最新6年高考4年模拟分类汇编13第七章 不等式

合集下载

最新6年高考4年模拟之数学分类汇编系列- 第七章不等式

最新6年高考4年模拟之数学分类汇编系列- 第七章不等式

第七章 不等式第一部分 六年高考荟萃 2022模拟年高考题一、选择题1.(2022模拟上海文)15.满足线性约束条件23,23,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y =+的最大值是 ( )(A )1. (B )32. (C )2. (D )3. 答案 C解析:当直线z x y =+过点B(1,1)时,z 最大值为22.(2022模拟浙江理)(7)若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =(A )2-(B )1- (C )1 (D )2 答案 C解析:将最大值转化为y 轴上的截距,将m 等价为斜率的倒数,数形结合可知答案选C ,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题3.(2022模拟全国卷2理)(5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<< 【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法. 【解析】利用数轴穿根法解得-2<x <1或x >3,故选C4.(2022模拟全国卷2文)(5)若变量x,y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩则z=2x+y的最大值为(A )1 (B)2 (C)3 (D)4 【解析】C :本题考查了线性规划的知识。

∵ 作出可行域,作出目标函数线,可得直线与y x = 与325x y +=的交点为最优解点,∴即为(1,1),当1,1x y ==时max 3z =5.(2022模拟全国卷2文)(2)不等式32x x -+<0的解集为 (A ){}23x x -<< (B ){}2x x <- (C ){}23x x x <->或 (D ){}3x x > 【解析】A :本题考查了不等式的解法∵32x x -<+,∴23x -<<,故选A6.(2022模拟江西理)3.不等式 22x x xx -->的解集是( )A.(02),B.(0)-∞,C.(2)+∞,D.(0)∞⋃+∞(-,0), 【答案】 A【解析】考查绝对值不等式的化简.绝对值大于本身,值为负数.20x x-<,解得A 。

2024年高考数学总复习第七章不等式真题分类26不等关系与不等式

2024年高考数学总复习第七章不等式真题分类26不等关系与不等式
因为 y=3x 在 R 上是增函数,当 a>b 时,3a>3b,故 B 不成立. 因为 y=x3 在 R 上是增函数,当 a>b 时,a3>b3,即 a3-b3>0,故 C 成立. 因为当 a=3,b=-6 时,a>b,但|a|<|b|,所以 D 不一定成立.故选 C.
第6页
返回层目录 返回目录
真题分类26 不等关系与不等式
高考·数学
答案:B 解法一: ∵a>b>0,ab=1,∴log2(a+b)>log2(2 ab )=1.
1 ∵2ba =2aa =a-1·2-a,令 f(a)=a-1·2-a, 又∵b=1a ,a>b>0,∴a>1a ,解得 a>1. ∴f′(a)=-a-2·2-a-a-1·2-a·ln 2=-a-2·2-a·(1+aln 2)<0, ∴f(a)在(1,+∞)上单调递减,∴f(a)<f(1),即2ba <12 . ∵a+1b =a+a=2a>a+b>log2(a+b),∴2ba <log2(a+b)<a+1b . 故选 B.
Ⅰ.利用不等式的性质判断不等关系
1.(2019·课标全国Ⅱ(理),6,5 分)若 a>b,则( )
A.ln (a-b)>0 B.3a<3b
C.a3-b3>0
D.|a|>|b|
答案:C 由 a>b,得 a-b>0,但 a-b>1 不一定成立,则 ln (a-b)>0 不一定成立, 故 A 不一定成立.
第8页
返回层目录 返回目录
真题分类26 不等关系与不等式
解法二: ∵a>b>0,ab=1, ∴取 a=2,b=12 , 此时 a+1b =4,2ba =18 ,log2(a+b)=log25-1≈1.3, ∴2ba <log2(a+b)<a+1b .故选 B.

(6)不等式——2024年高考数学真题模拟试题专项汇编

(6)不等式——2024年高考数学真题模拟试题专项汇编

(6)不等式——2024年高考数学真题模拟试题专项汇编一、选择题1.[2024届·长沙市第一中学·模拟考试]若正数a ,b 满足111a b +=,则1411a b +--的最小值为()A.4B.6C.9D.162.[2024届·长沙市第一中学·二模]已知函数()22log log 28x xf x =⋅,若()()12f x f x =(其中12x x ≠),则1219x x +的最小值为()A.4B.2C.32D.343.[2024届·湖北·模拟考试联考]已知集合{}2230A x x x =∈-->R ∣,集合B 满足B A Ø,则B 可以为()A.[1,3]- B.(,1]-∞- C.(,1)-∞- D.(,3)-∞4.[2024届·江苏省前黄高级中学·一模]设实数x ,y 满足32x >,3y >,不等式()()33222338123k x y x y x y --≤+--恒成立,则实数k 的最大值为()A.12B.24C.D.5.[2024届·重庆市第八中学·模拟考试]已知集合{23}M x x =-<<∣,{}2540N x x x =-+>∣,则M N = ()A.()2,1- B.()2,4- C.()(),14,-∞+∞ D.()(),34,-∞+∞7.[2024届·海南·模拟考试校考]已知集合{}2,1,0,1,2M =--,{}2280N x x x =+-≥,则M N = ()A.{}2,2-B.{}2-C.{}2 D.2二、多项选择题8.[2024届·湖北·模拟考试联考]若0a b c >>>,则()A.a a c b >B.22a ab c >C.a b ba c c->- D.a c -≥9.[2024届·吉林吉林·模拟考试校考]a ,b ,c ,d 均为实数,且0a b >>,0c d >>,则下列结论正确的是()A.ac bd >B.a c b d->- C.a c b d+>+ D.a bd c>三、填空题10.[2024届·贵州·模拟考试联考]以()max min M M 表示数集M 中最大(小)的数.设0a >,0b >,0c >,已知22a c b c +=1,则111min max ,,a b c ⎧⎫⎧⎫=⎨⎨⎬⎬⎩⎭⎩⎭__________.11.[2024届·河北衡水·二模联考]设集合{}2230,A x x x x =--<∈R ,{},0B x x a a =>>,则A B =R ,则实数a 的取值范围为__________.12.[2024届·海南省华侨中学·二模]已知0x >,0y >,且122x y +=,则21x y +的最小值为_______________.13.[2024届·全国·模拟考试]已知1x ,2x 是实数,满足221212848x x x x +-=,当1x 取得最大值时,12x x +=_________.14.[2024届·吉林吉林·模拟考试校考]设1x >-,则函数461y x x =+++的最小值是__________.15.[2024届·合肥一六八中学·模拟考试]设x ,y 是正实数,记S 为x ,1y x +,1y 中的最小值,则S 的最大值为______.参考答案1.答案:A解析:方法一:由111a b +=,可得1ba b =-,所以144=1111b a b b +-+---由a ,b 为正数且111a b+=,可得1a >,1b >,所以144=14111b a b b +-+≥=---,当且仅当411b b -=-,即3b =,32a =时等号成立.故选:A.方法二:由111a b +=,可得11b a a =-,11ab b=-,所以144411b a a b a b +=+≥=--,当且仅当4b a a b =,即32a =,3b =时等号成立.故选:A.2.答案:C 解析:()()()()2222222log log log 1log 3log 4log 328x x f x x x x x =⋅=-⋅-=-+ ,由()()12f x f x =,2122log log 4x x ∴+=,即1216x x =,121933242x x ∴+≥=⨯=,当且仅当1219x x =,即143x =,212x =时等号成立.故选C.3.答案:C解析:由集合{}2230{3A x x x x x =∈-->=>R ||或1}x <-,B A Ø则(,1)(3,)(,1)-∞-+∞-∞- Ø.故选:C4.答案:B 解析:32x >,3y >,变形为23030x y ->->,,令230a x =->,30b y =->,则()()33222338123k x y x y x y --≤+--转化为()()33228123233x y x y k x y +--≤--,即224323x y k y x +≥--,其中()()((222222334323a b x y y x b aba+++=+≥+--1224a b b a ⎛⎫=+≥= ⎪⎝⎭当且仅当33a b b a a b=⎧⎪=⎪⎨⎪=⎪⎩,即3x =,6y =时取等号,可知24k ≤.故选:B 5.答案:D7.答案:C解析:因为2{|280}{|4N x x x x x =+-≥=≤-或2}x ≥,所以{2}M N = .故选:C.8.答案:ACD解析:()a a a b c c b bc --=,又0a b c >>>,所以0b c ->,0b >,所以0a a c b ->,即a ac b>,故A 正觕;当1a =,1b =-,2c =-时,22a a b c <,故B 错误,()()()()()a b b a b c a c b a c b a c c a c c a c c------==---,又0a b c >>>,所以0a c ->,0c b -<,所以0a b b a c c -->-,即a b b a c c->-,故C 正确因为0a b c >>>,所以0a b ->,0b c ->,所以a c a b b c -=-+-≥,当且仅当a b b c -=-时等号成立,故D 正确.故选ACD.9.答案:ACD解析:因为a ,b ,c ,d 均为实数,且0a b >>,0c d >>,由不等式的基本性质可得ac bd >,a c b d +>+,AC 选项正确;因为0c d >>,则110d c >>,故a bd c>,D 选项正确;取3a =,2b =,2c =,1d =,则a c b d -=-,B 选项错误.故选:ACD.10解析:由221a c b c +=,得221a b c +=,设111max ,,M a b c ⎧⎫=⎨⎬⎩⎭,则22111,,2M M M a b ab a b c≥≥≥=+≥,由32223M M ab ab=≥=≥M ≥,当且仅当a b c ===.11.答案:()0,1解析:由题意{}{}2230,|13A x x x x x x =--<∈=-<<R ,{}{,0|B x x a a x x a =>>=>或},0x a a <->,若满足A B =R ,则B A ⊆R ð,又因为{}|B x a x a =-≤≤R ð,所以130a a a -<-⎧⎪<⎨⎪>⎩,解得01a <<.故答案为:()0,1.12.答案:16解析:()212182228816,y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当82y x x y =时等号成立.即当11,48x y ==时,21x y +取得最小值为16.故答案为:16.13.答案:5解析:221212848x x x x +-= .()()221222122222482x x x x x x -+∴-+=≥.2116x ∴≥,14x ∴≤.取等条件:1221224x x x x -=⎧⎨=±⎩,1241x x =⎧∴⎨=⎩或1241x x =-⎧⎨=-⎩,125x x ∴+=.14.答案:9解析:由1x >-,可得10x +>,则446155911y x x x x =++=+++≥+=++,当且仅当411x x +=+时,即1x =时,等号成立,所以函数461y x x =+++的最小值是最小值为9.故答案为:9.15解析:方法一:设0a x =>,10b y =>,1110c y x b a =+=+>,当11a b c b a===+时,a b ==不妨设a b ≤,11min ,,S a b b a ⎧⎫=+⎨⎬⎩⎭①当a b ==时,11min ,,S a bb a ⎧⎫=+=⎨⎬⎩⎭②当0a b <≤≤时,1111min ,,min ,S a b ab a b a ⎧⎫⎧⎫=+=+⎨⎬⎨⎬⎩⎭⎩⎭,若11a b a ≤+,则11min ,a a b a ⎧⎫+=≤⎨⎬⎩⎭若11a b a >+,则1111min ,a a b a b a⎧⎫+=+<≤⎨⎬⎩⎭;③当0a b <≤≤122a ≥,122b ≥,11c b a =+≥,11min ,,S a b ab a ⎧⎫=+=≤⎨⎬⎩⎭;a b ≤≤时,122a ≤,122b ≤,11c b a =+≤,1111min ,,S a bb a b a ⎧⎫=+=+≤⎨⎬⎩⎭同理,当a b >时,可以证明S ≤综上所述:S .方法二:由题意知0S x <≤,10S y <≤,则11x S ≤,1y S≤所以1112S yx S S S≤+≤+=,解得0S <≤,故S。

2024年全国高考数学真题分类( 不等式与不等关系)汇编(附答案)

2024年全国高考数学真题分类( 不等式与不等关系)汇编(附答案)

2024年全国高考数学真题分类(不等式与不等关系)汇编一、单选题1.(2024ꞏ全国1卷)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <2.(2024ꞏ全国1卷)已知函数为22,0()e ln(1),0xx ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是( ) A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞3.(2024ꞏ全国2卷)已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( ) A .p 和q 都是真命题 B .p ⌝和q 都是真命题 C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题4.(2024ꞏ全国2卷)设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( )A .18B .14C .12D .15.(2024ꞏ全国甲卷文)若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为( ) A .5B .12C .2-D .72-6.(2024ꞏ北京)已知集合{|41}M x x =-<≤,{|13}N x x =-<<,则M N ⋃=( ) A .{}43x x -<< B .{}11x x -<≤ C .{}0,1,2D .{}14x x -<<7.(2024ꞏ北京)记水的质量为1ln S d n-=,并且d 越大,水质量越好.若S 不变,且1 2.1d =,2 2.2d =,则1n 与2n 的关系为( ) A .12n n <B .12n n >C .若1S <,则12n n <;若1S >,则12n n >;D .若1S <,则12n n >;若1S >,则12n n <;8.(2024ꞏ北京)已知()11,x y ,()22,x y 是函数2x y =图象上不同的两点,则下列正确的是( )A .12122log 22y y x x ++> B .12122log 22y y x x ++< C .12212log 2y y x x +>+ D .12212log 2y y x x +<+ 9.(2024ꞏ天津)若0.30.34.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>二、填空题10.(2024ꞏ上海)已知,x ∈R 则不等式2230x x --<的解集为 .三、解答题11.(2024ꞏ全国甲卷文)已知函数()()1ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x -<恒成立.12.(2024ꞏ全国甲卷理)已知函数()()()1ln 1f x ax x x =-+-. (1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.参考答案1.B【详细分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【答案解析】因为当3x <时()f x x =,所以(1)1,(2)2f f ==, 又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【名师点评】关键点名师点评:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可. 2.B【详细分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【答案解析】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-. 故选:B. 3.B【详细分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解.【答案解析】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题, 对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题. 故选:B. 4.C【详细分析】解法一:由题意可知:()f x 的定义域为(),b ∞-+,分类讨论a -与,1b b --的大小关系,结合符号详细分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质详细分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值. 【答案解析】解法一:由题意可知:()f x 的定义域为(),b ∞-+, 令0x a +=解得x a =-;令ln()0x b +=解得1x b =-; 若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<, 此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<, 此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >; 当[)1,x b ∞∈-+时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥; 可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b ++, 此时()0f x <,不合题意; 综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b ∞-+, 令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∞∈-+时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=, 则()2222211112222a b a a a ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12. 故选:C.【名师点评】关键点名师点评:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性详细分析判断. 5.D【详细分析】画出可行域后,利用z 的几何意义计算即可得.【答案解析】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-, 即z 的几何意义为1155y x z =-的截距的15-, 则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =-过点A , 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭, 则min 375122z =-⨯=-. 故选:D. 6.A【详细分析】直接根据并集含义即可得到答案. 【答案解析】由题意得()4,3M N ⋃=-,故选:A. 7.C【详细分析】根据题意详细分析可得12.1112.22e e S S n n --⎧=⎪⎨⎪=⎩,讨论S 与1的大小关系,结合指数函数单调性详细分析判断.【答案解析】由题意可得11221 2.1ln 1 2.2ln S d n S d n -⎧==⎪⎪⎨-⎪==⎪⎩,解得12.1112.22e e S S n n --⎧=⎪⎨⎪=⎩, 若1S >,则112.1 2.2S S -->,可得112.1 2.2e e S S -->,即12n n >; 若1S =,则1102.1 2.2S S --==,可得121n n ==; 若1S <,则112.1 2.2S S --<,可得112.1 2.2e e S S --<,即12n n <; 结合选项可知C 正确,ABD 错误; 故选:C. 8.A【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可.【答案解析】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB:可得121222222x x x x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故A 正确,B 错误;对于选项C :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故C 错误; 对于选项D :例如121,2x x =-=-,则1211,24y y ==,可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故D 错误, 故选:A.9.B【详细分析】利用指数函数和对数函数的单调性详细分析判断即可. 【答案解析】因为 4.2x y =在R 上递增,且0.300.3-<<, 所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<, 因为 4.2log y x =在(0,)+∞上递增,且00.21<<, 所以 4.2 4.2log 0.2log 10<=,即0c <, 所以b a c >>, 故选:B10.{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案解析】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.11.(1)见答案解析 (2)见答案解析【详细分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性; (2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x --++>即可.【答案解析】(1)()f x 定义域为(0,)+∞,11()ax f x a x x'-=-= 当0a ≤时,1()0ax f x x-'=<,故()f x 在(0,)+∞上单调递减; 当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫⎪⎝⎭上单调递减.(2)2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ----=--+-≥-++,令1()e 21ln (1)x g x x x x -=-++>,下证()0g x >即可. 11()e 2x g x x -'=-+,再令()()h x g x '=,则121()e x h x x-'=-, 显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=-=, 即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=-+=,即()g x 在(1,)+∞上单调递增, 故0()(1)e 21ln10g x g >=-++=,问题得证12.(1)极小值为0,无极大值. (2)12a ≤-【详细分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围.【答案解析】(1)当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x+'=++-=+-+++, 因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数, 故()f x '在()1,∞-+上为增函数,而(0)0f '=, 故当10x -<<时,()0f x '<,当0x >时,()0f x '>, 故()f x 在0x =处取极小值且极小值为()00f =,无极大值.(2)()()()()11ln 11ln 1,011a x axf x a x a x x x x +-=-+'+-=-+->++, 设()()()1ln 1,01a x s x a x x x+=-+->+,则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+, 当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<, 故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍; 综上,12a ≤-.【名师点评】思路名师点评:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.。

2024年高考数学总复习第七章《不等式》不等关系与不等式

2024年高考数学总复习第七章《不等式》不等关系与不等式

2024年高考数学总复习第七章《不等式》§7.1不等关系与不等式最新考纲1.通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系.2.了解不等式(组)的实际背景.1.两个实数比较大小的方法(1)-b >0⇔a >b-b =0⇔a =b-b <0⇔a <b (a ,b ∈R )(2)⇔a >b 1⇔a =b⇔a <b (a ∈R ,b >0)2.不等式的基本性质概念方法微思考1.若a >b ,且a 与b 都不为0,则1a 与1b 的大小关系确定吗?提示不确定.若a >b ,ab >0,则1a <1b,即若a 与b 同号,则分子相同,分母大的反而小;若a >0>b ,则1a >1b,即正数大于负数.2.两个同向不等式可以相加和相乘吗?提示可以相加但不一定能相乘,例如2>-1,-1>-3.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.(√)(2)若ab>1,则a >b .(×)(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.(×)(4)a >b >0,c >d >0⇒a d >bc .(√)(5)ab >0,a >b ⇔1a <1b .(√)题组二教材改编2.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析a -b >0⇒a >b ⇒a >b ⇒a 2>b 2,但由a 2-b 2>0⇏a -b >0.3.设b <a ,d <c ,则下列不等式中一定成立的是()A .a -c <b -dB .ac <bdC .a +c >b +dD .a +d >b +c答案C解析由同向不等式具有可加性可知C 正确.题组三易错自纠4.若a >b >0,c <d <0,则一定有()A.a c -b d >0 B.a c -b d <0C.a d >b c D.a d <b c答案D解析∵c <d <0,∴0<-d <-c ,又0<b <a ,∴-bd <-ac ,即bd >ac ,又∵cd >0,∴bd cd >ac cd ,即b c >ad.5.设a ,b ∈R ,则“a >2且b >1”是“a +b >3且ab >2”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析若a >2且b >1,则由不等式的同向可加性可得a +b >2+1=3,由不等式的同向同正可乘性可得ab >2×1=2.即“a >2且b >1”是“a +b >3且ab >2”的充分条件;反之,若“a +b >3且ab >2”,则“a >2且b >1”不一定成立,如a =6,b =12.所以“a >2且b >1”是“a+b >3且ab >2”的充分不必要条件.故选A.6.若-π2<α<β<π2,则α-β的取值范围是__________.答案(-π,0)解析由-π2<α<π2,-π2<-β<π2,α<β,得-π<α-β<0.题型一比较两个数(式)的大小例1(1)若a <0,b <0,则p =b 2a +a 2b 与q =a +b 的大小关系为()A .p <qB .p ≤qC .p >qD .p ≥q答案B解析(作差法)p -q =b 2a +a 2b-a -b=b 2-a 2a +a 2-b 2b =(b 2-a 2=(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab ,因为a <0,b <0,所以a +b <0,ab >0.若a =b ,则p -q =0,故p =q ;若a ≠b ,则p -q <0,故p <q .综上,p ≤q .故选B.(2)已知a >b >0,比较a a b b 与a b b a 的大小.解∵a a b b a b b a =a a -bb a -b=-b,又a >b >0,故ab >1,a -b >0,-b>1,即a a b ba b ba >1,又a b b a >0,∴a a b b >a b b a ,∴a a b b 与a b b a 的大小关系为:a a b b >a b b a .思维升华比较大小的常用方法(1)作差法:①作差;②变形;③定号;④结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④结论.(3)函数的单调性法.跟踪训练1(1)已知p ∈R ,M =(2p +1)(p -3),N =(p -6)(p +3)+10,则M ,N 的大小关系为________.答案M >N解析因为M -N =(2p +1)(p -3)-[(p -6)(p +3)+10]=p 2-2p +5=(p -1)2+4>0,所以M >N .(2)若a >0,且a ≠7,则()A .77a a <7a a 7B .77a a =7a a 7C .77a a >7a a 7D .77a a 与7a a 7的大小不确定答案C解析77a a 7a a7=77-a a a -7-a,则当a >7时,0<7a <1,7-a <0,则-a>1,∴77a a >7a a 7;当0<a <7时,7a >1,7-a >0,则-a>1,∴77a a >7a a 7.综上,77a a >7a a 7.题型二不等式的性质例2(1)对于任意实数a ,b ,c ,d ,下列命题中正确的是()A .若a >b ,c ≠0,则ac >bcB .若a >b ,则ac 2>bc 2C .若ac 2>bc 2,则a >bD .若a >b ,则1a <1b 答案C解析对于选项A ,当c <0时,不正确;对于选项B ,当c =0时,不正确;对于选项C ,∵ac 2>bc 2,∴c ≠0,∴c 2>0,∴一定有a >b .故选项C 正确;对于选项D ,当a >0,b <0时,不正确.(2)已知四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0,能推出1a <1b 的是________.(填序号)答案①②④解析运用倒数法则,a >b ,ab >0⇒1a <1b,②④正确.又正数大于负数,所以①正确.思维升华常用方法:一是用性质逐个验证;二是用特殊值法排除.利用不等式的性质判断不等式是否成立时要特别注意前提条件.跟踪训练2(1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是()A.ab>ac B.c(b-a)<0 C.cb2<ab2D.ac(a-c)>0答案A解析由c<b<a且ac<0,知c<0且a>0.由b>c,得ab>ac一定成立.(2)若1a <1b<0,则下列不等式:①a+b<ab;②|a|>|b|;③a<b;④ab<b2中,正确的不等式有________.(填序号)答案①④解析因为1a<1b<0,所以b<a<0,a+b<0,ab>0,所以a+b<ab,|a|<|b|,在b<a两边同时乘以b,因为b<0,所以ab<b2.因此正确的是①④.题型三不等式性质的应用命题点1应用性质判断不等式是否成立例3已知a>b>0,给出下列四个不等式:①a2>b2;②2a>2b-1;③a-b>a-b;④a3+b3>2a2b.其中一定成立的不等式为()A.①②③B.①②④C.①③④D.②③④答案A解析方法一由a>b>0可得a2>b2,①成立;由a>b>0可得a>b-1,而函数f(x)=2x在R上是增函数,∴f(a)>f(b-1),即2a>2b-1,②成立;∵a>b>0,∴a>b,∴(a-b)2-(a-b)2=2ab-2b=2b(a-b)>0,∴a-b>a-b,③成立;若a=3,b=2,则a3+b3=35,2a2b=36,a3+b3<2a2b,④不成立.故选A.方法二令a=3,b=2,可以得到①a2>b2,②2a>2b-1,③a-b>a-b均成立,而④a3+b3>2a2b不成立,故选A.命题点2求代数式的取值范围例4已知-1<x<4,2<y<3,则x-y的取值范围是________,3x+2y的取值范围是________.答案(-4,2)(1,18)解析∵-1<x<4,2<y<3,∴-3<-y<-2,∴-4<x-y<2.由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,∴1<3x+2y<18.引申探究若将本例条件改为-1<x+y<4,2<x-y<3,求3x+2y的取值范围.解设3x+2y=m(x+y)+n(x-y),+n=3,-n=2,=52,=12.即3x+2y=52(x+y)+12(x-y),又∵-1<x+y<4,2<x-y<3,∴-52<52(x+y)<10,1<12(x-y)<32,∴-32<52(x+y)+12(x-y)<232,即-32<3x+2y<232,∴3x+2y-32,思维升华(1)判断不等式是否成立的方法①逐一给出推理判断或反例说明.②结合不等式的性质,对数函数、指数函数的性质进行判断.(2)求代数式的取值范围一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围.跟踪训练3(1)若a<b<0,则下列不等式一定成立的是()A.1a-b>1bB.a2<abC.|b ||a |<|b |+1|a |+1D .a n >b n答案C解析(特值法)取a =-2,b =-1,逐个检验,可知A ,B ,D 项均不正确;C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,∵a <b <0,∴|b |<|a |成立,故选C.(2)已知-1<x <y <3,则x -y 的取值范围是________.答案(-4,0)解析∵-1<x <3,-1<y <3,∴-3<-y <1,∴-4<x -y <4.又∵x <y ,∴x -y <0,∴-4<x -y <0,故x -y 的取值范围为(-4,0).一、选择题1.下列命题中,正确的是()A .若a >b ,c >d ,则ac >bdB .若ac >bc ,则a >bC .若a c 2<bc2a <bD .若a >b ,c >d ,则a -c >b -d 答案C解析A 项,取a =2,b =1,c =-1,d =-2,可知A 错误;B 项,当c <0时,ac >bc ⇒a <b ,所以B 错误;C 项,因为a c 2<bc 2,所以c ≠0,又c 2>0,所以a <b ,C 正确;D 项,取a =c =2,b =d =1,可知D 错误,故选C.2.若1a <1b <0,则下列结论正确的是()A .a 2>b 2B .C.b a +a b <2D .a e b >b e a答案D解析由题意知,b <a <0,则a 2<b 2>1,b a +ab >2,∵b <a <0,∴e a >e b >0,-b >-a >0∴-b e a >-a e b ,∴a e b >b e a ,故选D.3.若a >b >0,则下列不等式中一定成立的是()A .a +1b >b +1a B.b a >b +1a +1C .a -1b >b -1a D.2a +b a +2b >ab答案A解析取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上单调递减,在[1,+∞)上单调递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a -1a >b -1b ⇔a +1b >b +1a ,但g (a )>g (b )未必成立,故选A.4.已知x >y >z ,x +y +z =0,则下列不等式成立的是()A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y |答案C解析∵x >y >z 且x +y +z =0,∴3x >x +y +z =0,3z <x +y +z =0,∴x >0,z <0,又y >z ,∴xy >xz .5.设x >0,P =2x +2-x ,Q =(sin x +cos x )2,则()A .P >QB .P <QC .P ≤QD .P ≥Q答案A解析因为2x +2-x ≥22x ·2-x =2(当且仅当x =0时等号成立),而x >0,所以P >2;又(sin x +cos x )2=1+sin 2x ,而sin 2x ≤1,所以Q ≤2.于是P >Q .故选A.6.若α,β满足-π2<α<β<π2,则2α-β的取值范围是()A .-π<2α-β<0B .-π<2α-β<πC .-3π2<2α-β<π2D .0<2α-β<π答案C解析∵-π2<α<π2,∴-π<2α<π.∵-π2<β<π2,∴-π2<-β<π2,∴-3π2<2α-β<3π2.又α-β<0,α<π2,∴2α-β<π2.故-3π2<2α-β<π2.7.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.答案a b 2+b a 2≥1a +1b解析a b 2+ba 2-=a -b b 2+b -a a2=(a -b =(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b2≥0.∴a b 2+b a 2≥1a +1b 8.已知有三个条件:①ac 2>bc 2;②a c >b c ;③a 2>b 2,其中能成为a >b 的充分条件的是________.答案①解析由ac 2>bc 2可知c 2>0,即a >b ,故“ac 2>bc 2”是“a >b ”的充分条件;②当c <0时,a <b ;③当a <0,b <0时,a <b ,故②③不是a >b 的充分条件.9.已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则c a -d b>0;②若ab >0,c a -d b>0,则bc -ad >0;③若bc -ad >0,c a -d b>0,则ab >0.其中正确的命题是________.(填序号)答案①②③解析∵ab >0,bc -ad >0,∴c a -d b =bc -ad ab>0,∴①正确;∵ab >0,又c a -d b >0,即bc -ad ab>0,∴bc -ad >0,∴②正确;∵bc -ad >0,又c a -d b >0,即bc -ad ab>0,∴ab >0,∴③正确.故①②③都正确.10.设αT 1=cos(1+α),T 2=cos(1-α),则T 1与T 2的大小关系为________.答案T 1<T 2解析T 1-T 2=(cos 1cos α-sin 1sin α)-(cos 1cos α+sin 1sin α)=-2sin 1sin α<0.故T 1<T 2.11.(1)若bc -ad ≥0,bd >0,求证:a +b b ≤c +d d ;(2)已知c >a >b >0,求证:a c -a >bc -b .证明(1)∵bc ≥ad ,bd >0,∴c d ≥a b ,∴c d +1≥a b +1,∴a +b b ≤c +d d.(2)∵c >a >b >0,∴c -a >0,c -b >0.由a >b >0⇒1a <1b ,c >0⇒c a <c b ⇒c -a a <c -b b ,c -a >0,c -b >0⇒a c -a >b c -b.12.已知1<a <4,2<b <8,试求a -b 与a b 的取值范围.解因为1<a <4,2<b <8,所以-8<-b <-2.所以1-8<a -b <4-2,即-7<a -b <2.又因为18<1b <12,所以18<a b <42=2,即18<a b <2.13.设0<b <a <1,则下列不等式成立的是()A .ab <b 2<1B .12log b <12log a <0C .2b <2a <2D .a 2<ab <1答案C 解析方法一(特殊值法):取b =14,a =12.方法二(单调性法):0<b <a ⇒b 2<ab ,A 不对;y =12log x 在(0,+∞)上为减函数,∴12log b >12log a ,B 不对;a >b >0⇒a 2>ab ,D 不对,故选C.14.若a =ln 33,b =ln 44,c =ln 55,则()A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案B 解析方法一对于函数y =f (x )=ln x x (x >e),y ′=1-ln x x 2,易知当x >e 时,函数f (x )单调递减.因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .方法二易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1,所以a >b ;b c =5ln 44ln 5=log 6251024>1,所以b >c .即c <b <a .15.已知实数x ,y 满足a x >a y (0<a <1),则下列关系式恒成立的是()A .ln(x 2+1)>ln(y 2+1)B .sin x >sin yC .x 3<y 3D.1x 2+1>1y 2+1答案C 解析方法一因为实数x ,y 满足a x >a y (0<a <1),所以x <y .对于A ,取x =0,y =3,不成立;对于B ,取x =-π,y =π,不成立;对于C ,由于f (x )=x 3在R 上单调递增,故x 3<y 3成立;对于D ,取x =-2,y =1,不成立.故选C.方法二根据指数函数的性质得x <y ,此时x 2,y 2的大小不确定,故选项A ,D 中的不等式不恒成立;根据三角函数的性质,选项B 中的不等式也不恒成立;根据不等式的性质知,选项C 中的不等式成立.16.设0<b <a <1,则下列不等式成立的是()A .a ln b >b ln aB .a ln b <b ln aC .a e b <b e aD .a e b =b e a 答案B解析观察A ,B 两项,实际上是在比较ln b b 和ln a a 的大小,引入函数y =ln x x ,0<x <1.则y ′=1-ln x x 2,可见函数y =ln x x 在(0,1)上单调递增.所以ln b b <ln a a ,B 正确.对于C ,D 两项,引入函数f (x )=e x x ,0<x <1,则f ′(x )=x e x -e x x 2=(x -1)e x x 2<0,所以函数f (x )=e x x 在(0,1)上单调递减,又因为0<b <a <1,所以f (a )<f (b ),即e a a <e b b,所以a e b >b e a ,故选B.。

高考数学一轮复习第七章不等式7-3基本均值不等式及应用学案理

高考数学一轮复习第七章不等式7-3基本均值不等式及应用学案理

【2019最新】精选高考数学一轮复习第七章不等式7-3基本均值不等式及应用学案理考纲展示► 1.了解基本(均值)不等式的证明过程.2.会用基本(均值)不等式解决简单的最大(小)值问题.考点1 利用基本(均值)不等式求最值1.基本(均值)不等式≤a+b2(1)基本(均值)不等式成立的条件:________.(2)等号成立的条件:当且仅当________时等号成立.答案:(1)a>0,b>0 (2)a=b2.几个重要的不等式(1)a2+b2≥________(a,b∈R).(2)+≥________(a,b同号).(3)ab≤2(a,b∈R).(4)≥2(a,b∈R).答案:(1)2ab (2)23.算术平均数与几何平均数设a>0,b>0,则a,b的算术平均数为,几何平均数为,基本(均值)不等式可叙述为:________________________________.答案:两个正数的算术平均数不小于它们的几何平均数4.利用基本(均值)不等式求最值问题已知x>0,y>0,则(1)如果积xy是定值p,那么当且仅当________时,x+y有最________值是2.(简记:积定和最小) (2)如果和x+y是定值p,那么当且仅当________时,xy有最________值是.(简记:和定积最大)答案:(1)x =y 小 (2)x =y 大1.基本不等式的两个易错点:忽视不等式成立的条件;忽视等号成立的条件.(1)函数y =x +在区间(0,+∞)上的最小值是________,在区间(-∞,0)上的最大值是________.答案:2 -2解析:当x>0时,y =x +≥2=2,当且仅当x =,即x =1时取等号,故y 的最小值为2.当x<0时,-x>0,y =x +=-⎣⎢⎡⎦⎥⎤-x +⎝ ⎛⎭⎪⎫-1x ≤-2=-2,当且仅当-x =-,即x =-1时取等号,故y 的最大值为-2.(2)函数y =sin x +,x∈的最小值为________.答案:5解析:y =sin x +≥2=4,当sin x =时,sin x =±2,显然取不到等号.事实上,设t =sin x ,x∈,则t∈(0,1],易知y =t +在(0,1]上为减函数,故当t =1时,y 取得最小值5.2.应用基本不等式的技巧:凑;拆.(1)已知0<x<1,则x(3-3x)取得最大值时,x 的值为________.答案:12解析:由x(3-3x)=×3x(3-3x)≤×=,当且仅当3x =3-3x ,即x =时,等号成立.(2)若x>1,则x +的最小值为________.答案:5解析:x +=x -1++1≥4+1=5,当且仅当x -1=,即x =3时,等号成立.利用基本不等式确定最值的两种常见类型:代换变形;变量是负数.(1)已知a>0,b>0,a +b =2,则y =+的最小值是________.答案:92解析:∵a+b =2,∴=1,∴+==+≥+2=.故y =+的最小值为.(2)已知0<x<1,则y =lg x +的最大值是________.答案:-4解析:∵0<x<1,∴lg x<0,-lg x>0,∴-y =-lg x +⎝ ⎛⎭⎪⎫4-lg x ≥2=4,当且仅当-lg x =,即x =时,等号成立,故ymax =-4.[考情聚焦] 利用基本(均值)不等式求最值,一般是已知两个非负数的和为定值求其乘积的最大值,或已知两个非负数的乘积为定积求其和的最小值,是每年高考的重点内容.主要有以下几个命题角度:角度一通过配凑法利用基本(均值)不等式求最值[典题1] (1)已知0<x<1,则x(3-3x)取得最大值时x 的值为( )A.B. C.D.23 [答案] B[解析] 因为0<x<1,所以x(3-3x)=3x(1-x)≤32=.当且仅当x =1-x ,即x =时等号成立.(2)已知x <,求f(x)=4x -2+的最大值.[解] 因为x <,所以5-4x >0,则f(x)=4x -2+14x -5=-+3≤-2+3=1.当且仅当5-4x =,即x =1时等号成立.故f(x)=4x -2+的最大值为1.(3)已知x 为正实数且x2+=1,求x 的最大值.[解] 因为x >0,所以x =2x2⎝ ⎛⎭⎪⎫12+y22 ≤.又x2+=+=,所以x≤ =,即(x)max =.(4)求函数y =的最大值.[解] 令t = ≥0,则x =t2+1,所以y ==.当t =0,即x =1时,y =0;当t >0,即x >1时,y =,因为t +≥2=4,当且仅当t =2时等号成立,所以y =≤,即y 的最大值为(当t =2,即x =5时y 取得最大值).[点石成金] 1.利用基本(均值)不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本(均值)不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.2.在利用基本(均值)不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本(均值)不等式.角度二通过常数代换法利用基本(均值)不等式求最值[典题2] 已知a >0,b >0,a +b =1,则+的最小值为________.[答案] 4[解析] ∵a>0,b >0,a +b =1,∴+=+=2++a b≥2+2=4,即+的最小值为4,当且仅当a =b =时等号成立.[题点发散1] 本例的条件不变,则的最小值为________.答案:9解析:=·=⎝ ⎛⎭⎪⎫2+b a ⎝ ⎛⎭⎪⎫2+a b =5+2≥5+4=9.当且仅当a =b =时等号成立.[题点发散2] 本例的条件和结论互换,即:已知a >0,b >0,+=4,则a +b 的最小值为________.答案:1解析:由+=4,得+=1.∴a +b =(a +b)=++a 4b≥+2=1.当且仅当a =b =时等号成立.[题点发散3] 若将本例中的“a+b =1”换为“a+2b =3”,如何求解?解:∵a+2b =3,∴a+b =1,∴+=⎝ ⎛⎭⎪⎫1a +1b ⎝ ⎛⎭⎪⎫13a +23b =+++2b 3a≥1+2=1+.当且仅当a=b=3-3时等号成立.故+的最小值为1+. [题点发散4] 若将本例变为:设a,b,c均为正数,满足a-2b+3c=0,则的最小值是________.答案:3解析:∵a-2b+3c=0,∴b=,∴=≥=3,当且仅当a=3c时等号成立.[题点发散5] 若将本例变为:已知各项为正数的等比数列{an}满足a7=a6+2a5,若存在两项am,an,使得=2a1,则+的最小值为________.答案:95解析:设公比为q(q>0),由a7=a6+2a5⇒a5q2=a5q+2a5⇒q2-q-2=0(q>0)⇒q=2.am·an=2a1⇒a12m-1·a12n-1=8a21⇒2m-1·2n-1=8⇒m+n-2=3⇒m+n=5,则+=(m+n)=≥×(5+2)=,当且仅当n=2m=时等号成立.[点石成金] 将条件灵活变形,利用常数代换法求最值是解决此类问题的常用方法.角度三通过消元法利用基本(均值)不等式求最值[典题3] [2017·江西南昌模拟]已知x>0,y>0,x+3y+xy=9,则x+3y的最小值为________.[答案] 6[解析] 由已知,得x=.解法一:∵x>0,y>0,∴0<y<3,∴x+3y=+3y=+3(y+1)-6≥2-6=6,当且仅当=3(y+1),即y=1,x=3时,等号成立,故(x+3y)min=6.解法二:∵x>0,y>0,9-(x+3y)=xy=x·(3y)≤·2,当且仅当x=3y时等号成立.设x+3y=t>0,则t2+12t-108≥0,∴(t-6)(t+18)≥0,又∵t>0,∴t≥6.故当x=3,y=1时,(x+3y)min=6. [点石成金] 消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本(均值)不等式求解.考点2 基本(均值)不等式与函数的综合问题[典题4] (1)已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是( )A.(-∞,-1)B.(-∞,2-1)C.(-1,2-1)D.(-2-1,2-1)[答案] B[解析] 由32x-(k+1)3x+2>0恒成立,得k+1<3x+.∵3x+≥2,∴k+1<2,即k<2-1.(2)已知函数f(x)=(a∈R),若对于任意x∈N*,f(x)≥3恒成立,则a 的取值范围是________.[答案] ⎣⎢⎡⎭⎪⎫-83,+∞ [解析] 由f(x)≥3恒成立,得x2+ax +11x +1≥3, 又x∈N*,∴x2+ax +11≥3(x+1),∴a -3≥-.令F(x)=-,x∈N*,则F(x)max =F(3)=-,即a -3≥-,∴a≥-.[点石成金] 1.a>f(x)恒成立⇔a>f(x)max ,a<f(x)恒成立⇔a<f(x)min.2.求最值时要注意其中变量的条件,有些不能用基本(均值)不等式的问题可考虑利用函数的单调性.已知函数f(x)=x +(p 为常数,且p>0) ,若f(x)在(1,+∞)上的最小值为4,则实数p =( )A .2B. C .4D.92 答案:B解析:由题意,得x -1>0,f(x)=x -1++1≥2+1,当且仅当x =+1时等号成立.因为f(x)在(1,+∞)上的最小值为4,所以2+1=4, 解得p =.考点3 基本(均值)不等式的实际应用(1)[教材习题改编]现有一段长为18 m 的铁丝,要把它围成一个底面一边长为另一边长2倍的长方体形状的框架,当长方体体积最大时,底面的较短边长是( )B.1.5 mA.1 mD.0.5 mC.0.75 m答案:A (2)[教材习题改编]将一根铁丝切割成三段做一个面积为2 m2、形状为直角三角形的框架,选用最合理(够用且浪费最少)的铁丝的长为________m.答案:4+22解析:设两直角边分别为a m,b m,框架的周长为l,则ab=2,即ab=4,∴ l=a+b+≥2+=4+2,当且仅当a=b=2时取等号,故选用最合理(够用且浪费最少)的铁丝的长为(4+2)m.(3)[教材习题改编]建造一个容积为8立方米,深为2米的长方体无盖水池,若池底的造价为每平方米120元,池壁的造价为每平方米80元,则这个水池的最低造价为________元.答案:1 760解析:池底一边长为x米,则另一底边为米,则总造价y=4×120+4×80≥1760,当且仅当x=2时取得最小值.[典题5] 某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=.(1)如果不限定车型,l=6.05,则最大车流量为________辆/时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/时.[答案] (1)1 900 (2)100[解析] (1)当l=6.05时,F=,∴F ==76 000v +121v+18 ≤=1 900,当且仅当v =,即v =11时等号成立.∴最大车流量F 为1 900辆/时.(2)当l =5时,F ==,∴F ≤=2 000,当且仅当v =,即v =10时等号成立.∴最大车流量比(1)中的最大车流量增加2 000-1 900=100(辆/时).[点石成金] 解实际应用题的三个注意点(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件 答案:B解析:若每批生产x 件产品,则每件产品的生产准备费用是元,仓储费用是元,总的费用是+≥2=20,当且仅当=,即x =80时等号成立.[方法技巧] 1.基本(均值)不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本(均值)不等式的切入点.2.对使用基本(均值)不等式时等号取不到的情况,可考虑使用函数y=x+(m>0)的单调性.[易错防范] 1.使用基本(均值)不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.连续使用基本(均值)不等式求最值要求每次等号成立的条件一致.真题演练集训1.[2016·江苏卷]在锐角三角形ABC中,若sin A=2sin Bsin C,则tan AtanBtan C的最小值是________.答案:8解析:由sin A=sin(B+C)=2sin Bsin C,得sin Bcos C+cos Bsin C=2sin Bsin C,两边同时除以cos Bcos C,得tan B+tan C=2tan Btan C,令tan B+tan C=2tan Btan C=m,因为△ABC是锐角三角形,所以2tan Btan C>2,则tan Btan C>1,m>2.又在三角形中有tan Atan Btan C=-tan(B+C)tan Btan C=-·m==m-2++4≥2+4=8,当且仅当m-2=,即m=4时等号成立,故tan Atan Btan C的最小值为8. 2.[2014·福建卷]要制作一个容积为4 m3,高为1 m的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).答案:160解析:设该容器的总造价为y元,长方体的底面矩形的长为x m,因为无盖长方体的容积为4 m3,高为1 m,所以长方体的底面矩形的宽为 m,依题意,得y=20×4+10=80+20≥80+20×2=160,当且仅当x=,即x=2时等号成立,所以该容器的最低总造价为160元.3.[2013·天津卷]设a+b=2,b>0,则当a=________时,+取得最小值.答案:-2解析:∵a+b=2,∴+=+|a|b=+=++|a|b≥+2 =+1.当且仅当=且a<0,即b=-2a,a=-2时,+取得最小值.课外拓展阅读基本(均值)不等式在压轴题中的应用关于基本(均值)不等式的高考试题,它可以涉及的知识点很多,尤其是在数列、解析几何中运用时,难度一般较大,需要有较强的分析问题及解决问题的能力.1.与数列搭配基本不等式在数列解答题中多出现在第(2)问中,常见的是比较大小或证明不等式,问题的求解需要有较强的运算能力.[典例1] 已知等差数列{an}的前n项和为Sn,公差d≠0,a1=1,且a1,a2,a7成等比数列.(1)求数列{an}的前n项和Sn;(2)设bn=,数列{bn}的前n项和为Tn,求证:2Tn-9bn-1+18>(n>1).[思路分析] (1)根据等差数列和等比数列的性质易求;(2)中数列{bn}满足bn=,这是一个等差数列的前n 项和与一个关于n 的一次函数之比,数列{bn}极可能也是一个等差数列,求出其和后,根据不等式的有关知识解决.(1)[解] 因为a1,a2,a7成等比数列,所以a =a1a7,即(a1+d)2=a1(a1+6d).又a1=1,d≠0,所以d =4.所以Sn =na1+d =n +2n(n -1)=2n2-n.(2)[证明] 因为bn ===2n ,所以{bn}是首项为2,公差为2的等差数列.所以Tn ==n2+n.所以2Tn -9bn -1+18=2n2+2n -18(n -1)+18=2n2-16n +36=2(n2-8n +16)+4=2(n -4)2+4≥4,当且仅当n =4时等号成立.①64bn ++1=64×2n ++==≤646+10=4,当且仅当n =,即n =3时等号成立.②又①②中等号不可能同时取到,所以2Tn -9bn -1+18>(n>1).温馨提示本题在求解时注意,两次放缩取等号的条件不一致,最后结果不能取等号.2.与函数、导数共现在函数的解答题中出现的基本(均值)不等式一般都与导数有密切的联系,在多数情况下问题的求解需要构造新的函数,通过合理转化,巧妙放缩去完成.求解这类问题一般难度较大,在高考中常以压轴题的形式出现,需要较强的综合能力.[典例2] 已知h(x)=ln(x +1)-.(1)当a>0时,若对任意的x≥0,恒有h(x)≥0,求实数a 的取值范围;(2)设x∈N 且x>2,试证明:ln x≥+++…+.(1)[解] h(x)=ln(x +1)-,则h(x)的定义域为(-1,+∞),h′(x)=-=.①当0<a ≤1时,对任意的x ≥0,h ′(x)≥0恒成立,则h(x)在[0,+∞)上单调递增,h(x)≥h(0)=0,所以满足题意.②当a>1时,h(x)在x ∈(0,a -1]上单调递减,h(x)在x ∈[a -1,+∞)上单调递增.若对任意的x≥0,恒有h(x)≥0,则h(x)的最小值h(a -1)=ln a +1-a≥0恒成立.令m(a)=ln a +1-a(a>1),则m′(a)=,m′(a)<0,m(a)在a∈(1,+∞)上单调递减,所以当a∈(1,+∞)时,有m(a)<m(1)=0,与h(a -1)=ln a +1-a≥0恒成立矛盾.所以实数a 的取值范围为(0,1].(2)[证明] 由(1)知,ln(1+x)≥,所以ln x =ln ⎝ ⎛⎭⎪⎫21×32×43×…×xx -1 =ln 2+ln +ln +…+ln x x -1=ln(1+1)+ln +ln +…+ln ⎝ ⎛⎭⎪⎫1+1x -1 ≥++…+1x -11+1x -1=+++…+.所以ln x≥+++…+.。

2024年高考数学总复习第七章不等式真题分类27一元二次不等式及其解法

2024年高考数学总复习第七章不等式真题分类27一元二次不等式及其解法

答案:(-5,0)∪(5,+∞) 由于 f(x)为 R 上的奇函数,所以当 x=0
时,f(0)=0;当 x<0 时,-x>0,所以 f(-x)=x2+4x=-f(x),即 f(x)=-x2-4x,
x2-4x,x>0, 所以 f(x)=0,x=0,
-x2-4x,x<0.
由 f(x)>x,可得x2-4x>x, x>0
或- 5 或-5<x<0,所以原不等式的解集为(-5,0)∪(5,+∞).
第7页
返回层目录 返回目录
真题分类27 一元二次不等式及其解法
高考·数学
02. 解不等式需要注意下面几个问题
(1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法. (2)掌握用数轴标根法解高次不等式和分式不等式,特别要注意因式的处理方 法. (3)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化 为易解的不等式. (4)对于含字母的不等式,要按照正确的分类标准,进行分类讨论.
C3.一元二次不等式的解法
高考·数学
命题者说:掌握二次不等式的解题要领,能讨论含参不等式的解法及高次不等式的解法.
第1题 第2题 第3题 第4题
第2页
返回目录
真题分类27 一元二次不等式及其解法
高考·数学
Ⅰ.不含参数的一元二次不等式的解法 1.(2013·广东,9,5 分)不等式 x2+x-2<0 的解集为________.
真题分类27 一元二次不等式及其解法
高考·数学
第七章 不等式
§7.1 不等式及其解法 真题分类27 一元二次不等式及其解法
C3.一元二次不等式的解法 C4.一元二次不等式的恒成立问题 C5.一元二次方程的根的分布问题 C6.一元二次不等式与函数的综合问题

高中数学高考42第七章 不等式、推理与证明 7 6 直接证明与间接证明

高中数学高考42第七章 不等式、推理与证明 7 6 直接证明与间接证明

跟踪训练 2 已知 a>0,证明: a2+a12- 2≥a+1a-2.
师生共研
题型三 反证法的应用
例 3 设 a>0,b>0,且 a+b=1a+1b.证明: (1)a+b≥2;
证明 由 a+b=1a+1b=aa+bb,a>0,b>0,得 ab=1.
由基本不等式及ab=1,
有 a+b≥2 ab=2,即 a+b≥2,当且仅当 a=b=1 时,等号成立.
7.如果 a a+b b>a b+b a成立,则 a,b 应满足的条件是_a_≥__0_,__b_≥__0_且__a_≠__b_. 解析 ∵a a+b b-(a b+b a) = a(a-b)+ b(b-a) =( a- b)(a-b) =( a- b)2( a+ b). ∴当 a≥0,b≥0 且 a≠b 时,( a- b)2( a+ b)>0. ∴a a+b b>a b+b a成立的条件是 a≥0,b≥0 且 a≠b.
(1)证明:数列T1n是等差数列; 证明 ∵an+1=TTn+n 1=11--aan+n 1 ⇒ an+1 = 1 ⇒ 1 - 1 =1,
1-an+1 1-an 1-an+1 1-an
∴Tn1+1-T1n=1,
又∵T1=1-a1=a1, ∴a1=12,∴T11=1-1 a1=2, ∴数列T1n是以 2 为首项,公差为 1 的等差数列.
师生共研
题型一 综合法的应用
例1 已知a,b,c>0,a+b+c=1.求证: (1) a+ b+ c≤ 3; 证明 ∵( a+ b+ c)2=(a+b+c)+2 ab+2 bc+2 ca≤(a+b+c)+(a+b)
+(b+c)+(c+a)=3,
∴ a+ b+ c≤ 3(当且仅当 a=b=c 时取等号).

2024年高考数学总复习第七章不等式真题分类28二元一次不等式(组)与简单的线性规划问题

2024年高考数学总复习第七章不等式真题分类28二元一次不等式(组)与简单的线性规划问题

第13页
返回层目录 返回目录
真题分类28 二元一次不等式(组)与简单的线性规划问题
高考·数学
目标函数 z=x+2y,即 y=-12 x+2z ,画出直线 y=-12 x 并平移,当直线 y =-12 x+2z 经过点 A(2,1)时,z 取最小值,无最大值,zmin=2+2×1=4,所以 z 的取值范围为[4,+∞),故选 B.
第12页
返回层目录 返回目录
真题分类28 二元一次不等式(组)与简单的线性规划问题
高考·数学
4.(2020·浙江,3,4 分)若实数 x,y 满足约束条件xx+-y3-y+3≥1≤0,0, 则 z=x+2y
的取值范围是( )
A.(-∞,4]
B.[4,+∞)
C.[5,+∞)
D.(-∞,+∞)
答案:B 由 x,y 满足的约束条件画出可行域, 如图中阴影部分所示(包含边界).
的可行域,
2x+3y-1≤0
如图所示:
第11页
返回层目录 返回目录
真题分类28Leabharlann 二元一次不等式(组)与简单的线性规划问题
高考·数学
目标函数 z=x-12 y 化为 y=2x-2z, 由x2=x+-31y-,1=0, 解得xy==-1. 1, 设 A(-1,1),当直线 y=2x-2z 过 A 点时,z=x-12 y 取得最小值为-32 . 故选 B.
第9页
返回层目录 返回目录
真题分类28 二元一次不等式(组)与简单的线性规划问题
高考·数学
由xy+ =y3=4, 可得点 A(1,3), 转换目标函数 z=3x+y 为 y=-3x+z, 上下平移直线 y=-3x+z,数形结合可得当直线过点 A 时,z 取最小值, 此时 zmin=3×1+3=6. 故选 C.

高考数学(理)(全国通用)高考试题汇编第七章不等式含解析精品配套练习

高考数学(理)(全国通用)高考试题汇编第七章不等式含解析精品配套练习
44
大, z 值越小.由图可知 z 在 A 1,1 处取得最小值,故 zmin 3 1 4 1 1 .
y
O x-y=0
z=3x+ 4y A(1,1)
B(2,0) x x+y -2=0
x y 3, 0
6.( 2017 山东理 4)已知 x , y 满足 3x y 5, 0 ,则 z x 2y 的最大值是(
任何业绩的质变都来自于量变的积累。 明天的希望,让我们忘了今天的痛苦。 世界上最重要的事情,不在于我们身在何处,而在于我们朝着什么方向走。 爱拼才会赢努力拼搏,青春无悔! 脚踏实地地学习。 失去金钱的人损失甚少,失去健康的人损失极多,失去勇气的人损失一切。 在真实的生命里,每桩伟业都由信心开始,并由信心跨出第一步。 旁观者的姓名永远爬不到比赛的计分板上。 觉得自己做的到和不做的到,其实只在一念之间。 人的才华就如海绵的水,没有外力的挤压,它是绝对流不出来的。流出来后,海 绵才能吸收新的源泉。 没有等出来的辉煌;只有走出来的美丽。 我成功,因为我志在成功! 记住!只有一个时间是最重要的,那就是现在。 回避现实的人,未来将更不理想。 昆仑纵有千丈雪,我亦誓把昆仑截。 如果我们想要更多的玫瑰花,就必须种植更多的玫瑰树。 没有热忱,世间将不会进步。 彩虹总在风雨后,阳光总在乌云后,成功总在失败后。 如果我们都去做我们能力做得到的事,我们真会叫自己大吃一惊。 外在压力增强时,就要增强内在的动力。 如果有山的话,就有条越过它的路。 临中考,有何惧,看我今朝奋力拼搏志!让雄心与智慧在六月闪光! 成功绝不喜欢会见懒汉,而是唤醒懒汉。
故选 A.
y 2 y= x+ 1 3
2 y= x+ 1
3
O
x
y=- 3
( 6, 3)

高考数学复习演练第七章不等式(含2014-真题)(2021年整理)

高考数学复习演练第七章不等式(含2014-真题)(2021年整理)

2018年高考数学复习演练第七章不等式(含2014-2017年真题)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学复习演练第七章不等式(含2014-2017年真题))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学复习演练第七章不等式(含2014-2017年真题)的全部内容。

第七章不等式考点1 不等关系与不等式1.(2017•山东,7)若a>b>0,且ab=1,则下列不等式成立的是( )A。

a+ <<log2(a+b) B。

<log2(a+b)<a+C。

a+ <log2(a+b)< D.log2(a+b))<a+ <1. B ∵a>b>0,且ab=1,∴可取a=2,b= .则= ,= = ,log2(a+b)= = ∈(1,2),∴<log2(a+b)<a+ .故选B.2。

(2017·天津,8)已知函数f(x)= ,设a∈R,若关于x的不等式f(x)≥| +a|在R上恒成立,则a的取值范围是()A。

[﹣,2] B。

[﹣, ] C.[﹣2 ,2] D。

[﹣2 ,]2. A 当x≤1时,关于x的不等式f(x)≥| +a|在R上恒成立,即为﹣x2+x﹣3≤+a≤x2﹣x+3,即有﹣x2+ x﹣3≤a≤x2﹣x+3,由y=﹣x2+ x﹣3的对称轴为x= <1,可得x= 处取得最大值﹣;由y=x2﹣x+3的对称轴为x= <1,可得x= 处取得最小值,则﹣≤a≤ ①当x>1时,关于x的不等式f(x)≥|+a|在R上恒成立,即为﹣(x+ )≤ +a≤x+ ,即有﹣(x+ )≤a≤ + ,由y=﹣(x+ )≤﹣2 =﹣2 (当且仅当x= >1)取得最大值﹣2 ;由y= x+ ≥2 =2(当且仅当x=2>1)取得最小值2.则﹣2 ≤a≤2②由①②可得,﹣≤a≤2.故选A.3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分 六年高考荟萃2010年高考题一、选择题1.(2010上海文)15.满足线性约束条件23,23,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y =+的最大值是( )(A )1. (B )32. (C )2. (D )3. 答案 C解析:当直线z x y =+过点B(1,1)时,z 最大值为22.(2010浙江理)(7)若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =(A )2- (B )1- (C )1 (D )2 答案 C解析:将最大值转化为y 轴上的截距,将m 等价为斜率的倒数,数形结合可知答案选C ,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题3.(2010全国卷2理)(5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<< 【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C4.(2010全国卷2文)(5)若变量x,y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩则z=2x+y 的最大值为(A )1 (B)2 (C)3 (D)4 【解析】C :本题考查了线性规划的知识。

∵ 作出可行域,作出目标函数线,可得直线与y x = 与325x y +=的交点为最优解点,∴即为(1,1),当1,1x y ==时max 3z =5.(2010全国卷2文)(2)不等式32x x -+<0的解集为 (A ){}23x x -<< (B ){}2x x <- (C ){}23x x x <->或 (D ){}3x x > 【解析】A :本题考查了不等式的解法∵ 302x x -<+,∴ 23x -<<,故选A6.(2010江西理)3.不等式 22x x xx -->的解集是( ) A. (02),B. (0)-∞,C. (2)+∞,D. (0)∞⋃+∞(-,0), 【答案】 A【解析】考查绝对值不等式的化简.绝对值大于本身,值为负数.20x x-<,解得A 。

或者选择x=1和x=-1,两个检验进行排除。

7.(2010安徽文)(8)设x,y 满足约束条件260,260,0,x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z=x+y 的最大值是(A )3 (B ) 4 (C ) 6 (D )8 答案 C【解析】不等式表示的区域是一个三角形,3个顶点是(3,0),(6,0),(2,2),目标函数z x y =+在(6,0)取最大值6。

【规律总结】线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则区域端点的值是目标函数取得最大或最小值,求出直线交点坐标代入目标函数即可求出最大值.8.(2010重庆文)(7)设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为 (A )0 (B )2 (C )4 (D )6 解析:不等式组表示的平面区域如图所示,当直线32z x y =-过点B 时,在y 轴上截距最小,z 最大 由B (2,2)知max z =4解析:将最大值转化为y 轴上的截距,可知答案选A ,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题10.(2010重庆理数)(7)已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是 D. 112A. 3B. 4C. 答案 B解析:考察均值不等式2228)2(82⎪⎭⎫ ⎝⎛+-≥⋅-=+y x y x y x ,整理得()()0322422≥-+++y x y x92即()()08242≥++-+y x y x ,又02>+y x ,42≥+∴y x11.(2010重庆理数)(4)设变量x ,y 满足约束条件01030y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则z=2x+y 的最大值为A.—2B. 4C. 6D. 8 答案 C解析:不等式组表示的平面区域如图所示 当直线过点B (3,0)的时候,z 取得最大值612.(2010北京理)(7)设不等式组 110330530x y x y x y 9+-≥⎧⎪-+≥⎨⎪-+≤⎩表示的平面区域为D ,若指数函数y=xa 的图像上存在区域D 上的点,则a 的取值范围是(A )(1,3] (B )[2,3] (C ) (1,2] (D )[ 3, +∞] 答案:A13.(2010四川理)(12)设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最 小值是(A )2 (B )4 (C ) 25 (D )5 解析:221121025()a ac c ab a a b ++-+- =2211(5)()a c a ab ab ab a a b -+-+++- =211(5)()()a c ab a a b ab a a b -+++-+- ≥0+2+2=4当且仅当a -5c =0,ab =1,a (a -b )=1时等号成立y 0x70 488070(15,55) 如取a =2,b =22,c =25满足条件. 答案:B14.(2010四川理)(7)某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为 (A )甲车间加工原料10箱,乙车间加工原料60箱 (B )甲车间加工原料15箱,乙车间加工原料55箱 (C )甲车间加工原料18箱,乙车间加工原料50箱 (D )甲车间加工原料40箱,乙车间加工原料30箱 答案:B解析:设甲车间加工原料x 箱,乙车间加工原料y 箱则70106480,x y x y x y N +≤⎧⎪+≤⎨⎪∈⎩目标函数z =280x +300y结合图象可得:当x =15,y =55时z 最大 本题也可以将答案逐项代入检验.15.(2010天津文)(2)设变量x ,y 满足约束条件3,1,1,x y x y y +≤⎧⎪-≥-⎨⎪≥⎩则目标函数z=4x+2y 的最大值为(A )12 (B )10 (C )8 (D )2 【答案】B【解析】本题主要考查目标函数最值的求法,属于容易题,做出可行域,如图由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时z 取得最大值10. 16.(2010福建文)0xy +=1Oy x =yxA0:20l x y -=217.(2010全国卷1文)(10)设123log 2,ln 2,5a b c -===则 (A )a b c <<(B )b c a << (C) c a b << (D) c b a << 答案C【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析1】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-=15,而2252log 4log 3>=>,所以c<a,综上c<a<b. 【解析2】a =3log 2=321log ,b =ln2=21log e, 3221log log 2e <<< ,32211112log log e <<<; c =121115254-=<=,∴c<a<b 18.(2010全国卷1文)(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1 答案B【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.19.(2010全国卷1理)(8)设a =3log 2,b =ln2,c =125-,则(A ) a<b<c (B )b<c<a (C ) c<a<b (D) c<b<a20.(2010全国卷1理)21.(2010四川文)(11)设0a >b >,则()211a ab a a b ++-的最小值是 (A )1 (B )2 (C )3 (D )4 答案:D 解析:()211a ab a a b ++-=211()a ab ab ab a a b -+++- =11()()ab a a b ab a a b ++-+- ≥2+2=4当且仅当ab =1,a (a -b )=1时等号成立 如取a =2,b =22满足条件. 22.(2010四川文)(8)某加工厂用某原料由车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天功能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱 (B )甲车间加工原料15箱,乙车间加工原料55箱 (C )甲车间加工原料18箱,乙车间加工原料50箱 (D )甲车间加工原料40箱,乙车间加工原料30箱 答案:B解析:解析:设甲车间加工原料x 箱,乙车间加工原料y 箱则70106480,x y x y x y N +≤⎧⎪+≤⎨⎪∈⎩目标函数z =280x +300y结合图象可得:当x =15,y =55时z 最大 本题也可以将答案逐项代入检验.yx70 4880 70(15,55)23.(2010山东理)24.(2010福建理)8.设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( ) A .285B .4C . 125 D .2【答案】B【解析】由题意知,所求的||AB 的最小值,即为区域1Ω中的点到直线3490x y --=的距离的最小值的两倍,画出已知不等式表示的平面区域,如图所示,可看出点(1,1)到直线3490x y --=的距离最小,故||AB 的最小值为|31419|245⨯-⨯-⨯=,所以选B 。

相关文档
最新文档