge flow叶栅流 cascade flow非平衡流[动] non-equilibrium flow细长体 slender body细长度 slenderness钝头体 bluff body钝体 blunt body翼型 airfoil翼弦 chord薄翼理论 thin-airfoil theory构型 configuration后缘 trailing edge迎角 angle of attack失速stall脱体激波detached shock wave 波阻wave drag诱导阻力 induced drag诱导速度 induced velocity临界雷诺数critical Reynolds number前缘涡 leading edge vortex附着涡 bound vortex约束涡 confined vortex气动中心 aerodynamic center气动力 aerodynamic force气动噪声 aerodynamic noise气动加热 aerodynamic heating离解 dissociation地面效应 ground effect气体动力学 gas dynamics稀疏波 rarefaction wave热状态方程thermal equation of state喷管Nozzle普朗特-迈耶流 Prandtl-Meyer flow瑞利流 Rayleigh flow可压缩流[动] compressible flow可压缩流体 compressible fluid绝热流 adiabatic flow非绝热流 diabatic flow未扰动流 undisturbed flow等熵流 isentropic flow匀熵流 homoentropic flow兰金-于戈尼奥条件 Rankine-Hugoniot condition状态方程 equation of state量热状态方程 caloric equation of state完全气体 perfect gas拉瓦尔喷管 Laval nozzle马赫角 Mach angle马赫锥 Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数 local Mach number冲击波 shock wave激波 shock wave正激波normal shock wave斜激波oblique shock wave头波 bow wave附体激波 attached shock wave激波阵面 shock front激波层 shock layer压缩波 compression wave反射 reflection折射 refraction散射scattering衍射 diffraction绕射 diffraction出口压力 exit pressure超压[强] over pressure反压 back pressure爆炸 explosion爆轰 detonation缓燃 deflagration水动力学 hydrodynamics液体动力学 hydrodynamics泰勒不稳定性 Taylor instability 盖斯特纳波 Gerstner wave斯托克斯波 Stokes wave瑞利数 Rayleigh number自由面 free surface波速 wave speed, wave velocity 波高 wave height波列wave train波群 wave group波能wave energy表面波 surface wave表面张力波 capillary wave规则波 regular wave不规则波 irregular wave浅水波 shallow water wave深水波deep water wave重力波 gravity wave椭圆余弦波 cnoidal wave潮波tidal wave涌波surge wave破碎波 breaking wave船波ship wave非线性波 nonlinear wave孤立子 soliton水动[力]噪声 hydrodynamic noise 水击 water hammer空化 cavitation空化数 cavitation number 空蚀 cavitation damage超空化流 supercavitating flow水翼 hydrofoil水力学 hydraulics洪水波 flood wave涟漪ripple消能 energy dissipation海洋水动力学 marine hydrodynamics谢齐公式 Chezy formula欧拉数 Euler number弗劳德数 Froude number水力半径 hydraulic radius水力坡度 hvdraulic slope高度水头 elevating head水头损失 head loss水位 water level水跃 hydraulic jump含水层 aquifer排水 drainage排放量 discharge壅水曲线back water curve压[强水]头 pressure head过水断面 flow cross-section明槽流open channel flow孔流 orifice flow无压流 free surface flow有压流 pressure flow缓流 subcritical flow急流 supercritical flow渐变流gradually varied flow急变流 rapidly varied flow临界流 critical flow异重流density current, gravity flow堰流weir flow掺气流 aerated flow含沙流 sediment-laden stream降水曲线 dropdown curve沉积物 sediment, deposit沉[降堆]积 sedimentation, deposition沉降速度 settling velocity流动稳定性 flow stability不稳定性 instability奥尔-索末菲方程 Orr-Sommerfeld equation 涡量方程 vorticity equation泊肃叶流 Poiseuille flow奥辛流 Oseen flow剪切流 shear flow粘性流[动] viscous flow层流 laminar flow分离流 separated flow二次流 secondary flow近场流near field flow远场流 far field flow滞止流 stagnation flow尾流 wake [flow]回流 back flow反流 reverse flow射流 jet自由射流 free jet管流pipe flow, tube flow内流 internal flow拟序结构 coherent structure 猝发过程 bursting process表观粘度 apparent viscosity 运动粘性 kinematic viscosity 动力粘性 dynamic viscosity 泊 poise厘泊 centipoise厘沱 centistoke剪切层 shear layer次层 sublayer流动分离 flow separation层流分离 laminar separation 湍流分离 turbulent separation 分离点 separation point附着点 attachment point再附 reattachment再层流化 relaminarization起动涡starting vortex驻涡 standing vortex涡旋破碎 vortex breakdown 涡旋脱落 vortex shedding压[力]降 pressure drop压差阻力 pressure drag压力能 pressure energy型阻 profile drag滑移速度 slip velocity无滑移条件 non-slip condition 壁剪应力 skin friction, frictional drag壁剪切速度 friction velocity磨擦损失 friction loss磨擦因子 friction factor耗散 dissipation滞后lag相似性解 similar solution局域相似 local similarity气体润滑 gas lubrication液体动力润滑 hydrodynamic lubrication 浆体 slurry泰勒数 Taylor number纳维-斯托克斯方程 Navier-Stokes equation 牛顿流体 Newtonian fluid边界层理论boundary later theory边界层方程boundary layer equation边界层 boundary layer附面层 boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation边界层厚度boundary layer thickness位移厚度 displacement thickness动量厚度 momentum thickness能量厚度 energy thickness焓厚度 enthalpy thickness注入 injection吸出suction泰勒涡 Taylor vortex速度亏损律 velocity defect law形状因子 shape factor测速法 anemometry粘度测定法 visco[si] metry流动显示 flow visualization油烟显示 oil smoke visualization孔板流量计 orifice meter频率响应 frequency response油膜显示oil film visualization阴影法 shadow method纹影法 schlieren method烟丝法smoke wire method丝线法 tuft method。
FGH4096合金的动态再结晶与晶粒细化研究
第31卷 第1期2011年2月航 空 材 料 学 报J OURNAL OF A ERONAUT ICAL MAT ER I A LSV o l 31,N o 1 February 2011FGH4096合金的动态再结晶与晶粒细化研究谢兴华1, 姚泽坤1, 宁永权1, 郭鸿镇1, 陶 宇2, 张义文2(1.西北工业大学材料学院,西安710072;2.钢铁研究总院高温材料中心,北京100081)摘要:使用G leeble -1500D 热模拟试验机对热等静压态FGH 4096合金进行变形温度1080~1140 ,应变速率0.02~1s -1,变形量15%,35%和50%的等温压缩实验。
通过观察微观组织,分析了粉末高温合金动态再结晶的组织演化规律,并通过透射电镜研究了再结晶的形核位置。
当变形量在35%及以下时,得到不完全再结晶组织,即 项链 组织;当变形量大于50%时,得到完全的动态再结晶组织。
动态再结晶晶粒尺寸随变形温度的升高和应变速率的降低而增大。
再结晶形核主要在以下三个位置,即原始颗粒边界,再结晶晶粒边界以及孪晶源。
最后利用多方向热变形对晶粒的破碎和细化,得到平均晶粒尺寸为4 m 的细晶坯料。
关键词:FGH 4096粉末高温合金;动态再结晶;形核;细晶化锻造DO I :10 3969/j i ssn 1005-5053 2011 1 004中图分类号:TF125 文献标识码:A 文章编号:1005-5053(2011)01-0020-05收稿日期:2010-07-09;修订日期:2010-11-05作者简介:谢兴华(1986 ),男,硕士研究生,(E -m a il)x iex inghuaxxh @ 。
粉末高温合金由于具有组织均匀、无宏观偏析、合金化程度高等优点,成为制造先进航空发动机涡轮盘的首选材料[1]。
30多年中,粉末高温合金发展已经历了三代。
FGH 4096粉末高温合金属于我国第二代粉末高温合金材料,以其优秀的高温强度和抗裂纹扩展能力受到航空发动机研究人员的极大重视[3]。
Fine structure
Fine StructureXu Qiunan 200800100143Abstract :We all know that the Bohr theory have considered the most important interaction in the atoms, and this theory is right according to many experiments. But if you look at the spectral lines carefully, you will find the fine struture. So we must think about other interactions. Then we find whether on classic or on atomic, the magnetic interaction must exist. The magnetic interaction is caused by the spin of electrons, and this interaction is the most important factor to the fine structure. Thus, we will discuss the fine structure in atomic physics.Keywords :fine structure, spin, spin-orbital interactionPart 1: The orbital magnetic momentDuring the calculation of the magnetic moment of the orbital motion, we getμB is the Bohr magneton and it can be written as follows:α is the fine structure constant(1/137), and a 1 is the radiusof the innermost Bohr orbit.From these two equtions, we can find the magneticmoment and its component in the z direction are quantized. This comes from the quantization of the orbital angular momentum and its component in the z direction, and it shows a directional quantization. Figure 1 shows the model of angular momentum. Then we can conclude that when the angular momentum number is l, the angular momentum have 2l+1 directions. Part 2: Stern-Gerlach experiment and the intruduce of spinIn 1921, Stern and Gerlach made a experiment to detect thedirectionalFigure.2 Stern-Gerlachexperiment. The atomicbeam passes through aninhomogeneous magneticfields. One observes thesplitting of the beam intotwo componentsFigure.1 The orbital angular momentum and its component in the z direction when l=2quantisation firstly, and the deflection of atomic beams in inhomogeneous magnetic fields made the direct measurement of the magnetic moments of atoms possible.But from this experiment, we can find the Hydrogen atoms only have two directions in the magnetic field, and this phenomenon can ’t be explained by quantum theory. According to the space quantization theory, we know when the orbital angular momentum is l, m l have 2l+1 directions. Because l is an integer, 2l+1 must be odd number. Thus, the discription to atoms is not entirely. So due to this fact, G .E.Uhlenbeck and S.Goudsmit give an assumption: electron isn ’t a point charge, and it has spin angular momentumIt only have two components in the z direction s z =±h/4π. In other words, the quantum number of the z component of the spin only have two numbers ±1/2:Then the magnetic moment related to spin must exists. In order to fit the experiment, Uhlenbeck and Goudsmit also assume that the magnetic moment of electrons is one Bohr magneton:The direction of the magnetic moment is opposite from the direction of spin. At the same time, this assumption have been proved by many experiments exactly.Then we identify the g factor to unify these magnetic moments. the magnetic moment of each angular momentum j can be written as:When j=l, we have g l =1; when j=s, we have g s =2; whenwe consider the spin angular momentum and orbitalangular momentum together, we haveAnd this equation is also right for many electrons.If we think about the spin in the Stern-Gerlach experiment, then we can explain the phenomenon of double splitting, and we also learn that this experiment proves the assumption of spin and the number of spin magnetic monent are right.Part 3: Spin-orbital interaction: the calculation of fine structureAnother reason for the assuption of spin is the level scheme of the alkale atoms. If we acknowledge the spin angular momentum exist and it has two directions, we can get the state l=1 will generate two state 2P 1/2 and 2P 3/2 for j=1/2 and 3/2, and the state l=0 remains one state 2S 1/2 for j=1/2. these are fit for the fact of the experiment of Figure.3 The relationship between electron magnetic moment and angular momentumalkali atoms. But how large are those states splitting?We have considered the electrostatic interaction between electron and nucleus, however, the fine structure is caused bymagnetic interaction. Now we will analyze this interaction.For a center-of-mass system, we can assume that the electron isstationary and that the nucleusmoves instead. Then the magnetic field of the moving charge +Ze is found from the Biot-Savart law to be:Because electron have the spin magnetic moment, it will obtains potential energyBut we must come back to the centre-of-mass system, so a factor 1/2 occurs in this back transformation, the so-called Thomas factor, which can only be justified by a complete relativistic calculation.Then we can find the potential energy V only rely on the relative direction of s and l. Because of this, we call this equation spin-orbital coupling term. It is the added energy due to the interaction between the magnetic field produced by orbital motion and spin magnetic moment. And this can be proved fitting the experiment good.Next we will calculate it exactly.Because j=s+l, we can easily getFor atoms similar to H, we knowThen we getThus, for the doublet states:s )z(b) electron is stationaryFigure.4 Atoms similar to HIn the energy spectrum of single-electron atoms, the electrostatic interaction causes the gross structure of the energy spectrum and the order of magnitude of the energy is α2E0(α2E0/2=13.6eV). Now, the spin-orbital interaction causes the fine structure due to the difference between energys. The order of magnitude is α4E0, and it’s α2times bigger than gross structure. This is the reason for αto be called fine structure constant.ConclusionsThe fine structure describes the splitting of the spectral lines of atoms due to first order relativistic corrections. This splitting is very small, so it usually occurs in light elements and the splitting would be large in heavy elements. In atoms, spin and orbital interact and different direction cause the change of energy, then the fine structure occurred.For single electron, there are two directions for spin, so the fine structure is doublet. If there are two valence electrons, the total spin quantum number is S=0 or 1, the fine structures are singlet and triplet. It is much similar when it has more valence electrons.Then we get the theory of spin and the reason of fine strcture. References:1.H.Haken and H.C.Wolf The Physics of Atoms and Quanta(Sixth Edition) Springer-Verlag 20032.Yang Fujia The Physics of Atoms Higher Education Press 20093.Chen Hongfang The Physics of Atoms Science Press 20064.Zhu Shenglin The Physics of Atoms People’s Education Pres s 1979。
材料科学基础常用英语词汇
材料科学基础常用英语词汇材料的类型Types of materials, metals, ceramics, polymers, composites, elastomer部分材料性质复习Review of selected properties of materials,电导率和电阻率conductivity and resistivity,热导率thermal conductivity,应力和应变stress and strain,弹性应变elastic strain,塑性应变plastic strain,屈服强度yield strength,最大抗拉强度ultimate tensile strength,最大强度ultimate strength,延展性ductility,伸长率elongation,断面收缩率reduction of area,颈缩necking,断裂强度breaking strength,韧性toughness,硬度hardness,疲劳强度fatigue strength,蜂窝honeycomb,热脆性heat shortness,晶胞中的原子数atoms per cell,点阵lattice, 阵点lattice point,点阵参数lattice parameter,密排六方hexagonal close-packed,六方晶胞hexagonal unit cell,体心立方body-centered cubic,面心立方face-centered cubic,弥勒指数Miller indices,晶面crystal plane,晶系crystal system,晶向crystal direction,相变机理Phase transformation mechanism:成核生长相变nucleation–growth transition,斯宾那多分解spinodal decomposition,有序无序转变disordered-order transition,马氏体相变martensite phase transformation,成核nucleation,成核机理nucleation mechanism,成核势垒nucleation barrier,晶核,结晶中心nucleus of crystal,(金属组织的)基体quay,基体,基块,基质,结合剂matrix,子晶,雏晶matted crystal,耔晶,晶种seed crystal,耔晶取向seed orientation,籽晶生长seeded growth,均质核化homogeneous nucleation,异质核化heterogeneous nucleation,均匀化热处理homogenization heat treatment,熟料grog,自恰场self-consistent field固溶体Solid solution:有序固溶体ordered solid solution,无序固溶体disordered solid solution,有序合金ordered alloy,无序合金disordered alloy.无序点阵disordered lattice,分散,扩散,弥散dispersal,分散剂dispersant,分散剂,添加剂dispersant additive,分散剂,弥散剂dispersant agent缺陷defect, imperfection,点缺陷point defect,线缺陷line defect, dislocation,面缺陷interface defect, surface defect,体缺陷volume defect,位错排列dislocation arrangement,位错阵列dislocation array,位错气团dislocation atmosphere,位错轴dislocation axis,位错胞dislocation cell,位错爬移dislocation climb,位错滑移dislocation slip, dislocation movement by slip, 位错聚结dislocation coalescence,位错核心能量dislocation core energy,位错裂纹dislocation crack,位错阻尼dislocation damping,位错密度dislocation density,体积膨胀volume dilation,体积收缩volume shrinkage,回火tempering,退火annealing,退火的,软化的softened,软化退火,软化(处理)softening,淬火quenching,淬火硬化quenching hardening,正火normalizing, normalization,退火织构annealing texture,人工时效artificial aging,细长比aspect ratio,形变热处理ausforming,等温退火austempering,奥氏体austenite,奥氏体化austenitizing,贝氏体bainite,马氏体martensite,马氏体淬火marquench,马氏体退火martemper,马氏体时效钢maraging steel,渗碳体cementite,固溶强化solid solution strengthening,钢屑混凝土steel chips concrete,水玻璃,硅酸钠sodium silicate,水玻璃粘结剂sodium silicate binder,硅酸钠类防水剂sodium silicate waterproofing agent, 扩散diffusion,扩散系数diffusivity,相变phase transition,烧结sintering,固相反应solid-phase reaction,相图与相结构phase diagrams and phase structures , 相phase,组分component,自由度freedom,相平衡phase equilibrium,吉布斯相律Gibbs phase rule,吉布斯自由能Gibbs free energy,吉布斯混合能Gibbs energy of mixing,吉布斯熵Gibbs entropy,吉布斯函数Gibbs function,相平衡phase balance,相界phase boundary,相界线phase boundary line,相界交联phase boundary crosslinking,相界有限交联phase boundary crosslinking,相界反应phase boundary reaction,相变phase change,相组成phase composition,共格相phase-coherent,金相相组织phase constentuent,相衬phase contrast,相衬显微镜phase contrast microscope,相衬显微术phase contrast microscopy,相分布phase distribution,相平衡常数phase equilibrium constant,相平衡图phase equilibrium diagram,相变滞后phase transition lag, Al-Si-O-N系统相关系phase relationships in the Al-Si-O-N system, 相分离phase segregation, phase separation,玻璃分相phase separation in glasses,相序phase order, phase sequence,相稳定性phase stability,相态phase state,相稳定区phase stabile range,相变温度phase transition temperature,相变压力phase transition pressure,同质多晶转变polymorphic transformation,相平衡条件phase equilibrium conditions,显微结构microstructures,不混溶固溶体immiscible solid solution,转熔型固溶体peritectic solid solution,低共熔体eutectoid,crystallization,不混溶性immiscibility,固态反应solid state reaction,烧结sintering,相变机理Phase transformation mechanism:成核生长相变nucleation–growth transition,斯宾那多分解spinodal decomposition,有序无序转变disordered-order transition,马氏体相变martensite phase transformation,成核nucleation,成核机理nucleation mechanism,成核势垒nucleation barrier,晶核,结晶中心nucleus of crystal,(金属组织的)基体quay,基体,基块,基质,结合剂matrix,子晶,雏晶matted crystal,耔晶,晶种seed crystal,耔晶取向seed orientation,籽晶生长seeded growth,均质核化homogeneous nucleation,异质核化heterogeneous nucleation,均匀化热处理homogenization heat treatment,熟料grog,。
干气密封端面型槽可控激光制备的参数模型及实验验证
第50 卷第 10 期2023年10 月Vol.50,No.10Oct. 2023湖南大学学报(自然科学版)Journal of Hunan University(Natural Sciences)干气密封端面型槽可控激光制备的参数模型及实验验证王衍1†,孔康杰1,何一鸣1,王英尧1,刘永振1,赵全忠2(1.江苏海洋大学机械工程学院,江苏连云港 222005;2.南京萃智激光应用技术研究院有限公司,江苏南京 210034)摘要:针对干气密封微米级开槽深度和粗糙度控制难的问题,提出相应评价方法,建立加工深度和粗糙度模型,并通过数值模拟系统地研究了激光填充间距S、光斑直径d s与开槽深度h a、粗糙度Ras之间的关系.结果表明:开槽深度和粗糙度均随填充间距的增大而减小,当填充间距S<7 μm时填充间距对槽深和粗糙度的影响十分显著;光斑直径对开槽深度的影响基本可以忽略,粗糙度随光斑直径的增大呈先缓慢增大后迅速升高的趋势,临界值也位于d s=7 μm左右.实验结果对数值计算中槽深的分析结果支持度较好,与粗糙度的分析结果略有出入.进一步采用TOPSIS综合评价方法优选出最佳工艺参数范围:考虑加工效率时,最佳参数区间为8 μm ≤ S ≤ 15 μm,9 μm ≤ d s ≤15 μm;不考虑加工效率时,最佳参数区间为5 μm ≤ S ≤ 10 μm,5 μm ≤ d s ≤ 15 μm.研究结果对进一步提高干气密封微米级槽深的加工效率、精密度有一定指导意义.关键词:干气密封;激光加工;槽深;粗糙度;高效制备;加工工艺中图分类号:TH117 文献标志码:AParameter Model and Experimental Verification of Controllable Laser Preparation of Dry Gas Seal Surface GrooveWANG Yan1†,KONG Kangjie1,HE Yiming1,WANG Yingyao1,LIU Yongzhen1,ZHAO Quanzhong2(1.School of Mechanical Engineering, Jiangsu Ocean University, Lianyungang 222005,China;2.Nanjing Cuizhi Laser Application Technology Research Institute Co., Ltd, Nanjing 210034, China)Abstract:To address the difficulty in controlling groove depth and roughness during micron-level groove machining of dry gas seals,a theoretical evaluation method was proposed,and a model was constructed to investigate the machining depth and roughness. Using this numerical simulation, the relationships between the laser∗收稿日期:2022-10-28基金项目:国家自然科学基金资助项目(52275192,52105187), National Natural Science Foundation of China(52275192,52105187);江苏省自然科学基金资助项目(BK20191471), Natural Science Foundation of Jiangsu Province(BK20191471);中国博士后科学基金资助项目(2021M691328), China Postdoctoral Science Fund Project(2021M691328);江苏省博士后科研资助计划(2021K333C), Postdoctoral Sci⁃ence Foundation of Jiangsu Province(2021K333C);江苏省“六大人才高峰”资助项目(GDZB-076),Jiangsu “Six Talent Peak”Project (GDZB-076);连云港市“521工程”项目, Lianyungang City “521 Project” Project;江苏省研究生科研与实践创新计划资助项目(KYCX22_ 3389), Jiangsu Graduate Research and Practice Innovation Program(KYCX22_3389)作者简介:王衍(1989—),男,江苏连云港人,江苏海洋大学副教授,博士† 通信联系人,E-mail:*********************文章编号:1674-2974(2023)10-0142-09DOI:10.16339/ki.hdxbzkb.2023181第 10 期王衍等:干气密封端面型槽可控激光制备的参数模型及实验验证fill spacing S and spot diameter d s,and the resulting groove depth h a and roughness Ras were systematically investigated. The results demonstrate that the groove depth and roughness decrease with the increasing filling spacing, and the influence on groove depth and roughness is significant when S < 7 μm. The effect of spot diameter on the groove depth is insignificant, the roughness initially increased slowly and then rapidly with the increase in spot diameter, and the critical value of d s was approximately 7 μm. The experimental results well supported those of the numerical analysis of groove depth, which was slightly different from the results of roughness analysis. In this study,the TOPSIS comprehensive evaluation method was used to optimize the optimal range of the processing parameters: considering the processing efficiency, the optimal parameter ranges are 8 μm ≤ S ≤ 15 μm and 9 μm ≤ d s ≤ 15 μm; however, when the processing efficiency is not considered, the optimal parameter ranges are 5 μm ≤ S ≤ 10 μm and 5 μm ≤ d s ≤ 15 μm. The research results have certain guiding significance for further improving the high efficiency and precision machining of micron-level groove depth of dry gas seal.Key words:dry gas seal;laser processing;groove depth;roughness;efficient preparation;processing technology干气密封是一种动压型非接触式密封[1-2],主要解决了机械密封的干运转难题,凭借零泄漏、无磨损、低能耗等优势在石油、冶金和化工领域逐渐取代传统接触式机械密封[3].干气密封区别于传统机械密封的关键技术特征是需在密封端面开设微米级动压槽型[4],使旋转气体能够在微米级槽深的引导下实现定向增压.如何通过加工工艺实现介观槽深和槽底粗糙度的精确控制,直接影响干气密封的现场运行效果[5-7].而且,实现一定工况下的既定最优槽深是干气密封理论研究对实际应用的具体指导和要求.对干气密封粗糙度的精准控制,一方面,源于微米级槽深本身已属于介观尺度,当粗糙度与槽深处于相近量级时将使目标槽深的定义失去意义;另一方面,多数情况下粗糙度对密封性能是有较大影响的.研究表明[8-9]:在相同工况和表面综合均方根差的条件下,粗糙表面的干气密封开启力、气膜刚度和摩擦扭矩均大于光滑表面;槽底面和软环密封端面的表面粗糙度对干气密封的性能具有较大影响. Etsion等[10-11]于1996年提出微孔织构化端面密封技术,并于1999年成功将激光雕刻技术应用于多孔端面机械密封的加工,显著提升了机械密封的使用寿命.Chichkov等[12]于1996年研究了飞秒、皮秒、纳秒激光的微观加工创面,认为激光加工的时间越短,激光烧蚀(Laser Ablation)在加工过程中的比重就越大,扩散(Diffusion)的比重越小,加工创面将越发平整、理想.盖晓晨[13]研究了飞秒激光的脉冲能量、扫描速度以及加工辅助气体对加工碳化硅(SiC)材料的影响,指出一定材料表面形貌下,降低扫描速度或增加脉冲能量都会提高材料的去除量,它们之间的关系呈非线性.毛文元等[14]基于纳秒激光加工技术,研究了给定深度和粗糙度指标下,工艺参数对碳化硅和碳化钨这两种材料上螺旋槽深度和粗糙度的影响,并通过正交实验,研究了各个参数的影响程度.2021年,毛文元等[15]进一步利用ACE非参数回归的方法建立了工艺参数与深度和粗糙度的关系,筛选出的参数基本可以达到兼顾加工效率和质量的要求.上述实验证明了采用离散编程方法可以实现对加工参数的优化,但尚未建立或深入探讨加工参数与加工现象的内在物理联系.本文围绕干气密封槽型加工过程中的槽深和粗糙度两个关键指标,采用公式推导、编程模拟等方法,探讨光斑直径和填充间距对加工深度和粗糙度的影响,以期得到较为准确的加工参数-质量指标关系模型.与实验加工结果进行对比,建立最优参数的区间范围,完善基于材料气化阈值的激光精密加工思路,为干气密封高效精密制备提供理论基础.1 理论模型1.1 数学模型结合实际加工情况,对加工模型作如下假设:1)光斑无衰减、加工创面理想;2)加工和检测设备有良好的重复定位精度、运动精度、振动稳定性;3)忽略数控操作延迟影响.基于以上假设,激光加工过程中可以实现完全烧蚀,本文主要探究激光光斑直径、填充间距对密封143湖南大学学报(自然科学版)2023 年环加工槽深及粗糙度的影响.根据相关文献[16],单个光斑加工深度与激光器光斑能量、光斑直径及材料属性系数有关,为消除光斑能量和材料属性的影响,定义无量纲加工深度h *如下:h *=AB d 2s(1)其中,A 、B 分别为与材料属性和激光器相关的变量,可以根据实验用激光器参数通过采用无量纲形式消除A 、B 的影响,无量纲基准值采用激光器标准值(光斑直径d s =15 μm ,光斑间距S =15 μm ).激光加工材料总去除量X 为加工区域内光斑数量与单个光斑加工深度h *的乘积,规定一定范围内横向和纵向的光斑数量分别为m 、n ,则激光加工材料总去除量X 可表示为:X =mn π(ds2)2h*(2)定义光斑间距为S 时,实际加工面积M 为:M =[d s +(m -1)S ][d s +(n -1)S ](3)从而,开槽深度h a 即为总去除量X 与实际加工面积M 的比值:h a =X M(4)为考虑加工区域内所有激光光斑重叠情形,本文采用面积均方差(面粗糙度)Ras 评价槽区加工质量,建立面粗糙度理论模型.实际加工区域的主体是由若干个边长为一个填充间距S 的正方形组成,图1所示为一个正方形加工区域内光斑重叠情况.可以看出,此时的加工区域包含2h *(重叠2次)、h *(重叠1次)、0(无光斑)三种深度分布,对应的面积分别为M 2、M 1、M 0:ìíîïïïïïïïïM 2=14γd 2s -14S d 2s -S 2M 1=π16d 2s -2M2M 0=S 2-4M 1-M 2(5)基于以上分析,假设实际加工区域内包含的重叠次数为c 1,c 2,…,c i (c i 为正整数),对应的加工深度可表示为c 1h *、c 2h *,…,c i h *.通过对整个加工区域内相同重叠数汇总,建立面粗糙度Ras 理论模型:Ras 2=∑()c i h *-h a 2M i∑Mi(6)其中,M i 为与c i h *对应的加工面积.1.2 计算模型当光斑间距过小且重叠次数过大时,正确分辨c i非常困难,直接应用上述模型进行实际问题的分析就显得十分繁琐,进一步合并统计M i 几乎无法完成.例如取光斑直径d s =15 μm 、光斑间隔S =1 μm 时,此时加工区域内最大重叠次数可达174.鉴于此,可选择采用编程计算进行求解.建立如图2所示m =n =1 000的单位长度数值模拟加工区域,区域面积由该区域内阵列点数量表示,即图示右上角洋红色圆形区域面积可由其包含的绿色阵列点数表示,据此可在程序计算中确定任意光斑位置和面积.采用Python 软件对上述模型求解,取光斑直径d s=15 μm ,记每个光斑加工深度为1个单位深度,则每个阵列点对应的加工深度可由距该点距离小于d s /2的圆心数量决定.通过改变填充间距S研究加工深图1 光斑重叠区域示意图Fig.1 Diagram of spot overlap area图2 光斑重叠示意图Fig.2 Diagram of spot overlap144第 10 期王衍等:干气密封端面型槽可控激光制备的参数模型及实验验证度变化规律,以图2为例,黑色阵列点表示任何光斑的圆心距离该点都大于d s /2,绿色阵列点表示仅存在一个光斑满足圆心距离该点小于d s /2,红色阵列点表示满足条件的光斑数量为两个,以此类推.根据实际加工特点,圆心位于模拟加工区域内即被视为有效圆心,编程计算流程图如图3所示.2 数值模拟2.1 填充间距的影响实验研究表明[17],当填充间距S 超过光斑直径d s时,会出现不连续加工现象,为保证分析研究对应的实际加工具有良好的连续性,取填充间距小于光斑直径进行分析.图4所示为填充间距S 变化对数值模拟槽深h a1和面粗糙度Ras 1的影响规律图,由图4可以看出,槽深h a1和面粗糙度Ras 1随填充间距的变化规律非常相似,整体都是随填充间距的增大呈下降趋势.在S < 7 μm 区间,槽深和粗糙度受填充间距影响非常显著,随着填充间距的增大(S ≥7 μm 以后),二者基本呈缓慢降低的变化趋势.2.2 光斑直径的影响图5所示为光斑直径d s 变化对数值模拟槽深h a1和面粗糙度Ras 1的影响规律图,由图可以看出,面粗糙度受光斑直径的影响较大,随着光斑直径的增大,面粗糙度呈先缓慢增大后迅速升高的趋势,临界分界点约在d s =7 μm.与面粗糙度表现不同,槽深受光斑直径的影响不显著,基本随光斑直径的增大呈小幅度的缓慢下降趋势.3 实验加工及验证3.1 试件及实验条件激光加工设备采用南京惠镭光电科技有限公司研制的HL-M7-20-V 型号光纤激光打标机,激光加图3 计算模型流程图Fig.3 Flow chart of calculation model图4 无量纲槽深和面粗糙度随填充间距模拟计算(d s =15 μm )Fig.4 Simulated calculation of dimensionless groove depth andsurface roughness with filling spacing (d s =15 μm)图5 无量纲槽深和面粗糙度随光斑直径模拟计算(S =1 μm )Fig.5 Simulated calculation of dimensionless groove depth andsurface roughness with spot diameter (S =1 μm )145湖南大学学报(自然科学版)2023 年工平台如图6所示,可以实现对加工功率、光斑直径、填充间距、加工速度、重复频率等工艺参数的调节;检测设备采用陕西威尔机电科技有限公司研制的SPR2002N 型粗糙度轮廓仪,轮廓仪测量线性精度最高可达0.8 μm ,粗糙度测量线性精度最高可达 5 nm ,可以完成样品槽深和粗糙度的检测.实验密封环选用反应烧结碳化硅(SiC )材质,以2 mm×2 mm 正方形结构进行加工实验,加工样品如图7所示.参数设置如表1所示,实验主要探究开槽深度h a 和粗糙度Ras 随光斑直径和填充间距的变化规律,并正与模型进行对比.3.2 激光加工与测量3.2.1 实验加工实验前,采用蘸了75%酒精溶液的无尘布将试件清洁后放置于工作台上;实验过程中,调节激光使其聚焦于试件表面,按照表1所示参数进行加工,全程佩戴一次性手套.实验后,用含有75%酒精溶液喷雾器清洗实验加工槽并用无尘布擦拭干净.3.2.2 样品测量测量槽深的路径选择:以实验密封环光滑未加工面为基准面,深度探针运动路径的起点和终点均在基准面上,中间经过加工区域,且经过加工区域的长度不小于总路径长度的一半.按照该方法选择三条不重合的加工路径,测量结果为多次测试深度的平均值,记为h a2.测量粗糙度的路径选择:粗糙度探针运动路径始终在加工区域内,按照该方法同样选择三条不重合的路径,粗糙度仍取各条测试路径所得的平均值,记为Ras 2.在软件界面中,X 轴为测针沿着工件滑行路径方向,Z 轴为测针上下位移指示方向,由测针电学式长度传感器转换为电信号,然后经放大、滤波、计算后由软件显示出表面粗糙度数值.如图8所示,槽深数值为实验测量平均深度,槽区上部直线为检测结果基准线,槽区底部直线为槽底加工表面粗糙度均值线,由图可以看出,密封环槽底整体加工质量良好.图9所示为实验加工区域粗糙度检测结果图,由图可以看出,加工区域粗糙度整体也较均匀,峰值和谷值波动位于±1 μm 以内,均匀度良好.3.3 实验结果与对比验证为进行不同参数下数值模拟和实验加工槽深的对比,对数值和实验的相关数据进行归一化无量纲处理,可实现对计算结果的对比分析研究.3.3.1 槽深结果对比图10所示为变填充间距S (S <d s =15 μm )时模拟图6 激光加工平台Fig.6 Laser processing bench图7 密封样品图Fig.7 Diagram of seal samples表1 加工参数Tab.1 Processing parameters加工参数光斑直径 d s /μm 填充模式激光功率 P /W 填充间距S /μm 重复频率 f /Hz 标刻次数数值15平行30<d s 10 0001图8 实验槽深检测结果Fig.8 Experimental groove depth detection results146第 10 期王衍等:干气密封端面型槽可控激光制备的参数模型及实验验证槽深h a1和加工槽深h a2的结果对比图.可以看出,实验加工槽深h a2随填充间距的变化规律与理论模型计算结果匹配较好,槽深的变化趋势与数值模拟结果基本一致,均随着填充间距的增大而减小,当S ≥ 4 μm 时,实验加工槽深与数值模拟槽深数值之间的误差越来越小.图11所示为填充间距S =1 μm 时变光斑直径下实验槽深与模拟槽深结果对比图,可以看出,实验加工槽深h a2随光斑直径的变化规律为基本围绕理论模型计算结果上下波动,实际加工槽深受光斑直径变化的影响,呈现波动性变化,与理论结果符合较好.加工槽深随光斑直径变化呈波动性变化,分析认为造成这种现象的原因:一方面是由于实际加工中光斑直径的变化会造成光斑能量的变化,二者相互作用产生部分抵消的效果,而在数值计算中没有考虑能量变化的影响;另一方面是由于实验样品表面本身具有一定的粗糙度,在数值计算中未考虑这方面的影响.3.3.2 粗糙度结果对比图12所示为变填充间距S (S <d s =15 μm )时模拟面粗糙度Ras 1和加工面粗糙度Ras 2的结果对比图.由图12可以看出,当1 μm≤S ≤3 μm 时,加工粗糙度与模拟粗糙度数值差距较大,但其变化趋势相似;当S ≥4 μm 时,实验加工粗糙度随填充间距的变化规律与理论模型计算结果匹配较好,两者变化趋势基本一致,均随着填充间距的增大而减小.图13所示为变光斑直径变化对数值模拟面粗糙度Ras 1和实验加工面粗糙度Ras 2结果对比图.可以看出,数值模拟粗糙度随着光斑直径的增大而增大,而实验加工粗糙度随光斑直径的增大在固定数图11 变光斑直径下无量纲实验槽深与模拟槽深对比(S =1 μm )Fig.11 Comparison of the dimensionless experimental and simu⁃lated groove depths under variable spot diameter (S =1 μm)图9 实验粗糙度检测结果Fig.9 Experimental roughness detection results图10 变填充间距下无量纲实验槽深与模拟槽深对比(d s =15 μm )Fig.10 Comparison of the dimensionless experimental and simu⁃lated groove depths under varying filling spacing (d s =15 μm)图12 变填充间距下无量纲实验粗糙度与模拟面粗糙度对比(d s =15 μm )Fig.12 Comparison of the dimensionless experimental and simulated surface roughness under varying filling spacing(d s =15 μm )147湖南大学学报(自然科学版)2023 年值处呈现一定的波动变化,与数值模拟结果有较大差异.究其原因,除了实验样品表面自有粗糙度影响以外,还有两个因素:一是理论模型的不完善,二是加工实验中出现的熔融物扩散现象.一方面,上文粗糙度理论模型通过统计计算区域内各深度分布的平方平均数,模拟加工区域边缘始终存在过渡加工区域,如图14所示.过渡加工区分布于加工区域的四周,其深度差随填充间距的减小逐渐明显,并向内延伸约一个光斑直径的长度,在计算平均深度时因面积占比小而影响有限,但在计算粗糙度时,深度的均值差是按平方计算的,会进一步放大深度偏差的影响,造成粗糙度计算出现较大误差,进而造成模拟粗糙度大于实际测量粗糙度的现象.另一方面,激光加工的创面形状与激光器的脉冲时间有关,单脉冲加工时间越长,创面周围的熔融物扩散就越明显.图14所示模拟加工区域与文献[18]加工实验结果趋于一致,由于熔融物扩散现象的存在,加工深度差异减小,而数值模拟未考虑熔融物扩散现象,使得数值模拟和实验加工存在差异.综上而言,虽然存在一定误差,但数值方法整体可以较好地反应实际激光加工情况,对于干气密封激光开槽相关参数的优化研究,可通过这一方法进行系统分析.4 参数优化本文采用TOPSIS (Technique for Order Prefer⁃ence by Similarity to Ideal Solution ,逼近理想解排序方法)这一综合评价方法评估光斑直径和填充间距对加工质量的影响,并将加工效率作为评估过程中的可选项.TOPSIS 是多目标决策分析中一种常用的有效方法,又称为优劣解距离法.该方法根据有限个评价对象与理想化目标的接近程度进行排序,要求各效用函数具有单调递增(或递减)性即可,是在对现有的对象中进行相对优劣的评价.依据实际加工测试数据(槽深、粗糙度各120组),建立深度和粗糙度数据结果矩阵,加工效率采用完成加工所需光斑数量n 代替,n 值越大表示加工效率越低.定义加工深度h a2为效益型指标(单调递增),加工面粗糙度Ras 2和光斑数量n 为成本型指标(单调递减).进而根据是否考虑加工效率建立两种决策模型,一种是综合考虑加工深度、面粗糙度和加工效率(三元素),三者分别占决策得分权重的20%、40%、40%;另一种是不考虑加工效率,仅考虑加工深度和粗糙度(双元素)的影响,二者分别占决策得分权重30%、70%.决策模型如下式所示:ìíîïïïïïïZ 1=A 1ω=éëêêùûúúh a 1R a 1n 2éëêêêùûúúú0.20.40.4Z 2=A 2ω=éëêêùûúúh a 1R a éëêêùûúú0.30.7 (7)式中:Z i 为决策模型的指标权重矩阵(i =1,2);A 1为三图13 变光斑直径下无量纲实验面粗糙度与模拟面粗糙度对比(S =1 μm )Fig.13 Comparison of the dimensionless experimental and simulated surface roughness under variable spot diameter(S =1 μm)图14 模拟加工区域内部深度-面积区域分布示意图Fig.14 Diagram of depth-area distribution in simulatedmachining area148第 10 期王衍等:干气密封端面型槽可控激光制备的参数模型及实验验证元素矩阵;A 2为双元素矩阵.选取以上各元素的最大值和最小值分别组成理想最大值Z i +、理想最小值Z i -,进而计算出各测试数据对应于Z i +、Z i -的距离D i +、D i -.最后采用归一化评分公式(8)得出各组数据的得分S i :S i =D -i D +i +D -i(8)S i 在0~1之间,得分越大,代表该方案越好.最终得到两种方案的决策得分分布如图15所示.由图15可知,考虑加工效率(三元素模型)时的最优参数区间为8 μm≤S ≤15 μm ,9 μm≤d s ≤15 μm ;不考虑加工效率(双元素模型)时的最优参数区间为5 μm≤S ≤10 μm ,5 μm≤d s ≤15 μm.可以看出,对于加工效率的考虑,可以促使最优填充间距范围增大,与实际加工情形相符.5 结 论1)建立了包含光斑直径和填充间距两个变量的加工深度和粗糙度预测模型,可成功用于指导干气密封精密激光加工.2)实验表明,连续加工条件下,随着填充间距的增大,加工深度和粗糙度均呈显著降低趋势;调节光斑直径不能显著改变加工深度和粗糙度的大小.3)对比模拟数据和实验数据的匹配情况,研究了加工深度、粗糙度与光斑直径、填充间距的关系,误差原因主要在于数值模拟未能考虑熔融物扩散和激光加工失焦等因素.4)采用TOPSIS 综合评价方法,分别得到了是否考虑加工效率情况的最优参数选择区间,结果与实际符合良好.参考文献[1]柳季君.干气密封的工作机理及其典型结构[J ].化学工业与工程技术,2002,23(4):38-39.LIU J J .Mechanism and structure of dry gas seals [J ].Journal of Chemical Industry & Engineering ,2002,23(4):38-39.(inChinese )[2]王玉明,刘伟,刘莹.非接触式机械密封基础研究现状与展望[J ].液压气动与密封,2011,31(2):29-33.WANG Y M ,LIU W ,LIU Y .Current research and developing trends on non-contacting mechanical seals [J ].HydraulicsPneumatics & Seals ,2011,31(2):29-33.(in Chinese )[3]宋剑.干气密封摩擦振动瞬态分析及抑振研究[D ].兰州:兰州理工大学,2019:1-4.SONG J .Transient analysis and vibration suppression of dry gas seal friction [D ].Lanzhou :Lanzhou University of Technology ,2019:1-4.(in Chinese )[4]王衍,于雪梅,卢龙,等.非接触式机械密封表面开槽技术研究现状[J ].液压气动与密封,2016,36(11):1-6.WANG Y ,YU X M ,LU L ,et al .Current research on slotting technology of non-contact mechanical seal [J ].HydraulicsPneumatics & Seals ,2016,36(11):1-6.(in Chinese )[5]冯向忠,彭旭东.表面粗糙度对螺旋槽干式气体密封性能的影响[J ].润滑与密封,2006,31(1):20-22.FENG X Z ,PENG X D .Effect of surface roughness on performance of a spiral groove gas seal [J ].LubricationEngineering ,2006,31(1):20-22.(in Chinese )[6]毛文元,宋鹏云,邓强国,等.机械密封流体动压槽加工工艺技术研究进展[J ].润滑与密封,2017,42(11):124-136.MAO W Y ,SONG P Y ,DENG Q G ,et al .A review on the study (a )三元素决策得分(b )双元素决策得分图15 不同决策模型得分Fig.15 Scores of different decision models149湖南大学学报(自然科学版)2023 年of the groove etched process for the hydrodynamic mechanicalseals[J].Lubrication Engineering,2017,42(11):124-136.(inChinese)[7]彭旭东,李纪云,盛颂恩,等.表面粗糙度对螺旋槽干式气体端面密封性能预测与结构优化的影响[J].摩擦学学报,2007,27(6):567-572.PENG X D,LI J Y,SHENG S E,et al.Effect of surface roughnesson performance prediction and geometric optimization of a spiral-groove face seal[J].Tribology,2007,27(6):567-572.(inChinese)[8]毛文元,宋鹏云,邓强国,等.螺旋槽底表面粗糙度对干气密封性能的影响[J].润滑与密封,2017,42(1):27-33.MAO W Y,SONG P Y,DENG Q G,et al.Influence of surfaceroughness of spiral groove bottom on dry gas seal performance[J].Lubrication Engineering,2017,42(1):27-33.(in Chinese)[9]李凯峰,孙首群,周冰旭.轴表面粗糙度以及温度对唇形油封密封性能的影响[J].流体机械,2022,50(3):26-33.LI K F,SUN S Q,ZHOU B X.Effects of shaft surface roughnessand temperature on sealing performance of lip oil seal[J].FluidMachinery,2022,50(3):26-33.(in Chinese)[10]ETSION I,BURSTEIN L.A model for mechanical seals with regular microsurface structure[J].Tribology Transactions,1996,39(3):677-683.[11]ETSION I,KLIGERMAN Y,HALPERIN G.Analytical and experimental investigation of laser-textured mechanical seal faces[J].Tribology Transactions,1999,42(3):511-516.[12]CHICHKOV B N,MOMMA C,NOLTE S,et al.Femtosecond,picosecond and nanosecond laser ablation of solids[J].AppliedPhysics A,1996,63(2):109-115.[13]盖晓晨.飞秒激光微加工的系统建立及工艺研究[D].哈尔滨:哈尔滨工业大学,2013:34-46.GAI X C.Research on experimental system and technique offemtosecond laser micromachining[D].Harbin:Harbin Instituteof Technology,2013:34-46.(in Chinese)[14]毛文元,宋鹏云,邓强国,等.干气密封螺旋槽的激光加工工艺研究[J].工程科学与技术,2018,50(5):253-262.MAO W Y,SONG P Y,DENG Q G,et al.Research on laserprocessing technology of spiral groove for dry gas seal[J].Advanced Engineering Sciences,2018,50(5):253-262.(inChinese)[15]毛文元,宋鹏云,邓强国,等.干气密封螺旋槽激光加工工艺的ACE法优化[J].工程科学与技术,2021,53(2):195-202.MAO W Y,SONG P Y,DENG Q G,et al.Optimization of laserprocessing technology for dry gas seal spiral groove based on ACEmethod[J].Advanced Engineering Sciences,2021,53(2):195-202.(in Chinese)[16]廖月明,周锦进.激光诱导电化学技术的理论与实践[J].电加工,1998(6):9-13.LIAO Y M,ZHOU J J. The theory and practice of laser inducedelectrochemistry technology[J]. Electromachining & Mould,1998(6):9-13.(in Chinese)[17]王衍,王英尧,肖喻丰,等.基于有序造型设计的干气密封超快激光精密加工[J].材料导报,2022,36(5):44-52.WANG Y,WANG Y Y,XIAO Y F,et al.Ultrafast laser precisionmachining of dry gas seal based on ordered texture design[J].Materials Reports,2022,36(5):44-52.(in Chinese)[18]许晨辉,徐锋,施莉莉,等.基于纳秒激光加工技术的表面织构工艺参数研究[J].机械制造与自动化,2019,48(6):11-13.XU C H,XU F,SHI L L,et al.Research on laser surfacetexturing parameters based on nanosecond laser processingtechnology[J].Machine Building & Automation,2019,48(6):11-13.(in Chinese)150。
Inverted Mass Hierarchy from Scaling in the Neutrino Mass Matrix Low and High Energy Phenom
Maxபைடு நூலகம்Planck–Institut f¨ ur Kernphysik, Postfach 10 39 80, D–69029 Heidelberg, Germany
b
a
Department of Physics and Maryland Center for Fundamental Physics, University of Maryland, College Park, MD–20742, USA
There are three possibilities and the only one phenomenologically allowed is when β = µ and γ = τ . We shall call this case scaling henceforth. The resulting mass matrix reads
∗
email: alexander.blum@mpi-hd.mpg.de email: rmohapat@ ‡ email: werner.rodejohann@mpi-hd.mpg.de
†
1
Introduction
Observed lepton mixings are consequences of a non-trivial structure of the neutrino mass matrix Mν . This symmetric matrix for Majorana neutrinos (having entries mαβ with α, β = e, µ, τ ) is in the charged lepton basis diagonalized by the Pontecorvo-Maki-NakagawaSakata (PMNS) neutrino mixing matrix U . The very different structure of U compared to the quark sector for all possible neutrino mass orderings is indicative of an unexpected texture of the mass matrix, and could hold important clues to our understanding of the physics of fundamental constituents of matter. To unravel this new physics, various Ans¨ atze for Mν have been made in the literature [1] and their associated symmetries have been sought after. One particular proposal, recently proposed by two of us (R.N.M. and W.R.), on which we will focus in this note, is called “scaling” [2]. The scaling hypothesis demands m is independent of the flavor α: that the ratio mαβ αγ mµβ mτ β meβ = = = c for fixed β and γ . meγ mµγ mτ γ (1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :n l i n /0502036v 1 [n l i n .C D ] 17 F eb 2005Under consideration for publication in J.Fluid Mech.1Very fine structures in scalar mixingBy J.S C H U M A C H E R 1,K.R.S R E E N I V A S A N 2A N D P.K.Y E U N G 31Fachbereich Physik,Philipps-Universit¨a t,D-35032Marburg,Germany 2International Centre for Theoretical Physics,34014Trieste,Italy 3School of Aerospace Engineering,Georgia Institute of Technology,Atlanta,GA 30332,USA (Received 4February 2008)We explore very fine scales of scalar dissipation in turbulent mixing,below Kolmogorov and around Batchelor scales,by performing direct numerical simulations at much finer grid resolution than is usually adopted in the past.We consider the resolution in terms of a local,fluctuating Batchelor scale and study the effects on the tails of the probability density function and multifractal properties of the scalar dissipation.The origin and importance of these very fine-scale fluctuations are discussed.One conclusion is that they are unlikely to be related to the most intense dissipation events.η≡(ν3/ηB =Sc ;here,23 i,j =1 ∂u i∂x i 2,(1.1)where u i (x ,t )is the velocity fluctuation in the direction i .In simulations of a fixed size,in which the advection diffusion equation and the Navier-Stokes equations are simulta-neously solved,the largest scale has traditionally been maximized by resolving no more than2J.Schumacher,K.R.Sreenivasan and P.K.YeungFigure1.(a)Energy spectrum in the far-dissipation range for runs with N=128and N=512, as indicated in the legend.In(b)we havefitted the data by E(˜k)∼˜kαexp(−c˜k)where˜k=k ǫis therefore not adequate for quantifying small-scale characteristics(Grant,Stewart& Moilliet1962),it has been clear that,locally,length scales smaller thanSc, it becomes similarly apparent that the existence of very small values ofηmay lead toηB values that are much smaller than the average value2N/3 be truncated(Patterson&Orszag1971).Specifically,this removes double and triple aliases in three dimensions.The usual resolution criterion is expressed as a number for k mηB≥1.5.(2.1) A proper resolution of the smallest scale requires that the global minimum ofηB be resolved by the grid which can be written asmin x,t[ηB(x,t)]Very fine structures in scalar mixing 3R λ=η8.3933.5633.56k m ηB /∆1/222 θ2 1/2 2.57 2.57 1.91Table 1.Parameters of the numerical simulations.∆is the (equidistant)grid spacing.The integral length scale for the velocity field is L u =π/(2θ2) ∞0d kE θ(k )/k ;here E (k )and E θ(k )are the spectral densities of the velocity and scalar fields,respectively,θ2that of the passive scalar.T av /T E is the averaging time in units of the large scale eddy turnover time T E =3ǫ.ηB4√2N/3.It is apparent that the criterion(2.2)is stronger.Our simulation will satisfy (2.2)and its results will be compared with data from those with nominal grid resolution.Unfortunately,the demands of this fine resolution restrict us to rather low values of the Reynolds number (R λ≤24,see table 1for details).This necessitates that most of our flow scales are in the viscous range of turbulence.Figure 1(a)shows the energy spectrum for R λ=10,evaluated with two resolutions,N =128and 512.It is seen that the noise floor is reached some 30orders of magnitude below the peak signal.In figure 1(b),we verify that the energy spectrum in the far-dissipation range falls offas E (˜k)∼˜k αexp(−c ˜k )with ˜k =k ∂x j 2,(3.1)appear as filamented structures in a planar cut.This is especially highlighted in the three-dimensional rendering of figure 3which shows that very intense parts of scalar dissipation rate appear as sheets.Box counting of such events confirms a dimension close to 2.While no immediately discernible differences are apparent between the two scalar fields obtained with conventional and the present ultra-fine resolution (see the two upper panels of figure 2),the differences in ǫθcan be detected more easily at several positions.This is seen quantitatively in figure 4,which shows that the resolution matters far away4J.Schumacher,K.R.Sreenivasan and P.K.YeungFigure2.A slice in the(x-z)plane of the scalarfield(upper row)and the corresponding scalar dissipationfield(lower row in logarithmic units,black for maximum and white for minimum) at Sc=32and Rλ=10.Left column:low resolution case with N=128.Right column:high resolution case with N=512.A quarter of the plane is shown with an area of131ηB. from the mean,or for the tails of the probability density function(PDF)ofǫθ.For ǫθ≪ǫθ>20)are also apparent.An analytical result for the tails of p(ǫθ)exists for P e→∞in a smooth white-in-timefling the Lagrangian approach,Chertkov,Falkovich&Kolokolov(1998)and Gamba&Kolokolov(1999)deduced the behaviour to be p(ǫθ)∼exp(−ǫ1/3θ).Ourfinding here seems to be consistent with this result though our data are in the Eulerian frame.Another result that emphasizes the presence of veryfine scales is shown in the left panel offigure5which plots,from three well-resolved simulations,the PDF of the local Batchelor scaleηB(x)=η(x)/√ηB is indicated for each Sc by a vertical dashed line.It is clear that scales substantially smaller thanVeryfine structures in scalar mixing5Figure3.Isosurfaces of the scalar dissipationfield for Rλ=24and Sc=32.The level is z≡ǫθ/ǫθfor N=128and N=512at Sc=32.The outer panel shows the PDF in log-log scales while the inset shows a log-linear plot.The predicted tail behavior for a smooth white-in-timeflow in the limit of P e→∞(Chertkov et al.1998)is indicated in the inset.For the latterfit we included only the data with z=ǫθ/log iµq i(r)q−1/ǫθ,Bi(r)6J.Schumacher,K.R.Sreenivasan and P.K.YeungFigure5.Left:Probability density function(PDF)of localfluctuations of the Batchelor scale in the mixing problem.The Taylor microscale Reynolds number is10and the Schmidt numbers are2,8,and32.The computational domain is512∆on the side,where∆is the grid spacing. The vertical dashed lines close to the maximum of each PDF indicates the average Batchelor scaleη,both these parameters collapse for the two Reynolds numbers.Differences for q<0are readily apparent.This part of the D q curve is dominated by low magnitudes of scalar dissipation.Clear differences are visible in the spatial distri-bution of regions of scalar dissipation below a certain small threshold value for the two runs(compare left and right panels).D q(q)for q>0also shows differences,with the inadequately resolved data slightly underestimating the peak dissipation rger effects of inadequate resolution correspond to low amplitude regions rather than to high amplitude regions.They can be identified with wavenumbers k>k∗where k∗is the wavenumber at which the scalar dissipation spectrumǫθ(k)=2κk2Eθ(k)peaks.It is not surprising that poor resolution—which,in some sense,translates to increased noise—has a stronger effect on regions of lowǫθthan those of highǫθwhere the signal-to-noise ratio is effectively high.4.Scales of very high and very low scalar dissipationWe note that two different situations of large P e are of interest:(a)Sc=O(1)at high Reynolds number and(b)Sc≫1but at lower Reynolds numbers.In laboratory exper-iments dealing with liquidflows,the Reynolds numbers are moderate and the Schmidt numbers quite high(Sreenivasan1991;Buch&Dahm1996;Villermaux&Innocenti1999; Catrakis et al.2002).Most air experiments(Sreenivasan1991a;Mydlarski&Warhaft 1998)are at higher Reynolds number and Sc=O(1).Numerical simulations have consid-ered either moderately high Re and modest Sc(Vedula,Yeung&Fox2001;Watanabe& Gotoh2004)or low Re and large Sc(Yeung,Xu&Sreenivasan2002;Brethouwer,Hunt &Nieuwstadt2003;Schumacher&Sreenivasan2003;Yeung et al.2004).Our situation is neither(a)nor(b)exactly,and we may expect small-scale scalarfluctuations influenced by the forcing which arises from velocityfluctuations.Thefluctuations of the velocityfield around the Kolmogorov scale—in the intermediateVeryfine structures in scalar mixing7Figure6.Generalized dimensions D q of the scalar dissipationfield for nominal and ultra-fine resolutions.The values of D q,shown on the left panel,were obtained byfits in the range r∈[L/26,L/24]with L=2π.The right panels show(without any additional numerical smooth-ing)slices through a snapshot for the data setǫθ/√Sc which is smaller thanθ2 ν.(4.2) This connects directly the regions of high scalar dissipation to locations of large energydissipation rate,as anticipated in section1.Limitations of this expectation can be seen infigure7,which plots the joint PDF,p(ǫ,ǫθ).Large values ofǫare not necessarily connected to large values ofǫθ.The crossing point of the dotted lines which is marked as a black square indicates that an extreme event as given by(4.2)is not present.A second possibility is that the most intense scalar dissipation events are at scales in the viscous-convective range.Taking scalar incrementsδℓθover this range,i.e.η, one gets due to Batchelor(1959)the expression(θ(x+ℓ)−θ(x))2∼νǫlog ℓηB.(4.3)8J.Schumacher,K.R.Sreenivasan and P.K.YeungFigure7.Joint PDF p(z1,z2)with z1=ǫ/ǫθfor N=512.The contours are in equal increments of the logarithm to base10,decreasing from0.5in steps of−0.5.The crossing point of the dotted lines is the maximum ofǫθfollowing(4.2).The dashed line indicates the maximum if that maximum were to occur in the viscous-convective range.(a1,a2,a3)23%87%28%90%82%58%(a±i b,−2a)77%13%72%10%18%42%ǫθexceeds/falls below a threshold.The mean fraction of each of the possible eigenvalue solutions is given for two Reynolds numbers and a Schmidt number of32.λ1+λ2+λ3=0.δℓθ2ǫθ ηB)√ηBηB.The corresponding valueǫθ(ℓ∗),shown by the dashed line,remains below the dotted horizontal line given by(4.2).The related scale is larger than the Batchelor scale which eases somewhat the strong resolution requirement(2.2).Of particular interest is the nature of the velocityfield near the most intense or the least intense parts of the scalar dissipation.This was examined through the eigenvalue analysis of the velocity gradient at sites where z=ǫθ/κ/max(|γ|).The present data for all levels of z,some of which are reported in tableVeryfine structures in scalar mixing9 2,indicate that this is not so.Indeed,a broad range of compressive rates—not merely the maximal magnitudes—are associated with intense scalar dissipation.This is already apparent from the analysis of Ashurst et al.(1987)(see theirfigure9b which reports an isotropicflow for Sc=0.5).While the most compressive eigenvector was preferentially aligned with the direction scalar gradient,corresponding events of maximumǫθwere preferentially aligned at an angle of about20◦.We explicitly note that this is the Eulerian point of view,and that a Lagrangian analysis following incipient fronts to the stage of their maturity may yield a different result.5.DiscussionThe possibility that the resolution requirement could be more stringent than is conven-tionally believed has been discussed to some detail in Sreenivasan(2004),but the details outlined in the present paper have not been explored before.When there is a significant overlap of the intermediate dissipation with the viscous-convective range,extreme values of the scalar dissipation are determined by the roughest velocity increments of the iner-tial range of turbulence.An important example in which thesefine scales would make a difference is non-premixed turbulent combustion(Bilger2004).There,the scalar dis-sipation rate of the mixture fraction enters as a basic quantity,e.g.for the modelling of jet-diffusionflames.Chemical reactions take place at the stochiometric mixture fraction in sheets of sub-Kolmogorov thickness.One expects steep gradients across such layers and strongly varying scalar dissipation.These variations are not captured in theflamelet equations where only the statistical mean enters the expansion parameter(Peters2000).A broad example where resolution effects can be important is the multifractal scaling ofǫandǫθ.The spiky structures in space and time,which are most prominent in the dissipative scales,are thought to affect appropriate turbulentfield even for scales larger thanηorηB,as appropriate(Frisch1995).To summarize,the veryfine scalarfilaments that were resolved here do not seem to be associated with the most intense scalar dissipation.The small-scale stirring in the flow seems to interrupt a further steepening process which is known as the formation of mature fronts.Similarfindings were made for two-dimensional turblence at Sc=1 (Celani et al.2001).Clearly,the Reynolds number of the advectingflow has an impact on this issue simply because the intermediate dissipation range might“overshadow”the viscous-convective range completely for sufficiently large Rλ.A more conclusive study of this issue will require higher Reynolds numbers and will be part of future work. Computations were carried out using the NPACI resources provided by the San Diego Supercomputer Center and on the J¨u lich Multiprocessor(JUMP)IBM cluster at the John von Neumann-Institute for Computing,J¨u lich.Special thanks go to Herwig Zilken (J¨u lich)for his help withfigure3.PKY and KRS acknowledge support by the US National Science Foundation and JS from the Deutsche Forschungsgemeinschaft.REFERENCESAshurst,W.T.,Kerstein,A.R.,Kerr,R.M.&Gibson,C.H.1987Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence.Phys.Fluids 30,2343-2353.Batchelor,G.K.1959Small scale variation of convected quantities like temperature in a turbulentfluid.J.Fluid Mech.5,113-133.Bilger,R.W.2004Some aspects of scalar dissipation.Flow bust.72,93-114.10J.Schumacher,K.R.Sreenivasan and P.K.YeungBrethouwer,G.,Hunt,J.C.R.&Nieuwstadt,F.T.M.2003Micro-structure and La-grangian statistics of the scalarfield with a mean gradient in isotropic turbulence,J.Fluid Mech.474,193-225.Buch,K.A.&Dahm,W.A.1996Experimental study of thefine-scale structure of conserved scalar mixing in turbulent shearflows.Part1.Sc≫1,J.Fluid Mech.317,21-71. Catrakis,H.J.,Aguirre,R.C.,Ruiz-Plancarte,J.,Thayne,R.D.,McDonald,B.A.&Hearn,J.W.2002Large-scale dynamics in turbulent mixing and the three-dimensional space-time behaviour of outerfluid interfaces.J.Fluid Mech.471,381-408.Celani,A.,Lanotte,A.,Mazzino,A.&Vergassola,M.2001Fronts in scalar turbulence.Phys.Fluids13,1768-1783.Chen,S.,Doolen,G.,Herring,J.R.,Kraichnan,R.H.,Orszag,S.A.&She,Z.-S.1993Far-dissipation range of turbulence.Phys.Rev.Lett.70,3051-3054.Chertkov,M.,F alkovich,G.&Kolokolov,I.1998Intermittent dissipation of a passive scalar in turbulence.Phys.Rev.Lett.80,2121-2124.Frisch,U.&Vergassola,M.1991A prediction of the multifractal model:the intermediate dissipation range.Europhys.Lett.14,439-444.Frisch,U.1995Turbulence,Cambridge:Cambridge University Press.Gamba, A.&Kolokolov,I.1999Dissipation statistics of a passive scalar in a multi-dimensional smoothflow.J.Stat.Phys.94,759-777.Grant,H.L.,Stewart,R.W.&Moilliet,A.1962Turbulence spectra from a tidal channel.J.Fluid.Mech.12241-268.Hentschel,H.G.E.&Procaccia,I.1983The infinite number of generalized dimensions of fractals and strange attractors.Physica D8,435-444.Mydlarski,L.&Warhaft,Z.1998Passive scalar statistics in high-Peclet-number grid tur-bulence.J.Fluid Mech.358,135-175.Patterson,G.S.&Orszag,S.A.1971Spectral calculations of isotropic turbulence:efficient removal of aliasing interactions.Phys.Fluids14,2538-2541.Peters,N.2000Turbulent Combustion,Cambridge:Cambridge University Press. Schumacher,J.&Sreenivasan,K.R.2003Geometric features of the mixing of passive scalars at high Schmidt numbers.Phys.Rev.Lett.91,174501(4pages).Sreenivasan,K.R.&Meneveau,C.1988Singularities of the equations of motion.Phys.Rev.A386287-6295.Sreenivasan,K.R.1991Fractals and multifractals influid turbulence.Annu.Rev.Fluid Mech.23,539-600.Sreenivasan,K.R.1991a On local isotropy of passive scalars in turbulent shearflows.Proc.Roy.Soc.A434,165-182.Sreenivasan,K.R.2004Possible effects of small-scale intermittency in turbulent reacting flows.Flow bust.72,115-141.Vedula,P.,Yeung,P.K.&Fox,R.O.2001Dynamics of scalar dissipation in isotropic turbulence:a numerical and modelling study.J.Fluid Mech.433,29-60.Villermaux,E.&Innocenti,C.1999On the geometry of turbulent mixing.J.Fluid Mech.393,123-148.Watanabe,T.&Gotoh,T.2004Statistics of passive scalar in homogeneous turbulence.New J.Phys.6,40(36pages).Yeung,P.K.,Xu,S.&Sreenivasan,K.R.2002Schmidt number effects on turbulent transport with uniform mean scalar gradient.Phys.Fluids14,4178-4191.Yeung,P.K.,Xu,S.,Donzis, D.A.&Sreenivasan,K.R.2004Simulations of three-dimensional turbulent mixing at Schmidt numbers of the order1000.Flow bust.72,333-347.。