届中考数学专题复习演练:全等三角形
中考数学复习《全等三角形》专题(卷1)
《全等三角形》中考复习一. 选择题1. 如图,AB=AC,点D,E分别在AB,AC上,添加下列条件,不能判定△ABE≅△ACD的是( )A.BD=CEB.∠BDC=∠BECC.∠ACD=∠ABED.BE=CD2. 如下图,在△ABC中,∠C=90∘,∠B=30∘,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N 为圆心,大于12MN的长为半径画弧,两弧交于点P ,连结AP 并延长交BC于点D.则下列说法中正确的是()①AD是∠BAC的角平分线;②∠ADC=60∘;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.①②③④B.②③④C.①②D.①②③3. 如图,若△MNP≅△MEQ,则点Q应是图中的()A.点AB.点BC.点CD.点D4. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图①,若运动方向相反,则称它们是镜面合同三角形如图②,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合如图①,两个镜面合同三角形要重合,则必须将其中一个翻转180∘如图②,下列各组合同三角形中,是镜面合同三角形的是( )A. B. C. D.5. 对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理6. 如图,已知∠AOB,用直尺和圆规按照以下步骤作图:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画射线O′A′,以O′为圆心,OC的长为半径画弧,交O′A′于点C′③以C′为圆心,CD的长为半径画弧,与第②步中所画的弧相交于点D′④过点D′画射线O′B′根据以上操作,可以判定△OCD≅ΔO′C′D′,其判定的依据是()A.SSSB.SASC.ASAD.HL7. 如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD//OA交OB于点D,点I是△OCD 的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.180∘−βB.180∘−12β C.90∘+12β D.90∘+β8. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A.第1块B.第2块C.第3块D.第4块二. 填空题三角形具有稳定性,所以要使六边形木架不变形,至少要钉上________根木条.如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B 为圆心,以大于12AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,−a+8),则a=________.如图,在菱形ABCD中,已知AB=4,∠ABC=60∘,∠EAF=60∘,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∼△EFC;④若∠BAE=15∘,则点F到BC的距离为2√3−2.正确序号________.如图,△ABC中,点A的坐标为(0, 1),点C的坐标为(4, 3),如果要使△ABD与△ABC全等,那么点D的坐标是________.三. 解答题如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE//CD,∠A=12∠C,∠B=120∘.(1)∠D+∠E=________度;(2)求∠A的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上________根相同宽度的木条.根据要求完成下列各题.(1)如图1,在∠AOB的内部有一点P.①过点P画直线PC//OA交OB于点C;②过点P画直线PD⊥OA,垂足为D.(2)如图2,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E在下面解答中填空.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠________=90∘(________),∴AB//CD(________)∵∠1=∠2(已知),∴AB//EF(________),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(________)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF= BD,连接BF.(1)线段BD与CD有何数量关系,为什么?(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.(3)当△ABC满足________条件时,四边形AFBD是正方形?(直接写出结论,不用说明理由)一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案)参考答案与试题解析一. 选择题1.【答案】D【解析】欲使△ABE≅△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.2.【答案】A【解析】①连接NP,MP,根据SSS定理可得△ANP≅△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30∘,根据直角三角形的性质可知∠ADC=60∘;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30∘,CD=12AD,再由三角形的面积公式即可得出结论.3.【答案】D【解析】此题暂无解析4.【答案】B【解析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.5.【答案】B【解析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.6.【答案】A【解析】此题暂无解析7.【答案】B 【解析】此题暂无解析8.【答案】B【解析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.二. 填空题【答案】3【解析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【答案】2【解析】此题暂无解析【答案】①②【解析】①只要证明△BAE≅△CAF即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F到BC的距离即可判断.【答案】(4, −1)或(−1, 3)或(−1, −1)【解析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.三. 解答题【答案】180(2)五边形的内角和为(5−2)×180∘=540∘,由(1)可知,∠D+∠E=180∘,又∠B=120∘,∠A=12∠C.设∠A=x,则∠C=2x,∴∠A+∠B+∠C+∠D+∠E=540∘,即x+120∘+2x+180∘=540∘,解得x=80∘,∴∠A=80∘.2【解析】(1)根据平行线性质,两直线平行同旁内角互补即可得到180∘.先由AE//CD,根据平行线的性质得出∠E+∠D=180∘.再根据∠B=120∘,∠A=12∠C,设∠A=x∘,则∠C=2x∘.利用五边形的内角和为540∘列出方程x+120+2x+180=540,求解即可.根据五边形不具有稳定性,而三角形具有稳定性即可求解.【答案】解:(1)①如图,直线PC即为所求;②如图,直线PD即为所求;(2)解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠CDF=90∘(垂直的定义),∴AB//CD(同位角相等,两直线平行)∵∠1=∠2(已知),∴AB//EF(内错角相等,两直线平行),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(两直线平行,同位角相等)【解析】此题暂无解析【答案】解:(1)BD=CD.理由如下:依题意得AF // BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,{∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≅△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF // BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90∘,∴四边形AFBD是矩形.AB=AC,∠BAC=90∘【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90∘,由等腰三角形三线合一的性质可知必须是AB=AC.【答案】解:在河南岸AB的垂线BF上取两点C、E,使CE=BE,再定出BF的垂线CD,使A、E、D在同一条直线上,这时测得CD的长就是AB的长.如图所示:【解析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.。
人教版九年级中考数学 考点复习 全等三角形 专题练习
人教版九年级中考数学考点复习全等三角形专题练习一.选择题(本大题共10道小题)1. 已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°2. 如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D3. 如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD4. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC5. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F.若∠BCE=65°,则∠CAF的度数为( )A.30°B.25°C.35°D.65°6. 在正方形网格中,∠AOB的位置如图所示,则下列各点中到∠AOB两边距离相等的点是( )A.点QB.点NC.点RD.点M7. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS8. 如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36o.连接AC、BD交于点M,连接OM.下列结论:①∠AMB=36o;②AC=BD;③OM平分∠AOD;④MO平分∠AMD其中正确的结论个数有( )个.A.4B.3C.2D.19. 下面是黑板上出示的尺规作图题需要回答横线上符号代表的内容.如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法:(1)以△为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,○长为半径画弧交EG于点D;(3)以点D为圆心,* 长为半径画弧交前弧于点F;(4)作⊕,则∠DEF即为所求作的角.A.△表示点EB.○表示PQC.*表示EDD.⊕表示射线EF10. 如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二.填空题(本大题共6道小题)11. 如图,点B 、F 、C 、E 在一条直线上,已知FB=CE,AC ∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF.12. 如图,四边形ABCD 中,∠BAC =∠DAC,请补充一个条件 ,使得△ABC ≌△ADC.13. 如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)14. 如图,AC=AD,∠1=∠2,要使ABC AED ≌△△,应添加的条件是______(只需写出一个条件即可)15. 如图,点P 为定角∠AOB 的平分线上的一个定点,点M,N 分别在射线OA,OB 上(都不与点O 重合),且∠MPN 与∠AOB 互补.若∠MPN 绕着点P 转动,那么以下四个结论:①P M =PN 恒成立;②MN 的长不变;③OM+ON 的值不变;④四边形PMON 的面积不变.其中正确的为_____.(填番号)16. 如图,在△ABC 中,AB =AC,点D 在BC 上(不与点B,C 重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是 (写出一个即可).三.解答题(本大题共6道小题)17. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.18. 如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.19. 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20. 如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21. 在Rt△ABC中,∠ACB=90°,CB=CA=22,点D是射线AB上一点,连接CD,在CD右侧作∠DCE =90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.22. 如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.。
中考数学复习《全等三角形》专题训练-附带参考答案
中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。
九年级数学中考专题复习全等三角形练习(有答案)
全等三角形一、单选题1.如图,若△OAD △△OBC ,且△O =65°,△C =20°,则△OAD = ( )A .65°B .75°C .85°D .95°2.在下列四组条件中,能判定△ABC△△A′B′C′的是( )A .AB=A′B′,BC=B′C′,△A=△A′B .△A=△A′,△C=△C′,AC=B′C′C .△A=△B′,△B=△C′,AB=B′C′D .AB=A′B′,BC=B′C′,△ABC 的周长等于△A′B′C′的周长3.到三角形三个顶点距离相等的点是( )A .三角形三条边的垂直平分线的交点B .三角形三条角平分线的交点C .三角形三条高的交点D .三角形三条边的中线的交点4.如图所示的是已知BOA ∠,求作B O A BOA '''∠=∠的作图痕迹,则下列说法正确的是( )A .因为边的长度对角的大小无影响,所以孤CD 的半径长度可以任意选取B .因为边的长度对角的大小无影响,所以弧CD ''的半径长度可以任意选取C .因为边的长度对角的大小无影响,所以弧E F ''的半径长度可以任意选取D .以上三种说法都正确5.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个6.如图,在Rt ABC 中,90A ∠=,ABC ∠的平分线BD 交AC 于点D ,3AD =,10BC =,则BDC 的面积是( )A .10?B .15?C .20D .307.如图,已知AO=OB ,OC=OD ,AD 和BC 相交于点E ,则图中全等三角形有( )对.A.1对B.2对C.3对D.4对8.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带△去B.带△去C.带△去D.带△△去9.如图,点A、D、C、E在同一条直线上,AB△EF,AB=EF,△B=△F,AE=12,AC=8,则CD的长为()A.5.5B.4C.4.5D.310.工人师傅常用角尺平分一个任意角做法如下:如图所示,在△AOB的两边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是△AOB的平分线画法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL11.如图:△ABC是等边三角形,AE=CD,AD,BE相交于点P,BQ△AD于Q,PQ=4,PE=1,则AD的长是()A.9B.8C.7D.612.如图,已知AB=AC,AF=AE,△EAF=△BAC,点C、D、E、F共线.则下列结论,其中正确的是()△△AFB△△AEC;△BF=CE;△△BFC=△EAF;△AB=BC.A.△△△B.△△△C.△△D.△△△△二、填空题13.如图,已知△1=△2,请你添加一个条件使△ABC△△BAD,你的添加条件是_______(填一个即可)。
全等三角形复习专题
全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。
全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。
如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。
二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。
2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。
3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。
4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。
5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。
三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。
如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。
四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。
2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。
3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。
4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。
5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。
全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。
全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。
动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。
将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。
初三复习专题--全等三角形
•
OA=OC,EA=EC,
•
请阐明∠ A=∠C。
AO C
DB
E
• 分析:欲证明∠A= ∠C,有三条思路,一 是证明△AOD与△COB全等,而由已知条件 不可直接得到,二是连结OE,阐明△AOE与 △COE全等,这条路显而易得, ∠A=∠C, 三是证明 △ABE与△CDE全等,这也是不能 直接证明到的,因此应采用第二条思路。
全等三角形
• 一:考纲规定与命题趋势
• 1. 理解并掌握五种识别三角形全等的办法, 会灵活的对的选择适宜的识别办法判断两 个三角形与否全等。
• 2. 对的运用全等三角形的性质计算三角形 中未知的边或角,逐步培养逻辑推理能力 和形象思维能力。
• 3. 全等三角形的应用是学习几何证明题的 基础,因此它自然是中考必考知识点,同 窗们务必学好它。
• 阐明:在解决几何问题的过程中,有时根 据条件不能较顺利的得到结论,这时添加 必要的辅助线是十分重要的捷径。
• 例3.P是线段AB上一点,△APC与△BPD都是
等边三角形,请你判断:AD与BC相等吗?
试阐明理由。
D
C
AP
B
• 分析:观察图形发现它们所在的三角形全
等,故考虑通过全等来阐明。
• 解:由△APC和△BPD都是等边三角形可知 AP=PC,BP=DP,∠APC=∠BPD=60°,
变化,结论往往仍然成立,解决大同小异,
要善于抓住规律。
A
A
B
l
3
E
12
D
C
E
①
D
1
l
2
B
C
②
• 例9.如图,等边△ABC的边长为a,在BC的 延长线上取点D,使CD=b,在BA的延长线 上取点E,使AE=a+b,证明EC=ED。
全等三角形知识点演练(5大核心考点,91题)讲练)2023年中考数学一轮大单元复习
专题4.3 全等三角形考点1:全等形和全等三角形性质例1.(1)(2022秋·江苏连云港·八年级校考阶段练习)下列图标中,不是由全等图形组合成的是()A.B.C.D.(2)(2023秋·浙江台州·八年级统考期末)如图,△ABC≌△DEF,且∠A=55°,∠B=75°,则∠F=______°.(3)(2022秋·湖南岳阳·八年级校考期中)如图,△ABC≌△DEC,点B、C、D在同一直线上,且BD=12,AC=7,则CE长为____________.知识点训练1.(2023秋·河北邢台·八年级统考期末)与下图全等的图形是()A.B.C.D.2.(2020秋·江苏常州·八年级常州市清潭中学校考期中)找出下列各组图中的全等图形()A.②和⑥B.②和⑦C.③和④D.⑥和⑦3.(2022秋·福建龙岩·八年级统考期末)如图,△DBC≌△ECB,且BE与CD相交于点A,下列结论错误的是()A.BE=CD B.AB=ACC.∠D=∠E D.BD=AE4.(2023秋·四川自贡·八年级统考期末)如图所示,△ABC≌△AEF,∠B=∠E,有以下结论:①AC=AE;②EF=BC;③∠EAB=∠FAC;④∠EFA=∠AFC.其中正确的个数是()5.(河北省唐山市2022-2023学年八年级上学期期末考试数学试题)如图,△ABC≌△DEC,点B,C,D在同一条直线上,且CE=1,CD=3,则BD的长是()A.1.5B.2C.3.5D.46.(2023秋·四川南充·八年级统考期末)如图,点A,E,C在同一直线上,△ABC≌△DEC,AE=3,CD=8,则BC的长为()A.3B.5C.8D.117.(2023秋·天津·八年级统考期末)如图,已知△ABC≌△DEF,CD平分∠BCA,DF与BC交于点G.若∠A=26°,∠CGF=83°,则∠E的度数是()A.34°B.36°C.38°D.40°8.(2022秋·河南许昌·八年级统考期中)如图所示的图案是由全等的图形拼成的,其中AD=0.8,BC=1.6,则AF=()9.(2022秋·山东菏泽·八年级统考期中)下列说法正确的是()A.形状相同的两个三角形全等B.三个角都分别相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等10.(2022秋·山东烟台·七年级统考期中)下列说法:①角是轴对称图形;②等腰三角形有三条对称轴;③关于某直线成轴对称的两个三角形全等;④两个全等三角形一定关于某条直线成轴对称.其中正确的个数是()A.1个B.2个C.3个D.4个11.(2022秋·江苏宿迁·八年级统考期中)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠1−∠2−∠3的度数为().A.30°B.45°C.55°D.60°12.(2023·福建南平·统考一模)如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E.当点A、D、E在同一条直线上时,下列结论不正确...的是()A.△ABC≌△DEC B.AE=AB+CDC.AD=√2AC D.AB⊥AE13.(2021秋·陕西商洛·八年级统考期末)在平面直角坐标系内,点O为坐标原点,A(−4,0),B(0,3).若在该坐标平面内有一点P(不与点A、B、O重合)为一个顶点的直角三角形与Rt△ABO全等,且这个以点P 为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的三角形个数为()A.3个B.4个C.6个D.7个14.(2023秋·云南曲靖·八年级统考期末)如图,在平面直角坐标系中,点A的坐标为(3,0),点B的坐标为(0,6),点C在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当以点C、O、D为顶点的三角形与△AOB全等时,则点D的坐标为______.15.(2023秋·江苏镇江·八年级统考期末)如图,△AOD≌△BOC,∠A=30°,∠C=50°,∠AOC=150°,则∠COD=______°.16.(2023秋·四川南充·八年级统考期末)如图,△ABC绕点C旋转得到△DEC,点E在边AB上,若∠B=75°,则∠ACD的度数是_________.考点2:全等三角形的判定及应用例2.(1)(2023秋·山东威海·七年级统考期末)为了测量湖的宽度AB,小明同学先从A点走到点O处,再继续向前走相同的距离到达点C(即OC=OA),然后从点C沿与AB平行的方向,走到与点O,B共线的点D处,测量C,D间的距离就是湖的宽度.下列可以判断△OCD≌△OAB的是()A.SSS B.SSA C.SAS D.ASA(2)(2023秋·黑龙江齐齐哈尔·八年级统考期末)如图,已知∠CAE=∠DAB,AC=AD,请你再添加一个条件:___________,使△ABC≌△AED.(3)(2023秋·江苏徐州·八年级统考期末)根据下列条件,能确定△ABC(存在且唯一)的是()A.AB=2,BC=3,AC=6B.AC=4,BC=3,∠A=60°C.AB=5,BC=3,∠B=30°D.∠A=45°,∠B=45°,∠C=90°(4)(2023秋·广东汕头·八年级统考期末)如图,在△ABC中,∠ACB=65°,∠BAC=70°,AD⊥BC于点D,BM⊥AC于点M,AD与BM交于点P,则∠BPC=______.例3(2022秋·浙江宁波·八年级校考期末)如图,在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,P是OC的中点,D是BC延长线上一点,满足PB=PD.(1)求证∠1=∠2;(2)探究CD与AP之间的数量关系,并给出证明.例4.(2023秋·黑龙江齐齐哈尔·八年级统考期末)综合与实践【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图(1),△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围,经过组内合作交流.小明得到了如下的解决方法:延长AD到点E,使DE=AD请根据小明的方法思考:(1)由已知和作图得到△ADC≌△EDB的理由是()A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是___________.【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图(2),AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.知识点训练1.(2022秋·浙江温州·八年级校考期中)如图,在Rt△ABC中,∠ACB=90∘,∠ABC=25∘,O为斜边中点,将线段OA绕点O逆时针旋转a(0∘<α<90∘)至OP,若CB=CP,则α的值为()A.80∘B.65∘C.50∘D.40∘2.(2023秋·山东威海·七年级统考期末)如图,△ABC和△BDE都是等边三角形,点A,D,E在同一条直线上,BE=2,CE=4,则AE=()A.6B.5C.8D.73.(海南省海口市(部分校)2022-2023学年八年级上学期期末检测数学试题(A))如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,等腰直角△ABC的三个顶点A、B、C分别在直线l2、l1、l3上,∠ACB=90°,则△ABC的面积为()D.25A.10B.12C.2524.(2022秋·黑龙江双鸭山·八年级统考期末)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠2+∠3的度数为()A.30°B.45°C.55°D.60°5.(2022秋·安徽黄山·八年级统考期末)如图,已知等边△ABC和等边△BPE,点P在BC的延长线上,EC的延长线交AP于点M,连接BM,有下列结论:①AP=CE;②∠PME=60°;③MB平分∠AME;④AM+MC=BM,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④6.(2022秋·山西吕梁·八年级统考期末)如图,点E,F在线段AC上,AE=CF,AD⊥DF,CB⊥BE,要根据“HL”证明Rt△ADF≌Rt△CBE,则还需添加的一个条件是()A.AF=CE B.∠A=∠C C.AD=CB D.AD∥BC7.(2023·全国·九年级专题练习)如图,点O为△ABC的内心,∠B=60°,BM≠BN,点M,N分别为AB,BC上的点,且OM=ON.甲、乙、丙三人有如下判断:甲:∠MON=120°;乙:四边形OMBN的面积为定值;丙:当MN⊥BC时,△MON的周长有最小值.则下列说法正确的是()A.只有甲正确B.只有乙错误C.乙、丙都正确D.只有丙错误8.(2023秋·浙江台州·八年级统考期末)如图,AB与CD相交于点O,且OA=OB,添加下列选项中的一个条件,不能判定△AOC和△BOD全等的是()A.OC=ODB.∠A=∠BC.AC=BDD.AC∥BD9.(2023秋·浙江台州·八年级统考期末)如图,射线OC为∠AOB的平分线,点M,N分别是边OA,OB上的两个定点,且OM<ON,点P在OC上,满足PM=PN的点P的个数有()A.0个B.1个C.2个D.无数个10.(2023秋·河南新乡·八年级统考期末)在△ABC和△DEF中,已知AB=DE,∠A=∠D,下列条件:①AC= DF;②∠B=∠E;③∠C=∠F;④BC=EF.其中一定能判定△ABC≌△DEF的个数为()A.1B.2C.3D.411.(2022秋·四川广安·八年级统考期末)如图,AB=DC,若要用“SSS”证明△ABC≌△DCB,需要补充一个条件,这个条件是__________.12.(2022秋·福建莆田·八年级统考期末)数学社团活动课上,甲乙两位同学玩数学游戏.游戏规则是:两人轮流对△ABC及△A′B′C′的对应边或对应角添加一组等量条件(点A′,B′,C′分别是点A,B,C的对应点),某轮添加条件后,若能判定△ABC与△A′B′C′全等,则当轮添加条件者失败,另一人获胜.1甲AB=A′B′=2cm2乙∠A=∠A′=35°3甲…上表记录了两人游戏的部分过程,则下列说法正确的是___________.(填写所有正确结论的序号)①若第3轮甲添加∠C=∠C′=45°,则甲获胜;②若第3轮甲添加BC=B′C′=3cm,则甲必胜;③若第2轮乙添加条件修改为∠A=∠A′=90°,则乙必胜;④若第2轮乙添加条件修改为BC=B′C′=3cm,则此游戏最多4轮必分胜负.13.(2023秋·山东淄博·七年级统考期末)如图,点C,E,B,F在同一条直线上,AB=DE,AC=DF,BF=CE.说明AC∥DF.14.(2023秋·江苏南京·八年级统考期末)如图AB=AD,CB=CD,AC,BD相交于点E.(1)求证△ABC≅△ADC;(2)求证BE=DE.15.(2022秋·山西吕梁·八年级统考期末)如图,△ABC是等边三角形,点D,E分别在BC,CA的延长线上,且CD=AE.求证:∠D=∠E.16.(2023秋·广东汕头·八年级统考期末)如图,已知点O在等边△ABC的内部,∠AOB=105°,∠BOC=α,以OC为边作等边△COD,连接AD.(1)求证:AD=BO;(2)当α=150∘时,试判断△AOD的形状,并说明理由;17.(2023秋·江苏南京·八年级统考期末)如图,在四边形ABCD中,连接BD,AB∥CD,且AB=CD.(1)求证:△ABD≅△CDB;(2)若AB=BD,∠ABD=48°,求∠C的度数.18.(2023秋·浙江宁波·八年级校考期末)如图,在四边形ABCD中,P为CD边上的一点,BC∥AD.AP、BP 分别是∠BAD、∠ABC的角平分线.(1)若∠BAD=70°,则∠ABP的度数为_______,∠APB的度数为____________;(2)求证:AB=BC+AD;(3)设BP=3a,AP=4a,过点P作一条直线,分别与AD,BC所在直线交于点E、F,若AB=EF,直接写出AE的长(用含a的代数式表示)考点3:角平分线性质定理和逆定理例5.(2023秋·广东汕头·八年级统考期末)如图,DE⊥AB于点E,DF⊥AC于点F,若BD=CD,BE=CF.(1)求证:AD 平分∠BAC ;(2)请猜想AB +AC 与AE 之间的数量关系,并给予证明.例6.(2022秋·湖北武汉·八年级校考期末)如图,在△ABC 中,E 是BC 中垂线上一点,EM ⊥AB 于M ,EN ⊥AC 于N ,BM =CN .求证:AE 平分∠BAC .知识点训练1.(2022秋·贵州铜仁·九年级统考期中)如图,在平面直角坐标系中,△OAB 的顶点B 的坐标为(6,0),OC 平分∠AOB 交AB 于点C ,反比例函数y =k x (x >0)的图象经过点A ,C .若S △AOC :S △BOC =2:3,则k 的值为( )A .5√716B .45√716C .454D .916 2.(2023秋·山东济宁·八年级统考期末)如图,Rt △ABC 中,∠C =90°,∠ABC =60°,以顶点B 为圆心、适当长为半径作弧,在边BC 、BA 上截取BE 、BD ;然后分别以点D 、E 为圆心、以大于DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若AC =6,P 为边AB 上一动点,则GP 的最小值为( )A.3B.2C.1D.无法确定3.(2023秋·山东淄博·七年级统考期末)如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于点D,AB于点M,以下结论:①△BCD是等腰三角形;②BD是△ACB的角平分线;③△BCD的周长C△BCD=AC+ BC;④△ADM≌△BCD.正确的有()A.①③B.①②C.①②③D.③④4.(2023秋·黑龙江牡丹江·八年级统考期末)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②∠AEF=∠ADF;③BD⊥CE;④AF 平分∠CAD;⑤∠AFE=45°,其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤5.(2022秋·福建泉州·八年级统考期末)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角两边距离相等的点在这个角的平分线上.B.角平分线上的点到角两边的距离相等.C.三角形三个内角的平分线交于同一个点.D.三角形三个内角的平分线的交点到三条边的距离相等.6.(2023秋·河北邢台·八年级统考期末)如图,在△ABC中,∠BAC=60°,角平分线BE,CD相交于点P,若AP=4,AC=6,则S△APC=().A.4B.6C.12D.247.(2023秋·江苏泰州·八年级统考期末)已知,如图,△ABC中,∠ABC=48°,∠ACB=84°,点D、E分别在BA、BC延长线上,BP平分∠ABC,CP平分∠ACE,连接AP,则∠PAC的度数为()A.45°B.48°C.60°D.66°8.(2023秋·河北沧州·八年级统考期末)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=108∘,连接AC,BD交于点M,连接OM.甲、乙、丙三人的说法如下,下列判断正确的是()甲:AC=BD;乙:∠CMD>∠COD;丙:MO平分∠BMCA.乙错,丙对B.甲和乙都对C.甲对,丙错D.甲错,丙对9.(2023秋·重庆大足·八年级统考期末)如图,△ABC的三边AC、BC、AB的长分别是8、12、16,点O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC的值为()A.4:3:2B.5:3:2C.2:3:4D.3:4:510.(2022秋·甘肃庆阳·八年级统考期中)庆阳市是传统的中药材生产区,优越的地理气候条件形成了较独特的资源禀赋,孕育了丰富的中药植物资源和优良品种,素有“天然药库”“中药之乡”的美称.如图,三条公路把A、B、C三个盛产中药材的村庄连成一个三角形区域,此地区决定在这个三角形区域内修建一个中药材批发市场,要使批发市场到三条公路的距离相等,则这个批发市场应建在()A.三角形的三条中线的交点处B.三角形的三条角平分线的交点处C.三角形的三条高的交点处D.以上位置都不对11.(2022秋·海南海口·八年级校联考期末)如图,在△ABC中,∠A=90°,BD平分∠ABC,BC=12,AD=4,则△DBC的面积为__________.12.(2023·湖南衡阳·校考一模)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO=_______度.13.(2023秋·湖北省直辖县级单位·八年级统考期末)如图,△ABC与△BDE都为等边三角形,连接AE与CD,延长AE交CD于点F,连接FB.给出下面四个结论:①AE=CD;②∠AFC=60°;③BF平分∠EBD;④FB 平分∠EFD.其中所有正确结论的序号是__________.14.(2023春·浙江金华·八年级浙江省义乌市后宅中学校考阶段练习)已知:OP平分∠MON,点A,B分别在边OM,ON上,且∠OAP+∠OBP=180°.(1)如图1,当∠OAP=90°时,求证:OA=OB;(2)如图2,当∠OAP<90°时,作PC⊥OM于点C.求证:①PA=PB;②请直接写出OA,OB,AC之间的数量关系.15.(2022春·广东茂名·八年级统考期中)如图,在Rt△ABC中,∠A=90°,∠B=30°,CM平分∠ACB交AB 于点M,过点M作MN∥BC交AC于点N,若AN=1,求BC的长.考点4:线段垂直平分线性质定理和逆定理例7. (1)(2023秋·浙江宁波·八年级宁波市第七中学校考期末)如图,△ABC中,AB<AC<BC,如果要使用尺规作图的方法在BC上确定一点P,使PA+PB=BC,那么符合要求的作图痕迹是()A.B.C.D.(2)(2023秋·云南曲靖·八年级统考期末)如图,在△ABC中,∠BAC=110°,EF是边AB的垂直平分线,垂足为E,交BC于F.MN是边AC的垂直平分线,垂足为M,交BC于N.连接AF、AN则∠FAN的度数是()A.70B.55C.40D.30(3)(2022秋·新疆乌鲁木齐·八年级校考期末)电信部门要再S区修建一座手机信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路OC,OD的距离也必须相等,则发射塔应建在()A.∠COD的平分线上任意某点处B.线段AB的垂直平分线上任意某点处C.∠COD的平分线和线段AB的交点处D.∠COD的平分线和线段AB垂直平分线的交点处例8.(2023春·重庆沙坪坝·八年级重庆南开中学校考开学考试)如图,在△ABC中,EF是AB的垂直平分线,AD⊥BC于点D,且D为CE的中点.(1)求证:BE=AC;(2)若∠C=70°,求∠BAC的度数.知识点训练1.(2022秋·海南海口·八年级校联考期末)如图,在△ABC中,DE垂直平分BC,若AB=6,AC=8,则△ABD 的周长等于()A.11B.13C.14D.162.(2023秋·河南南阳·八年级统考期末)如图,等腰△ABC的底边BC长为6,面积是24,E为腰AB的垂直平分线MN上一动点.点D为BC的中点,则△BDE的周长的最小值为()A.6B.8C.10D.113.(2023秋·福建泉州·八年级校联考期末)如图,根据尺规作图的痕迹,计算∠α的度数为()A.56∘B.68∘C.28∘D.34∘4.(2023秋·山东东营·八年级统考期末)如图,平行四边形ABCD的对角线AC、BD交于点O,DE平分∠ADCAB,连接OE.下列结论:①S▱ABCD=AD⋅BC;②DB平分∠CDE;③AO=交AB于点E,∠BCD=60°,AD=12DE;④OE垂直平分BD.其中正确的个数有()A.1个B.2个C.3个D.4个5.(2022秋·河北石家庄·八年级统考期末)如图,在△ABC中,AB=AC,尺规作图:(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)连接AD,BD,CD,AD与BC交于点E,则下列结论中错误的是()A.△ABD≌△ACD B.△DBE≌△DCEC.△BCD是等边三角形D.BC垂直平分AD6.(2023秋·黑龙江牡丹江·八年级统考期末)如图,在△ABC中,∠ACB=90°,∠A=75°,DE垂直平分AB,交AB于点D,交BC于点E,若BE=8cm,则AC为______cm.7.(2023秋·重庆万州·八年级统考期末)如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E,连接AD,若AD是∠BAC的角平分线,且AB=AD时,则∠B=___________°.8.(2023秋·山东淄博·七年级统考期末)如图,已知AB是线段CD的垂直平分线,垂足为点F.E是AB上的一点,∠CEF=30°,CF=2.试求△CED的周长.9.(2022秋·山西吕梁·八年级统考期末)如图,在△ABC中,AB=BC,EF是AB的垂直平分线,交AB于点E,交BC于点F.(1)按要求作图:作∠ABC的平分线BD,交AC于点D,交EF于点O,连接OA,OC(尺规作图,保留痕迹,不写作法);(2)求证:点O在BC的垂直平分线上;(3)若∠CBD=20°,求∠COF的度数.10.(2023秋·黑龙江齐齐哈尔·八年级统考期末)如图,∠AOB=30°,M,N分别是射线OA,OB上的动点,OP平分∠AOB,OP=9,则△PMN的周长的最小值为()C.6D.27A.9B.9211.(2022秋·山东临沂·八年级校考期末).如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.(保留作图痕迹)12.(2023·全国·九年级专题练习)如图,∠HAB=30°,点B与点C关于射线AH对称,连接AC.D点为射线AH 上任意一点,连接CD.将线段CD绕点C顺时针旋转60°,得到线段CE,连接BE.(1)求证:直线EB是线段AC的垂直平分线;(2)点D是射线AH上一动点,请你直接写出∠ADC与∠ECA之间的数量关系.13.(2023秋·山西运城·九年级统考期末)综合与实践问题情境:课堂上老师展示了一张直角三角形纸片.请同学们进行折纸活动,已知在Rt△ABC中.∠ACB=90°,点D、F分别是BC、AB上的一点.连接DF.(1)如图1.小红将△BDF 沿直线DF 折叠,点B 恰好落在BC 上点E 处,若S △BDF S 四边形ACEF=17,则DEDC的值______.(2)如图2,小明将△BDF 沿直线DF 折叠,点B 落在AC 上点E 处,若FE ⊥AC ,求证:四边形BDEF 是菱形; (3)如图3.小亮将△BDF 沿直线DF 折叠,点B 落在AC 延长线上点E 处,且EF 平分∠AED ,若AC =3,BC =4,求CE 的长.14.(2023秋·江苏南京·八年级统考期末)(1)如图1,在△ABC 中,∠A =30°,∠C =90°.求证BC =12AB .①补全证明过程.证明:如图2,取AB 中点D ,连接CD . ∴BD =AD =12AB .在△ABC 中,∠C =90°, ∴______; ∴CD =BD . 又∠A =30°,∴∠B =90°−∠A =60°. ∴△BCD 为______三角形. ∴BC =BD =12AB .②请用文字概括①所证明的命题:____________.(2)如图3,某市三个城镇中心D,E,F恰好分别位于一个等边三角形的三个顶点处,在三个城镇中心之间铺设通信光缆,以城镇D为出发点设计了三种连接方案:方案1:DE+EF;方案2:DG+EF(G为EF的中点);方案3:OD+OE+OF(O为△DEF三边的垂直平分线的交点).①设DE=6,通过计算,比较三种连接方案中铺设的光缆长度的长短;②不计算,比较三种连接方案中铺设的光缆长度的长短,并说明理由.15.(2023秋·河南洛阳·八年级统考期末)我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图1,直线MN是线段AB的垂直平分线,P是MN上任一点,连接PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.解答下列问题:(1)请你结合图形把已知和求证补充完整,并写出证明过程.已知:如图1,MN⊥AB,垂足为点C,______,点P是直线MN上的任意一点.求证:______.(2)证明:如图2,CD是线段AB垂直平分线,则∠CAD与∠CBD有何关系?请说明理由.考点5:全等三角形的综合问题例9.(2023秋·河南南阳·八年级统考期末)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.(1)求证:DF∥BC;(2)若AE=6,CE=8,求线段GF的长.例10.(2022秋·湖北黄冈·八年级统考期末)已知OM是∠AOB的平分线,点P是射线OM上一定点,点C、D分别在射线OA、OB上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是___________;(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90∘,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?请说明理由.(3)在问题(2)中,若OC+OD=6,则四边形ODPC的面积S是否为定值?若是,请求出该定值,若不是,请说明理由.知识点训练1.(2022秋·河南商丘·八年级统考期中)如图,在△ABC中,∠ABC=90°,D,E分别为边AC,BC上一点,连接BD,DE.已知AB=BE,AD=DE.(1)求证:BD平分∠ABC;(2)若∠A=55°,求证:∠CDE=14∠ADB.2.(2023秋·湖北荆州·八年级统考期末)如图,在△ABC中,BC=2AB,D是AC上一点,∠ABD=20°,E 是BD上一点,EA⊥AB,EB=EC.(1)求证:BD平分∠ABC;(2)求∠DEC的度数.3.(2023秋·重庆长寿·九年级统考期末)在图(1)至图(2)中,直线MN与线段AB相交于点O,∠1=∠2=45°.(1)如图(1),若AO=OB,请写出AO与BD的数量关系和位置关系;(2)将图(1)中的MN绕点O顺时针旋转得到图(2),其中AO=OB.求证:AC=BD,AC⊥BD.4.(2023秋·重庆万州·八年级统考期末)小明在物理课上学习了发声物体的振动实验后,对其作了进一步的探究:在一个支架的横杆点O处用一根细绳悬挂一个小球A,小球A可以自由摆动,如图,OA表示小球静止时的位置.当小明用发声物体靠进小球时,小球从OA摆到OB位置,此时过点B作BD⊥OA于点D,当小球摆到OC位置时,OB与OC恰好垂直(图中的A、B、O、C在同一平面上),过点C作CE⊥OA于点E,测得CE=15cm,AD=2cm.(1)试说明OE=BD;(2)求DE的长.5.(2022秋·海南海口·八年级校联考期末)如图1,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,∠MDN=90°,将∠MDN绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△BDE≌△ADF;(2)如图2,若DM=DN,连接BM、NA,求证:BM=AN.6.(2023秋·江苏宿迁·八年级统考期末)如图,已知AC平分∠BAF,CE⊥AB于点E,CF⊥AF于点F,且BC= DC.(1)求证:BE=DF;(2)若AB=21,AD=9,求DF的长.7.(2023秋·广西南宁·九年级统考期末)如图,将矩形ABCD绕点B旋转得到矩形BEFG,点E在AD上,延长DA交GF于点H.(1)求证:△ABE≅△FEH;(2)连接BH,若∠EBC=30°,求∠ABH的度数.8.(2023秋·山东威海·七年级统考期末)在四边形ABDE中,点C是BD边的中点.(1)如图①,AC平分∠BAE,∠ACE=90°,写出线段AE,AB,DE间的数量关系及理由;(2)如图②,AC平分∠BAE,EC平分∠AED,∠ACE=120°,写出线段AB,BD,DE,AE间的数量关系及理由.9.(2022秋·广西柳州·八年级统考期末)在平面直角坐标系中,点O为坐标原点,A(a,0),B(0,b),且a,b满足(a−3)2+|b−3|=0,连接AB.(1)求点A,B点的坐标;(2)如图1,动点C从点O出发,以1个单位/秒的速度沿y轴正半轴运动,运动时间为t秒(0<t<3),连接AC,过点C作CD⊥AC,且CD=CA,点D在第一象限,请用含有t的式子表示点D的坐标;(3)在(2)的条件下,如图2,连接并延长DB交x轴于点E,连接AD和AB,过点B作线段BF交x轴于点F,使得∠OBF=∠DCB,已知此时点F的坐标为(−1,0),求△ADE的面积.10.(2023秋·福建福州·八年级统考期末)在平面直角坐标系xOy中,点A(0,a),B(b,0),C(c,0),点D在第四象限,其中a>0,b<0,c>0,∠BAC+∠BDC=180°,AC⊥CD.(1)如图1,求证:∠BAO=∠CBD;(2)若|a−c|+b2+6b+9=0,且AB=BD.①如图1,求四边形ACDB的面积;(用含a的式子表示)②如图2,BD交y轴于点E,连接AD,当E关于AD的对称点K落在x轴上时,求CK的长.。
最新九年级中考数学专题复习:全等三角形
在△EDM和△FDN中,源自∠EDM ∠FDNDM
DN
,
∠DME ∠DNF
∴△EDM≌△FDN(ASA),
∴DE=DF.
两边及其夹角对 三边对应相等的两
应相等的两个三 个三角形全等.
角形全等.
两角及其夹边对应 相等的两个三角形 全等.
两角及其中一个角 的对边对应相等的 两个三角形全等.
斜边和一条直角边对应相 等的两个直角三角形全等.
模型一、平移模型
知识点3:全等模型
模型展 示
模型特 沿同一直线(BC)平移可得两三角形重合(BE=CF)
证明:∵AD∥BC,∠A=90°,∠1=∠2, ∴∠A=∠B=90°,DE=CE. 在Rt△ADE和Rt△BEC中,
AD DE
BE EC
,
∴Rt△ADE≌Rt△BEC(HL);
模型四、一线三等角模型
知识点3:全等模型
一般通过一线三等角找等角或进行角度转换,证三角形全等时必须还有一组边相等这个条件. 常见基本图形如 下: 1.两个三角形在直线同侧,点P在线段AB上,已知:∠1=∠2=∠3,AP=BD.
模型应用
2. 如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折 叠,使点B落在点E处,AE交CD于点F,连接DE.若矩形ABCD的周 长为18,则△EFC的周长为___9_____.
模型三、一线三垂直模型
知识点3:全等模型
常用三个垂直作条件进行角度等量代换,即同(等)角的余角相等,相等的角就是 对应角,证三角形全等时必须还有一组边相等. 基本图形1 如图①,已知:AB⊥BC,DE⊥CE,AC⊥CD,AB=CE.
锐角一线三等角
钝角一线三等角
结论:△CAP≌△PBD.
中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题
全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。
中考数学专题训练:全等三角形(含答案)
中考数学专题训练:全等三角形一、选择题(本大题共10道小题)1. 如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠C B.∠D=∠BC.AD∥BC D.DF∥BE2. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D4. 如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A. 2对B. 3对C. 4对D. 5对5. 如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()图12-1-10A.2B.3C.5D.2.56. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC7. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c8. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()9. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于() A.90°B.120 C.135°D.150°10. 如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上二、填空题(本大题共10道小题)11. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.12. 如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:______________,使得△ABD≌△CDB.(只需写出一个)13. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).14. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH≌△CEB.15. 如图,已知AC=EC,∠ACB=∠ECD,要直接利用“AAS”判定△ABC≌△EDC,应添加的条件是__________.16. 如图,AC与BD相交于点O,且AB=CD,请添加一个条件:________,使得△ABO≌△CDO.17. △ABC的周长为8,面积为10,若其内部一点O到三边的距离相等,则点O 到AB的距离为________.18. 如图,P A⊥ON于点A,PB⊥OM于点B,且P A=PB.若∠MON=50°,∠OPC =30°,则∠PCA的大小为________.19. 如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q是线段AC与射线AX上的两个动点,且AB=PQ,当AP=________时,△ABC与△APQ全等.20. 如图,P是△ABC外的一点,PD⊥AB交BA的延长线于点D,PE⊥AC于点E,PF⊥BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,∠BAC=64°,则∠BPC的度数为________.三、解答题(本大题共6道小题)21. 如图,∠A=∠D=90°,AB=DE,BF=EC.求证:Rt△ABC≌Rt△DEF.22. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.23. 观察与类比(1)如图①,在△ABC中,∠ACB=90°.点D在△ABC外,连接AD,作DE⊥AB于点E,交BC于点F,AD=AB,AE=AC,连接AF.求证:DF=BC +CF;(2)如图②,AB=AD,AC=AE,∠ACB=∠AED=90°,延长BC交DE于点F,写出DF,BC,CF之间的数量关系,并证明你的结论.24. 如图所示,已知在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点,点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA 上由点C向点A以a cm/s的速度运动,设运动的时间为t s(t>0).(1)求CP的长(用含t的式子表示);(2)若以C,P,Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求a的值.25. △ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,①求证:△BPE∽△CEQ;②当BP=2,CQ=9时,求BC的长.26. 已知:在等边△ABC中,D、E分别是AC、BC上的点,且∠BAE=∠CBD<60°,DH⊥AB,垂足为点H.(1)如图①,当点D、E分别在边AC、BC上时,求证:△ABE≌△BCD;(2)如图②,当点D、E分别在AC、CB延长线上时,探究线段AC、AH、BE的数量关系;(3)在(2)的条件下,如图③,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.2021中考数学一轮专题训练:全等三角形-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] 在△ADF和△CBE中,由AD=BC,∠D=∠B,DF=BE,根据两边和它们的夹角分别相等的两个三角形全等,可以得到△ADF≌△CBE.故选B.2. 【答案】D[解析] 由条件可知∠ADB=∠EDB=∠EDC=60°,且∠DEB=∠DEC=90°,∴∠C=30°.3. 【答案】C4. 【答案】C【解析】由题意可知,△ABD≌△CBD,△MON≌△M′ON′,△DON ≌△BON′,△DOM≌△BOM′共4对.5. 【答案】B[解析] ∵△ABE≌△ACF,AB=5,∴AC=AB=5.∵AE=2,∴EC=AC-AE=5-2=3.6. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.7. 【答案】D[解析] ∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠CED=∠AFB=90°,∠A=∠C.又∵AB=CD,∴△CED≌△AFB.∴AF=CE=a,DE=BF=b,DF =DE-EF=b-c.∴AD=AF+DF=a+b-c.故选D.8. 【答案】C[解析] 选项A中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项C中,如图①,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE和CF,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D中,如图②,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C,∴△BDE≌△CEF.故能判定两个小三角形全等.9. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.10. 【答案】D【解析】如解图,①当OM1=2时,点N1与点O重合,△PMN 是等边三角形;②当ON2=2时,点M2与点O重合,△PMN是等边三角形;③当点M3,N3分别是OM1,ON2的中点时,△PMN是等边三角形;④当取∠M1PM4=∠OPN4时,易证△M1PM4≌△OPN4(SAS),∴PM4=PN4,又∵∠M4PN4=60°,∴△PMN是等边三角形,此时点M,N有无数个,综上所述,故选D.二、填空题(本大题共10道小题)11. 【答案】120°【解析】由于△ABC≌△A′B′C′,∴∠C=∠C′=24°,在△ABC 中,∠B=180°-24°-36°=120°.12. 【答案】答案不唯一,如AB=CD[解析] 由已知AB∥CD可以得到一对角相等,还有BD=DB,根据全等三角形的判定,可添加夹这个角的另一边相等,或添加另一个角相等均可.13. 【答案】AB=DE或∠A=∠D或∠ACB=∠DFE或AC∥DF[解析]已知条件已经具有一边一角对应相等,需要添加的条件要么是夹已知角的边,构造SAS全等,要么添加另外的任一组角构造ASA或AAS,或者间接添加可以证明这些结论的条件即可.14. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.15. 【答案】∠B=∠D16. 【答案】∠A =∠C 或∠B =∠D 或AB ∥CD(答案不唯一)[解析] 由题意可知∠AOB =∠COD ,AB =CD.∵AB 是∠AOB 的对边,CD 是∠COD 的对边,∴只能添加角相等,故可添加∠A =∠C 或∠B =∠D 或AB ∥CD.17. 【答案】2.5 [解析] 设点O 到AB ,BC ,AC 的距离均为h ,∴S △ABC =12×8·h =10,解得h =2.5,即点O 到AB 的距离为2.5.18. 【答案】55° [解析] ∵PA ⊥ON ,PB ⊥OM ,∴∠PAO =∠PBO =90°.在Rt △AOP 和Rt △BOP 中,⎩⎪⎨⎪⎧PA =PB ,OP =OP ,∴Rt △AOP ≌Rt △BOP(HL).∴∠AOP =∠BOP =12∠MON =25°.∴∠PCA =∠AOP +∠OPC =25°+30°=55°.19. 【答案】5或10 [解析] ∵AX ⊥AC ,∴∠PAQ =90°.∴∠C =∠PAQ =90°. 分两种情况:①当AP =BC =5时,在Rt △ABC 和Rt △QPA 中,⎩⎪⎨⎪⎧AB =QP ,BC =PA ,∴Rt △ABC ≌Rt △QPA(HL);②当AP =CA =10时,在Rt △ABC 和Rt △PQA 中,⎩⎪⎨⎪⎧AB =PQ ,AC =PA ,∴Rt △ABC ≌Rt △PQA(HL).综上所述,当AP =5或10时,△ABC 与△APQ 全等.20. 【答案】32° [解析] ∵PD =PE =PF ,PD ⊥AB 交BA 的延长线于点D ,PE ⊥AC 于点E ,PF ⊥BC 交BC 的延长线于点F ,∴CP 平分∠ACF ,BP 平分∠ABC.∴∠PCF =12∠ACF ,∠PBF =12∠ABC.∴∠BPC =∠PCF -∠PBF =12(∠ACF -∠ABC)=12∠BAC =32°.三、解答题(本大题共6道小题)21. 【答案】证明:∵BF =EC ,∴BF +FC =FC +EC ,即BC =EF.∵∠A =∠D =90°,∴△ABC 和△DEF 都是直角三角形.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF , ∴Rt △ABC ≌Rt △DEF(HL).22. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD.∵AD=16,BC=10,∴AB=CD=(AD-BC )=3.23. 【答案】解:(1)证明:∵DE ⊥AB ,∠ACB =90°,∴∠AED =∠AEF =∠ACB =90°.在Rt △ACF 和Rt △AEF 中,⎩⎪⎨⎪⎧AC =AE ,AF =AF , ∴Rt △ACF ≌Rt △AEF(HL).∴CF =EF.在Rt △ADE 和Rt △ABC 中,⎩⎪⎨⎪⎧AD =AB ,AE =AC ,∴Rt △ADE ≌Rt △ABC(HL). ∴DE =BC.∵DF =DE +EF ,∴DF =BC +CF.(2)BC =CF +DF.证明:如图,连接AF.在Rt △ABC 和Rt △ADE 中,⎩⎪⎨⎪⎧AB =AD ,AC =AE , ∴Rt △ABC ≌Rt △ADE(HL).∴BC =DE.∵∠ACB =90°,∴∠ACF =90°=∠AED.在Rt △ACF 和 Rt △AEF 中,⎩⎪⎨⎪⎧AC =AE ,AF =AF ,∴Rt △ACF ≌△AEF(HL).∴CF=EF.∵DE=EF+DF,∴BC=CF+DF.24. 【答案】解:(1)依题意得BP=3t cm,BC=8 cm,∴CP=(8-3t)cm.(2)∵∠B和∠C是对应角,∴分两种情况讨论:①若△BDP≌△CPQ,则BD=CP,BP=CQ.∵AB=10 cm,D为AB的中点,∴BD=5 cm.∴5=8-3t,解得t=1.∴CQ=BP=3 cm.∴a==3.②若△BDP≌△CQP,则BD=CQ,BP=CP.∵BP=3t cm,CP=(8-3t)cm,∴3t=8-3t,解得t=.∵BD=CQ,∴5=a,解得a=.综上所述,a的值为3或.25. 【答案】(1)证明:∵△ABC是等腰直角三角形,∴AB=AC,∠B=∠C=45°,又∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=EC.∴在△BPE与△CQE中,∠∠BP CQ B C BE CE =⎧⎪=⎨⎪=⎩,∴△BPE ≌△CQE (SAS);(2)①证明:∵∠BEF =∠C +∠CQE ,∠BEF =∠BEP +∠DEF , ∠C =∠DEF =45°,∴∠CQE =∠BEP ,∵∠B =∠C ,∴△BPE ∽△CEQ ;②解:由①知△BPE ∽△CEQ , ∴BE BP CQ CE=, ∴BE ·CE =BP ·CQ ,又∵BE =EC ,∴BE 2=BP ·CQ ,∵BP =2,CQ =9,∴BE 2=2×9=18,∴BE =32,∴BC =2BE =6 2.26. 【答案】(1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎪⎨⎪⎧∠BAE =∠CBD AB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎪⎨⎪⎧∠BAE =∠CBD AB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG , ∴HM KC =MG CG ,即382=MG 4-MG,∴MG =127,BG =267,EG =407, ∵EK ∥BD ,∴△GBP ∽△GEK , ∴BP EK =GB GE ,∴BP =261315.。
中考数学复习《全等三角形》专项提升训练题-附带答案
中考数学复习《全等三角形》专项提升训练题-附带答案学校:班级:姓名:考号:一、单选题1.已知在和中,则判断的根据是()A.SAS B.SSS C.ASA D.AAS2.如图,AC,BD相交于点O.添加一个条件,不一定能使≌的是()A.B.C.D.3.如图,AB=AC,AD=AE,∠BAC=∠DAE,点B,D,E在同一直线上,若∠1=25°,∠2=35°,则∠3的度数是()A.50°B.55°C.60°D.70°4.小李用7块长为8cm,宽为3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AB=BC,∠ABC=90°),点B在DE上,点A和C分别与木墙的顶端重合,则两堵木墙之间的距离为()A.36 B.32 C.28 D.215.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC的长是()A.2 B.3 C.4 D.56.如图,中,平分,过点作于,测得BC=18,BE=6,则的周长是()A.30 B.24 C.18 D.127.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3 B.5 C.7 D.3或78.如图,中、的角平分线、交于点,延长BA、BC,PM⊥BE,PN⊥BF则下列结论中正确的个数()平分.A.个B.个C.个D.个二、填空题9.如图,要测量水池宽AB,可从点A出发在地面上画一条线段AC,使AC⊥AB,再从点C观测,在BA的延长线上测得一点D,使∠ACD=∠ACB,这时量得AD=110m,则水池宽AB的长度是m.10.如图,在,∠C=90°,E是AB上一点,且,于点E,若,则的值为.11.如图,在中于于E,BD和CE交于点O,AO的延长线交BC于点,则图中全等的直角三角形有对.12.如图,在和△OCD中,OC=OD,连接,交于点,连接.则的度数为°.13.如图,在中,点是的中点,点是外一点,,且平分,连接,则的长为.三、解答题14.如图,相交于点O,和.(1)求证:;(2)若,求的度数.15.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.16.如图,已知中是的角平分线,于E点.(1)求的度数;(2)若,求.17.如图所示,在四边形中,为的中点,连接AE、BE,BE⊥AE,延长交的延长线于点.求证:(1);(2)平分.18.如图,在中,点,分别是,的中点,连接,AE.(1)求证:;(2)过点作于点,求证:.参考答案:1.D2.C3.C4.A5.C6.B7.D8.D9.11010.811.612.14013.2cm14.(1)证明:∵∴和都是直角三角形在和中∴;(2)解:∵∴∵∴.15.(1)解:证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)解:∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m,BF=3m∴FC=10﹣3﹣3=4m.16.(1)解:∵∴∵是的角平分线∴∵∴∴;(2)解:如图,过D作于F.∵是的角平分线,∴又∵,且∴.17.(1)证明:∵∴∵是的中点∴.∵在与中∴≌(ASA)∴又∵∴是线段的垂直平分线∴∴AB-BC=AD;(2)证明:由(1)可知:∴∵∴∴∴平分.18.(1)解:证明:∵在中∴;又∵点D,E分别是,的中点∴∴.(2)证明:∵在中∴又∵∵∴∴.又∴∵是的中位线,∴∴在和中,有∴即。
中考数学复习专项之三角形全等 (含答案)
30°ABOCl D 第1题图C A P B D三角形全等一、选择题1、(2022年安徽省模拟六)在△ABC 与△A ′B ′C ′中,已知AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的是…………【 】 A .AC = A ′C ′ B.BC = B ′C ′ C.∠B =∠B ′ D.∠C =∠C ′.答案:B2、(2022年江苏南京一模)如图,直线上有三个正方形a b c ,,,若a c ,的面积分别为3和4,则b 的面积为( ) A .3 B .4 C .5 D .7 答案:D3.(2022郑州外国语预测卷)如图,两个等圆⊙A 、⊙B 分别与直线l 相切于点C 、D ,连接AB 与直线l 相交于点O ,∠AOB =30°,连接AC 、BD ,若AB =4,则这两个等圆的半径为( ) A .21B .1C .3D .2 答案:B4、(2022河南沁阳市九年级第一次质量检测) 如图,把△ABC 绕着点C 顺时针旋转30°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC =90°,则∠A 的度数是【 】A.30°B.50°C.60°D.80°C5、(2022年湖北省武汉市中考全真模拟)如图,等腰△ABC 中,AB=AC ,P 为其底角平分线的交点,将△BCP 沿CP 折叠,使B 点恰好落在AC 边上的点D 处,若DA=DP ,则∠A 的度数为( ).A.20°B.30°C.32°D.36°D6、 (2022年湖北宜昌调研)如图,AC ,BD 交于点E ,AE=CE ,添加以下四个条件中的一个,其中不能使△ABE ≌△CDE 的条件是( ) (A )BE=DE (B )AB ∥CD (C )∠A=∠C (D )AB=CDabclEABCD答案:D7、(2022年唐山市二模)在锐角△ABC 中,∠BAC =60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP =MP ②当∠ABC =60°时,MN ∥BC ③ BN =2AN ④AN︰AB =AM ︰AC ,一定正确的有 ( )A 、1个B 、2个C 、3个D 、4个答案:C8.(2022年上海闵行区二摸)在△ABC 与△A ′B ′C ′中,已知AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的是 (A )AC = A ′C ′; (B )BC = B ′C ′; (C )∠B =∠B ′; (D )∠C =∠C ′.答案:B二、填空题1、(2022云南勐捧中学二模)如图,AB CD ,相交于点O ,AO=CO ,试添加一个条件使得AOD COB △≌△,你添加的条件是 (只需写一个). 【答案】∠A= ∠C 、∠D= ∠B 、OD=OB (答案不唯一)2.(2022年安徽初中毕业考试模拟卷一)如图,ABC ∆为等边三角形,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是 .(把所有正确答案的序号都填写在横线上)①AP 平分∠BAC ;②AS =AR ;③QP ∥AR ;④BRP ∆≌△QSP . 答案:①②③④三、解答题1、(2022年湖北荆州模拟5)(本题满分8分)将两块斜边长度相等的等腰直角三角纸板如图(1)摆放,若把图(1)中的△BCN 逆时针旋转90°,得到图(2),图(2)中除△ABC ≌△CED 、△BCN ≌△ACF 外,你还能找到一对全等的三角形吗?写出你的结论并说明理由.AC BDO第1题答案:解:△FCM ≌△NCM ,理由如下: ∵把图中的△BCN 逆时针旋转90°, ∴∠FCN=90°,CN=CF , ∵∠MCN=45°, ∴∠FCM=90°-45°=45°, 在△FCM 和△NCM 中∵CM=CM ,∠FCM=∠NCM , FC=CN∴△FCM ≌△NCM (SAS ).2、(2022年湖北荆州模拟6)(本题满分8分)如图,正方形ABCD 和BEFG 在直线AB 的同侧,连接AG 、EC ,易证AG=EC ,现在将正方形BEFG 顺时针旋转30°,那么AG=EC 还成立吗?请作出旋转后的图形,并证明你的结论. 答案:解:成立. 理由如下:在ΔABG 与ΔCBE 中,0120AB CB ABG CBE BG BE =⎧⎪∠=∠=⎨⎪=⎩∴ ΔABG ≌ΔCBE ∴ AG=CE3、(2022年江苏南京一模)(7分)如图, AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1) 求证:AD =AE ;(2) 连接BC ,DE ,试判断BC 与DE 的位置关系并说明理由. 答案:(1)证明:在△ACD 与△ABE 中, ∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC , ∴ △ACD ≌△ABE .…………………… 2分 ∴ AD=AE . ……………………3分 (2) 互相平行 ……………………4分 在△ADE 与△ABC 中, ∵AD=AE ,AB=AC ,∴ ∠ADE=∠AED ,∠ABC=∠ACB ……………6分 且 ∠ADE =180-∠A =∠ABC.∴ DE ∥BC . ……………7分第1题图第2题图第2题解答CACBB第2题图14.(2022年北京房山区一模)如图,点C、B、E在同一条直线上,AB∥DE,∠ACB=∠CDE,AC=CD.求证:AB=CD .答案:证明:∵AB∥DE∴∠ABC=∠E ------------------------------1分∵∠ACB=∠CDE,AC=CD --------------------- --------3分∴△ABC≌△CED -------------------------4分∴AB=CD--------------------------5分5.(2022年北京房山区一模)(1)如图1,△ABC和△CDE都是等边三角形,且B、C、D三点共线,联结AD、BE相交于点P,求证:BE = AD.(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,联结AD、BE和CF交于点P,下列结论中正确的是(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.答案:(1)证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CE=CD,∠ACB=∠DCE=60°∴∠BCE=∠ACD∴△BCE≌△ACD(SAS)∴BE=AD--------------1分(2)①②③都正确--------------4分(3)证明:在PE上截取PM=PC,联结CM由(1)可知,△BCE≌△ACD(SAS)EDC BA第1题图ADAB∴∠1=∠2设CD 与BE 交于点G ,,在△CGE 和△PGD 中 ∵∠1=∠2,∠CGE =∠PGD∴∠DPG =∠ECG =60°同理∠CPE =60° ∴△CPM 是等边三角形--------------5分 ∴CP =CM ,∠PMC =60° ∴∠CPD =∠CME =120°∵∠1=∠2,∴△CPD ≌△CME (AAS )---6分 ∴PD =ME∴BE =PB +PM +ME =PB +PC +PD . -------7分即PB+PC+PD=BE .6.(2022年北京龙文教育一模)已知:如图,AB ∥CD ,AB =CD ,点E 、F 在线段AD 上,且AF=DE .求证:BE =CF . 答案:证明: AF=DE , ∴ AF-EF=DE –EF . 即 AE=DF .………………1分AB ∥CD ,∴∠A =∠D .……2分在△ABE 和△DCF 中 , AB =CD , ∠A =∠D , AE=DF .∴△ABE ≌△DCF .……….4分 ∴ BE =CF .…………….5分7. (2022年北京龙文教育一模)阅读下面材料:问题:如图①,在△ABC 中, D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =45°,DC =2.求BD 的长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决.(1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =30°,DC =2,求BD 和AB 的长.FE ACDB第3题图答案:解:(1)22=BD . ……………………………… ………………………1分(2)把△ADC 沿AC 翻折,得△AEC ,连接DE , ∴△ADC ≌△AEC .∴∠DAC =∠EAC ,∠DCA =∠ECA , DC =EC . ∵∠BAD =∠BCA =2∠DAC =30°, ∴∠BAD =∠DAE =30°,∠DCE =60°.∴△CDE 为等边三角形. ……………………2分 ∴DC =DE .在AE 上截取AF =AB ,连接DF , ∴△ABD ≌△AFD . ∴BD =DF .在△ABD 中,∠ADB =∠DAC +∠DCA =45°, ∴∠ADE =∠AED =75°,∠ABD =105°. ∴∠AFD =105°. ∴∠DFE =75°. ∴∠DFE =∠DEF . ∴DF =DE .∴BD =DC =2. …………………………………………………………………3分 作BG ⊥AD 于点G , ∴在Rt △BDG 中, 2=BG . ……………………………………………4分∴在Rt △ABG 中,22=AB . ……………………………………………5分 8.(2022年北京平谷区一模)已知:如图,AB ∥CD ,AB =EC ,BC =CD . 求证:AC =ED .答案:证明:∵ AB //CD ,∴B DCE ∠=∠.………………… ………………………1分在△ABC 和△ECD 中,= =B DCE AB EC BC CD ∠∠⎧⎪=⎨⎪⎩,,, ∴ △ABC ≌△ECD . …………………… ………………4分∴ AC =ED .………………………… ……………………5分9.(2022年北京顺义区一模)已知:如图,CA 平分BCD ∠, 点E 在AC 上,BC EC =,AC DC =.求证:A D ∠=∠.答案:证明:∵CA 平分BCD∠∴ ACB DCE ∠=∠ ……………1分在ABC ∆和DEC ∆中∵BC EC ACB DCE AC DC =⎧⎪∠=∠⎨⎪=⎩……………3分 ∴ABC ∆≌DEC ∆ …………………………………………… 4分 ∴A D ∠=∠ ……………………………………………5分10.(2022年北京平谷区一模)(1)如图(1),△ABC 是等边三角形,D 、E 分别是 AB 、BC 上的点,且BD CE =,连接AE 、CD 相交于点P . 请你补全图形,并直接写出∠APD 的度数;= (2)如图(2),Rt △ABC 中,∠B =90°,M 、N 分别是 AB 、BC 上的点,且,AM BC =BM CN =,连接AN 、CM 相交于点P . 请你猜想∠APM = °,并写出你的推理过程.答案:解:(1)60° (2)45° ………………………………..2分 证明:作AE ⊥AB 且AE CN BM ==. 可证EAM MBC ∆≅∆. ……………………………..3分 ∴ ,.ME MC AME BCM =∠=∠∵ 90,CMB MCB ∠+∠=︒∴ 90.CMB AME ∠+∠=︒∴ 90.EMC ∠=︒∴ EMC ∆是等腰直角三角形,45.MCE ∠=︒ ……………….5分又△AEC ≌△CAN (s , a , s )∴ .ECA NAC ∠=∠ ∴ EC ∥AN.∴ 45.APM ECM ∠=∠=︒…………………………………………………………………..7分EDCBA第6题图第7题图11.(2022浙江东阳吴宇模拟题)(本题12分) 如图,平面直角坐标系中,点A (0,4),B (3,0),D 、E 在x 轴上,F 为平面上一点,且EF ⊥x 轴,直线DF 与直线AB 互相垂直,垂足为H ,△AOB ≌△DEF ,设BD =h 。
2024年中考数学一轮复习题型突破专题训练—全等相似三角形
2024年中考数学一轮复习题型突破专题训练—全等相似三角形题型一全等三角形1.如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是()A.AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC 【分析】利用等腰三角形的性质得∠ABC=∠ACB,AB=AC,然后根据全等三角形的判定方法对各选项进行判断.【解析】∵△ABC为等腰三角形,∴∠ABC=∠ACB,AB=AC,∴当AD=AE时,则根据“SAS”可判断△ABE≌△ACD;当∠AEB=∠ADC,则根据“AAS”可判断△ABE≌△ACD;当∠DCB=∠EBC,则∠ABE=∠ACD,根据“ASA”可判断△ABE≌△ACD.故选:B.2.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,②正确;由全等三角形的性质得出∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,①正确;作OG⊥AM于G,OH⊥DM于H,如图所示:则∠OGA=∠OHB=90°,由AAS证明△OGA≌△OHB(AAS),得出OG=OH,由角平分线的判定方法得出OM平分∠AMD,④正确;假设OM平分∠AOD,则∠DOM=∠AOM,由全等三角形的判定定理可得△AMO≌△OMD,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故③错误;即可得出结论.【解析】∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,OA=OB∠AOC=∠BODOC=OD∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD =∠COD =36°,∠AMB =∠CMD =36°,故①正确;作OG ⊥AM 于G ,OH ⊥DM 于H ,如图所示,则∠OGA =∠OHB =90°,在△OGA 和△OHB 中,∵∠OGA =∠OHB =90°∠OAG =∠OBH OA =OB,∴△OGA ≌△OHB (AAS ),∴OG =OH ,∴OM 平分∠AMD ,故④正确;假设OM 平分∠AOD ,则∠DOM =∠AOM ,在△AMO 与△DMO 中,∠AOM =∠DOM OM =OM ∠AMD =∠DMO ,∴△AMO ≌△OMD (ASA ),∴AO =OD ,∵OC =OD ,∴OA =OC ,而OA <OC ,故③错误;正确的个数有3个;故选:B .3.如图所示,,ABC ECD 均为等边三角形,边长分别为5cm,3cm ,B 、C 、D 三点在同一条直线上,则下列结论正确的________________.(填序号)①AD BE =②7cm BE =③CFG △为等边三角形④13cm 7CM =⑤CM 平分BMD∠【答案】①②③⑤【解析】【分析】①根据等边三角形的性质得CA =CB ,CD =CE ,∠ACB =60°,∠DCE =60°,则∠ACE =60°,利用“SAS”可判断△ACD ≌△BCE ,则AD =BE ;②过E 作EN CD ⊥,根据等边三角形求出ED 、CN 的长,即可求出BE 的长;③由等边三角形的判定得出△CMN 是等边三角形;④证明△DMC ∽△DBA ,求出CM 长;⑤证明M 、F 、C 、G 四点共圆,由圆周角定理得出∠BMC =∠FGC =60°,∠CMD =∠CFG =60°,得出∠BMC =∠DMC ,所以CM 平分∠BMD.【详解】解:连接MC ,FG ,过点E 作EN ⊥BD ,垂足为N ,①∵△ABC 和△CDE 都是等边三角形,∴CA =CB ,CD =CE ,∠ACB =60°,∠DCE =60°,∴∠ACE =60°,∴∠ACD =∠BCE =120°,在△ACD 和△BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE (SAS ),∴AD =BE ;①正确;②∵△CDE 都是等边三角形,且边长为3cm.∴CN=32cm ,EN=332cm.∵BC=5cm.∴7BE cm =,②正确;③∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,在△ACG 和△BCF 中,ACG BCF AC BC GAC MBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACG ≌△BCF (ASA ),∴CG =CF而∠GCF =60°,∴△CMN 是等边三角形,③正确;⑤∵∠EMD =∠MBD +∠MDB =∠MAC +∠MDB =60°=∠FCG ,∴M 、F 、C 、G 四点共圆,∴∠BMC =∠FGC =60°,∠CMD =∠CFG =60°,∴∠BMC=∠DMC,∴CM平分∠BMD,⑤正确;④∵∠DMC=∠ABD,∠MDC=∠BDA ∴△DMC∽△DBA∴CM CD AB AD=∴3 57 CM=∴CM=157cm.④错误.故答案为:①②③⑤.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定与性质,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.4.如图,在矩形ABCD中,AD=4,将∠A向内翻析,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=_____.【答案】【解析】【分析】依据△A 1DB 1≌△A 1DC (AAS ),即可得出A 1C =A 1B 1,再根据折叠的性质,即可得到A 1C =12BC =2,最后依据勾股定理进行计算,即可得到CD 的长,即AB 的长.【详解】解:由折叠可得,A 1D =AD =4,∠A =∠EA 1D =90°,∠BA 1E =∠B 1A 1E ,BA 1=B 1A 1,∠B =∠A 1B 1E =90°,∴∠EA 1B 1+∠DA 1B 1=90°=∠BA 1E+∠CA 1D ,∴∠DA 1B 1=∠CA 1D ,又∵∠C =∠A 1B 1D ,A 1D =A 1D ,∴△A 1DB 1≌△A 1DC (AAS ),∴A 1C =A 1B 1,∴BA 1=A 1C =12BC =2,∴Rt △A 1CD 中,CD∴AB =.故答案为:【点睛】本题考查矩形与折叠,准确判断合适的全等三角形求出A 1C =12BC =2是解题的关键.5.如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A 的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.【答案】()2,2【分析】根据题意画出图形,易证明ADC CEB △≌△,求出OE 、BE 的长即可求出B 的坐标.【详解】解:如图所示,点A 绕点C 顺时针旋转90︒得到点B ,过点A 作x 轴垂线,垂足为D ,过点B 作x 轴垂线,垂足为E ,∵点C 的坐标为()1,0-,点A 的坐标为()3,3-,∴CD=2,AD=3,根据旋转的性质,AC=BC ,∵90ACB ∠=︒,∴90ACD BCE ∠+∠=︒,∵90ACD DAC ∠+∠=︒,∴BCE DAC ∠=∠,∴ADC CEB △≌△,∴AD=CE=3,CD=BE=2,∴OE=2,BE=2,故答案为:()2,2.【点睛】本题主要考查旋转变换和三角形全等的判定与性质,证明ADC CEB △≌△是解题关键.6.已知,如图1,若AD 是ABC 中BAC ∠的内角平分线,通过证明可得=AB BD AC CD ,同理,若AE 是ABC 中BAC ∠的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在ABC 中,2,3,BD CD AD ==是ABC 的内角平分线,则ABC 的BC边上的中线长l 的取值范围是________【答案】1522l <<【分析】根据题意得到2=3AB AC ,反向延长中线AE 至F ,使得AE EF =,连接CF ,最后根据三角形三边关系解题.【详解】如图,反向延长中线AE 至F ,使得AE EF =,连接CF ,2,3,BD CD AD == 是ABC 的内角平分线,2=3AB AC ∴DE EC AEB CEF AE EF =⎧⎪∠=∠⎨⎪=⎩()ABE FEC SAS ∴≅ AB CF∴=由三角形三边关系可知,AC CF AF AC CF-<<+15AF ∴<<1522AE ∴<<故答案为:1522l <<.【点睛】本题考查角平分线的性质、中线的性质、全等三角形的判定与性质、三角形三边关系等知识,是重要考点,难度一般,掌握相关知识是解题关键.7.如图,在Rt △ABC 中,∠ACB=90°,且AC=AD .(1)作∠BAC 的平分线,交BC 于点E ;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE ,证明AB DE ⊥.【答案】(1)见解析;(2)见解析【分析】(1)首先以A 为圆心,小于AC 长为半径画弧,交AC 、AB 于N 、M ,再分别以N 、M 为圆心,大于12MN 长为半径画弧,两弧交于点Q ,再画射线AQ 交CB 于E ;(2)依据SAS 证明ACE ADE ≌得到ACE ADE ∠=∠,进一步可得结论.【详解】解:(1)如图,AE 为所作BAC ∠的平分线;(2)证明:如图.连接DE ,由(1)知:CAE DAE∠=∠在ACE 和ADE 中∵AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴()ACE ADE SAS ≌,∴ACE ADE∠=∠又∵90ACB ∠=︒∴90ADE ∠=︒,∴AB DE⊥【点睛】此题主要考查了基本作图,以及全等三角形的判定和性质,关键是得到ACE ADE ∠=∠.8.如图,ABC 中,AB AC =,点,D E 在边BC 上,BD CE =.求证ADE AED ∠=∠.【答案】证明见解析.【解析】【分析】先根据等腰三角形的性质可得C B ∠=∠,再根据线段的和差可得CD BE =,然后根据三角形的判定与性质即可得证.【详解】AB AC = ,C B ∴∠=∠,CE BD = ,CE DE BD DE ∴+=+,即CD BE =,在ACD △和ABE △中,AC AB C B CD BE =⎧⎪∠=∠⎨⎪=⎩,()ACD ABE SAS ∴≅ ,ADC AEB ∴∠=∠,即ADE AED ∠=∠.【点睛】本题考查了等腰三角形的性质、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.9.如图,点D 、E 分别是AB 、AC 的中点,BE 、CD 相交于点O ,∠B =∠C ,BD =CE .求证:(1)OD =OE ;(2)△ABE ≌△ACD .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据∠B=∠C,∠DOB=∠EOC,BD=CE可以用“AAS”证明△DOB≌△EOC,再由全等三角形的性质,即可得到OD=OE;(2)根据D、E分别是AB、AC的中点,可以得到AB=2BD,AC=2CE,AD=BD,AE=EC,再根据BD=CE,即可得到AB=AC,AD=AE,再由∠A=∠A即可用“SAS”证明两个三角形全等.【详解】解:(1)∵∠B=∠C,∠DOB=∠EOC,BD=CE∴△DOB≌△EOC(AAS)∴OD=OE;(2)∵D、E分别是AB、AC的中点∴AB=2BD,AC=2CE,AD=BD,AE=EC又∵BD=CE∴AB=AC,AD=AE∵∠A=∠A∴△ABE≌△ACD(SAS)【点睛】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.10.如图,点E 、F 在线段BC 上,//AB CD ,A D ∠=∠,BE CF =,证明:AE DF =.【答案】见解析【分析】利用AAS 证明△ABE ≌△DCF ,即可得到结论.【详解】证明:∵//AB CD ,∴∠B=∠C ,∵A D ∠=∠,BE CF =,∴△ABE ≌△DCF (AAS ),∴AE DF =.【点睛】此题考查全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.11.如图,矩形ABCD 中为边BC 上一点,将ABE △沿AE 翻折后,点B 恰好落在对角线AC 的中点F 上.(1)证明:AEF CEF ≌;(2)若AB AE 的长度【答案】(1)证明见解析;(2)2.【分析】(1)由折叠的性质证明90,CFE AFE ∠=∠=︒再证明,AF CF =从而可得结论;(2)利用折叠与三角形全等的性质求解30,BAE ∠=︒再利用30°的余弦求解AE 即可.【详解】解:(1) 矩形ABCD ,90,B ∴∠=︒由对折可得:90,AFE B ∠=∠=︒90,CFE AFE ∴∠=∠=︒F 为AC 的中点,,AF CF ∴=,EF EF = .AEF CEF ∴ ≌(2)AEF CEF ≌,,EAF ECF ∴∠=∠由折叠可得:,BAE FAE ∠=∠,BAE FAE ECF ∴∠=∠=∠90,B ∠=︒Q 90,BAE FAE ECF ∴∠+∠+∠=︒30,BAE ∴∠=︒AB =2.cos30AB AE ∴==︒【点睛】本题考查的是矩形的性质,轴对称的性质,三角形全等的判定与性质,锐角三角函数的应用,灵活应用以上知识解题是解题的关键.12.如图,点A ,D ,B ,E 在一条直线上AD BE =,AC DF =,//AC DF .求证:BC EF =.【答案】见详解【分析】由题意易得,AB DE A EDF =∠=∠,进而易证ABC DEF △≌△,然后问题可求证.【详解】证明:∵AD BE =,∴AD DB BE DB +=+,即AB DE =,∵//AC DF ,∴A EDF ∠=∠,∵AC DF =,∴()ABC DEF SAS ≌,∴BC EF =.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.13.如图,在矩形ABCD 中,点M 在DC 上,AM AB =,且BN AM ⊥,垂足为N .(1)求证:ABN MAD ≌;(2)若2,4AD AN ==,求四边形BCMN 的面积.【答案】(1)见详解;(2)【分析】(1)由矩形的性质可得∠D=90°,AB ∥CD ,从而得∠D=∠ANB ,∠BAN=∠AMD ,进而即可得到结论;(2)由ABN MAD ≌以及勾股定理得AN=DM=4,AB=【详解】(1)证明:∵在矩形ABCD 中,∴∠D=90°,AB ∥CD ,∴∠BAN=∠AMD ,∵BN AM ⊥,∴∠ANB=90°,即:∠D=∠ANB ,又∵AM AB =,∴ABN MAD ≌(AAS ),(2)∵ABN MAD ≌,∴AN=DM=4,∵2AD =,∴AM =∴AB=∴矩形ABCD 的面积=又∵12442ABN MAD S S ==⨯⨯= ,∴四边形BCMN 的面积.【点睛】本题主要考查矩形的性质,勾股定理,全等三角形的判定和性质,熟练掌握AAS 证明三角形全等,是解题的关键.14.如图,在ABC ∆中,点D 在AB 边上,CB CD =,将边CA 绕点C 旋转到CE 的位置,使得ECA DCB ∠=∠,连接DE 与AC 交于点F ,且70B ∠=︒,10A ∠=︒.(1)求证:AB ED =;(2)求AFE ∠的度数.【答案】(1)见详解;(2)50AFE ∠=︒【分析】(1)由题意易得ECD ACB ∠=∠,AC EC =,则有≌ACB ECD △△,然后问题可求证;(2)由(1)可得10E A ∠=∠=︒,然后可得40ECA DCB ∠=∠=︒,进而根据三角形外角的性质可进行求解.【详解】(1)证明:∵ECA DCB ∠=∠,∴ECA ACD DCB ACD ∠+∠=∠+∠,即ECD ACB ∠=∠,∵AC EC =,CB CD =,∴()ACB ECD SAS ≌,∴AB ED =;(2)解:∵CB CD =,70B ∠=︒,∴70CDB B ∠=∠=︒,∴根据三角形内角和可得180240BCD B ∠=︒-∠=︒,∴40ECA DCB ∠=∠=︒,由(1)可得≌ACB ECD △△,∵10A ∠=︒,∴10E A ∠=∠=︒,∴50AFE E ACE ∠=∠+∠=︒.【点睛】本题主要考查等腰三角形的性质及全等三角形的性质与判定,熟练掌握等腰三角形的性质及全等三角形的性质与判定是解题的关键.15.在四边形ABCD 中,对角线AC 平分∠BAD .(探究发现)(1)如图①,若∠BAD =120︒,∠ABC =∠ADC =90︒.求证:AD +AB =AC ;(拓展迁移)(2)如图②,若∠BAD =120︒,∠ABC +∠ADC =180︒.①猜想AB 、AD 、AC 三条线段的数量关系,并说明理由;②若AC =10,求四边形ABCD 的面积.【答案】(1)见解析;(2)①AD +AB =AC ,见解析;②253【分析】(1)根据角平分线的性质得到∠DAC =∠BAC =60o ,然后根据直角三角形中30o 是斜边的一半即可写出数量关系;(2)①根据第一问中的思路,过点C 分别作CE ⊥AD 于E ,CF ⊥AB 于F ,构造AAS 证明△CFB ≅△CED ,根据全等的性质得到FB =DE ,结合第一问结论即可写出数量关系;②根据题意应用60o 的正弦值求得CE 的长,然后根据()111222ABCD S AD CE AB CF AD AB CE ⨯⨯⨯四边形=+=+的数量关系即可求解四边形ABCD 的面积.【详解】(1)证明:∵AC平分∠BAD,∠BAD=120o,∴∠DAC=∠BAC=60o,∵∠ADC=∠ABC=90o,∴∠ACD=∠ACB=30o,∴AD=1122AC AB AC,=.∴AD+AB=AC,(2)①AD+AB=AC,理由:过点C分别作CE⊥AD于E,CF⊥AB于F.,∵AC平分∠BAD,∴CF=CE,∵∠ABC+∠ADC=180o,∠EDC+∠ADC=180o,∴∠FBC=∠EDC,又∠CFB =∠CED =90o ,∴△CFB ≅△CED ()AAS ,∴FB =DE ,∴AD +AB =AD +FB +AF =AD +DE +AF =AE +AF ,在四边形AFCE 中,由⑴题知:AE +AF =AC ,∴AD +AB =AC ;②在Rt △ACE 中,∵AC 平分∠BAD ,∠BAD =120o∴∠DAC =∠BAC =60o ,又∵AC =10,∴CE =A sin 10sin 60o DAC ∠==∵CF =CE ,AD +AB =AC ,∴()111222ABCD S AD CE AB CF AD AB CE ⨯⨯⨯四边形=+=+=111022AC CE ⨯⨯⨯=.【点睛】本题考查了全等三角形的判定和性质,角平分线的性质和应用,解直角三角形,关键是辨认出本题属于角平分线类题型,作垂直类辅助线.16.已知等边三角形ABC ,过A 点作AC 的垂线l ,点P 为l 上一动点(不与点A 重合),连接CP ,把线段CP 绕点C 逆时针方向旋转60︒得到CQ ,连QB .(1)如图1,直接写出线段AP与BQ的数量关系;(2)如图2,当点P、B在AC同侧且AP AC=时,求证:直线PB垂直平分线段CQ;(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且APQ的34AP的长度.【答案】(1)AP=BQ;(2)见详解;(3333221333【分析】(1)根据旋转的性质以及等边三角形的性质,可得CP=CQ,∠ACP=∠BCQ,AC=BC,进而即可得到结论;(2)先证明BCQ△是等腰直角三角形,再求出∠CBD=45°,根据等腰三角形三线合一的性质,即可得到结论;(3)过点B作BE⊥l,过点Q作QF⊥l,根据ACP BCQ△≌△,可得AP=BQ,∠CAP=∠CBQ=90°,设AP=x,则BQ=x,433,QF=(43332,再列出关于x的方程,即可求解.【详解】(1)证明:∵线段CP绕点C逆时针方向旋转60︒得到CQ,∴CP=CQ,∠PCQ=60°,∵在等边三角形ABC中,∠ACB=60°,AC=BC,∴∠ACP=∠BCQ ,∴ACP BCQ △≌△,∴AP =BQ ;(2)∵AP AC =,CA ⊥l ,∴ACP △是等腰直角三角形,∵ACP BCQ △≌△,∴BCQ △是等腰直角三角形,∠CBQ=90°,∵在等边三角形ABC 中,AC=AB ,∠BAC=∠ABC=60°,∴AB=AP ,∠BAP=90°-60°=30°,∴∠ABP=∠APB=(180°-30°)÷2=75°,∴∠CBD=180°-75°-60°=45°,∴PD 平分∠CBQ ,∴直线PB 垂直平分线段CQ ;(3)①当点Q 在直线上方时,如图所示,延长BQ 交l 与点E ,过点Q 作QF l ⊥与点F ,由题意得60AC BC PC CQ ACB PCQ ==∠=∠=︒,,,ACP BCQ ∴∠=∠,()APC BCQ SAS ∴ ≌,90AP BQ CBQ CAP ∴=∠=∠=︒,,60CAB ABC ∠=∠=︒ ,30BAE ABE ∴∠=∠=︒,4AB AC == ,3AE BE ∴==,60BEF ∴∠=︒,设AP t =,则BQ t =,EQ t ∴,在Rt EFQ 中,)QF EQ t -,124APQ S AP QF == ,即1()2234t t -=,解得t 或3,即AP ②当点Q 在直线l 下方时,过点B 作BE ⊥l ,过点Q 作QF ⊥l ,由(1)小题,可知:ACP BCQ △≌△,∴AP=BQ ,∠CAP=∠CBQ=90°,∵∠ACB=60°,∠CAM=90°,∴∠AMB=360°-60°-90°-90°=120°,即:∠BME=∠QMF=60°,∵∠BAE=90°-60°=30°,AB=4,∴BE=122AB =,∴BM=BE÷sin60°=2÷2,设AP=x ,则BQ=x ,,QF=MQ×sin60°=(∵APQ 的面积等于4,∴12即:12x×(解得:x x =合题意,舍去),∴3+.综上所述,AP 33.【点睛】本题主要考查等边三角形的性质,旋转的性质,全等三角形的判定和性质,解直角三角形,根据题意画出图形,添加辅助线,构造直角三角形,是解题的关键.17.如图①,E F 、是等腰Rt ABC 的斜边BC 上的两动点,45,EAF CD BC ∠=︒⊥且CD BE =.(1)求证:ABE ACD △≌△;(2)求证:222EF BE CF =+;(3)如图②,作AH BC ⊥,垂足为H ,设,EAH FAH αβ∠=∠=,不妨设2AB =利用(2)的结论证明:当45αβ+=︒时,tan tan tan()1tan tan αβαβαβ++=-⋅成立.【答案】(1)证明见详解;(2)证明见详解;(3)证明见详解.【分析】(1)△ABC 是等腰直角三角形,AB=AC ,∠BAC=90°,由CD ⊥BC ,可求∠DCA=∠ABE 即可;(2)由△ABE ≌△ACD ,可得∠FAD=∠EAF ,可证△AEF ≌△ADF (SAS ),可得EF=DF ,在Rt △CDF 中,根据勾股定理,222DF CD CF =+即可;(3)将△ABE 逆时针绕点A 旋转90°到△ACD ,由△ABC 为等腰直角三角形,可求∠DCF=90°,由2AB =Rt △ABC 中由勾股定理2BC =,由AH ⊥BC ,可求BH=CH=AH=1,可表示EF=tanα+tanβ,BE =1-tanα,CF=1-tanβ,可证△AEF ≌△ADF (SAS ),得到EF=DF ,由222EF BE CF =+可得()()()222tan tan 1tan +1tan αβαβ+=--,整理即得结论.【详解】(1)证明:∵△ABC 是等腰直角三角形,∴AB=AC ,∠BAC=90°,∴∠ABC=∠ACB=45°,∵CD ⊥BC ,∴∠DCB=90°,∴∠DCA=90°-∠ACB=90°-45°=45°=∠ABE ,在△ABE 和△ACD 中,AB AC ABE ACD BE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),(2)证明∵△ABE ≌△ACD ,∴∠BAE=∠CAD ,AE=AD ,∵∠EAF=45°,∴∠BAE+∠FAC=90°-∠EAF=90°-45°=45°,∴∠FAD=∠FAC+∠CAD=∠FAC+∠BAE=45°=∠EAF ,在△AEF 和△ADF 中,AE AD EAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△ADF (SAS ),∴EF=DF ,在Rt △CDF 中,根据勾股定理,222DF CD CF =+,即222EF BE CF =+;(3)证明:将△ABE 逆时针绕点A 旋转90°到△ACD ,连结FD ,∴∠BAE=∠CAD ,BE=CD ,AE=AD ,∵△ABC 为等腰直角三角形,∠ACB=∠B=∠ACD=45°,∠DCF=∠DCA+∠ACF=45°+45°=90°,∵AB ∴AC=AB =,在Rt △ABC中由勾股定理2BC ===∵AH ⊥BC ,∴BH=CH=AH=112BC =,∴EF=EH+FH=AHtanα+AH tanβ=tanα+tanβ,BE=BH-EH=1-tanα,CF=CH-HF=1-tanβ,∵∠EAF=45°,∴∠BAE+∠CAF=90°-∠EAF=45°,∴∠DAF=∠DAC+∠CAF=∠BAE+∠CAF=45°=∠EAF ,在△AEF 和△ADF 中,AE AD EAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△ADF (SAS ),∴EF=DF ,在Rt △CDF 中,222DF CD CF =+即222EF BE CF =+,∴()()()222tan tan 1tan +1tan αβαβ+=--,整理得2tan tan 12tan +12tan αβαβ⋅=--,即tan tan 1tan tan αβαβ⋅=--,∴tan +tan 1tan tan αβαβ=-⋅,∴()tan +tan 1=tan 45=tan +1tan tan αβαβαβ=︒-⋅,∴()tan +tan tan +=1tan tan αβαβαβ-⋅.【点睛】本题考查等腰直角三角形的性质,三角形全等判定与性质,三角形旋转变换,勾股定理,锐角三角函数及其公式推导,掌握上述知识、灵活应用全等三角形的判定和性质是解题关键.题型二相似三角形18.如图,ABC 与111A B C △位似,位似中心是点O ,若1:1:2OA OA =,则ABC 与111A B C △的周长比是()A .1:2B .1:3C .1:4D .【答案】A根据位似图形的概念得到ABC ∆∽△111A B C ,11//AC A C ,进而得出AOC ∆∽△11A OC ,根据相似三角形的性质解答即可.【解析】解:ABC ∆ 与△111A B C 位似,ABC ∴∆∽△111A B C ,11//AC A C ,AOC ∴∆∽△11A OC ,∴12AC OA A C OA ==''',ABC ∆∴与△111A B C 的周长比为1:2,故选:A .【点睛】本题考查的是位似图形的概念、相似三角形的性质,掌握位似图形是相似图形、位似图形的对应边平行是解题的关键.19.如图, ABC 中,点D 、E 分别在AB 、AC 上,且12AD AE DB EC ==,下列结论正确的是()A .DE :BC =1:2B . ADE 与 ABC 的面积比为1:3C . ADE 与 ABC 的周长比为1:2D .DE //BC【答案】D根据相似三角形的判定与性质进行逐一判断即可.【解析】解:∵12AD AE DB EC ==,∴AD :AB=AE :AC=1:3,∵∠A=∠A ,∴△ADE ∽△ABC ,∴DE :BC=1:3,故A 错误;∵△ADE ∽△ABC ,∴△ADE 与△ABC 的面积比为1:9,周长的比为1:3,故B 和C 错误;∵△ADE ∽△ABC ,∴∠ADE=∠B ,∴DE ∥BC .故D 正确.故选:D .【点睛】本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.20.如图,在ACD △中,6AD =,5BC =,()2AC AB AB BC =+,且DAB DCA ,若3AD AP =,点Q 是线段AB 上的动点,则PQ 的最小值是()A 2B .2CD .85【答案】A【分析】根据相似三角形的性质得到AD CD BD AD=,得到4BD =,4AB BD ==,过B 作BH AD ⊥于H ,根据等腰三角形的性质得到132AH AD ==,根据勾股定理得到BH =,当PQ AB ⊥时,PQ 的值最小,根据相似三角形的性质即可得到结论.【解析】解:DAB DCA ∆∆ ,AD CD BD AD∴=,656BD BD +∴=,解得:4BD =(负值舍去),DAB DCA ∆∆ ,9362AC CD AB AD ∴===,32AC AB ∴=,()2AC AB AB BC =+ ,()232AB AB AB BC ⎛⎫∴=+ ⎪⎝⎭,4AB ∴=,4AB BD ∴==,过B 作BH AD ⊥于H ,132AH AD ∴==,2222437BH AB AH ∴--=,3,6AD AP AD == ,2AP ∴=,当PQ AB ⊥时,PQ 的值最小,90,AQP AHB PAQ BAH∠=∠=︒∠=∠ APQ ABH ∴∆∆ ,AP PQ AB BH∴=,247∴=72PQ ∴=故选:A .【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰三角形的判定和性质,正确的作出辅21.如图,△ABC 中,AB =AC ,∠B =72°,∠ACB 的平分线CD 交AB 于点D ,则点D 是线段AB 的黄金分割点.若AC =2,则BD =______.【答案】35【分析】先根据AB=AC,∠B=72°求出∠A的度数,再根据CD是∠CAB的角平分线得到∠A=∠ACD,即AD=CD,再根据大角对大边得到AD>BD,最后利用黄金分割公式计算求解即可.【解析】解:∵AB=AC,∠B=72°∴∠ACB=∠B=72°∴∠A=180°-∠B-∠ACB=36°∵CD是∠CAB的角平分线∴∠ACD=∠BCD=136 2ACB=o∴∠A=∠ACD∴AD=CD在△ABC与△CBD中∠A=∠BCD=36°,∠B=∠B ∴△ABC∽△CBD∴AB BC BC BD=在三角形CDB中,∠B=72°,∠BCD=36°∴∠CDB=72°∴∠CDB=∠B=72°∴AD=CD=BC ∴AB AD AD BD=即2·AD BD AB=∴D 点为AB 的黄金分割点在三角形CDB 中,∠B=72°,∠BCD=36°∴CD>BD (大角对大边)∴AD>BD∵D 是AB 的黄金分割点,AD>BD∴112AD AB -==-∴3BD AB AD =-=-故答案为:3【点睛】本题主要考查了等腰三角形的性质,相似三角形的性质与判定,黄金分割点,解题的关键在于能够熟练掌握相关知识进行求解.22.如图,矩形ABCD 中,6AB =,8BC =,对角线BD 的垂直平分线EF 交AD 于点E 、交BC 于点F ,则线段EF 的长为__.【答案】152【分析】根据矩形的性质和勾股定理求出BD ,证明△BOF ∽△BCD ,根据相似三角形的性质得到比例式,求出EF 即可.【解析】解:如图:四边形ABCD 是矩形,90A ∴∠=︒,又6AB =,8AD BC ==,2210BD AB AD ∴=+=,EF 是BD 的垂直平分线,5OB OD ∴==,90BOF ∠=︒,又90C ∠=︒,BOF BCD ∴∆∆∽,∴OF BO CD BC =,∴568=OF ,解得,154OF =, 四边形ABCD 是矩形,//AD BC ∴,90A ∠=︒,EDO FBO ∴∠=∠,EF 是BD 的垂直平分线,BO DO ∴=,EF BD ⊥,在DEO ∆和BFO ∆中,EDO FBO BO DO EOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,()DEO BFO ASA ∴∆≅∆,OE OF ∴=,1522EF OF ∴==.故答案为:152.【点睛】本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.23.如图,在菱形ABCD 中,点M ,N 分别是边BC ,DC 上的点,34BM BC =,34DN DC =.连接AM ,AN ,延长AN 交线段BC 延长线于点E.(1)求证:ABM AND △≌△;(2)若4=AD ,则ME 的长是__________.【答案】(1)见解析;(2)73.【分析】(1)根据菱形的性质可得AB AD BC CD ===,B D ∠=∠,根据34BM BC =,34DN DC =,可得BM DN =,利用SAS 即可证明;(2)根据菱形的性质可证明AND ENC ∆∆∽,根据相似的性质可求得CE 的长度,进而可求ME .【解析】解:(1)证明: 四边形ABCD 为菱形,AB AD BC CD ∴===,B D ∠=∠,34BM BC = ,34DN DC =,BM DN ∴=,在ABM ∆和ADN ∆中,AB AD B D BM DN =⎧⎪∠=∠⎨⎪=⎩,()ABM ADN SAS ∴∆≅∆,(2) 四边形ABCD 为菱形,//AD CE ∴,DAN CEN ∴∠=∠,AND CNE ∠=∠ ,AND ENC ∴∆∆∽,∴AD DN CE CN=,34DN DC = ,∴31AD DN CE CN ==,∴431CE =,43CE ∴=,34BM BC = ,114MC BC ∴==,73ME MC CE ∴=+=.【点睛】本题考查了菱形的性质,全等三角形的判定,相似三角形的判定和性质,通过菱形的性质得到AND ENC ∆∆∽是关键.24.已知AB BD =,AE EF =,∠=∠ABD AEF .(1)找出与DBF ∠相等的角并证明;(2)求证:BFD AFB ∠=∠;(3)AF kDF =,180EDF MDF ∠+∠=︒,求AE MF .【答案】(1)BAE ∠(2)见解析(3)1k -【分析】(1)根据三角形外角的性质直接求解即可;(2)在BF 上截取BP ,使AE=BP ,即可证明ABE ADP △≌△,进一步证明AEF 和FPD △均为等腰三角形且顶角相等,即可证明BFD AFB ∠=∠;(3)由(2)可得AEF FPD ∽,即可得AF EF k DF PF==,设PF PD a ==,则EF AE ka ==,根据180EDF MDF ∠+∠=︒,可求得PDM PED ∠=∠,即可证明PMD PDE ∽,列比例求出1a PM k =-,代入以上数据即可求得AE MF 的值.【详解】(1)根据题意可知AEF ABF BAE ∠=∠+∠,ABD ABF DBF ∠=∠+∠,ABD AEF ∠=∠ ,DBF BAE ∴∠=∠;(2)如图,在BF 上截取BP ,使AE=BP,由(1)得DBF BAE ∠=∠,即DBP BAE ∠=∠,在ABE △和ADP △中,=AB BD BAE DBP AE BP =⎧⎪∠∠⎨⎪=⎩,ABE ADP ∴ ≌,BE DP AEB BPD ∴=∠=∠,,BP AE AE EF == ,,BP EF ∴=,BP EP EF EP ∴-=-,即BE PF =,PE PD = ,PF PD ∴=,AEF ∴ 和FPD △均为等腰三角形,又AEB BPD ∠=∠ ,AEF FPD ∴∠=∠,∴AEF 和FPD △为顶角相等的等腰三角形,EAF EFA PFD PDF ∴∠=∠=∠=∠,∴BFD AFB ∠=∠;(3)又(1)可知AEF FPD ∽,AF kDF = ,AF EF k DF PF∴==,设PF PD a ==,则AE EF ka ==,180EDF MDF ∠+∠=︒ ,MDF MDP PDF ∠=∠+∠,180EDF FED PFD ∠=︒-∠-∠,则180180MDP PDF FED PFD ︒=∠+∠+︒-∠-∠,PDF PFD ∠=∠ ,MDP FED ∴∠=∠,EPD DPM ∠=∠ ,PMD PDE ∴ ∽,PD PM PE PD∴=,即2PD PM PE = ,由此得2(1)a PM k a =- ,则1a PM k =-,11AE ka k aMF a k ==-+-.【点睛】本题主要考查三角形综合,涉及到的知识点有,等腰三角形判定与性质,全等三角形的判定与性质,三角形内角和定理,相似三角形的判定与性质,根据题意用含字母的式子表示出AE 和MF 的值是解题关键.25.已知在 ABC 中,O 为BC 边的中点,连接AO ,将 AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到 EOF ,连接AE ,CF .(1)如图1,当∠BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是;(2)如图2,当∠BAC =90°且AB≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE的长.【答案】(1)AE CF =;(2)成立,证明见解析;(3【分析】(1)结论AE CF =.证明()AOE COF SAS ∆≅∆,可得结论.(2)结论成立.证明方法类似(1).(3)首先证明90AED ∠=︒,再利用相似三角形的性质求出AE ,利用勾股定理求出DE 即可.【详解】解:(1)结论:AE CF =.理由:如图1中,AB AC = ,90BAC ∠=︒,OC OB =,OA OC OB ∴==,AO BC ⊥,90AOC EOF ∠=∠=︒ ,AOE COF ∴∠=∠,OA OC = ,OE OF =,()AOE COF SAS ∴∆≅∆,AE CF ∴=.(2)结论成立.理由:如图2中,90=, ,OC OBBAC∠=︒∴==,OA OC OB,∠=∠AOC EOF∴∠=∠,AOE COF,OE OFOA OC==,∴∆≅∆,()AOE COF SAS∴=.AE CF(3)如图3中,=,由旋转的性质可知OE OA ,OA OD=OE OA OD∴===,5∴∠=︒,90AEDOA OE=,OC OF=,AOE COF∠=∠,∴OA OE OC OF=,AOE COF∴∆∆∽,∴AE OA CF OC=,5 CF OA==,∴5 53 AE=,253 AE∴=,DE∴=.【点睛】本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.26.在△ABC中,AC=AB,∠BAC=α,D为线段AB上的动点,连接DC,将DC绕点D 顺时针旋转α得到DE,连接CE,BE.(1)如图1,当α=60°时,求证:△CAD≌△CBE;(2)如图2,当tanα=34时,①探究AD和BE之间的数量关系,并说明理由;②若AC=5,H是BC上一点,在点D移动过程中,CE+EH是否存在最小值?若存在,请直接写出CE+EH的最小值;若不存在,请说明理由.【答案】(1)见解析;(2)①AD BE =2【分析】(1)首先证明△ACB ,△CDE 都是等边三角形,再根据SAS 证明三角形全等即可.(2)①结论:AD BE =2.利用相似三角形的性质解决问题即可.②如图2中,过点C 作CJ ⊥BE 交BE 的延长线于J .作点C 关于BE 的对称点R ,连接BR ,ER ,过点R 作RT ⊥BC 于T .利用相似三角形的性质求出CJ =5,推出点E 的运动轨迹是射线BE ,利用面积法求出RT ,可得结论.【解析】(1)证明:如图1中,∵α=60°,AC =AB ,∴△ABC 是等边三角形,∴CA =CB ,∠ACB =60°,∵将DC 绕点D 顺时针旋转α得到DE ,∴DC =DE ,∠CDE =60°,∴△CDE 是等边三角形,∴CD =CE ,∠DCE =∠ACB =60°,∴∠ACD =∠BCE ,∴△CAD ≌△CBE (SAS ).(2)解:①结论:AD BE =2.如图2中,过点C 作CK ⊥AB 于K .∵tan ∠CAK =CK AK =34,∴可以假设CK =3k ,AK =4k ,则AC=AB =5k ,BK =AB ﹣AK =k ,∴BC k ,∵∠A =∠CDE ,AC =AB ,CD =DE ,∴∠ACB =∠ABC =∠DCE =∠DEC ,∴△ACB ∽△DCE ,∴AC CD =CB CE ,∴AC CB =CD CE,∵∠ACB =∠DCE ,∴∠ACD =∠BCE ,∴△ACD ∽△BCE ,∴ADBE =AC BC 2.②如图2中,过点C 作CJ ⊥BE 交BE 的延长线于J .作点C 关于BE 的对称点R ,连接BR ,ER ,过点R 作RT ⊥BC 于T .∵AC =5,由①可知,AK =4,CK =3,BC ,∵△CAD ∽△BCE ,CK ⊥AD ,CJ ⊥BE ,∴CK CJ =AC BC =2(全等三角形对应边上的高的比等于相似比),∴CJ =5,∴点E 的运动轨迹是射线BE ,∵C ,R 关于BE 对称,∴CR =2CJ∵BJ 5,∵S △CBR =12•CR•BJ =12•CB•RT ,∴RT25,∵EC +EH =ER +EH≥RT ,∴EC +∴EC +EH【点睛】本题属于三角形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,轴对称最短问题等知识,解题的关键是正确寻找相似三角形解决问题,确定点E 的运动轨迹是最后一个问题的突破点,属于中考压轴题.。
中考数学专题练习:全等三角形(含答案)
中考数学专题练习:全等三角形(含答案)1.(·成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC2.(·黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙3.(·南京)如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF =c,则AD的长为( )A.a+c B.b+c C.a-b+c D.a+b-c4.(·原创) 如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,当BC∥OA时,下列结论正确的是( )A.∠OAD=2∠ABOB.∠OAD=∠ABOC.∠OAD+2∠ABO=180°D.∠OAD+∠ABO=90°5.(·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E.AD=3,BE=1,则DE的长是( )A.32B.2 C.2 2 D.106.(·济宁)在△ABC中,点E、F分别是边AB、AC的中点,点D在BC边上,连接DE、DF、EF,请你添加一个条件____________________________,使△BED与△FED全等.7.(·原创)如图,已知△ABC≌△ADE,若AB=6,C为AD的中点,则AC的长为______.8.(·包河区二模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足分别为D,E,若BD=3,CE=2,则DE=______.9.(·宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.10.(·菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.11.(·泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.12.(·陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=CD,求证:AG=DH.13.(·镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.14.(·温州) 如图,在四边形 ABCD 中,E 是 AB 的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当 AB=6 时,求 CD 的长.15.(·恩施)如图,点 B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交 BE于点O.求证:AD与BE互相平分.16.(·广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.1.(·阜阳模拟)如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是( )A.PD=DQB.DE=12 ACC.AE=12CQD.PQ⊥AB2.(·原创)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )A.76° B.62°C.42° D.76°、62°或42°都可以3.(·原创)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )A.75° B.70° C.65° D.60°4.(·德阳)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连接AH,已知ED=2,求AH的值.5.(·合肥45中一模) 如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证:DG=BE;(2)连接FC,求∠FCN的度数;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=m,BC=n(m、n为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由点B向点C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含m、n的代数式表示tan∠FCN的值,若∠FCN的大小发生改变,请画图说明.参考答案【基础训练】1.C 2.B 3.D 4.A 5.B 6.BD =EF(答案不唯一) 7.3 8.5 9.证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠ACB=∠ACD.在△CDA 和△CBA 中,⎩⎨⎧∠B=∠D,∠ACB=∠ACD,AC =AC ,∴△CDA≌△CBA(AAS).∴CB=CD.10.解:DF =AE.证明:∵AB∥CD ,∴∠C=∠B. ∵CE=BF,∴CE-EF =BF -FE,∴CF=BE. 又∵CD=AB,∴△DCF≌△ABE(SAS), ∴DF=AE.11.证明:方法一:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴∠OBC=∠OCB ,∴BO=CO.方法二:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴AB=DC,又∵∠AOB=∠DOC , ∴△ABO≌△DCO(AAS ),∴BO =CO. 12.证明:∵AB∥CD ,∴∠A=∠D.又∵CE∥BF ,∴∠AHB=∠DGC.在△ABH 和△DCG 中,⎩⎨⎧∠A=∠D∠AHB=∠DGC AB =CD,∴△ABH≌△DCG(AAS), ∴AH=DG.又∵AH=AG +GH,DG =DH +GH,∴AG=DH. 13.(1)证明:∵AB=AC,∴∠B=∠ACF.在△ABE 和△ACF 中,⎩⎨⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)解:75.14.(1)证明:由AD∥EC 可知∠A =∠CEB, 又因为E 是 AB 的中点,所以AE =EB, 且∠AED=∠B ,所以△AED≌△EBC(ASA). (2)解:由(1)△AED≌△EBC 可知AD =EC, 又因为AD∥EC ,所以四边形AECD 为平行四边形, 又因为AB =6,则CD =AE =3. 15.证明:如解图,连接 BD ,AE . ∵AB∥ED ,∴∠ABC=∠DEF. ∵AC∥FD ,∴∠ACB=∠DFE. ∵ FB=CE, ∴BC=EF. 在△ACB 和 △DFE 中,⎩⎨⎧∠ABC=∠DEF,BC =EF ,∠ACB=∠DFE.∴△ACB ≌ △DFE(ASA). ∴ AB=DE.∵AB∥ED ,∴四边形ABDE 是平行四边形.∴AD 与BE 互相平分.16.证明:(1)∵四边形ABCD 是矩形, ∴AD=BC, AB =DC.∵△AEC 是由△ABC 折叠而成的, ∴AD=BC =EC,AB =DC = AE.在△ADE 和△CED 中,⎩⎨⎧AD =CEDE =ED AE =CD,∴△ADE≌△CED(SSS);(2)由(1)△ADE≌△CED 可得∠AED=∠CDE , ∴FD=EF,∴△DEF 是等腰三角形. 【拔高训练】 1.D 2.B 3.C 4.(1)证明:∵EF⊥EC ,∴∠CEF=90°, ∴∠AEF+∠DEC=90°, ∵四边形ABCD 是矩形,∴∠AEF+∠AFE=90°, ∠DEC+∠DCE=90°, ∴∠AEF=∠DCE ,∠AFE=∠DEC , ∵AE=DC,∴△AEF≌△DCE(AAS), ∴DE=AF,∵AE=DC =AB =2DE,∴AB=2AF, ∴F 为AB 的中点.(2)解:由(1)知AF =FB,且AE∥BH , ∴∠FBH=∠FAE=90°, ∠AEF=∠FHB , ∴△AEF≌△BHF(AAS),∴AE=HB, ∵DE=2, 且AE =2DE, ∴AE=4,∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32,∴AH=4 2.5.(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS).∴DG=BE;(2)解:如解图1,过点F作FH⊥BN于点H.∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°, ∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠EBA=90°,∴△EFH≌△AEB(AA S),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∴∠FCN=∠CFH=12(180°-∠FHC).∵∠FHC=90°, ∴∠FCN=45°.(3)解:当点E由点B向点C运动时,∠FCN的大小总保持不变,理由如下:如解图2,过点F 作FH⊥BN于点H,由已知可得∠EAG=∠BAD=∠AEF=90°, 结合(1)(2)得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△AGD(AAS),△EFH∽△AEB,∴EH=AD=BC=n, ∴CH=BE,∴EHAB=FHBE=FHCH;在Rt△FCH中,tan∠FCN=FHCH=EHAB=nm.∴当点E由点B向点C运动时,∠FCN的大小总保持不变,且tan∠FCN=n m .。
2024年中考数学一轮复习专题:全等三角形
2024年中考数学一轮复习专题:全等三角形一、选择题(本大题共10道小题)1. (2022八上·太原期中)在如图所示的平面直角坐标系中,点P的坐标为( )A.(2,3)B.(-2,3)C.(3,-2)D.(-2,-3)2. (2022八上·沈北新期中)在平面直角坐标系中,下列坐标所对应的点位于第三象限的是( )A.(-1,2)B.(1,2)C.(2,-1)D.(-1,-3)3. (2023·辽宁锦州)在平面直角坐标系中,已知点A(﹣4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是( )A.(0,﹣2)B.(4,6)C.(4,4)D.(2,4)4. (2023·益阳)如图,AB∥CD,△ACE为等边三角形,∠DCE=40°,则∠EAB等于( )A.40°B.30°C.20°D.15°5. (2023秋•南关区校级期末)如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q.延长MN 至G,取NG=NQ,若△MNP的周长为12,则△MGQ周长是( )A.8+2B.6+4C.8+4D.6+26. (2023年浙江台州)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为( )A.(0,0)B.(1,2)C.(1,3)D.(3,1)7. (2023·陕西)如图,AB,BC,CD,DE是四根长度均为5cm的火柴棒,点A,C,E共线.若AC=6cm,CD⊥BC,则线段CE的长度是( )A.6cmB.7cmC.62cmD.8cm8. (2023·河北廊坊)如图,在△AOB 和△COD 中,OA=OB,OC=OD,OA <OC,∠AOB=∠COD=36o .连接AC 、BD 交于点M,连接OM.下列结论:①∠AMB=36o ;②AC=BD;③OM 平分∠AOD;④MO 平分∠AMD 其中正确的结论个数有( )个.A.4B.3C.2D.19. (2023·河北唐山)如图,在Rt △ABC 中,∠C=90°,利用尺规在BC 、BA 上分别截取BD 、BE,使BD=BE;分别以D 、E 为圆心,以大于DE 的长为半径作圆弧,两弧交于点O;作射线BO 交AC 于点F.若CF=2,点P 是AB 上的动点,则FP 的最小值为( )A.1B.2C.12D.无法确定10. (2023上·安徽铜陵·九年级铜陵市第十五中学校考期中)如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(1,0),(0,1),(1,0)-,一个电动玩具从原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点2P 与点1P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称;第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点5P 与点4P 关于点B 成中心对称;第六次跳跃到点6P ,使得点6P 与点5P 关于点C 成中心对称;⋯⋯照此规律重复下去,则点2021P 的坐标为( )A.(2,2)B.(2,2)-C.(0,2)-D.(2,0)-二、填空题(本大题共8道小题)11. (2023·齐齐哈尔)如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)12. (2023·辽宁营口)已知点()21,5P a -,点()2,Q a m +,若PQ y ∥轴,则=a ______ .13. (2022八上·瑞安月考)在平面直角坐标系中,点(1,-2)向左平移2个单位后的坐标为 。
中考数学专题复习题:全等三角形判定方法的选择
中考数学专题复习题:全等三角形判定方法的选择1.已知:如图,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB AC =,B C ∠=∠,求证:BD CE =.第1题图 第2题图 第3题图2.如图所示,已知AB DC =,AE DF =,CE BF =,求证:AF DE =.3.如图所示,AD 是ABC ∆的中线,在AD 及其延长线上截取DE DF =,连接CE 、BF ,试判断BDF ∆与CDE ∆全等吗?BF 与CE 有何位置关系?并说明原因.4.已知:如图,AB AE =,12∠=∠,B E ∠=∠.求证:BC ED =.第4题图 第5题图 第6题图5.如图,AC 与BD 相交于点O ,AC BD =,AB CD =,求证:A D ∠=∠.6.如图,AD DB ⊥,BC CA ⊥,AC 、BD 相交于O ,且AC BD =.求证:OD OC =.7.如图,在ABC ∆中,AD BC ⊥,BE AC ⊥,AD BD =,求证:BF AC =.第7题图 第8题图 第9题图 8.已知:如图,A 、D 、B 三点在同一条直线上,ADC ∆、BDO ∆为等腰直角三角形,AO 、BC 的大小关系和位置关系分别如何?证明你的结论.9.如图,已知在ABC ∆中,BD AC ⊥于D ,CE AB ⊥于E ,F 是BD 上一点,BF AC =,G是CE 延长线上一点,CG AB =,连接AG ,AF .(1)试说明ABD ACE ∠=∠.(2)探求线段AF ,AG 有什么关系?并请说明理由.10.如图所示,在ABC ∆中,90ACB ∠=︒,CD AB ⊥于点D ,点E 在AC 上,CE BC =,过点E 作AC 的垂线,交CD 的延长线于点F .求证:AB FC =.第10题图 第11题图 第12题图11.已知:如图,在Rt ABC ∆中,90ACB ∠=︒,AC BC =,点D 是BC 的中点,CE AD ⊥,垂足为点E ,//BF AC 交CE 的延长线于点F .求证:2AC BF =.12.如图,在Rt ABC ∆中,90BAC ∠=︒,2AC AB =,点D 是AC 的中点.将一块锐角为45︒的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连接BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.13.如图,在ABC ∆中,A ECB DBC ∠=∠=∠21,求证:CD BE =.第13题图 第14题图14.如图所示,BAC ∠是钝角,AB AC =,D ,E 分别在AB ,AC 上,且CD BE =. 试说明ADC AEB ∠=∠. 15.如图,四边形ABCD 中,90A BCD ∠=∠=︒,BC CD =,E 是AD 延长线上一点,若3DE AB cm ==,42CE cm =,则AD 的长是________cm .第15题图 第16题图 第17题图16.如图,四边形ABCD 中,AB CD =,对角线AC ,BD 相交于点O ,AE BD ⊥于点E ,CF BD ⊥于点F ,连接AF ,CE ,若DE BF =,则下列结论:①CF AE =;②OE OF =;③四边形ABCD 是平行四边形;④图中共有四对全等三角形.这4个结论中正确的个数是( )A .4B .3C .2D .117.如图,已知ABD ∆,AEC ∆都是等边三角形,AF CD ⊥于F ,AH BE ⊥于H ,问:(1)BE 与CD 有何数量关系?请说明理由.(2)AF 与AH 有何数量关系?请说明理由.18.如图,ACD ∆和BCE ∆都是等腰直角三角形,90ACD BCE ∠=∠=︒,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.第18题图 第19题图 19.将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中90ACB DEB ∠=∠=︒,30A D ∠=∠=︒,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证:AF EF DE +=.(2)若将图1中的DBE ∆绕点B 按顺时针方向旋转角α,且060α︒<<︒,其他条件不变,请在图2中画出变换后的图形,并直接写出(1)中的结论是否仍然成立.20.如图,AD 是ABC ∆的高,作DCE ACD ∠=∠,交AD 的延长线于点E ,点F 是点C 关于直线AE 的对称点,连接AF .(1)求证:CE AF =.(2)在线段AB 上取一点N ,使12ENA ACE ∠=∠,EN 交BC 于点M ,连接AM .请你判断B ∠与MAF ∠的数量关系,并说明理由.第20题图 第21题图 第22题图21.如图,在ABC ∆中AD BC ⊥,CE AB ⊥,垂足分别为D 、E ,AD 、CE 交于点H ,已知3EH EB ==,4AE =,求CH 的长.22.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,E 为AC 边的中点,过点A 作AD AB ⊥交BE 的延长线于点D ,CG 平分ACB ∠交BD 于点G ,F 为AB 边上一点,连接CF ,且ACF CBG ∠=∠.求证:(1)AF CG =. (2)2CF DE =.23.如图,ABO ∆与CDO ∆关于O 点中心对称,点E 、F 在线段AC 上,且AF CE =.求证:FD BE =.第23题图 第24题图 24.已知,如图,ABC ∆和ECD ∆都是等腰直角三角形,90ACB DCE ∠=∠=︒,D 为AB 边上一点.求证:BD AE =.25.如图,在ABC ∆中,60ACB ∠=︒,75BAC ∠=︒,AD BC ⊥于D ,BE AC ⊥于E ,AD 与BE 交于H ,则CHD ∠=________.26.如图,在ABC ∆中,90BAC ∠=︒,AD BC ⊥于D ,BCA ∠的平分线交AD 于F ,交AB 于E ,//FG BC 交AB 于G .4AE =,14AB =,则BG =________.。
全等三角形专题复习(含练习讲评)
一、全等三角形注: ① 判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等. 2. 证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS例1: 如图, 在△ABE 中, AB =AE,AD =AC,∠BAD =∠EAC, BC.DE 交于点O.求证: (1) △ABC ≌△AED ; (2) OB =OE .例2: 如图所示, 已知正方形ABCD 的边BC.CD 上分别有点E 、点F, 且BE +DF =EF, 试求∠EAF 的度数.AD F例3.在△ABC中, ∠ACB=90°,AC=BC, AE是BC的中线, 过点C作CF⊥AE于F,过B作BD⊥CB 交CF的延长线于点D。
(1)求证:AE=CD, (2)若BD=5㎝,求AC的长。
例4:如图, △ABE和△ADC是△ABC分别沿着AB.AC边翻折180°形成的, 若∠1: ∠2: ∠3=28: 5: 3, 则∠a的度数为例5: 如图: 在△ABC中, ∠ACB=90°, AC=BC, D是AB上一点, AE⊥CD于E, BF⊥CD交CD的延长线于F.求证: AE=EF+BF。
练习:1.已知: 如图5—129, △ABC 的∠B.∠C 的平分线相交于点D, 过D 作MN ∥BC 交AB.AC 分别于点M 、N, 求证:BM +CN =MN2.如图(13):已知AB ⊥BD, ED ⊥BD, AB=CD , BC=DE ,请你判断AC 垂直于CE 吗? 并说明理由。
3.如图(14),已知AB=DC , DE=BF, ∠B=∠D , 试说明(1)DE ∥BF (2)AE=CFFDCABE(14)4.如图: 在△ABC中, ∠BAC=90°,∠ABD= ∠ABC, DF⊥BC, 垂足为F, AF交BD于E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形一、选择题1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A. ∠AB. ∠B C. ∠C D. ∠B或∠C2.如图,小明做了一个角平分仪ABCD,其中AB=AD,BC=D C.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是( )A. SASB. ASAC. AASD. SSS3.下列说法中:①形状相同的两个图形是全等形;②对应角相等的两个三角形是全等三角形;③全等三角形的面积相等;④若△ABC≌△DEF,△DEF≌△MNP,则△ABC≌△MNP.其中正确的说法共有()A. 0个B. 1个C. 2个 D. 3个4.在△ABC和△A′B′C′中:①AB=A′B′;② BC=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′,则下列哪组条件不能保证△ABC≌△A′B′C′( )A. 具备①②④B. 具备①②⑤ C. 具备①⑤⑥ D. 具备①②③5.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A. ∠ADB=∠ADCB. ∠B=∠C C. DB=DC D. AB=AC6.如图,在△ABC中,∠EDF=40°,BE=BD,CF=CD,则∠A为()A. 140°B. 120°C. 110°D. 100°7.下列说法中,正确的是()A. 直角三角形中,已知两边长为3和4,则第三边长为5B. 三角形是直角三角形,三角形的三边为a,b,c 则满足C. 以三个连续自然数为三边长不可能构成直角三角形D. △ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形8.根据下列条件,能判定△ABC≌△A′B′C′的是()A. AB=A′B′,BC=B′C′,∠A=∠A′ B. ∠A=∠A′,∠B=∠B′,AC=B′C′C. ∠A=∠A′,∠B=∠B′,∠C=∠C′ D. AB=A′B′,BC=B′C′,AC=A′C′9.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是()作法:以O为圆心,任意长为半径作弧,交OA,OB于点D,E.分别以D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C.作射线OC.则OC就是∠AOB的平分线.A. SSSB. SASC. ASAD. AAS10.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A. ∠BAC=∠BADB. AC=AD或BC=BDC. AC=AD且BC=BD D. 以上都不正确11.如图,在△ABC和△DEC中,已知AB=DE,补充下列一组条件,仍无法判定△ABC≌△DEC的是()A. BC=EC,∠B=∠EB. BC=EC,AC=DCC. ∠B=∠E,∠A=∠D D. BC=EC,∠A=∠D12.已知△ABC≌△A′C′B′,∠B与∠C′,∠C与∠B′是对应角,有下列4个结论:①BC=C′B′;②AC=A′B′;③AB=A′B′;④∠ACB=∠A′B′C′,其中正确的结论有()A. 1个B. 2个 C. 3个 D. 4个二、填空题13.1、下列能判断两个三个角形全等的条件是________①已知两角及一边对应相等②已知两边及一角对应相等③已知三条边对应相等④已知直角三角形一锐角及一边对应相等⑤已知三个角对应相等.14.如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是________.15.如图,方格纸中△ABC的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC全等的格点三角形共有________个(不含△ABC).16.如图,AE=AD,请你添加一个条件:________或________,使△ABE≌△ACD(图中不再增加其他字母).17.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1=________°.18.如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:________,并给予证明.19.如图,∠C=∠D=90°,请你再添加一个条件,使△ABD≌△BAC,并在添加的条件后的括号内写出判定全等的依据.(1)________(________);(2)________ (________);(3)________(________ );(4)________ (________ ).20.如图,点A,F,C,D在同一直线上,AF=DC,BC∥EF,要判定△ABC≌△DEF,还需要添加一个条件,你添加的条件是________三、解答题21.如图,AB=CD,AB∥DC.求证:AD∥BC,AD=BC.22.如图,点C、F、E、B在一条直线上,CD=BA,CE=BF,DF=AE,求证:∠B=∠C.23.如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.24.如图,在△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B.求证:ED=EF.25.如图,△ABD≌△EBC,AB=3cm,BC=4.5cm.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.26.如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.求证:(1)DF∥BC;(2)FG=FE.27.把两个全等的等腰直角三角板(直角边长为4)叠放在一起,且三角板EFG的直角顶点G位于三角板ABC的斜边中点处.现将三角板EFG绕G点按顺时针方向旋转α度(0°<α<90°)(如图1),四边形GKCH为两三角板的重叠部分.(1)猜想BH与CK有怎样的数量关系?并证明你的结论;(2)连接HK(如图2),在上述旋转过程中,设BH=x,△GKH的面积为y,①求y与x之间的函数关系式,并写出自变量x的取值范围;②当△GKH的面积恰好等于△ABC面积的,求x.答案解析部分一、单选题1.【答案】A2.【答案】 D3.【答案】 C4.【答案】 A5.【答案】C6.【答案】D7.【答案】 D8.【答案】D9.【答案】A10.【答案】B11.【答案】 D12.【答案】C二、填空题13.【答案】①③④14.【答案】DC=EB(答案不唯一)15.【答案】716.【答案】AB=AC;∠B=∠C17.【答案】6618.【答案】AE=AF或∠EDA=∠FDA19.【答案】AD=BC;HL;∠DAB=∠CBA;AAS;DB=CA;HL;∠DBA=∠CAB;AAS20.【答案】EF=BC三、解答题21.【答案】证明:如图连接BD.∵AB∥CD∴∠ABD=∠BDC,在△ABD和△CDB中,,∴△ABD≌△CDB(SAS),∴∠ADB=∠CBD,AD=BD∴AD∥BC,AD=BD.22.【答案】解:∵CE=BF,∴CF=BE,在△BAE与△CDF中,,∴△BAE≌△CDF(SSS),∴∠B=∠C.23.【答案】解:AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).24.【答案】证明:∵∠CED是△BDE的外角,∴∠CED=∠B+∠BDE,∵∠DEF=∠B,∴∠BDE=∠CEF;在△BDE与△CEF中,,∴△BDE≌△CEF(ASA),∴DE=EF四、综合题25.【答案】(1)解答:∵△ABD≌△EBC,∴AB=BE,BD=BC,∴DE=BD-BE=4.5-3=1.5(cm);(2)∵△ABD≌△EBC,∴∠ABD=∠EBC,又∠ABD+∠EBC=180°,∴∠EBC=90°,∴AC⊥BD.26.【答案】(1)证明:∵AF平分∠CAB,∴∠CAF=∠DAF.在△ACF和△ADF中,∵,∴△ACF≌△ADF(SAS).∴∠ACF=∠ADF.∵∠ACB=90°,CE⊥AB,∴∠ACE+∠CAE=90°,∠CAE+∠B=90°,∴∠ACF=∠B,∴∠ADF=∠B.∴DF∥BC(2)证明:∵DF∥BC,BC⊥AC,∴FG⊥AC.∵FE⊥AB,又AF平分∠CAB,∴FG=FE.27.【答案】(1)解:BH=CK.理由如下:∵点O是等腰直角三角板ABC斜边中点,∴∠B=∠GCK=45°,BG=CG,由旋转的性质,知∠BGH=∠CGK,在△BGH和△CGK中,,∴△BGH≌△CGK(ASA),∴BH=CK;(2)解:①∵△BGH≌△CGK,∴S四边形CHGK=S△CGK+S△CGH=S△BGH+S△CGH=S△BCG= S△ABC=4,∴S△GKH=S四边形CHGK﹣S△KCH=4﹣CH×CK,∴y= x2﹣2x+4(0<x<4),②当y= ×8= 时,即x2﹣2x+4= ,∴x=1 或x=3.∴当△GKH的面积恰好等于△ABC面积的时,BH=1 或BH=3.。