高二数学第一学期期中考试试卷
广东省深圳市深圳中学2023-2024学年高二上学期期中数学试题及答案
试卷类型:A深圳中学2023-2024学年度第一学期期中考试试题考试时长:120分钟注意事项:答案写在答题卡指定的位置上,写在试题卷上无效。
选择题作答必须用2B 铅笔,修改时用橡皮擦干净。
一、单项选择题(每小题只有一个答案符合题意,共8小题,每小题5分,共40分卷面总分:150分)1.在等差数列{}n a 中,4820a a +=,712a =,则4a =( ) A .4B .5C .6D .82.在等比数列{}n a 中,若52a =,387a a a =,则{}n a 的公比q =( ) AB .2C.D .43.已知两条直线1l :350x y +−=和2l :0x ay −=相互垂直,则a =( ) A .13B .13−C .3−D .34.已知椭圆C 的一个焦点为(1,0,且过点(,则椭圆C 的标准方程为( )A .22123x y +=B .22143x y +=C .22132x y +=D .22134x y +=5.在等比数列{}n a 中,24334a a a =,且652a a =,则{}n a 的前6项和为( ) A .22B .24C .21D .276.已知F 是双曲线C :2213x y −=的一个焦点,点P 在C 的渐近线上,O 是坐标原点,2OF PF =,则△OPF 的面积为( ) A .1BCD .127.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别为()1,0F c −、()2,0F c ,若椭圆C 上存在一点P ,使得12PF F ∆的内切圆的半径为2c,则椭圆C 的离心率的取值范围是( ) A .30,5B .40,5C .3,15D .4,158.已知双曲线C :22221x y a b−=(0a >,0b >),点B 的坐标为()0,b ,若C 上的任意一点P 都满足PB b ≥,则C 的离心率取值范围是( )A .B .+∞C .(D .)+∞二、多项选择题(共4小题,每小题均有多个选项符合题意,全对得5分,错选得0分,漏选得2分,共20分)9.已知等差数列{}n a 的前n 项和为n S ,51a =,则( ) A .222a a +=B .371a a =C .99S =D .1010S =10,已知圆M :22430x y x +−+=,则下列说法正确的是( ) A .点()4,0在随M 内 B .圆M 关于320x y +−=对称CD .直线0x −=与圆M 相切11.已知双曲线22221x y a b−=(0a >,0b >)的右焦点为F ,过点F 且斜率为k (0k ≠)的直线l 交双曲线于A 、B 两点,线段AB 的中垂线交x 轴于点D .若AB ≥( )A .23BCD 12.若数列{}n a 满足121a a ==,12n n n a a a −−=+(3n ≥),则称该数列为斐波那契数列.如图所示的“黄金螺旋线”是根据斐波那契数列画出来的曲线.图中的长方形由以斐波那契数为边长的正方形拼接而成,在每个正方形中作圆心角为90°的扇形,连接起来的曲线就是“黄金螺旋线”.记以n a 为边长的正方形中的扇形面积为n b ,数列{}n b 的前n 项和为n S .则下列说法正确的是( ):A .821a =B .2023a 是奇数C .24620222023a a a a a ++++=D .2023202320244s a a π=⋅三、填空题(共4小题,每空5分,共20分)13.数列{}n a 的通项公式n a =,若9n S =,则n = .14.已知直线l :y x =被圆C :()()22231x y r −+−=(0r >)截得的弦长为2,则r = . 15.已知椭圆C :22221x y a b+=(0a b >>)的左、右两焦点分别是1F 、2F ,其中122F F c =.椭圆C 上存在一点A ,满足2124AF AF c ⋅=,则椭圆的离心率的取值范围是 .16.已知A ,B 分别是椭圆E :22143x y +=的左、右顶点,C ,D 是椭圆上异于A ,B 的两点,若直线AC ,BD的斜率1k ,2k 满足122k k =,则直线CD 过定点,定点坐标为 .四、解答题(共6小题,17题10分,18-22题12分)17.在平面直角坐标系xOy 中,圆1C :()2214x y ++=与圆2C :()22310x y +−=相交于P ,Q 两点. (1)求线段PQ 的长;(2)记圆1C 与x 轴正半轴交于点M ,点N 在圆2C 上滑动,求2MNC ∆面积最大时的直线MN 的方程. 18.已知等差数列{}n a 的前n 项和为n S ,13a =,{}n b 为等比数列,且11b =,0n b >,2210b S +=,53253S b a =+,*n N ∈. (1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n T .19.已知半径为3的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线4370x y −+=相切. (1)求圆的方程;(2)设直线420ax y a −+−=与圆相交于A ,B 两点,求实数a 的取值范围;(3)在(2)的条件下,是否存在实数a ,使得弦AB 的垂直平分线l 过点()3,1P −?若存在,求出实数a 的值;若不存在,请说明理由.20.在平面直角坐标系xOy 中,圆1O :()2221x y ++=,圆2O :()2221x y −+=,点()1,0H ,一动圆M 与圆1O 内切、与圆2O 外切. (1)求动圆圆心M 的轨迹方程E ;(2)是否存在一条过定点的动直线l ,与(1)中的轨迹E 交于A 、B 两点,并且满足HA ⊥HB ?若存在,请找出定点;若不存在,请说明理由.21.已知等差数列{}n a 的前n 项和为n S ,且44a =,数列{}n b 的前n 项之积为n T ,113b =,且()n n S T =.(1)求n T ; (2令nn na cb =,求正整数n ,使得“11n n n c c c −+=+”与“n c 是1n c −,1n c +的等差中项”同时成立; (3)设27n n d a =+,()()112nn nn n d e d d +−+=,求数列{}n e 的前2n 项和2n Y .22.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点为1F 、2F,12F F =P 为椭圆C 上异于长轴端点的一个动点,O 为坐标原点,直线1PF ,PO ,2PF 分别与椭圆C 交于另外三点M ,Q ,N ,当P 为椭圆上顶点时,有112PF F M =.(1)求椭圆C 的标准方程; (2)求12POF POF PQMPQNs s s s ∆∆∆∆+的最大值。
江西省九江第一中学2023-2024学年高二上学期期中考试数学试卷
江西省九江第一中学2023-2024学年高二上学期期中考试数
学试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
二、多选题
A .点P 到平面11A BC 的距离为定值
B .三棱锥1D BP
C -的体积为定值
C .异面直线1C P 与直线CB
D .直线1C P 与平面1BDC 10.过双曲线22
:145
x y C -=的右焦点作直线A .存在四条直线l ,使|B .存在直线l ,使弦AB C .与该双曲线有相同渐近线且过点D .若A ,B 都在该双曲线的右支上,则直线55,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
11.给出下列命题正确的是(A .直线l 的方向向量为a
行
五、解答题
DE平面PBC
(1)求证://
(2)求直线PG与平面PAD
:C y 20.已知抛物线2
焦点F的距离为5. (1)求抛物线C的方程;
(1)求证:A M '⊥平面MBCN ;
(2)在线段BC 上是否存在点D ,使平面A ND '与平面A MB '在,求BD DC
的值;若不存在,说明理由.
(。
高二(上学期)期中考试数学试卷及答案
高二(上学期)期中考试数学试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.一直线过点(0,3),(3,0)-,则此直线的倾斜角为( )A .45°B .135°C .-45°D .-135°2.已知{}n a 是公差为d 的等差数列,n S 为其前n 项和.若3133S a =+,则d =( )A .2-B .1-C .1D .23.已知ABC 的顶点B ,C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC 的周长是( )A .B .6C .4D .4.设a R ∈,若直线10ax y +-=与直线10x ay ++=平行,则a 的值是( )A .1B .1,1-C .0D .0,15.已知直线:sin cos 1l x a y a -=,其中a 为常数且[0,2)a π∈.有以下结论:①直线l 的倾斜角为a ;①无论a 为何值,直线l 总与一定圆相切;①若直线l 与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1;①若(,)p x y 是直线l 上的任意一点,则221x y +≥.其中正确结论的个数为( )A .1B .2C .3D .46.已知双曲线2222:1(0,0)x y C a b a b -=>>满足b a =,且与椭圆221123x y +=有公共焦点,则双曲线C 的方程为( )A .22145x y -= B .221810x y -= C .22154x y -= D .22143x y -= 7.在平面直角坐标系xoy 中,已知点()3,1P -在圆222:22150C x y mx y m +--+-=内,动直线AB 过点P 且交圆C 于,A B 两点,若ABC 的面积的最大值为8,则实数m 的取值范围是( )A .(3-+B .[]1,5C .][(35,3-⋃+D .][(),15,∞∞-⋃+8.已知A ,B 为圆22:2430C x y x y +--+=上的两个动点,P 为弦AB 的中点,若90ACB ∠=︒,则点P 的轨迹方程为()A .221(1)(2)4x y -+-=B .22(1)(2)1x y -+-=C .221(1)(2)4x y +++=D .22(1)(2)1x y +++=二、多选题9.已知直线30ax y a -+-=在两坐标轴上的截距相等,则实数=a ( )A .1B .1-C .3D .3-10.设抛物线24y x =,F 为其焦点,P 为抛物线上一点.则下列结论正确的是( )A .若()1,2P ,则2PF =B .若P 点到焦点的距离为3,则P 的坐标为(2,.C .若()2,3A ,则PA PF +D .过焦点F 做斜率为2的直线与抛物线相交于A ,B 两点,则6AB =11.如图,椭圆221:13+=x C y 和222:13y C x +=的交点依次为,,,.A B C D 则下列说法正确的是( )A .四边形ABCD 为正方形B .阴影部分的面积大于3.C .阴影部分的面积小于4.D .四边形ABCD 的外接圆方程为222x y +=12.已知圆222:22(1)2230()C x y mx m y m m m R ++-+++-=∈上存在两个点到点(0,1)A -的距离为4,则m 的可能的值为A .1B .1-C .3-D .5-三、填空题13.设()1,0F c -,()2,0F c 分别为椭圆()222210x y a b a b +=>>的左,右焦点,若直线22a x c=上存在点P ,使22PF c =,则椭圆离心率的取值范围为______.14.已知在数列{}n a 中,12a =,111n na a +=-,*n N ∈,则2021a =________.15.已知焦点为1F ,2F 的双曲线C P 为C 上一点,且满足2123PF PF =,若12PF F △的面积为C 的实轴长为________四、双空题16.抛物线2:2C y x =的焦点坐标是______;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=______.五、解答题17.已知{n a }为等差数列,Sn 为其前n 项和,若1356,0a a a =+=.(1)求数列{n a }的通项公式;(2)求Sn .18.已知A (4, 9), B (6, 3)两点,求以线段AB 为直径的圆的方程.19.已知直线10:4l mx y ++=和直线()()2:2100,0l m x ny m n +-+=>>互相垂直,求m n 的取值范围. 20.已知①ABC 的顶点A (-1,5),B (-1,-1),C (3,7).(1)求边BC 上的高AD 所在直线的方程;(2)求边BC 上的中线AM 所在直线的方程;(3)求①ABC 的面积.21.已知抛物线2:2(0)C y px p =>的焦点为F ,点M 在抛物线C 上,且M 点的纵坐标为4,52p MF =.(1)求抛物线C 的方程;(2)过点(0,4)Q -作直线交抛物线C 于,A B 两点,试问抛物线C 上是否存在定点N 使得直线NA 与NB 的斜率互为倒数?若存在求出点N 的坐标,若不存在说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,以椭圆C 的四个顶点为顶点的四边形面积为 (1)求椭圆C 的方程;(2)若椭圆C 的左顶点为A ,右焦点是F .点P 是椭圆C 上的点(异于左、右顶点),M 为线段PA 的中点,过M 作直线PF 的平行线l .延长PF 交椭圆C 于Q ,连接AQ 交直线l 于点B .①求证:直线l 过定点.①是否存在定点1D 、2D ,使得12BD BD +为定值,若存在,求出1D 、2D 的坐标;若不存在说明理由.参考答案:1.A【分析】根据斜率公式求得直线的斜率,得到tan 1α=,即可求解.【详解】设直线的倾斜角为α, 由斜率公式,可得03130k -==--,即tan 1α=, 因为0180α≤<,所以45α=,即此直线的倾斜角为45.故选:A.2.C【解析】根据{}n a 是公差为d 的等差数列,且3133S a =+,利用等差数列的前n 项和公式求解.【详解】因为{}n a 是公差为d 的等差数列,且3133S a =+,所以113333a d a +=+,解得1d =,故选:C3.D【分析】先由椭圆方程求出a =.【详解】由椭圆2213x y +=,得:a =由题意可得ABC 的周长为:221224AC CF F B BF a a a +++=+==.故选:D.4.A【分析】根据两直线平行则两直线斜率相等截距不相等可得答案.【详解】0a =时,两直线为10y -=、直线10x +=,显然不平行;所以0a ≠,两直线为1y ax =-+,1(1)=-+y x a, 所以1a a -=-,且11a -≠, 解得1a =.故选:A.5.C【分析】根据直线的性质及直线与圆的关系对选项一一判断即可.【详解】对于①,直线l 的倾斜角的取值范围为[0,)π,与角a 的不同,故①错误;对于①,(0,0)1=,则无论a 为何值,直线l 总与221x y +=相切,故①正确;对于①,若直线l 与两坐标轴都相交,则截距分别为1sin a ,1cos a -,则与两坐标轴围成的三角形的面积为111112sin cos sin 2a a a⋅=≥,故①正确; 对于①,由①知直线l 总与221x y +=相切,则直线l 上的点到原点的距离大于等于1,即221x y +≥,故①正确;综上所述,①①①共3个正确;故选:C6.A【分析】根据题意,结合椭圆与双曲线的几何性质,列出方程,求得,a b 的值,即可求解. 【详解】由椭圆的标准方程为221123x y +=,可得21239c =-=,即3c =, 因为双曲线C 的焦点与椭圆221123x y +=的焦点相同,所以双曲线C 中,半焦距3c =,又因为双曲线2222:1(0,0)x y C a b a b -=>>满足b a =,即b =,又由222+=a b c ,即229a ⎫⎪⎪⎝⎭+=,解得24a =,可得25b =, 所以双曲线C 的方程为22145x y -=. 故选:A .7.C【分析】由题知圆心为(),1,4C m r =,进而根据三角形面积公式得ABC 面积最大时,AB =,圆心C 到直线AB 的距离为4PC ≤<即可得答案.【详解】解:圆222:22150C x y mx y m +--+-=,即圆()()22:116C x m y -+-=,即圆心为(),1,4C m r =, 所以ABC 的面积为21sin 8sin 82ABC S r ACB ACB =∠=∠≤△,当且仅当2ACB π∠=,此时ABC 为等腰直角三角形,AB =C 到直线AB 的距离为= 因为点()3,1P -在圆222:22150C x y mx y m +--+-=内,所以4PC ≤<,即4<,所以,28(3)416m ≤-+<,解得31m -≤或53m ≤<+所以,实数m 的取值范围是][(35,3-⋃+故选:C8.B【分析】在直角三角形中利用几何关系即可获解【详解】圆C 即22(1)(2)2x y -+-=,半径r =因为CA CB ⊥,所以2AB ==又P 是AB 的中点,所以112CP AB == 所以点P 的轨迹方程为22(1)(2)1x y -+-=故选:B9.BC【分析】显然0a ≠,再分30a -=与30a -≠两种情况讨论,若30a -≠,求得直线在,x y 轴上的截距,即可得到方程,解得即可;【详解】解:依题意可知0a ≠,所以当30a -=,即3a =时,直线30ax y a -+-=化为30x y -=,此时直线在两坐标轴上的截距都为0,满足题意;当30a -≠,即3a ≠时,直线30ax y a -+-=在x 轴上的截距为3a a-,在y 轴上的截距为3a -,故33a a a -=-,解得1a =-; 综上所述,实数3a =或1a =-.故选:BC10.AC【分析】由抛物线的性质依次计算各选项所求,即可得出结果.【详解】抛物线24y x =,()1,0F .对于A ,()1,2P ,2PF ,A 正确;对于B ,设(,P x ±,()22143x x -+=,2x =,P 的坐标为(2,±.B 错误;对于C,()min PA PF AF +==正确;对于D ,直线:22l y x =-,联立24y x =,得:2310x x -+=,3A B x x +=,2=5B A x x AB ++=,D 错误. 故选:AC.11.ABC【分析】根据曲线的对称性,可判定A 正确;联立方程组求得A 的坐标,求得ABCD 的面积为13S =,可判定B 正确;由直线1,1x y =±=±围成的正方形的面积可判定C 正确;由232OA =,得出圆的方程,可判定D 错误.【详解】由题意,椭圆221:13+=x C y 和222:13y C x +=,根据曲线的对称性, 可得四边形ABCD 为正方形,选项A 正确;联立方程组,求得A ,所以正方形ABCD 的面积为13S =, 所以阴影部分的面积大于3,选项B 正确:由直线1,1x y =±=±围成的正方形的面积为2=4S ,所以阴影部分的面积小于4,选项C 正确;由232OA =,所以四边形ABCD 的外接圆方程为2232x y +=,选项D 错误. 故选:ABC .12.ACD【解析】根据题意,圆()()222:12C x m y m ++-+=⎡⎤⎣⎦与圆()222:14A x y ++=相交,再由两圆圆心距大于两圆半径之差,小于两圆半径之和,列出不等式,解得即可.【详解】由题知,圆()()222:12C x m y m ++-+=⎡⎤⎣⎦与圆()222:14A x y ++=相交,所以,4242CA -<<+,即26,解得()()1,20,171m ∈--,即m 的值可以为:1或3-或5-.故选:ACD.【点睛】本题体现了转化的数学思想,解题的关键在于将问题转化为两圆相交,属于基础题. 13.0e <≤【分析】由题设易知222||a PF c c≥-,结合椭圆离心率的性质即可得离心率的取值范围. 【详解】由题设,222||2a PF c c c=≥-,则22223c e a =≤,而01e <<,所以0e <≤故答案为:0e <≤14.12##0.5 【分析】由递推关系依次求出数列的前几项,归纳出周期后可得结论.【详解】由题意12a =,211122a =-=,311112a =-=-,41121a =-=-, 所以数列{}n a 是周期数列,周期为3,所以202136732212a a a ⨯+===. 故答案为:12.15【分析】由2123PF PF =和双曲线定义可得12,46a PF a PF ==,再结合余弦定理和c e a ==122cos 3F PF ∠=,利用面积公式1212121||||sin 2PF F S PF PF F PF =∠=a =. 【详解】由题意,221123PF PF PF PF ∴=> 由双曲线定义可知,122PF PF a -=21,46a PF a PF ==∴222222221212122212||||||36164524cos 2||||4848PF PF F F a a c a c F PF PF PF a a +-+--∴∠===又122cos 3c e c F PF a ===∴∠=又1212(0,)sin F PF F PF π∠∈∴∠=122121211||||sin 2422PF F S PF PF F PF a =∠=⨯=221,a ∴=又0a a >∴=故双曲线C16. ()1,0##0.5,02⎛⎫ ⎪⎝⎭; 9. 【分析】由抛物线的解析式可知22p =,即可得出焦点坐标为1,02F ⎛⎫ ⎪⎝⎭;过A 、B 、P 作准线的垂线且分别交准线于点M 、N 、K ,根据抛物线的定义可知AM BN AF BF +=+,由梯形的中位线的性质得出()1942212AM BN PK +==+=,进而可求出AF BF +的结果. 【详解】解:由抛物线2:2C y x =,可知22p =,则122p =, 所以抛物线2:2C y x =的焦点坐标为1,02F ⎛⎫ ⎪⎝⎭, 如图,过点A 作AM 垂直于准线交准线于M ,过点B 作BN 垂直于准线交准线于N ,过点P 作PK 垂直于准线交准线于K ,由抛物线的定义可得AM BN AF BF +=+,再根据()4,1P 为线段AB 的中点,而四边形AMNB 为梯形, 由梯形的中位线可知()1942212AM BN PK +==+=, 则9AM BN +=,所以9AF BF +=. 故答案为:1,02⎛⎫ ⎪⎝⎭;9. 17.(1)an =8﹣2n ;(2)27n S n n =-+.【分析】(1)应用等差数列通项公式求基本量,进而写出通项公式; (2)由等差数列前n 项和公式求Sn . (1)设等差数列{an }的公差为d ,由a 1=6,a 3+a 5=0,则6+2d +6+4d =0,解得d =﹣2, 因此an =a 1+(n ﹣1)d =8﹣2n , 所以{an }的通项公式为an =8﹣2n . (2)由题意知:()21172n n n S na d n n -=+=-+,18.(x -5)2+(y -6)2=10【分析】根据题意,求得圆心和半径,即可直接写出圆的标准方程.【详解】因为线段AB 为直径,所以线段AB 的中点C 为该圆的圆心,即C (5, 6).又因为AB ,所以所求圆的半径r =2AB, 因此,所求圆的标准方程为(x -5)2+(y -6)2=10. 19.10,2⎛⎫ ⎪⎝⎭【分析】通过两直线垂直的充要条件得到22n m m =+,然后两边同时除以m ,使用不等式即可解决. 【详解】因为12l l ⊥,所以()()210m m n ++⨯-=,所以22n m m =+,因为0m >,所以2221m m m m n m +==+. 因为0m >,所以22m +>,所以11022m <<+,故m n 的取值范围为10,2⎛⎫ ⎪⎝⎭. 20.(1)x +2y -9=0 (2)4y x =-+ (3)12【分析】(1)求得BC k ,根据垂直关系可得12AD k =-,再根据点斜式求解高AD 所在直线的方程即可;(2)根据中点坐标公式,结合两点式方程求解即可;(3)根据两点式方程可得边BC 所在直线的方程,再根据点到线的距离公式可得点A 到直线BC 的距离,进而根据三角形的面积公式求解即可. (1) 因为7(1)23(1)BC k --==--,所以12AD k =-,从而边BC 上的高AD 所在直线的方程为()1512y x -=-+,即x +2y -9=0(2)因为M 是BC 的中点,所以M (1,3),从而边BC 上的中线AM 所在直线的方程为315311y x --=---,即4y x =-+ (3)由题意知,边BC 所在直线的方程为()()()()117131y x ----=----,即210,x y BC -+==所以点A 到直线BC 的距离h ==ABC 的面积1122BC h =⋅=.21.(1)24y x =(2)存在,()44,【分析】(1)利用抛物线的焦半径公式求得点M 的横坐标,进而求得p,可得答案;(2)根据题意可设直线方程,和抛物线方程联立,得到根与系数的关系式,利用直线NA 与NB 的斜率互为倒数列出等式,化简可得结论. (1)(1)0(,4)M x 设 则05||22p pMF x =+=, 02x p ∴=, 2416p ∴=,0,2p p >∴=,故C 的方程为:24y x = ;(2)假设存在定点N ,使得直线NA 与NB 的斜率互为倒数, 由题意可知,直线AB 的斜率存在,且不为零,(4)AB x m y =+设的方程为,2011220(,),(,),(,)4y A x y B x y N y ,()244x m y y x ⎧=+⎨=⎩由, 24160y my m --=得,所以{Δ>0y 1+y 2=4m y 1y 2=−16m , 即4m <- 或0m > ,01020102222222000012010212441444444NA NB y y y y y y y y k k y y y y y y y y y y x x ----∴⋅=⋅=⋅=⋅=++---- 2001212()16y y y y y y ∴+++=,200(416)160y m y ∴-+-=恒成立,则024160160y y -=⎧⎨-=⎩ ,04y ∴=, (4,4),N ∴存在定点使得直线NA 与NB 的斜率互为倒数. 22.(1)2211612x y +=;(2)(i )证明见解析;(ii )存在,且()13,0D -、()21,0D -.【分析】(1)根据已知条件得出关于a 、b 、c 的方程组,解出这三个量的值,可得出椭圆C 的方程; (2)(i )分析可知直线PQ 不与x 轴重合,设设直线PQ 的方程为2x my =+,设点()00,P x y 、()11,Q x y ,写出点M 的坐标,化简直线l 的方程,即可得出直线l 所过定点的坐标;(ii )点(),B x y ,写出点B 的坐标,利用相关点法求出点B 的轨迹方程,可知点B 的轨迹为椭圆,求出椭圆的两个焦点坐标,结合椭圆的定义可得出结论. (1)解:由题意可得222121222c a a b a b c ⎧=⎪⎪⎪⋅⋅=⎨⎪=+⎪⎪⎩42a b c =⎧⎪=⎨⎪=⎩ 因此,椭圆C 的方程为2211612x y +=. (2)解:(i )易知点()2,0F 、()4,0A -,若PQ 与x 轴重合,则P 或Q 与点A 重合,不合乎题意,设直线PQ 的方程为2x my =+,设点()00,P x y 、()11,Q x y ,点M 的坐标为004,22x y -⎛⎫⎪⎝⎭,直线MB 的方程为00422x y x m y -⎛⎫-=- ⎪⎝⎭且002x my =+, 所以,直线l 的方程为1x my =-,因此,直线l 过定点()1,0-. (ii )因为B 为AQ 的中点,则114,22x y B -⎛⎫ ⎪⎝⎭,且有221111612x y +=, 设点(),B x y ,则11422x x y y -⎧=⎪⎪⎨⎪=⎪⎩,可得11242x x y y =+⎧⎨=⎩, 所以,()()2224211612x y ++=,即()222143x y ++=,即点B 的轨迹方程为()222143x y ++=,因为椭圆22143x y +=的两个焦点坐标分别为()1,0-、()1,0, 椭圆()222143x y ++=可由椭圆22143x y +=向左平移2个单位得到, 故椭圆()222143x y ++=的两个焦点坐标别为()3,0-、()1,0-, 故存在定点()13,0D -、()21,0D -使得124BD BD +=为定值. 【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明; (2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点; (3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.。
2023-2024学年北京丰台区十二中高二(上)期中数学试题及答案
北京十二中2023-2024学年第一学期高二年级期中考试2023.11本试卷共4页,满分150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分选择题(共60分)一、选择题。
本题共12小题,每题5分,共60分。
在每题给的四个选项中,只有一项符合题目要求。
1.直线21y x =-+的一个方向向量是A.(1,2)- B.(2,1)- C.(1,2)D.(2,1)2.已知圆心为(1,2),且过原点的圆的方程为A.5)2()1(22=-+-y xB.5)2()1(22=-+-y x C.5)2()1(22=+++y x D.22(1)(2)5x y +++=3.正方体1111ABCD A B C D -中,E 为正方形1111A B C D 的中心,1AE AA xAB y AD =++,则x ,y 的值是A.1x =,1y = B.12x =,1y = C.1x =,12y =D.12x =,12y =4.如图,在长方体1111ABCD A B C D -中,设11AD AA ==,2AB =,则1BD AD ⋅等于A.1B.2C.3D.365.“1a =”是“直线(1)10ax a y +--=与直线(1)10a x ay -++=垂直”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.下面结论正确的个数是①已知,,a b c是不共面的三个向量,则c ,a c + ,a c - 能构成空间的一个基底;②任意向量,,a b c (0a ≠)满足a b a c ⋅=⋅ ,则b c = ;③已知向量(1,1,)a x = ,(3,,9)b x =- ,若a 与b共线,则3x =-.A.3B.2C.1D.07.已知圆C 的方程为22(3)(4)1x y -+-=,过直线l :3450x y +-=上任意一点作圆C 的切线,则切线长的最小值为A.4B.C.D.58.已知(2,3)A -,(3,2)B --,直线l 过点(1,1)P 且与射线AB 相交,则直线l 的斜率k 的取值范围是A.4k - 或15k -B.344k -C.145k -<-D.4k - 或51->k10.已知空间直角坐标系O xyz -中,(1,2,3)OA = ,(2,1,2)OB = ,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为A.131(,,)243B.11(,,1)22 C.44833(3,, D.333(,,)44212.在空间直角坐标系O xyz -中,若有且只有一个平面α,使点(2,2,2)A 到α的距离为1,且点(,0,0)B m 到α的距离为4,则m 的值为A.2B.1或3C.0或4D.2-2第二部分非选择题(共90分)二、填空题。
北京市2023-2024学年高二上学期期中数学试题含答案
北京市2023—2024学年第一学期期中阶段练习高二数学(答案在最后)2023.11班级____________姓名____________学号____________本试卷共3页,共150分.考试时长120分钟.考生务必将答案写在答题纸上,在试卷上作答无效.一、选择题:本大题共10道小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目的要求.把正确答案涂写在答题卡上相应的位置..................1.已知(1,3),(3,5)A B --,则直线AB 的斜率为()A.2 B.1C.12D.不存在【答案】A 【解析】【分析】由斜率公式,可求出直线AB 的斜率.【详解】由(1,3),(3,5)A B --,可得35213AB k --==--.故选:A.2.圆222430x y x y +-++=的圆心为().A.(1,2)-B.(1,2)- C.(2,4)- D.(2,4)-【答案】A 【解析】【分析】先将圆的一般方程化为标准方程,从而可求出其圆心坐标.【详解】由222430x y x y +-++=,得22(1)(2)2x y -++=,所以圆心为(1,2)-,故选:A3.一个椭圆的两个焦点分别是()13,0F -,()23,0F ,椭圆上的点P 到两焦点的距离之和等于8,则该椭圆的标准方程为()A.2216428x y += B.221167x y += C.221169x y += D.22143x y +=【答案】B 【解析】【分析】利用椭圆的定义求解即可.【详解】椭圆上的点P 到两焦点的距离之和等于8,故28,4a a ==,且()13,0F -,故2223,7c b a c ==-=,所以椭圆的标准方程为221167x y +=.故选:B4.任意的k ∈R ,直线13kx y k -+=恒过定点()A.()0,0 B.()0,1 C.()3,1 D.()2,1【答案】C 【解析】【分析】将直线方程整理成斜截式,即可得定点.【详解】因为13kx y k -+=,即()31y k x =-+,所以直线13kx y k -+=恒过定点()3,1.故选:C.5.已知圆221:1C x y +=与圆222:870C x y x +-+=,则圆1C 与圆2C 的位置关系是()A.相离B.相交C.内切D.外切【答案】D 【解析】【分析】求出两圆的圆心和半径,得到12124C C r r ==+,得到两圆外切.【详解】圆221:1C x y +=的圆心为()10,0C ,半径为11r =,圆()22222:87049C x y x x y +-+=⇒-+=,故圆心()24,0C ,半径为23r =,则12124C C r r ==+,所以圆1C 与圆2C 的位置关系是外切.故选:D6.过点1,22P ⎛⎫- ⎪⎝⎭的直线l 与圆2214x y +=有公共点,则直线l 的倾斜角取值范围是()A.π5π,26⎡⎤⎢⎥⎣⎦ B.2π,π3⎡⎫⎪⎢⎣⎭C.π22π,3⎡⎤⎢⎥⎣⎦D.5π,π6⎡⎫⎪⎢⎣⎭【答案】A 【解析】【分析】利用直线与圆的位置关系及倾斜角与斜率的关系计算即可.【详解】易知圆的半径为12,圆心为原点,当倾斜角为π2时,即直线l 方程为12x =-,此时直线l 与圆相切满足题意;当斜率存在时,不妨设直线l方程为122y k x ⎛⎫=++ ⎪⎝⎭,则圆心到其距离为12d =≤,解不等式得33k ≤-,所以直线l 的倾斜角取值范围为π5π,26⎡⎤⎢⎥⎣⎦故选:A7.“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】求出当12l l //时实数的值,再利用集合的包含关系判断可得出结论.【详解】当12l l //时,()34a a -=,即2340a a --=,解得1a =-或4.当1a =-时,直线1l 的方程为430x y -+=,直线2l 的方程为420x y -+=,此时12l l //;当4a =时,直线1l 的方程为304x y +-=,直线2l 的方程为20x y ++=,此时12l l //.因为{}1-{}1,4-,因此,“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行”的充分不必要条件.故选:A.8.如图,在平行六面体1111ABCD A B C D -中,12AA AD AB ===,2BAD π∠=,113BAA A AD π∠=∠=,则11AB AD ⋅=()A.12B.8C.6D.4【答案】B 【解析】【分析】根据空间向量加法的运算性质,结合空间向量数量积的运算性质和定义进行求解即可.【详解】()()21111111AB AD AB AA AD AA AB AD AB AA AD AA AA ⋅=+⋅+=⋅+⋅+⋅+ 211110222228,22AB AD ⇒⋅=+⨯⨯+⨯⨯+= 故选:B9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△ABC 的顶点()2,0A ,()1,2B ,且AC BC =,则△ABC 的欧拉线的方程为()A.240x y --=B.240x y +-=C.4210x y ++=D.2410x y -+=【答案】D 【解析】【分析】由题设条件求出AB 垂直平分线的方程,且△ABC 的外心、重心、垂心都在垂直平分线上,结合欧拉线的定义,即垂直平分线即为欧拉线.【详解】由题设,可得20212AB k -==--,且AB 中点为3(,1)2,∴AB 垂直平分线的斜率112AB k k =-=,故垂直平分线方程为131()12224x y x =-+=+,∵AC BC =,则△ABC 的外心、重心、垂心都在垂直平分线上,∴△ABC 的欧拉线的方程为2410x y -+=.故选:D10.曲线33:1C x y +=.给出下列结论:①曲线C 关于原点对称;②曲线C 上任意一点到原点的距离不小于1;③曲线C 只经过2个整点(即横、纵坐标均为整数的点).其中,所有正确结论的序号是A.①② B.②C.②③D.③【答案】C 【解析】【分析】将(),x y --代入,化简后可确定①的真假性.对x 分成0,0,01,1,1x x x x x <=<<=>等5种情况进行分类讨论,得出221x y +≥,由此判断曲线C 上任意一点到原点的距离不小于1.进而判断出②正确.对于③,首先求得曲线C 的两个整点()()0,1,1,0,然后证得其它点不是整点,由此判断出③正确.【详解】①,将(),x y --代入曲线33:1C x y +=,得331x y +=-,与原方程不相等,所以曲线C 不关于原点对称,故①错误.②,对于曲线33:1C x y +=,由于331y x =-,所以y =,所以对于任意一个x ,只有唯一确定的y和它对应.函数y =是单调递减函数.当0x =时,有唯一确定的1y =;当1x =时,有唯一确定的0y =.所以曲线C 过点()()0,1,1,0,这两点都在单位圆上,到原点的距离等于1.当0x <时,1y >,所以221x y +>>.当1x >时,0y <,所以221x y +>>.当01x <<时,01y <<,且()()()()223322221110x y x y x y x x y y -+=+-+=-+-<,所以221x y +>>.综上所述,曲线C 上任意一点到原点的距离不小于1,所以②正确.③,由②的分析可知,曲线C 过点()()0,1,1,0,这是两个整点.由331x y +=可得()331x y -=-,当0x ≠且1x ≠时,若x 为整数,31x -必定不是某个整数的三次方根,所以曲线C 只经过两个整点.故③正确.综上所述,正确的为②③.故选:C【点睛】本小题主要考查根据曲线方程研究曲线的性质,属于中档题.二、填空题:本大题共5小题,共25分.把答案填在答题纸中相应的横线上................11.已知空间()2,3,1a = ,()4,2,b x =- ,a b ⊥ ,则b =_____.【答案】【解析】【分析】根据空间向量的垂直,根据数量积的坐标表示,建立方程,结合模长公式,可得答案.【详解】由a b ⊥ ,且()2,3,1a = ,()4,2,b x =- ,则860a b x ⋅=-++=r r ,解得2x =,故b =r.故答案为:12.已知过点(0,2)的直线l 的方向向量为(1,6),点(,)A a b 在直线l 上,则满足条件的一组,a b 的值依次为__________.【答案】1;8【解析】【分析】根据方向向量设出直线l 的方程,再由点(0,2)求出其方程,从而得出62b a =+,即可得出答案.【详解】直线l 的方向向量为(1,6),可设直线l 的方程为60x y C -+=因为点(0,2)在直线l 上,所以2C =,即直线l 为620x y -+=所以620a b -+=,即62b a =+可取1a =,则8b =故答案为:1;813.在正方体ABCD A B C D -''''中,E 是C D ''的中点,则异面直线DE 与AC 所成角的余弦值为______.【答案】10【解析】【分析】利用正方体的特征构造平行线,利用勾股定理及余弦定理解三角形即可.【详解】如图所示,取A B ''的中点F ,易得//AF DE ,则FAC ∠或其补角为所求角,不妨设正方体棱长为2,则,3,AF FC FC AC '====,由余弦定理知:222cos 210AF AC FC FAC AF AC +-∠==⋅,则FAC ∠为锐角,即异面直线DE 与AC 所成角.故答案为:1010.14.将一张坐标纸对折,如果点()0,m 与点()()2,22m m -≠重合,则点()4,1-与点______重合.【答案】()1,2--【解析】【分析】先求线段AB 的中垂线方程,再根据点关于直线对称列式求解即可.【详解】已知点()0,A m 与点()2,2B m -,可知线段AB 的中点为1,122mm M ⎛⎫-+ ⎪⎝⎭,且212AB mk m -==--,则线段AB 的中垂线的斜率1k =,则线段AB 的中垂线方程为1122m m y x ⎛⎫⎛⎫-+=--⎪ ⎪⎝⎭⎝⎭,即20x y -+=,设点()4,1-关于直线20x y -+=的对称点为(),a b ,则114412022b a a b -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得12a b =-⎧⎨=-⎩,所以所求点为()1,2--.故答案为:()1,2--.15.给定两个不共线的空间向量a 与b,定义叉乘运算:a b ⨯ .规定:(i )a b ⨯ 为同时与a,b垂直的向量;(ii )a,b ,a b ⨯三个向量构成右手系(如图1);(iii )sin ,a b a b a b ⨯=.如图2,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =.给出下列四个结论:①1AB AD AA ⨯= ;②AB AD AD AB ⨯=⨯;③()111AB AD AA AB AA AD AA +⨯=⨯+⨯ ;④()11111ABCD A B C D V AB AD CC -=⨯⋅.其中,正确结论的序号是______________.【答案】①③④【解析】【分析】由新定义逐一核对四个选项得答案.【详解】解: ||||||sin902214AB AD AB AD ⨯=︒=⨯⨯=,且1AA 分别与,AB AD 垂直,∴1AB AD AA ⨯= ,故①正确;由题意,1AB AD AA ⨯= ,1AD AB A A ⨯=,故②错误;AB AD AC +=,∴11|()|||41AB AD AA AC AA +⨯=⨯=⨯= 且1()AB AD AA +⨯ 与DB 共线同向, 1||2418AB AA ⨯=⨯⨯= ,1AB AA ⨯ 与DA 共线同向,1||2418AD AA ⨯=⨯⨯= ,1AD AA ⨯ 与DB共线同向,11||AB AA AD AA ∴⨯+⨯= 11AB AA AD AA ⨯+⨯ 与DB共线同向,故③正确;11()||||||sin90cos022416AB AD CC AB AD CC ⨯=⨯⨯︒⨯︒=⨯⨯=,故④成立.故答案为:①③④.三、解答题:本大题共6题,共85分.解答应写出文字说明、演算步骤或证明过程,并把答案...写在答题纸中相应位置上............16.在平面直角坐标系中,已知(3,9),(2,2),(5,3)A B C -,线段AC 的中点M ;(1)求过M 点和直线BC 平行的直线方程;(2)求BC 边的高线所在直线方程.【答案】(1)3170x y -+=(2)30x y +=【解析】【分析】(1)根据(3,9),(2,2),(5,3)A B C -,求得点M 的坐标,和直线直线BC 的斜率,写出直线方程;(2)根据13BC k =,得到BC 边的高线的斜率,写出直线方程;【小问1详解】解:因为(3,9),(2,2),(5,3)A B C -,所以()1,6M ,13BC k =,所以过M 点和直线BC 平行的直线方程为()1613y x -=-,即3170x y -+=;【小问2详解】因为13BC k =,所以BC 边的高线的斜率为-3,所以BC 边的高线所在直线方程()933y x -=-+,即30x y +=17.如图,在边长为2的正方体1111ABCD A B C D -中,E 为线段1BB 的中点.(1)求证:1//BC 平面1AED ;(2)求点1A 到平面1AED 的距离;(3)直线1AA 与平面1AED 所成角的正弦值.【答案】(1)证明见解析(2)43(3)23【解析】【分析】(1)证明出四边形11ABC D 为平行四边形,可得出11//BC AD ,利用线面平行的判定定理可证得结论成立;(2)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得点1A 到平面1AED 的距离;(3)利用空间向量法可求得直线1AA 与平面1AED 所成角的正弦值.【小问1详解】证明:在正方体1111ABCD A B C D -中,11//AB C D 且11AB C D =,故四边形11ABC D 为平行四边形,则11//BC AD ,因为1BC ⊄平面1AED ,1AD ⊂平面1AED ,因此,1//BC 平面1AED .【小问2详解】解:以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,2A 、()0,2,1E 、()12,0,2D ,所以,()10,0,2AA = ,()12,0,2AD = ,()0,2,1AE = ,设平面1AED 的法向量为(),,n x y z = ,则122020n AD x z n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取2z =-,可得()2,1,2n =- ,所以,点1A 到平面1AED 的距离为143AA n d n⋅== .【小问3详解】解:因为11142cos ,233AA n AA n AA n ⋅<>===⨯⋅ ,因此,直线1AA 与平面1AED 所成角的正弦值为23.18.已知圆C 的圆心在直线20x y -=上,且与x 轴相切于点()1,0.(1)求圆C 的方程;(2)若圆C 直线:0l x y m -+=交于A ,B 两点,____,求m 的值.从下列三个条件中任选一个补充在上面问题中并作答:条件①:圆C 被直线l 分成两段圆弧,其弧长比为2:1;条件②:2AB =;条件③:90ACB ∠=︒.【答案】(1)()()22124x y -+-=(2)答案见解析【解析】【分析】(1)利用几何关系求出圆心的坐标即可;(2)任选一个条件,利用选择的条件,求出圆心到直线的距离,然后列方程求解即可.【小问1详解】设圆心坐标为(),C a b ,半径为r .由圆C 的圆心在直线20x y -=上,知:2a b =.又 圆C 与x 轴相切于点()1,0,1a ∴=,2b =,则02r b =-=.∴圆C 圆心坐标为()1,2,则圆C 的方程为()()22124x y -+-=【小问2详解】如果选择条件①:120ACB ∠=°,而2CA CB ==,∴圆心C 到直线l 的距离1cos 60d CA =⨯= ,则1d ==,解得1m +或1+.如果选择条件②和③:AB =,而2CA CB ==,∴圆心C 到直线l 的距离d =,则d ==,解得1m =-或3.如果选择条件③:90ACB ∠=︒,而2CA CB ==,∴圆心C 到直线l 的距离cos 45d CA ⨯== ,则d ==,解得1m =-或3.19.如图,四棱锥P ABCD -中,AD ⊥平面ABP ,,90,2,3,BC AD PAB PA AB AD BC m ∠=︒==== ,E 是PB 的中点.(1)证明:AE ⊥平面PBC ;(2)若二面角C AE D --的余弦值是33,求m 的值;(3)若2m =,在线段A 上是否存在一点F ,使得PF CE ⊥.若存在,确定F 点的位置;若不存在,说明理由.【答案】(1)证明见解析(2)1(3)不存在,理由见解析【解析】【分析】(1)推导出⊥BC 平面PAB .,AE BC AE PB ⊥⊥.由此能证明AE ⊥平面PBC ;(2)建立空间直角坐标系A xyz -,利用向量法能求出m 的值;(3)设()()0,0,03F t t ≤≤,当2m =,()0,0,2C ,()()2,0,,1,1,2PF t CE ==-- ,由PF CE ⊥知,0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,从而在线段AD 上不存在点F ,使得PF CE ⊥.【小问1详解】证明:因为AD ⊥平面PAB ,BC AD ∥,所以⊥BC 平面PAB ,又因为AE ⊂平面PAB ,所以AE BC ⊥.在PAB 中,PA AB =,E 是PB 的中点,所以AE PB ⊥.又因为BC PB B = ,,BC PB ⊂平面PBC ,所以AE ⊥平面PBC .【小问2详解】因为AD ⊥平面PAB ,,AB PA ⊂平面PAB ,所以,AD AB AD PA ⊥⊥,又因为PA AB ⊥,所以如图建立空间直角坐标系A xyz -.则()()()()()()0,0,0,0,2,0,0,2,,1,1,0,2,0,0,0,0,3A B C m E P D ,则()0,2,AC m = ,()1,1,0AE = ,设平面AEC 的法向量为 =s s .则00AC n AE n ⎧⋅=⎪⎨⋅=⎪⎩ 即200y mz x y +=⎧⎨+=⎩,令1x =,则1y =-,2z m =,故21,1,n m ⎛⎫=- ⎪⎝⎭.因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,又AE PB ⊥,,,AD AE A AD AE ⋂=⊂平面AED ,所以PB ⊥平面AED .又因为()2,2,0PB =- ,所以取平面AED 的法向量为()2,2,0PB =-所以cos ,3n PB n PB n PB⋅== ,3=,解得21m =.又因为0m >,所以1m =;【小问3详解】结论:不存在.理由如下:证明:设()()0,0,03F t t ≤≤.当2m =时,()0,0,2C ,()()2,0,,1,1,2PF t CE =-=-- ,由PF CE ⊥知0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,所以在线段AD 上不存在点F ,使得PF CE ⊥.20.已知圆()22:1C x a y -+=与直线1y x --=交于M 、N 两点,点P 为线段MN 的中点,O 为坐标原点,直线OP 的斜率为13-.(1)求a 的值及MON △的面积;(2)若圆C 与x 轴交于,A B 两点,点Q 是圆C 上异于,A B 的任意一点,直线QA 、QB 分别交:4l x =-于,R S 两点.当点Q 变化时,以RS 为直径的圆是否过圆C 内的一定点,若过定点,请求出定点;若不过定点,请说明理由.【答案】(1)12,2MON a S =-=(2)()4-【解析】【分析】(1)先确定直线OP 的方程,联立直线方程求得P 点坐标,利用垂径定理及两直线垂直的斜率关系计算可得a ,再根据点到直线的距离公式、弦长公式计算求面积即可;(2)设QA 方程,含参表示QB 方程,求出,R S 坐标,从而求出以RS 为直径的圆的方程,利用待定系数法计算即可.【小问1详解】由题知:直线OP 方程为13y x =-,则由113y x y x =--⎧⎪⎨=-⎪⎩,得到3212x y ⎧=-⎪⎪⎨⎪=⎪⎩,即31,22P ⎛⎫- ⎪⎝⎭, 点P 为线段MN 的中点,MN PC ∴⊥,即1021132MN PC k k a -⋅=-⨯=-+,2a ∴=-,即圆心−2,0;C ∴到直线=1y x --距离为2d ==,MN ∴==,又O 到直线=1y x --的距离为22,MN 边上的高为22.11222MON S ∴=⨯= .【小问2详解】由上可知()()3,0,1,0A B --,不妨设直线QA 的方程为()3y k x =+,其中0k ≠,在直线QA 的方程中,令4x =-,可得()4,R k --,因为QA QB ⊥,则直线QB 的方程为()11y x k =-+,在直线QB 的方程中,令4x =-,可得3y k =,即点34,S k ⎛⎫- ⎪⎝⎭,则线段RS 的中点为234,2k F k ⎛⎫-- ⎪⎝⎭,半径平方为2232k k ⎛⎫+ ⎪⎝⎭,所以,以线段MN 为直径的圆的方程为()2222233422k k x y k k ⎛⎫⎛⎫-+++-= ⎪ ⎪⎝⎭⎝⎭,即()2223430k x y y k -++--=,由()2430031x y x ⎧+-=⎪=⎨⎪-<<-⎩,解得40x y ⎧=-+⎪⎨=⎪⎩,因此,当点Q 变化时,以RS 为直径的圆恒过圆C内的定点()4-+.21.已知{}1,2,,n S = ,A S ⊆,{}12,T t t S =⊆,记{}(),1,2i i A x x a t a A i ==+∈=,用X 表示有限集合X 的元素个数.(1)若4n =,12A A =∅ ,分别指出{}1,2,3A =和{}1,2,4A =时,集合T 的情况(直接写出结论);(2)若6n =,12A A =∅ ,求12A A ⋃的最大值;(3)若7n =,4A =,则对于任意的A ,是否都存在T ,使得12A A =∅ 说明理由.【答案】(1){}1,4(2)10(3)不一定存在,理由见解析【解析】【分析】(1)由已知得12t t a b -≠-,其中,a b A ∈,当{}1,2,3A =时,12t t ,相差3;由此可求得T ,当{}1,2,4A =时,同理可得;(2)若6n =,12A A =∅ ,{}123456S =,,,,,,当{}2,3,4,5,6A =时,则12t t ,相差5,所以{}1,6T =,A 中至多有5个元素,所以12,A A 也至多有5个元素,求出12,A A 得出结果;(3)举反例{}1,2,5,7A =和{}{}1,2,3,4,1,6A T ==,根据题意检验即可说明.【小问1详解】若12A A =∅ ,则12t t a b -≠-,其中,a b A ∈,否则12t a t b +=+,12A A ⋂≠∅,若4n =,当{}1,2,3A =时,211-=,312-=,所以121,2t t -≠,则1t ,2t 相差3,因为1,2,3,4S =,{}12,T t t S =⊆,所以{}1,4T =;当{}1,2,4A =时,211-=,422-=,413-=,所以121,2,3t t -≠,因为1,2,3,4S =,{}12,T t t S =⊆,所以T 不存在;【小问2详解】若6n =,12A A =∅ ,{}123456S =,,,,,,当A S =时,211-=,514-=,523-=,716-=,72=5-,752-=,所以A S ≠,121,2,3,4,5t t -≠,所以T 不存在;所以A 中至多有5个元素;当{}2,3,4,5,6A =时,321-=,422-=,523-=,624-=,所以121,2,3,4t t -≠,则1t ,2t 相差5,所以{}1,6T =;{}(),1,2i i A x x a t a A i ==+∈=,所以{}1345,6,7A =,,,{}28910,11,12A =,,,{}12345,6,7,8910,11,12A A = ,,,,.因为A 中至多有5个元素,所以1A ,2A 也至多有5个元素,所以12A A ⋃的最大值为10.【小问3详解】不一定存在,理由如下:例如{}1,2,5,7A =,则211-=514-=,523-=,716-=,72=5-,752-=,则1t ,2t 相差不可能1,2,3,4,5,6,这与{}{}12,1,2,3,4,5,6,7T t t =⊆矛盾,故不都存在T ;例如{}{}1,2,3,4,1,6A T ==,不妨令121,6t t ==,则{}{}122,3,4,5,7,8,9,10A A ==,满足12A A =∅ .【点睛】关键点点睛:对于新定义问题,要充分理解定义,并把定义进行转化为已知的知识点或结论,方便解题.。
四川省成都市2023-2024学年高二上学期期中数学试题含解析
2023-2024学年度上期高2025届半期考试高二数学试卷(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页.注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试卷上作答无效.5.考试结束后,只将答题卡收回.第Ⅰ卷(选择题,共60分)一.单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()(),2,2,3,4,2a x b =-=-,若a b ⊥,则x 的值为()A.1B.4- C.4D.1-【答案】C 【解析】【分析】根据向量垂直的坐标运算即可求解.【详解】由()(),2,2,3,4,2a x b =-=- 得3840a b x ⋅=--= ,所以4x =,故选:C2.已知直线1:3410l x y --=与2:3430l x y -+=,则1l 与2l 之间的距离是()A.45B.35C.25 D.15【答案】A 【解析】【分析】直接由两平行线之间的距离公式计算即可.【详解】因为已知直线1:3410l x y --=与2:3430l x y -+=,而()()34430⨯---⨯=,所以12l l //,所以由两平行线之间的距离公式可得1l 与2l 之间的距离是45d ==.故选:A.3.已知圆()()221:219C x y -++=与圆()()222:134C x y ++-=,则圆1C 与圆2C 的位置关系为()A.相交B.外切C.内切D.内含【答案】B 【解析】【分析】根据两圆圆心距与半径的关系即可求解.【详解】()()221:219C x y -++=的圆心为()2,1,3r -=,()()222:134C x y ++-=的圆心为()1,3,2R -=,由于125C C ==,125C C r =+=R ,所以1C 与圆2C 外切,故选:B4.若直线()1:410l x a y +-+=与2:20l bx y +-=垂直,则a b +的值为()A.2 B.45C.23D.4【答案】D 【解析】【分析】根据直线垂直的条件求解.【详解】由题意40b a +-=,∴4a b +=.故选:D .5.已知事件,A B 相互独立,且()()0.3,0.7P A P B ==,则()P AB =()A.1 B.0.79C.0.7D.0.21【答案】D 【解析】【分析】由独立事件的概率乘法公式计算.【详解】由题意()()()0.30.70.21P AB P A P B ==⨯=,故选:D .6.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA 上,且2ON NA =,则MN =()A.121232a b c--+B.211322a b c-++C.211322a b c --D.111222a b c +-【答案】C 【解析】【分析】由图形中线段关系,应用向量加减、数乘的几何意义用,,OA a OB b OC c === 表示出MN.【详解】1221()2332MN MB BO ON CB OB OA OA OB OC OB=++=-+=+-- 211211322322OA OB OC a b c =--=--.故选:C7.已知椭圆方程为()222210x y a b a b +=>>,长轴为12A A ,过椭圆上一点M 向x 轴作垂线,垂足为P ,若212||13MP A P A P =⋅,则该椭圆的离心率为()A.3B.3C.13D.23【答案】B 【解析】【分析】根据题意,设()00,M xy ,表示出12,A P A P ,结合椭圆方程,代入计算,再由离心率公式,即可得到结果.【详解】设()00,M x y ,则2200221x y a b+=,()()()120,0,,0,,0A a A a P x -,则10A P x a =+,20A P x a =-,0MP y =所以222002201200||13a y y MP A P A x x a P x a+⋅=-==⋅-,且22x a <,所以22213y a x =-,即222003a x y -=,代入椭圆方程可得222002231a y y a b-+=,化简可得223a b =,则离心率为63e ===.故选:B8.现有一组数据不知道其具体个数,只知道该组数据平方后的数据的平均值是a ,该组数据扩大m 倍后的数据的平均值是b ,则原数据的方差、平方后的数据的方差、扩大m 倍后的数据的方差三个量中,能用,,a b m 表示的量的个数是()A.0 B.1C.2D.3【答案】C 【解析】【分析】设出原始数据,逐个计算求解即可.【详解】设该组数据为123,,n x x x x ⋅⋅⋅,则12nx x x x n++⋅⋅⋅+=.所以22212n x x x a n++⋅⋅⋅+=,12n mx mx mx mx b n ++⋅⋅⋅+==,所以b x m =.原数据的方差()()()()2222221212221212n n n x x x x x x x x x x x x x s xnn n-+-+⋅⋅⋅+-++⋅⋅⋅+++⋅⋅⋅+==-+2222222b b a x x a x a a m m ⎛⎫=-+=-=-=- ⎪⎝⎭,可以用,,a b m 表示.扩大m 倍后的数据的方差:()()()()()()2222221212222n n mx mx mx mx mx mx x x x x x x s m nn ⎡⎤-+-+⋅⋅⋅+--+-+⋅⋅⋅+-==⎢⎥⎢⎥⎣⎦22222212b m s m a m a b m ⎛⎫==-=- ⎪⎝⎭,可以用,,a b m 表示.平方后的数据的方差:()()()()2222222224441212221232n n n x a x a x aa x x x x x x s a nn n-+-+⋅⋅⋅+-++⋅⋅⋅+++⋅⋅⋅+==-+44444422212122n n x x x x x x a a a n n++⋅⋅⋅+++⋅⋅⋅+=-+=-.不能用,,a b m 表示.故选:C.二.多选题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,全选对得5分,部分选对得2分,有错选得0分.9.我校举行党史知识竞赛,对全校参赛的1000名学生的得分情况进行了统计,把得分数据按照[)[)[)[)[]50,60,60,70,70,80,80,90,90,100分成5组,绘制了如图所示的频率分布直方图.根据图中信息,下列说法正确的是()A.图中的x 值为0.020B.这组数据的极差为50C.得分在80分及以上的人数为400D.这组数据的众数的估计值为82【答案】AC 【解析】【分析】根据频率值和为1即可判断A ;根据由频率分布直方图无法求出这组数据得极差,即可判断B ;求出得分在80分及以上的频率,再乘以总人数,即可判断C ;根据频率分布直方图中众数即可判断D .【详解】解:()100.0050.0350.0300.0101x ⨯++++=,解得0.020x =,故A 正确;因为由频率分布直方图无法求出这组数据得极差,故B 错误;得分在80分及以上的频率为()100.0300.0100.4⨯+=,所以得分在80分及以上的人数为10000.4400⨯=,故C 正确;这组数据的众数的估计值为75,故D 错误.故选:AC .10.下列说法正确的是()A.对任意向量,a b ,都有a b b a⋅=⋅B.若a b a c ⋅=⋅且0a ≠,则b c=C.对任意向量,,a b c,都有()()a b c a b c⋅⋅=⋅⋅ D.对任意向量,,a b c ,都有()+⋅=⋅+⋅ a b c a c b c【答案】AD 【解析】【分析】可由数量积的定义及运算律可逐一判定选项.【详解】cos ,a b a b a b ⋅=,cos ,b a a b a b ⋅= ,可得a b b a ⋅=⋅,故选项A 正确;由a b a c ⋅=⋅ 可得()0a b c ⋅-=,又0a ≠ ,可得b c = 或()a cb ⊥- ,故选项B 错误;()()cos ,R a b c a b a b c c λλ⋅⋅==∈,()()cos ,R a b c c b c b a a μμ⋅⋅==∈所以()()a b c a b c ⋅⋅=⋅⋅ 不一定成立,故选项C 错误;由向量数量积运算的分配律可知选项D 正确;故选:AD.11.甲、乙两支田径队队员的体重(单位:kg)信息如下:甲队体重的平均数为60,方差为200,乙队体重的平均数为68,方差为300,又已知甲、乙两队的队员人数之比为1:3,则关于甲、乙两队全部队员的体重的平均数和方差的说法正确的是()A.平均数为67B.平均数为66C.方差为296D.方差为287【答案】BD 【解析】【分析】先利用比重计算全部队员体重的平均值,再利用平均值计算方差即可.【详解】依题意,甲的平均数160x =,乙的平均数268x =,而甲、乙两队的队员人数之比为1:3,所以甲队队员在所有队员中所占比重为14,乙队队员在所有队员中所占比重为34故甲、乙两队全部队员的体重的平均数为:1360686644x =⨯+⨯=;甲、乙两队全部队员的体重的方差为:()()22213200606630068665922828744s ⎡⎤⎡⎤=⨯+-+⨯+-=+=⎣⎦⎣⎦.故选:BD.12.已知四面体中三组对棱的中点间的距离都相等,则下列说法正确的是()A.该四面体相对的棱两两垂直B.该四面体四个顶点在对面三角形的射影是对面三角形的外心C.该四面体的四条高线交于同一点(四面体的高线即为过顶点作底面的垂线)D.该四面体三组对棱平方和相等【答案】ACD 【解析】【分析】设,,AB b AC c AD d ===,利用向量法AD 选项,用几何法判断BC 选项.【详解】选项A ,如图,四面体ABCD 中,,,,,,E F G H I J 是所在棱中点,EF GH IJ ==,设,,AB b AC c AD d === ,则111()()222EF AF AE AD AB AC d b c =-=-+=-- ,111()()222GH AH AG AC AD AB c d b =-=+-=+- ,EF GH =,即EF GH = ,所以11()()22d b c c d b --=+-,所以222222222222d b c b d c d b c d b c c d b d b c++-⋅-⋅+⋅=+++⋅-⋅-⋅c d b c ⋅=⋅ ,即()0c b d ⋅-= ,所以()c b d ⊥- ,即AC DB ⊥,所以AC BD ⊥,同理,AB CD AD BC ⊥⊥,A 正确;选项B ,设1AH ⊥平面BCD ,1H 是垂足,CD ⊂平面BCD ,所以1AH CD ⊥,又AB CD ⊥,11,,AB AH A AB AH =⊂ 平面1ABH ,所以CD ⊥平面1ABH ,而1BH ⊂平面1ABH ,所以1CD BH ⊥,同理1BC DH ⊥,所以1H 是平面BCD 垂心,同理可得其它顶点在对面的射影是对面三角形的垂心,B 错;选项C ,如上图,1AH ⊥平面BCD ,2BH ⊥平面ACD ,3DH ⊥平面ABC ,123,,H H H 是垂足,先证明12,AH BH 相交,1AH ⊥平面BCD ,CD ⊂平面BCD ,所以1AH CD ⊥,又AB CD ⊥,11,,AB AH A AB AH =⊂ 平面1ABH ,所以CD ⊥平面1ABH ,同理CD ⊥平面2ABH ,所以平面1ABH 和平面2ABH 重合,即12,AH BH 共面,它们必相交,设12AH BH H ⋂=,下面证明DH ⊥平面ABC ,与证明CD ⊥平面1ABH 同理可证得BC ⊥平面1ADH ,又DH ⊂平面1ADH ,所以BC DH ⊥,同理由2BH ⊥平面ACD 可证得DH AC ⊥,而,AC BC 是平面ABC 内两相交直线,所以DH ⊥平面ABC ,因此DH 与3DH 重合,同理可证CH ⊥平面ABD ,C 正确;选项D ,由选项A 的讨论同理可得b c b d c d ⋅=⋅=⋅,222222222()2AB CD AB CD b d c b c d c d +=+=+-=++-⋅ ,222222222()2AC BD AC BD c d b b c d b d +=+=+-=++-⋅,所以2222AB CD AC BD +=+,同理222222AB CD AC BD AD BC +=+=+,D 正确.故选:ACD .第Ⅱ卷(非选择题,共90分)三.填空题:本大题共4小题,每小题5分,共20分.13.经过()()0,2,1,0A B -两点的直线的方向向量为()1,k ,则k =______.【答案】2【解析】【分析】方向向量与BA平行,由此可得.【详解】由已知(1,2)BA =,()1,k 是直线AB 的方向向量,则2k =,故答案为:2.14.在一次篮球比赛中,某支球队共进行了8场比赛,得分分别为25,29,30,32,37,38,40,42,那么这组数据的第65百分位数为______.【答案】38【解析】【分析】根据百分位数的定义即可求解.【详解】865% 5.2⨯=,故这组数据的第65百分位数为第6个数38,故答案为:3815.写出与圆221:(1)(3)1C x y +++=和222:(3)(1)9C x y -++=都相切的一条直线的方程__________.【答案】0x =##4y =-##430x y -=##34100x y ++=【解析】【分析】判断两个圆是相离的,得到应该有四条公切线,画出图形易得0x =或4y =-为公切线,设切线方程为y kx b =+,根据圆心到直线的距离等于半径列出关于,k b 方程组,求解.【详解】因为圆1C 的圆心为()11,3C --,半径11r =圆2C 的圆心为()23,1C -,半径23r =又因为124C C =所以圆1C 与圆2C 相离,所以有4条公切线.画图为:易得:0a x =或:4n y =-是圆221:(1)(3)1C x y +++=和222:(3)(1)9C x y -++=的公切线设另两条公切线方程为:y kx b =+圆1C 到直线y kxb =+的距离为1=圆2C 到直线y kxb =+3=所以3133k b b k ++=-+所以31339k b b k ++=-+或31339k b b k ++=-+-34k b =+或52b =-当52b =-1==所以34k =-,切线方程为34100x y ++=当34k b =+3==所以()()225249b b +=++所以240b b +=所以0b =或4b =-当0b =时43k =,切线方程为430x y -=当4b =-时0k =,切线方程为4y =-故答案为:0x =或4y =-或430x y -=或34100x y ++=16.已知P 为直线=2y -上一动点,过点P 作圆221x y +=的两条切线,切点分别为,B C ,则点()2,1A 到直线BC 的距离的最大值为______.【答案】52【解析】【分析】首先设点00(,)P x y ,求过点BC 的直线方程,并判断直线BC 过定点,再利用几何关系求最大值.【详解】设00(,)P x y ,过点P 引圆221x y +=的两条切线,切点分别为,B C ,则切点在以OP 为直径的圆上,圆心00,22x y ⎛⎫ ⎪⎝⎭,半径r =,则圆的方程是22220000224x y x y x y +⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,整理为:22000x y x x y y +--=,又点,B C 在圆221x y +=上,两圆方程相减得到001x x y y +=,即直线BC 的方程是001x x y y +=,因为02y =-,代入001x x y y +=得021x x y -=,则直线BC 恒过定点10,2N ⎛⎫- ⎪⎝⎭,所以点()2,1A 到直线BC 的距离52d AN ≤==,所以点()2,1A 到直线BC 的距离的最大值为52.故答案为:52.【点睛】思路点睛:首先本题求以OP 为直径的圆,利用两圆相减,求得过两圆交点的直线方程,关键是发现直线BC 过定点,这样通过几何关系就容易求定点与动直线距离的最大值.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的周长为()()14,3,0,3,0B C -.(1)求点A 的轨迹方程;(2)若AB AC ⊥,求ABC 的面积.【答案】(1)()2210167x y y +=≠(2)7【解析】【分析】(1)结合椭圆定义可得A 的轨迹方程.(2)利用AB AC ⊥及椭圆定义可列出方程,求解AC AB ⋅,即可算出ABC 的面积.【小问1详解】ABC 的周长为14且6,86BC AC AB BC =∴+=>=,根据椭圆的定义可知,点A 的轨迹是以()()3,0,3,0B C -为焦点,以8为长轴长的椭圆,即4,3,a c b ===A 的轨迹方程为221167x y+=,又A 为三角形的顶点,故所求的轨迹方程为()2210167x y y +=≠.【小问2详解】222,||||36AB AC AB AC BC ⊥∴+== ①.A 点在椭圆()2210167x y y +=≠上,且()()3,0,3,0B C -为焦点,8AC AB ∴+=,故22||264AC AB AC AB ++⋅=②.由①②可得,14AC AB ⋅=,故172S AC AB =⋅⋅=.ABC ∴ 的面积为7.18.如图,四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点,连接DE .(1)求DE 的长;(2)求点D 到平面ABC 的距离.【答案】18.219.3【解析】【分析】(1)利用基底,,OA OB OC 表示出向量DE,再根据向量数量积求长度的方法即可求出;(2)由该几何体特征可知,点O 在平面ABC 的射影为ABC 的中心,即可求出.【小问1详解】因为四面体OABC 的所有棱长都是1,所以该四面体为正四面体,()1111122222DE DA AB BE OA OB OA OC OB OA OB OC =++=+-+-=-++,而且12OA OB OB OC OA OC ⋅=⋅=⋅= ,所以()()2211131442DE OA OB OC =--=-=,即2DE =,所以DE 的长为2.【小问2详解】因为四面体OABC 为正四面体,所以点O 在平面ABC 的射影O '为ABC 的中心,ABC 的外接圆半径为11sin6023︒⨯=,所以点O 到平面ABC 的距离为3d ==,由于D 点为线段OA 的中点,所以点D 到平面ABC 的距离为3.19.现从学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160,165,⋅⋅⋅,第八组[]190195,.右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率并估计该校的800名男生的身高的中位数;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记事件A 表示随机抽取的两名男生不.在同一组....,求()P A .【答案】(1)第七组的频率为0.06,中位数为174.5cm(2)815【解析】【分析】(1)根据频率为和1,可得第七组的频率为0.06,设学校的800名男生的身高中位数为m ,根据中位数的定义可得()0040080217000405...m ..+++-⨯=,求解即可;(2)用列举法写出基本事件的总数和两名男生不在同一组所包含的基本事件,即可得解.【小问1详解】(1)由直方图的性质,易知第七组的频率为415(0.008+0.016+0.04+0.04+0.06++0.008)=0.06505-⨯⨯.由于0.040.080.20.320.5,0.040.080.20.20.520.5++=<+++=>,设学校的800名男生的身高中位数为m ,则170175m <<,由()0040080217000405...m ..+++-⨯=,得1745m .=,所以学校的800名男生的身高的中位数为174.5cm .【小问2详解】解:第六组[)180185,的人数为4,设为a b c d ,,,,第八组[]190195,的人数为0.0085502⨯⨯=,设为,A B ,则从中随机抽取两名男生有,,,,,,,,,,,,,dB,ab ac ad bc bd cd aA aB bA bB cA cB dA AB 共15种情况.事件A 表示随机抽取的两名男生不在同一组,所以事件A 包含的基本事件为,,,aA aB bA bB ,,,,cA cB dA dB 共8种情况.所以()815P A =.20.已知圆C 经过点()0,2A ,()6,4B ,且圆心在直线340x y --=上.(1)求圆C 的方程;(2)若平面上有两个点()6,0P -,()6,0Q ,点M 是圆C 上的点且满足2MP MQ=,求点M 的坐标.【答案】(1)()22420x y -+=(2)10,33⎛⎫ ⎪ ⎪⎝⎭或10,33⎛⎫-⎪ ⎪⎝⎭【解析】【分析】(1)设出圆心,利用点到直线的距离公式即可求得圆的方程.(2)根据已知条件求得M 满足的方程联立即可求得M 的坐标.【小问1详解】∵圆心在直线340x y --=上,设圆心()34,C a a +,已知圆C 经过点()0,2A ,()6,4B ,则由CA CB =,=解得0a =,所以圆心C 为()4,0,半径r CA ===所以圆C 的方程为()22420x y -+=;【小问2详解】设(),M x y ,∵M 在圆C 上,∴()22420x y -+=,又()6,0P -,()6,0Q ,由2MPMQ=可得:()()2222646x y x y ⎡⎤++=-+⎣⎦,化简得()221064x y -+=,联立()()22224201064x y x y ⎧-+=⎪⎨-+=⎪⎩解得10411,33M ⎛⎫ ⎪ ⎪⎝⎭或10411,33⎛⎫- ⎪ ⎪⎝⎭.21.如图,在直三棱柱111ABC A B C -中,1π,2,3,2BAC AB AC AA M ∠====是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点,点Q 在线段1A N 上.(1)若//PQ 平面1A CM ,请确定点Q 的位置;(2)请在下列条件中任选一个,求11A QA N的值;①平面BPQ 与平面ABC的夹角余弦值为53;②直线AC 与平面BPQ所成角的正弦值为106.【答案】(1)Q 为1A N 靠近N 三等分点处(2)①1112A Q A N =;②1112A Q A N =【解析】【分析】(1)分别以1,,AC AB AA 所在直线为,,x y z 轴,建立空间直角坐标系,求出面1A CM 的法向量n,由//PQ 平面1A CM 得PQ n ⊥ ,即0PQ n ⋅= ,求解11A QA N即可;(2)设()1101A Q A Nλλ=<<,求出平面BPQ 的法向量为m,平面ABC 的法向量,若选择①,利用平面与平面的夹角的向量求法求解;若选择②,由直线与平面所成角的向量求法求解.【小问1详解】分别以1,,AC AB AA 所在直线为,,x y z轴,建立空间直角坐标系,()()()()()130,0,3,2,0,0,0,1,0,1,1,3,1,1,,,,32A C M N P Q a a ⎛⎫ ⎪⎝⎭,则()()1132,0,3,0,1,3,1,1,2A C A M PQ a a ⎛⎫=-=-=-- ⎪⎝⎭ .设面1A CM 的法向量(),,n x y z =r ,则110A C n A M n ⎧⋅=⎪⎨⋅=⎪⎩ ,即23030x z y z -=⎧⎨-=⎩.令2z =,得()3,6,2n =.因为//PQ 平面1A CM ,所以PQ n ⊥ ,即0PQ n ⋅=.所以()()316130a a -+-+=,得23a =,122,,033A Q ⎛⎫= ⎪⎝⎭,所以13A Q = .因为11123A Q A N A N ==,所以Q 为1A N 靠近N 三等分点处时,有//PQ 平面1A CM .【小问2详解】设()1101A QA Nλλ=<<,则()11,,0A Q A N λλλ== .所以1111331,1,,1,1,22PQ PA A Q PA A N PB λλλ⎛⎫⎛⎫=+=+=--=--⎪ ⎪⎝⎭⎝⎭.设平面BPQ 的法向量为()111,,m x y z =,则00PQ m PB m ⎧⋅=⎪⎨⋅=⎪⎩,即()()11111131102302x y z x y z λλ⎧-+-+=⎪⎪⎨⎪-+-=⎪⎩.令()141z λ=-,得()()()3,32,41m λλλ=--.注意到平面ABC 的法向量为()0,0,1,直线AC 的方向向量为()1,0,0,若选择①,平面BPQ 与平面ABC的夹角余弦值为53,则()10,0,1cos 53m mθ⋅==.即()2483001λλλ-+=<<,解得12λ=,即1112A Q A N =.若选择②,直线AC 与平面BPQ所成角的正弦值为106,则()21,0,0sin 106m mθ⋅==.即()2181713001λλλ+-=<<,解得12λ=,即1112A Q A N =.22.已知()()()2,3,2,0,2,0,A B C ABC -∠的内角平分线与y 轴相交于点E .(1)求ABC 的外接圆的方程;(2)求点E 的坐标;(3)若P 为ABC 的外接圆劣弧 BC 上一动点,ABC ∠的内角平分线与直线AP 相交于点D ,记直线CD 的斜率为1k ,直线CP 的斜率为2k ,当1275k k =-时,判断点E 与经过,,P D C 三点的圆的位置关系,并说明理由.【答案】(1)2232524x y ⎛⎫+-=⎪⎝⎭(2)20,3⎛⎫ ⎪⎝⎭(3)点E 在经过,,P D C 三点的圆上,理由见解析【解析】【分析】(1)根据直角三角形的性质即可求解圆心和半径,从而得解;(2)根据等面积法或者利用角平分线的性质可得AB AF BCCF=,即可求解长度得斜率,进而可求解直线方程,得解;(3)联立方程可得22223234,11k k k P k k ⎛⎫--- ⎪++⎝⎭,6743,3131k k D k k --⎛⎫ ⎪--⎝⎭,根据1275k k =-可得1k =,即可求解点的坐标,由点的坐标求解圆的方程,即可判定.【小问1详解】易知ABC 为C 为直角的直角三角形,故外接圆的圆心为斜边AB 边的中点30,2⎛⎫ ⎪⎝⎭,半径为52,所以外接圆的方程为2232524x y ⎛⎫+-= ⎪⎝⎭.【小问2详解】设ABC ∠的内角平分线交AC 于点F ,根据角平分线性质定理,可知AB AF BCCF=,(利用11sin 22211sin 222ABFBCFABC AB BF AF BC S ABC S BC BF FC BC ∠⋅⋅==∠⋅⋅ 可得AB AF BC CF =)由结合3AF CF +=,5AB ==,4,3BC AC ==所以4133BD CF CF k BC =⇒==所以,ABC ∠的内角平分线方程为()123y x =+,令0x =,即可得点E 坐标20,3⎛⎫⎪⎝⎭.【小问3详解】点E 在经过,,P D C 三点的圆上,理由如下:由题意可知直线AP 的斜率存在,故设直线AP 的直线方程为()32y k x -=-,联立直线与圆的方程()223232524y k x x y ⎧-=-⎪⎨⎛⎫+-=⎪ ⎪⎝⎭⎩,可得()()22221344640kx k k x kk ++-+--=注意到,A P 两点是直线与圆的交点,所以2246421P k k x k --⋅=+222321P k k x k --∴=+,故22223234,11k k k P k k ⎛⎫--- ⎪++⎝⎭.联立直线AP 与ABC ∠的内角平分线方程()321233y k x y x ⎧-=-⎪⎨=+⎪⎩,可得6731k x k -=-6743,3131k k D k k --⎛⎫∴ ⎪--⎝⎭.此时221222243433434003443313111,6753423253422313111k k k k k k k k k k k k k k k k k k k k k ----------++======------+----++,12343475,1435534k k k k k k k -+∴==-=-∴=-+.此时,点31,22P ⎛⎫-- ⎪⎝⎭,点11,.22D P ⎛⎫- ⎪⎝⎭点满足在劣弧 BC 上.设经过,,P D C 三点的圆的方程为()2222040x y mx ny t m n t ++++=+->,则4205320120m t m n t m n t ++=⎧⎪--+=⎨⎪-++=⎩,解得5617673m n t ⎧=-⎪⎪⎪=⎨⎪⎪=-⎪⎩.所以,经过,,P D C 三点的圆的方程为2251770663x y x y +-+-=.将点20,3E ⎛⎫ ⎪⎝⎭代入圆的方程成立,所以点E 在经过,,P D C 三点的圆上.。
无锡市辅仁高级中学2023-2024学年高二上学期期中考试数学试卷(解析版)
【解析】
【分析】根据圆的方程求出圆心与半径 r ,利用两点间的距离公式求得 PC , 从而切线长为 PC 2 r2 ,计
算求解即可.
【详解】圆 C : x2 y2 2x 0,即 x 12 y2 1,圆心 C 1, 0, 半径 r 1,
PC 112 0 22 2 2,
切线长为 PC 2 r2 8 1 7.
=
22-
0= 1
2 ,故 D, A,C 三点共线,如图所示,
第 5 页/共 22 页
当 PC 与圆相切时, PCA为锐角且最大, tan PCA最大, PCA即 PCD ,
由 DC
2
1 2
2
2 12
35 2
,此时
PC
DC 2 DP 2
29 , 2
DP 则 tan PCA PC
2 4 29 29 29 .
a b , c 不共面,则能构成基底;
D 中, c
abc
ab
rrr ,所以 a b , a b c , c 共面,不能构成基底.
故选:ABD
第 6 页/共 22 页
10. (多选)已知双曲线 C1 :
x2 a2
y2 b2
1(a
0,b
0) 的离心率为 2.若抛物线 C2:x2=2py(p>0)的焦点到双曲线
故选:D.
7. 已知椭圆 x2 y2 1 ( a b 0 )的面积为 πab ,求满足 x2 2 y2 2 2x2 y2 1 0的点 a2 b2
P x, y 所构成的平面图形的面积为( )
A. 3 2 π 2
【答案】C 【解析】
B. 2π
C. 2π 2
D. 2π
【分析】由题意点
辽宁省大连市2023-2024学年高二上学期期中数学试题含解析
2023-2024学年度上学期期中考试高二年级数学科试卷(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分,在每小题的四个选项中,只有一项符合题目要求)1.以下四个命题中,正确的是()A.向量()1,1,3a =-与向量()3,3,6b =- 平行B.已知()()1,1,2,0,2,2A B --,则5AB =C.|()|||||||a b c a b c ⋅=⋅⋅ D.若{},,a b c 为空间的一个基底,则a b + ,b c + ,c a + 构成空间的另一基底2.已知直线l 的一个方向向量为()2,1-,且经过点()1,0A ,则直线l 的方程为()A.10x y --=B.10x y +-=C.210x y --= D.210x y +-=3.如图,在底面为正方形,侧棱垂直于底面的四棱柱1111ABCD A B C D -中,122AAAB ==,则异面直线1A B 与1AD 所成角的余弦值为()A.15B.25C.35D.454.已知椭圆22:14x C y +=,直线:20l x y -=,则l 与C 的位置关系为()A.相交B.相切C.相离D.以上选项都不对5.已知()()()2,1,3,1,4,2,4,5,a b c λ=-=--= ,若,,a b c共面,则实数λ的值为()A.6B.5C.4D.36.已知P 是椭圆22221(0)x y a b a b+=>>上一点,12F F 、分别是椭圆的左、右焦点、若12PF F △的周长为6,且椭圆上的点到椭圆焦点的最小距离为1,则椭圆的离心率为()A.12B.13C.2 D.37.已知圆22:64120,,C x y x y M N +--+=是圆上的两点,点()1,0A ,且AM AN λ=,则AM AN ⋅ 的值为()A.B.7C. D.88.如图,在正四面体ABCD 中,点,N M 分别为ABC 和ABD △的重心,P 为线段CM 上点,且DP ⊥平面ABC ,设CP CM λ=,则λ的值为()A.23B.12C.34D.35二、多选题(本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,有选错的得0分,部分选对得2分)9.下列命题中是假命题的为()A.若非零向量m 与平面α平行,则m所在直线与平面α也平行B.若平面,αβ的法向量分别为()()120,1,3,1,0,3n n ==,则//αβC.已知v 为直线l 的方向向量,n 为平面α的法向量,则//v n l α⊥⇔D.若两个空间非零向量,a b 满足0a b +=,则//a b10.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为,A B ,则有()A.公共弦AB 所在直线方程为0x y +=B.线段AB 中垂线方程为10x y +-=C.公共弦AB 的长为22D.P 为圆1O 上一动点,则P 到直线AB 距离的最大值为12+11.如图,在棱长为1的正方体1111ABCD A B C D -中,Q 是棱1DD 上的动点,则下列说法正确的是()A.存在点Q ,使得11//C Q A CB.存在点Q ,使得11C Q A C⊥C.对于任意点Q ,Q 到1AC 的距离的取值范围为,23⎣⎦D.对于任意点Q ,1A CQ △都是钝角三角形12.已知椭圆222:1(2)3x y C a a +=>的左、右焦点分别为12,F F ,过椭圆C 上一点P 和原点O 作直线l 交圆222:4O x y a +=+于,M N 两点,下列结论正确的是()A.椭圆C 离心率的取值范围是1,12⎛⎫⎪⎝⎭B .若12PF PF ⊥,且OP PM =,则2203a =C.若1260F PF ∠=,则12F PF S =D.若126PF PF ⋅=,则7PM PN ⋅=三、填空题(本题共4小题,每小题5分,共20分)13.已知空间向量,,a b c 两两夹角均为60︒,其模均为1,则23a b c +-= __________.14.已知圆22:(1)(1)16C x y -+-=,直线()():2240l m x y x y ---+-=.当直线l 被圆C 截得弦长取得最小值时,直线l 的方程为__________.15.已知点()11,1,A F 是椭圆22184x y+=的左焦点,P 是椭圆上任意一点.则1PF PA +的取值范围为__________.16.如图,在四棱锥S ABCD -中,底面ABCD 是矩形,22,AD SA SD AB P ====为棱AD 的中点,且,SP AB M ⊥为棱SA 上的一点,若BM 与平面SBD 所成角的正弦值为4,则AM =__________.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知圆心为C 的圆经过()()1,3,1,1A B -两点,且圆心C 在直线:0l x y +=上.(1)求圆C 的方程:(2)求过点()3,1-且与圆C 相切的直线方程.18.如图,直二面角D AB E --中,四边形ABCD 是边长为2的正方形,,AE EB F =为CE 上的点,且BF ⊥平面ACE ,(1)求二面角B AC E --的正弦值:(2)求点D 到平面ACE 的距离.19.已知ABC 的顶点()2,0,B AB -边上的高所在的直线方程为470x y -+=.(1)求直线AB 的方程;(2)在两个条件中任选一个,补充在下面问题中并作答.①角A 的平分线所在直线方程为10x y +-=;②BC 边上的中线所在的直线方程为3240x y +-=.若__________.求直线AC 的方程.注:如果选择多个条件分别解答,则按第一个解答计分.20.已知椭圆Γ的中心是坐标原点O ,它的短轴长为,一个焦点F 的坐标为(),0(0)c c >,过点F 且垂直于x 轴的直线与椭圆Γ交于,C D 两点,3CD =.(1)求椭圆Γ的方程;(2)若过点()3,0M 的直线与椭圆Γ相交于,P Q 两点,且OP OQ ⊥,求直线PQ 的方程.21.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,PAD 为等边三角形,平面PAD ⊥平面,ABCD PB BC ⊥.(1)求直线AC 与平面PBC 所成角的正弦值.(2)E 为线段PC 上一点.若直线AE 与平面ABCD 所成的角的正弦值为8,求平面ADE 与平面PBC 夹角的余弦值.22.已知椭圆2222:1(0)x y C a b a b +=>>经过点1,,2M F ⎛⎫ ⎪ ⎪⎝⎭为椭圆C 的右焦点,O 为坐标原点,OFM △的面积为34.(1)求椭圆C 的标准方程:(2)椭圆C 的左、右两个顶点分别为,A B ,过点)K的直线m 的斜率存在且不为0,设直线m 交椭圆C 于点,M N ,直线n 过点()T 且与x 轴垂直,直线AM 交直线n 于点P ,直线BN 交直线n 于点Q ,则TPTQ是否为定值?若是,求出该定值;若不是,请说明理由.2023-2024学年度上学期期中考试高二年级数学科试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分,在每小题的四个选项中,只有一项符合题目要求)1.以下四个命题中,正确的是()A.向量()1,1,3a =-与向量()3,3,6b =- 平行B.已知()()1,1,2,0,2,2A B --,则5AB =C.|()|||||||a b c a b c ⋅=⋅⋅ D.若{},,a b c 为空间的一个基底,则a b + ,b c + ,c a + 构成空间的另一基底【答案】D 【解析】【分析】利用向量共线的坐标表示判断A ;求出向量的模长判断B ;根据数量积的定义求解判断C ;利用共面向量基本定理及基底的概念判断D.【详解】因为336113-=≠-,因此()1,1,3a =- 和()3,3,6b =- 不平行,A 错误;由()()1,1,2,0,2,2A B --,得(1,3,4)AB =--,因此||AB =B 错误;|()||||||cos ,|||a b c a b a b c ⋅=⋅⋅〈〉⋅ ,当|cos ,|1a b 〈〉≠ 时,|()|||||||a b c a b c ⋅≠⋅⋅,C 错误;假设()()a b b c c a λμ+=+++,,R λμ∈,因为{},,a b c 为空间的一个基底,则110λμμλ=⎧⎪=⎨⎪+=⎩,无解,所以a b + ,b c + ,c a + 不共面,即a b + ,b c + ,c a +构成空间的另一基底,D 正确.故选:D2.已知直线l 的一个方向向量为()2,1-,且经过点()1,0A ,则直线l 的方程为()A.10x y --=B.10x y +-=C.210x y --=D.210x y +-=【答案】D 【解析】【分析】由直线的方向向量求出直线的斜率,再由点斜式求出直线方程.【详解】因为直线l 的一个方向向量为()2,1-,所以直线l 的斜率1122k -==-,又直线l 经过点()1,0A ,所以直线l 的方程为()112y x =--,即210x y +-=.故选:D3.如图,在底面为正方形,侧棱垂直于底面的四棱柱1111ABCD A B C D -中,122AAAB ==,则异面直线1A B 与1AD 所成角的余弦值为()A.15B.25C.35D.45【答案】D 【解析】【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得异面直线1A B 与1AD 所成角的余弦值.【详解】在直四棱柱1111ABCD A B C D -中,四边形ABCD 为正方形,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()1,0,0A 、()1,1,0B 、()11,0,2A 、()10,0,2D ,所以,()10,1,2A B =- ,()11,0,2AD =-,所以,11111144cos ,555A B AD A B AD A B AD ⋅==-⨯⋅,因此,异面直线1A B 与1AD 所成角的余弦值为45.故选:D.4.已知椭圆22:14x C y +=,直线:220l x y -=,则l 与C 的位置关系为()A.相交B.相切C.相离D.以上选项都不对【答案】A 【解析】【分析】根据给定条件,联立方程并借助一元二次方程判别式判断得解.【详解】由2222044x y x y ⎧-+=⎪⎨+=⎪⎩消去y 并整理得:2210x x -=,显然2(2)41(1)60∆=-⨯⨯-=>,因此方程组2222044x y x y ⎧-+=⎪⎨+=⎪⎩有两个不同的解,所以l 与C 相交.故选:A5.已知()()()2,1,3,1,4,2,4,5,a b c λ=-=--= ,若,,a b c共面,则实数λ的值为()A.6B.5C.4D.3【答案】B 【解析】【分析】用向量a,b表示向量c,利用共面向量定理构造方程组,求解方程组即得结果.【详解】显然向量()2,1,3a =- 与()1,4,2b =-- 不平行,而a ,b ,c共面,则存在实数x ,y 使c xa yb =+,即()()()4,5,2,1,31,4,2x y λ=-+--,于是244532x y x y x y λ-=⎧⎪-+=⎨⎪-=⎩,解得325x y λ=⎧⎪=⎨⎪=⎩,所以实数λ的值为5.故选:B6.已知P 是椭圆22221(0)x y a b a b+=>>上一点,12F F 、分别是椭圆的左、右焦点、若12PF F △的周长为6,且椭圆上的点到椭圆焦点的最小距离为1,则椭圆的离心率为()A.12B.13C.32D.3【答案】A 【解析】【分析】根据椭圆的定义和性质列式求,a c ,进而可得离心率.【详解】由题意可知:2261a c a c +=⎧⎨-=⎩,解得21a c =⎧⎨=⎩,所以椭圆的离心率12c e a ==.故选:A.7.已知圆22:64120,,C x y x y M N +--+=是圆上的两点,点()1,0A ,且AM AN λ=,则AM AN ⋅ 的值为()A.B.7C. D.8【答案】B 【解析】【分析】根据给定条件,设出直线MN 的方程,与圆C 的方程联立,借助韦达定理及向量数量积的坐标表示求解即得.【详解】圆22:(3)(2)1C x y -+-=的圆心()3,2C ,半径1r =,由AM AN λ=,得点,,A M N 共线,显然直线MN 不垂直于坐标轴,设直线MN 的方程为1x ty =+2|22|47471331t t -+<⇔<<+,由221(3)(2)1x ty x y =+⎧⎨-+-=⎩消去x 得:22(1)4(1)70t y t y +-++=,设1122(,),(,)M x y N x y ,则12271y y t =+,又111122(1,)(,),(,)AM x y ty y AN ty y =-== ,所以22121212(1)7AM AN t y y y y t y y ⋅=+=+= .故选:B8.如图,在正四面体ABCD 中,点,N M 分别为ABC 和ABD △的重心,P 为线段CM 上点,且DP ⊥平面ABC ,设CP CM λ=,则λ的值为()A.23B.12C.34D.35【答案】B 【解析】【分析】根据正四面体的结构特征可知点P 为正四面体ABCD 内切球的球心,利用等体积法运算求解.【详解】在正四面体ABCD 中,若DP ⊥平面ABC ,所以DN CM P ⋂=,则点P 为正四面体ABCD 内切球的球心,设正四面体ABCD 内切球的半径为r ,因为D ABC P ABC P ABD P BCD P ACD V V V V V -----=+++,所以1111133333ABC ABC ABD BCD ACD S DN S r S r S r S r ⋅=⋅+⋅+⋅+⋅△△△△△,解得4DN r NP ==,而14MP N DN CM P ==,所以34CP CM = ,即34λ=.故选:C.二、多选题(本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,有选错的得0分,部分选对得2分)9.下列命题中是假命题的为()A.若非零向量m 与平面α平行,则m所在直线与平面α也平行B.若平面,αβ的法向量分别为()()120,1,3,1,0,3n n ==,则//αβC.已知v 为直线l 的方向向量,n 为平面α的法向量,则//v n l α⊥⇔D.若两个空间非零向量,a b 满足0a b +=,则//a b【答案】ABC 【解析】【分析】利用空间位置关系的向量证明判断ABC ;利用空间向量共线的意义判断D.【详解】若非零向量m 与平面α平行,则m所在直线可能与平面α平行,也可能在平面α内,A 是假命题;显然向量()()120,1,3,1,0,3n n ==不共线,因此平面,αβ不平行,B 为假命题;由v n ⊥ ,得v与平面α平行,则//l α或l ⊂α,C 为假命题;两个空间非零向量,a b 满足0a b +=,即a b =- ,则//a b ,D 为真命题.故选:ABC10.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为,A B ,则有()A.公共弦AB 所在直线方程为0x y +=B.线段AB 中垂线方程为10x y +-=C.公共弦AB 的长为22D.P 为圆1O 上一动点,则P 到直线AB距离的最大值为12+【答案】BD 【解析】【分析】两圆方程作差后可得公共弦方程,从而可判断A ;求出垂直平分线的方程判断B ;利用垂径定理计算弦长判断C ;求出圆1O 到直线的距离的最大值判断D .【详解】圆2121)1:(x O y -+=的圆心1(1,0)O ,半径11r =,222:(1)(2)5O x y ++-=的圆心2(1,2)O -,半径2r =,显然122121||(,)O O r r r r =-+,即圆1O 与圆2O 相交,对于A ,将方程2220x y x +-=与22240x y x y ++-=相减,得公共弦AB 所在直线的方程为440x y -=,即0x y -=,A 错误;对于B ,由选项A 知,直线AB 的斜率1AB k =,则线段AB 中垂线的斜率为1-,而线段AB 中垂线过点1(1,0)O ,于是线段AB 中垂线方程为()011y x -=-⨯-,即10x y +-=,B 正确;对于C ,点1(1,0)O 到直线0x y -=的距离为2d ==,因此AB ==,C 错误;对于D ,P 为圆1O 上一动点,圆心1(1,0)O 到直线0xy -=的距离为2d =,因此点P 到直线AB 距离的最大值为112d r +=+,D 正确.故选:BD11.如图,在棱长为1的正方体1111ABCD A B C D -中,Q 是棱1DD 上的动点,则下列说法正确的是()A.存在点Q ,使得11//C Q A CB.存在点Q ,使得11C Q A C⊥C.对于任意点Q ,Q 到1AC 的距离的取值范围为26,23⎣⎦D.对于任意点Q ,1A CQ △都是钝角三角形【答案】BC 【解析】【分析】根据题意,以A 为原点,建立空间直角坐标系,结合空间向量的坐标运算,对选项逐一判断,即可得到结果.【详解】由题知,在正方体1111ABCD A B C D -中,Q 是棱1DD 上的动点,建立以A 为原点,分别以AB ,AD ,I AA的方向为x 轴、y 轴、z 轴的正方向的空间直角坐标系A xyz -.所以()10,0,1A ,()1,1,0C ,()11,1,1C ,设()0,1,Q a ,其中01a ≤≤,所以()11,0,1C Q a =-- ,()11,1,1A C =-,当11C Q A C λ= ,即()(1,0,1)1,1,1a λ--=-,所以101a λλλ-=⎧⎪=⎨⎪-=-⎩,显然方程组无解,所以不存在λ使得11C Q AC λ=,即不存在点Q ,使得11//C Q A C ,故A 项错误;当111010C Q A C a ⋅=-++-=时,解得0a =,故B 项正确;因为1(0,1,1)A Q a =-,其中01a ≤≤,所以点Q 到1AC=26,23=⎢⎣⎦,故C 项正确;因为()1,0,QC a =- ,()10,1,1QA a =--,其中01a ≤≤,所以2111cos ,0QC QA QC QA QC QA -⋅===≤,所以三角形1A CQ 为直角三角形或钝角三角形,故D 项错误.故选:BC .12.已知椭圆222:1(2)3x y C a a +=>的左、右焦点分别为12,F F ,过椭圆C 上一点P 和原点O 作直线l 交圆222:4O x y a +=+于,M N 两点,下列结论正确的是()A.椭圆C 离心率的取值范围是1,12⎛⎫⎪⎝⎭B.若12PF PF ⊥,且OP PM =,则2203a =C.若1260F PF ∠=,则12F PF S =D.若126PF PF ⋅=,则7PM PN ⋅=【答案】ACD 【解析】【分析】对于A :由椭圆的离心率e 的表达式及a 的范围,可得离心率的范围运算求解;对于B :由题意,可得P 在以12F F 为直径的圆上,再由||||OP PM =,可得P 为OM 的中点,由圆的半径r 可得11||||22OP OM r c ===,从而求出2a 的值;对于C :由椭圆的定义,结合解三角形的相关知识运算求解;对于D :由余弦定理及椭圆的定义,可得||OP 的表达式,然后得到||PM ,||PN 的表达式,进而求出||||PN PM ⋅的值.【详解】对于选项A :由椭圆的方程,可得椭圆的离心率c e a ==,因为2a >,所以24a >,所以2334a <,所以12e =>,结合椭圆的离心率(0,1)e ∈,可得1,12e ⎛⎫∈⎪⎝⎭,故A 正确;对于选项B :若12PF PF ⊥,且OP PM =,则P 在以12F F 为直径的圆上,如图所示:所以122OP c c =⨯=,由题意可得2c =,即2244c a =+,所以224(3)4a a -=+,解得2163a =,故B 错误;对于选项C :设12,PF m PF n ==,由椭圆的定义可得2m n a +=,可知122F F c =,在12PF F △中,由余弦定理可得:()222221423432=+-⨯=+-=-c m n mn m n mn a mn ,整理的4mn =,所以12122=⨯=V F PF S mn ,故C 正确;对于选项D :因为12||||2PF PF a +=,所以22222121212||||(||||)2||||426412PF PF PF PF PF PF a a +=+-⋅=-⨯=-,在1PFO 中,由余弦定理,可得2221111||||||2||||cos PF OP OF OP OF POF =+-∠,①在2PF O △中,由余弦定理,可得2222222||||||2||||cos PF OP OF OP OF POF =+-∠,②而12||||OF OF c ==,12cos cos POF POF ∠=-∠,①+②,可得222212||||2||2PF PF OP c +=+,即2224122||2a OP c -=+,所以222222||2626(3)3OP a c a a a =--=---=-,所以2222||||(||)(||)||4(3)7PM PN r OP r OP r OP a a ⋅=-+=-=+--=,故D 正确.故选:ACD .三、填空题(本题共4小题,每小题5分,共20分)13.已知空间向量,,a b c 两两夹角均为60︒,其模均为1,则23a b c +-= __________.【解析】【分析】利用空间向量数量积的运算法则计算即得.【详解】单位向量,,a b c 两两夹角均为60︒,则111cos 602a b b c c a ︒⋅=⋅=⋅=⨯⨯= ,所以23a b c +-====.14.已知圆22:(1)(1)16C x y -+-=,直线()():2240l m x y x y ---+-=.当直线l 被圆C 截得弦长取得最小值时,直线l 的方程为__________.【答案】40x y +-=【解析】【分析】先求出直线l 所过的定点P ,再根据当直线PC l ⊥时,直线l 被圆C 截得弦长取得最小值,求出直线l 的斜率,进而可得出答案.【详解】在直线()():2240l m x y x y ---+-=中,令22040x y x y --=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,即直线l 过定点()2,2P ,圆()()22:1116C x y -+-=的圆心()1,1C ,半径4r =,当直线PC l ⊥时,直线l 被圆C 截得弦长取得最小值,直线PC 斜率21121PC k -==-,此时直线l 的斜率为1-,所以直线l 的方程为2(2)y x -=--,即40x y +-=.故答案为:40x y +-=15.已知点()11,1,A F 是椭圆22184x y+=的左焦点,P 是椭圆上任意一点.则1PF PA +的取值范围为__________.【答案】[32,52]【解析】【分析】利用椭圆的定义,把1PF 转化为P 到右焦点2F 的距离,再借助线段和差的三角形不等式求解即得.【详解】令2F 是椭圆22184x y+=的右焦点,显然2(2,0)F ,长半轴长22a =,222(21)(01)2F A =-+-=,由椭圆定义知,122242()PF PA a PF PA PA PF +=-+=+-,而222PA PF AF -≤=,当且仅当2,,P A F 共线时等号成立,于是222PA PF -≤-≤,因此当2F 在,P A 之间时,1PF PA +取得最大值52,当A 在2,P F 之间时,1PF PA +取得最小值32,所以1PF PA +的取值范围为[32,52].故答案为:[32,52]16.如图,在四棱锥S ABCD -中,底面ABCD 是矩形,22,AD SA SD AB P ====为棱AD 的中点,且,SP AB M ⊥为棱SA 上的一点,若BM 与平面SBD 所成角的正弦值为34,则AM =__________.【答案】34##0.75【解析】【分析】根据给定条件,证得SP ⊥平面ABCD ,以P 为原点建立空间直角坐标系,利用空间向量求解即得.【详解】过点P 作//PE CD ,交BC 于点E ,由SD SA =,P 为AD 中点,得SP AD ⊥,又SP AB ⊥,且AD AB A ⋂=,,AD AB ⊂平面ABCD ,则SP ⊥平面ABCD ,而PE ⊂平面ABCD ,有SP PE ⊥,又ABCD 是矩形,则,,SP PA PE 两两垂直,以P 为原点,,,PA PE PS 所在直线分别为,,x y z轴建立空间直角坐标系,如图:由2AD SA SD ===,1AB =,P 为AD 中点,得3SP =,E 为BC 的中点,则点()0,0,0P ,(1,0,0)A ,3)S ,(1,1,0)B ,(1,0,0)D -,(2,1,0)DB = ,3DS = ,(3)AS =-,(0,1,0)BA =- ,令(3),01AM AS λλλλ==-≤≤,(,3)BM BA AM λλ=+=-- ,设平面SBD 法向量为(,,)m x y z = ,则2030m DB x y m DS x z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1z =,得(3,23,1)m =- ,由BM 与平面SBD所成角的正弦值为4,得4||||cos ,||||BM m BM m BM m ⋅〈〉==,解得38λ=,所以3||||24AM AS λλ=== .故答案为:34四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知圆心为C 的圆经过()()1,3,1,1A B -两点,且圆心C 在直线:0l x y +=上.(1)求圆C 的方程:(2)求过点()3,1-且与圆C 相切的直线方程.【答案】(1)()()22114x y ++-=;(2)1y =-和433y x =-+.【解析】【分析】(1)求出线段AB 的垂直平分线方程,与已知直线方程联立求出圆心坐标及半径,即得圆的方程.(2)设出切线方程,借助点到直线距离公式即可求得切线方程.【小问1详解】设圆心(),C x y 依题意,,A B 的中点为(0,2),直线AB 的斜率1AB k =-,则线段AB 的垂直平分线方程为20x y -+=,显然圆心C 在线段AB 的垂直平分线上,由020x y x y +=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩,因此圆心C 的坐标是()1,1-,圆的半径2r AC ==,所以圆C 的方程是()()22114x y ++-=.【小问2详解】依题意,过点()3,1-且与圆C 相切的直线斜率存在,设该切线方程为1(3)y k x +=-,即310kx y k ---=,2=,解得0k =或43k =-,所以所求切线方程为1y =-和433y x =-+.18.如图,直二面角D AB E --中,四边形ABCD 是边长为2的正方形,,AE EB F =为CE 上的点,且BF ⊥平面ACE ,(1)求二面角B AC E --的正弦值:(2)求点D 到平面ACE 的距离.【答案】(1)63;(2233【解析】【分析】(1)连接BD AC O ⋂=,连接OF ,利用几何法求出二面角B AC E --的正弦值.(2)由(1)中信息,求出点B 到平面ACE 的距离即得点D 到平面ACE 的距离.【小问1详解】连接BD AC O ⋂=,连接OF ,如图,由四边形ABCD 是边长为2的正方形,得BD AC ⊥,且O 为AC 的中点,BO =由BF ⊥平面ACE ,AC ⊂平面ACE ,得BF AC ⊥,而,,BD BF B BD BF ⋂=⊂平面BOF ,则AC ⊥平面BOF ,又OF ⊂平面BOF ,于是OF AC ⊥,因此BOF ∠是二面角B AC E --的平面角,由二面角D AB E --为直二面角,得平面ABCD ⊥平面ABE ,而平面ABCD ⋂平面ABE AB =,又CB AB ⊥,CB ⊂平面ABCD ,则有CB ⊥平面ABE ,,AE BE ⊂平面ABE ,则CB AE ⊥,由BF ⊥平面ACE ,AE ⊂平面ACE ,得BF AE ⊥,,,BC BF B BC BF =⊂ 平面BCE ,于是⊥AE 平面BCE ,而BE ⊂平面BCE ,则AE BE ⊥,又AE EB =,因此EB =显然CB BE ⊥,从而CE ==,由BF ⊥平面ACE ,,CE OF ⊂平面ACE ,得,BF CE BF OF ⊥⊥,于是3BC BE BF CE ⋅===,则sin 3BF BOF BO ∠==,所以二面角B AC E --的正弦值为3.【小问2详解】由(1)知,3BF =,O 为线段BD 的中点,即平面ACE 经过线段BD 的中点,因此点D 到平面ACE 的距离等于点B 到平面ACE 的距离,而BF ⊥平面ACE ,即点B 到平面ACE 的距离为线段BF 长3,所以点D 到平面ACE 的距离为3.19.已知ABC 的顶点()2,0,B AB -边上的高所在的直线方程为470x y -+=.(1)求直线AB 的方程;(2)在两个条件中任选一个,补充在下面问题中并作答.①角A 的平分线所在直线方程为10x y +-=;②BC 边上的中线所在的直线方程为3240x y +-=.若__________.求直线AC 的方程.注:如果选择多个条件分别解答,则按第一个解答计分.【答案】(1)420x y ++=;(2)470x y +-=.【解析】【分析】(1)根据直线垂直,求得斜率,利用点斜式方程,可得答案.(2)联立直线方程,求得点A 的坐标,选择条件①,②分别利用角平分线的对称或中线的对称,求解即得答案.【小问1详解】由AB 边上的高所在的直线方程为470x y -+=,得直线AB 的斜率14k =-,而ABC 的顶点()2,0B -,所以直线AB 的方程为:1(2)4y x =-+,即420x y ++=.【小问2详解】选①,角A 的平分线所在直线方程为10x y +-=,令该直线与边BC 交于点E ,由10420x y x y +-=⎧⎨++=⎩,解得21x y =⎧⎨=-⎩,即点A 坐标为(2,1)A -,设点B 关于10x y +-=的对称点为()00,B x y ',则000001221022y x x y -⎧=⎪+⎪⎨-⎪+-=⎪⎩,解得0013x y =⎧⎨=⎩,即B '坐标为(1,3),显然点(1,3)B '在直线AC 上,则直线AC 的斜率13421AC k --==--,所以直线AC 的方程为34(1)y x -=--,即470x y +-=.选②,BC 边上的中线所在的直线方程为3240x y +-=,由4203240x y x y ++=⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即点A 坐标为(2,1)A -,设点11(,)C x y ,则BC 的中点112(,)22x y D -在直线3240x y +-=上,即113202242x y⋅+⋅-=-,整理得1132140x y +-=,又点11(,)C x y 在直线470x y -+=上,即11470x y -+=,由111132140470x y x y +-=⎧⎨-+=⎩,解得110,7x y ==,即点(0,7)C ,直线AC 的斜率17420AC k --==--,所以直线AC 的方程为34(1)y x -=--,即470x y +-=.20.已知椭圆Γ的中心是坐标原点O ,它的短轴长为,一个焦点F 的坐标为(),0(0)c c >,过点F 且垂直于x 轴的直线与椭圆Γ交于,C D 两点,3CD =.(1)求椭圆Γ的方程;(2)若过点()3,0M 的直线与椭圆Γ相交于,P Q 两点,且OP OQ ⊥,求直线PQ 的方程.【答案】(1)22162x y +=(2)()35y x =±-【解析】【分析】(1)根据短轴长和通径求,a b ,即可得椭圆方程;(2)设()()1122,,,P x y Q x y ,利用“设而不求法”把OP OQ ⊥转化为12120x x y y +=,求出斜率k ,即可求出直线方程.【小问1详解】因为短轴长为,所以b =,由题意可知:2243===b CD a a,解得a =,所以椭圆方程为22162x y +=.【小问2详解】因为点()3,0M 在椭圆22162x y +=外,所以过该点的直线PQ 的斜率必然存在,可设直线PQ 的方程为()3y k x =-,()()1122,,,P x y Q x y ,联立方程()221623x y y k x ⎧+=⎪⎨⎪=-⎩,消去y 得()222213182760k x k x k +-+-=,则()()()()22222181327649604k k k k ∆--+-=-=->,解得33k -<<,由根与系数的关系可知:112222221827613,13x x x k x k k k -+++==,可得[]22121212233()913k y y k x x x x k=-++=+.由OP OQ ⊥得12120x x y y +=,即22222227633060131313k k k k k k --+==+++,解得:5k =±,符合0∆>,所以直线PQ的方程为()35y x =±-.21.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,PAD 为等边三角形,平面PAD ⊥平面,ABCD PB BC ⊥.(1)求直线AC 与平面PBC 所成角的正弦值.(2)E 为线段PC 上一点.若直线AE 与平面ABCD 所成的角的正弦值为38,求平面ADE 与平面PBC 夹角的余弦值.【答案】(1)24(2)1010【解析】【分析】(1)取AD 中点O ,连接OB ,OP .通过证明,OP OB AD OB ⊥⊥,可得3OB =,6PB =,由等体积法可求得点A 到平面PBC 的距离,进而可求线面夹角;(2)建立以O 为原点的空间直角坐标系,由直线AE 与平面ABCD 所成的角的正弦值为3010,可得232,3333E ⎛- ⎝.求得平面ADE 的法向量后,利用空间向量可得平面ADE 与平面PBC 夹角的余弦值.【小问1详解】取AD 中点O ,连接OB ,OP ,因为PAD 为等边三角形,则OP AD ⊥,且1,3OA OP ==又因为平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,OP ⊂平面PAD ,所以OP ⊥平面ABC ,由OB ⊂平面ABCD ,可得OP OB ⊥,又因为PB BC ⊥,且//BC AD ,可得PB AD ⊥,且OP AD ⊥,OP ⊂平面POB ,PB ⊂平面POB ,OP PB P = ,所以AD ⊥平面POB .由OB ⊂平面POB ,可知AD OB ⊥,则3OB =,6PB =60BAD ∠=︒,在ACD 中,可知120ADC ∠=︒,由余弦定理可得AC =,设点A 到平面PBC 的距离为h ,则--=A PBC P ABC V V 即1133PBC ABC S h S OP =⋅⋅△△,解得62h =,所以直线AC 与平面PBC所成角的正弦值为224==hAC .【小问2详解】由(1)可知:分别以OA ,OB ,OP 为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,则P,(C -,()1,0,0A ,()1,0,0D -,()B,可得(2PC =-,(OP = ,()2,0,0AD =-,(PB = ,设()01PE PC λλ=≤≤uur uu u r,则(2,)PE =-λ,()2OE OP PE λ=+=--,得E ()2λ--,则(2)AE λ=---,因为OP ⊥平面ABC ,则取平面ABCD 的法向量1(0,0,1)n =.,设AE 与平面ABCD 所成的角为θ,则1sin cos ,10AE n θ==,解得13λ=,则233E ⎛- ⎝,5333,AE ⎛=- ⎪⎝⎭.设平面ADE 的法向量2(,,)n x y z = ,则222053230333n AD x n AE x y z ⎧⋅=-=⎪⎨⋅=-++=⎪⎩,令2y =,则取平面ADE 的法向量2(0,2,1)n =-,设平面PBC 的法向量(,,)m a b c =,则20m PC a m PB ⎧⋅=-+-=⎪⎨⋅=-=⎪⎩,令1b =,则取平面PBC 的法向量(0,1,1)m =,故平面ADE 与平面PBC夹角的余弦值为222cos ,10⋅==⋅u r u u ru r u u ru r u u r m n m n m n.22.已知椭圆2222:1(0)x y C a b a b +=>>经过点31,,2M F ⎛⎫ ⎪ ⎪⎝⎭为椭圆C 的右焦点,O 为坐标原点,OFM △的面积为34.(1)求椭圆C 的标准方程:(2)椭圆C 的左、右两个顶点分别为,A B,过点)K的直线m 的斜率存在且不为0,设直线m 交椭圆C 于点,M N ,直线n过点()T 且与x 轴垂直,直线AM 交直线n 于点P ,直线BN 交直线n 于点Q ,则TPTQ是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)2214x y +=(2)是定值,定值为1【解析】【分析】(1)根据已知条件列方程和代入法求得Γ的方程.(2)设出直线m 的方程并与曲线Γ的方程联立,化简写出根与系数关系,求得,P Q 两点的纵坐标,由此化简TPTQ来求得正确答案.【小问1详解】由题意可得222221314133224a b c a b c⎧+=⎪⎪⎪⨯⨯=⎨⎪=+⎪⎪⎩,解得22241a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程2214x y +=.【小问2详解】因为)K在椭圆2214x y +=内,则直线m 与椭圆必相交,且直线m 的斜率存在且不为0,设过点K 的直线m的方程为)0x ty t =+≠,1122(,),(,)M x y N x y联立方程2214x ty x y ⎧=+⎪⎨+=⎪⎩,消去x 得()22410t y ++-=,则121222231,44y y y y t t +=-=-++,可知12122()46=-=++t ty y y y t ,又因为()()2,0,2,0A B -,直线:=n x直线AM 的方程为()1122y y x x =++,则(1122=+P y y x ,同理可得(2222=-+-Q y y x ,所以(()()1221272-==-+TP y x TQyx ,其中()()1212112212222+-==+y ty ty y yy x y x)(11122)7772++--++=y y y y y,所以((771=⨯=--TP TQ(定值).。
高二期中考试(数学)试卷含答案解析
高二期中考试(数学)(考试总分:150 分)一、单选题(本题共计12小题,总分60分)1.(5分)1.2i12i-=+()A.1 B.−1 C.i D.−i2.(5分)2.函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+13.(5分)3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.(5分)4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56%C.46% D.42%5.(5分)5.设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01B.0.1C.1D.106.(5分)6.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C .20D .367.(5分)7.在5(2)x -的展开式中,2x 的系数为( ).A .5-B .5C .10-D .108.(5分)8.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A .2种B .3种C .6种D .8种9.(5分)9.北京2022年冬奥会和冬残奥会色彩系统的主色包括霞光红、迎春黄、天霁蓝、长城灰、瑞雪白;间色包括天青、梅红、竹绿、冰蓝、吉柿;辅助色包括墨、金、银.若各赛事纪念品的色彩设计要求:主色至少一种、至多两种,间色两种、辅助色一种,则某个纪念品的色彩搭配中包含有瑞雪白、冰蓝、银色这三种颜色的概率为( ) A .8225B .245C .115D .21510.(5分)10.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( ) A .5B .8C .10D .1511.(5分)11.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名B .18名C .24名D .32名12.(5分)12.已知定义在(0,+∞)上的连续函数()y f x =满足:()()x xf x f x xe '-=且(1)3f =-,(2)0f =.则函数()y f x =( )A .有极小值,无极大值B .有极大值,无极小值C .既有极小值又有极大值D .既无极小值又无极大值二、 填空题 (本题共计4小题,总分20分)13.(5分)13.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.14.(5分)14.262()x x+的展开式中常数项是__________(用数字作答).15.(5分)15.设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -=__________.16.(5分)16.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(10分)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围.18.(12分)18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i iy y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.19.(12分)19.(12分)已知函数3()6ln f x x x =+,()'f x 为()f x 的导函数.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅰ)求函数9()()()g x f x f x x'=-+的单调区间和极值; 20.(12分)20.(12分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n . (1)求p 1、q 1和p 2、q 2;(2)求X 2的分布列和数学期望E (X 2) .21.(12分)21.(12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,22.(12分)22.(12分)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点; (Ⅰ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:(Ⅰ0x ≤≤; (Ⅰ)00(e )(e 1)(1)x x f a a ≥--.答案一、 单选题 (本题共计12小题,总分60分) 1.(5分)1D 2.(5分) 2B 3.(5分) 3 C 4.(5分) 4C 5.(5分) 5C 6.(5分)6B 7.(5分) 7C 8.(5分) 8 C 9.(5分) 9 B 10.(5分) 10C 11.(5分) 11 B 12.(5分) 12 A二、 填空题 (本题共计4小题,总分20分) 13.(5分)13.1 14.(5分) 14. 24015.(5分) 15. 16.(5分) 16.45三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(10分)【解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.……(5分)(2)()()()()22222121211f x x a x a x a x a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.……(10分)18.(12分)18.(12分)【答案】(1)12000;(2)0.94;(3)详见解析【解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=……(4分) (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20()()0.943iix x y y r --===≈∑……(4分)(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计. ……(4分)19.(12分)19.(12分) 【答案】(Ⅰ)98y x =-;(Ⅰ)()g x 的极小值为(1)1g =,无极大值;【解】(Ⅰ) ∵()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =, ∴曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-.…4分 (Ⅰ) 依题意,()()32336ln ,0,g x x x x x x=-++∈+∞. 从而可得()2263'36g x x x x x =-+-,整理可得:323(1)(1)()x x g x x '-+=,令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:,+∞); g (x )的极小值为g (1)=1,无极大值. ……(12分)20.(12分)20.(12分)【答案】(1)112212716,,332727p q p q ====;;(2);详见解析【解】(1)11131232,333333p q ⨯⨯====⨯⨯, 211131211227++3333333927p p q ⨯⨯=⨯⨯=⨯⨯=⨯⨯, 211231122222516+0+3333333927q p q ⨯⨯+⨯=⨯⨯+=⨯⨯=⨯⨯.……(8分) (2)227(2)27P X p ===;2216(1)27P X q ===;22124(0)33327P X ==⨯⨯=;∴2X 的分布列为故210()9E X =.;……(12分) 21.(12分)21.(12分)【答案】(1)0.64;(2)答案见解析;(3)有.【解】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=;……(4分) (2)由所给数据,可得22⨯列联表为:(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. ……(12分)22.(12分)22.(12分)【答案】(I )证明见解析,(II )(i )证明见解析,(ii )证明见解析. 【解】(I )()1,0,1,()0,()x x f x e x e f x f x ''=->∴>∴>∴在(0,)+∞上单调递增,2212,(2)240,(0)10a f e a e f a <≤∴=--≥->=-<,所以由零点存在定理得()f x 在(0,)+∞上有唯一零点;……(4分) (II )(i )000()0,0xf x e x a =∴--=,002000012(1)xxx e x x e x ≤⇔--≤≤--,令22()1(02),()1(02),2xxx g x e x x x h x e x x =---<<=---<<一方面:1()1(),xh x e x h x '=--= 1()10x h x e '=->,()(0)0,()h x h h x ''∴>=∴在(0,2)单调递增,()(0)0h x h ∴>=,2210,2(1)2xx x e x e x x ∴--->-->,另一方面:1211a a <≤∴-≤,所以当01x ≥0x ≤成立,因此只需证明当01x <<时2()10x g x e x x =---≤,因为11()12()()20ln 2x x g x e x g x g x e x ''=--==-=⇒=, 当(0,ln 2)x ∈时,1()0g x '<,当(ln 2,1)x ∈时,1()0g x '>, 所以()max{(0),(1)},(0)0,(1)30,()0g x g g g g e g x ''''''<==-<∴<,()g x ∴在(0,1)单调递减,()(0)0g x g ∴<=,21x e x x ∴--<,综上,002000012(1),x xex x e x x ∴--≤≤--≤≤(8分)(ii )0000000()()()[(1)(2)]xa a t x x f e x f x a x e x a e ==+=-+-,00()2(1)(2)0a a t x e x a e '=-+->0x ≤,0()(2)](1)(1)2)a a a a t x t e a e e a e ∴≥=--=--+-,因为12a <≤,所以,2(1)ae e a a >≥-,0()(1)(1)2(2)a t x e a a e ∴≥--+--,只需证明22(2)(1)(1)a a e e a --≥--, 即只需证明224(2)(1)(1)ae e a -≥--, 令22()4(2)(1)(1),(12)as a e e a a =----<≤, 则22()8(2)(1)8(2)(1)0aas a e e e e e e '=---≥--->,2()(1)4(2)0s a s e ∴>=->,即224(2)(1)(1)a e e a -≥--成立,因此()0x 0e (e 1)(1)x f a a≥--.……(12分)。
江苏省无锡市2023-2024学年高二上学期期中数学试题含解析
2023年-2024学年度第一学期期中考试高二数学试卷(答案在最后)一、单选题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.直线()1330a x y +++=与直线()110x a y +-+=平行,则实数a 的值为()A.2B.12C.2-D.2或2-【答案】C 【解析】【分析】求出两直线不相交时的a 值,再验证即可得解.【详解】当直线()1330a x y +++=与直线()110x a y +-+=不相交时,(1)(1)3a a +-=,解得2a =±,当2a =时,直线3330x y ++=与直线10x y ++=重合,不符合题意,舍去;当2a =-时,直线330x y -++=,即330x y --=与直线310x y -+=平行,所以实数a 的值为2-.故选:C2.已知A ,B ,C 三点不共线,对空间任意一点O ,若311488OP OA OB OC =++,则可以得到结论是,,,P A B C 四点()A.共面B.不一定共面C.无法判断是否共面D.不共面【答案】A 【解析】【分析】根据空间向量线性运算化简得1166AP PB PC =+,即可判断四点位置情况.【详解】311488OP OA OB OC =++,则3311114488808OC OA OP OB OP OP ---+=+,所以3110488PA PB PC ++=,则1166A P PBC P -=- ,故,,,P A B C 四点共面.故选:A3.已知向量()2a = ,向量(= b ,则向量a 在向量b上的投影向量为()A.122骣ççç÷ç桫,,0 B.()2C.(D.)【答案】D 【解析】【分析】由空间向量数量积的几何意义及投影向量的定义,应用向量数量积、模长的坐标运算求向量a 在向量b上的投影向量.【详解】向量a 在向量b 上的投影向量为()434||||a b b b b ⋅⋅=⋅=.故选:D.4.若圆222410x y x y ++-+=被直线()2200,0ax by a b -+=>>平分,则11a b+的最小值为()A.14B.9C.4D.19【答案】C 【解析】【分析】由题意得圆心(1,2)-在直线()2200,0ax by a b -+=>>上,即得1a b +=,再利用基本不等式“1”的妙用即可求解.【详解】由圆222410x y x y ++-+=被直线()2200,0ax by a b -+=>>平分,得圆心(1,2)-在直线()2200,0ax by a b -+=>>上,则2220a b --+=,即1a b +=,而0,0a b >>,则1111()()224b a a b a b a b a b +=++=++≥=,当且仅当b a a b =,即12a b ==时取等号,所以11a b+的最小值为4.故选:C5.已知平行六面体1111ABCD A B C D -的所有棱长均为2,1160BAD BAA DAA ∠=∠=∠=︒,M 为11C D 的中点,则向量AM的模长为()A.B.4C.D.【答案】C 【解析】【分析】以1,,AB AD AA 为基底表示出AM,再利用数量积的运算律计算可得.【详解】由平行六面体1111ABCD A B C D -的所有棱长均为2,1160BAD BAADAA ∠=∠=∠=︒,得1122cos602AB AD AA AD AB AA ⋅=⋅=⋅=⨯⨯︒=,依题意,11112AM AD DD D M AB AD AA =++=++,因此22222111111()224AM AB AD AA AB AD AA AB AD AB AA AD AA =++=+++⋅+⋅+⋅22212222222174=⨯+++++⨯=,所以MN = .故选:C6.已知A 、B 为椭圆22143x y +=上两点,O 为坐标原点,M (异于点O )为弦AB 中点,若AB 两点连线斜率为12,则OM 两点连线斜率为()A.23-B.32-C.34-D.43-【答案】B 【解析】【分析】首先利用直线和椭圆的位置关系建立方程组,进一步利用一元二次方程根和系数关系式和中点坐标公式的应用求出结果.【详解】由于直线AB 的斜率为12,故设直线的方程为12y x b =+,设1122(,),(,)A x y B x y ,故2214312x y y x b ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得2230x bx b ++-=,则()222431230b b b ∆=--=->,即22b -<<,故12x x b +=-,故()121213222b y y x x b +=++=.利用中点坐标公式,3,,24b b M b ⎛⎫-⎪⎝⎭不是零,故34322OMbk b ==--.故选:B .7.已知点P 是圆M :()()22222x y -+-=上的动点,线段AB 是圆C :()()22114x y +++=的一条动弦,且AB =PA PB +的最大值是()A.1+B.C.1+D.2+【答案】D 【解析】【分析】设AB 中点为D ,计算1CD =,CM =2PA PB PD +=,计算最值得到答案.【详解】圆M :()()22222x y -+-=,圆心()2,2M,半径1r =;圆C :()()22114x y +++=,圆心()1,1C --,半径22r =;设AB 中点为D ,则圆心C 到直线AB 的距离为1CD ==,圆心距为CM ==,2PA PB PD +=,PD最大值为11+=,故PA PB +的最大值为2+.故选:D.8.《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.在如图所示的鳖臑A BCD -中,AB ⊥平面BCD ,90BDC ∠=︒,222BD AB CD ===,E 是BC 的中点,H 是ABD △内的动点(含边界),且//EH 平面ACD ,则CA EH ⋅的取值范围是()A.[]0,3 B.1,32⎡⎤⎢⎥⎣⎦C.111,22⎡⎤⎢⎥⎣⎦D.113,2⎡⎤⎢⎥⎣⎦【答案】B 【解析】【分析】依题意作出图形,利用面面平行的判定定理可得平面//EFG 平面ACD ,再由线面垂直的判定定理可得CD ⊥平面ABD ,进而有EG FG ⊥,cos FGEFG EF∠=,结合空间向量的数量积运算即可求解.【详解】设F ,G 分别为AB ,BD 的中点,连接FG ,EF ,EG ,如图,易得//FG AD ,//EF AC ,//EG CD ,因为FG ⊂平面EFG ,AD ⊄平面EFG ,所以//AD 平面EFG ,同理//AC 平面EFG ,又因为,AC AD ⊂平面ACD ,AC AD A ⋂=,所以平面//EFG 平面ACD .因为//EH 平面ACD ,所以H 为线段FG 上的点.由AB ⊥平面BCD ,CD ⊂平面BCD ,得AB CD ⊥,又90BDC ︒∠=,则BD CD ⊥,由,,AB BD B AB BD =⊂I 平面ABD ,得CD ⊥平面ABD ,因为//EG CD ,所以EG ⊥平面ABD ,EG FG ⊥,cos FGEFG EF∠=.因为222BD AB CD ===,所以122FG AD ==,BC =,122EF AC ==.所以()2222CA EH EF EF FH EF EF FH⋅=⋅+=+⋅ ()2222cos π22cos EF EF FH EFG EF EF FH EFG =+⋅-∠=-⋅∠2223EF FH FG =-⋅= .因为0,2FH ⎡∈⎢⎣⎦,所以1,32CA EH ⎡⎤⋅∈⎢⎥⎣⎦ .故选:B.【点睛】关键点睛:本题解决的关键是推得H 为线段FG上的点,从而利用空间向量数量积的定义得到3CA EH ⋅= ,从而得解.二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)9.直线l 过点()2,1A ,且在两坐标轴上的截距的绝对值相等,则直线l 在y 轴上的截距可能是()A.1- B.1C.3D.0【答案】ACD 【解析】【分析】考虑直线过原点,直线不过原点且截距相同,直线不过原点且截距相反,计算得到答案.【详解】当直线过原点时,设直线方程为y kx =,则12k =,解得12k =,此时在y 轴上的截距为0;当直线不过原点且截距相同,设直线方程为1x ya a +=,则211a a +=,解得3a =,此时在y 轴上的截距为3;当直线不过原点且截距相反,设直线方程为1x y a a -=,则211a a-=,解得1a =,此时在y 轴上的截距为1-;综上所述:截距可能为0,1,3-.故选:ACD10.已知直线l :kx y k 0--=,圆M :2210x y Dx Ey ++++=的圆心坐标为()2,1,则下列说法正确的是()A.直线l 恒过点()1,0B .4D =-,2E =-C.直线l 被圆M 截得的最短弦长为D.若点(),P x y 是圆M 上一动点,x y -的最小值为-【答案】AB 【解析】【分析】直线l 恒过点()1,0A ,A 正确,根据圆的一般方程计算B 正确,计算弦长的最小值为C 错误,确定1x y ⎡-∈-+⎣,D 错误,得到答案.【详解】圆M :2210x y Dx Ey ++++=的圆心坐标为()2,1M ,故22D -=,12E -=,解得4D =-,2E =-,圆方程为()()22214x y -+-=,对选项A :因为直线():1l y k x =-恒过点()1,0A ,正确;对选项B :4D =-,2E =-,正确;对选项C :当直线l 与AM 垂直时,弦最短,此时AM =弦长为=,错误;对选项D :设x y a -=,即0x y a --=2=,解得1a =-或1a =+,故1x y ⎡-∈-+⎣,错误;故选:AB11.已知椭圆M :()222210x y a b a b+=>>的左、右焦点分别为()1F ,)2F ,过点2F 且垂直于x 轴的直线与该椭圆相交于A ,B 两点,且1AB =,点P 在该椭圆上,则下列说法正确的是()A.存在点P ,使得1290F PF ∠=︒B.若1260F PF ∠=︒,则123F PF S =△C.满足12F PF △为等腰三角形的点P 只有2个D.12PF PF -的取值范围为⎡-⎣【答案】AD 【解析】【分析】求出椭圆方程,利用动点P 的位置变化,研究12F PF ∠的取值范围判断A ;根据椭圆的几何性质及余弦定理求解判断B ;分类讨论,借助方程组求动点坐标判断C ;利用三角形不等式求解判断D.【详解】由椭圆2222:1x y M a b+=的左右焦点分别为()1F 、)2F ,得c ==将x =代入22221x y a b +=,则22231y a b +=,解得2b y a =±,不妨令2b A a ⎫⎪⎭,2b B a ⎫-⎪⎭,由1AB =,则221b a =,即22a b =,将其代入223a b -=,可得232a a -=,化简得()()2320a a +-=,由0a >,解得2a =,则椭圆22:14x M y +=,对于A ,当点P 为椭圆的上(或下)顶点时,12F PF ∠最大,如图:由椭圆22:14x M y +=,则1PO =,22PF =,在2Rt OPF 中,260POF ∠=,由对称性得12120F PF ∠=,因此12F PF ∠的取值范围为2π0,3⎡⎤⎢⎥⎣⎦,A 正确;对于B ,如图:设1PF m =,2PF n =,则24m n a +==,1223F F c ==,在12F PF △中,由余弦定理得22212121212cos 2PF PF F F F PF PF PF +-∠=⋅⋅,即2212cos 602m n mn+-=o,整理得43=mn ,因此121212113sin sin 60223F PF S PF PF F PF mn =⋅⋅⋅∠==,B 错误;对于C ,设1PF m =,2PF n =,则4m n +=,1223F F c ==,当2m n ==时,12F PF △为等腰三角形,此时P 的坐标为()0,1或()0,1-,当12m F F =时,12F PF △为等腰三角形,此时3m =,设(),P x y ,则()22221433x y x y ⎧+=⎪⎪++=,消去y 得2383320x x +-=,由(()28343325760∆=-⨯⨯-=>,则方程有解,C 错误;对于D ,显然12123||||||||PF PF F F -≤=,当且仅当点P 为椭圆长轴端点时取等号,因此12|||323|2PF PF -≤≤-D 正确.故选:AD12.直三棱柱111ABC A B C -中,1,1AB AC AB AC AA ⊥===,点D 是线段1BC 上的动点(不含端点),则()A.CD 与1AC 一定不垂直B.AC //平面1A BDC.三棱锥1A ABC -的外接球表面积为3πD.AD DC +的最小值为【答案】BCD 【解析】【分析】利用空间向量法判断AD 选项的正确性,根据线面平行、外接球的知识判断BC 选项的正确性.【详解】A 选项,以A 为原点建立如图所示空间直角坐标系,()()()()110,1,0,1,0,0,0,1,1,1,1,1C B C BC =-,设()101BD BC λλ=<<,则(),,BD λλλ=- ,()()1,,,1,1,AD AB BD CD λλλλλλ=+=-=--,1121CD AC λλλ⋅=-+=-,可知当12λ=时,CD 与1AC 垂直,所以A 选项错误.B 选项,由于11//,AC A C AC ⊄平面11A BC ,11AC ⊂平面11A BC ,所以//AC 平面11A BC ,而平面1A BD 即平面11A BC ,所以AC //平面1A BD ,B 选项正确.C 选项,将三棱锥1A ABC -补形成正方体如图所示,三棱锥1A ABC -的外接球也即正方体的外接球,设正方体外接球的半径为R ,则2R =所以外接球的表面积为24πR 3π=,C 选项正确.D 选项,先证明不等式≥,当且仅当ad bc =且0ac bd +≤时等号成立:设()()(),,,,,x a b y c d x y a c b d ==+=++,所以x y x y +=+=根据向量加法的三角形法则可知x y x y +≥+,当,x y同向,即ad bc =且0ac bd +>时等号成立,+≥,当且仅当ad bc =且0ac bd +≤时等号成立.(证毕)所以AD CD AD CD +=+===≥,当且仅当1233λλ⎫⎫-=-⎪⎪⎭⎭12033λλ⎫⎫--+⎪⎪⎭⎭,即12λ=时等号成立,所以D 选项正确.故选:BCD三、填空题(本题共4小题,每题5分,共20分.)13.直线2390x y --=的一个方向向量为________.【答案】2(1,)3(答案不唯一)【解析】【分析】根据给定的直线方程,求出直线的斜率,再写出方向向量即可.【详解】直线2390x y --=的斜率23k =,所以直线直线2390x y --=的一个方向向量为2(1,)3.故答案为:2(1,)314.已知直线1l :220x y --=的倾斜角为θ,直线2l 的倾斜角为2θ,且直线2l 在y 轴上的截距为3,则直线2l 的一般式方程为________.【答案】4390x y -+=【解析】【分析】确定1tan 2θ=,计算4tan 23θ=,得到直线斜率,再计算直线方程得到答案.【详解】直线1l :220x y --=的倾斜角为θ,则1tan 2θ=,故22tan 4tan 21tan 3θθθ==-,故直线2l 的斜率为43k =,截距为3,故直线方程为433y x =+,即4390x y -+=.故答案为:4390x y -+=15.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上任意一点,则OP ·FP 的取值范围为________.【答案】[]2,6【解析】【分析】可设(,)P x y ,可求得OP 与FP 的坐标,利用向量的数量积的坐标公式结合椭圆的方程即可求得其答案.【详解】点P 为椭圆22143x y +=上的任意一点,设(,)(22,P x y x y -≤≤≤≤,依题意得左焦点(1,0)F -,(,)OP x y = ,(1,)FP x y =+uu r ,2(1)OP FP x x y ⋅=++ 221234x x x -=++2134x x =++21(1)22x =++,22x -≤≤ ,10122x ∴≤+≤,210(1)42x ∴≤+≤,212(1)262x ∴≤++≤.则26OP FP ≤⋅≤ .故答案为:[]2,6.16.已知圆C :()()221310x y -++=和点()5,M t ,若圆C 上存在两点A ,B 使得MA MB ⊥,则实数t 的取值范围是________.【答案】51t -≤≤-【解析】【分析】利用题设条件,分析MA MB ⊥且与圆C 交于,A B 的临界情况,由点M 在临界点之间移动的变化情况运算即可得解.【详解】圆C :()()221310x y -++=,则半径为,()1,3C -,如上图,对于直线5x =上任意一点()5,M t ,当,AM BM 均为圆的切线时AMB ∠最大,由题意,MA MB ⊥即90AMB ∠= 时,此时M 为满足题设条件的临界点,此时有=sin 2AC AMC CM ∠≥.当M 在临界点之间移动时,有2AC CM ≥2≥,即有:()234t +≤,解得:51t -≤≤-.故答案为:51t -≤≤-.四、解答题(共6小题,共70分.解答应写出文字说明,演算步骤或证明过程.)17.已知ABC 的顶点()4,2A ,顶点C 在x 轴上,AB 边上的高所在的直线方程为20x y m ++=.(1)求直线AB 的方程;(2)若AC 边上的中线所在的直线方程为40x y --=,求m 的值.【答案】(1)260x y --=;(2)6-.【解析】【分析】(1)求出直线AB 的斜率,利用点斜式可得出直线AB 的方程;(2)设点(),0C t ,利用AC 的中点在直线40x y --=上,求出t 值,再由点C 在直线20x y m ++=上求出m 值.【小问1详解】依题意,由AB 边上的高所在的直线的斜率为12-,得直线AB 的斜率为2,又()4,2A ,所以直线AB 的方程为()224y x -=-,即260x y --=.【小问2详解】由C 点在x 轴上,设(),0C t ,则线段AC 的中点4(,1)2t D +,由点D 在直线40x y --=上,得41402t +--=,得6t =,即()6,0C ,又点C 在直线20x y m ++=上,因此60m +=,解得6m =-,所以m 的值为6-.18.如图,在四棱锥O ABCD -中,底面ABCD 是边长为2的正方形,OA ⊥底面ABCD ,2OA =,M 为OA 的中点,N 为BC 的中点,解答以下问题:(1)证明:直线//MN 平面OCD ;(2)求直线AC 与平面OCD 所成角的余弦值.(3)求点N 到平面OCD 的距离.【答案】(1)证明见解析;(2)2;(3)2.【解析】【分析】(1)根据给定条件,以A 为坐标原点建立空间直角坐标系,利用空间位置关系的向量证明推理即得.(2)由(1)结论,利用线面角的向量求法求解即得.(3)由(1)结论,利用点到平面距离的向量求法求解即得.【小问1详解】在四棱锥O ABCD -中,底面ABCD 是边长为2的正方形,OA ⊥底面ABCD ,则,,AB AD AO 两两垂直,以A 为坐标原点,,,AB AD AO 所在直线分别为,,x y z轴,建立空间直角坐标系,如图,由2OA =,M 为OA 的中点,N 为BC 的中点,得()()()()()()0,0,0,0,0,1,2,1,0,0,0,2,2,2,0,0,2,0A M N O C D ,即()()()2,1,1,2,2,2,0,2,2MN OC OD =-=-=- ,设平面OCD 的法向量为(),,n x y z = ,则2220220n OC x y z n OD y z ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,取1z =,得()0,1,1n = ,则110n MN ⋅=-= ,MN ⊄平面OCD ,所以直线//MN 平面OCD .【小问2详解】由(1)知,()2,2,0AC = ,且平面OCD 的一个法向量为()0,1,1n = ,设直线AC 与平面OCD 所成角为θ,则||1sin |cos ,|2||||n AC n AC n AC θ⋅=〈〉==,cos 2θ==所以直线AC 与平面OCD所成角的余弦值为2【小问3详解】由(1)知,()0,1,0NC = ,且平面OCD 的一个法向量为()0,1,1n = ,所以点N 到平面OCD的距离||2||NC n d n ⋅=== .19.一个火山口的周围是无人区,无人区分布在以火山口中心()0,0O 为圆心,半径为400km 的圆形区域内,一辆运输车位于火山口的正东方向600km 处准备出发,若运输车沿北偏西60°方向以每小时km 的速度做匀速直线运动:(1)运输车将在无人区经历多少小时?(2)若运输车仍位于火山口的正东方向,且按原来的速度和方向前进,为使该运输车成功避开无人区,求至少应离火山口多远出发才安全?【答案】(1)5小时(2)800km【解析】【分析】(1)根据题意,以火山口的位置为坐标原点O ,其正东方向为x 轴正方向,正北方向为y 轴正方向,建立平面直角坐标系,结合点到直线的距离公式求得弦长,即可得到结果;(2)根据题意,由直线与圆相切,即可得到结果.【小问1详解】以火山口的位置为坐标原点O ,其正东方向为x 轴正方向,正北方向为y 轴正方向,建立平面直角坐标系,如图所示,记运输车从()600,0A 出发,点N 处开始进入无人区,到M 处离开无人区,则圆O 方程为222400x y +=,由运输车沿北偏西60°方向运动,可得直线AB的斜率tan1503k =︒=-,则():6003AB l y x =--,即30y +-=,因为O 到AB l 的距离为300km OO '==,则2MN =⨯==,5=小时.【小问2详解】设运输车至少应离火山口km a 出发才安全,此时运输车的行驶直线刚好与圆O 相切,且直线方程为)33y x a =--30y +-=,则O到直线的距离400d ==,解得800a =,即运输车至少应离火山口800km 出发才安全.20.已知点()4,1-A ,()0,3B ,圆C 的半径为1.(1)若圆C 的圆心坐标为()3,2C ,过点A 作圆C 的切线,求此切线的方程;(2)若圆C 的圆心C 在直线l :1y x =-上,且圆C 上存在点M ,使2MB MO =,O 为坐标原点,求圆C 圆心的横坐标a 的取值范围.【答案】(1)4x =或43130x y +-=(2),,2222⎡--⎢⎣⎦⎣⎦【解析】【分析】(1)确定圆方程,考虑切线斜率不存在和存在两种情况,根据圆心到直线的距离等于半径计算得到答案.(2)确定圆方程,根据2MB MO =得到M 的轨迹为圆,确定两圆的位置关系,解得答案.【小问1详解】圆C 的圆心坐标为()3,2C ,半径为1,故圆方程为()()22321x y -+-=,当切线斜率不存在时,易知4x =与圆相切;当切线斜率存在时,设切线方程为()41y k x =--,即410kx y k ---=,1=,解得43k =-,切线方程为:43130x y +-=;综上所述:切线方程为4x =或43130x y +-=.【小问2详解】圆方程为()()2211x a y a -+-+=,设(),M x y ,2MB MO ==整理得的()22+1=4x y +,故M 在两圆的交点上,故两圆相切或者相交,即212+1-≤≤,解得32222a -≤≤-或23222a ≤≤,故322232,,2222a ⎡∈--⎢⎣⎦⎣⎦.21.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,AD CD ⊥,且AD CD ==,BC =2PA =.(1)求证:AB PC ⊥;(2)在线段PD 上,是否存在一点M ,使得平面MAC 与平面PBC 所成角的大小为30︒,如果存在,求PM PD 的值,如果不存在,请说明理由.【答案】(1)证明见解析(2)存在,12或78;理由见解析【解析】【分析】(1)根据题意可先证明AB APC ⊥面,又因为PC 在面APC 内,从而可证;(2)建立空间向量直角坐标系,根据已知条件用空间向量求解证明是否存在.【小问1详解】如图,取BC 的中点为E ,连接AE ,因AD EC =,AD EC ∥,所以得:四边形AECD 为平行四边形.从而得:AE CD ∥,AE CD =,又因为AD BC ∥,AD CD ⊥,所以得:4AB ==,4AC ==,从而得:22232AB AC BC +==,所以得:AC AB ⊥,因为PA PAC ⊥平面,AB PAC ⊂平面,得:PA AB ⊥;又因为,AC PA PAC ⊂平面,且AC PA A ⋂=,所以得:AB PAC ⊥平面;又因为PC PAC ⊂平面,所以得:AB PC ⊥.故可证:AB PC ⊥.【小问2详解】存在,理由如下:由(1)如图建立以A 点为原点的空间直角坐标系.得:()0,0,0A,()0,D,()C ,()002P ,,,()B -得:()AC =,()0,2PD =- ,()0,0,2AP =,()2CP =--,()0,CB =- 设()01PM PD λλ=≤≤,得:()02,,PM λ=-,()022,,AM AP PM λ=+=- ,设平面MAC 的一个法向量为(),,n x y z = ,得:()0220n AC n AM y z λ⎧⋅=+=⎪⎨⋅=+-=⎪⎩ ,令:1x λ=-,得:1y λ=-,z =,所以得:()11,n λλ=-- ,设平面PBC 的一个法向量为(),,m a b c = ,得:020m CB m CP c ⎧⋅=-=⎪⎨⋅=-++=⎪⎩ ,令:1a =,得:0b =,c =所以得:(m = ,又因为平面MAC 与平面PBC 所成角的大小为30︒,所以得:cos302m n m n ⋅︒===⋅ ,化简得:2162270λλ-+=,解之得:12λ=或78λ=.故答案为:存在,12或78.22.已知()0,1P 为椭圆C :()222210x y a ba b+=>>上一点,长轴长为.(1)求椭圆C 的标准方程;(2)不经过点P 的直线l 与椭圆C 相交于A ,B 两点,若直线PA 与PB 的斜率之和为1-,证明:直线l 必过定点,并求出这个定点坐标.【答案】(1)2212x y +=(2)证明见解析,定点为()2,1-【解析】【分析】(1)根据长轴长确定a =1b =,得到答案.(2)设直线l x my n =+,联立方程得到根与系数的关系,根据斜率的关系计算化简得到20n m --=,代入直线方程得到定点.【小问1详解】长轴长为2a =,故a =()0,1P 为椭圆C :()222210x y a b a b+=>>上一点,故1b =,椭圆方程为:2212x y +=;【小问2详解】直线与x 轴平行时,根据对称性知斜率和为0,不成立;设直线l :x my n =+,()11,A x y ,()22,B x y ,直线不过()0,1P ,则0m n +≠,则2212x my n x y =+⎧⎪⎨+=⎪⎩,则()2222220m y mny n +++-=,()()222244220m n n m ∆=--+>,即2220-+>m n ,则12221222222mn y y m n y y m ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,1212111AP BP y y k k x x --+=+=-,即()()()()()()122112110y my n y my n my n my n -++-++++=,整理得到()()222222222022n mn m m n m mn n n m m -+⋅--+⋅+-=++,化简得到()()20m n n m +--=,0m n +≠,则20n m --=,直线方程2x my m =++,直线过定点()2,1-.【点睛】关键点睛:本题考查了椭圆方程,直线过定点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中,利用设而不求的思想,根据根与系数的关系来计算定点,可以简化运算,是解题的关键.。
安徽省合肥市2023-2024学年高二上学期期中考试数学试题含解析
合肥2023~2024学年度高二年级第一学期期中联考数学(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........4.本卷命题范围:人教A 版选择性必修第一册第一章、第二章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若0AB <,0BC >,则直线0Ax By C --=不经过...的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A 【解析】【分析】根据给定条件,求出直线的斜率及纵截距,再判断正负即可得解.【详解】由0Ax By C --=,得A C y x B B=-,又0AB <,0BC >,则直线的斜率0AB <,在y 轴上的截距0CB-<,所以直线0Ax By C --=经过第二、三、四象限,不经过第一象限.故选:A2.若点()1,1P 在圆22:20C x y x y k +---=的外部,则实数k 的取值范围是()A.(),1-∞- B.5,14⎛⎫-- ⎪⎝⎭C.51,4⎛⎫- ⎪⎝⎭D.41,5⎛⎫--⎪⎝⎭【答案】B 【解析】【分析】由方程表示圆可得54k >-,再由点在圆外即可得1k <-,求得实数k 的取值范围是5,14⎛⎫-- ⎪⎝⎭.【详解】易知圆C 可化为()2215124x y k ⎛⎫-+-=+ ⎪⎝⎭,可得504k +>,即54k >-;又()1,1P 在圆C 外部,可得11120k +--->,解得1k <-;可得514k -<<-.故选:B.3.已知O ,A ,B ,C 为空间中不共面的四点,且()1,3OP OA OB OC λμλμ=++∈R,若P ,A ,B ,C 四点共面,则函数()()[]()2311,2f x x x x λμ=-+-∈-的最小值是()A.2 B.1 C.1- D.2-【答案】D 【解析】【分析】根据点共面可得系数和为1,即可结合二次函数的性质求解最值.【详解】因为P ,A ,B ,C 四点共面,所以存在,R x y ∈,使得AP xAB yAC =+,故()()OP O x OB OA A A y OC O --=-+,整理得()1OP OA x y OA xOB yOC -=--++ ,又()1,3OP OA OB OC λμλμ=++∈R,所以113x yx y λμ+=+⎧⎪⎨--=⎪⎩,所以23λμ+=,所以()()222112f x x x x =--=--,当1x =时,函数取最小值,且最小值为2-.故选:D.4.已知()1,2,1A 是平面α内一点,()1,1,1n =--是平面α的法向量,若点()2,0,3P 是平面α外一点,则点P 到平面α的距离为()A.2 B.233C.D.【答案】C 【解析】【分析】根据点到平面的距离公式即可求出.【详解】由题意得()1,2,2AP =- ,故点P 到平面α的距离n AP d n⋅===故选:C.5.已知点()1,3A -,()3,1B ,直线:20l mx y ++=与线段AB 有公共点,则实数m 的取值范围为()A.(][)1,5,∞-⋃-+∞B.[]5,1-C.(][),15,-∞-⋃+∞ D.[]1,5-【答案】C 【解析】【分析】先求出直线l 的定点,再求出,PA PB k k ,数形结合,得出结果.【详解】如图由题意知直线l 过定点()0,2P -,易求PA 的斜率()32510PA k --==---,PB 的斜率()12130PB k --==-,直线l 的斜率l k m =-,所以1m -≥或5m -≤-,即1m ≤-或5m ≥故选:C.6.已知圆22:8120C x y x +-+=,点P 在圆C 上,点()6,0A ,M 为AP 的中点,O 为坐标原点,则tan MOA ∠的最大值为()A.12B.12C.4D.3【答案】A 【解析】【分析】根据中点坐标公式结合相关点法可得M 的轨迹方程为()2251x y -+=,即可根据相切求解最值.【详解】由题意知圆C 的方程为()2244x y -+=,设()00,P x y ,(),M x y ,则006,20,2x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,所以0026,2,x x y y =-⎧⎨=⎩,又P 在圆C 上,所以()220044x y -+=,即()()2221024x y -+=,即M 的轨迹方程为()2251x y -+=.如图所示,当OM 与圆()2251x y -+=相切时,tan MOA ∠取得最大值,此时OM ==,tan 12MOA ∠=,所以tan MOA ∠的最大值为612.故选:A7.如图,在四面体ABCD 中,DA ⊥平面ABC ,CA CB ⊥,CA CB AD ==,E 为AB 的中点,F 为DB 上靠近B 的三等分点,则直线DE 与CF 所成角的余弦值为()A.2B.3C.15D.16【答案】D【解析】【分析】以A 为坐标原点,AC 为y 轴,AD 为z 轴,过A 垂直于平面CAD 的直线为x 轴建立空间直角坐标系(如图所示),设1CA =,求得11,,122DE ⎛⎫=- ⎪⎝⎭ ,211,,333CF ⎛⎫=- ⎪⎝⎭,根据线线角的向量公式即可求解.【详解】以A 为坐标原点,AC 为y 轴,AD 为z 轴,过A 垂直于平面CAD 的直线为x 轴建立空间直角坐标系(如图所示),设1CA =,则()1,1,0B ,()0,1,0C ,()0,0,1D ,11,,022E ⎛⎫ ⎪⎝⎭,所以11,,122DE ⎛⎫=- ⎪⎝⎭ ,()1,1,1BD =-- ,()1,0,0CB = ,所以1211,,3333CF CB BF CB BD ⎛⎫=+=+=- ⎪⎝⎭.设直线DE 与CF 所成角的大小为θ,则1cos cos ,6DE CF DE CF DE CF θ⋅===.故选:D.8.已知圆()()22:349C x y -+-=和两点(),0A t ,()(),00B t t ->,若圆C 上至少存在一点P ,使得0PA PB ⋅<,则实数t 的取值范围是()A.()2,8 B.()2,+∞ C.()3,+∞ D.()1,3【答案】B 【解析】【分析】根据题意可知,圆C 与圆()2220:O x y t t +=>的位置关系为相交、内切或内含,利用圆心距和两圆半径之间的关系即可求得2t >.【详解】圆()()22:349C x y -+-=的圆心()3,4C ,半径为3r =,因为圆C 上至少存在一点P ,使得0PA PB ⋅<,则90APB ∠>︒,所以圆C 与圆()2220:O x y tt +=>的位置关系为相交、内切或内含,所以可得3OC t <+,又因为5OC ==,所以53t <+,即2t >.即实数t 的取值范围是()2,+∞.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在四棱锥P ABCD -中,AP a = ,AB b = ,AD c = ,若PE ED = ,2CF FP =,则()A.1122BE a b c=-+ B.221333BF a b c=-+C.212333DF a b c=+- D.111636EF a b c=-+ 【答案】BC 【解析】【分析】利用空间向量的基本定理可得出BE 、BF、DE 、EF 关于{},,a b c 的表达式.【详解】对于A 选项,()()1122BE PE PB PD PB AD AP AB AP =-=-=---11112222AP AB AD a b =-+=-+,故A 错误;对于B 选项,()2233BF BC CF AD CP AD AP AC =+=+=+-()22212213333333AD AP AB AD AP AB AD a b c =+--=-+=-+,故B 正确;对于C 选项,()()221212333333DF BF BD BF AD AB b c b a b c =-=--=-+--=+-,故C 正确;对于D 选项,2211111133322636EF BF BE a b a b c a b c ⎛⎫⎛⎫=-=-+--+=+- ⎪ ⎪⎝⎭⎝⎭,故D 错误.10.已知直线1:30l ax y a +-=,直线()2:2160l x a y +--=,则()A.当3a =时,1l 与2l 的交点为()3,0B.直线1l 恒过点()3,0C.若12l l ⊥,则13a = D.存在a ∈R ,使12l l ∥【答案】ABC 【解析】【分析】将3a =代入解得两直线交点坐标为()3,0可判断A ;令30,0,x y -=⎧⎨=⎩解得3,0,x y =⎧⎨=⎩可判断B ,由直线垂直的条件可判断C ,由直线平行的条件可判断D.【详解】对于A ,当3a =时,直线1:390l x y +-=,直线2:2260l x y +-=,联立390,2260,x y x y +-=⎧⎨+-=⎩解得3,0,x y =⎧⎨=⎩所以两直线的交点为()3,0,故A 正确;对于B ,直线()1:30l x a y -+=,令30,0,x y -=⎧⎨=⎩解得3,0,x y =⎧⎨=⎩即直线1l 恒过点()3,0,故B 正确;对于C :若12l l ⊥,则()2110a a ⨯+⨯-=,解得13a =,故C 正确;对于D ,假设存在a ∈R ,使12l l ∥,则()120a a ⨯--=,解得2a =或1a =-,当2a =时,1:260l x y +-=,2:260l x y +-=,两直线重合,舍去,当1a =-时,直线1:30l x y --=,直线2:2260l x y --=,两直线重合,舍去,所以不存在a ∈R ,使12l l ∥,故D 错误.故选:ABC.11.已知x 、y 满足226210x y x y +-++=,则()A.22x y +3- B.1y x +的最大值为47C.2x y +的最小值为1-D.5【答案】BCD【分析】利用距离的几何意义结合圆的几何性质可判断AD 选项;设1yk x =+,可知直线0kx y k -+=与圆C 有公共点,利用直线与圆的位置关系求出k 的取值范围,可判断B 选项;设2x y t +=,可知直线20x y t +-=与圆C 有公共点,利用直线与圆的位置关系求出t 的取值范围,可判断C 选项.【详解】方程226210x y x y +-++=可变形为()()22319x y -++=,则方程226210x y x y +-++=表示的曲线是以()3,1C -为圆心,以3为半径的圆,对于A 选项,设点(),P x y ,则22xy +表示圆C 上的点P 到原点O 的距离的平方,因为()()2203019-++>,则原点O 在圆C 外,所以,min333OP OC =-==,当且仅当P 为线段OC与圆C 的交点时,OP 取最小值,所以,22xy+的最小值为)2319=-A 错误;对于B 选项,设1yk x =+,则0kx y k -+=,由题意知直线0kx y k -+=与圆C 有公共点,3≤,即27880k k +-≤,解得4477k ---+≤≤,即1y x +的最大值为6247-,故B 正确;对于C 选项,设2x y t +=,即20x y t +-=,由题意知直线20x y t +-=与圆C 有公共点,3≤,解得11t -≤≤+,故2x y +的最小值为1-,故C 正确;因为()()22319x y -++=,3+=+表示点P 到点()0,3M 的距离,因为()()2203319-++>,所以,min33532MP MC =-==-=,当且仅当点P 为线段MC 与圆C 的交点时,MP 取最小值,的最小值为325+=,故D 正确.故选:BCD.12.如图,在正三棱柱111ABC A B C -中,侧棱长为3,2AB =,空间中一点P 满足[]()1,0,1AP xAB y AA x y =+∈,则()A.若12x =,则三棱锥1P AAC -的体积为定值B.若12y =,则点P 的轨迹长度为3C.若1x y +=,则1PB 的最小值为13D.若x y =,则点P 到BC 的距离的最小值为32【答案】ACD 【解析】【分析】A :做出图像,由已知和选项找到点P 的位置,判断P 到平面1AA C 的距离为定值,又1AA C △的面积为定值可求出;B :作图找到点P 位置,判断轨迹长度即可;C :由向量共线得到P 的位置,再点到直线的距离求1PB 最小值;D :建系,用空间向量关系求出P 到BC 的距离,再用二次函数的性质求出最值.【详解】对A,若12x =,分别作棱AB ,11A B 的中点D ,E ,连接DE ,则P 在线段DE 上,易知DE ∥平面1AA C ,故点P 到平面1AA C 的距离为定值,又1AA C △的面积为定值,所以三棱锥1P AAC -的体积为定值,故A 正确;若12y =,分别作1AA ,1BB 的中点M ,N ,则点P 的轨迹为线段MN ,易知2MN AB ==,故B 错误;若1x y +=,则1A ,P ,B 三点共线,即点P 在线段1A B 上,易求点1B 到1A B 的距离为13,故1PB 的最小值为13,故C 正确;若x y =,则点P 在线段1AB 上,易证DB ,DC ,DE 两两垂直,以D 为坐标原点,DB ,DC ,DE 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则()1,0,0A -,()1,0,0B ,()C ,()11,0,3A -,()11,0,3B ,所以()2,0,0AB =,()0AC = ,()BC =- ,()10,0,3AA = ,()()12,0,3AP x AB AA x x =+= ,所以()22,0,3BP AP AB x x =-=- ,所以1cos ,x BP BC BP-= ,所以点P 到BC的距离d ====所以当14x =时,min 32d =,故D 正确.故选:ACD.【点睛】方法点睛:本体考查平面向量关系和空间立体几何的位置关系判定和体积,距离的求法,利用点到直线的距离和二次函数和建立空间直角坐标系解答,计算量大,属于比较难的试题.三、填空题:本题共4小题,每小题5分,共20分.13.已知直线l 过点()1,2,且在y 轴上的截距为在x 轴上的截距的两倍,则直线l 的方程是___________.【答案】2y x =或240x y +-=【解析】【分析】当纵截距为0时,设直线方程为y kx =,代入点()1,2求得k 的值,当纵截距不为0时,设直线的截距式方程,代入点()1,2求解.【详解】①当直线l 在两坐标轴上的截距均为0时,设直线方程为y kx =,因为直线过点()1,2,所以2k =,所以直线l 的方程为2y x =;②当直线l 在两坐标轴上的截距均不为0时,设直线l 在x 轴上的截距为a ,则在y 轴上的截距为2a ,则直线l 的方程为12x y a a +=,又因为直线l 过点()1,2,所以1212a a +=,解得:2a =,所以直线l 的方程为124x y +=,即240x y +-=,综上所述:直线l 的方程为2y x =或240x y +-=,故答案为:2y x =或240x y +-=.14.已知点()0,5A ,()1,2B -,()3,4C --,()2,D a 四点共圆,则=a ______.【答案】1【解析】【分析】设出圆的一般方程,带入A ,B ,C 坐标,求出圆的方程,再带入点()2,D a 求出答案.【详解】设过A ,B ,C 的圆的方程为220x y Dx Ey F ++++=,()2240D E F +->,则255052025340E F D E F D E F ++=⎧⎪+-+=⎨⎪--+=⎩,解得6215D E F =⎧⎪=-⎨⎪=-⎩,所以过A ,B ,C 的圆的方程为2262150x y x y ++--=,又点D 在此圆上,所以24122150a a ++--=,即2210a a -+=,所以1a =,故答案为:115.如图,已知二面角l αβ--的大小为60 ,A α∈,B β∈,,CD l ∈,,AC l BD l ⊥⊥且2==AC BD ,4CD =,则AB =______.【答案】【解析】【分析】根据题意,得到AB AC CD DB =++ ,利用()22AB AC CD DB =++ ,结合向量的数量积的运算公式,即可求解.【详解】因为二面角l αβ--的大小为60 ,所以AC 与DB 的夹角为120 ,又因为AB AC CD DB =++,所以()22222222AB AC CD DB AC CD DB AC CD CD DB DB AC=++=+++⋅+⋅+⋅ 1416400222202⎛⎫=+++++⨯⨯⨯-= ⎪⎝⎭,所以AB =故答案为:16.在ABC 中,顶点()2,3A ,点B 在直线:310l x y -+=上,点C 在x 轴上,则ABC 周长的最小值为______.【答案】【解析】【分析】拆线段之和最值问题,利用对称,将直线:310l x y -+=同侧折线段化为直线异侧两定点间的折线段之和,由两点之间线段最短可知.【详解】设A 关于直线l 的对称点为P ,关于x 轴的对称点为Q ,PQ 与l 的交点即为B ,与x 轴的交点即为C .如图,,P Q 两点之间线段最短可知,PQ 的长即为ABC 周长的最小值.设(),P x y ,则331,223310,22y x x y -⎧⨯=-⎪⎪-⎨++⎪⨯-+=⎪⎩解得2,519,5x y ⎧=-⎪⎪⎨⎪=⎪⎩即219,55P ⎛⎫- ⎪⎝⎭,A 关于x 轴的对称点为()2,3Q -,故ABC周长的最小值为PQ ==故答案为:四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的三个顶点是()1,2A -,()2,2B -,()3,5C .(1)求边AC 上的高所在直线的方程;(2)求BAC ∠的角平分线所在直线的方程.【答案】(1)4320x y +-=(2)7130x y +-=【解析】【分析】(1)根据垂直满足的斜率关系,即可由点斜式求解直线方程,(2)根据两点距离可得三角形为等腰三角形,进而得中点坐标,根据两点斜率公式即可求解斜率.【小问1详解】设AC 边上的高所在直线的斜率为k ,直线AC 的斜率()523314AC k -==--,所以1AC k k ⋅=-,所以43k =-,故所求直线方程为()4223y x +=--,即4320x y +-=.【小问2详解】由题意得()22345AB =-+=,22435AC =+=,所以5AB AC ==,则ABC 为等腰三角形,BC 的中点为53,22D ⎛⎫ ⎪⎝⎭,故()32125712AD k -==---,由等腰三角形的性质知,AD 为BAC ∠的平分线,故所求直线方程为()1217y x -=-+,即7130x y +-=.18.已知圆()()22:119C x y -+-=.(1)直线1l 过点()2,0A -,且与圆C 相切,求直线1l 的方程;(2)设直线2:3420l x y +-=与圆C 相交于E ,F 两点,点P 为圆C 上的一动点,求PEF !的面积S 的最大值.【答案】(1)2x =-或4380x y ++=(2)【解析】【分析】(1)分类讨论直线1l 的斜率是否存在,结合点到直线的距离公式运算求解;(2)根据垂径定理求弦长,结合圆的性质求面积最大值.【小问1详解】由题意得()1,1C ,圆C 的半径3r =,当直线1l 的斜率存在时,设直线1l 的方程为()2y k x =+,即20kx y k -+=,由直线1l 与圆C相切,得3=,解得43k =-,所以直线1l 的方程为4380x y ++=;当直线1l 的斜率不存在时,直线1l 的方程为2x =-,显然与圆C 相切;综上,直线1l 的方程为2x =-或4380x y ++=.【小问2详解】由题意得圆心C 到直线2l的距离1d =,所以2EF ==点P 到直线2l 的距离的最大值为314r d +=+=,则PEF !的面积的最大值()max 11422S EF r d =⨯⨯+=⨯=.19.不同材质的楔形零配件广泛应用于生产生活中,例如,制作桌凳时,利用楔形木块可以防止松动,使构件更牢固.如图是从棱长为3的正方体木块中截出的一个楔形体ABCD MNPQ -,将正方体的上底面平均分成九个小正方形,其中,,,M N P Q 是中间的小正方形的顶点.(1)求楔形体的表面积;(2)求平面APQ 与平面BNQ 的夹角的余弦值.【答案】(1)10+(2)26【解析】【分析】(1)由题意可知求出楔形体侧面等腰梯形的高即可求出表面积为10+(2)以点D 为坐标原点建立空间直角坐标系,求出两平面的法向量,利用空间向量即可求出平面APQ 与平面BNQ的夹角的余弦值为26.【小问1详解】易得该楔形体的上底面为边长为1的正方形,下底面是边长为3的正方形,侧面是等腰梯形,其上底面边长为1,下底面边长为3=,所以该楔形体的表面积为()11133413102⨯+⨯+⨯+=+【小问2详解】以点D为坐标原点,分别以DA,DC,1DD所在直线为x轴,y轴,z轴建立空间直角坐标系,如下图所示:则()3,0,0A,()3,3,0B,()1,2,3P,()1,1,3Q,()2,2,3N,则()2,2,3AP=-,()2,1,3AQ=-,()1,1,3BN=--,()2,2,3BQ=--.设平面APQ的法向量为()1111,,n x y z=,平面BNQ的法向量为()2222,,n x y z=,则111111112230230AP n x y zAQ n x y z⎧⋅=-++=⎪⎨⋅=-++=⎪⎩,解得10y=,令12z=,则13x=,,所以平面APQ的一个法向量为()13,0,2n=,同理得22221222302230BN n x y zBQ n x y z⎧⋅=--+=⎪⎨⋅=--+=⎪⎩,解得20z=,令21x=,则21y=-;即平面BNQ的一个法向量为()21,1,0n=-.设平面APQ与平面BNQ的夹角为θ,则1212cos26n nn nθ⋅===,所以平面APQ 与平面BNQ的夹角的余弦值为26.20.已知圆C 过()1,3M -,()1,1N 两点,且圆心C 在直线250x y +-=上.(1)求圆C 的方程;(2)设直线3y kx =+与圆C 交于A ,B 两点,在直线3y =上是否存在定点D ,使得直线AD ,BD 的倾斜角互补?若存在,求出点D 的坐标;若不存在,说明理由.【答案】(1)()()22134x y -+-=(2)存在定点()3,3D -满足条件【解析】【分析】(1)先求MN 的中垂线所在直线方程,根据圆的性质求圆心和半径,即可得结果;(2)设()11,A x y ,()22,B x y ,根据题意可得()121220kx x kt x x -+=,联立方程,利用韦达定理运算求解.【小问1详解】由题意得MN 的中点E 的坐标为()0,2,直线MN 的斜率为1-,因为CE MN ⊥,所以直线CE 的斜率为1,所以直线CE 的方程为2y x -=,即2y x =+,解方程组2250y x x y =+⎧⎨+-=⎩得13x y =⎧⎨=⎩,故()1,3C ,所以圆C 的半径2r CM ===,所以圆C 的方程为()()22134x y -+-=.【小问2详解】由()()223134y kx x y =+⎧⎪⎨-+-=⎪⎩消去y 整理得()221230k x x +--=,可得()241210k ∆=++>,设()11,A x y ,()22,B x y ,则12221x x k +=+,12231x x k =-+.(*)设(),3D t ,则113AD y k x t -=-,223BD y k x t -=-(AD k ,BD k 分别为直线AD ,BD 的斜率).因为直线AD ,BD 的倾斜角互补,所以0AD BD k k +=,即1212330y y x t x t--+=--,即()()()()1221330y x t y x t --+--=,即()121220kx x kt x x -+=,将(*)式代入得2262011k kt k k --=++,整理得()2301k t k+=+对任意实数k 恒成立,故30t +=,解得3t =-,故点D 的坐标为()3,3-.所以在直线3y =上存在定点()3,3D -满足条件..21.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,侧面PAD 为等边三角形,顶点P 在底面上的射影在正方形ABCD 外部,设点E ,F 分别为PA ,BC 的中点,连接BE ,PF.(1)证明://BE 平面PDF ;(2)若四棱锥P ABCD -的体积为3,设点G 为棱PB 上的一个动点(不含端点),求直线AG 与平面PCD 所成角的正弦值的最大值.【答案】(1)证明见解析;(2)223.【解析】【分析】(1)取AD 的中点M ,利用线面平行的判定、面面平行的判定、性质推理即得.(2)利用给定体积求出锥体的高,以点M 为坐标原点建立空间直角坐标系,再利用线面角的向量求法求解即得.【小问1详解】取AD 的中点M ,连接EM ,BM ,如图,由E 为PA 的中点,得//EM PD ,而EM ⊄平面PDF ,PD ⊂平面PDF ,则//EM 平面PDF ,又//MD BF ,且MD BF =,即四边形BMDF 为平行四边形,则//MB DF ,又MB ⊄平面PDF ,DF ⊂平面PDF ,于是//MB 平面PDF ,显然MB EM M = ,,MB EM ⊂平面BEM ,因此平面//BEM 平面PDF ,又BE ⊂平面BEM ,所以//BE 平面PDF .【小问2详解】连接MF ,设该四棱锥的高为h ,则体积为21233h ⨯⨯=,h =,连接PM ,则,PM AD FM AD ⊥⊥,,,FM PM M FM PM ⋂=⊂平面PMF ,于是AD ⊥平面PMF ,而AD ⊂平面ABCD ,则平面PMF ⊥平面ABCD ,在平面PMF 内过M 作Mz FM ⊥,而平面PMF 平面ABCD FM =,从而Mz ⊥平面ABCD ,显然,,MA MF Mz 两两垂直,以点M 为坐标原点,直线,,MA MF Mz 分别为,,x y z 轴建立空间直角坐标系Mxyz ,则PM =,(0,P -,()1,0,0A ,()1,2,0B ,()1,2,0C -,()1,0,0D -,则(1,3,PB = ,(1,3,PC =- ,()0,2,0DC = ,设()01PG PB λλ=<< ,则(),3,PG λλ=,点)(),31G λλλ--,)()1,31AG λλλ=--- ,设平面PCD 的一个法向量为(),,n x y z = ,则3020n PC x y n DC y ⎧⋅=-+-=⎪⎨⋅==⎪⎩ ,取1z =,得()n = ,设直线AG 与平面PCD 所成的角为θ,则sin cos ,3n AG n AG n AG θ⋅=〈〉=== 令1t λ-=,则1t λ=-,且01t <<,因此sin 333θ===,所以当23t =,即13λ=时,sin θ取得最大值,且最大值为3.22.已知点()4,0E -,()1,0F -,动点P 满足2PEPF =,设动点P 的轨迹为曲线C ,过曲线C 与x 轴的负半轴的交点D 作两条直线分别交曲线C 于点,A B (异于D ),且直线AD ,BD 的斜率之积为13-.(1)求曲线C 的方程;(2)证明:直线AB 过定点.【答案】(1)224x y +=(2)证明见解析【解析】【分析】(1)根据2PE PF =设点代入即可得到曲线C 的方程;(2)先考虑斜率存在的情况,设直线联立,得到AB 方程,进而得到AB 过定点,再考虑斜率不存在的情况,也得到AB 过该定点即可.【小问1详解】设(),P x y ,由2PE PF =,得2PE PF ==,两边平方并化简,得曲线C 的方程为224x y +=.【小问2详解】由(1)得()2,0D -,设直线AD 、BD 的斜率分别为1k ,()212k k k >,如图所示,当AB 不垂直于x 轴时,设()1:2AD y k x =+,联立()22142x y y k x ⎧+=⎪⎨=+⎪⎩,整理得()222211114440k x k x k +++-=,解得2x =-(舍)或2121221k x k -+=+,当2121221k x k -+=+时,21112211224211k k y k k k ⎛⎫-+=+= ⎪++⎝⎭,所以2112211224,11k k A k k ⎛⎫-+ ⎪++⎝⎭,同理得2222222224,11k k B k k ⎛⎫-+ ⎪++⎝⎭,所以AB 的斜率()()()()()()122222122112222222121221221244414111222221121111AB k k k k k k k k k k k k k k k k k -+-+++==---+--+-++()()()()1221122121124414k k k k k k k k k k k k ---==+-+,因为1213k k =-,代入可得()1243AB k k k =-+,故AB 的方程为()2112211214224131k k y x k k k k ⎛⎫--=-- ⎪+++⎝⎭,即()()()()()()()2211112222121121211218148412443133131k k k k k y x x k k k k k k k k k k k -++=-++=-++++++++,()()()()1212124441,333x x k k k k k k =-+=--+++故AB 过定点()1,0;当AB x ⊥轴时,设()00,A x y ,则()00,B x y -,所以0012001223y y k k x x -=⋅=-++,即()220032y x =+,又因为2222000044x y y x +=⇒=-,代入可得20020x x +-=,解得01x =或02x =-(舍),所以((,1,A B(或((1,,1,A B ),所以AB 的方程为1x =,过点()1,0.综上,直线AB 过定点()1,0T。
2023-2024学年邯郸市六校高二数学上学期期中考试卷附答案解析
2023-2024学年邯郸市六校高二数学上学期期中考试卷2023.11(试卷满分150分,考试用时150分钟.)试卷主要考试内容:人教A 版选择性必修第一册.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线22184x y -=的虚轴长为()A .2B .22C .4D .422.已知BD ⊥平面ABC ,AB BC ⊥,1BD =,2AB =,3BC =,则空间的一个单位正交基底可以为()A .15,,35BC BD AD ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭ B .11,,32BC BD BA ⎧⎫⎨⎬⎩⎭ C .5,,5BC BD AD ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭ D .1,,2BC BD BA ⎧⎫⎨⎬⎩⎭3.若P 为抛物线24y x =上一点,且P 到焦点F 的距离为9,则P 到y 轴的距离为()A .7B .10C .8D .94.在四面体OABC 中,D 为BC 的中点,E 为AD 的中点,则OE =()A .111244OA AB AC ++B .1144OA AB AC ++ C .111222OA AB AC ++D .1122OA AB AC++ 5.“6m >是“方程22216x y m m +=-表示的曲线是椭圆”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件6.已知圆M :()2211x y ++=与圆N :()()22231x y -+-=关于直线l 对称,则l 的方程为()A .210x y --=B .210x y -+=C .230x y +-=D .230x y +-=7.某广场的一个椭球水景雕塑如图所示,其横截面为圆,过横截面圆心的纵截面为椭圆,该椭圆的离心率为3.若该椭球横截面的最大直径为1.8米,则该椭球的高为()A .3.2米B .3.4米C .4米D .3.6米8.设A 是抛物线C :24y x =-上的动点,B 是圆M :()2281x y ++=上的动点.则AB 的最小值为()A 301B .421C .271-D .27二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若直线20ax y +=与直线()140x a a y +++=垂直,则a 的值可能是()A .32-B .23-C .0D .110.已知椭圆C :221425x y +=的两个焦点为1F ,2F,P 是C 上任意一点,则()A .124PF PF +=B .12221F F =C .1521PF ≤D .1225PF PF ⋅≤11.在棱长为1的正方体1111ABCD A B C D -中,()11AP t AD t AB=+- ,[]0,1t ∈,则()A .当1BD ⊥平面ACP 时,13t =B .AP CP ⋅ 的最小值为13-C .当点D 到平面ACP 的距离最大时,23t =D .当三棱锥D ACP -外接球的半径最大时,23t =12.已知双曲线C :()222210,0x y a b a b -=>>的右焦点为F ,过点F 作C 的一条渐近线的垂线,垂足为A ,该垂线与另一条渐近线的交点为B ,若()1FB FA λλ=>,则C 的离心率可能为()A 21λλ+B 231λλ+C 21λλ-D 231λλ-三、填空题:本题共4小题,每小题5分,共20分.13.直线3733y x =的倾斜角为.14.在空间直角坐标系中,已知()5,2,1A ,()4,2,1B -,()0,1,0C -,()1,0,1D ,则直线AB 与CD 所成角的余弦值为.15.石城永宁桥,省级文物保护单位,位于江西省赣州市石城县高田镇.永宁桥建筑风格独特,是一座楼阁式抛物线形石拱桥.当石拱桥拱顶离水面1.6m 时,水面宽6.4m ,当水面下降0.9m 时,水面的宽度为m ;该石拱桥对应的抛物线的焦点到准线的距离为m16.若曲线()3320x x y --=与圆()222x y m m +-=恰有4个公共点,则m 的取值范围是.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知直线l 经过直线1l:10x y -+=与直线2l :240x y +-=的交点.(1)若直线l 经过点()3,3,求直线l 在x 轴上的截距;(2)若直线l 与直线3l:45120x y +-=平行,求直线l 的一般式方桯.18.已知双曲线C 的中心在原点,过点()2,0,且与双曲线2212y x -=有相同的渐近线.(1)求双曲线C 的标准方程;(2)已知A ,B 是双曲线C 上的两点,且线段AB 的中点为()3,3M ,求直线AB 的方程.19.如图,在正三棱柱111A B C ABC-中,D ,E ,F 分别为AC ,1CC ,BC 的中点,123A A =2AB =.(1)证明:DF ∥平面11A B E.(2)若1B F ⊥平面α,求平面α与平面11A B E夹角的余弦值.20.已知圆C 与两坐标轴的正半轴都相切,且截直线0x y -=所得弦长等于2.(1)求圆C 的标准方程;(2)求圆C 截直线30x y -=所得弦长;(3)若(,)P x y 是圆C 上的一个动点,求224618z x y x y =++++的最小值.21.如图1,在菱形ABCD 中,60ABC ∠=︒,将ABC 沿着AC 翻折至如图2所示的1AB C V 的位置,构成三棱锥1B ACD-.(1)证明:1AC B D ⊥.(2)若平面1ACB ⊥平面ACD ,E 为线段CD 上一点(不含端点),且1B E与平面1AB D所成角的正弦值为1510,求CE CD 的值.22.已知椭圆C :()222210x y a b a b +=>>的右焦点为()3,0F ,离心率为310.(1)求C 的方程.(2)若A ,B 为C 上的两个动点,A ,B 两点的纵坐标的乘积大于0,()4,0M -,()4,0N ,且AFM BFN ∠=∠.证明:直线AB 过定点.1.C【分析】根据双曲线的虚轴定义求解.【详解】由22184x y -=可得24,2b b ==,故虚轴长为24b =,故选:C.2.B【分析】先得到,,AB BC BD 两两垂直,再根据其长度得到空间的一个单位正交基底.【详解】因为BD ⊥平面ABC ,,AB BC ⊂平面ABC ,所以BD AB ⊥,BD BC ⊥.因为AB BC ⊥,即,,AB BC BD 两两垂直,又1BD =,2AB =,3BC =,所以空间的一个单位正交基底可以为11,,32BC BD BA ⎧⎫⎨⎬⎩⎭ .故选:B.3.C【分析】根据题意,由抛物线的定义,即可得到结果.【详解】根据抛物线的定义可得P 到焦点F 的距离等于P 到准线=1x -的距离,所以P 到y 轴的距离为918-=.故选:C 4.B【分析】利用向量的线性运算可得答案.【详解】因为D 为BC 的中点,所以()12AD AB AC=+ .因为E 为AD 的中点,所以()1124AE AD AB AC==+ ,所以1144OE OA AE OA AB AC=+=++ .故选:B.5.C【分析】根据椭圆标准方程的特征,结合充分性和必要性的定义进行判断即可.【详解】若方程22216x y m m +=-表示的曲线是椭圆,则260m ->,0m >,且26m m -≠,所以6m >3m ≠.故“6m >是“方程22216x y m m +=-表示的曲线是椭圆”的必要不充分条件.故选:C 6.C【分析】根据两点的坐标,求其中点坐标以及斜率,根据对称轴与两对称点连接线段的关系,可得答案.【详解】由题意得()0,1M -,()2,3N ,则MN 的中点的坐标为()1,1,直线MN 的斜率31220MN k +==-.由圆M 与圆N 关于l 对称,得l 的斜率112l MN k k -==-.因为MN 的中点在l 上,所以()1112y x -=--,即230x y +-=.故选:C.7.D【分析】利用椭圆的几何性质解题即可.【详解】由题意可知,2231c b aa =-,则2ab =,由该椭球横截面的最大直径为1.8米,可知2 1.8b =米,所以0.9b =米, 1.8a =米,该椭球的高为2 3.6a =米.故选:D8.C【分析】根据两点间距离公式、圆的几何性质,利用配方法进行求解即可.【详解】由()2281x y ++=⇒()8,0M -,半径为1,设2,4m A m ⎛⎫- ⎪⎝⎭,则()22222422118364242841616m AM m m m m ⎛⎫=-++=-+=-+ ⎪⎝⎭,当224m =时,2AM取得最小值28,所以min27AM=min 271AB =.故选:C【点睛】关键点睛:本题的关键是利用圆的几何性质和配方法.9.AC【分析】根据互相垂直的两直线方程的性质进行求解即可.【详解】依题意可得()210a a a ++=,解得0a =或32a =-.故选:AC10.BCD【分析】根据椭圆的定义可判定A 、B ,根据椭圆方程及二次函数的性质可判定C ,根据基本不等式可判定D.【详解】设该椭圆的长轴长、短轴长、焦距分别为2,2,2a b c ,因为425<,所以225a =,24b =,225421c =-=,所以12210PF PF a +==,122221F F c ==A 错误,B 正确;设()00,P x y ,()10,F c -,005y ≤≤,则()()2222222222000100002221x y b y c PF y c x y c b y a ba a a ⎛⎫+=⇒=++=++-=+ ⎪⎝⎭,即102152155PF =+≤,当05y =时取得最大值,故C 正确;由椭圆定义及基本不等式可知:21212252PF PF PF PF ⎛+⎫⋅≤= ⎝⎭,故D 正确.故选:BCD11.AB【分析】根据题意,建立空间直角坐标系,由空间向量的坐标运算,对选项逐一判断,即可得到结果.【详解】以A 为坐标原点,建立如图所示的空间直角坐标系,则()1,0,0B ,()10,1,1D ,()1,1,0C ,()1,,AP t t t =-,()11,1,1BD =-,则(),1,CP CA AP t t t =+=--.当1BD ⊥平面ACP 时,110BD CP t t t ⋅=+-+=,解得13t =,故A 正确.()()222111132333AP CP t t t t t t t t ⎛⎫⋅=--+-+=-=-- ⎪⎝⎭ ,当13t =时,AP CP ⋅ 取得最小值,且最小值为13-,故B 正确.当P 是1BD 的中点,即12t =时,平面ACP ⊥底面ABCD ,此时,点D 到平面ACP 的距离最大,故C 错误.因为AD CD ⊥,所以过斜边AC 的中点作平面DAC 的垂线,则D ACP -外接球的球心必在该垂线上,所以球心O 的坐标可设为()11,,0122x x ⎛⎫≤≤ ⎪⎝⎭,半径为R ,因为OP OA R ==()2222111222t t t x x ⎛⎫⎛⎫-+-+-+ ⎪ ⎪⎝⎭⎝⎭所以()322t t xt-=.在三棱锥D ACP -中,0t ≠,所以21321222R t ⎛⎫=+-≥ ⎪⎝⎭,当且仅当23t =时,等号成立,故D 错误.故选:AB 12.AC【分析】设出直线AF 方程:()ay x c b =--,分别与两渐近线联立,求得,A B 两点横坐标,代入()1FB FA λλ=>,即可求解.【详解】不妨设C 的一条渐近线的方程为b y x a =,则直线AF 的斜率为ab -,则AF l :()ay x c b =--.设()00,B x y ,联立直线AF 的方程与by x a =-,()a y x c b b y x a ⎧=--⎪⎪⎨⎪=-⎪⎩,则()a b ac x b a b -=,可得2022a c x a b =-.由()a y x c b b y x a ⎧=--⎪⎪⎨⎪=⎪⎩,则()a b ac x b ab +=,得点A 的纵坐标为ab c ,因为FB FA λ=,所以22abc ab b ac λ=±-.因为ce a =,所以21e λλ=+或21e λλ=-故选:AC13.30##6π【分析】根据倾斜角与斜率的关系计算即可.【详解】因为直线3733y x =的斜率为33,所以直线3733y x 的倾斜角为30 .故答案为:3014.155【分析】利用空间向量求异面直线夹角即可.【详解】由题意可知:()1,0,2BA =,()1,1,1CD =,所以15cos ,553BA CD BA CD BA CD⋅===⨯,所以直线AB 与CD 所成角的余弦值为155.故答案为:15515.83.2【分析】(1)建立平面直角坐标系,将点()3.2, 1.6-代入解析式,求出 3.2p =,得到焦点到准线的距离,水面下降0.9m 时, 2.5y =-,进而求出4x =±,得到水面宽度.【详解】如图,以拱顶为原点O,建立直角坐标系,设抛物线方程为()220x py p =->,由题意可知抛物线过点()3.2, 1.6-,得()23.22 1.6p =-⋅-,得2 6.4p =,解得 3.2p =,所以抛物线方程为26.4x y =-,所以该抛物线的焦点到准线的距离为 3.2m p =.当水面下降0.9m 时, 1.60.9 2.5y =--=-,则()2 6.4 2.5x =-⨯-,得4x =±,所以水面的宽度为8m .故答案为:8,3.216.()1414,,32,55⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭ 【分析】根据直线和圆有两个公共点可列出不等式,从而求出m 的取值范围.【详解】因为曲线()3320x y --=与圆()222x y m m +-=恰有4个公共点,所以直线30x =320x y --=均与圆()222x y m m +-=相交,且两直线的交点()3,5-不在该圆上,则有(()22233023135mm m m m <⨯--<+⎪+--≠⎪⎩,解得()1414,,32,55m ⎛⎫⎛⎫∈-∞---+∞ ⎪ ⎪⎝⎭⎝⎭ .故答案为:()1414,,32,55⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭ .17.(1)3-(2)45140x y +-=【分析】(1)由两点求出斜率,应用点斜式求出直线方程;(2)根据两直线平行,得到平行的直线系方程,代点解出参数即可.【详解】(1)由10,240,x y x y -+=⎧⎨+-=⎩解得1,2,x y =⎧⎨=⎩即1l和2l 的交点坐标为()1,2,因为直线l 经过点()3,3,所以直线l 的斜率为321312-=-,所以直线l 的方程为()1212y x -=-,令0y =,得3x =-,所以直线l 在x 轴上的截距为3-.(2)因为直线l 与直线3l:45120x y +-=平行,所以可设直线l 的方程为450x y m ++=,又直线l 经过点()1,2,所以41520m ⨯+⨯+=,得14m =-,所以直线l 的一般式方程为45140x y +-=.18.(1)22148x y -=(2)230x y --=【分析】(1)根据题意设方程()2202y x λλ-=≠,求出λ,即可求解.(2)设,A B 两点坐标,代入双曲线方程,两式作差,结合中点坐标公式,即可求出直线AB 的斜率,由直线的点斜式方程,求出直线AB 的方程,与双曲线联立方程,满足0∆>,即可得到直线AB 的方程.【详解】(1)因为双曲线C 与双曲线2212y x -=有相同的渐近线,所以可设其方程为()2202y x λλ-=≠,将点()2,0的坐标代入得4λ=,则所求双曲线的标准方程为22148x y -=.(2)设()11,A x y ,()22,B x y ,因为AB 的中点为()3,3M ,则126x x +=,126y y +=,因为22112222148148x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,所以()()()()121212121184y y y y x x x x +-=+-,即()()1212116684y y x x ⨯⨯-=⨯⨯-,则()()12121184y y x x -=-,所以12122y y x x --=,所以直线AB 的方程为()323y x -=-,即230x y --=.当直线为230x y --=时,联立方程22148230x y x y ⎧-=⎪⎨⎪--=⎩,得221210x x -+=,2124210∆=-⨯⨯>,符合题意,故直线AB 的方程为230x y --=.19.(1)证明见解析(2)37852【分析】(1)根据线面平行的判定定理,给合三角形中位线定理、平行线的性质进行证明即可;(2)利用空间向量夹角公式进行求解即可.【详解】(1)因为D ,F 分别为AC ,BC 的中点,所以DF AB .在正三棱柱111ABC A B C -中,11AB A B ∥所以11DF A B ∥.又DF ⊄平面11A B E ,11A B ⊂平面11A B E ,所以DF ∥平面11A B E .(2)取AB 的中点O ,连接OC .以O为坐标原点,建立如图所示的空间直角坐标系,则(13A -,(11,0,23B ,(3,3E ,13,022F⎛⎫⎪ ⎪⎝⎭(13,3A E =- ,()112,0,0A B =.设平面11A B E 的法向量为(),,n x y z =,则11120,330,n A B x n A E x y z ⎧⋅==⎪⎨⋅=+-=⎪⎩取1y =,则()0,1,1n =易知113322B F ⎛=-- ⎝ 是平面α的一个法向量,所以111333782cos ,5226n B F n B F n B F ⋅== .故平面α与平面11A B E 夹角的余弦值为378.20.(1)()()22111x y -+-=(2)2155(3)21【分析】(1)设圆心为(),C m n ,则0,0m n >>,m n =,半径为m ,且圆心在0x y -=,从而求出1m =,得到圆的方程;(2)设1cos ,1sin x y θθ=+=+,得到()10sin 31z θϕ=++,得到最小值.【详解】(1)因为圆C 与两坐标轴的正半轴都相切,设圆心为(),C m n ,则0,0m n >>,m n =,半径为m ,故圆C 的方程为()()222x m y m m -+-=,又0m m -=,圆心在0x y -=上,故直径为2,故半径1m =,所以圆C 的方程为()()22111x y -+-=;(2)圆心()1,1C 到30x y -=的距离为319110d -=+,则圆C 截直线30x y -=所得弦长为2222152115d --.(3)(,)P x y 是圆C 上的一个动点,故设1cos ,1sin x y θθ=+=+,则()()22224618116816z x y x y x x y y =++++-+=-+++()()681661cos 81sin 176cos 8sin 311x y θθθθ+++=++++=++=()10sin 31θϕ=++,其中3tan 4ϕ=,当()sin 1θϕ+=-时,224618z x y x y =++++取得最小值,最小值为21.21.(1)证明见解析(2)12【分析】(1)根据菱形的性质,结合线面垂直的判定定理和性质进行证明即可;(2)根据面面垂直的性质,结合空间向量夹角公式进行求解即可.【详解】(1)取AC 的中点O ,连接1OB ,OD .因为ABCD 是菱形,1π3AB C ∠=,所以1ACB ,ACD 为等边三角形,所以1OB AC ⊥,OD AC ⊥.又11,,OB OD O OB OD =⊂平面1OB D ,所以AC ⊥平面1OB D .因为1B D ⊂平面1OB D ,所以1AC B D ⊥.(2)因为平面1ACB ⊥平面ACD ,且平面1ACB ⋂平面ACD AC =,1B O AC ⊥,所以1B O ⊥平面ACD以O 为坐标原点,OD ,OA ,1OB 所在直线分别为x ,y ,z轴建立如图所示的空间直角坐标系,设2AC =,则()0,1,0A ,()0,1,0C -,)3,0,0D ,(13B ,(10,1,3B C =-- ,(10,1,3B A = ,()3,1,0AD =- ,)3,1,0CD = .设()01CE CD λλ=<< ,则113,1,3B E B C CE λλ=+=-+- .设平面1AB D 的法向量为()111,,x n y z = ,则1111130,30,n B A y n AD y ⎧⋅==⎪⎨⋅=-=⎪⎩ 取11z =,则13y =11x =,所以()3,1n =r .112123115cos ,105424B E n B E n B E n λλλ⋅-==⨯-+ .又01λ<<,所以12λ=,则12CE CD =.22.(1)22110x y +=(2)证明见解析【分析】(1)根据离心率为31010及焦点计算可得,a b ,椭圆方程可解.(2)由题意可知直线AB 的斜率存在,设直线AB 的方程为y kx m =+,与椭圆方程联立,根据AFM BFN ∠=∠,可得0FA FB k k +=,结合韦达定理可求m 与k 的关系,再代入直线方程求解.【详解】(1)依题意可得3,310,10c c a =⎧⎪⎨=⎪⎩则210a =,2221b ac =-=故C 的方程为22110x y +=.(2)由题意可知直线AB 的斜率存在,设直线AB 的方程为y kx m =+,联立221,10,x y y kx m ⎧+=⎪⎨⎪=+⎩得()2221102010100k x kmx m +++-=,设A ,B 的坐标分别为()11,x y ,()22,x y 则()()()222222Δ40041101010401010k m k m k m =-+-=+->,且12220110km x x k +=-+,21221010110m x x k -=+.设直线FA ,FB 的倾斜角分别为α,β因为AFM BFN ∠=∠,且A ,B 两点的纵坐标的乘积大于0,所以παβ+=,所以0FA FBk k+=则121233y yx x+=--,则()()1221330y x y x-+-=即()()()() 1221330 kx m x kx m x+-++-=,所以()()12122360 kx x k m x x m--+-=所以()2221010202360 110110m kmk k m mk k-⨯+-⨯-= ++,化简可得103 m k =-则直线AB的方程为101033y kx k k x⎛⎫=-=-⎪⎝⎭,故直线AB过定点10,0 3⎛⎫ ⎪⎝⎭。
高二上册数学期中试卷及答案精选
高二上册数学期中试卷及答案精选学生的时代只有课本、作业、同学和试卷,单纯却美好。
下面小编整理了高二上册数学期中试卷及答案精选,欢迎阅读参考。
高二上册数学期中试卷及答案精选(一)一、单项选择(注释)1、在△ABC中,已知60°,如果△ABC 两组解,则x的取值范围是 ( )A.(1,2)B. (3,+∞)C.( 2,+∞)D.( 1,+∞)2、已知函数,若则实数的取值范围是 ( )A.(1,+∞)B. (1,-∞)C. (+∞,2)D.(-∞,2)3、设函数则不等式的解集是( )A.(1,2) (3,+∞)B.(1,2) (2,+∞)C. (1,2) (3,-∞)D.(1,2) (2,-∞)4、已知正数满足 , ,则的取值范围是______ .5、已知实数满足则的最大值是( )A.4B.5C. 7D.46、设f(x)= 则不等式f(x)>2的解集为( )A.(1,2) (3,+∞)B.( ,+∞)C.(1,2) ( ,+∞)D.(1,2)7、下列不等式(1)m-3>m-5;(2)5-m>3-m;(3)5m>3m ;(4)5+m>5-m其中正确的有( )(A)1个 (B)2个(C)3个 (D)4个8、已知等差数列的前项和为,,,取得最小值时的值为( )A. B. C. D.9、设等差数列的前项和为 ,若 ,则等于( )A.18B.36C.45D.6010、S={1,2,…,2003},A是S的三元子集,满足:A中的所有元素可以组成等差数列.那么,这样的三元子集A的个数是( )A. B.C. D.11、设等差数列满足: ,则 ( )A.14B.21C.28D.3512、在中,,,分别是,,的对边,已知,,成等比数列,且,则的值为( )A. 4B.2C. 1D.5评卷人得分二、填空题(注释)13、已知 ,若恒成立,则实数的取值范围_________14、已知不等式(x+y) 对任意正实数x,y恒成立,则正实数a的最小值为__________15、在△ 中,若,则△ 的形状是16、在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,则sinA∶sinB∶sinC=________.评卷人得分三、解答题(注释)17、设数列满足下列关系:为常数), ;数列满足关系: .(1)求证:(2)证明数列是等差数列.18、已知集合A={x|x2<4},B={x|1< }.(1)求集合A∩B;(2)若不等式2x2+ax+b<0的解集为B,求a、b的值.19、已知数列的各项均为正整数,且 ,设集合 .性质1 若对于 ,存在唯一一组 ( )使成立,则称数列为完备数列,当k取最大值时称数列为k阶完备数列.性质2 若记 ,且对于任意 , ,都有成立,则称数列为完整数列,当k取最大值时称数列为k阶完整数列.性质3 若数列同时具有性质1及性质2,则称此数列为完美数列,当取最大值时称为阶完美数列;(Ⅰ)若数列的通项公式为 ,求集合 ,并指出分别为几阶完备数列,几阶完整数列,几阶完美数列;(Ⅱ)若数列的通项公式为 ,求证:数列为阶完备数列,并求出集合中所有元素的和 .(Ⅲ)若数列为阶完美数列,试写出集合 ,并求数列通项公式.20、已知数列为等差数列,公差 ,其中恰为等比数列,若 , , ,⑴求等比数列的公比⑵试求数列的前n项和21、已知是各项均为正数的等比数列,且 ,;(1)求的通项公式;(2)设 ,求数列的前项和 .22、在数列中, .(1)证明数列是等比数列;(2)设是数列的前项和,求使的最小值.参考答案一、单项选择1、【答案】C2、【答案】C【解析】由题知在上是增函数,由题得,解得,故选择C。
温州市高二上学期数学期中考试试卷(附答案)
所以 所以
P FAPP∥′HFDA==′DAA,AA′PPP′
H ,
,
∥
AD′,
因为
A′
AD′ D=
AD′A=′A√2,A′P
=
1 − x,
P√F = x ,
所以
2 P√H
=
1 1−x,
解得
P P
2 F= H=
1 √
2x, √
A. 平行
B. 相交
C. 异面
D. 上述三种都有可能
4. 下列结论中错误的是 ( ) A. 若 a ⊥ α,b ⊂ α,则 a ⊥ b C. 若 a ∥α,b ⊂ α,则 a ∥ b
B. 若 a ∥ b,a ⊥ α,则 b ⊥ α D. 若 a ⊥ b,b ⊥ α,则 a ∥α 或 a ⊂ α
5. 设 m,n 是两条不同的直线,α,β 是两个不同的平面,下列命题中,正确的命题是 ( )
.
14.
半径为
√ 23
的球内接正方体的表面积为
;体积为
.
15. 已知直线 x − 2y + 1 + λ (1 − x) = 0 与两坐标轴围成一个三角形,该三角形的面积记为 S (λ),当 λ ∈ (1, +∞)
时,S (λ) 的最小值是
.
16. 如图,在棱长为 1 的正方体 ABCD − A′B′C′D′ 中,AP = BQ = x (0 < x < 1),截面
对于 B,若 a ∥ b,a ⊥ α,根据线线平行、线面垂直的性质可得 b ⊥ α,故正确;
对于 C,若 a ∥α,b ⊂ α,则 a ∥ b 或异面,故错;
2024学年江苏省扬州中学高二上学期期中考数学试题及答案
江苏省扬州中学2023-2024学年第一学期期中考试高二数学2023.11试卷满分:150分 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码.2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效.3.考试结束后,请将机读卡和答题卡交监考人员.一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1.经过(A 、()1,0B -两点的直线的倾斜角为( )A.π6 B.π3C.2π3D.5π62. 抛物线22x py =的准线方程是2y =,则实数p 的值为( )A. 8- B. 4- C. 4D. 83. 已知(),P x y 是椭圆22114425x y +=上的点,则x y +的值可能是( )A. 13B. 14C. 15D. 164. 若点()2,1在圆220x y x y a +-++=的外部,则a 的取值范围是( )A. 1,2⎛⎫+∞⎪⎝⎭B. 1,2⎛⎫-∞ ⎪⎝⎭C. 14,2⎛⎫- ⎪⎝⎭D. ()1,4,2⎛⎫-∞-⋃+∞⎪⎝⎭5. 已知12,F F 是椭圆 221259x y +=的两个焦点,过1F 的直线交椭圆于,M N 两点,则2MNF 的周长为( )A. 10B. 16C. 20D. 266. 已知抛物线2:16C y x =,直线:4l x =与C 交于A ,B 两点,M 是射线BA 上异于A ,B 的动点,圆1C 与圆2C 分别是OMA 和OMB △的外接圆(O 为坐标原点),则圆1C 与圆2C 面积的比值为( )A 小于1B. 等于1C. 大于1D. 与M 点的位置有关.7. 由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品. 若将如图所示的大教堂外形弧线的一段近似看成双曲线22221y x a b-=(00)a b >>,下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A. 221124y x -= B. 223144y x -=C. 22144x y -= D. 221164y x -=8. 已知点()2,4M ,若过点()4,0N 的直线l 与圆()22:69C x y -+=交于A 、B 两点,则MA MB +的最大值为( )A. 12B. C. 10D. 6二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中. )9. 已知直线2:(1)10l a a x y ++-+=,其中R a ∈,则( )A. 直线l 过定点(0,1)B. 当1a =-时,直线l 与直线0x y +=垂直C. 当0a =时,直线l 在两坐标轴上的截距相等D. 若直线l 与直线0x y -=10. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点分别为12,F F ,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( )A. 2,1a c ==B. 已知椭圆E 的离心率为12,短轴长为2C. 12BF F △是等边三角形,且椭圆E 的离心率为12D. 设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上11. 抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点()3,1M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是( )A. 34PQ k =- B. 121=x x C. 254PQ =D. 1l 与2l 之间的距离为412. 已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则( )A. 2212PF PF -的最小值为8C. 若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D. 若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 最小值为6.三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13. 若双曲线22221x y a b-=()0,0a b >>____.14. 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为________.15. 阿基米德是古希腊著名数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆22221x y a b+=(a >b >0)的右焦点为(3,0)F ,过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,1)-,则该椭圆的面积为_____________.16. 已知圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,两圆交于,P Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为132,则k 的值为___________.的的四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17. 已知方程2214x y m+=(R m ∈且0m ≠)(1)若方程表示焦点在y 上的椭圆,且离心率为12,求m 的值;(2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.18. 已知直线l 经过直线12:34110, :2380l x y l x y +-=+-=的交点M .(1)若直线l 经过点(3,1)P ,求直线l 的方程;(2)若直线l 与直线3250x y ++=垂直,求直线l 的方程.19. 已知圆C 经过()()1,4,5,0A B 两点,且在x 轴上截距之和为2.(1)求圆C 的标准方程;(2)圆M 与圆C 关于直线10x y -+=对称,求过点()3,0且与圆M 相切的直线方程.20. 已知双曲线:()2211551x y m m m -=<<--的一个焦点与抛物线C :()220y px p =>的焦点重合.(1)求抛物线C 的方程;(2)若直线l :8xty =+交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O .21.已知直线:R)l y kx k =+∈,与双曲线22:13x C y -=左支交于A ,B 两点.(1)求实数k 的取值范围;(2)若OAB(O 为坐标原点),求此时直线l 的斜率k 的值.22. 已知椭圆()2222:10x y C a b a b +=>>过点(2.(1)求椭圆C 方程;(2)点,A B 分别为椭圆C 的上下顶点,过点()04P ,且斜率为k 的直线与椭圆C 交于不同的两点,M N ,探究直线,BM AN 的交点是否在一条定直线0l 上,若存在,求出该直线0l 的方程;若不存在,请说明理由.的的江苏省扬州中学2023-2024学年第一学期期中考试高二数学2023.11试卷满分:150分 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码.2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效.3.考试结束后,请将机读卡和答题卡交监考人员.一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1. 经过(A 、()1,0B -两点的直线的倾斜角为( )A.π6 B.π3C.2π3D.5π6【答案】B 【解析】【分析】求出直线AB 的斜率,利用直线的斜率与倾斜角的关系可得出结果.【详解】设直线AB 的倾斜角为α,则0πα≤<,且tan α==,故π3α=.故选:B.2. 抛物线22x py =的准线方程是2y =,则实数p 的值为( )A. 8- B. 4- C. 4D. 8【答案】B 【解析】【分析】根据抛物线的准线求得p 的值【详解】由题意可得:22p-=,则4p =-故选:B3. 已知(),P x y 是椭圆22114425x y +=上的点,则x y +的值可能是( )A. 13B. 14C. 15D. 16【答案】A【解析】【分析】根据题意,可设12cos ,5sin x y θθ==,得到13sin()x y θϕ+=+,求得x y +的取值范围,即可求解.【详解】由椭圆22114425x y +=,可设12cos ,5sin x y θθ==,其中[]0,2πθ∈,则12cos 5sin 13sin()x y θθθϕ=+=++,其中12tan 5ϕ=,因为1sin()1θϕ-≤+≤,所以1313x y -≤+≤,即x y +的取值范围为[]13,13-,结合选项,可得A 符合题意.故选:A.4. 若点()2,1在圆220x y x y a +-++=的外部,则a 的取值范围是( )A 1,2⎛⎫+∞ ⎪⎝⎭B. 1,2⎛⎫-∞ ⎪⎝⎭C. 14,2⎛⎫- ⎪⎝⎭D. ()1,4,2⎛⎫-∞-⋃+∞⎪⎝⎭【答案】C 【解析】【分析】利用表示圆的条件和点和圆的位置关系进行计算.【详解】依题意,方程220x y x y a +-++=可以表示圆,则22(1)140a -+->,得12a <;由点()2,1在圆220x y x y a +-++=的外部可知:2221210a +-++>,得4a >-.故142a -<<.故选:C5. 已知12,F F 是椭圆 221259x y +=的两个焦点,过1F 的直线交椭圆于,M N 两点,则2MNF 的周长为( )A. 10 B. 16C. 20D. 26【答案】C 【解析】【分析】由椭圆的定义可得122MF MF a +=,122NF NF a +=,代入即可求出答案.【详解】由椭圆的定义可得:122MF MF a +=,122NF NF a +=,.则2MNF 的周长为:22112244520MN MF NF MF NF MF NF a ++=+++==⨯=.故选:C .6. 已知抛物线2:16C y x =,直线:4l x =与C 交于A ,B 两点,M 是射线BA 上异于A ,B 的动点,圆1C 与圆2C 分别是OMA 和OMB △的外接圆(O 为坐标原点),则圆1C 与圆2C 面积的比值为( )A. 小于1 B. 等于1C. 大于1D. 与M 点的位置有关【答案】B 【解析】【分析】求出,A B 的坐标,由对称性可得OB OA =,OBA OAB ∠=∠,设OAM △,OBM 的外接圆半径为12,R R ,由正弦定理得到12sin OM R OAB =∠,22sin OMR OBA=∠,故12R R =,故面积比值为1.【详解】由题意得,抛物线2:16C y x =的焦点坐标为()4,0F ,将4x =代入2:16C y x =中,8y =±,不妨令()()4,8,4,8A B -,由对称性可知,A B 两点关于y 轴对称,OB OA =,OBA OAB ∠=∠,设OAM △,OBM 的外接圆半径为12,R R ,当点M 在A 点上方时,()12sin sin πsin OM OM OM R OAM OAB OAB===∠-∠∠,当点M 在A 点上方时,12sin OMR OAB=∠,同理22sin OMR OBA=∠,因为OBA OAB ∠=∠,所以12R R =,所以圆1C 圆2C 面积的比值为1.故选:B7. 由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品. 若将如图所示的大教堂外形弧线的一段近似看成双曲线22221y x a b-=(00)a b >>,下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A. 221124y x -= B. 223144y x -=C. 22144x y -= D. 221164y x -=【答案】B 【解析】【分析】首先根据题意得到22222b c a c a b=⎧⎪⎪=⎨⎪=+⎪⎩,再解方程组即可.【详解】设双曲线的一个焦点为()0,c ,一条渐近线方程为a y x b=,则焦点到渐近线的距离2d b ===,所以2222224234b a ca b c a b=⎧⎧⎪=⎪⎪=⇒⎨⎨⎪⎪=⎩=+⎪⎩,即双曲线方程为:223144y x -=.故选:B8. 已知点()2,4M ,若过点()4,0N 的直线l 与圆()22:69C x y -+=交于A 、B 两点,则MA MB + 的最大值为( )A. 12B. C. 10D. 6【答案】A 【解析】【分析】设AB 中点(),P x y ,根据垂径定理可得点P 的轨迹方程,进而可得MP的取值范围,又2MA MB MP +=,即可得解.【详解】设AB 中点(),P x y ,则()6,CP x y =- ,()4,NP x y =-,所以()()2640CP NP x x y ⋅=--+= ,即()2251x y -+=,所以点P 的轨迹为以()5,0E 为圆心,1为半径的圆,所以11ME MP ME -≤≤+,5ME ==,所以46MP ≤≤,又2MA MB MP +=,所以MA MB +的最大值为12,故选:A.二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中. )9. 已知直线2:(1)10l a a x y ++-+=,其中R a ∈,则( )A. 直线l 过定点(0,1)B. 当1a =-时,直线l 与直线0x y +=垂直C. 当0a =时,直线l 在两坐标轴上的截距相等D. 若直线l 与直线0x y -=【答案】ABD 【解析】【分析】坐标代入方程检验判断A ,根据垂直的条件判断B ,求出两坐标轴上截距判断C ,求出平行线间距离判断D .【详解】选项A ,把坐标(0,1)代入直线方程而立,A 正确;选项B ,1a =-时直线l 方程为10x y -+=,斜率是1,直线0x y +=斜率是1-,两直线垂直,B 正确;选项C ,0a =时直线方程为10x y -+=,在x 轴上截距为=1x -,在y 轴上截距为1y =,不相等,C 错;选项D ,211a a ++=即0a =或1-时,直线l 方程为10x y -+=与直线0x y -=平行,距离为d ==D 正确.故选:ABD .10. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点分别为12,F F ,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( )A 2,1a c ==B. 已知椭圆E 的离心率为12,短轴长为2C. 12BF F △是等边三角形,且椭圆E 的离心率为12D. 设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上【答案】ABD.【解析】【分析】逐项代入分析即可求解.【详解】根据222a b c =+之间的关系即可求解,故选项A 正确;根据2221,22,2c e b a b c a ====+即可求解,故选项B 正确;12BF F △是等边三角形,且椭圆E 的离心率为12,只能确定12,2c a c e a ===,不能求椭圆E 标准方程,故选项C 不正确;设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上,所以()2222224,09c c b c b a =-+=+==,即可求出椭圆E 标准方程,故选项D 正确.故选:ABD.11. 抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点()3,1M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是( )A. 34PQ k =-B. 121=x xC. 254PQ = D. 1l 与2l 之间的距离为4【答案】BC【解析】【分析】由抛物线的光学性质可知,直线PQ 过焦点(1,0)F ,设直线:1PQ x my =+,代入24y x =,由韦达定理得124y y =-,进而求得121=x x ,可判断B ;先求点P 的坐标,再结合124y y =-可得点Q 的坐标,然后利用斜率公式即可判断A ;根据抛物线的定义可知12Q x p P x ++=,可判断C ;由于1l 与2l 平行,所以1l 与2l 之间的距离12d y y =-,可判断D .【详解】由抛物线的光学性质可知,直线PQ 过焦点(1,0)F ,设直线:1PQ x my =+,代入24y x =得2440y my --=,则124y y =-,所以()212121616y y x x ==,所以121=x x ,故B 正确;点P 与M 均在直线1l 上,则点P 的坐标为(1,14),由124y y =-得24y =-,则点Q 的坐标为(4,4)-,则4141344PQ k --==--,故A 错误;由抛物线的定义可知,121254244PQ x x p =++=++=,故C 正确;1l 与2l 平行,1l ∴与2l 之间的距离125d y y =-=,故D 错误.故选:BC.12. 已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则( )A. 2212PF PF -的最小值为8B. 212PF PF OP -为定值C. 若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D. 若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 的最小值为6.【答案】AB【解析】【分析】设00(,)P x y ,由2221208PF PF x -=,可判定A 正确;化简2122PF PF OP -=,可判定B 正确;设直线l 的方程为x my n =+,联立方程组,结合Δ0=,得到2213n m =-,在化简123y y =-,可判定C 不正确;根据通经长和实轴长,可判定D 错误.【详解】由题意,双曲线2213y x -=,可得1,a b ==2c ==,所以焦点12(2,0),(2,0)F F -,且1222PF PF a -==,设00(,)P x y ,则01x ≥,且220013y x -=,即220033=-y x ,双曲线C的两条渐近线的方程为y =,对于A 中,由()][()22222212000002288PF PF x y x y x ⎡⎤-=++--+=≥⎣⎦,所以A 正确;对于B中,2221200()PF PF OP x y -=-+2200(33)x x =-+-2000(21)(21)(43)2x x x =+---=(定值),所以B 正确;对于C 中,不妨设1122(,),(,)M x y N x y ,直线l 的方程为x my n =+,联立方程组2213x my n y x =+⎧⎪⎨-=⎪⎩,整理得222(31)6330m y mny n -++-=,若直线l 与双曲线C 相切,则22223612(31)(1)0m n m n ∆=---=,整理得2213n m =-,联立方程组x my n y =+⎧⎪⎨=⎪⎩,解得y =M的纵坐标为1y =,联立方程组x my n y =+⎧⎪⎨=⎪⎩,解得y =N的纵坐标为2y =,则点,M N的纵坐标之积为21222233(13)33113y n m mm y ---===-=--所以C 不正确;对于D 中,若点Q 在双曲线的右支上,则通经最短,其中通经长为226b a=,若点Q 在双曲线的左支上,则实轴最短,实轴长为226a =<,所以D 错误.故选:AB.三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13. 若双曲线22221x y a b-=()0,0a b >>____.【答案】y =【解析】【分析】由c e a ===b a =,即可求出双曲线的渐近线方程.【详解】因为双曲线22221x y a b-=()0,0a b >>c e a ===222b a =,所以b a =,双曲线22221x y a b-=()0,0a b >>渐近线方程为:b y x a =±=.故答案为:y =14. 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为________.【答案】1,14⎛⎫-⎪⎝⎭##()0.25,1-【解析】【分析】作出图象,结合题意可知A ,P 及P 到准线的垂足三点共线时,所求距离之和最小,此时P 点的纵坐标为1,代入抛物线即可求得P 点的坐标.【详解】根据题意,由y 2=-4x 得p =2,焦点坐标为(-1,0),作出图象,如图,.因为PF 等于P 到准线的距离PQ ,所以PF PA PQ PA AQ +=+≥,可知当A ,P 及P 到准线垂足三点共线时,点P 与点F 、点P 与点A 的距离之和最小,此时点P 的纵坐标为1,将y =1代入抛物线方程求得14x =-,所以点P 的坐标为1,14⎛⎫- ⎪⎝⎭.故答案为:1,14⎛⎫- ⎪⎝⎭.15. 阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆22221x y a b+=(a >b >0)的右焦点为(3,0)F ,过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,1)-,则该椭圆的面积为_____________.【答案】【解析】【分析】利用作差法构建斜率、中点坐标相关方程2121221212y y x x b x x y y a-+=-⋅-+,再结合222a c b -=即可求解出a 、b ,进而求出面积.【详解】设()11,A x y ,()22,B x y ,记AB 的中点为M ,即(2,1)M -,因为AB 的中点为M ,所以由中点坐标公式得121242x x y y +=⎧⎨+=-⎩,因为直线AB 过椭圆焦点()3,0F ,所以直线AB 斜率为121201132y y k x x --===--,又因为A ,B 在椭圆22221x y a b+=上,的所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22221212220x x y y a b --+=,整理得2121221212y y x x b x x y y a-+=-⋅-+,代值化简得222b a =,因为椭圆22221x y a b+=的焦点为()3,0F ,所以22a b 9-=,得a =,3b =,由题意可知,椭圆的面积为ab π=.故答案为:.16. 已知圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,两圆交于,P Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为132,则k 的值为___________.【答案】【解析】【分析】根据题意可设1(,)C ma a ,2(,)C mb b ,(0)m >,由P 在两圆上,将坐标代入对应圆的方程整理,易知,a b 是22(64)130m r m r -++=的两个根,进而求直线12C C 的斜率,再根据直线12C C 、(0)y kx k =>倾斜角的关系求k 值.【详解】由题设,圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,且一个交点P (3,2),∴1C 和2C 在第一象限,若,a b 分别是圆1C 和圆2C 的半径,可令1(,)C ma a ,2(,)C mb b ,(0)m >,∴222222(3)+(2){(3)+(2)ma a a mb b b --=--=,易知:,a b 是22(64)130m r m r -++=的两个根,又132ab =,∴213132m =,可得m =12C C k =,而直线12C C 的倾斜角是直线(0)y kx k =>的一半,∴1212221C C C C k k k ==-.故答案为:【点睛】关键点点睛:分析圆心的坐标并设1(,)C ma a ,2(,)C mb b ,结合已知确定,a b 为方程的两个根,应用韦达定理求参数m ,进而求12C C 斜率,由倾斜角的关系及二倍角正切公式求k 值.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17. 已知方程2214x y m+=(R m ∈且0m ≠)(1)若方程表示焦点在y 上椭圆,且离心率为12,求m 的值;(2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.【答案】(1)163m = (2)4m =-,()±【解析】【分析】(1)根据题中条件及离心率公式直接计算即可;(2)根据题中条件得4m =-,进一步计算得到c 的值,即可求解.【小问1详解】因为方程为焦点在y 轴上的椭圆,所以22,4a m b ==则离心率12c e a ===,解得163m =故163m =【小问2详解】由题意得 4m =-,c ===故焦点坐标为()±18. 已知直线l 经过直线12:34110, :2380l x y l x y +-=+-=的交点M .(1)若直线l 经过点(3,1)P ,求直线l 的方程;(2)若直线l 与直线3250x y ++=垂直,求直线l 的方程.【答案】(1)250x y +-=(2)2340x y -+=【解析】的.【分析】(1)联立方程求得交点坐标,再由两点式求出直线方程.(2)根据直线垂直进行解设方程,再利用交点坐标即可得出结果.【小问1详解】由341102380x y x y +-=⎧⎨+-=⎩得12x y =⎧⎨=⎩,即直线1l 和2l 的交点为(1,2)M .直线l 还经过点()3,1P ,∴l 的方程为211231y x --=--,即250x y +-=.【小问2详解】由直线l 与直线3250x y ++=垂直,可设它的方程为230x y n -+=.再把点(1,2)M 的坐标代入,可得260n -+=,解得4n =,故直线l 的方程为2340x y -+=.19. 已知圆C 经过()()1,4,5,0A B 两点,且在x 轴上的截距之和为2.(1)求圆C 的标准方程;(2)圆M 与圆C 关于直线10x y -+=对称,求过点()3,0且与圆M 相切的直线方程.【答案】(1)()22116x y -+=(2)3x =或3490x y --=【解析】【分析】(1)根据题意,设圆的一般式方程,代入计算,即可得到结果;(2)根据题意,分直线的斜率存在与不存在讨论,结合点到直线的距离公式列出方程,即可得到结果.【小问1详解】设圆C 的方程为()2222040x y Dx Ey F D E F ++++=+->,令0y =,可得20x Dx F ++=,则122x x D +=-=,将()()1,4,5,0A B 代入可得,116402550D E F D F ++++=⎧⎨++=⎩,解得2015D E F =-⎧⎪=⎨⎪=-⎩,所以圆C 方程为222150x y x +--=,即()22116x y -+=.【小问2详解】圆C 的圆心()1,0C ,圆M 的圆心与()1,0C 关于10x y -+=对称,∴设圆M 的圆心为(),M a b 则11022111a b b a +⎧-+=⎪⎪⎨⎪⨯=-⎪-⎩,解得12a b =-⎧⎨=⎩,圆M 的标准方程为:()()221216x y ++-=,若过点()3,0的直线斜率不存在,则方程为3x =,此时圆心()1,2C -到直线3x =的距离为314r +==,满足题意;若过点()3,0且与圆C 相切的直线斜率存在,则设切线方程为()3y k x =-,即30kx y k --=,则圆心到直线30kx y k --=4,解得34k =,所以切线方程为39044x y --=,即3490x y --=,综上,过点()3,0且与圆C 相切的直线方程为3x =或3490x y --=.20. 已知双曲线:()2211551x y m m m -=<<--的一个焦点与抛物线C :()220y px p =>的焦点重合.(1)求抛物线C 的方程;(2)若直线l :8x ty =+交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O .【答案】(1)28y x =(2)见解析.【解析】【分析】(1)根据双曲线方程求出其焦点坐标,即也是抛物线焦点,得到抛物线方程.(2)直线l 与抛物线联立后,利用韦达定理求出0OA OB ⋅= 即可得证.【小问1详解】由双曲线方程()2211551x y m m m -=<<--知其焦点在x 轴上且焦点坐标为1(2,0)F -,2(2,0)F ,所以2(2,0)F 为抛物线C :()220y px p =>的焦点,得242p p =⇒=,所以抛物线C 的方程为28y x =.【小问2详解】设11(,)A x y ,22(,)B x y 联立22886408x ty y ty y x=+⎧⇒--=⎨=⎩,2644640t ∆=+⨯>由韦达定理得128y y t +=,1264y y =-所以12121212(8)(8)OA OB x x y y ty ty y y ⋅=+=+++ 21212(1)8()64t y y t y y =++++2(1)(64)8(8)640t t t =+-++=所以OA OB ⊥ ,所以以AB 为直径的圆经过原点O .得证21. 已知直线:R)l y kx k =+∈,与双曲线22:13x C y -=的左支交于A ,B 两点.(1)求实数k 的取值范围;(2)若OAB (O 为坐标原点),求此时直线l 的斜率k 的值.【答案】(11k <<(2)k =【解析】【分析】(1)设点坐标,联立方程组,根据根与系数的关系求解;(2)通过OAB 面积求解出12x x -,从而求解出k 的值.【小问1详解】依题意,设()()1122,,,A x y B x y ,联立方程组22330y kx x y ⎧=+⎪⎨--=⎪⎩,整理得:()221390,k x ---=因为直线:R)l y kx k =∈,与双曲线22:13x C y -=的左支交于A ,B 两点,所以()2212212130361090130k k x x k x x ⎧-≠⎪=->⎪⎪⎪-⎨=>⎪-⎪⎪+=<⎪⎩ ,解得210,13k k ><<1k <<,【小问2详解】设点O到直线:R)l y kx k =∈的距离为d,则d =,212OAB S AB d x ==-=- ,又因为S =,所以1212,5x x -=又因为12125x x -==,代入12212913x x k x x -⎧=⎪-⎪⎨⎪+=⎪⎩125,整理得4236210k k+-=1k <<,解得k =,此时直线l的斜率k.22. 已知椭圆()2222:10x y C a b a b +=>>过点(2.(1)求椭圆C 方程;(2)点,A B 分别为椭圆C 的上下顶点,过点()04P ,且斜率为k 的直线与椭圆C 交于不同的两点,M N ,探究直线,BM AN 的交点是否在一条定直线0l 上,若存在,求出该直线0l 的方程;若不存在,请说明理由.【答案】(1)22:184x y C += (2)存在,1y =【解析】【分析】(1)由椭圆离心率可得222a b =,再将(2代入椭圆的方程可得228,4a b ==,即可求出椭圆的方程;(2)设()()1122,,,M x y N x y ,直线MN 的方程为:4y kx =+,联立直线MN 和椭圆的方程求出两根之积和两根之和,设直线AN 的方程和直线BM 的方程,两式联立求得交点的纵坐标的表达式,将两根之积和两根之和代入可证得交点在一条定直线上.【小问1详解】,即c e a ===,所以2212b a =,所以222a b =,又因为椭圆()2222:10x y C a b a b +=>>过点(2,所以224212b b +=,解得:228,4a b ==,所以椭圆C 方程为22184x y +=.【小问2详解】因为()()0,2,0,2A B -,设()()1122,,,M x y N x y ,直线MN 的方程为:4y kx =+,联立方程221844x y y kx ⎧+=⎪⎨⎪=+⎩,得()221216240k x kx +++=,()()222Δ164241264960,k k k =-⨯⋅+=->得232k >则1212221624,1212k x x x x k k -+=⋅=++直线AN 的方程为:2222y y x x --= ,直线BM 的方程为:1122y y x x ++=,联立两直线方程消元:()()2112112122222226y x kx x x y y y x kx x x -+-==+++ 法1:由()221216240k x kx +++=解得:12x x ==,代入化简,2123y y -===-+,解得:1y =,即直线,BM AN 的交点在定直线1y =上.法2:由韦达定理得1221612k x x k-=-+代入化简()()22222222224162824211212242324612612k k x k k x y k k k y k k x x k -⎛⎫+- ⎪--+-++⎝⎭===-+++++,得1y =,即直线,BM AN 的交点在定直线1y =上.法3:由1212221624,1212k x x x x k k -+=⋅=++,得()121232x x kx x -+=⋅代入化简()()1211223221232362x x x y y x x x -++-==-+-++,得1y =,即直线,BM AN 的交点在定直线1y =上.法4: 代()11,M x y 点进椭圆方程得2211184x y +=化简得()()221111221844y y x y +-=-=进而得到()()1111222y x y x -=+,代入化简()()121222222y y y y x x ----=+⋅转化为韦达定理代入()()()()1212121222222222y y kx kx y y x x x x ----++-==+⋅⋅()22221212122241622422412122412k k k k x x k x x k k x x k ⎛⎫-⋅-⋅+ ⎪⎡⎤-+++++⎣⎦⎝⎭==⋅+22222243248211224312k k k k k -++-⋅+=-+,得1y =,即直线,BM AN 的交点在定直线1y =上.【点睛】思路点睛:本题考查直线与椭圆综合应用中的定直线问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量之间的关系,同时得到韦达定理的形式;③利用韦达定理表示出已知的等量关系,化简整理得到所求定直线.。
2023-2024学年北京市房山区高二上学期期中考试数学试卷含详解
房山区中学2023-2024学年度第一学期期中学业水平调研高二数学第一部分(选择题共50分)一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知()1,3A -,()3,5B ,则线段AB 的中点坐标为()A.(1,4)B.(2,1)C.(2,8)D.(4,2)2.如图,平行六面体1111ABCD A B C D -中,E 为1CC 中点.设AB a =,AD b =,1AA c = ,用基底{},,a b c 表示向量AE ,则AE =()A.a b c ++r r rB.12a b c++ C.12a b c++ D.12a b c ++ 3.在如图所示的正方体1111ABCD A B C D -中,异面直线1AB 与1BC 所成角的大小为()A.30°B.45°C.60°D.90°4.在棱长为2的正方体1111ABCD A B C D -中,11AA BC ⋅= ()A. B. C.2D.45.如图,在四面体A BCD -中,AD ⊥平面BCD ,BC CD ⊥,则下列叙述中错误的是()A.ACD ∠是直线AC 与平面BCD 所成角B.ABD ∠是二面角A BC D --的一个平面角C.线段AC 的长是点A 到直线BC 的距离D.线段AD 的长是点A 到平面BCD 的距离6.已知直线1l :()210x a y a +-+=与直线2l :20ax y ++=平行,则a 的值为()A.1-或2B.13C.2D.1-7.在同一平面直角坐标中,表示1l :y ax b =+与2l :y bx a =-的直线可能正确的是()A. B.C.D.8.长方体1111ABCD A B C D -中,12AA AB ==,M 为AB 的中点,1D M MC ⊥,则AD =()A.1B.2C.3D.49.设P 为直线1y =-上的动点,过点P 做圆C :()()22324x y ++-=的切线,则切线长的最小值为()A.2B.C.3D.10.古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中这样一个命题:平面内与两定点距离的比为常数(0k k >且)1k ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,已知点()1,0A -,()2,0B ,圆()()()221:204C x y m m -+-=>,在圆上存在点P 满足2PA PB =,则实数m 的取值范围是()A.2622⎣⎦B.5,42⎡⎢⎣⎦C.2⎛ ⎝⎦D.,22⎢⎣⎦第二部分(非选择题共100分)二、填空题共6小题,每小题5分,共30分.11.已知()2,1A ,()0,3B -,则直线AB 的斜率AB k =__________.12.已知()0,0A ,()2,2B ,()4,2C ,则ABC 外接圆的方程为____________.13.已知直线l 与平面α所成角为45︒,A ,B 是直线l 上两点,且6AB =,则线段AB 在平面α内的射影的长等于____________.14.如图,长方体1111ABCD A B C D -中,11AA AD ==,2AB =,则点1D 到点B 的距离等于____________;点1D 到直线AC 的距离等于____________.15.已知圆O :()2220x y rr +=>和直线l :40x y -+=,则圆心O 到直线l 的距离等于_____________;若圆O上有且仅有两个点到直线l 的距离为2r 的值,r =______________.16.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PAB 是等边三角形,O 为AB 的中点,且PO ⊥底面ABCD ,点F 为棱PC 上一点.给出下面四个结论:①对任意点F ,都有CD OF ⊥;②存在点F ,使OF ∥平面PAD ;③二面角P AC B --6;④平面PAB ⊥平面ABCD .其中所有正确结论的序号是____________.三、解答题共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.已知三条直线1l :20x y +-=,2l :3100x y -+=,3l :3450x y -+=.(1)求直线1l ,2l 的交点M 的坐标;(2)求过点M 且与直线3l 平行的直线方程;(3)求过点M 且与直线3l 垂直的直线方程.18.已知圆C 的圆心为点()1,3C -,半径为2.(1)写出圆C 的标准方程;(2)若直线l :20x y --=与圆C 交于A ,B 两点,求线段AB 的长.19.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 是正方形,1==PA AB ,M 为PB 的中点.(1)求证:AM ⊥平面PBC ;(2)求直线PD 与平面PBC 所成角的大小;(3)求点D 到平面PBC 的距离.20.如图,在三棱柱111ABC A B C -中,1A A ⊥平面ABC ,D 是BC 的中点,2BC =,11A A AB AC ===.(1)求证:1//A B 平面1ADC ;(2)求二面角1D AC C --的余弦值;(3)判断直线11A B 与平面1ADC 是否相交,如果相交,求出A 到交点H 的距离;如果不相交,求直线11A B 到平面1ADC 的距离.21.已知圆M :22420x y x y +--=和直线l :1y kx =-.(1)写出圆M 的圆心和半径;(2)若在圆M 上存在两点A ,B 关于直线l 对称,且以线段AB 为直径的圆经过坐标原点,求直线AB 的方程.房山区中学2023-2024学年度第一学期期中学业水平调研高二数学第一部分(选择题共50分)一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知()1,3A -,()3,5B ,则线段AB 的中点坐标为()A.(1,4)B.(2,1)C.(2,8)D.(4,2)【答案】A【分析】用中点坐标公式即可求解.【详解】设线段AB 的中点坐标为(),M a b ,则132352a b -+⎧=⎪⎪⎨+⎪=⎪⎩,即14a b =⎧⎨=⎩,则线段AB 的中点坐标为()1,4M .故选:A.2.如图,平行六面体1111ABCD A B C D -中,E 为1CC 中点.设AB a =,AD b =,1AA c = ,用基底{},,a b c 表示向量AE ,则AE =()A.a b c ++r r rB.12a b c++ C.12a b c++ D.12a b c ++ 【答案】B【分析】利用几何图形的关系,结合向量的加法运算,即可求解.【详解】11122AE AC CE AB AD AA a b c =+=++=++.故选:B3.在如图所示的正方体1111ABCD A B C D -中,异面直线1AB 与1BC 所成角的大小为()A.30°B.45°C.60°D.90°【答案】C【分析】根据异面直线所成角的定义及正方体的特征求解【详解】连接1A D ,DB ,如图,因为正方体中11//A D B C ,所以1BA D ∠就是1A B 与1B C 所成的角,在1BA D 中,11A D A B BD ==.∴160BA D ∠=︒.故选:C4.在棱长为2的正方体1111ABCD A B C D -中,11AA BC ⋅= ()A. B. C.2D.4【答案】D【分析】根据向量数量积定义计算即可.【详解】在棱长为2的正方体1111ABCD A B C D -中,易知12AA = ,1BC =因为11AA BB = ,1BB 与1BC 的夹角为π4,所以1AA 与1BC 的夹角为π4,1111πcos 2442AA BC AA BC ⋅=⋅=⨯= .故选:D5.如图,在四面体A BCD -中,AD ⊥平面BCD ,BC CD ⊥,则下列叙述中错误的是()A.ACD ∠是直线AC 与平面BCD 所成角B.ABD ∠是二面角A BC D --的一个平面角C.线段AC 的长是点A 到直线BC 的距离D.线段AD 的长是点A 到平面BCD 的距离【答案】B【分析】根据线面垂直即可求解AD ,根据BC ⊥平面ACD ,即可得BC AC ⊥,进而判断C ,结合二面角的定义即可判断B.【详解】对于AD ,由于AD ⊥平面BCD ,所以ACD ∠是直线AC 与平面BCD 所成角,线段AD 的长是点A 到平面BCD 的距离,故AD 正确,对于B ,AD ⊥平面BCD ,BC ⊂平面BCD ,所以BC AD ⊥,又BC CD ⊥,,,AD CD D AD CD =⊂ 平面ACD ,所以BC ⊥平面ACD ,CA ⊂平面ACD ,故BC AC ⊥,又BC CD ⊥,AC ⊂平面ABC ,CD ⊂平面BCD ,故ACD ∠是二面角A BC D --的一个平面角,故B 错误,对于C ,由于BC AC ⊥,所以线段AC 的长是点A 到直线BC 的距离,C 正确,故选:B6.已知直线1l :()210x a y a +-+=与直线2l :20ax y ++=平行,则a 的值为()A.1-或2B.13C.2D.1-【答案】D【分析】根据两直线平行,即可列式求解.【详解】因为12l l //,所以2112a a a -=≠,解得:1a =-.故选:D7.在同一平面直角坐标中,表示1l :y ax b =+与2l :y bx a =-的直线可能正确的是()A. B.C.D.【答案】C【分析】结合各选项分析直线的斜率与在y 轴上的截距,即可判断.【详解】对于A :由图可得直线1l 的斜率0a >,在y 轴上的截距0b >;而2l 的斜率0b <,矛盾,故A 错误.对于B :由图可得直线1l 的斜率0a >,在y 轴上的截距0b >;而2l 的斜率0b <,矛盾,故B 错误.对于C :由图可得直线1l 的斜率a<0,在y 轴上的截距0b >;而2l 的斜率0b >,在y 轴上的截距0a ->,即a<0,故C 正确.对于D :由图可得直线1l 的斜率a<0,在y 轴上的截距0b <;而2l 的斜率0b >,矛盾,故D 错误.故选:C .8.长方体1111ABCD A B C D -中,12AA AB ==,M 为AB 的中点,1D M MC ⊥,则AD =()A.1B.2C.3D.4【答案】A【分析】连接1CD ,设AD a =()0a >,表示出CM ,1CD ,1MD ,利用勾股定理计算可得.【详解】如图连接1CD ,设AD a =()0a >,则CM =1==CD ,1MD ==因为1D M MC ⊥,所以22211MC MD CD +=,即22158a a +++=,解得1a =(负值舍去).故选:A9.设P 为直线1y =-上的动点,过点P 做圆C :()()22324x y ++-=的切线,则切线长的最小值为()A.2B.5C.3D.13【答案】B 【分析】根据切线最小时为圆心到直线上的点的距离最小时可以求出圆心到直线的距离,再求出切线长即可.【详解】圆心为()3,2C -,半径为2r =,设切点为Q ,要使得切线长PQ 最小,则CP 最小,此时CP l ⊥,所以2131CP +=,所以225PQ CP r =-=故选:B10.古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中这样一个命题:平面内与两定点距离的比为常数(0k k >且)1k ≠的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,已知点()1,0A -,()2,0B ,圆()()()221:204C x y m m -+-=>,在圆上存在点P 满足2PA PB =,则实数m 的取值范围是()A.2622⎣⎦ B.521,42⎡⎢⎣⎦ C.212⎛ ⎝⎦ D.521,22⎢⎣⎦【答案】D 【分析】设(),P x y ,根据2PA PB =求出点P 的轨迹方程,根据题意可得两个圆有公共点,根据圆心距大于或等于半径之差的绝对值小于或等于半径之和,解不等式即可求解.【详解】设(),P x y ,因为点()1,0A -,()2,0B ,2PA PB =,()()2222122x y x y ++=-+22650x y x +-+=,所以()2234x y -+=,可得圆心()3,0,半径2R =,由圆()()221:24C x y m -+-=可得圆心()2,C m ,半径12r =,因为在圆C 上存在点P 满足2PA PB =,所以圆()2234x y -+=与圆()()221:24C x y m -+-=有公共点,所以112222-≤≤+,整理可得:2925144m ≤+≤,解得:22m ≤≤,所以实数m的取值范围是22⎤⎢⎥⎣⎦,故选:D.第二部分(非选择题共100分)二、填空题共6小题,每小题5分,共30分.11.已知()2,1A ,()0,3B -,则直线AB 的斜率AB k =__________.【答案】2【分析】根据直线斜率公式进行计算即可.【详解】根据题意,1(3)220AB k --==-,故答案为:2.12.已知()0,0A ,()2,2B ,()4,2C ,则ABC 外接圆的方程为____________.【答案】22620x y x y +-+=【分析】首先设ABC 外接圆的方程为220x y Dx Ey F ++++=,从而得到044220164420F D E F D E F =⎧⎪++++=⎨⎪++++=⎩,再解方程组即可.【详解】设ABC 外接圆的方程为220x y Dx Ey F ++++=,则064422021644200F D D E F E D E F F ==-⎧⎧⎪⎪++++=⇒=⎨⎨⎪⎪++++==⎩⎩,所以ABC 外接圆的方程为:22620x y x y +-+=.故答案为:22620x y x y +-+=13.已知直线l 与平面α所成角为45︒,A ,B 是直线l 上两点,且6AB =,则线段AB 在平面α内的射影的长等于____________.【答案】【分析】依题意可得线段AB 在平面α内的射影的长等于45cos AB ︒.【详解】因为直线l 与平面α所成角为45︒,A ,B 是直线l 上两点,且6AB =,则线段AB 在平面α内的射影的长等于2456s 2co AB ︒=⨯=故答案为:14.如图,长方体1111ABCD A B C D -中,11AAAD ==,2AB =,则点1D 到点B 的距离等于____________;点1D 到直线AC 的距离等于____________.【答案】①.②.355【分析】以向量DA ,DC ,1DD 所在方向为x 轴,y 轴,z 轴建立空间直角坐标系,根据两点间的距离公式可求点1D 到点B 的距离;连接1D A ,作1D E 垂直AC ,垂足为E ,求出向量1AD uuu r 在向量AC上的投影,由勾股定理即可求点1D 到直线AC 的距离.【详解】如图,以向量DA ,DC ,1DD 所在方向为x 轴,y 轴,z 轴建立空间直角坐标系,由11AA AD ==,2AB =,则()10,0,1D ,()1,2,0B ,所以1D B ==,所以点1D 到点B .连接1D A ,作1D E 垂直AC ,垂足为E ,由()1,0,0A ,()0,2,0C ,所以()11,0,1AD =- ,()1,2,0AC =- ,所以155AD AC AE AC⋅== ,又1AD =,所以点1D 到直线AC 的距离5d ==.;355.15.已知圆O :()2220x y r r +=>和直线l :40x y -+=,则圆心O 到直线l 的距离等于_____________;若圆O 上有且仅有两个点到直线l 的距离为2r 的值,r =______________.【答案】①.22②.2(答案不唯一).【分析】根据点到直线距离公式计算;将圆O 上有且仅有两个点到直线l 2转化为半径与圆心O 到直线l 的距离之间的关系即可求解.【详解】圆心O 到直线l 的距离为0042211d -+==+;因为圆O 上有且仅有两个点到直线l 2,所以22d r <-<232r <<.故答案为:222(答案不唯一).16.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PAB 是等边三角形,O 为AB 的中点,且PO ⊥底面ABCD ,点F 为棱PC 上一点.给出下面四个结论:①对任意点F ,都有CD OF ⊥;②存在点F ,使OF ∥平面PAD ;③二面角P AC B --6;④平面PAB ⊥平面ABCD .其中所有正确结论的序号是____________.【答案】②③④【分析】根据题意,利用空间直线与直线,直线与平面位置关系,依次进行判断即可.【详解】对于①,若点F 与点C 重合,显然不满足CD OF ⊥,所以①错;对于②,若点F 为线段PC 中点,取线段PD 中点E ,连接EF ,则EF CD 且12EF CD =,所以EF AO ∥且EF AO =,则四边形AOFE 为平行四边形,得OF AE ∥,因为OF ⊆平面PAD ,⊆AE 平面PAD所以OF ∥平面PAD ,所以②正确;对于③,因为O 为AB 的中点,且PO ⊥底面ABCD ,过O 作OH AC ⊥于H ,则PHO ∠即为二面角P AC B --的平面角,根据边长可求得32PO =,24OH =,所以tan 24PHO ∠==,所以③正确;对于④,因为PO ⊥底面ABCD ,PO ⊂平面PAB ,所以平面PAB ⊥平面ABCD ,所以④正确;故答案为:②③④三、解答题共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.已知三条直线1l :20x y +-=,2l :3100x y -+=,3l :3450x y -+=.(1)求直线1l ,2l 的交点M 的坐标;(2)求过点M 且与直线3l 平行的直线方程;(3)求过点M 且与直线3l 垂直的直线方程.【答案】(1)()2,4M (2)34100x y -+=(3)43200x y +-=【分析】(1)联立直线方程,即可求解;(2)根据已知条件,结合直线平行的性质,即可求解;(3)根据已知条件,结合直线垂直的性质,即可求解;【小问1详解】联立203100x y x y +-=⎧⎨-+=⎩,解得24x y =⎧⎨=⎩,故交点M 坐标为()2,4M ;【小问2详解】所求直线与直线3l 平行,则所求直线可设3405x y C C -+=≠(),所求直线过点()2,4M ,则32440C ⨯-⨯+=,解得10C =,故所求直线方程为34100x y -+=;【小问3详解】所求直线与直线3l 垂直,则所求直线可设430x y D ++=,所求直线过点()2,4M ,则42340D ⨯+⨯+=,解得20D =-,故所求直线方程为43200x y +-=.18.已知圆C 的圆心为点()1,3C -,半径为2.(1)写出圆C 的标准方程;(2)若直线l :20x y --=与圆C 交于A ,B 两点,求线段AB 的长.【答案】(1)()()22134x y -++=(2)【分析】(1)根据圆的标准方程定义可得解;(2)求出圆心到直线的距离,再利用勾股定理计算可得.【小问1详解】因为圆心()1,3C -,半径2r =,所以圆C 的标准方程为()()22134x y -++=.【小问2详解】圆心C 到直线l 的距离d ==2AB∴===AB ∴=19.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 是正方形,1==PA AB ,M 为PB 的中点.(1)求证:AM ⊥平面PBC ;(2)求直线PD 与平面PBC 所成角的大小;(3)求点D 到平面PBC 的距离.【答案】(1)见解析(2)π6(3)22【分析】(1)根据线线,线面的垂直关系的转化,即可证明线面垂直;(2)首先建立空间直角坐标系,由(1)可知向量AM是平面PBC 的法向量,利用向量法求线面角的大小;(3)根据(2)的结果,结合点到平面的距离的定义,即可求解.【小问1详解】因为PA ⊥平面ABCD ,所以PA BC ⊥,又BC AB ⊥,PA AB A = ,,PA AB ⊂平面PAB ,所以BC ⊥平面PAB ,AM ⊂平面PAB ,所以BC AM ⊥,因为PA AB =,且点M 是PB 的中点,所以AM PB ⊥,且BC PB B = ,,BC PB ⊂平面PBC ,所以AM ⊥平面PBC ;【小问2详解】以点A 为原点,以向量,,AB AD AP 为,,x y z轴的方向向量,建立空间直角坐标系,()0,0,0A ,11,0,22M ⎛⎫ ⎪⎝⎭,()0,0,1P ,()0,1,0D ,()1,0,0B ,()1,1,0C ,11,0,22AM ⎛⎫= ⎪⎝⎭,()0,1,1PD =- ,由(1)可知,向量AM是平面PBC 的法向量,设直线PD 与平面PBC 所成角为θ,所以1sin cos ,2PD AM θ== ,则π6θ=,所以直线PD 与平面PBC 所成角的大小为π6;【小问3详解】因为1PA AD ==,则PD =由(2)可知,直线PD 与平面PBC 所成角的大小为π6,所以点D 到平面PBCπ262=.20.如图,在三棱柱111ABC A B C -中,1A A ⊥平面ABC ,D 是BC的中点,BC =,11A A AB AC ===.(1)求证:1//A B 平面1ADC ;(2)求二面角1D AC C --的余弦值;(3)判断直线11A B 与平面1ADC 是否相交,如果相交,求出A 到交点H 的距离;如果不相交,求直线11A B 到平面1ADC 的距离.【答案】(1)见解析(2)33(3)相交,2AH =【分析】(1)构造中位线,利用线线平行证明线面平行;(2)建立空间直角坐标系,利用法向量求二面角的余弦值;(3)利用平面的性质,即可判断直线11A B 与平面1ADC 的位置关系,并利用图形求解.【小问1详解】连结1AC 交1AC 于点E ,连结DE ,因为点,D E 分别是1,BC A C 的中点,所以1//DE A B ,且DE ⊂平面1ADC ,1A B ⊄平面1ADC ,所以1//A B 平面1ADC ;【小问2详解】因为1AB AC ==,BC =,所以AB AC ⊥,且1A A ⊥平面ABC ,所以如图,以点A 为原点,以向量1,,AB AC AA 为,,x y z轴的方向向量建立空间直角坐标系,()0,0,0A ,11,,022D ⎛⎫ ⎪⎝⎭,()10,1,1C ,11,,022AD ⎛⎫= ⎪⎝⎭,()10,1,1AC =uuu r ,设平面1ADC 的法向量为(),,m x y z=,则1110220AD m x y AC m y z ⎧⋅=+=⎪⎨⎪⋅=+=⎩ ,令1x =,则1y =-,1z =,所以平面1ADC 的法向量为()1,1,1m =- ,平面1ACC 的法向量()1,0,0n =,设二面角1D AC C --的平面角为θ,则cos cos ,3m n m n m n θ⋅=== ,所以二面角1D AC C --的余弦值为33;【小问3详解】如图,延长1C D 交1B B 于点G ,连结GA 并延长,交11B A 的延长线于点H ,因为点D 是BC 的中点,所以11GB BB ==,所以112BA B H =,即111A H AA ==,则AH ==21.已知圆M :22420x y x y +--=和直线l :1y kx =-.(1)写出圆M 的圆心和半径;(2)若在圆M 上存在两点A ,B 关于直线l 对称,且以线段AB 为直径的圆经过坐标原点,求直线AB 的方程.【答案】(1)圆心为()2,1,半径为5(2)30x y +-=或0x y +=【分析】(1)将圆的一般方程化为标准方程,得到圆心和半径;(2)推出直线l 即为AB 的垂直平分线,过圆心()2,1M ,从而得到1k =,直线AB 的斜率为1-,再结合图形,得到当AB 过点M 和过原点时,满足要求,得到答案.【小问1详解】22420x y x y +--=变形为()()22215x y -+-=,故圆M 的圆心为()2,15【小问2详解】由垂径定理可知,线段AB 的垂直平分线一定过圆心()2,1M ,又A ,B 关于直线l 对称,故直线l 即为AB 的垂直平分线,所以直线l 过点()2,1M ,将其代入1y kx =-中得,211k -=,解得1k =,故直线AB 的斜率为1-,又以线段AB 为直径的圆经过原点,圆M 也经过原点,故当AB 过点M 时满足要求,此时直线AB 的方程为()12y x -=--,即30x y +-=,当当AB 过原点时,也满足要求,此时直线AB 的方程为()00y x -=--,即0x y +=,综上,直线AB 的方程为30x y +-=或0x y +=.。
高二上学期期中考试数学试卷含答案(共5套)
高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学第一学期期中考试试卷
命题:迟立祥 审题:李彩芬
说明:本试卷满分100分,考试时间100分钟。
学生答题时可使用学生专用计算器。
一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的).
1.算法中用于“输入、输出”的框图是 ( ▲ )
2.温州市某电器开关厂生产车间用传送带将产品送至下一工序,质检人员每隔半小时在传送带上取一件产品进行检验,则这种抽样方法是 ( ▲ ) A.抽签法 B.系统抽样 C.分层抽样 D.随机数表法 3.3sin()2
π
α+
= ( ▲ ) A .sin α B .cos α C .sin α- D .cos α-
4.某同学由x 与y 之间的一组数据求得两个变量间的线性回归方程为y bx a =+,已知:数据x 的平均值为2,数据y 的平均值为3,则: ( ▲ ) A .回归直线必过点(2,3); B .回归直线一定不过点(2,3); C .点(2,3)在回归直线上方; D .点(2,3)在回归直线下方。
5.终边与角α终边关于y 轴对称的角的集合为 ( ▲ ) A .{2,}k k Z ββαπ=+∈ B .{2,}k k Z ββαπ=-+∈ C .{(21),}k k Z β
βαπ=-++∈ D .{(21),}k k Z ββαπ=++∈
6.在ABC ∆ 中,C C B B A 2
2
2
sin sin sin sin sin ++=,则A 等于 ( ▲ ) A .45
B .60
C .120
D . 135
7.口袋里有5个大小完全一样的乒乓球,其中3个白色、2个黄色,一次取出2个,则至少有一个白色的概率为 ( ▲ ) A .
425 B .2125
C .110
D . 910
8.已知函数()2sin()(0)3
f x x π
ωω=+>的最小正周期为π,则该函数的图象 ( ▲ )
A .关于点(,0)3
π
对称; B .关于直线4
x π
=对称; C .关于点(
,0)4
π
对称; D .关于直线3
x π
=
对称。
9.在区间[0,1]上任取两点a 、b
,方程2
0x b +=有实根的概率为 ( ▲ ) A .
12 B .14 C .16 D .18
10.图l 是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为1A 、2A 、…、m A (如2
A 表示身高(单位:cm )在[150,155)内的学生人数).图2是统计图l 中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是 ( ▲ ) A .9i <
B .8i <
C .7i <
D .6i <
二、填空题(本大题共7小题,每小题3分,满分21分).
11.如果一组数据的最大值与最小值之差是21,取组距为3,则所分组数为__ ▲__ __。
12.运行下面方框中的程序,若输入的数字为-1,则输出
结果为__ ▲__ __。
13.已知ABC ∆中,AB=4,AC=5,且ABC ∆的面积等于 5,则A ∠=__ ▲__ __。
14.若2
2
1
cos sin 2
θθ-<,且(0,)θπ∈,则角θ的取值
范围是__ ▲__ __。
15.已知一组数据:,,10,11,9x y ,这组数据的平均数为10, 方差为2 ,则x y -的值为__ ▲__ __。
16. 已知11
(0,),tan(),tan ,27
αβπαββ∈-==-、则tan α=__ ▲__ __。
17.下列叙述:
①随机事件发生的频率就是这个随机事件发生的概率; ②我们称用计算机或计算器模拟试验的方法为蒙特卡罗方法; ③在一次试验中,任何两个可能出现的基本事件互斥;
④满足古典概型的随机试验,其所有可能出现的基本事件有有限个。
其中正确的叙述的序号为__ ▲__ __。
答 卷 纸
试场号:__________ 座位号:____________
一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一
项是符合题目要求的).
二、填空题(本大题共7小题,每小题3分,满分21分).
11、__________________ 12、___________________ 13、____________________
14、__________________ 15、___________________ 16、____________________
17、__________________
三、解答题(本大题共5小题,满分39分.解答应写出文字说明.证明过程或演算步骤).
18.(本小题满分7分)函数()sin()(0,0[02])f x A x A ωϕωϕπ=+>>∈,,
的图象如下图所
示。
(1)求解析式中A ωϕ、、的值;
(2)该图像可由sin y x =的图像先向_____(填“左”或 “右”)平移_______个单位,再横向拉伸到原来的_______倍、 纵向拉伸到原来的______倍得到。
19.(本小题满分8分)调查某市出租车使用年限x 和该年支出维修费用y (万元),得到数据如
下:
(2)由(1)中结论预测第10年所支出的维修费用。
(
1
22
1
n
i i
i
n
i
i
x y nx y
b
x nx
a y bx
=
=
⎧
-⋅
⎪
⎪=
⎨-
⎪
⎪
=-
⎩
∑
∑)
20.(本小题满分8分)某人抛掷一枚硬币,出现正反的概率都是1
2
,连续抛掷4次。
(1)求恰好出现3次正面的概率;
(2)求至少出现2次正面的概率。
21.(本小题满分8分)执行右图中程序,回答下面问题。
(1)若输入:m=30、n=18,则输出的结果为:Array ___________________________;
(2)画出该程序的程序框图。
22.(文科,本小题满分8分)在ABC ∆中,已知内角A=3
π
,边
BC=B=x , 周长为y 。
(1)求函数()y f x =的解析式和定义域; (2)求y 的最大值。
22.(理科,本小题满分8分)如图,已知ABC ∆是边长为1的正三角形,M 、N 分别是边AB
AC 上的点,线段MN 经过ABC ∆的重心G 。
设2(
)3
3
MGA π
π
αα∠=≤≤。
(1)试将AGM AGN ∆∆、的面积(分别记为1S 与2S )表示为α的函数; (2)求22
12
11
y S S =+的最大值与最小值。
D
B
高二数学试卷答案
11、 7 12、-5 13、6
π或56π
14、5(,)66ππ 15、4 16、1
3
17、②③④
三、解答题(本大题共5小题,共39分,解答应写出文字说明、证明过程或演算步骤。
)
18.(本小题满分7分)
解:(1)依图象有:A = 3,T = 8.∴24T ππω=
=,∴()3sin()4
f x x π
ϕ=+, 又由图象可知,当1x =时,max 3y =∴33sin()4
π
ϕ=+,∴
24
2
k π
π
ϕπ+=
+.又[0,2]ϕπ∈,
∴4
π
ϕ=
∴()3sin(
)44
f x x π
π
=+
∴A = 3,4
π
ω=,4
π
ϕ=。
(2)左、
4π、4
π
、3。
19、(本小题8分)
(1) 回归方程为: 1.230.08y x =+
(2) 预计第10年需要支出维修费用12.38 万元。
21.(本小题满分8分)
该试验满足古典概型。
所有可能出现的基本事件有:全部
出现正面时有1个基本事件、出现3个正面时有4个基本事件、出现2个正面时有6个基本事件、出现1个正面时有4个基本事件、不出现正面时有1个基本事件,共
16个。
(1)设“出现3个正面”为事件A ,所以,1
()4P A =。
(2)设“至少出现2次正面”为事件B ,11
()16
P B =。
21、(本小题8分)
(1) 6 (2)
22.(本小题满分8分)
(1)24sin 4sin(
)3
y x x π
=+-+
=)6
x π
++定义域位2(0,)3
π
;
(2)当3
x π
=时,max y =。