人教版初中数学《第21章不定方程》竞赛专题复习有答案

合集下载

2022学年人教版九年级数学上册第21章《 一元二次方程》期末复习练附答案

2022学年人教版九年级数学上册第21章《 一元二次方程》期末复习练附答案

2022学年九年级数学上册第21章《一元二次方程》期末复习练1.一个直角三角形的两条直角边相差3cm,面积是9cm2,设较长的直角边的长为xcm,根据题意,可列方程为.2.如图,用120米长的围网围建一个面积为560平方米的矩形养殖场.为了节省材料,养殖场的一边靠墙(墙足够长),并在如图的两个位置各开出一个1米宽的门(门不用围网做).设矩形AB边长为x米,请依题意列方程:.3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支.4.有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了人.5.九年级某班在调研考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1326张卡片.设全班有x名学生,根据题意列出方程为.6.建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?7.某店销售A产品,每千克售价为100元.(1)若连续两次降低售价后,每千克81元,求这两次降价的平均百分率?(2)若按现价销售,每千克可以盈利20元,每天可以售出120千克.调查发现,在进价不变的情况下,每千克A产品的售价每涨价2元,日销售量就减少10千克.该店希望每天A产品盈利2340元,设每千克A产品涨价x元(x>0),求x的值.8.某学校计划用一片空地建一个形状为矩形的劳动教育场地,其中一面靠墙(墙可利用的最大长度为12m),另外三面用木栅栏建围栏,计划建造的矩形场地面积为80m2,已知现有的木栅栏材料总长为26m.(1)为了方便学生出行,学校决定与墙平行一面开2m的门,则矩形场地的边长分别为多少m?(2)在(1)条件下,如图修三条等宽的硬化小路便于师生通行,小路的占用面积为26m2,则修建的小路宽为多少m?9.2021年10月12日,武汉汉口北商品交易会(简称汉交会)在武汉开幕,在1号会场中,若参加交易会的每两家公司之间都签订了一份合同,所有公司共签订55份合同,问1号会场共有多少家公司参加交易会?10.有一块长为a米,宽为b米的矩形场地,计划在该场地上修筑宽是x米的两条互相垂直的道路,余下的四块矩形场地建成草坪.(1)已知a=26,b=15,并且四块草坪的面积和为312平米,请求出每条道路的宽x为多少米?(2)已知a:b=2:1,x=2,并且四块草坪的面积和为312平方米,请求出原来矩形场地的长和宽各为多少米?11.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?12.如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15m3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?13.如图,为了美化街道,刘大爷准备利用自家墙外的空地种植两种不同的花卉,墙的最大可用长度是12.5m,墙外可用宽度为3.25m.现有长为21m的篱笆,计划靠着院墙围成一个中间有一道隔栏的矩形花圃.(1)若要围成总面积为36m2的花圃,边AB的长应是多少米?(2)花圃的面积能否达到36.75m2?若能,求出边AB的长;若不能,请说明理由.14.庆元旦,我校工会组织羽毛球比赛,赛制为单循环形式(每两位老师之间都赛一场),共进行了45场比赛,共有多少位老师参加这次羽毛球比赛.15.列方程解应用题:某地足球协会组织一次联赛,赛制为双循环(每两队之间都赛两场),恰好需要打56场比赛,求共有多少支球队参加比赛?16.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?17.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为______件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?18.随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌更节水的灌溉方式,喷灌和滴灌时每亩用水量分别是漫灌时的30%和20%.去年,新丰收公司用各100亩的三块试验田分别采用喷灌、滴灌和漫灌的灌溉方式,共用水15000吨.(1)请问用漫灌方式每亩用水多少吨?去年每块试验田各用水多少吨?(2)今年该公司加大对农业灌溉的投入,喷灌和滴灌试验田的面积都增加了m%,漫灌试验田的面积减少了2m%.同时,该公司通过维修灌溉输水管道,使得三种灌溉方式下的每亩用水量都进一步减少了m%.经测算,今年的灌溉用水量比去年减少59m%,求m 的值.(3)节水不仅为了环保,也与经济收益有关系.今年,该公司全部试验田在灌溉输水管道维修方面每亩投入30元,在新增的喷灌、滴灌试验田添加设备所投入经费为每亩100元,在(2)的情况下,若每吨水费为2.5元,请判断,相比去年因用水量减少所节省的水费是否大于今年的以上两项投入之和?19.一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x 月(1≤x≤12)的利润的月平均值w (万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.(1)设使用回收净化设备后的1至x 月(1≤x≤12)的利润和为y,写出y 关于x 的函数关系式,并求前几个月的利润和等于700万元;(2)当x 为何值时,使用回收净化设备后的1至x 月的利润和与不安装回收净化设备时x 个月的利润和相等;(3)求使用回收净化设备后两年的利润总和.参考答案与试题解析一.填空题(共5小题)1.一个直角三角形的两条直角边相差3cm,面积是9cm2,设较长的直角边的长为xcm,根据题意,可列方程为x(x﹣3)=9.【分析】根据两直角边之间的关系,可得出较短的直角边的长为(x﹣3)cm,再利用三角形的面积计算公式,即可找出关于x的一元二次方程,此题得解.【解答】解:∵一个直角三角形的两条直角边相差3cm,且较长的直角边的长为xcm,∴较短的直角边的长为(x﹣3)cm.依题意得:x(x﹣3)=9.故答案为:x(x﹣3)=9.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2.如图,用120米长的围网围建一个面积为560平方米的矩形养殖场.为了节省材料,养殖场的一边靠墙(墙足够长),并在如图的两个位置各开出一个1米宽的门(门不用围网做).设矩形AB边长为x米,请依题意列方程:x(120+2﹣2x)=560.【分析】根据各边之间的关系,可得出矩形BC边长为(120+2﹣2x)米,根据矩形养殖场的面积为560平方米,即可得出关于x的一元二次方程,此题得解.【解答】解:∵围网的总长为120米,且矩形AB边长为x米,∴矩形BC边长为(120+2﹣2x)米.依题意得:x(120+2﹣2x)=560.故答案为:x(120+2﹣2x)=560.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出9个小分支.【分析】等量关系为:主干1+支干数目+支干数目×支干数目=91,把相关数值代入计算即可.【解答】解:设每个支干长出x个小分支,则1+x+x2=91,解得:x1=9,x2=﹣10(舍去),∴每个支干长出9个小分支.故答案为:9个.【点评】考查一元二次方程的应用,得到总数91的等量关系是解决本题的关键.4.有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了12人.【分析】设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有169人患了流感,列方程求解.【解答】解:设平均一人传染了x人,x+1+(x+1)x=169x=12或x=﹣14(舍去).平均一人传染12人.故答案为:12.【点评】本题考查理解题意的能力,关键是看到两轮传染,从而可列方程求解.5.九年级某班在调研考试前,每个同学都向全班其他同学各送一张写有祝福的卡片,全班共送了1326张卡片.设全班有x名学生,根据题意列出方程为x(x﹣1)=1326.【分析】由题意可知这是一道典型的双循环的题目,从而可以列出相应的方程,本题得以解决.【解答】解:由题意可得,x(x﹣1)=1326,故答案为:x(x﹣1)=1326.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.二.解答题(共10小题)6.建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【分析】(1)设该市改造老旧小区投入资金的年平均增长率为x,利用2021年投入资金金额=2019年投入资金金额×(1+年平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设该市在2022年可以改造y个老旧小区,根据2022年改造老旧小区所需资金不多于2022年投入资金金额,即可得出关于y的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:(1)设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市改造老旧小区投入资金的年平均增长率为20%.(2)设该市在2022年可以改造y个老旧小区,依题意得:80×(1+15%)y≤1440×(1+20%),解得:y≤,又∵y为整数,∴y的最大值为18.答:该市在2022年最多可以改造18个老旧小区.【点评】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.7.某店销售A产品,每千克售价为100元.(1)若连续两次降低售价后,每千克81元,求这两次降价的平均百分率?(2)若按现价销售,每千克可以盈利20元,每天可以售出120千克.调查发现,在进价不变的情况下,每千克A产品的售价每涨价2元,日销售量就减少10千克.该店希望每天A产品盈利2340元,设每千克A产品涨价x元(x>0),求x的值.【分析】(1)设这两次降价的平均百分率为a,利用经过两次降价后的价格=原价×(1﹣这两次降价的平均百分率)2,即可得出关于a的一元二次方程,解之取其符合题意的值即可得出结论;(2)当每千克A产品涨价x元(x>0)时,每千克可以盈利(20+x)元,每天可以售出(120﹣5x)千克,利用总利润=每千克的销售利润×日销售量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)设这两次降价的平均百分率为a,依题意得:100(1﹣a)2=81,解得:a1=0.1=10%,a2=1.9(不符合题意,舍去).答:这两次降价的平均百分率为10%.(2)∵每千克A产品涨价x元(x>0),∴每千克可以盈利(20+x)元,每天可以售出120﹣×10=(120﹣5x)千克.依题意得:(20+x)(120﹣5x)=2340,依题意得:x2﹣4x﹣12=0,解得:x1=6,x2=﹣2(不符合题意,舍去).答:x的值为6.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.8.某学校计划用一片空地建一个形状为矩形的劳动教育场地,其中一面靠墙(墙可利用的最大长度为12m),另外三面用木栅栏建围栏,计划建造的矩形场地面积为80m2,已知现有的木栅栏材料总长为26m.(1)为了方便学生出行,学校决定与墙平行一面开2m的门,则矩形场地的边长分别为多少m?(2)在(1)条件下,如图修三条等宽的硬化小路便于师生通行,小路的占用面积为26m2,则修建的小路宽为多少m?【分析】(1)设与墙垂直的一面为x米,然后可得另两面则为(26﹣2x+2)米,然后利用其面积为80列出方程求解即可;(2)设小路的宽为a米,利用去掉小路的面积为54平米列出方程求解即可得到答案.【解答】解:(1)设与墙垂直的一面为x米,另一面则为(26﹣2x+2)米,根据题意得:x(28﹣2x)=80.整理得:x2﹣14x+40=0.解得x=4或x=10,当x=4时,28﹣2x=20>12(舍去).当x=10时,28﹣2x=8<12.答:长为10米,宽为8米;(2)设宽为a米,根据题意得:(8﹣2a)(10﹣a)=54,a2﹣14a+13=0,解得:a=13>10(舍去),a=1,答:小路的宽为1米.【点评】本题考查了一元二次方程的应用,要结合图形求解.找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.9.2021年10月12日,武汉汉口北商品交易会(简称汉交会)在武汉开幕,在1号会场中,若参加交易会的每两家公司之间都签订了一份合同,所有公司共签订55份合同,问1号会场共有多少家公司参加交易会?【分析】设1号会场共有x家公司参加交易会,利用签订合同的总数=参会公司数量×(参会公司数量﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设1号会场共有x家公司参加交易会,依题意得:x(x﹣1)=55,整理得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:1号会场共有11家公司参加交易会.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.有一块长为a米,宽为b米的矩形场地,计划在该场地上修筑宽是x米的两条互相垂直的道路,余下的四块矩形场地建成草坪.(1)已知a=26,b=15,并且四块草坪的面积和为312平米,请求出每条道路的宽x为多少米?(2)已知a:b=2:1,x=2,并且四块草坪的面积和为312平方米,请求出原来矩形场地的长和宽各为多少米?【分析】(1)当a=26,b=15时,四块草坪可合成长为(26﹣x)米,宽为(15﹣x)米的矩形,利用矩形的面积计算公式,结合四块草坪的面积和为312平米,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论;(2)利用矩形的面积计算公式,结合四块草坪的面积和为312平米,即可得出关于b的一元二次方程,解之取其正值即可得出原来矩形场地的宽,再将其代入a=2b中即可求出原来矩形场地的长.【解答】解:(1)当a=26,b=15时,四块草坪可合成长为(26﹣x)米,宽为(15﹣x)米的矩形,依题意得:(26﹣x)(15﹣x)=312,整理得:x2﹣41x+78=0,解得:x1=2,x2=39(不合题意,舍去).答:每条道路的宽x为2米.(2)依题意得:(a﹣2)(b﹣2)=312,即(2b﹣2)(b﹣2)=312,整理得:b2﹣3b﹣154=0,解得:b1=14,b2=﹣11(不合题意,舍去),.答:原来矩形场地的长为28米,宽为14米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.11.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【解答】解:设每千克水果应涨价x元,依题意得方程:(500﹣20x)(10+x)=6000,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10.要使顾客得到实惠,应取x=5.答:每千克水果应涨价5元.【点评】解答此题的关键是熟知此题的等量关系是:盈利额=每千克盈利×日销售量.12.如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15m3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?【分析】本题可设无盖长方体箱子宽为x米,则长为(x+2)米,根据刚好能围成一个容积为15米3的无盖长方体箱子,结合图形可列出方程,求出答案.【解答】解:设长方体箱子宽为x米,则长为(x+2)米.依题意,有x(x+2)×1=15.整理,得x2+2x﹣15=0,解得x1=﹣5(舍去),x2=3,∴这种运动箱底部长为5米,宽为3米.由长方体展开图可知,所购买矩形铁皮面积为(5+2)×(3+2)=35∴做一个这样的运动箱要花35×20=700(元).答:张大叔购回这张矩形铁皮共花了700元【点评】题目考查的知识点比较多,但难度不大,同学应注意的是所求问题用到的是长方体的表面积,即表面展开图的面积,并非体积.13.如图,为了美化街道,刘大爷准备利用自家墙外的空地种植两种不同的花卉,墙的最大可用长度是12.5m,墙外可用宽度为3.25m.现有长为21m的篱笆,计划靠着院墙围成一个中间有一道隔栏的矩形花圃.(1)若要围成总面积为36m2的花圃,边AB的长应是多少米?(2)花圃的面积能否达到36.75m2?若能,求出边AB的长;若不能,请说明理由.【分析】(1)设AB的长为x米,则长为21﹣3x米,根据其面积列出方程求得即可.(2)把(1)中用代数式表示的面积整理为a(x﹣h)2+b的形式可得最大的面积.【解答】解:(1)设AB的长为x米,则长为(21﹣3x)米,根据题意得:x(21﹣3x)=36,解得:x=3或x=4,∵墙外可用宽度为3.25m,∴x只能取3.(2)花圃的面积为(21﹣3x)x=﹣3(x﹣3.5)2+36.75,∴当AB长为3.25m,有最大面积,为36.75平方米.∵墙外可用宽度为3.25m,∴花圃的面积不能达到36.75m2.【点评】本题考查了一元二次方程及配方法的应用;得到长方形花圃的长的代数式是解决本题的易错点;用配方法得到最大面积是解决本题的难点.14.庆元旦,我校工会组织羽毛球比赛,赛制为单循环形式(每两位老师之间都赛一场),共进行了45场比赛,共有多少位老师参加这次羽毛球比赛.【分析】设这次有x队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为场.根据题意可知:此次比赛的总场数=45场,依此等量关系列出方程求解即可.【解答】解:设共有x位老师参加这次羽毛球比赛,则=45.解得:x1=10,x2=﹣9(不合题意舍去).答:共有10位老师参加这次羽毛球比赛.【点评】此题主要考查了一元二次方程的应用,解决问题的关键在于理解清楚题意,找出合适的等量关系,列出方程,再求解.需注意赛制是“单循环形式”,需使两两之间比赛的总场数除以2.15.列方程解应用题:某地足球协会组织一次联赛,赛制为双循环(每两队之间都赛两场),恰好需要打56场比赛,求共有多少支球队参加比赛?【分析】每个队都要与其余队比赛一场,2队之间要赛2场.等量关系为:队的个数×(队的个数﹣1)=56,把相关数值代入计算即可.【解答】解:设共有x支球队参加比赛x(x﹣1)=56解得:x1=8,x2=﹣7(舍去)答:共有8支球队参加比赛.【点评】本题考查一元二次方程的应用;得到比赛总场数的等量关系是解决本题的关键.16.解:(1)(14-10)÷2+1=3(档次).答:此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4-4x)=1080,整理得:x2-16x+55=0,解得:x1=5,x2=11(不合题意,舍去).答:该烘焙店生产的是第五档次的产品.17.解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.故答案为:26;(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,∴x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.1718.解:(1)设漫灌方式每亩用水x吨,则100x+100×30%x+100×20%x=15000,19.解:(1)y=xw=x(10x+90)=10x2+90x,10x2+90x=700,解得:x1=5或x2=-14(不合题意,舍去),答:前5个月的利润和等于700万元;(2)10x2+90x=120x,解得:x1=3,x2=0(不合题意,舍去),答:当x为3时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;(3)第一年全年的利润是:12(10×12+90)=2520(万元),前11个月的总利润是:11(10×11+90)=2200(万元),∴第12月的利润是2520-2200=320(万元),第二年的利润总和是12×320=3840(万元),2520+3840=6360(万元).答:使用回收净化设备后两年的利润总和是6360万元.11。

人教版初中九年级数学上册第二十一章《一元二次方程》经典题(含答案解析)(3)

人教版初中九年级数学上册第二十一章《一元二次方程》经典题(含答案解析)(3)

一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1D解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=12D 解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.3.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x +=D .()()5011266x x ++=D 解析:D【分析】 根据2月份的营业额=1月份的营业额×(1+x ),3月份的营业额=2月份的营业额×(1+2x ),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x ,∴2月份的营业额=50×(1+x ),∴3月份的营业额=50×(1+x )×(1+2x ),∴可列方程为:50(1+x )(1+2x )=66.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .注意先求得2月份的营业额.4.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关A 解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.5.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+C解析:C【分析】把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.6.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .15B解析:B【分析】利用因式分解法解方程求出x 的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x 2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x 1=3,x 2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去; ②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B .【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.7.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17B 解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-,由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.8.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( ) A .1B .-1C .1或-1D .0B 解析:B【分析】把0x =代入,求出a 的值即可.【详解】解:把0x =代入可得210a -=,解得1a =±,∵一元二次方程二次项系数不为0,∴1a ≠,∴1a =-,故选:B .【点睛】本题考查一元二次方程的解,注意二次项系数不为0.9.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-=D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误;C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.10.一元二次方程x 2=4x 的解是( )A .x=4B .x=0C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x 2=4xx 2-4x=0x (x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.二、填空题11.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的 解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式.12.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是________.且【分析】根据根的判别式及一元二次方程的定义解题即可【详解】∵关于x 的一元二次方程有两个不相等的实数根解得又∵该方程为一元二次方程且故答案为:且【点睛】本题主要考查根的判别式及一元二次方程的定义属于解析:1k ->且0k ≠.【分析】根据根的判别式及一元二次方程的定义解题即可.【详解】∵关于x 的一元二次方程有两个不相等的实数根,()224241440b ac k k ∴∆=-=-⨯-=+>,解得1k >-.又∵该方程为一元二次方程,0k ∴≠,1k ∴>-且0k ≠.故答案为:1k >-且0k ≠.【点睛】本题主要考查根的判别式及一元二次方程的定义,属于基础题,掌握根的判别式及一元二次方程的定义是解题的关键.13.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.20【分析】设每年绿化面积的增长率为x 根据该小区2019年及2021年的绿化面积即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x 依题意得:3000(1+x )解析:20%【分析】设每年绿化面积的增长率为x ,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年绿化面积的增长率为x ,依题意,得:3000(1+x )2=4320,解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 14.方程220x x +-=的两个根分别为,m n ,则11m n+的值为_________.;【分析】根据根与系数的关系可得出m+n=-1mn=-2将其代入中即可求出结论【详解】解:∵方程x2+x ﹣2=0的两个根分别为mn ∴m+n =﹣1mn =﹣2故答案为:【点睛】本题考查了根与系数的关系牢 解析:12; 【分析】根据根与系数的关系可得出m+n=-1,mn=-2,将其代入11n m m n mn++=中即可求出结论. 【详解】解:∵方程x 2+x ﹣2=0的两个根分别为m ,n ,∴m +n =﹣1,mn =﹣2, 111122n m n m m n mn mn mm +-∴+=+===-. 故答案为:12 . 【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a是解题的关键. 15.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.-1【分析】根据方程的根的判别式得出m 的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m 结合α2+β2=12即可得出关于m 的一元二次方程解之即可得出结论【详解】解:∵关于x 的解析:-1【分析】根据方程的根的判别式,得出m 的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m 2-m ,结合α2+β2=12即可得出关于m 的一元二次方程,解之即可得出结论.【详解】解:∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根,∴△=[2(m-1)]2-4×1×(m 2-m )=-4m+4≥0,解得:m≤1.∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m 2-m ,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m 2-m )=12,即m 2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m 的一元二次方程.16.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积六十步,只云长阔共十六步,问长多阔几何”.意思是:一块矩形田地的面积为60平方步,只知道它的长与宽共16步,根据题意得,设长为x 步,列出方程_______.x (16-x )=60【分析】由矩形的长与宽之间的关系可得出矩形的宽为(16-x )步再利用矩形的面积公式即可得出关于x 的一元二次方程【详解】解:矩形的长为x 步则宽为(16-x )步∴x (16-x )=60解析:x (16-x )=60【分析】由矩形的长与宽之间的关系可得出矩形的宽为(16-x )步,再利用矩形的面积公式即可得出关于x 的一元二次方程.【详解】解:矩形的长为x 步,则宽为(16-x )步,∴x (16-x )=60.故答案为:x (16-x )=60【点睛】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.17.一元二次方程x 2=2x 的解为__________0或2【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可【详解】解:x2=2xx2-2x=0x (x-2)=0x=0x-2=0x=0或2故答案为:0或2【点睛】本题考查了解一元二次方程的应 解析:0或2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x 2=2x ,x 2-2x=0,x (x-2)=0,x=0,x-2=0,x=0或2.故答案为:0或2.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.18.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x的方程解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.19.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.且【分析】根据题意结合一元二次方程的定义和根的判别式可得关于k 的不等式然后解不等式即可求解【详解】解:∵关于的一元二次方程有两个不相等的实数根∴∴的取值范围是且故答案为:且【点睛】本题考查了一元二次解析:0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩, ∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.20.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 三、解答题21.解下列方程:(1)2x 2﹣4x +1=0;(2)(2x ﹣1)2=(3﹣x )2.解析:(1)x 1=1+2,x 2=1﹣2;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=±2,∴x 1=1+2,x 2=1﹣2; (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.22.在国家的调控下.某市商品房成交价由今年8月份的50000元2/m 下降到10月份的40500元2/m .(1)同8~9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/2m ?请说明理由.解析:(1)8、9两月平均每月降价的百分率是10%;(2)12月份该市的商品房成交均价不会跌破30000元2/m ,见解析【分析】(1)设8、9两月平均每月降价的百分率是x ,那么9月份的房价为50000(1-x ),10月份的房价为50000(1-x )2,然后根据10月份的40500元/m 2即可列出方程解决问题; (2)根据(1)的结果可以计算出今年12月份商品房成交均价,然后和30000元/m 2进行比较即可作出判断.【详解】解:(1)设这两月平均每月降价的百分率是x ,根据题意得: ()250000140500x -=解得:1210% 1.9x x ==,(不合题意,舍去)答:8、9两月平均每月降价的百分率是10%(2)不会跌破30000元2/m . ()22405001405000.93280530000x -=⨯=>∴12月份该市的商品房成交均价不会跌破30000元2/m【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.23.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 解析:(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭, 解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.24.某种品牌的衬衫,进货时的单价为50元.如果按每件60元销售,可销售800件;售价每提高1元,其销售量就减少20件.若要获得12000元的利润,则每件的售价为多少元? 解析:每件的售价为70元或80元.【分析】要求衬衫的单价,就要设每件的售价为x 元,则每件衬衫的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可.【详解】解:设每件的售价为x 元,根据题意,得()()50800206012000 ,x x ⎡⎤⎣⎦---=化简整理,得215056000x x -+=()70800()x x --=1270,80x x ∴==答:每件的售价为70元或80元.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.(1)解方程290x (直接开平方法)(2)若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,求m 的值.解析:(1)13x =,23x =-;(2)4【分析】(1)利用直接开平方法求解可得答案;(2)根据常数项为0得出关于m 的方程,解之求出m 的值,结合一元二次方程的定义可得答案.【详解】(1)解:290x (直接开平方法)29x =,∴3x =±,∴13x =,23x =-.(2)解:∵关于x 的一元二次方程()221534m x x m m +++-=的常数项为0, ∴210340m m m +≠⎧⎨--=⎩, 解得4m =,1m =-(舍去),∴m 的值为4.【点睛】本题主要考查解一元二次方程的能力,也考查了一元二次方程的定义,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩ 解析:(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.27.解方程:212270x x -+=解析:13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.28.解下列方程:(1)x (x -1)=1-x(2)(x-3) 2 = (2x-1) (x +3)解析:(1)12x 1x -1==,;(2)12x 12x 1=-=,.【分析】(1)根据因式分解法,可得答案; (2)根据因式分解法,可得答案.【详解】解:(1)x (x -1)=1-x方程整理,得,x (x ﹣1)+(x ﹣1)=0, 因式分解,得,(x ﹣1)(x +1)=0 于是,得,x ﹣1=0或x +1=0, 解得x 1=1,x 2=﹣1;(2)(x-3) 2 = (2x-1) (x +3)方程整理,得,x 2+11x ﹣12=0因式分解,得,(x +12)(x ﹣1)=0 于是,得,x +12=0或x ﹣1=0, 解得x 1=﹣12,x 2=1.【点睛】本题考查了解一元二次方程,因式分解是解题关键.。

人教版 初中数学 第21章 一元二次方程全章综合测试卷5(带答案 有解析)

人教版 初中数学 第21章 一元二次方程全章综合测试卷5(带答案 有解析)

人教版 初中数学 第21章 一元二次方程全章综合测试卷5姓名___________班级__________学号__________分数___________一、选择题1.如果2是一元二次方程x 2=c 的一个根,那么常数c 是( )A .2;B .-2;C .4;D .-4;2.一元二次方程x x 22=的根是( )A .2=x ;B .0=x ;C .10x =,22x =;D .10x =,22x =-;3.已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a >2;B .a <2;C .a <2且a ≠1;D .a <-2;4.下列方程中,两根互为倒数的方程是( ) A .; B .;C .; D .;5.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( )A .289(1-x )2=256;B .256(1-x )2=289;C .289(1-2x )=256;D .256(1-2x )=289;6.从一块正方形的木板上锯掉一块2cm 宽的长方形木条,剩下部分的面积是48cm 2,那么原正方形木板的面积是( )A .8 cm 2;B .8cm 2和6 cm 2;C .64cm 2;D .36cm 2;7.若x 的方程x 2+mx +n =0的两个根是1,-3,则m 、n 的值分别为( )A .m =2,n =-3;B .m =-2,n =3;C .m =-1,n =3;D .m =1,n =-3;8.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( )A .x -6=-4;B .x -6=4;C .x +6=4;D .x +6=-4;9.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .12x (x +1)=28;B .12x (x -1)=28;C .x (x +1)=28;D .x (x -1)=28; 10.关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是( )A .0;B .8;C .4±;D .0或8;11.在正数范围内定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则x ☆23)1(=+x 的解为( ) A .32=x ;B .1=x ;C .32-=x 或1;D .32=x 或1-; ※12.若方程式(3x -c )2-60=0的两根均为正数,其中c 为整数,则c 的最小值为何?( )A .1;B .8;C .16;D .61;二、填空题13.已知关于x 的方程(a -1)x 2-2x +1=0是一元二次方程,则a 的取值范围是____________.14.方程x 2-3x +2=0的根是____________.15.若是方程的一个根,则方程的另一个根和k 值为____________.16.方程x 2-9x +18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为____________.17.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 18.方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是____________.19.设x 1、x 2是一元二次方程x 2+5x -3=0的两个实根,且()21222634x x x a +-+=,则a =____________. ※20.△ABC 的三边长a 、b 、c 满足b +c =8,bc =a 2-12a +52,则△ABC 的周长等于______.三、计算题21.解方程:220x x -=;22.解方程:113162=---x x .四、解答题23.如果关于z 的一元二次方程06)4(22=+--x mx x 没有实数根,求m 的最小整数值.24.甲、乙两人同解一个一元二次方程,甲抄错了常数项,得两根为3和2,乙抄错了一次项系数,解得两根为和,求原来的方程。

人教版初中数学《第21章不定方程》竞赛专题复习含答案

人教版初中数学《第21章不定方程》竞赛专题复习含答案

人教版初中数学《第21章不定方程》竞赛专题复习含答案第21章 不定方程§21.1 二元一次不定方程21.1.1★求不定方程2x y -=的正整数解.解析 因为312-=,422-=,532-=,…,所以这个方程的正整数解有无数组,它们是2,,x n y n =+⎧⎨=⎩其中n 可以取一切正整数.21.1.2★求11157x y +=的整数解.解析1 将方程变形得71511y x -=. 因为x 是整数,所以715y -应是11的倍数.由观察得02x =,01y =-是这个方程的一组整数解, 所以方程的解为215,111,x t y t =-⎧⎨=-+⎩t 为整数. 解析2 先考察11151x y +=,通过观察易得()()1141531⨯-+⨯=,所以()()114715377⨯-⨯+⨯⨯=,可取028x =-,021y =.从而 2815,2111,x t y t =--⎧⎨=+⎩t 为整数. 评注 如果a 、b 是互质的整数,c 是整数,且方程ax by c += ①有一组整数解0x 、0y .则此方程的一切整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩其中0t =,±1,±2,±3,….21.1.3★求方程62290x y +=的非负整数解.解析 因为(6,22)=2,所以方程两边同除以2得31145x y +=. ①由观察知,14x =,11y =-是方程3111x y += ②的一组整数解,从而方程①的一组整数解为()00454180,45145,x y =⨯=⎧⎪⎨=⨯-=-⎪⎩ 所以方程①的一切整数解为18011,45 3.x t y t =-⎧⎨=-+⎩因为要求的原方程的非负整数解,所以必有180110,4530.t t -⎧⎨-+⎩≥③≥④ 由于t 是整数,由③、④得15≤t ≤16,所以只有t =15,t =16两种可能.当t =15时,x =15,0y =;当t =16时,x =4,y = 3.所以原方程的非负整数解是15,0,x y =⎧⎨=⎩4,3.x y =⎧⎨=⎩21.1.4★求方程719213x y +=的所有正整数解.解析 这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数 的方法使系数变小,最后再用观察法求解.用方程719213x y +=①的最小系数7除方程①的各项,并移项得213193530277y y x y --==-+.② 因为x 、y 是整数,故357y u -=也是整数,于是有573y u +=.再用5除此式的两边得 373255u u y u --==-+.③ 令325u v -= (整数),由此得 253u v +=.④由观察知1u =-,1v =是方程④的一组解.将1u =-代入③得2y =.2y =代入②得x =25.于 是方程①有一组解025x =,02y =,所以它的一切解为2519,27.x t y t =-⎧⎨=+⎩0,1,2,t =±± 由于要求方程的正整数解,所以25190,270.t t ->⎧⎨+>⎩解不等式,得t 只能取0,1.因此得原方程的正整数解为25,2,x y =⎧⎨=⎩6,9.x y =⎧⎨=⎩21.1.5★求方程3710725x y +=的整数解.解析 因为10723733=⨯+,371334=⨯+,33841=⨯+.为用37和107表示1,我们把上述辗转相除过程回代,得1=33-8×4=37-4-8×4=37-9×4=37-9×(37-33)=9×33-8×37=9×(107-2×37)-8×37=9×107-26×37=37×(-26)+107×9,由此可知126x =-,19y =是方程371071x y +=的一组整数解.于是()02526650x =⨯-=-,0259225y =⨯=是方程3710725x y +=的一组整数解.所以原方程的一切整数解为650107,22537,x t y t =--⎧⎨=+⎩t 是整数. 21.1.6★求方程92451000x y z +-=的整数解.解析 设9243x y t +=,即38x y t +=,于是351000t z -=.原方程可化为38,351000.x y t t z +=⎧⎨-=⎩①② 用前面的方法可以求得①的解为38,3,x t u y t u =-⎧⎨=-+⎩u 是整数. ②的解为20005,10003,t v z v =+⎧⎨=+⎩v 是整数. 消去t ,得6000815,200035,10003,x u v y u v z v =-+⎧⎪=-+-⎨⎪=+⎩,u v 是整数.21.1.7★求方程23723x y z ++=的整数解.解析 设23x y t +=,则23,723.x y t t z +=⎧⎨+=⎩①② 对于①,0x t =-,0y t =是一组特解,从而①的整数解为3,2,x t u y t u =--⎧⎨=+⎩u 是整数.又02t =,03z =是方程②的一组特解,于是②的整数解为3,27,z v t v =-⎧⎨=+⎩v 是整数. 所以,原方程的整数解为273,272,3.x v u y v u z v =---⎧⎪=++⎨⎪=-⎩u 、v 是整数.21.1.8★求方程组57952,35736x y z x y z ++=⎧⎨++=⎩的正整数解. 解析 消去z ,得 210z y +=. ①.易知04x =,02y =是它的一组特解,从而①的整数解为4,22,x t y t =-⎧⎨=+⎩t 是整数. 代入原方程组,得所有整数解为4,22,2.x t y t z t =-⎧⎪=+⎨⎪=-⎩t 是整数.由0x >,0y >,0z >得12t -<<,所以t =0,1,故原方程组的正整数解为4,2,2;x y z =⎧⎪=⎨⎪=⎩3,4,1.x y z =⎧⎪=⎨⎪=⎩21.1.9★求方程351306x y +=的正整数解的组数.解析 因为130651435233y y x y -+==-+,所以0x =437,01y =-是一组特解.于是方程的整数 解为4375,13.x t y t =-⎧⎨=-+⎩t 是整数. 由43750,130.t t ->⎧⎨-+>⎩ 得143735t <<. 所以t =1,2,…,87.故原不定方程有87组正整数解.21.1.10★★某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法?解析 设需x 枚7分,y 枚5分恰好支付142分,于是75142x y +=.①所以1427222855x x y x --==--. 由于7x ≤142,所以x ≤20,并且由上式知()5|21x -.因为(5,2)=1,所以5|1x -,从而x =1,6,11,16.①的非负整数解为1,6,11,16,27;20;13; 6.x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩所以,共有4种不同的支付方式.评注 当方程的系数较小时,而且是求非负整数解或者是实际问题时,这时候的解的组数往往较少,可以用整除的性质加上枚举,也能较容易地解出方程.21.1.11★★今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只,用100个钱买100只鸡,问公 鸡、母鸡、小鸡各买了多少只?解析 设公鸡、母鸡、小鸡各买x 、y 、z 只,由题意列方程组153100,3100.x y z x y z ⎧++=⎪⎨⎪++=⎩①② ①化简得159300x y z ++=.③③-②得148200,x y +=即74100.x y +=解741x y +=得1,2.x y =-⎧⎨=⎩于是74100x y +=的一个特解为00100,200.x y =-⎧⎨=⎩所以74100x y +=的所有整 数解为1004,2007,x t y t =-+⎧⎨=-⎩t 是整数. 由题意知,0x <,y ,100z <,所以,01004100,02007100.t t <-+<⎧⎨<-<⎩解得2550,241428.77t t <<⎧⎪⎨<<⎪⎩ 故425287t <<. 由于t 是整数,故t 只能取26,27,28,而且x 、y 、z 还应满足100x y z ++=.所以 t x y z26 418 78 27 8 11 8128 12 4 84即可能有三种情况:4只公鸡,18只母鸡,78只小鸡;或8只公鸡,11只母鸡,81只小鸡;或12只公鸡,4只母鸡,84只小鸡.21.1.12★★小明玩套圈游戏,套中小鸡一次得9分,套中小猴一次得5分,套中小狗一次得2分.小明共套10次,每次都套中了,每个小玩具都至少被套中一次.小明套lO 次共得61分,问:小鸡至少被套中几次?解析 设套中小鸡x 次,套中小猴y 次,套中小狗z 次,则根据题意得95261,10.x y z x y z ++=⎧⎨++=⎩①② 我们要求这个方程组的正整数解.消去z :从①中减去②×2得7341x y +=,于是4173x y -=.③ 由③可以看出417x <.从而x 的值只能是1,2,3,4,5.将③写成 21323x y x -=-+, 由于y 是整数,所以2x -必须是3的倍数.从而只有2、5两个值满足这一要求.但2x =时,9y =,1z =-不是正整数.在5x =时,2y =,3z =是本题的解. 因此小鸡被套中5次.评注 本题问“小鸡至少被套中几次?”实际上却只有一个解,“至少”两字可以省去.21.1.13★★今有浓度为5%、8%、9%的甲、乙、丙三种盐水分别为60克、60克、47克,现要配制成浓度为7%的盐水100克,问甲种盐水最多可用多少克?最少可用多少克?解析 设甲、乙、丙盐水分别各取x 克、y 克、z 克,配成浓度为7%的盐水100克,依题意有 100,589700.x y z x y z ++=⎧⎨++=⎩其中060x ≤≤,0≤y ≤60,0≤z ≤47.解方程组可得2004,3100.y x z x =-⎧⎨=-⎩由0200460,0310047.x x -⎧⎨-⎩≤≤≤≤ 得3549x ≤≤.又35x =,60y =,5z =和49x =,4y =,47z =均满足题设,故甲种盐水最少可用35克,最 多可用49克.§21.2 勾股数21.2.1★★★满足方程222x y z +=的一切基本勾股数x 、y 、z (y 为偶数),都可表示为以下形式:22x p q =-,2y pq =,22z p q =+,①其中p 、q 为正整数,(p ,q )=1,p q >,p 、q 一奇一偶.解析 设正整数p 、q 满足(p ,q )=1,p q >,p 、q 一奇一偶,则()()2222222x y p q pq +=-+ 42242224p p q q p q =-++()2222p q z =+=. 所以一切形如①的正整数x 、y 、z 都是方程222x y z +=的解.下面证明这样的x 、y 、z 是基本勾股 数.设(),,x y z d =,由于p 、q 一奇一偶,所以22p q -是奇数,由22|d x p q =-,于是d 是奇数.又由22|d p q +,得()()2222|d p q p q ++-,即2|2d p ,同理2|2d q .因为d 是奇数,所以2|d p ,2|d q ,于是()22|,d p q .由(),1p q =得()22,1p q =,所以1d =.这就证明了由①确定的x 、y 、z 是一组基本 勾股数.反过来,设x 、y 、z 是一组基本勾股数,且y 是偶数,x 和z 都是奇数,则2z x -和2z x +都是整数. 设,22z x z x d -+⎛⎫= ⎪⎝⎭,则存在正整数a 和b ,使 2z x da -=,2z x db +=,(),1a b =, 于是()z d b a =+,()x d b a =-.由于(),1z x =,所以1d =,即,122z x z x -+⎛⎫= ⎪⎝⎭. 由222x y z +=得2222y z x z x +-⎛⎫=⋅ ⎪⎝⎭. 这就可推出上式中右面两个因式都是平方数.设22z x p +=,22z x q -=, 这里0p q >>.(,)1p q =,于是可得2222,2,x p q y pq z p q =-==+.由于z 是奇数,所以p 、q 一奇一偶.这就证明了方程222x y z +=的任意一组解x 、y 、z (y 为偶数) 都可由①表示.评注 如果正整数x 、y 、z 满足方程222x y z +=,那么就称x 、y 、z 是一组勾股数.边长为正整数的直角三角形就称为勾股三角形.在勾股数x 、y 、z 中,如果这三个数的最大公约数是1,那么这样的勾股数就称为基本勾股数.如果 (x ,y ,z )=1d >,那么设x dx =′,y dy =′,z dz =′,则有(x ′,y ′,z ′)=1,并且由222x y z +=得222222d x d y d z '+'=',两边除以2d ,得222x y z '+'='.所以我们只需研究基本勾股数.在基本勾股数x 、y 、z 中,x 和y 必定一奇一偶.这一点可以用反证法证明:假定x 和y 的奇偶性相同,那么有两种可能的情况:①x 和y 同奇,②x 和y 同偶.如果x 和y 同奇,由于奇数的平方是4的倍数加1,所以22x y +是4的倍数加2,于是2z 是偶数,z 也是偶数,而偶数的平方是4的倍数,这与4的倍数加2矛盾,所以x 和y 不能都是奇数.如果x 和y 都是偶数,那么z 也是偶数,这与x 、y 、z 是基本勾股数矛盾,所以x 和y 中一奇一偶.由此也可推出z 是奇数.21.2.2★设x 、y 、z 是勾股数,x 是质数,求证:21z -和()21x y ++都是完全平方数.解析 ()()222x z y z yz y =-=+-.因为x 是质数,所以2x 只有1、x 、2x 三个正约数.由于0z y z y +>->,所以有 2,1.z y x z y ⎧+=⎨-=⎩ 由此得221z x -=,()21222x y x y ++=++()222121x x x =+-+=+,所以21z -和2(1)x y ++都是完全平方数.21.2.3★求证:222n n +、21n +、2221n n ++(n 是正整数)是一组勾股数.解析 因为n 是正整数,2222122n n n n ++>+,222121n n n ++>+.由 ()()2222221n n n +++ ()22222441n n n n =++++()()222222221n n n n =++++ ()22221n n =++, 所以222n n +、21n +、2221n n ++是一组勾股数.21.2.4★若勾股数组中,弦与股的差为1,则勾股数组的形式为21n +、222n n +、2221n n ++,其中n 为正整数.解析 设弦长为c ,股长为1c -,勾为x .因为(c ,1c -)=1,所以x 、1c -、c 为一组基本勾股数.又c 为奇数,1c -为偶数,则x 为奇数.设21x n =+,则()()222211n c c ++-=,得2221c n n =++,2122c n n -=+.所以,勾股数组具有形式21n +、222n n +、2221n n ++.21.2.5★★求证:勾股三角形的直角边的长能取任何大于2的正整数. 解析 当n 是大于1的奇数时,212n -和212n +都是正整数,并且 222221122n n n ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. 当n 是大于2的偶数时,214n -和214n +都是正整数,并且 222221144n n n ⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭.由以上两式可以看出,勾股三角形的一直角边n 可取大于2的任何正整数.21.2.6★★求证:在勾股三角形中,(1)必有一条直角边的长是3的倍数;(2)必有一条直角边的长是4的倍数;(3)必有一条边的长是5的倍数.解析 设该勾股三角形的三边的长分别为a 、b 、c (c 是斜边),则222a b c +=.只要证明a 、b 、c 是基本勾股数时的情况.不失一般性,设b 为偶数,则22a p q =-,2b pq =,22c p q =+,其中p 、q 满足上述定理中的条件.(1)若p 、q 中至少有一个是3的倍数,则b 是3的倍数;若p 、q 都不是3的倍数,设31p k =±,31q l =±,则()()22223131a p q k l =-=±-± ()22996k l k l =+±±是3的倍数.(2)由于p 、q 一奇一偶,所以2b pq =是4的倍数.(3)若a 、b 都不是5的倍数,则2a 的末位数是1或9;2b 的末位数字是4或6.1+4=5,1+6=7,9+4=13,9+6=15,由于一个完全平方数的末位数不可能是7和3,所以222c a b =+的末位数只可能是5.于是c 的末位数是5.评注 由此可推出,勾股三角形的面积必是6的倍数;三边之积必是60的倍数.21.2.7★★求基本勾股数组,其中一个数是16.解析 设勾股数组x 、y 、z ,其中x =16.x =16=2×4×2=2×8×1,若4m =,2n =,有(,m n )-2≠1,从而只有8m =,1n =,(,)1m n =,且m 和n 为一奇一偶.于是 22228163y m n =-=-=,22228165z m n =+=+=.从而,只有一组基本勾股数16、63、65.评注 若不要求基本勾股数,则x =16=2×4×2,设4m =,2n =,得2212y m n =-=,2220z m n =+=.即16、12、20为一组勾股数.又22164322x ==⨯⨯,设232m =,22n =,得2230y m n =-=,2234z m n =+=.即16、30、34为一组勾股数.21.2.8★★设p 、m 、n 为一组勾股数,其中p 为奇质数,且n >p ,n >m .求证:21n -必为完全平方数.解析 因为p 、m 、n 为一组勾股数,n p >,n m >,则有222n m p =+.()()222m n p n p n p =-=+-,m n p >-.设()1m n r r p =-<≤,则有()()222222p n m n n r r n r =-=--=-.因为1r p <≤,p 为奇质数,则1r =(否则,若1r p <<,则|r 2p ,矛盾).由1r =,得221p n =-,从而21n -是完全平方数.21.2.9★★直角三角形的三边的长都是正整数,其中有一条直角边的长是35,它的周长的最大值和 最小值分别是多少?解析 设直角三角形的三边长分别是35,b ,c ,则22235b c +=, 即()()1225c b c b +-=.1225的大于35的正约数可作为c b +,其中最大的是1225,最小的是49,所以,直角三角形的周长的 最大值是35+1225=1260,最小值是35+49=84.21.2.10★★设n 为大于2的正整数.证明:存在一个边长都是整数的直角三角形,它的一条直角边长 恰为n .解析 只需证明不定方程222x n z +=,有正整数解.利用()()2z x z x n -+=,结合z x -与z x +具有相同的奇偶性,故当n 为奇数时,由(z x -,z x +)=(1,2n ),可得不定方程的一组正整数解(x ,z )=2211,22n n ⎛⎫-+ ⎪⎝⎭; 而当n 为偶数时,由条件,知n ≥4.利用(z x -,z x +)=22,2n ⎛⎫ ⎪⎝⎭, 可得不定方程的一组正整数解(x ,z )=2244,44n n ⎛⎫-+ ⎪⎝⎭. 综上,可知命题成立。

人教版九年级数学上册第21章《一元二次方程》专题练习

人教版九年级数学上册第21章《一元二次方程》专题练习

第21章 一元二次方程一、一元二次方程的定义1、下列方程是一元二次方程的有(1)y 2+y=12 (2)x 3+x 2=3 (3)x+2y=12(4)0212=-xx (5)x+1=0 (6)632=x(7)22)32(14+=-x x (8)062)(2=--x x (9)21503x x -=(10)2134x x x +=(11)2110x x--= (12)2111x x =+-(13)3(x +1)2=2(x +1)(14)ax 2+bx +c =02、一元二次方程的一般形式的有(1)ax 2+bx +c =0(2)ax 2+bx +c (a ≠0)(3) ax 2+bx +c =0(a ≠0) (4)ax 2+bx +c =0(b ≠0)(5)ax 2=0(a ≠0) (6)ax 2+bx =0(a ≠0)(7) ax 2+c =0(a ≠0)3、若(m 2-4)x 2+3x -5=0是关于x 的一元二次方程,则 ( )A. m ≠2B. m ≠-2C. m ≠-2,或m ≠2D. m ≠-2,且m ≠24、 若关于x 的方程kx 2+2x -1=0是一元二次方程,则k .5、方程(m -1)x 2-(2m -1)x +m =0当m 时,方程是关于x 的一元二次方程.6、已知关于x 的方程()()021122=-++-x k x k(1)当k 为何值时,此方程为一元一次方程?(2)当k 为何值时,此方程为一元二次方程?并写出二次项系数、一次项系数、常数项7、已知关于x 的方程(m -n )x 2+mx+n=0,你认为: (1)当m 和n 满足什么关系时,该方程是一元二次方程? (2)当m 和n 满足什么关系时,该方程是一元一次方程?二、一元二次方程的项1、一元二次方程02=-x x 的常数项为 2、方程3x 2-3x+3=0的二次项系数与一次项系数及常数项之积为( ) A .3B .-3C .3D .-93、关于x 的一元二次方程()0235122=+-++-m m x x m 的常数项为0,则m =4、将下列方程先化为一般形式,写出二次项、二次项系数、一次项、一次项系数、常数项 (1)3x (x +1)=1 (2)(1-x )(1+x )=2(3)4x (x +1)=16 (4)2x (x +3)=x (2-x )三、 一元二次方程的根(1)已知1是关于x 的方程(m +2)x 2-x +4=0的根,则m = . (2)已知-1是关于x 的方程3x 2-x +a =0的根则a = .(3)已知方程x 2+mx -8=0的一个根是x=-3,求m = .另一个根是 (4)若x=1是一元二次方程ax 2+bx -2=0的根,则a+b= .(5)已知m 是方程x 2-x -2=0的根,则m m -2= . (6)若方程()321=---x m m是关于x 的一元二次方程,则m =四、 根的判别式(1)已知方程x 2+2x -b=0有两个不相同的实数根,求b 的取值范围 (2)已知方程x 2+4x+a=0有两个相同的实数根,求a 的取值范围 (3)已知方程3 x (x+1) +m=0无实数根,求m 的取值范围 (4)关于x 的方程kx 2+3x -2=0有实数根,则k 的取值范围(5)若关于x 的一元二次方程x 2-2x +k =0有两个不相等的实数根,则k 的取值范围 (6)关于x 的一元二次方程2x 2-3x +k =0有两个不相等的实数根,则k 的取值范围(7)关于x的方程x2-kx+k-2=0的根的情况(8)关于x的一元二次方程(m-1)x2-2mx+m=0有两个实数根,m的取值范围(9)关于x的方程x2-(2k-1)x+k2=0有两个不相等的实数根,则k的最大整数值是()A.-2B.-1C. 0D. 1(10)关于x的方程mx2-(m+2)x+2=0(m≠0).求证:方程总有两个实数根(11)关于x的方程x2-6x+(4m+1)=0有实数根,求:m的取值范围五、求方程的两根和与积(1)若方程x2-x-1=0的两根为x1、x2,则x1+x2= , x1x2= 。

人教版九年级数学上册第二十一章 一元二次方程分类复习训练(含答案)

人教版九年级数学上册第二十一章 一元二次方程分类复习训练(含答案)

人教版九年级数学上册第二十一章一元二次方程分类复习训练(含答案)类型一一元二次方程的有关概念1.若2-3是方程x2-4x+c=0的一个根,则c的值是( )A.1 B.3- 3 C.1+ 3 D.2+ 32.方程(n-3)x|n|-1+3x+3n=0是关于x的一元二次方程,则n=________.类型二一元二次方程的解法3.方程2x2=3x的解为( )A.0 B.32C.-32D.0或324.一元二次方程x2-8x-1=0配方后可变形为( ) A.(x+4)2=17 B.(x-4)2=17 C.(x+4)2=15 D.(x-4)2=155.关于x的一元二次方程x2-4x+3=0的解为( ) A.x1=-1,x2=3 B.x1=1,x2=-3 C.x1=1,x2=3 D.x1=-1,x2=-3 6.解方程:(1)3x2-5x-2=0;(2)(2x-3)2=x2;(3)3x(x-1)=2-2x.类型三一元二次方程根的判别式及根与系数的关系7.花关于x的一元二次方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是( ) A.m≥0 B.m>0C.m≥0且m≠1 D.m>0且m≠18.若方程x2-4x+1=0的两个根是x1,x2,则x1(1+x2)+x2的值为________.9.已知关于x的一元二次方程x2-2x+m-1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.10.已知关于x的一元二次方程x2+(2k-1)x+k2+k-1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.类型四一元二次方程的实际应用11.2017—2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场.若设参赛队伍有x支,则可列方程为( )A.12x(x-1)=380 B.x(x-1)=380C.12x(x+1)=380 D.x(x+1)=38012.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )A.20% B.25% C.50% D.62.5%13.东坡区某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.经调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,则此批次蛋糕属于第几档次产品?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?14.某单位准备将院内一块长30 m、宽20 m的长方形空地建成一个矩形花园,要求在花园中修两条纵向平行和一条横向曲折的小道,剩余的地方种植花草,如图1所示,要使种植花草的面积为532 m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)图115.菜农李伟种植的某种蔬菜计划以每千克5元的价格对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格进行两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率.(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予以下两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.小华选择哪种方案更优惠?请说明理由.类型五数学活动16.请阅读下列材料:问题:解方程(x2-1)2-5(x2-1)+4=0.小明的做法是将x2-1视为一个整体,然后设x2-1=y,则(x2-1)2=y2,原方程可化为y2-5y +4=0,解得y1=1,y2=4.(1)当y=1时,x2-1=1,解得x=±2;(2)当y=4时,x2-1=4,解得x=± 5.综合(1)(2),可得原方程的解为x1=2,x2=-2,x3=5,x4=- 5.请你参考小明的思路,解下面的方程:x4-x2-6=0.1.A [解析] 把2-3代入方程x 2-4x +c =0,得(2-3)2-4×(2-3)+c =0, 解得c =1.故选A.2.-3 [解析] ∵方程(n -3)x |n|-1+3x +3n =0是关于x 的一元二次方程,∴|n|-1=2且n -3≠0,解得n =-3.3.D [解析] 方程整理得2x 2-3x =0, 分解因式得x(2x -3)=0, 解得x =0或x =32,故选D.4.B [解析] ∵x 2-8x -1=0, ∴x 2-8x =1, ∴x 2-8x +16=1+16, 即(x -4)2=17. 故选B.5.C [解析] 配方,得x 2-4x +4=1, 即(x -2)2=1.直接开平方,得x -2=±1. 解得x 1=1,x 2=3. 故选C.6.解:(1)∵a =3,b =-5,c =-2, ∴b 2-4ac =(-5)2-4×3×(-2)=49, ∴x =-b ±b 2-4ac 2a =5±496=5±76,∴x 1=2,x 2=-13.(2)2x -3=±x, ∴x 1=3,x 2=1. (3)3x(x -1)=2-2x.变形,得3x(x -1)+2(x -1)=0,分解因式,得(x -1)(3x +2)=0, 可得x -1=0或3x +2=0, 解得x 1=1,x 2=-23.7.C [解析] ∵关于x 的一元二次方程(m -1)x 2-2x -1=0有两个实数根, ∴m -1≠0且Δ≥0,即(-2)2-4×(m -1)×(-1)≥0, 解得m ≥0且m ≠1,∴m 的取值范围是m ≥0且m ≠1. 故选C.8.5 [解析] x 1(1+x 2)+x 2=x 1+x 1x 2+x 2=x 1+x 2+x 1x 2.由一元二次方程的根与系数的关系可知,x 1+x 2=4,x 1x 2=1,所以x 1(1+x 2)+x 2=4+1=5.9.解:(1)∵原方程有两个实数根, ∴Δ=b 2-4ac =(-2)2-4(m -1)≥0, 整理,得4-4m +4≥0, 解得m ≤2.(2)∵x 1+x 2=2,x 1x 2=m -1,x 12+x 22=6x 1x 2, ∴(x 1+x 2)2-2x 1x 2=6x 1x 2, 即4=8(m -1), 解得m =32.∵m =32<2,∴符合条件的m 的值为32.10.解:(1)由题意,得(2k -1)2-4×1×(k 2+k -1)=-8k +5≥0, 解得k ≤58.(2)由根与系数的关系可得x 1+x 2=1-2k ,x 1x 2=k 2+k -1, ∴x 12+x 22=(x 1+x 2)2-2x 1x 2=(1-2k)2-2(k 2+k -1)=2k 2-6k +3. ∵x 12+x 22=11, ∴2k 2-6k +3=11, 解得k =-1或k =4.∵k ≤58,∴k =-1.11.B [解析] 设参赛队伍有x 支,则x(x -1)=380.故选B. 12.C [解析] 设该店销售额平均每月的增长率是x. 根据题意,得2(1+x)2=4.5, 即(1+x)2=2.25, ∴1+x =±1.5,∴x 1=0.5=50%,x 2=-2.5(不合题意,舍去), ∴该店销售额平均每月的增长率是50%.13.解:(1)设此批次蛋糕属于第x 档次产品,则10+2(x -1)=14,解得x =3. 答:此批次蛋糕属于第3档次产品.(2)设该烘焙店生产的是第y 档次的产品,根据题意,得 [10+2(y -1)][76-4(y -1)]=1080, 解得y 1=5,y 2=11(不合题意,舍去). 答:该烘焙店生产的是第5档次的产品.14.解:设小道进出口的宽度应为x m .根据题意,得(30-2x)(20-x)=532. 整理,得x 2-35x +34=0.解得x 1=1,x 2=34(不符合题意,舍去). ∴x =1.答:小道进出口的宽度应为1 m.15.解:(1)设平均每次下调的百分率为x. 根据题意,得5(1-x)2=3.2. 解得x =0.2或x =1.8. ∵降价的百分率不可能大于1, ∴x =1.8不符合题意,舍去, ∴x =0.2=20%.答:平均每次下调的百分率是20%. (2)小华选择方案一更优惠.理由:方案一所需费用为3.2×0.9×5000=14400(元); 方案二所需费用为3.2×5000-200×5=15000(元).∵14400<15000,∴小华选择方案一更优惠.16.解:设x2=y,则原方程可化为y2-y-6=0,解得y1=3,y2=-2.(1)当y=3时,x2=3,解得x=3或x=-3;(2)当y=-2时,x2=-2,此方程无实数根.综合(1)(2),可得原方程的解为x1=3,x2=- 3.。

人教版 初中数学 第21章 一元二次方程全章综合测试卷10(带答案 有解析)

人教版 初中数学 第21章 一元二次方程全章综合测试卷10(带答案 有解析)

人教版 初中数学 第21章 一元二次方程全章综合测试卷10姓名___________班级__________学号__________分数___________一、选择题1.方程(x -1)(x +2)=0的两根分别为( )A .x 1=-1,x 2=2;B .x 1=1,x 2=2;C .x 1=-1,x 2=-2;D .x 1=1,x 2=-2;2.一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则b 2-4ac 满足的条件是( )A .b 2-4ac =0;B .b 2-4ac >0;C .b 2-4ac <0;D .b 2-4ac ≥0;3.下列方程中是关于x 的一元二次方程的是( )A .2210x x +=;错误!未找到引用源。

B .ax 2+bx +c =0;C .(x -1)(x +2)=1;D .3x 2-2xy -5y 2=0;4.若关于x 的一元二次方程x 2-mx -2=0的一个根为-1,则另一个根为( )A .1B .-1C .2D .-25.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x ,则下面所列方程中正确的是( )A .()22891256x -=;B .()22561289x -=;C .289(1-2x )=256;D .256(1-2x )=289;6.如果三角形的两边长分别是方程x 2-8x +15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是( )A .5.5;B .5;C .4.5;D .4;7.已知m 、n 是方程x 2++1=0的两根,则代数式mn n m 322++的值为( )A .9;B .±3;C .3;D .5;8.方程0562=-+x x 的左边配成完全平方后所得方程为( )A .2(3)14x +=;B .2(3)14x -=;C .21(6)2x +=;D .以上答案都不对; 9.某工厂今年元月份的产量是50万元,3月份的产值达到了72万元.若求2、3月份的产值平均增长率,设这两个月的产值平均月增长率为x ,依题意可列方程( )A .72(x +1)2=50;B .50(x +1)2=72;C .50(x -1)2=72;D .72(x -1)2=50;10.若关于x 的方程有两个相等的实根,那么方程的根的情况是( ) A .有两个不等实根;B .有两个相等实根;C .无实根;D .无法判定;11.广州亚运会期间,某纪念品原价168元,连续两次降价a %后售价为128元,下列所列方程正确的是( )A .168(1+a %)2=128 ;B .168(1-a %)2=128;C .168(1-2a %)=128 ;D .168(1-a %)=128; ※12.关于x 的方程ax 2-(3a +1)x +2(a +1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a ,则a 的值是( )A .1;B .-1;C .1或-1;D .2;二、填空题13.方程x 2-2x =0的解为____________.14.把方程4-x 2=3x 化为ax 2+bx +c =0(a ≠0)形式为________________________,则该方程的二次项系数、一次项系数和常数项分别为____________.15.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x 米,则根据题意可列出方程为____________.16.关于x 的二次方程有实根,则k 的取值范围是 . 17.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是___________. 18.用______法解方程(x -2)2=4比较简便.19.若x 1,x 2为方程x 2+x -1=0的两个实数根,则x 1+x 2=____________.※20.方程x 2-(2a +1)x +a 2+a =0,只有一根大于5,则a 的取值范围是____________.三、计算题21.解分式方程:x x x 221232=+-.22.解方程组:⎩⎨⎧=-=+022022y x y x四、解答题23.已知关于x 的方程222(1)740x a x a a +-+--=的两根为1x 、2x ,且满足12123320x x x x ---=.求242(1)4a a a++⋅-的值.24.阅读下列材料,并解答相应问题:对于二次三项式222a ax x ++这样的完全平方式,可以用公式法将它分解成2)(a x +的形式,但是,对于一般二次三项式,就不能直接应用完全平方公式了,我们可以在二次三项式中先加上一项,使其成为完全平方式,再减去这项,使整个式子的值不变,于是有:2222223232a a a ax x a ax x --++=-+ =22)2()(a a x -+=))(3(a x a x -+(1)像上面这样把二次三项式分解因式的数学方法是____________.(2)这种方法的关键是____________;(3)用上述方法把862+-m m 分解因式。

人教版初三九年级数学第二十一单元一元二次方程知识点及单元测试(含答案)

人教版初三九年级数学第二十一单元一元二次方程知识点及单元测试(含答案)

第二十一章一元二次方程一.知识框架二.知识概念一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。

(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.介绍配方法时,首先通过实际问题引出形如的方程。

这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。

进而举例说明如何解形如的方程。

然后举例说明一元二次方程可以化为形如的方程,引出配方法。

最后安排运用配方法解一元二次方程的例题。

在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。

对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。

(3)一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,•将a 、b 、c 代入式子x=2b a-±就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。

人教版九年级数学上册第21章一元二次方程的解法归类专题训练【含答案】

人教版九年级数学上册第21章一元二次方程的解法归类专题训练【含答案】

人教版九年级数学上册第21章一元二次方程的解法归类专题训练【含答案】人教版九年级数学上册第21章一元二次方程的解法归类专题训练方法一缺少一次项或形如(mx+n)2=p(p≥0)的一元二次方程选直接开平方法求解1.用直接开平方法解下列一元二次方程,其中无解的方程为 ()A.x2-5=5B.-3x2=0C.x2+4=0D.(x+1)2=02.解下列方程:(1)t2-45=0;(2)4.3-6x2=2.8;(3)(x-3)2-49=0; (4)(6x-1)2=25;(3y-1)2-8=0; (6)(x-3)2=(5-2x)2.(5)12方法二方程一边化为0后,另一边能分解因式的一元二次方程用因式分解法求解3.已知方程4x2-3x=0,下列说法正确的是 ()A.只有一个根x=34B.只有一个根x=0C.有两个根x1=0,x2=34D.有两个根x1=0,x2=-344.一元二次方程x2-9=3-x的根是()A.3B.-4C.3和-4D.3和45.解下列方程:(1)x2=x; (2)(x-1)(x+2)=2(x+2);(3)4(x-3)2-25(x-2)2=0; (4)(2x+1)2+4(2x+1)+4=0.方法三当二次项系数为1,且一次项系数为偶数或者遇到大系数时选配方法求解6.解下列方程:(1)x2-24x=9856;(2)x2-6x-9991=0.7.有n个方程:x2+2x-8=0;x2+2×2x-8×22=0;…;x2+2nx-8n2=0.小静同学解第一个方程x2+2x-8=0的步骤为:①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=-2.(1)小静的解法是从第步开始出现错误的(填序号);(2)用配方法解第n个方程:x2+2nx-8n2=0.(用含有n的式子表示方程的根)方法四方程的系数没有特殊性,化为一般形式后用公式法求解8.用公式法解方程√2x2+4√3x=2√2时,其中求得的b2-4ac的值是.9.解下列方程:(1)2x2-3x+1=0;(2)2x(x+√2)+1=0;(3)3(x2+1)-7x=0;(4)4x2-3x-5=x-2.方法五运用换元法等数学思想方法解一元二次方程10.若(a2+b2)(a2+b2-2)=8,则a2+b2的值为 ()A.4或-2B.4C.-2D.-411.请阅读下列解方程(x2+1)2-2(x2+1)-3=0的过程.解:设x2+1=y,则原方程可变形为y2-2y-3=0,解得y1=3,y2=-1.当y=3时,x2+1=3,解得x=±√2.当y=-1时,x2+1=-1,x2=-2,此方程无实数解.所以原方程的解为x1=√2,x2=-√2.我们将上述解方程的方法叫做换元法.请用换元法解方程:xx-12-2xx-1-15=0.答案1.C2.解:(1)t 1=3√5,t 2=-3√5.(2)6x 2=1.5,x 2=14,所以x 1=12,x 2=-12.(3)x 1=10,x 2=-4.(4)x 1=1,x 2=-23. (5)移项,得12(3y-1)2=8,(3y-1)2=16, 所以3y-1=±4,所以3y-1=4或3y-1=-4,所以y 1=53,y 2=-1.(6)方程两边开平方,得x-3=±(5-2x ),即x-3=5-2x 或x-3=-(5-2x ),所以x 1=83,x 2=2.3.C4.C .5.解:(1)移项,得x 2-x=0,即x (x-1)=0,所以x=0或x-1=0,所以x 1=0,x 2=1.(2)移项,得(x-1)(x+2)-2(x+2)=0,所以(x+2)[(x-1)-2]=0,即(x+2)(x-3)=0,所以x+2=0或x-3=0,所以x 1=-2,x 2=3.(3)原方程可变形为[2(x-3)]2-[5(x-2)]2=0,即(2x-6)2-(5x-10)2=0,所以(2x-6+5x-10)(2x-6-5x+10)=0,即(7x-16)(-3x+4)=0,所以7x-16=0或-3x+4=0,所以x 1=167,x 2=43.(4)原方程可变形为(2x+1+2)2=0,即(2x+3)2=0,所以x 1=x 2=-32.6.解:(1)原方程变形为x 2-24x+144=10000,所以(x-12)2=1002.两边同时开平方,得x-12=±100,所以x 1=112,x 2=-88.(2)移项,得x 2-6x=9991,配方,得x 2-6x+9=10000,即(x-3)2=1002,所以x-3=±100,所以x 1=103,x 2=-97.7.解:(1)⑤(2)x 2+2nx-8n 2=0,x 2+2nx=8n 2,x 2+2nx+n 2=8n 2+n 2,(x+n )2=9n 2,x+n=±3n ,x 1=2n ,x 2=-4n. 8.649.解:(1)Δ=b 2-4ac=(-3)2-4×2×1=1>0,所以x=3±√12×2=3±14,即x 1=1,x 2=12.(2)原方程可化为2x 2+2√2x+1=0.因为a=2,b=2√2,c=1,所以Δ=b 2-4ac=(2√2)2-4×2×1=0,所以x=-2√2±√02×2=-√22, 所以x 1=x 2=-√22.(3)化简,得3x 2-7x+3=0,所以Δ=b 2-4ac=(-7)2-4×3×3=13>0,所以x=7±√132×3=7±√136, 所以x 1=7+√136,x 2=7-√136.(4)化简,得4x 2-4x-3=0,所以Δ=b 2-4ac=(-4)2-4×4×(-3)=64>0,所以x=4±√642×4=1±22,所以x 1=32,x 2=-12. 10.B .11.解:x x -12-2x x -1-15=0, 设x x -1=a ,则原方程可变形为a 2-2a-15=0, 解得a 1=-3,a 2=5. 当a=-3时,x x -1=-3,解得x=34, 经检验,x=34是分式方程的解;当a=5时,x x -1=5,解得x=54, 经检验,x=54是分式方程的解.所以原方程的解是x 1=34,x 2=54.。

九年级数学上册《第二十一章 一元二次方程》练习题带答案(人教版)

九年级数学上册《第二十一章 一元二次方程》练习题带答案(人教版)

九年级数学上册《第二十一章一元二次方程》练习题带答案(人教版)班级:___________姓名:___________考号:___________一、选择题1. 方程2x2=8x+2化为一般式后的二次项、一次项、常数项分别是( )2. 下列方程中,是一元二次方程的是( )A. 5x+3=0B. x2−x(x+1)=0C. 4x2=9D. x2−x3+4=03. 在讲解一元二次方程x2−6x+□=0时,老师故意把常数项“□”空下了,让同学们填一个正整数,使这个一元二次方程有两不等实根,问大家其中所填的值可能有( )A. 6个B. 8个C. 9个D. 10个4. 若关于x的一元二次方程x2+5x+m2−1=0的常数项为0,则m等于( )A. 1B. 2C. 1或−1D. 05. 方程x2−2x−1=0的根为x1x2,则x1x2−(x1+x2)的值为( )A. 2√ 2B. 1C. −3D. √ 2−26. 将一元二次方程4x2+81=5x化为一般形式后,常数项为81,二次项系数和一次项系数分别为( )A.4,5B. 4,-5C.4,81D. 4x27. 关于x的方程(a+2)x a2−2−3x−1=0是一元二次方程,则a的值是( )A. a=±2B. a=−2C. a=2D. a=±√ 28. 若关于x的一元二次方程ax2+bx+c=0(ac≠0)有一根为x=2023,则关于y的一元二次方程cy2+ by+a=0(ac≠0)必有一根为( )A. 12023B. −12023C. 2023D. −2023二、填空题9. 若关于x的一元二次方程(m−2)x2+x+m2−4=0的一个根为0,则m值是______.10. 方程(m+2)x|m|+3mx+4=0是关于x的一元二次方程,则m=______.11. 关于x的方程(m−3)x m2−7−x=5是一元二次方程,则m=______ .12. 方程(3x−1)(x+1)=5的一次项系数是______ .13. 关于x的一元二次方程x2+mx−3x=4不含x的一次项,则m=______.14. 若n是方程x2−x−1=0的一个根,则2021−n2+n的值为______ .三、解答题15.当k取何值时,关于x的方程(k−5)x2+(k+2)x+5=0.(1)是一元一次方程?(2)是一元二次方程?16. 若(m+1)x|m|+1+6x−2=0是关于x的一元二次方程,求m的值.17.关于x的方程(m2−8m+19)x2−2mx−13=0是否一定是一元二次方程?请证明你的结论.18.一元二次方程a(x+1)2+b(x+1)+c=0化为一般式后为3x2+2x−1=0,试求a2+b2−c2的值的算术平方根.19.已知2x2−10x−1=0,求代数式(x−1)(2x−1)−(x+1)2的值.参考答案1.C2.C3.B4.C5.C6.B7.C8.A9.−2 10.2 11.−3 12.2 13.3 14.2020 15.解:(1)(k −5)x 2+(k +2)x +5=0当k −5=0且k +2≠0时,方程为一元一次方程即k =5所以当k =5时,方程(k −5)x 2+(k +2)x +5=0为一元一次方程;(2)(k −5)x 2+(k +2)x +5=0当k −5≠0时,方程为一元一次方程即k ≠5所以当k ≠5时,方程(k −5)x 2+(k +2)x +5=0为一元二次方程. 16.解:因为是关于x 的一元二次方程,这个方程一定有一个二次项,则(m +1)x |m|+1一定是此二次项.所以得到{m +1≠0|m|+1=2解得m =1.17.解:方程m 2−8m +19=0中,b 2−4ac =64−19×4=−8<0,方程无解. 故关于x 的方程(m 2−8m +19)x 2−2mx −13=0一定是一元二次方程. 18.解:整理a(x +1)2+b(x +1)+c =0得ax 2+(2a +b)x +(a +b +c)=0则{a =32a +b =2a +b +c =−1解得{a =3b =−4c =0∴a2+b2−c2=9+16=25∴a2+b2−c2的值的算术平方根是5.19.解:当2x2−10x−1=0时x2−5x=1.2原式=2x2−3x+1−(x2+2x+1)=x2−5x=1.2。

人教版 初中数学 第21章 一元二次方程全章综合测试卷20(带答案 有解析)

人教版 初中数学 第21章 一元二次方程全章综合测试卷20(带答案 有解析)

人教版 初中数学 第21章 一元二次方程全章综合测试卷20姓名___________班级__________学号__________分数___________一、选择题1.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( ) A .1; B .-1; C .0; D .-2;2.用配方法解一元二次方程ax 2+bx +c =0(a ≠0),此方程可变形为( )A .222424b b ac x a a -⎛⎫+= ⎪⎝⎭;B .222424b ac b x a a -⎛⎫+= ⎪⎝⎭;C .222424b b ac x a a -⎛⎫-= ⎪⎝⎭; D .222424b ac b x a a -⎛⎫-= ⎪⎝⎭; 3.已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( ) A .4; B .-4; C .1; D .-1; 4.一元二次方程x (x -2)=2-x 的根是( ) A .-1;B .2;C .1和2;D .-1和2; 5.下列一元二次方程没有实数根的是( )A .x 2+2x +1=0;B .x 2+x +2=0;C .x 2-1=0;D .x 2-2x -1=0; 6.方程x 2-6x +5=0的两根是( )A .1和5;B .-1和-5;C .1和-5;D .-1和5;7.关于x 的一元二次方程x 2+4x +k =0有实数解,则k 的取值范围是( ) A .k ≥4;B .k ≤4;C .k >4;D .k =4;8.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( ) A .2; B .0; C .0或2; D .0或-2; 9.用换元法解方程433322=-+-xx x x 时,设x x y 32-=,则原方程可化为 ( ) A .043=-+y y ;B .043=+-y y ;C .0431=-+y y ;D .0431=++yy ; 10.关于x 的一元二次方程x 2+4x +k =0有两个实数根,则k 的取值范围是( ) A .k ≤-4;B .k <-4;C .k ≤4;D .k <4;11.配方法解方程x 2+x =2,使方程左边为x 的完全平方式,应把方程两边同时( ) A .加14;B .加12;C .减14;D .减12; ※12.x 1,x 2是关于x 的一元二次方程x 2-mx +m -2=0的两个实数根,是否存在实数m 使12110x x +=成立?则正确的是结论是( )A .m =0时成立;B .m =2时成立;C .m =0或2时成立;D .不存在;二、填空题13.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x 米,则根据题意可列出方程为____________.1714.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为____________.15.阅读材料:设一元二次方程ax 2+bx +c =0的两根为x 1,x 2,则两根与方程系数之间有如下关系x 1+x 2=-b a ,x 1x 2=ca根据该材料填空:已知x 1,x 2是方程x 2+6x +3=0的两实数根,则2112x x x x +的值为____________.16.现有一块长80cm 、宽60cm 的矩形钢片,将它的四个角各剪去一个边长为x cm 的小正方形,做成一个底面积为1500cm 2的无盖的长方体盒子,根据题意列方程,化简可得____________. 17.已知:25a ab +=,22b ab +=则222a ab b ++= .18.设x 1,x 2是方程x 2-x -2013=0的两实数根,则31220142013x x +-=____________.19.写出一个方程,使它的一个根是1,另一个根满足-1<x <1,这个方程可以是__________. ※20.若a -b +c =0,a ≠0,则方程ax 2+bx +c =0必有一个根是_______. 三、计算题21.用配方法解关于x 的一元二次方程ax 2+bx +c =0.22.解方程:x 2+4x -2=0;四、解答题23.已知x 1,x 2是关于x 的一元二次方程x 2-2(m +1)x +m 2+5=0的两实数根. (1)若(x 1-1)(x 2-1)=28,求m 的值;(2)已知等腰△ABC 的一边长为7,若x 1,x 2恰好是△ABC 另外两边的边长,求这个三角形的周长.24.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍. (1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)25.某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元,以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元,要使每盆的盈利达到10元,每盆应该植多少株? 小明的解法如下:解:设每盆花苗增加x 株,则每盆花苗有(x +3)株,平均单株盈利为(30.5)x -元,由题意得(3)(30.5)10x x +-= 化简,整理得:230x x -+=解这个方程,得:11x =,22x =,答:要使每盆的盈利达到10元,每盆应该植入4株或5株.(1)本题涉及的主要数量有每盆花苗株数,平均单株盈利,每盆花苗的盈利等,请写出两个不同的等量关系:________________________________________________. (2)请用一种与小明不相同的方法求解上述问题.※26.阅读下列材料 解关于x 的方程方程:c c x x 11+=+的解是c x c x 1,21== 方程:c c x x 11-=-(即c c x x 11-+=-+)的解是c x c x 1,21-==方程:c c x x 22+=+的解是⋅⋅⋅⋅⋅⋅==,2,21cx c x(1)请观察上述方程的特征,求方程cmc x m x +=+(直接求解)并检验解的正确性; (2)通过上述方程的观察比较猜测验证,请你写出方程1212-+=-+a a x x的解,然后验算.(3)你怎样求方程32332322-+-=-+-a a a x x x 的解.人教版 初中数学 第21章 一元二次方程全章综合测试卷20答案一、选择题1.A .;解:∵关于x 的一元二次方程x 2+ax +b =0有一个非零根-b , ∴b 2-ab +b =0, ∵-b ≠0, ∴b ≠0,方程两边同时除以b ,得b -a +1=0, ∴a -b =1.2.A .;考点:解一元二次方程-配方法.解:ax 2+bx +c =0,ax 2+bx =-c ,2b c x x a a +=-,22222b b c b x x a a a a ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,222424b b ac x a a -⎛⎫+= ⎪⎝⎭, 3.D .;解:根据题意得△=22-4•(-a )=0,解得a =-1. 4.D .; 5.B .; 6.A .; 7.B .;8.A .;解:∵x =2是一元二次方程x 2-2mx +4=0的一个解, ∴4-4m +4=0,∴m =2. 9.A .;10.C .解:根据题意得△=42-4k ≥0,解得k ≤4. 11.A .;12.A .;解:∵x 1,x 2是关于x 的一元二次方程x 2-mx +m -2=0的两个实数根, ∴x 1+x 2=m ,x 1x 2=m -2. 假设存在实数m 使+=0成立,则=0,∴=0,∴m =0.当m =0时,方程x 2-mx +m -2=0即为x 2-2=0,此时△=8>0, ∴m =0符合题意. 二、填空题13.解:设道路的宽应为x 米,由题意有(22-x )(17-x )=300.14.100(1+x )2=144.解:设该果园水果产量的年平均增长率为x ,则2012年的产量为100(1+x )吨,2013年的产量为100(1+x )(1+x )=100(1+x )2吨, 根据题意,得100(1+x )2=144. 15.10;16.解:由题意得:(80-2x )(60-2x )=1500整理得:x 2-70x +825=0. 17.7;18.解:∵x 2-x -2013=0, ∴x 2=x +2013,x =x 2-2013=0.又∵x 1,x 2是方程x 2-x -2013=0的两实数根, ∴x 1+x 2=1,∴31220142013x x +-=x 1•21x +2013x 2+x 2-2013, =x 1•(x 1+2013)+2013x 2+x 2-2013, =(x 1+2013)+2013x 1+2013x 2+x 2-2013, =x 1+x 2+2013(x 1+x 2)+2013-2013, =1+2013, =2014.20.-1;解析:∵a -b +c =0,∴a =b -c ,∴(b -c )x +bx +c =0,b x -c x +bx +c =0,(bx +bx )+(-c x 2+c )=0,bx (x +1)+c (1-x 2)=0,bx (x +1)+c (1+x )(1-x )=0,(x +1) [bx +c (1-x )]=0,∴x +1=0,∴x =-1,即必有一个根为-1;点评:本题若能观察到当x =-1时,a -b +c =0则是最好最有效的解法;解析2:∵a -b +c =0,∴b =a +c ,原方程可化为ax 2+(a +c )x +c =0,用十字相乘法11a c,原方程可化为(x +1)(ax +c )=0,x 1=-1,x 2=-ca .三、计算题21.解:∵关于x 的方程ax 2+bx +c =0是一元二次方程, ∴a ≠0.∴由原方程,得x 2+b a x =-ca, 等式的两边都加上22b a ⎛⎫ ⎪⎝⎭,得x 2+b a x +22b a ⎛⎫ ⎪⎝⎭=-c a +22b a ⎛⎫ ⎪⎝⎭,配方,得(x +2b a )2=-2244ac b a -,开方,得x +2b a ,解得x 1x 2.当b 2-4ac <0时,原方程无实数根.22.方法一:由原方程,得(x +2)2=6…………2分 x +2=± 6 …………3分 ∴x =-2± 6 …………4分 方法一:△=24,…………1分 x =-4±242…………3分∴x 1=-2+ 6 ,x 2=-2-6…………4分 四、解答题23.解:(1)∵x 1,x 2是关于x 的一元二次方程x 2-2(m +1)x +m 2+5=0的两实数根, ∴x 1+x 2=2(m +1),x 1•x 2=m 2+5,∴(x 1-1)(x 2-1)=x 1•x 2-(x 1+x 2)+1=m 2+5-2(m +1)+1=28, 解得:m =-4或m =6; 当m =-4时原方程无解, ∴m =6;(2)当7为底边时,此时方程x 2-2(m +1)x +m 2+5=0有两个相等的实数根, ∴△=4(m +1)2-4(m 2+5)=0, 解得:m =2,∴方程变为x 2-6x +9=0, 解得:x 1=x 2=3, ∵3+3<7, ∴不能构成三角形; 当7为腰时,设x 1=7,代入方程得:49-14(m +1)+m 2+5=0, 解得:m =10或4,当m =10时方程变为x 2-22x +105=0, 解得:x =7或15∵7+7<15,不能组成三角形; 当m =4时方程变为x 2-10x +21=0, 解得:x =3或7,此时三角形的周长为7+7+3=17.24.解:(1)设甲队单独完成需要x 个月,则乙队单独完成需要(x -5)个月, 由题意得,x (x -5)=6(x +x -5), 解得x 1=15,x 2=2(不合题意,舍去), 则x -5=10.答:甲队单独完成这项工程需要15个月,则乙队单独完成这项工程需要10个月; (2)设甲队施工y 个月,则乙队施工12y 个月, 由题意得,100y +(100+50)2y≤1500, 解不等式得,y ≤8.57, ∵施工时间按月取整数, ∴y ≤8,答:完成这项工程,甲队最多施工8个月才能使工程款不超过1500万元.25.解:(1)平均单株盈利⨯株数=每盆盈利 平均单株盈利=⨯-5.03每盆增加的株数 每盆的株数=3+每盆增加的株数 (2)解法1(列表法)答:要使每盆的盈利达到10元,每盆应该植入4株或5株; 解法2(图象法)如图,纵轴表示平均单株盈利,横轴表示株数,则相应长方形面积表示每盆盈利. 2 1 株数从图象可知,每盆植入4株或5株时,相应长方形面积都是10 答:要使每盆的盈利达到10元,每盆应该植入4株或5株. 解法3(函数法)解:设每盆花苗增加x ,每盆的盈利为y 元,根据题意得可得: (3)(30.5)y x x =+-当y =10时,(3)(30.5)10x x +-= 解这个方程得:11x =,22x =答:要使每盆的盈利达到10元,每盆应该植入4或5株; 解法4(列分式方程)解:设每盆花苗增加x 株时,每盆盈利10元,根据题意,得:1030.53x x =-+ 解这个方程得:11x =,22x =经检验,11x =,22x =都是所列方程的解答:要使每盆的盈利达到10元,每盆应该植入4或5株;26.解:(1)x 1=c ,x 2=mc ,验证略去;(2)方程两边同时减去1得221111x a x a -+=-+--,∴x 1-1=a -1,x 1=a ,x 2-1=2a -1 ,x 2=a +1a -1 ,验证略去;(3) ()()22323233x x a a x a -+-+=--,2232323333x x a a x x a a --+=+----,2233x a x a +=+--,223333x a x a -+=-+--,x 1-3=a -3,x 1=a ,x 2-3=2a -3 ,x 2=3a -7a -3;。

人教版 九年级上册数学 第21章 一元二次方程的解法专题训练 (含解析)

人教版 九年级上册数学  第21章 一元二次方程的解法专题训练 (含解析)

14.把一元二次方程 x2 + 6x −1 = 0 通过配方化成 (x + m)2 = n 的形式为 .
15.用配方法解一元二次方程 x2 + 4x − 5 = 0 ,此方程可变形为 . 16.用配方法解方程: x2 + 10x + 9 = 0 .
17.用配方法解方程: 3x2 −1 = 4x .
18.用配方法解方程: 2x2 − 4x − 8 = 0 .
444
22
故答案为: (x − 1)2 = 1 . 22
13.一元二次方程 x2 − 6x −11 = 0 配方后可变形为 (x − 3)2 = 20 .
解: x2 − 6x −11 = 0 ,
(x − 3)2 = 20 ,
故答案为: (x − 3)2 = 20 .
14.把一元二次方程 x2 + 6x −1 = 0 通过配方化成 (x + m)2 = n 的形式为 (x + 3)2 = 10 . 解: x2 + 6x −1 = 0 , x2 + 6x =1,
19.用配方法解方程: 4x2 + 8x + 3 = 0 .
20.用配方法解方程: (2x + 1)(x − 3) = x − 9 .
三.解一元二次方程-公式法(共 10 小题)
21.用公式法解方程: 4x2 −12x = 3 ,得到 x =

22.用公式法解方程 2x2 − 2x −1 = 0 的根是
a
x
+
b 2a
2
+
4ac − b2 4a
的形式,

x
+
b 2a
2

九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章一元二次方程》同步练习题及答案(人教版) 班级姓名学号一、单选题1.方程x2=4x的根是()A.4 B.-4 C.0或4 D.0或-42.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.1x2+1x=2C.x2+2x=x2−1D.3(x+1)2=2(x+1)3.若x=1是方程x2+ax﹣2=0的一个根,则a的值为()A.0 B.1 C.2 D.34.如果一个一元二次方程的根是x1=x2=2,那么这个方程可以是()A.x2=4 B.x2+4=0C.x2+4x+4=0 D.x2-4x+4=05.已知关于x的方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.-1 B.0 C.1 D.1或-16.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1C.k≤5,且k≠1 D.k>57.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或108.定义:cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程.则下列四个结论:①如果x=2是x2+2x+c=0的倒方程的解,则c=−54;②如果ac<0,那么这两个方程都有两个不相等的实数根;③如果一元二次方程ax2−2x+c=0无实数根,则它的倒方程也无实数根;④如果一元二次方程ax2+bx+c=0有两个不相等的实数根,则它的倒方程也有两个不相等的实数根. 其中正确的有()A.1个B.2个C.3个D.4个二、填空题9.写一个以5,﹣2为根的一元二次方程(化为一般形式).10.一元二次方程x2-3x=0的较大的根为。

11.把方程3x (x ﹣1)=2﹣2x 化成一元二次方程的一般形式为12.若一元二次方程ax 2﹣bx ﹣2015=0有一根为x=﹣1,则a+b= .13.已知 {x =−2y =3是方程x ﹣ky=1的解,那么k= . 三、解答题14.已知x=1是方程x 2﹣5ax+a 2=0的一个根,求代数式3a 2﹣15a ﹣7的值.15.若关于x 的二次方程(m+1)x 2+5x+m 2﹣3m=4的常数项为0,求m 的值.16.已知关于x 的方程(k ﹣1)(k ﹣2)x 2+(k ﹣1)x+5=0.求:(1)当k 为何值时,原方程是一元二次方程;(2)当k 为何值时,原方程是一元一次方程;并求出此时方程的解.17.阅读下题的解答过程,请判断其是否有错,若有错误,请你写出正确的m 值.已知m 是关于x 的方程mx 2﹣2x+m=0的一个根,求m 的值.解:把x=m 代入原方程,化简得m 2=m ,两边同除以m ,得m=1把m=1代入原方程检验,可知m=1符合题意.18.关于x 的一元二次方程x 2﹣3x+k =0有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程(m ﹣1)x 2+x+m ﹣3=0与方程x 2﹣3x+k =0有一个相同的根,求此时m 的值.19.已知关于x 的一元二次方程x 2+(m ﹣2)x +m ﹣3=0.(1)求证:无论m 取何值,方程总有实数根.(2)设该方程的两个实数根分别为x 1,x 2,且2x 1+x 2=m +1,求m 的值.1.C2.D3.B4.D5.C6.B7.B8.C9.x2-3x-10=0(不唯一)10.x=311.3x2−x−2=012.201513.k=﹣114.解:∵x=1是方程x2﹣5ax+a2=0的一个根∴1﹣5a+a2=0.∴a2﹣5a=﹣1∴3a2﹣15a﹣7=3(a2﹣5a)﹣7=3×(﹣1)﹣7=﹣10,即3a2﹣15a﹣7=﹣10.15.解:∵关于x的二次方程(m+1)x2+5x+m2﹣3m﹣4=0的常数项为0∴m2﹣3m﹣4=0,即(m﹣4)(m+1)=0解得:m=4或m=﹣1当m=﹣1时,方程为5x=0,不合题意;则m的值为4.16.解:(1)依题意得:(k﹣1)(k﹣2)≠0解得k≠1且k≠2;(2)依题意得:(k﹣1)(k﹣2)=0,且k﹣1≠0所以k﹣2=0解得k=2所以该方程为x+5=0解得x=﹣5.17.解:错误,由于关于x的方程不一定是一元二次方程此时,方程为﹣2x=0∴x=0,符合题意当m ≠0时∴m 3﹣2m+m=0∴m (m 2﹣1)=0∴m 2﹣1=0∴m=±1综上所述,m=0或±1.18.(1)解:根据题意得△=(-3)2-4k ≥0,解得k ≤ 94(2)解:满足条件的k 的最大整数为2,此时方程变形为方程x 2-3x+2=0,解得x 1=1,x 2=2 当相同的解为x=1时,把x=1代入方程得m-1+1+m-3=0,解得m= 32当相同的解为x=2时,把x=2代入方程得4(m-1)+2+m-3=0,解得m=1,而m-1≠0 不符合题意,舍去,所以m 的值为 3219.(1)证明:∵Δ=(m −2)2−4(m −3)=m 2−4m +4−4m +12=m 2−8m +16=(m −4)2≥0 ∴无论m 取何值,此方程总有实数根;(2)解:∵该方程的两个实数根分别为x 1,x 2∴{x 1+x 2=−(m −2)=2−m 2x 1+x 2=m +1,且 x 1x 2=m −3 解得 {x 1=2m −1x 2=3−3m∴(2m −1)(3−3m)=m −3∴6m −3−6m 2+3m =m −3 即 6m 2−8m =0∴m(6m −8)=0∴解得 m =0 或 m =43。

人教版 初中数学 第21章 一元二次方程全章综合测试卷3(带答案 有解析)

人教版 初中数学 第21章 一元二次方程全章综合测试卷3(带答案 有解析)

人教版 初中数学 第21章 一元二次方程全章综合测试卷3姓名___________班级__________学号__________分数___________一、选择题1.下列方程中,是一元二次方程的是( )A .x +3=0;B .x 2-3y =0;C .x 2-2x +1=0;D .x -1x=0; 2.方程x 2-3x =0的解为( )A .x =0;B .x =3;C .x 1=0,x 2=-3;D .x 1=0,x 2=3;3.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是( )A .k >-1;B .k >1;C .k ≠0;D .k >-1且k ≠0;4.若m 、n 是一元二次方程x 2-5x -2=0的两个实数根,则m +n -mn 的值是( )A .-7;B .7;C .3;D .-3;5.某品牌服装原价173元,连续两次降价x %售价价为127元,下面所列方程中正确的是( )A .()21731%127x +=;B .()17312%127x -=;C .()21731%127x -=;D .()21271%173x +=; 6.有一个面积为16 cm 2的梯形,它的一条底边长为3 cm ,另一条底边长比它的高线长1cm ,若设这条底边长为x cm ,依据题意,列出方程整理后得( )A .22350x x +-=;B .22700x x +-=;C .22350x x --=;D .22700x x -+=;7.已知关于x 的一元二次方程x 2-bx +c =0的两根分别为x 1=1,x 2=-2,则b 与c 的值分别为( )A .b =-1,c =2;B .b =1,c =-2;C .b =1,c =2;D .b =-1,c =-2;8.解方程(x +a )2=b 得( )A .x -a ;B .x =±a ;C .当b ≥0时,x =-a ;D .当a ≥0时,x =a ;9.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x (x -1)=2070;B .x (x +1)=2070;C .2x (x +1)=2070;D .()120702x x -=;错误!未找到引用源。

初中竞赛数学不定方程(含答案)

初中竞赛数学不定方程(含答案)

7.不定方程A 卷1.若⎩⎨⎧==00y y x x 是二元一次不定方程ax + by = c (其中(a 、b )=1)的一组整数解,则ax + by = c 的所有整数解为____________。

2.方程 6x + 22y = 90的非负整数解为___________。

3.方程 9x + 24y – 5z = 1000的整数解为___________。

4.方程组⎪⎩⎪⎨⎧=++=++)2(100533)1(100z y x z y x 的非负整数解为______________。

5.方程(x – a )(x – 8 ) – 1 = 0有两个整数根,则a 的值是___________。

6.方程0652=--xy x 的整数解为___________。

7.方程xy – 10 (x + y ) = 1的整数解为_____________。

8.满足x > y > 0 且x y y x 7733+=+的整数x = __________,整数y = _____________。

9.不定方程 8822=-y x 的整数解是____________。

10.(1)方程z x y =+1的质数解是__________;(2)方程a zy x =++111(其中a 是整数x 、y 、z 互不相等)的正整数解是___________; (3)方程2009=+y x 的整数解是____________。

(4)方程625.202222=+++d c b a 的整数解是____________。

B 卷1.不定方程22222b a c b a =++的所有整数解是____________。

2.对于正整数a 和b ,方程b a b a y x y x=++的所有正整数解是_____________。

3.方程22225)36(6n c b a =++的所有整数解是____________。

4.方程组⎩⎨⎧=++=--1979206222z y x z y x 的所有正整数解是____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第21章 不定方程§21.1 二元一次不定方程21.1.1★求不定方程2x y -=的正整数解.解析 因为312-=,422-=,532-=,…,所以这个方程的正整数解有无数组,它们是2,,x n y n =+⎧⎨=⎩其中n 可以取一切正整数.21.1.2★求11157x y +=的整数解.解析1 将方程变形得71511y x -=. 因为x 是整数,所以715y -应是11的倍数.由观察得02x =,01y =-是这个方程的一组整数解,所以方程的解为215,111,x t y t =-⎧⎨=-+⎩t 为整数. 解析2 先考察11151x y +=,通过观察易得()()1141531⨯-+⨯=,所以()()114715377⨯-⨯+⨯⨯=,可取028x =-,021y =.从而 2815,2111,x t y t =--⎧⎨=+⎩t 为整数. 评注 如果a 、b 是互质的整数,c 是整数,且方程ax by c += ①有一组整数解0x 、0y .则此方程的一切整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩其中0t =,±1,±2,±3,….21.1.3★求方程62290x y +=的非负整数解.解析 因为(6,22)=2,所以方程两边同除以2得31145x y +=. ①由观察知,14x =,11y =-是方程3111x y += ②的一组整数解,从而方程①的一组整数解为()00454180,45145,x y =⨯=⎧⎪⎨=⨯-=-⎪⎩ 所以方程①的一切整数解为18011,45 3.x t y t =-⎧⎨=-+⎩因为要求的原方程的非负整数解,所以必有180110,4530.t t -⎧⎨-+⎩≥③≥④ 由于t 是整数,由③、④得15≤t ≤16,所以只有t =15,t =16两种可能.当t =15时,x =15,0y =;当t =16时,x =4,y = 3.所以原方程的非负整数解是15,0,x y =⎧⎨=⎩4,3.x y =⎧⎨=⎩21.1.4★求方程719213x y +=的所有正整数解.解析 这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数的方法使系数变小,最后再用观察法求解.用方程719213x y +=①的最小系数7除方程①的各项,并移项得213193530277y y x y --==-+.② 因为x 、y 是整数,故357y u -=也是整数,于是有573y u +=.再用5除此式的两边得 373255u u y u --==-+.③ 令325u v -= (整数),由此得 253u v +=.④由观察知1u =-,1v =是方程④的一组解.将1u =-代入③得2y =.2y =代入②得x =25.于是方程①有一组解025x =,02y =,所以它的一切解为2519,27.x t y t =-⎧⎨=+⎩0,1,2,t =±±由于要求方程的正整数解,所以25190,270.t t ->⎧⎨+>⎩解不等式,得t 只能取0,1.因此得原方程的正整数解为25,2,x y =⎧⎨=⎩6,9.x y =⎧⎨=⎩21.1.5★求方程3710725x y +=的整数解.解析 因为10723733=⨯+,371334=⨯+,33841=⨯+.为用37和107表示1,我们把上述辗转相除过程回代,得1=33-8×4=37-4-8×4=37-9×4=37-9×(37-33)=9×33-8×37=9×(107-2×37)-8×37=9×107-26×37=37×(-26)+107×9,由此可知126x =-,19y =是方程371071x y +=的一组整数解.于是()02526650x =⨯-=-,0259225y =⨯=是方程3710725x y +=的一组整数解.所以原方程的一切整数解为650107,22537,x t y t =--⎧⎨=+⎩t 是整数. 21.1.6★求方程92451000x y z +-=的整数解.解析 设9243x y t +=,即38x y t +=,于是351000t z -=.原方程可化为38,351000.x y t t z +=⎧⎨-=⎩①② 用前面的方法可以求得①的解为38,3,x t u y t u =-⎧⎨=-+⎩u 是整数. ②的解为20005,10003,t v z v =+⎧⎨=+⎩v 是整数. 消去t ,得6000815,200035,10003,x u v y u v z v =-+⎧⎪=-+-⎨⎪=+⎩,u v 是整数.21.1.7★求方程23723x y z ++=的整数解.解析 设23x y t +=,则23,723.x y t t z +=⎧⎨+=⎩①② 对于①,0x t =-,0y t =是一组特解,从而①的整数解为3,2,x t u y t u =--⎧⎨=+⎩u 是整数. 又02t =,03z =是方程②的一组特解,于是②的整数解为3,27,z v t v =-⎧⎨=+⎩v 是整数. 所以,原方程的整数解为273,272,3.x v u y v u z v =---⎧⎪=++⎨⎪=-⎩u 、v 是整数.21.1.8★求方程组57952,35736x y z x y z ++=⎧⎨++=⎩的正整数解. 解析 消去z ,得 210z y +=. ①.易知04x =,02y =是它的一组特解,从而①的整数解为4,22,x t y t =-⎧⎨=+⎩t 是整数. 代入原方程组,得所有整数解为4,22,2.x t y t z t =-⎧⎪=+⎨⎪=-⎩t 是整数.由0x >,0y >,0z >得12t -<<,所以t =0,1,故原方程组的正整数解为4,2,2;x y z =⎧⎪=⎨⎪=⎩3,4,1.x y z =⎧⎪=⎨⎪=⎩21.1.9★求方程351306x y +=的正整数解的组数.解析 因为130651435233y y x y -+==-+,所以0x =437,01y =-是一组特解.于是方程的整数解为4375,13.x t y t =-⎧⎨=-+⎩t 是整数. 由43750,130.t t ->⎧⎨-+>⎩35所以t =1,2,…,87.故原不定方程有87组正整数解.21.1.10★★某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法?解析 设需x 枚7分,y 枚5分恰好支付142分,于是75142x y +=.①所以1427222855x x y x --==--. 由于7x ≤142,所以x ≤20,并且由上式知()5|21x -.因为(5,2)=1,所以5|1x -,从而 x =1,6,11,16.①的非负整数解为1,6,11,16,27;20;13; 6.x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩所以,共有4种不同的支付方式.评注 当方程的系数较小时,而且是求非负整数解或者是实际问题时,这时候的解的组数往往较少,可以用整除的性质加上枚举,也能较容易地解出方程.21.1.11★★今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只,用100个钱买100只鸡,问公鸡、母鸡、小鸡各买了多少只?解析 设公鸡、母鸡、小鸡各买x 、y 、z 只,由题意列方程组153100,3100.x y z x y z ⎧++=⎪⎨⎪++=⎩①② ①化简得159300x y z ++=.③③-②得148200,x y +=即74100.x y +=解741x y +=得1,2.x y =-⎧⎨=⎩于是74100x y +=的一个特解为00100,200.x y =-⎧⎨=⎩所以74100x y +=的所有整数解为1004,2007,x t y t =-+⎧⎨=-⎩t 是整数. 由题意知,0x <,y ,100z <,所以,01004100,02007100.t t <-+<⎧⎨<-<⎩ 解得2550,241428.77t t <<⎧⎪⎨<<⎪⎩7由于t 是整数,故t 只能取26,27,28,而且x 、y 、z 还应满足100x y z ++=.所以即可能有三种情况:4只公鸡,18只母鸡,78只小鸡;或8只公鸡,11只母鸡,81只小鸡;或12只公鸡,4只母鸡,84只小鸡.21.1.12★★小明玩套圈游戏,套中小鸡一次得9分,套中小猴一次得5分,套中小狗一次得2分.小明共套10次,每次都套中了,每个小玩具都至少被套中一次.小明套lO 次共得61分,问:小鸡至少被套中几次?解析 设套中小鸡x 次,套中小猴y 次,套中小狗z 次,则根据题意得95261,10.x y z x y z ++=⎧⎨++=⎩①② 我们要求这个方程组的正整数解.消去z :从①中减去②×2得7341x y +=,于是4173x y -=.③ 由③可以看出417x <.从而x 的值只能是1,2,3,4,5.将③写成 21323x y x -=-+, 由于y 是整数,所以2x -必须是3的倍数.从而只有2、5两个值满足这一要求. 但2x =时,9y =,1z =-不是正整数.在5x =时,2y =,3z =是本题的解. 因此小鸡被套中5次.评注 本题问“小鸡至少被套中几次?”实际上却只有一个解,“至少”两字可以省去. 21.1.13★★今有浓度为5%、8%、9%的甲、乙、丙三种盐水分别为60克、60克、47克,现要配制成浓度为7%的盐水100克,问甲种盐水最多可用多少克?最少可用多少克? 解析 设甲、乙、丙盐水分别各取x 克、y 克、z 克,配成浓度为7%的盐水100克,依题意有100,589700.x y z x y z ++=⎧⎨++=⎩其中060x ≤≤,0≤y ≤60,0≤z ≤47.解方程组可得2004,3100.y x z x =-⎧⎨=-⎩由0200460,0310047.x x -⎧⎨-⎩≤≤≤≤ 得3549x ≤≤.又35x =,60y =,5z =和49x =,4y =,47z =均满足题设,故甲种盐水最少可用35克,最多可用49克.§21.2 勾股数21.2.1★★★满足方程222x y z +=的一切基本勾股数x 、y 、z (y 为偶数),都可表示为以下形式:22x p q =-,2y pq =,22z p q =+,①其中p 、q 为正整数,(p ,q )=1,p q >,p 、q 一奇一偶.解析 设正整数p 、q 满足(p ,q )=1,p q >,p 、q 一奇一偶,则()()2222222x y p q pq +=-+ 42242224p p q q p q =-++()2222p q z =+=. 所以一切形如①的正整数x 、y 、z 都是方程222x y z +=的解.下面证明这样的x 、y 、z 是基本勾股数.设(),,x y z d =,由于p 、q 一奇一偶,所以22p q -是奇数,由22|d x p q =-,于是d 是奇数.又由22|d p q +,得()()2222|d p q p q ++-,即2|2d p ,同理2|2d q .因为d 是奇数,所以2|d p ,2|d q ,于是()22|,d p q .由(),1p q =得()22,1p q =,所以1d =.这就证明了由①确定的x 、y 、z 是一组基本勾股数.反过来,设x 、y 、z 是一组基本勾股数,且y 是偶数,x 和z 都是奇数,则2z x -和2z x +都是整数. 设,22z x z x d -+⎛⎫= ⎪⎝⎭,则存在正整数a 和b ,使 2z x da -=,2z x db +=,(),1a b =, 于是()z d b a =+,()x d b a =-.由于(),1z x =,所以1d =,即,122z x z x -+⎛⎫= ⎪⎝⎭. 由222x y z +=得2222y z x z x +-⎛⎫=⋅ ⎪⎝⎭. 这就可推出上式中右面两个因式都是平方数.设22z x p +=,22z x q -=, 这里0p q >>.(,)1p q =,于是可得2222,2,x p q y pq z p q =-==+.由于z 是奇数,所以p 、q 一奇一偶.这就证明了方程222x y z +=的任意一组解x 、y 、z (y 为偶数)都可由①表示.评注 如果正整数x 、y 、z 满足方程222x y z +=,那么就称x 、y 、z 是一组勾股数.边长为正整数的直角三角形就称为勾股三角形.在勾股数x 、y 、z 中,如果这三个数的最大公约数是1,那么这样的勾股数就称为基本勾股数.如果(x ,y ,z )=1d >,那么设x dx =′,y dy =′,z dz =′,则有(x ′,y ′,z ′)=1,并且由222x y z +=得222222d x d y d z '+'=',两边除以2d ,得222x y z '+'='.所以我们只需研究基本勾股数.在基本勾股数x 、y 、z 中,x 和y 必定一奇一偶.这一点可以用反证法证明:假定x 和y 的奇偶性相同,那么有两种可能的情况:①x 和y 同奇,②x 和y 同偶.如果x 和y 同奇,由于奇数的平方是4的倍数加1,所以22x y +是4的倍数加2,于是2z 是偶数,z 也是偶数,而偶数的平方是4的倍数,这与4的倍数加2矛盾,所以x 和y 不能都是奇数.如果x 和y 都是偶数,那么z 也是偶数,这与x 、y 、z 是基本勾股数矛盾,所以x 和y 中一奇一偶.由此也可推出z 是奇数. 21.2.2★设x 、y 、z 是勾股数,x 是质数,求证:21z -和()21x y ++都是完全平方数.解析 ()()222x z y z y z y =-=+-.因为x 是质数,所以2x 只有1、x 、2x 三个正约数.由于0z y z y +>->,所以有 2,1.z y x z y ⎧+=⎨-=⎩由此得221z x -=,()21222x y x y ++=++()222121x x x =+-+=+,所以21z -和2(1)x y ++都是完全平方数.21.2.3★求证:222n n +、21n +、2221n n ++(n 是正整数)是一组勾股数.解析 因为n 是正整数,2222122n n n n ++>+,222121n n n ++>+.由 ()()2222221n n n +++ ()22222441n n n n =++++()()222222221n n n n =++++ ()22221n n =++, 所以222n n +、21n +、2221n n ++是一组勾股数.21.2.4★若勾股数组中,弦与股的差为1,则勾股数组的形式为21n +、222n n +、2221n n ++,其中n为正整数.解析 设弦长为c ,股长为1c -,勾为x .因为(c ,1c -)=1,所以x 、1c -、c 为一组基本勾股数.又c 为奇数,1c -为偶数,则x 为奇数.设21x n =+,则()()222211n c c ++-=,得2221c n n =++,2122c n n -=+. 所以,勾股数组具有形式21n +、222n n +、2221n n ++.21.2.5★★求证:勾股三角形的直角边的长能取任何大于2的正整数. 解析 当n 是大于1的奇数时,212n -和212n +都是正整数,并且 222221122n n n ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. 当n 是大于2的偶数时,214n -和214n +都是正整数,并且 222221144n n n ⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭.由以上两式可以看出,勾股三角形的一直角边n 可取大于2的任何正整数.21.2.6★★求证:在勾股三角形中,(1)必有一条直角边的长是3的倍数;(2)必有一条直角边的长是4的倍数;(3)必有一条边的长是5的倍数.解析 设该勾股三角形的三边的长分别为a 、b 、c (c 是斜边),则222a b c +=.只要证明a 、b 、c 是基本勾股数时的情况.不失一般性,设b 为偶数,则22a p q =-,2b pq =,22c p q =+,其中p 、q 满足上述定理中的条件.(1)若p 、q 中至少有一个是3的倍数,则b 是3的倍数;若p 、q 都不是3的倍数,设 31p k =±,31q l =±,则()()22223131a p q k l =-=±-±()22996k l k l =+±±是3的倍数.(2)由于p 、q 一奇一偶,所以2b pq =是4的倍数.(3)若a 、b 都不是5的倍数,则2a 的末位数是1或9;2b 的末位数字是4或6.1+4=5,1+6=7,9+4=13,9+6=15,由于一个完全平方数的末位数不可能是7和3,所以 222c a b =+的末位数只可能是5.于是c 的末位数是5.评注 由此可推出,勾股三角形的面积必是6的倍数;三边之积必是60的倍数. 21.2.7★★求基本勾股数组,其中一个数是16.解析 设勾股数组x 、y 、z ,其中x =16.x =16=2×4×2=2×8×1,若4m =,2n =,有(,m n )-2≠1,从而只有8m =,1n =,(,)1m n =,且m 和n 为一奇一偶.于是22228163y m n =-=-=,22228165z m n =+=+=.从而,只有一组基本勾股数16、63、65.评注 若不要求基本勾股数,则x =16=2×4×2,设4m =,2n =,得2212y m n =-=,2220z m n =+=.即16、12、20为一组勾股数.又22164322x ==⨯⨯,设232m =,22n =,得2230y m n =-=,2234z m n =+=.即16、30、34为一组勾股数.21.2.8★★设p 、m 、n 为一组勾股数,其中p 为奇质数,且n >p ,n >m .求证:21n -必为完全平方数.解析 因为p 、m 、n 为一组勾股数,n p >,n m >,则有222n m p =+.()()222m n p n p n p =-=+-,m n p >-.设()1m n r r p =-<≤,则有()()222222p n m n n r r n r =-=--=-.因为1r p <≤,p 为奇质数,则1r =(否则,若1r p <<,则|r 2p ,矛盾).由1r =,得221p n =-,从而21n -是完全平方数.21.2.9★★直角三角形的三边的长都是正整数,其中有一条直角边的长是35,它的周长的最大值和最小值分别是多少?解析 设直角三角形的三边长分别是35,b ,c ,则 22235b c +=,即()()1225c b c b +-=.1225的大于35的正约数可作为c b +,其中最大的是1225,最小的是49,所以,直角三角形的周长的 最大值是35+1225=1260, 最小值是 35+49=84.21.2.10★★设n 为大于2的正整数.证明:存在一个边长都是整数的直角三角形,它的一条直角边长 恰为n .解析 只需证明不定方程222x n z +=,有正整数解.利用()()2z x z x n -+=,结合z x -与z x +具有相同的奇偶性,故当n 为奇数时,由(z x -,z x +)=(1,2n ),可得不定方程的一组正整数解 (x ,z )=2211,22n n ⎛⎫-+ ⎪⎝⎭; 而当n 为偶数时,由条件,知n ≥4.利用 (z x -,z x +)=22,2n ⎛⎫⎪⎝⎭,可得不定方程的一组正整数解 (x ,z )=2244,44n n ⎛⎫-+ ⎪⎝⎭. 综上,可知命题成立。

相关文档
最新文档