2014年春季新版苏科版八年级数学下学期第11章、反比例函数单元复习教案2

合集下载

苏科版数学八年级下册11.1《反比例函数》教学设计2

苏科版数学八年级下册11.1《反比例函数》教学设计2

苏科版数学八年级下册11.1《反比例函数》教学设计2一. 教材分析本节课的主题是反比例函数,这是苏科版数学八年级下册11.1节的内容。

反比例函数是初中数学中的重要内容,它不仅巩固了学生对函数概念的理解,而且为高中阶段的反正比例函数和复合函数的学习打下基础。

本节课的内容包括反比例函数的定义、性质及其图象。

教材通过丰富的例题和习题,帮助学生理解和掌握反比例函数的相关知识。

二. 学情分析学生在学习本节课之前,已经学习了函数、方程等基础知识,具备了一定的数学思维能力。

但是,对于反比例函数这一概念,学生可能较为陌生,需要通过实例和图象来帮助理解。

此外,学生对于函数的图象和性质的学习,可能还存在一定的困难,需要教师在教学中进行针对性的引导和讲解。

三. 教学目标1.知识与技能:让学生理解和掌握反比例函数的定义及其性质,能够绘制反比例函数的图象。

2.过程与方法:通过实例分析和图象观察,培养学生观察、分析和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.反比例函数的定义及其性质。

2.反比例函数图象的绘制方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考;通过分析案例,让学生理解和掌握反比例函数的知识;通过小组合作学习,培养学生的团队合作意识和自主学习能力。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备反比例函数的图象和性质的相关资料。

3.准备计时器,用于控制每个环节的时间。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考:“我们之前学习了正比例函数和一次函数,那么有没有一种函数,它的图象是一条曲线,而不是一条直线呢?”从而引出本节课的主题——反比例函数。

2.呈现(10分钟)通过PPT展示反比例函数的定义和性质,让学生初步理解和掌握反比例函数的概念。

同时,通过展示反比例函数的图象,让学生直观地感受反比例函数的特点。

新苏科版八年级数学下册《11章 反比例函数 11.2 反比例函数的图象与性质》教案_28

新苏科版八年级数学下册《11章 反比例函数 11.2 反比例函数的图象与性质》教案_28

反比例函数的图像与性质(2)教学设计教材分析本节课是苏科版八年级下册第11章第2节第2课时的内容,是学生函数学习的重点,学生需要在理解图像性质的基础上熟练的运用.本节课是在理解了反比例函数的意义和概念,以及经历“描点法”画它的图像,初步认识反比例函数的图像之后,进一步对反比例函数的图像性质进行探索和研究.在教学过程中教师关注知识的形成过程,注重对数学学习方法的指导和数学思想方法的渗透,学生自主探索、合作交流,真正体现新课程的理念. 学情分析学生在八年级上学期已经学习了有关函数的知识,在实际生活中已经有对一次函数及正比例函数关系、图像及应用的初步认识,知道研究函数的一般方法,对函数的变化关系有了较为丰富的体验和感受,具备了一定的探索能力和归纳能力. 本节课是在学习了一次函数之后再一次进入函数范畴,主要是让学生经历画图、观察、猜想、思考、交流等探究活动,认识具体的反比例函数图像的特征. 教学目标知识与技能:1.会用待定系数法求反比例函数的表达式;2.能根据图像分析并掌握反比例函数的性质. 过程与方法:经历画图、观察、猜想、思考、交流等探究活动,认识具体的反比例函数图像的特征,进一步体验分类讨论和数形结合的思想方法.情感、态度与价值观:让学生积极地参与到反比例函数图像与性质的探索中,让学生体会到数学中充满着探索和创造,增强他们对数学学习好奇心和求知欲. 教学重难点重点: 通过对反比例函数图像的分析,探究反比例函数的图像性质; 难点:理解反比例函数的图像性质. 教学方法本课采用“课前热身一小练,课上所学针对练,难点突破变化练,学后检测系统练”的“课堂四练”教学模式,以学生活动为主线,采取小组讨论、探究发现、适时激励等多种教学方法引导学生自主发现、合作探究. 教学过程 一、复习引入1.若点A (-2,3)、点B (m, -6)在反比例函数x ky 的图像上,则m 的值是2.已知双曲线y =k -1x 经过点(-2,1),则k 的值等于________. 3.点A (4,-2)关于原点对称的点的坐标为____ ____.4.要点梳理:形如 的函数叫做反比例函数;自变量x 取值范围是 .反比例函数的图象是 ,图像与坐标轴 .(相交、不相交)【设计思路】通过“课前热身一小练”复习待定系数法确定函数关系式的一般方法,同时通过复习中心对称的知识,以及对反比例函数的定义、取值范围、函数图像进行回顾、梳理,为接下来研究反比例函数的图像与性质为做铺垫. 二、操作探究 1.画出反比例函数 、 的图像.【设计思路】通过画反比例函数的图像,熟悉画函数图像的一般步骤,进一步感受反比例函数图像双曲线的形状.言表达能力.通过学生相互讨论,提高学生的观察分析能力,培养学生善于思考的良好习惯和有条理的表达能力. 三、例题讲解例1 已知反比例函数y =kx 的图像经过点A (2,-4).(1)求k 的值;(2)这个函数的图像在哪几个象限?y 随x 的增大怎样变化? (3)画出函数的图像; (4)点B (12,-16)、C (-3,5)在这个函数的图像上吗? 【设计思路】引导学生认识反比例函数由k 值确定.要确定一个反比例函数,只需要一对对应值或图像上一个点的坐标即可.学会用待定系数法求反比例函数的表达式.会判断一个点是否在函数图像上.4=y x 4=-y x四、随堂练习1.反比例函数①2yx=;②13yx=;③107yx=-;④3100yx=的图像中:(1)在第一、三象限的是,在第二、四象限的是 . (2)在其所在的每一个象限内,y随x的增大而增大的是 .2.(15龙岩)已知两点P1(x1,y1),P2(x2,y2)在反比例函数y=3x的图象上,当x1>x2>0时,下列结论正确的是( )A.y2<y1<0 B.y1<y2<0 C.0<y2<y1D.0<y1<y2 3.(15自贡)若点P1 (x1,y1),P2 (x2,y2),P3 (x3,y3)都是反比例函数y=-1x图象6.思考题:如图,正比例函数y=-2x与反比例函数y=kx的图像相交于A(m,2)、B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图像直接写出当-2x>kx时,x的取值范围.六、课堂小结请大家回顾一下我们今天这节课主要学习了什么内容?。

苏科版八年级下册 第11章 反比例函数单元复习教案

苏科版八年级下册 第11章 反比例函数单元复习教案

第八讲 反比例函数1.反比例函数:一般地,形如:xky =(k 为常数,k ≠0)的函数称为反比例函数,其中 x 是自变量,y 是x 的函数,k 是比例系数.(自变量x 是一切不为0的实数) 2.反比例函数图象及画法:一般地,反比例函数xky =(k 为常数,k ≠0)的图象是由两个分支组成的,是双曲线.这两个分支分别位于第一、三象限或第二、四象限.双曲线两个分支关于原点对称,由于反比例函数中,自变量x ≠0,函数值y ≠0,所以它的图象与 x 轴和y 轴都没有交点,即双曲线的两个分支无限地接近坐标轴,但永远不与坐标轴相交. 画反比例函数的图象的基本步骤为: ① 列表;描点;③ 连线. 3.反比例函数性质:4.求反比例函数关系式的基本方法. (1)待定系数法是最基本的方法;(2)若已知两个函数的交点,可把交点坐标直接代入关系式;(3)若有两个函数时,先分别设出解析式(用 k 1, k 2分别表示比例系数),将两个解析式联立建立方程组,利用方程组的相关知识求解;(4)过反比例函数图象上的任意一点作 x 轴的垂线,那么这点与垂足、坐标系原点构成的三角形的面积是一个定值,即22kxy S ==。

命题点1 反比例函数的图象与性质1. 点A (-1,1)是反比例函数y =m +1x 的图象上一点,则m 的值为( )A. -1B. -2C. 0D. 12. 已知反比例函数y =6x ,当1<x <3时,y 的取值范围是( )A. 0<y <1B. 1<y <2C. 2<y <6D. y >63. 若点A (3,-4)、B (-2,m )在同一个反比例函数的图象上,则m 的值为( ) A. 6 B. -6 C. 12 D. -124. 已知y 是x 的反比例函数,当x >0时,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式________.5. 反比例函数y =2a -1x 的图象有一支位于第一象限,则常数a 的取值范围是________.6.已知点A (-1,y 1),B (1,y 2)和C (2,y 3)都在反比例函数y =kx(k >0)的图象上,则________<________<________(填y 1,y 2,y 3).命题点2 反比例函数k 的几何意义7. 如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y =kx 的图象经过点B ,则k 的值是( )A. 1B. 2C. 3 D .2 3第7题图 第8题图 第9题图8. 如图,A 、B 是双曲线y =kx 上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C ,若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A. 43B. 83C. 3D. 4 9. 如图,在平面直角坐标系中,过点M (-3,2)分别作x 轴、y 轴的垂线与反比例函数y =4x 的图象交于A 、B两点,则四边形MAOB 的面积为________.命题点3 反比例函数与一次函数综合题10. 在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx(k ≠0)的图象大致是( )11. 在平面直角坐标系中,直线y =-x +2与反比例函数y =1x 的图象有唯一公共点.若直线y =-x +b 与反比例函数y =1x的图象有2个公共点,则b 的取值范围是( )A. b >2B. -2<b <2C. b >2或b <-2D. b <-2第11题图12. 反比例函数y 1=mx (x >0)的图象与一次函数y 2=-x +b 的图象交于A ,B 两点,其中A (1,2).当y 2>y 1时,x的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >213.如图,直线y =kx 与双曲线y =2x(x >0)交于点A (1,a ),则k =________.第13题图14.如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =8x (x >0)和y =kx(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为________.第14题图15. 在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线y =8x 的一个交点为P (2,m ),与x 轴、y 轴分别交于点A 、点B .(1)求m 的值;(2)若P A =2AB ,求k 的值.16. 反比例函数y =kx(k ≠0)与一次函数y =mx +b (m ≠0)交于点A (1,2k -1).(1)求反比例函数的解析式;(2)若一次函数与x 轴交于点B ,且△AOB 的面积为3,求一次函数的解析式.17. 如图,一次函数y =x +b 的图象与反比例函数y =kx 的图象交于点A 和点B (-2,n ),与x 轴交于点C (-1,0),连接OA .(1)求一次函数和反比例函数的解析式:(2)若点P 在坐标轴上,且满足P A =OA ,求点P 的坐标.第17题图18. )如图,已知一次函数y 1=k 1x +b 的图象与x 轴、y 轴分别交于A 、B 两点,与反比例函数y 2=k 2x 的图象分别交于C 、D 两点,点D (2,-3),点B 是线段AD 的中点.(1)求一次函数y 1=k 1x +b 与反比例函数y 2=k 2x 的解析式;(2)求△COD 的面积;(3)直接写出y 1>y 2时自变量x 的取值范围.第18题图第八讲 反比例函数命题点1 反比例函数的图象与性质1. B 【解析】由点A (-1,1)是反比例函数图象上一点,可把点A 的坐标代入反比例函数解析式,即可求得m 的值.∵点A (-1,1)在反比例函数y =m +1x 上,∴把点A (-1,1)代入解析式得,1=m +1-1,解得,m =-2,故选择B.2. C 【解析】本题考查反比例函数图象的性质.反比例函数y =6x图象在第一、三象限,且在每个象限内y 随x 的增大而减小,当1<x <3时,图象在第一象限,且当x =1时,y =6; 当x =3时,y =2. 故当1<x <3时,y 的取值范围是2<y <6.3. A 【解析】设反比例函数的解析式为y =kx ,把A (3,-4)代入得k =3×(-4)=-12,所以反比例函数的解析式为:y =-12x ,把x =-2代入得m =-12-2,即m =6,故选A.4. y =1x (x >0)(答案不唯一) 【解析】反比例函数图象在每个象限内y 随x 的增大而减少,则k >0.5. a >12 【解析】本题考查了反比例函数的图像的位置与其系数的关系.因为反比例函数的图象有一支位于第一象限,所以2a -1>0,所以a >12.6. y 1,y 3,y 2 【解析】本题有三种方法:一是根据反比例函数y =kx ,当k >0时,图象在第一、三象限;图象在每个象限内y 随x 的增大而减少,且在第三象限y 值为负数,在第一象限y 值为正数,所以y 1<y 3<y 2;二是可以取特殊值,如取k =1,则y 1=-1,y 2=1,y 3=12,所以y 1<y 3<y 2;三是画出y =kx (k >0)的图象,根据图象可知y 1<y 3<y 2.命题点2 反比例函数k 的几何意义7. C 【解析】△ABO 为等边三角形,且OA =2,可求得B 点的坐标为(1,3),又反比例函数y =kx 的图象经过点B ,所以k =1×3=3,故选C.8. B 【解析】如解图,过点B 作BE ⊥x 轴于点E ,由反比例函数的比例系数的几何意义得,k =2S △AOC =2S△BOE,∴S四边形BDCE=S △AOD =1,∵CD ∥BE ,D 是OB 的中点,∴△OCD ∽△OEB ,CD =12BE ,∴S △OCD S △OBE =(CD BE)2=14,∴S 四边形BDCE S △OBE=34,∴S △OBE =43S 四边形BDCE =43,k =2S △AOC =2S △OBE =83.第8题解图9. 10 【解析】如解图,设AM 与x 轴交于点C ,MB 与y 轴交于点D ,∵点A 、B 分别在反比例函数y =4x上,根据反比例函数k 的几何意义,可得S △ACO =S △OBD =12×4=2,∵M(-3,2),∴S 矩形MCOD =3×2=6,∴S 四边形MAOB =S △ACO +S △OBD +S 矩形MCOD =2+2+6=10.第9题解图命题点3 反比例函数与一次函数综合题10. A 【解析】本题考查一次函数及反比例函数的图象与性质.11. C 【解析】本题考查反比例函数与一次函数综合问题.∵直线y =-x +1与y =-x +b 平行,∴y =-x+b 可以由直线y =-x +2平移得到.∵直线y =-x +2与双曲线在第一象限有唯一交点,∴当直线向右平移时,直线y =-x +b 与双曲线在第一象限有两个交点,∴b >2;∵直线向左平移到y =-x -2时,直线与双曲线在第三象限有唯一交点,再向左平移时直线与双曲线在第三象限有两个交点,∴此时b <-2.由此可知b 的取值范围是b >2或b <-2.12. B 【解析】先用待定系数法求出反比例函数与一次函数的解析式,再联立方程组求出另一个点B 的坐标,再根据图象得出不等式的解集.把A(1,2)分别代入反比例函数与一次函数的解析式解得m=2,b=3,∴y1=2x,y2=-x+3.由⎩⎪⎨⎪⎧y=2xy=-x+3,解得⎩⎪⎨⎪⎧x1=1y1=2或⎩⎪⎨⎪⎧x2=2y2=1,∴B(2,1),A(1,2)画出草图如解图,由图象可知,当y2>y1时,1<x<2.第12题解图13. 2【解析】本题考查一次函数与反比例函数结合.把点A坐标(1,a)代入y=2x,得a=21=2,∴点A的坐标为(1,2),再把点A(1,2)代入y=kx中,得k=2.第13题解图14. -20【解析】本题考查反比例函数k的几何意义.由题意可知S△POM=12×8=4,S△QOM=12|k|,∵S△POQ=S△POM+S△QOM=14,∴4+12|k|=14,则|k|=20.∵反比例函数图象在第四象限,∴k<0,∴k=-20.15. 解:(1)点P(2,m)在函数y=8x的图象上,得m=82,解得m=4.(2分)(2)由(1)知,点P坐标为(2,4),代入y=kx+b,得4=2k+b,即b=4-2k,∵y=kx+b与x、y轴交于A、B两点,∴A(2-4k,0),B(0,4-2k),(3分)∴一次函数的图象与y轴交点存在两种情况:即与y轴交于正半轴或负半轴.当一次函数的图象与y轴交于正半轴时,如解图①:过P点作PD⊥x轴于点D,∵PA=2AB,∴PB=AB,则OD=OA=2.∴4k-2=2,∴k=1.图①图②第15题解图当一次函数与y轴交于负半轴时,如解图②:过P点作PD⊥x轴于点D,∵PA=2AB,∴PD=2OB=4,∴OB=2,∴4-2k=-2,k=3.综上,k的值为1或3(5分)16. 解:(1)由已知可知,反比例函数y=kx过点A(1,2k-1),∴k1=2k-1,k=2k-1,解得k=1.反比例函数的解析式为y =1x.(2分)(2)画出直线的草图如解图.过点A 作AM ⊥x 轴于M.由(1)得点A(1,1),第16题解图∴点A 到x 轴的距离AM =1.(3分)由已知,得S △AOB =12×|OB|×|AM|=3,∴12×|OB|×1=3,|OB|=6. ∵点B 在x 轴上,故B(6,0)或 B ′(-6,0).(5分)①当一次函数的图象过A(1,1)和 B(6,0)时,由⎩⎪⎨⎪⎧m +b =16m +b =0,解得⎩⎨⎧m =-15b =65.此时一次函数解析式为y =-15x +65.(6分)②当一次函数的图象过A(1,1)和B′(-6,0)时, 由⎩⎪⎨⎪⎧m +b =1-6m +b =0,解得⎩⎨⎧m =17b =67,此时一次函数解析式为y =17x +67.(7分)∴符合条件的一次函数解析式为y =-15x +65或y =17x +67.(8分)17. 解:(1)把C(-1,0)代入y =x +b 得0=-1+b ,解得:b =1. ∴一次函数的解析式为y =x +1.(1分)把B(-2,n)代入y =x +1得n =-2+1=-1, ∴B(-2,-1).(2分)把B(-2,-1)代入y =k x 得-1=k-2,解得k =2.∴反比例函数的解析式为y =2x .(3分)(2)由题意得⎩⎪⎨⎪⎧y =x +1y =2x,(4分)解得⎩⎪⎨⎪⎧x 1=-2y 1=-1,⎩⎪⎨⎪⎧x 2=1y 2=2. ∴A 点坐标为(1,2).∵OA =PA.∴△OPA 为等腰三角形.当点P 在x 轴上时,P 点坐标为(2,0); 当点P 在y 轴上时,P 点坐标为(0,4). (7分) 18. 解:(1)∵D(2,-3)在y 2=k 2x 上,∴k 2=2×(-3)=-6, 故y 2=-6x.(1分)如解图,作DE ⊥x 轴,垂足为E ,第18题解图∵D(2,-3),B 是AD 中点, ∴A(-2,0).∵A(-2,0),D(2,-3)在一次函数y 1=k 1x +b 图象上,∴⎩⎪⎨⎪⎧-2k 1+b =02k 1+b =-3, 解得⎩⎨⎧k 1=-34b =-32.∴y 1=-34x -32.(3分)(2)由⎩⎨⎧y =-34x -32y =-6x,解得C(-4,32),(4分)∴S △COD =S △AOC +S △AOD =12×2×32+12×2×3=92.(6分)(3)当x <-4或0<x <2时,y 1>y 2.(8分)。

2014年春季新版苏科版八年级数学下学期11.2、反比例函数的图象与性质教学案2

2014年春季新版苏科版八年级数学下学期11.2、反比例函数的图象与性质教学案2

四、交流反思 1.综合运用一次函数和反比例函数求解两种函数解析式,往往仍用待定系数法. 2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题. 五、自我检测: 1.已知一次函数 y=kx+b 的图象过点 A(0,1)和点 B(a,-3a)(a>0),且点 B 在反比例函数
y
3 的图象上,求 a 及一次函数式. x
AO
Q
P
x
的图象交 于 A、B 两点,且点 x
A 的横坐标和点 B 的纵坐标都是-2. (1)求一次函数的解析式;(2)求△AOB 的面积.
6 如图,点 P 是一个反比例函数与正比例函数 y 2 x 的图象 的交点,PQ 垂直于 x 轴,垂足 Q 的坐标为(2,0). (1) 求这个 反比例函数的解析式. (2) 如果点 M 在这个反比例函数的图 象上,且△MPQ 的面积为 6,求点 M 的坐标 .
2.已知关于 x 的一次函数 y=mx+3n 和反比例函数 y 个一次函数与反比例函数的解析式.
2m 5n 图象都经过点(1,-2),求这 x
3、如图,一次函数 y=kx+b 的图象与反比例函数 y
m 的图 x
象交于 A、B 两点. (1)利用图象中的条件,求反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值大于反比例函数值的 x 的取 值范围.
7、已知:如图,在直角坐标系中,O 为原点,点 A、B 的坐标分别 为(3 3 3 ,0) 、(3+3 3 ,0), 点 C、D 在一个反比例函数 的图象上,且∠AOC=45º,∠ABC=30°,AB=BC,DA=DB. 求:点 C、D 两点的坐标.
y
C O A B x
y 8.如图,在等腰直角三角形 ABC 中,O 是斜边 AC 的中点,P 是 斜边 AC 上的一个动点,D 为 BC 上的一点,且 PB=PD,DE⊥AC,垂足为 点 E. 求证: (1)PE=BO; (2)设 AC=2,AP=x,四边形 PBDE 的 \面积为 y,求 y 与 x 之间的函数关系式,并写出函数的定义域.

苏科版八年级下册数学第十一章反比例函数复习教案

苏科版八年级下册数学第十一章反比例函数复习教案

小结与思考 ---反比例函数一、教学目标:1.回顾本章所学的知识和技能,通过梳理建立本章的知识结构.2.通过本章的知识梳理,提炼出知识研究的路径和方法,在归纳和总结反比例函数的图像和性质中,进一步体会数形结合的思想方法.3.在问题解决的过程中,体验问题研究的路径,在问题化解过程中体验分类和数形结合的思想方法.二、教学重点:本章的知识结构图,以及知识之间内在的联系.三、教学难点:在问题解决过程中,熟练应用问题研究的方法,体验分类和数形结合的思想方法.四、问题情境:问题:下列表格列出了几个函数的两个变量之间的关系,你认为哪一个表示的可能是反比例函数?表1.x … 2 3 4 …y … 2 3 4 …表2x … 2 3 4 …y … 3 2 1.5 …表3x … 2 3 4 …y … 3 4 5 …五、知识建构(1)反比例函数的概念(2)图像如何画反比例函数y=x6的图像? 列表x … -6 -3 -2 -1 1 2 3 6 … y…-1-2-3-66321…描点、连线(3)图像与性质 由反比例函数y=x6你对反比例函数有怎样的认识:轴对称性、中心对称性(对称轴、对称中心)、图像的位置、图像中x 与y 的变化规律。

(反比例函数研究的方向)(4)知识框架反比例函数(图像)与性质K 的符号k >0 K <0图像的大致位置经过象限 第一、三象限 第二、四象限 性质每一象限内,y 随x 的增大而减少每一象限内,y 随x 的增大而增大六、课堂导学 (一)探究活动一 问题1: 请结合函数x6y提出并解决问题?(自己编题)(二)探究活动二问题2:如图,直线kx =y 与反比例函数x6y =的图像交于A 、B 两点. (1)点A (1,6),你能说出点B 的坐标吗?(2)在(1)的条件下,结合图像,你能说出方程x x66=的解吗?(3)你能说出不等式x x66>中x 的取值范围吗?(三)探究活动三为了预防流感,学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例,,现测药物8分钟燃毕,此时空气中每立方米含药量为6毫克,请根据题中所提供的信息,画出函数的图像并回答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为 ,自变量x 的取值范围是 ;药物燃烧完后,y 与x 的函数关系式为 . (2)研究表明,当空气中的每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室.(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地X 灭空气中的病菌,那么此次消毒是否有效?为什么?(四)探究活动四问题四:反比例函数x6y =的图像是由反比例函数x 6y -=的图像怎样的变化得到的?(五)探究活动五 问题五:函数x =y 的图像函数1y +=x 的图像 函数x6y =的图像函数16y +=x 的图像 函数x6y =的图像 函数16y -=x 的图像函数x6y =的图像 函数1x 6y +=的图像结合函数的图像研究函数16+=x y 的图像的性质.(中心对称性、轴对称性、位置、变化规律等方面去研究)七、小结与思考1.通过这节课学习,你有那些收获?2.反比例函数性质研究的路径?在研究过程中体验到哪些数学思想方法?3.反比例函数之间有哪些联系?x6y =x 6y -=平移 平移 平移 平移 翻折 平移16y -=x。

苏科版数学八年级下册第11章《反比例函数小结与思考》教学设计

苏科版数学八年级下册第11章《反比例函数小结与思考》教学设计

苏科版数学八年级下册第11章《反比例函数小结与思考》教学设计一. 教材分析苏科版数学八年级下册第11章《反比例函数小结与思考》的内容包括反比例函数的定义、性质、图像和反比例函数的应用。

本章通过对反比例函数的学习,使学生掌握反比例函数的基本知识,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了函数的基本概念和一次函数、二次函数的知识,具备了一定的函数思想。

但部分学生对函数图像的理解和运用还不够熟练,对反比例函数的应用场景还不够明确。

三. 教学目标1.理解反比例函数的定义和性质;2.能够绘制反比例函数的图像;3.掌握反比例函数的应用方法;4.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.反比例函数的定义和性质;2.反比例函数图像的绘制;3.反比例函数在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究反比例函数的知识;2.使用多媒体辅助教学,直观展示反比例函数的图像和实际应用场景;3.采用小组合作学习,培养学生团队合作精神;4.注重个体差异,给予学生个性化指导。

六. 教学准备1.多媒体教学设备;2.反比例函数的相关教学素材;3.学生分组名单;4.教学课件和板书设计。

七. 教学过程1.导入(5分钟)利用生活中的实例,如商场打折、比例尺等,引出反比例函数的概念,激发学生的学习兴趣。

2.呈现(10分钟)呈现反比例函数的定义和性质,引导学生理解反比例函数的概念,并通过多媒体展示反比例函数的图像,让学生感受反比例函数的特点。

3.操练(10分钟)让学生分组讨论,分析反比例函数的性质,如随着自变量的增大,因变量的变化趋势等。

同时,引导学生运用反比例函数解决实际问题,如计算购物时的折扣等。

4.巩固(10分钟)通过课堂练习,让学生运用反比例函数的知识解决问题,巩固所学内容。

教师在过程中给予学生个性化指导,帮助其克服困难。

5.拓展(10分钟)引导学生思考反比例函数在实际生活中的应用,如气象学、工程学等,培养学生的数学应用意识。

八年级数学下册 第11章 反比例函数期末复习教案 (新版)苏科版-(新版)苏科版初中八年级下册数学教

八年级数学下册 第11章 反比例函数期末复习教案 (新版)苏科版-(新版)苏科版初中八年级下册数学教
4.已知反比例函数的图象经过点(m,2)和(-2,3)则m的值为.
5.如图,若点 在反比例函数 的图象上, 轴于点 , 的面积为3,则 .
与双曲线 的一个交点A的坐标为(-1,-2).则 =___; =____;它们的另一个交点坐标是______.
7.如图,A为双曲线上一点,过A作AC⊥x轴,垂足为C,且S△AOC=2.
反比例函数
教学目标
1.巩固反比例函数的概念,会求反比例函数表达式并能画出图象.
2.巩固反比例函数图象的变化其及性质并能运用解决某些实际问题.
Байду номын сангаас重点
反比例函数的定义、图像性质.
难点
反比例函数增减性的理解.
教法及教具




教 学 内 容
个案调整
教师主导活动
学生主体活动
一.知识回顾
,则这个函数的图象位于( )
(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图像写出使一次函数的值小于反比例函数的值的x的取值X围.(3) 求△AOB的面积.
课堂练习
反比例函数 的图象上有两点 和 ,若 时, ,则 的取值X围是.
2.如图,A为反比例函数 图象上一点,AB垂直 轴于B点,若 =5,则 的值为( )
A. 10 B. C.
3.已知反比例函数的图像经过点( , ),则它的图像一定也经过( )
A.(- ,- ) B.( ,- ) C.(- , ) D.(0,0)
四.小结
板书设计
(用案人完成)
教学札记
A.第一、三象限B.第二、三象限
C.第二、四象限D.第三、四象限
2.已知反比例函数的图像经过(1,-2),则下列各点中,在反比例函数图象上的是( )

新苏科版八年级下册数学 《反比例函数》复习教案

新苏科版八年级下册数学 《反比例函数》复习教案

第11章反比例函数教学目标:(一)教学知识点1.经历抽象反比例函数概念的过程、领会反比例函数的意义,理解反比例函数的概念.2.会作反比例函数的图像,并探索和掌握反比例函数的主要性质.3.会从函数图像中获取信息,解决实际问题.(二)能力训练要求1.熟练掌握本章的知识网络结构.2.经历抽象反比例函数概念的过程,理解反比例函数的概念,培养学生的抽象思维能力.3.经历一次函数的图像及其性质的探索过程,在交流中发展学生的合作意识和能力.4.能利用图像解决实际问题.(三)情感与价值观要求通过本章内容的回顾与思考,培养学生的归纳、整理等能力;能利用反比例函数的性质及图像解决实际问题,发展学生的数学应用能力,经历函数图像信息的识别与应用过程,发展学生的形象思维能力.教学重点:反比例函数的概念,会画反比例函数的图像,并掌握其性质.反比例函数的应用.教学难点:探索反比例函数的主要性质.反比例函数的应用.教学方法:师生交流互动法.教学过程:Ⅰ.导入[师]本章的内容已全部学完,请大家先回忆一下,本章学习了哪些主要内容?[生]反比例函数的定义;反比例函数的图像及性质;反比例函数的应用.[师]下面请大家系统全面地进行复习.Ⅱ.重点知识回顾一、本章知识结构[师]由刚才大家的回忆,我们一齐来构造本章内容结构图,好吗?(给学生时间让学生自己构造,然后出示投影片)1.本章内容框架[师]同学们可以根据以上内容框架,用自己的语言归纳总结本章内容.二、举出现实生活中有关反比例函数的实例,并归纳反比例函数概念.[生]例:当三角形的面积是12 cm 2时,它的底边a(cm)是这个底边上的高h(cm)的函数.解:a =h24. 在上式中,每给h 一个值,相应地就 确定了一个a 的值.因此a 是h 的函数,又它们之间的关系符合y=x k (k≠0),因此,a 是h 的反比例函数.三、说说函数y =x 2和y =-x2的图像的联系和区别. [生]联系:(1)图像都是由两支曲线组成;(2)它们都不与坐标轴相交;(3)它们都不过原点,既是中心对称图形,又是轴对称图形.区别:(1)它们所在的象限不同,y=x 2的两支曲线在第一和第三象限;y=-x 2的两支曲线在第二和第四象限.(2)y =x 2的图像在每个象限内,y 随x 的增大而减小:y=-x2的图像在每个象限内,y 随x 的增大而增大. [师]还有一点.虽然y =x 2和y=-x 2的图像不同,但是在这两个函数图像上任取—点,过这两点分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积相等,都为2.四、画反比例函数图像的步骤,讨论反比例函数图像的性质[生]画图像的步骤有列表,描点,连线.在画反比例函数的图像时应注意:列表时自变量的取值应选取绝对值相等而符号相反的—对一对的数值,并尽量多取一些点,连线时要连成光滑的曲线,而不是折线.反比例函数图像的性质有:1.反比例函数的图像是两支双曲线,当k>0时,图像分别位于第一、三象限;当k<0时,图像分别位于第二、四象限.2.当k>0时.在每一个象限内,y 随x 的增大而减小;当k<0时,在每一个象限,y 随x 的增大而增大.3.因为在y=xk (k≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图像不可能与x 轴相交,也不可能与y 轴相交.4. 在一个反比例函数图像上任取两点P ,Q ,过点P ,Q 分别作x 、轴,y 轴的平行线,与坐标轴围成的矩形面积为S 1,S 2则S 1=S 25. 反比例函数的图像既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.[师]这位同学总结的非常详细,下面进行有关练习.1.下列函数中,其图像位于第一、三象限的有哪些?在其图像所在象限内,y 的值随x 值的增大而增大的是哪些( ) (1)x y 31=(2)x y 2.0= (3)x y 10-= (4)xy 1007-= 2.在函数x y 3=的图像上任取一点P ,过P 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积是多少?分析:根据反比例函数图像的根据,当k >0时,图像位于第一、三象限,在每一个象限内,y 随x ,的大而减小;当k<0时,正好相反,但在xy 31=中,形式好像和反比例函数的形式不相同,但可以化成xy 31=的形式好像和反比例函数. [生]1.图像位于第一、三象限的有(1)(2).在其图像所在象限内,y 的值随x 值的增大而增大的有(3)(4).2. 由题意可知S=|k |=3.五、你能用反比例函数的知识解决有关问题吗?1.一个圆台物体的上底面积是下底面积的41,当下底面放在桌子上时,对桌面的压强是200 Pa ,倒过来放,对桌面的压强是多少?2.一定质量的CO 2,当体积v =5米3时.它的密度ρ=1.98千克/米3,求(1)ρ与v 的函数关系式;(2)当v=9米3时,CO 2的密度.[师]分析:压强p 与受力面积S ,压力F 之间的关系为p=S F ,因为是同一物体,所以F 是一定的,由于面积不同,所以压强也不同.质量m ,密度ρ和体积v 之间的关系为:ρ=v m 由,由v=5米3,ρ=1.98千克/米3,可知质量m ,实际是已知反比例函数中的k ,就求出了反比例函数关系式.解:1.当下底面放在桌面上时,对桌面的压强为p 1=S F =200Pa,所以倒过来放时,对桌面的压强p 2=S F S F 441==800Pa. 2.设CO 2的质量为m 千克,将v=5米3,ρ=1.98千克/米3代入公式ρ=v m 中,得m=9.9千克.故所求ρ与v 间的函数关系式为ρ=v 9.9. (2)当v =9米3时,ρ=v 9.9=1.1(千克/米3), Ⅲ.课堂练习1.对于函数y=x 2,当x>0时,y_______0,这部分图像在第______象限;对于y =-x 2,当x<0时,y____0,这部分图像在第_____象限.2.函数y=x10的图像在第____象限内,在每一个象限内,y 随x 的增大而______. 3.根据下列条件,分别确定函数y =x k 的表达式 (1)当x=2时,y =-3;(2)点(-31,21-)在双曲线y =x k 上. 答案:1.> 一、三 < 二、四2.一、三 减小3.(1)y=x6- (2)y=x 61;Ⅳ.课时小结本节课我们从现实世界出发,抽象出反比例函数的概念,比较了反比例函数y=x 2和y=-x 2的图像的联系和区别,归纳了反比例函数的图像和性质,并进一步进行了应用.Ⅴ.课后作业复习题Ⅵ.活动与探究反比例函数图像与矩形的面积若点A 是反比例函数y=xk (k≠0)图像上的任意一点,且AB 垂直x 轴,垂足为B ,AC 垂直于y 轴,垂足为C,则矩形面积S ABOC =|k |.如图(1). 1.如图(2),P 是反比例函数)y=x k (k≠O)图像上的一点,由P 点分别向x 轴,y 轴引垂线,得阴影部分(矩形)的面积为3,则 这个反比例函数的表达式______.2. 如图(3)过双曲线y=x2上两点A 、B 分别作x 轴,y 轴的垂线,若矩形ADDC 与矩形BFOE 的面积分别为S 1,S 2,则S 1与S 2的关系是_____.1.解:由题意得|k |=3.又双曲线的两支分布在第二、四象限,所以k<0,故k =-3.∴k=x3 . 2.解:由题意得S 1=S 2=|k |=2.。

八年级数学苏科版下册 第十一单元 《11.2反比例函数的图像与性质》教学设计 教案

八年级数学苏科版下册 第十一单元 《11.2反比例函数的图像与性质》教学设计 教案

《11.2反比例函数的图像与性质》一、教材分析(一)教材的地位及作用《反比例函数的图像和性质》是苏科版数学教材八年级下册第十一章第二节内容,本课为第一课时.是在学习了反比例函数的概念后对反比例的进一步研究,主要介绍了反比例函数的图像是双曲线和双曲线的作法.八年级上册学习的一次函数图像的作法为本课的学习提供了方法的引领,本课是学生第一次接触曲线形的图像,是继续研究反比例性质、学习二次函数的基础,在教材中起着承上启下的重要作用.(二)教学目标1.知道反比例函数的图像是双曲线,能用描点法画出反比例函数的图像;2.类比一次函数,经历列表、描点、连线画双曲线的过程,理解图像能更直观的反应函数的特征,体会数形结合的思想.(三)教学重点、难点教学重点:反比例函数图像的画法.教学难点:体会解析式与图像的联系,正确地画出双曲线.二、学情分析学生在八年级上册学习过一次函数,知道作函数图像列表、描点、连线的基本步骤,反比例函数概念的学习为研究反比例函数的图形奠定了知识的基础.但是反比例函数的图像是学生第一次接触曲线型的图像,而且是两个分支的图像,这对他们来说有一定的难度.在教学时可采用先引导学生思考然后画图,充分交流讨论,暴露学生的思维过程,针对错误进行评析,借助课件动态直观展示图像的生成过程,帮助他们突破难点.三、教学过程(一)问题导学1.我们已经学习了反比例函数,它的一般形式是什么?2.请大家类比一次函数的学习,我们认识了函数后,接下来研究什么?3.一次函数的图像是一条直线,反比例函数的图像是什么呢?【设计意图】类比一次函数,知道研究函数一般先理解其概念,然后研究其图像和性质,让学生构建函数的认知结构.用问题串的方式自然地引出课题,激发学生的求知欲.(二)合作探究活动一:思考 以反比例函数xy 6=为例, 1.自变量x 可以取任何实数吗?(学生发现x 不可以为0.)那这个函数的图像与y 轴有交点吗?因变量y 可以取任何实数吗?这个函数的图像与x 轴有交点吗?2.若x 取正,那y 呢?若x 取负,那y 呢?这个函数的图像会在哪几个象限?3.当x >0时,随着x 的增大,y 怎样变化? 当x <0时,随着x 的增大,y 怎样变化?4.通过以上问题,你能估计反比例函数xy 6=图像的基本概貌吗? (先思考,再小组交流.这里不要求学生准确描述,鼓励其用自己的语言来描述函数图像.)【设计意图】由于反比例函数的图像是曲线,且分成两支,学生初次接触有一定的难度,故而在作图前先思考,“由数想形”,根据函数表达式中x 、y 的取值范围及相互关系,初步估计图形的基本概貌——位置(象限、与坐标轴的交点等)、趋势(上升、下降等).一方面渗透数形结合的数学思想,另外这也是探究未知函数的性质与图像的一种方法. 活动二:画xy 6=的图像 1.我们的估计正确不正确,可以怎样来验证?(学生回答,画出函数的图像)2.回忆一次函数的图像画法,你认为画函数图像的步骤是什么?3.需要把 x 的所有值全部列举出来吗?你认为选取哪些值合适呢?为什么?(根据学生回答示范列表)4.请大家根据表格描点、画图.(在事先准备好的网格坐标系中画图)5.请将自己所作的图像与小组内的同学交流,找出自己与同学作图的不同并分析原因;(教师巡视并选出几个有代表性错误的图像和一幅正确图像)6.利用实物展台展示学生作图,你们认为这些图像正确吗?结合学生错误进行讨论、分析.(如连线没有向两方无限延伸,连线与坐标轴相交,两个分支用线连接,用线段将相邻两点连接等错误)7.利用几何画板展示图像的动态生成过程;8.先说说反比例函数xy 6=的图像的特征,再比较与一次函数的图像有哪些不 同,请与同学交流.【设计意图】引导学生正确地列表,这样才能更直观地显示出图像的特征,然后放手让学生自己尝试作图,暴露他们的思维过程.通过对典型错误的分析和正确图像的比较以及课件的直观展示,帮助学生更深刻地理解图像的基本特征如:连线必须是光滑的,是两个分支,延伸部分有逐渐靠近坐标轴的趋势但永远不可能与坐标轴相交等,体会图像的种种特征是由反比例的解析式的特点决定的,感受数形结合的思想. 活动三:画xy 6-=的图像 1.不画图,你能说说反比例函数xy 6-=图像的特征吗?说明理由. 2.请在网格坐标系中画出反比例函数xy 6-=的图像. (此处大多学生应该是用描点法画图,可能有学生利用x y 6-=与xy 6=的关系来画图,鼓励多种方法画图.)3.对照图像,刚才对函数xy 6-=图像特征的表述正确吗? 4.观察x y 6=与x y 6-=的图像,它们有什么共同特征? 5.根据学生回答板书双曲线及其基本特征.【设计意图】让学生经历类比、猜想、观察、归纳的过程,培养学生的思维,帮助学生更好地理解双曲线的特征,自主建构双曲线模型,体会数形结合的思想,积累数学活动经验.(三)练习巩固 同桌两人分别画出函数x y 4=与xy 4-=的图像(一人画一个),并请同桌说出你所作的函数图像的特点.【设计意图】通过小游戏的方式调动学生的学习积极性,巩固作图的技能,加深对双曲线特征的理解.(四)小结反思请与同学交流:1.今天这节课你有什么收获?2.你认为最重要、最关键的知识是什么?3.你是用什么方法获得新知识的?4.你还有什么疑惑需要提出来和大家讨论吗?【设计意图】没有反思就没有进步,用问题串的方式引导学生将回顾本课所学知识并内化到自己的认知结构中,总结探究的方法,积累数学活动经验,感受数形结合、类比的思想.(五)分层拓学1.必做题:2.选做题:观察课堂所画的四个反比例函数图像,你能将它们分类吗?分类标准是什么?你能类比一次函数给出反比例函数的增减性吗?【设计意图】分层的练习既面向全体又关注个体差异,选做题让学有余力的学生有了施展的舞台,同时又为下节课的学习做好铺垫.六、板书设计。

苏科版八下数学第11章《反比例函数》复习教案

苏科版八下数学第11章《反比例函数》复习教案

第11章反比例函数教学目标:(一)教学知识点1.经历抽象反比例函数概念的过程、领会反比例函数的意义,理解反比例函数的概念.2.会作反比例函数的图像,并探索和掌握反比例函数的主要性质.3.会从函数图像中获取信息,解决实际问题.(二)能力训练要求1.熟练掌握本章的知识网络结构.2.经历抽象反比例函数概念的过程,理解反比例函数的概念,培养学生的抽象思维能力.3.经历一次函数的图像及其性质的探索过程,在交流中发展学生的合作意识和能力.4.能利用图像解决实际问题.(三)情感与价值观要求通过本章内容的回顾与思考,培养学生的归纳、整理等能力;能利用反比例函数的性质及图像解决实际问题,发展学生的数学应用能力,经历函数图像信息的识别与应用过程,发展学生的形象思维能力.教学重点:反比例函数的概念,会画反比例函数的图像,并掌握其性质.反比例函数的应用.教学难点:探索反比例函数的主要性质.反比例函数的应用.教学方法:师生交流互动法.教具准备:多媒体课件教学过程:Ⅰ.导入[师]本章的内容已全部学完,请大家先回忆一下,本章学习了哪些主要内容?[生]反比例函数的定义;反比例函数的图像及性质;反比例函数的应用.[师]下面请大家系统全面地进行复习.Ⅱ.重点知识回顾一、本章知识结构[师]由刚才大家的回忆,我们一齐来构造本章内容结构图,好吗?(给学生时间让学生自己构造,然后出示投影片)1.本章内容框架[师]同学们可以根据以上内容框架,用自己的语言归纳总结本章内容.二、举出现实生活中有关反比例函数的实例,并归纳反比例函数概念.[生]例:当三角形的面积是12 cm 2时,它的底边a(cm)是这个底边上的高h(cm)的函数.解:a =h24. 在上式中,每给h 一个值,相应地就 确定了一个a 的值.因此a 是h 的函数,又它们之间的关系符合y=x k (k≠0),因此,a 是h 的反比例函数.三、说说函数y =x 2和y =-x2的图像的联系和区别. [生]联系:(1)图像都是由两支曲线组成;(2)它们都不与坐标轴相交;(3)它们都不过原点,既是中心对称图形,又是轴对称图形.区别:(1)它们所在的象限不同,y=x 2的两支曲线在第一和第三象限;y=-x 2的两支曲线在第二和第四象限.(2)y =x 2的图像在每个象限内,y 随x 的增大而减小:y=-x2的图像在每个象限内,y 随x 的增大而增大. [师]还有一点.虽然y =x 2和y=-x 2的图像不同,但是在这两个函数图像上任取—点,过这两点分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积相等,都为2.四、画反比例函数图像的步骤,讨论反比例函数图像的性质[生]画图像的步骤有列表,描点,连线.在画反比例函数的图像时应注意:列表时自变量的取值应选取绝对值相等而符号相反的—对一对的数值,并尽量多取一些点,连线时要连成光滑的曲线,而不是折线.反比例函数图像的性质有:1.反比例函数的图像是两支双曲线,当k>0时,图像分别位于第一、三象限;当k<0时,图像分别位于第二、四象限.2.当k>0时.在每一个象限内,y 随x 的增大而减小;当k<0时,在每一个象限,y 随x 的增大而增大.3.因为在y=xk (k≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图像不可能与x 轴相交,也不可能与y 轴相交.4. 在一个反比例函数图像上任取两点P ,Q ,过点P ,Q 分别作x 、轴,y 轴的平行线,与坐标轴围成的矩形面积为S 1,S 2则S 1=S 25. 反比例函数的图像既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.[师]这位同学总结的非常详细,下面进行有关练习.1.下列函数中,其图像位于第一、三象限的有哪些?在其图像所在象限内,y 的值随x 值的增大而增大的是哪些( ) (1)x y 31=(2)x y 2.0= (3)x y 10-= (4)xy 1007-= 2.在函数x y 3=的图像上任取一点P ,过P 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积是多少?分析:根据反比例函数图像的根据,当k >0时,图像位于第一、三象限,在每一个象限内,y 随x ,的大而减小;当k<0时,正好相反,但在xy 31=中,形式好像和反比例函数的形式不相同,但可以化成xy 31=的形式好像和反比例函数. [生]1.图像位于第一、三象限的有(1)(2).在其图像所在象限内,y 的值随x 值的增大而增大的有(3)(4).2. 由题意可知S=|k |=3.五、你能用反比例函数的知识解决有关问题吗?1.一个圆台物体的上底面积是下底面积的41,当下底面放在桌子上时,对桌面的压强是200 Pa ,倒过来放,对桌面的压强是多少?2.一定质量的CO 2,当体积v =5米3时.它的密度ρ=1.98千克/米3,求(1)ρ与v 的函数关系式;(2)当v=9米3时,CO 2的密度.[师]分析:压强p 与受力面积S ,压力F 之间的关系为p=S F ,因为是同一物体,所以F 是一定的,由于面积不同,所以压强也不同.质量m ,密度ρ和体积v 之间的关系为:ρ=vm 由,由v=5米3,ρ=1.98千克/米3,可知质量m ,实际是已知反比例函数中的k ,就求出了反比例函数关系式. 解:1.当下底面放在桌面上时,对桌面的压强为p 1=S F =200Pa,所以倒过来放时,对桌面的压强p 2=S F S F 441==800Pa. 2.设CO 2的质量为m 千克,将v=5米3,ρ=1.98千克/米3代入公式ρ=v m中,得m=9.9千克.故所求ρ与v 间的函数关系式为ρ=v 9.9. (2)当v =9米3时,ρ=v 9.9=1.1(千克/米3), Ⅲ.课堂练习1.对于函数y=x2,当x>0时,y_______0,这部分图像在第______象限;对于y =-x2,当x<0时,y____0,这部分图像在第_____象限. 2.函数y=x10的图像在第____象限内,在每一个象限内,y 随x 的增大而______. 3.根据下列条件,分别确定函数y =xk 的表达式 (1)当x=2时,y =-3;(2)点(-31,21-)在双曲线y =x k 上.答案:1.> 一、三 < 二、四2.一、三 减小3.(1)y=x6- (2)y=x 61; Ⅳ.课时小结本节课我们从现实世界出发,抽象出反比例函数的概念,比较了反比例函数y=x 2和y=-x2的图像的联系和区别,归纳了反比例函数的图像和性质,并进一步进行了应用.Ⅴ.课后作业复习题Ⅵ.活动与探究反比例函数图像与矩形的面积若点A 是反比例函数y=xk (k≠0)图像上的任意一点,且AB 垂直x 轴,垂足为B ,AC 垂直于y 轴,垂足为C,则矩形面积S ABOC =|k |.=图(1). 1.如图(2),P 是反比例函数)y=x k (k≠O)图像上的一点,由P 点分别向x 轴,y 轴引垂线,得阴影部分(矩形)的面积为3,则 这个反比例函数的表达式______.2. 如图(3)过双曲线y=x2上两点A 、B 分别作x 轴,y 轴的垂线,若矩形ADDC 与矩形BFOE 的面积分别为S 1,S 2,则S 1与S 2的关系是_____.1.解:由题意得|k |=3.又双曲线的两支分布在第二、四象限,所以k<0,故k =-3.∴k=x3-. 2.解:由题意得S 1=S 2=|k |=2.。

苏科初中数学八年级下册《11.1 反比例函数》教案 (2)【精品】

苏科初中数学八年级下册《11.1 反比例函数》教案 (2)【精品】

11.1 反比例函数学习目标:1.结合具体情境体会反比例函数的意义,理解反比例函数的概念;2.能根据实际问题中的条件确定反比例函数的表达式;3.在探索过程中,引导学生体会反比例函数是刻画现实世界中特定数量关系的一种数学模型.重点、难点:反比例函数的概念.学习过程一.【预学指导】初步感知、激发兴趣汽车从南京出发开往上海(全程约为300m),全程所用的时间t(h)随速度v(m/h)的变化而变化.(1)你能用含有v的代数式表示t吗?(2)利用(1)中的关系式完成下表:随着速度的变化,全程所用的时间发生怎样的变化?.(3)速度v是时间t的函数吗?为什么?二.【问题探究】问题1:用函数表达式表示下列问题中两个变量之间的关系.(1)计划修建一条长为500m的高速公路,完成该项目的天数y(天)随日完成量(m)的变化而变化;(2)一家银行为某社会福利厂提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水池所需时间t(h)随注水速度v(m3/h)的变化而变化;(4)实数m与n的积为-200,m随n的变化而变化.观察归纳:以上函数表达式具有什么共同特征?你还能举出类似的实例吗?问题2写出下列问题中两个变量之间关系的函数表达式,并判断它们是否为反比例函数.(1)面积是50 cm 2的矩形,一边长y (cm)随另一边长(cm)的变化而变化;(2)体积是100 cm 3的圆锥,高h (cm)随底面面积S (cm 2)的变化而变化.问题3:下列关系式中的y 是的反比例函数吗?如果是,比例系数是多少? ①4y x =;②12y x =-;③1y x =-;④1xy =;⑤2x y =;⑥13y x -=;⑦21y x=- 三.【拓展提升】1、已知函数22(1)m y m x -=+(1)当m 为何值时,y 是的正比例函数?并求出函数的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数
教学目标:
1. 理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.
2. 能根据实际问题中的条件确定反比例函数的关系式。

3. 会求简单实际问题中反比例函数解析式.
教学重点:理解和领会反比例函数的概念。

教学难点:对反比例函数定义的应用。

教学过程:
一、 知识回顾:1,什么是反比例关系?
2,什么是函数关系?
③ 速度v 是时间t 的函数吗?为什么?
2),用函数关系式表示下列问题中两个变量之间的关系:
① 一个面积是26400
m 的长方形的长a(m)随宽b(m)的变化而变化 则a 关于b 的关系式为_____.
②,京沪线铁路全程为1463 km ,某列车平均速度为 v (km /
h ),全程运行时间为 t (h ),则v 关于t 的关系式为_____
③ ,已知三角形的面积S 是常数,它的底边长y 与底边上的高x 之间的关系式为_____ ④,实数m 与n 的积是—200,m 关于n 的关系式为_____
3 交流:
(1)这些函数关系式与我们以前学习的正比例函数关系式有什么不同?
(2)它们有一些共同什么特征?
(3)你能归纳出反比例函数的概念吗?
4,反比例函数的定义:
反比例函数自变量取值范围:
5,例题与练习:
例1,下列关系式中y 是x 的反比例函数吗?如果是,k 的值是多少? 1,x
y 4= 2, x y 21-= 二、情景创设:
1),汽车从南京出发开往上海(全程约300km ),全程所用时间t (h )随速度v (km/h )的变化而变化. 问题:
① 你能用含有v 的代数式表示t 吗?
② 利用(1)的关系式完成下表:
随着速度的变化,全程所用时间发生怎样的变化?
120
3, x y -=1 4, 1=xy
练习1,下列关系式中y 是x 的反比例函数的是:
1.12-=x y 2,1
2+=x y 3,x y 53= 4,x
y 12-= 5,2x y = 6,x y 31= 例2,若函数 52)2(--=m x m y 是反比例函数,求出m 的值并写出解析式. 练习2,当a= 时,函数22)1(-+=a x a y 是反比例函数?
例3,若y 与x 成反比例,且x =-3时,y =7,则y 与x 的函数关系式为 .
练习3,反比例函数x k y =
(k ≠0)的图象经过(1,-3),则k 的值是 。

挑战自我:
1、某住宅小区要种植一个面积为1000 2m 的矩形草坪,草坪长为 y m ,宽为 x m,则 y 关于 x 的关系式为____;它是反比例函数吗?
2、如果反比例函数的图象经过(1,-2),那么这个反比例函数的解析式为 。

3,若函数5)52(--=m x
m y 是反比例函数,那么正比例函数x m y )52(-=的图象经
过第几象限?
小结:本节课你有何收获?。

相关文档
最新文档