全国各地中考数学试题分类汇编专题(第1期) 6 不等式(组)Word版含解析
全国各地中考数学试卷解析分类汇编(第1期)专题6 不等式-人教版初中九年级全册数学试题
不等式(组)一.选择题1.(2015•某某某某,第8题3分)不等式组xx11023的解集是 .答案:解析: 由112x≤0得x≤2 ,由-3x<9得x>-3,∴不等式组的解集是-3<x≤2.2、(2015·某某省某某市,第3题3分)不等式组1011xx+>⎧⎨-⎩≤的解集是:A、2x≤B、1x>-C、1x-<≤2D、无解【解答与分析】这是一元一次不等式组的解法:答案为C3.(2015·某某省某某市,第6题3分)不等式组的解集在数轴上表示为().A.B.C.D.4.(2015•某某某某,第11题3分)不等式组的解集是 ___________ .【答案】﹣1<x<1.考点:解一元一次不等式组.5.(2015某某某某第4题3分)一个关于x的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.﹣2<x<1 B.﹣2<x≤1C.﹣2≤x<1 D.﹣2≤x≤1考点:在数轴上表示不等式的解集..分析:根据不等式解集的表示方法即可判断.解答:解:该不等式组的解集是:﹣2≤x<1.故选C.点评:本题考查了不等式组的解集的表示,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.6.(2015某某某某第8题3分)不等式组的整数解的个数是()A. 3 B. 5 C. 7 D.无数个考点:一元一次不等式组的整数解..分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:,解①得:x>﹣2,解②得:x≤3.则不等式组的解集是:﹣2<x≤3.则整数解是:﹣1,0,1,2,3共5个.故选B.点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(2015•某某某某第3题3分)把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A.B.C.D.解:解不等式x+2≤0,得x≤﹣2.表示在数轴上为:.故选:D.8.(2015•某某某某,第7题4分)使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A. 3,4 B. 4,5 C. 3,4,5 D.不存在考点:一元一次不等式组的整数解.分析:先分别解出两个一元一次不等式,再确定x的取值X围,最后根据x的取值X围找出x的整数解即可.解答:解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;故选A.点评:此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.(2015•某某某某,第6题3分)不等式组的解集是()A.x>1 B.x<2 C.1≤x≤2 D. 1<x<2考点:解一元一次不等式组.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出即可.解答:解:∵解不等式①得:x<2,解不等式②得:x>1,∴不等式组的解集为1<x<2,故选D.点评:本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.10. (2015•某某某某,第6题3分)若m>n,下列不等式不一定成立的是()(A)m+2>n+2 (B)2m>2n(C)(D)【答案】D考点:不等式的应用.11. (2015•某某某某,第8题4分)一元一次不等式2(x+1)≥4的解在数轴上表示为(▲)考点:在数轴上表示不等式的解集;解一元一次不等式..分析:首先根据解一元一次不等式的方法,求出不等式2(x +1)≥4的解集,然后根据在数轴上表示不等式的解集的方法,把不等式2(x +1)≥4的解集在数轴上表示出来即可.解答:解:由2(x +1)≥4, 可得x +1≥2,解得x ≥1,所以一元一次不等式2(x +1)≥4的解在数轴上表示为:.故选:A .点评:(1)此题主要考查了在数轴上表示不等式的解集的方法,要熟练掌握,解答此题的关键是要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.(2)此题还考查了解一元一次不等式的方法,要熟练掌握,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.13. (2015•某某省某某市,第9题,3分) 一元一次不等式组⎩⎨⎧x +2≥05x –1>0的解集是15x >x-≥的解集是14. (2015•某某省某某市,第11题)不等式24015. (2015•某某某某,第4题3分)下列说法不一定成立的是()A.若,则 B.若,则C.若,则 D.若,则【答案】C.考点:不等式的性质.16.(2015·某某,第7题 分)解不等式12-≥x x ,并把解集在数轴上表示( )【答案】B【解析】解不等式,得:1x ≥-,故选B 。
2019年全国各地中考数学试题分类汇编之专题6 不等式(组)(含解析)
不等式(组)一.选择题1. (2019•湖北天门•3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.2.(2019甘肃省陇南市)(3分)不等式2x+9≥3(x+2)的解集是()A.x≤3B.x≤﹣3 C.x≥3D.x≥﹣33. (2019•湖南衡阳•3分)不等式组的整数解是()A.0 B.﹣1 C.﹣2 D.14. (2019•湖南衡阳•3分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1 B.﹣1<x<0C.x<﹣1或0<x<2 D.﹣1<x<0或x>25.(2019•浙江宁波•4分)不等式>x的解为()A.x<1 B.x<﹣1 C.x>1 D.x>﹣16. (2019•山东省德州市 •4分)不等式组的所有非负整数解的和是( )A .10B .7C .6D .07. (2019•甘肃武威•3分)不等式2x +9≥3(x +2)的解集是( ) A .x ≤3 B .x ≤﹣3 C .x ≥3 D .x ≥﹣38. (2019•湖南怀化•4分)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只. A .55 B .72 C .83 D .899. (2019•湖南岳阳•3分)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1.x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3 B .c <﹣2C .c <D .c <110.(2019,山西,3分)不等式组⎩⎨⎧<->-42231x x 的解集是( )A.4>xB.1->xC.41<<-xD.1-<x11. (2019•南京•2分)实数A.B.c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( ) A . B .C .D .12(201▪9广西河池▪3分)不等式组的解集是( ) A .x ≥2B .x <1C .1≤x <2D .1<x ≤213. (2019•山东省滨州市•3分)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.14. (2019•山东省聊城市•3分)若不等式组无解,则m的取值范围为()A.m≤2B.m<2 C.m≥2D.m>2二.填空题1. (2019•山东省滨州市•5分)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.2. (2019•江苏泰州•3分)不等式组的解集为.3. (2019•湖南株洲•3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为.4. (2019•山东省德州市•4分)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}=.5. (2019▪黑龙江哈尔滨▪3分)不等式组的解集是.6. (2019•甘肃•3分)不等式组的最小整数解是.7. (2019•湖南长沙•3分)不等式组的解集是.8. (2019•湖南邵阳•3分)不等式组的解集是.9. (2019▪黑龙江哈尔滨▪3分)不等式组的解集是.10.(2019•浙江金华•4分)不等式3x-6≤9的解是________.11.(2019•浙江绍兴•5分)不等式3x﹣2≥4的解为.三.解答题1.(2019▪黑龙江哈尔滨▪10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?2.((2019,山西,9分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元. 方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x 次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元). (1)请分别写出y 1,y 2与x 之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.3.(2019,四川成都,6分)解不等式组:⎪⎩⎪⎨⎧+<--≤-②211425①54)2(3x x x x4.(2019,四川巴中,8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?5.(2019,山东淄博,5分)解不等式6.(2019▪湖北黄石▪7分)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.7. (2019•湖南衡阳•8分)某商店购进A.B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A.B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A.B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?8. (2019•山东省滨州市•10分)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.9. (2019•广东•6分)解不等式组:10. (2019•广东•7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?11. ( 2019甘肃省兰州市)(本题5分)解不等式组:⎪⎩⎪⎨⎧-<++<-131512x x x x12. (2019•广西贵港•10分)(1)计算:﹣(﹣3)0+()﹣2﹣4sin 30°;(2)解不等式组:,并在数轴上表示该不等式组的解集.13. (2019•江苏苏州•5分)()152437x x x +<⎧⎪⎨+>+⎪⎩解不等式组:14. (2019•江苏连云港•6分)解不等式组15. (2019•湖南湘西州•6分)解不等式组:并把解集在数轴上表示出来.16. (2019•湖南岳阳•8分)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的,求休闲小广场总面积最多为多少亩?17. (2019•山东省滨州市•12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.18. (2019•山东省聊城市•8分)某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?不等式(组)一.选择题1. (2019•湖北天门•3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(2019甘肃省陇南市)(3分)不等式2x+9≥3(x+2)的解集是()A.x≤3B.x≤﹣3 C.x≥3D.x≥﹣3【分析】先去括号,然后移项、合并同类项,再系数化为1即可.【解答】解:去括号,得2x+9≥3x+6,移项,合并得﹣x≥﹣3系数化为1,得x≤3;故选:A.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.3. (2019•湖南衡阳•3分)不等式组的整数解是()A.0 B.﹣1 C.﹣2 D.1【分析】先求出不等式组的解集,再求出整数解,即可得出选项.【解答】解:解不等式①得:x<0,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x<0,∴不等式组的整数解是﹣1,故选:B.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.4. (2019•湖南衡阳•3分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1 B.﹣1<x<0C.x<﹣1或0<x<2 D.﹣1<x<0或x>2【分析】根据一次函数图象在反比例函数图象上方的x的取值范围便是不等式kx+b>的解集.【解答】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,∴不等式kx+b>的解集是x<﹣1或0<x<2故选:C.【点评】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.5.(2019•浙江宁波•4分)不等式>x的解为()A.x<1 B.x<﹣1 C.x>1 D.x>﹣1【分析】去分母、移项,合并同类项,系数化成1即可.【解答】解:>x,3﹣x>2x,3>3x,x<1,故选:A.【点评】本题考查了解一元一次不等式,注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.6. (2019•山东省德州市•4分)不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.0【考点】不等式组的非负整数解【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解答】解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.7. (2019•甘肃武威•3分)不等式2x+9≥3(x+2)的解集是()A.x≤3B.x≤﹣3 C.x≥3D.x≥﹣3【分析】先去括号,然后移项、合并同类项,再系数化为1即可.【解答】解:去括号,得2x+9≥3x+6,移项,合并得﹣x≥﹣3系数化为1,得x≤3;故选:A.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8. (2019•湖南怀化•4分)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55 B.72 C.83 D.89【分析】设该村共有x户,则母羊共有(5x+17)只,根据“每户发放母羊7只时有一户可分得母羊但不足3只”列出关于x的不等式组,解之求得整数x的值,再进一步计算可得.【解答】解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.【点评】本题主要考查一元一次不等式组的应用,解题的关键是理解题意找到题目蕴含的不等关系,并据此得出不等式组.9. (2019•湖南岳阳•3分)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1.x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3B .c <﹣2C .c <D .c <1【分析】由函数的不动点概念得出x 1.x 2是方程x 2+2x +c =x 的两个实数根,由x 1<1<x 2知,解之可得.【解答】解:由题意知二次函数y =x 2+2x +c 有两个相异的不动点x 1.x 2是方程x 2+2x +c =x 的两个实数根, 且x 1<1<x 2, 整理,得:x 2+x +c =0, 则.解得c <﹣2, 故选:B .【点评】本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念,并据此得出关于c 的不等式.10.(2019,山西,3分)不等式组⎩⎨⎧<->-42231x x 的解集是( )A.4>xB.1->xC.41<<-xD.1-<x【解析】4,31>>-x x ;1,22,422-><-<-x x x ;∴4>x ,故选A11. (2019•南京•2分)实数A.B.c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( ) A . B .C .D .【分析】根据不等式的性质,先判断c 的正负.再确定符合条件的对应点的大致位置. 【解答】解:因为a >b 且ac <bc , 所以c <0.选项A 符合a >b ,c <0条件,故满足条件的对应点位置可以是A .选项B不满足a>b,选项C.D不满足c<0,故满足条件的对应点位置不可以是B.C.D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.12(201▪9广西河池▪3分)不等式组的解集是()A.x≥2B.x<1 C.1≤x<2 D.1<x≤2【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x≤2,解②得:x>1.则不等式组的解集是:1<x≤2.故选:D.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13. (2019•山东省滨州市•3分)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【考点】不等式组的解法【分析】直接利用关于原点对称点的性质得出关于a的不等式组进而求出答案.【解答】解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,∴,解得:a<2.则a的取值范围在数轴上表示正确的是:.故选:C.【点评】此题主要考查了关于原点对称点的性质以及解不等式组,正确掌握是解题关键.14. (2019•山东省聊城市•3分)若不等式组无解,则m的取值范围为()A.m≤2B.m<2 C.m≥2D.m>2【考点】解一元一次不等式组【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m的不等式,解之可得.【解答】解:解不等式<﹣1,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二.填空题1. (2019•山东省滨州市•5分)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为x>3.【考点】一次函数与一元一次不等式的关系【分析】根据直线y=kx+b(k<0)经过点A(3,1),正比例函数y=x也经过点A从而确定不等式的解集.【解答】解:∵正比例函数y=x也经过点A,∴kx+b<x的解集为x>3,故答案为:x>3.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.2. (2019•江苏泰州•3分)不等式组的解集为x<﹣3..【分析】求出不等式组的解集即可.【解答】解:等式组的解集为x<﹣3,故答案为:x<﹣3.【点评】本题考查了不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.3. (2019•湖南株洲•3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为a<1且a为有理数.【分析】根据题意列出不等式,解之可得,【解答】解:根据题意知2﹣a>1,解得a<1,故答案为:a<1且a为有理数.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4. (2019•山东省德州市•4分)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= 1.1.【考点】列出代数式【分析】根据题意列出代数式解答即可.【解答】解;根据题意可得:{3.9}+{﹣1.8}﹣{1}=3.9﹣3﹣1.8+2﹣1+1=1.1,故答案为:1.1【点评】此题考查解一元一次不等式,关键是根据题意列出代数式解答.5. (2019▪黑龙江哈尔滨▪3分)不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6. (2019•甘肃•3分)不等式组的最小整数解是0.【分析】求出不等式组的解集,确定出最小整数解即可.【解答】解:不等式组整理得:,∴不等式组的解集为﹣1<x≤2,则最小的整数解为0,故答案为:0【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.7. (2019•湖南长沙•3分)不等式组的解集是﹣1≤x<2.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集.【解答】解:解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,故答案为:﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8. (2019•湖南邵阳•3分)不等式组的解集是﹣2≤x<﹣1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9. (2019▪黑龙江哈尔滨▪3分)不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2019•浙江金华•4分)不等式3x-6≤9的解是________.【答案】x≤5【考点】解一元一次不等式【解析】【解答】解:∵3x-6≤9,∴x≤5.故答案为:x≤5.【分析】根据解一元一次不等式步骤解之即可得出答案.11.(2019•浙江绍兴•5分)不等式3x﹣2≥4的解为x≥2.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,3x≥4+2,合并同类项得,3x≥6,把x的系数化为1得,x≥2.故答案为:x≥2.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.3.4.5.6.7.8.9.10.三.解答题1.(2019▪黑龙江哈尔滨▪10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?【分析】(1)设每副围棋x元,每副中国象棋y元,根据题意得:,求解即可;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,即可求解;【解答】解:(1)设每副围棋x元,每副中国象棋y元,根据题意得:,∴,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,∴z≤25,∴最多可以购买25副围棋;【点评】本题考查二元一次方程组,一元一次不等式的应用;能够通过已知条件列出准确的方程组和不等式是解题的关键.2.((2019,山西,9分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元).(3)请分别写出y 1,y 2与x 之间的函数表达式.(4)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.【解析】(1)x y x y 40;2003021=+=(2)由21y y <得:x x 4020030<+解得:20>x ,∴当20>x 时选择方式一比方式2省钱3.(2019,四川成都,6分)解不等式组:⎪⎩⎪⎨⎧+<--≤-②211425①54)2(3x x x x解: 5463-≤-x x1-∴≥x x 2425+-<2<x ∴4.(2019,四川巴中,8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【分析】①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得分式方程,解之即可;②设购买甲种物品y 件,则乙种物品购进(55﹣y )件,由题意得不等式,从而得解.【解答】解:①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得:=解得x =90经检验,x =90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y 件,则乙种物品购进(55﹣y )件由题意得:5000≤100y +90(55﹣y )≤5050解得5≤y ≤10∴共有6种选购方案.【点评】本题考查了分式方程的应用以及一元一次不等式的整数解的问题.本题中等难度.5.(2019,山东淄博,5分)解不等式【分析】将已知不等式两边同乘以2,然后再根据移项、合并同类项、系数化为1求出不等式的解集.【解答】解:将不等式两边同乘以2得,x﹣5+2>2x﹣6解得x<3.【点评】解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变,在不等式的两边同时乘以或除以同一个正数不等号的方向不变,在不等式的两边同时乘以或除以同一个负数不等号的方向改变.6.(2019▪湖北黄石▪7分)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.【分析】先求出不等式组的解集,进而求得P点的坐标,即可求得点P所在的象限.【解答】解:,解①得:x≥4,解②得:x≤4,则不等式组的解是:x=4,∵=1,2x﹣9=﹣1,∴点P的坐标为(1,﹣1),∴点P在的第四象限.【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7. (2019•湖南衡阳•8分)某商店购进A.B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A.B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A.B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?【分析】(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,根据数量=总价÷单价结合花费300元购买A商品和花费100元购买B商品的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买B商品m个,则购买A商品(80﹣m)个,根据A商品的数量不少于B商品数量的4倍并且购买A.B商品的总费用不低于1000元且不高于1050元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可找出各购买方案.【解答】解:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,购买一个B商品需要5元.(2)设购买B商品m个,则购买A商品(80﹣m)个,依题意,得:,解得:15≤m≤16.∵m为整数,∴m=15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.8. (2019•山东省滨州市•10分)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求出x的整数解,由分式有意义的条件确定最终符合分式的x的值,代入计算可得.【解答】解:原式=[﹣]•=•=,解不等式组得1≤x<3,则不等式组的整数解为1.2,又x≠±1且x≠0,∴x=2,∴原式=.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元一次不等式组的能力.9. (2019•广东•6分)解不等式组:【答案】解:由①得x>3,由②得x>1,∴原不等式组的解集为x>3.【考点】解一元一次不等式组10. (2019•广东•7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x个,则足球(60-x)个.由题意得70x+80(60-x)=4600,解得x=20。
中考数学试题分类6不等式组含答案
第 6 章不等式(组)一、选择题1.( 2011 湖南永州, 15,3 分)某市打市电话的收费标准是:每次 3 分钟之内(含 3 分钟)收费 0.2 元,此后每分钟收费 0.1元(不足 1 分钟按 1 分钟计).某天小芳给同学打了一个 6 分钟的市话,所用电话费为0.5 元;小刚现准备给同学打市电话 6 分钟,他经过思考此后,决定先打 3分钟,挂断后再打 3分钟,这样只需电话费0.4 元.假如你想给某同学打市话,准备通话10 分钟,则你所需要的电话费最少为()A.0.6元B.0.7元C. 0.8 元D. 0.9 元【答案】 B.二、填空题1.( 2011 山东临沂, 17,3 分)有 3 人携带会议资料乘坐电梯,这 3 人的体重共 210kg,每捆资猜中 20kg,电梯最大负荷为1050kg ,则该电梯在此 3 人乘坐的状况下最多还可以搭载捆资料.【答案】 422. (2011湖北襄阳,15,3分)我国从2011 年 5 月 1 日起在公众场所推行“禁烟”,为配合“禁烟”行动,某校组织展开了“吸烟有害健康”的知识比赛,共有20 道题 .答对一题记10分,答错(或不答)一题记 5 分 .小明参加本次比赛得分要超出100 分,他最少要答对道题 .【答案】 14三、解答题1.(2011 广东广州市, 21, 12 分)某商店 5 月 1 日举行促销优惠活动,当日到该商店购买商品有两种方案,方案一:用 168 元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的 8 折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5 折优惠.已知小敏 5 月 1 日前不是该商店的会员.( 1)若小敏不购买会员卡,所购买商品的价格为120 元时,实质应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采纳方案一更合算?【答案】( 1) 120×0.95=114(元)所以实质应支付114 元.( 2)设购买商品的价格为x 元,由题意得:0.8x+168< 0.95x解得 x>1120所以当购买商品的价格超出1120 元时,采纳方案一更合算.2. (2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15 万吨,乙地 13 万吨.现有 A 、B 两水库各调出14 万吨水增援甲、乙两地抗旱.从 A 地到甲地50千米,到乙地30 千米;从 B 地到甲地60 千米,到乙地45 千米.⑴设从 A 水库调往甲地的水量为x 万吨,完成下表水量 /万吨调入地甲乙总计调出地A x14B14总计151328⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨 ?千米)【答案】⑴(从左至右,从上至下)14- x15- x x- 1⑵y=50x+ ( 14-x) 30+60( 15- x)+( x- 1) 45=5x+1275解不等式1≤x≤14所以 x=1 时 y 获得最小值y min=12803. (2011浙江湖州,23,10)我市水产养殖专业户王大爷承包了30 亩水塘,分别养殖甲鱼和桂鱼.相关成本、销售额见下表:(1) 2011 年,王大爷养殖甲鱼20 亩,桂鱼 10 亩.求王大爷这一年共收益多少万元?(收益=销售额-成本)(2) 2011 年,王大爷连续用这30 亩水塘所有养殖甲鱼和桂鱼,计划投入成本不超出70万元.若每亩养殖的成本、销售额与2011 年相同,要获取最大收益,他应养殖甲鱼和桂鱼各多少亩?(3) 已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg .依据 (2) 中的养殖亩数,为了节约运输成本,实质使用的运输车辆每载装载饲料的总量是原计划每次装载总量的2 倍,结果运输养殖所需所有饲料比原计划减少了 2 次.求王大爷原定的运输车辆每次可装载饲料多少kg?【答案】解:(1)2011 年王大爷的收益为:20 ( 3-2.4)+10 (25. - 2)= 17(万元)(2)设养殖甲鱼 x 亩,则养殖桂鱼( 30- x)亩.由题意得 2.4x 2(30 x) 70, 解得x 25,又设王大爷可获取收益为y 万元,则y0.6 x 0.5(30 x) ,即 y1.x 1510∵函数值 y 随 x 的增大而增大,∴当 x=25,可获取最大收益 .答:要获取最大收益,应养殖甲鱼25 亩,养殖桂鱼 5 亩.( 3 )设王大爷原定的运输车辆每次可装载饲料akg ,由( 2 )得,共需饲料为500 25+700 5=16000( kg),依据题意,得1600016000 2 ,解得 a 4000( kg) .a2a答:王大爷原定的运输车辆每次可装载饲料4000kg.4. (2011浙江绍兴,22,12分)筹建中的城南中学需720套担当课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的一定 5 人一组,每组每日可生产12 张;生产椅子的一定 4 人一组,每组每日可生产24 把 .已知学校筹建组要求光明厂 6 天完成这项生产任务 .(1)问光明厂均匀每日要生产多少套单人课桌椅?(2)先学校筹建组组要求最少提早1 天完成这项生产任务,光明厂生产课桌椅的员工增加到 84 名,试给出一种分配生产桌子、椅子的员工数的方案.【答案】7206=120 ,光明厂均匀每日要生产120 套单人课桌椅 .( 2)设x人生产桌子,则(84x) 人生产椅子,x12 5 720,则84 x24 5 720, 4解得 60 x60, x 60,84x 24 ,生产桌子60 人,生产椅子24 人。
最新中考数学真题汇编06不等式(含答案解析)
不等式(组)一、选择题1. (•广西贺州,第7题3分)不等式地解集在数轴上表示正确地是()A.B.C.D.考点:在数轴上表示不等式地解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式地解集,再求出它们地公共部分,然后把不等式地解集表示在数轴上即可解答:,解得,故选:A.点评:把每个不等式地解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上地点把数轴分成若干段,如果数轴地某一段上面表示解集地线地条数与不等式地个数一样,那么这段就是不等式组地解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2. (•广西玉林市、防城港市,第10题3分)在等腰△ABC中,AB=AC,其周长为20 cm,则AB边地取值范围是()A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm考点:等腰三角形地性质;解一元一次不等式组;三角形三边关系.分析:设AB=AC=x,则BC=20﹣2x,根据三角形地三边关系即可得出结论.解答:解:∵在等腰△ABC中,AB=AC,其周长为20cm,∴设AB=AC=x cm,则BC=(20﹣2x)cm,∴,解得5cm<x<10cm.故选B.点评:本题考查地是等腰三角形地性质,熟知等腰三角形地两腰相等是解答此题地关键.3.(年云南省,第3题3分)不等式组地解集是()A. x>B.﹣1≤x<C.x<D.x≥﹣1考点:解一元一次不等式组.分析:分别求出各不等式地解集,再求出其公共解集即可.解答:,由①得,x>,由②得,x≥﹣1,故此不等式组地解集为:x>.故选A.点评:本题考查地是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”地原则是解答此题地关键.4.(年广东汕尾,第3题4分)若x>y,则下列式子中错误地是()A.x﹣3>y﹣3 B.>C.x+3>y+3D.﹣3x>﹣3y分析:根据不等式地基本性质,进行选择即可.解答:A、根据不等式地性质1,可得x﹣3>y﹣3,故A正确;B、根据不等式地性质2,可得>,故B正确;C、根据不等式地性质1,可得x+3>y+3,故C正确;D、根据不等式地性质3,可得﹣3x<﹣3y,故D错误;故选D.点评:本题考查了不等式地性质:(1)不等式两边加(或减)同一个数(或式子),不等号地方向不变.(2)不等式两边乘(或除以)同一个正数,不等号地方向不变.(3)不等式两边乘(或除以)同一个负数,不等号地方向改变.5.(•毕节地区,第5题3分)下列叙述正确地是()A.方差越大,说明数据就越稳定B.在不等式两边同乘或同除以一个不为0地数时,不等号地方向不变C.不在同一直线上地三点确定一个圆D.两边及其一边地对角对应相等地两个三角形全等考点:方差;不等式地性质;全等三角形地判定;确定圆地条件分析:利用方差地意义、不等号地性质、全等三角形地判定及确定圆地条件对每个选项逐一判断后即可确定正确地选项.解答:A、方差越大,越不稳定,故选项错误;B、在不等式地两边同时乘以或除以一个负数,不等号方向改变,故选项错误;C、正确;D、两边及其夹角对应相等地两个三角形全等,故选项错误.故选C.点评:本题考查了方差地意义、不等号地性质、全等三角形地判定及确定圆地条件,属于基本定理地应用,较为简单.6.(•武汉)为了解某一路口某一时段地汽车流量,小明同学10天中在同一时段统计通过该路口地汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口地汽车数量超过200辆地天数为()A.9B.10 C.12 D.15考点:折线统计图;用样本估计总体分析:先由折线统计图得出10天中在同一时段通过该路口地汽车数量超过200辆地天数,求出其频率,再利用样本估计总体地思想即可求解.解答:由图可知,10天中在同一时段通过该路口地汽车数量超过200辆地有4天,频率为:=0.4,所以估计一个月(30天)该时段通过该路口地汽车数量超过200辆地天数为:30×0.4=12(天).故选C.点评:本题考查了折线统计图及用样本估计总体地思想,读懂统计图,从统计图中得到必要地信息是解决问题地关键.7.(•邵阳,第6题3分)不等式组地解集在数轴上表示正确地是()A.B.C.D.考在数轴上表示不等式地解集;解一元一次不等式组点:分析:先求出不等式组中每一个不等式地解集,再求出它们地公共部分,然后把不等式地解集表示在数轴上即可.解答:,解得,故选:B.点评:把每个不等式地解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上地点把数轴分成若干段,如果数轴地某一段上面表示解集地线地条数与不等式地个数一样,那么这段就是不等式组地解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(·台湾,第22题3分)图为歌神KTV地两种计费方案说明.若晓莉和朋友们打算在此KTV地一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?( )A.6 B.7 C.8 D.9分析:设晓莉和朋友共有x人,分别计算选择包厢和选择人数地费用,然后根据选择包厢计费方案会比人数计费方案便宜,列不等式求解.解答:设晓莉和朋友共有x人,若选择包厢计费方案需付:900×6+99x元,若选择人数计费方案需付:540×x+(6﹣3)×80×x=780x(元),∴900×6+99x<780x,解得:x>5400681=7633681.∴至少有8人.故选C.点评:本题考查了一元一次不等式地应用,解答本题地关键是读懂题意,找出合适地不等关系,列不等式求解.9. (•湘潭,第6题,3分)式子有意义,则x地取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1考点:二次根式有意义地条件.分析:根据二次根式地被开方数是非负数列出不等式x﹣1≥0,通过解该不等式即可求得x 地取值范围.解答:根据题意,得x﹣1≥0,解得,x≥1.故选C.点评:此题考查了二次根式地意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中地被开方数必须是非负数,否则二次根式无意义.10. (•益阳,第5题,4分)一元二次方程x2﹣2x+m=0总有实数根,则m应满足地条件是()A.m>1 B.m=1 C.m<1 D.m≤1考点:根地判别式.分析:根据根地判别式,令△≥0,建立关于m地不等式,解答即可.解答:∵方程x2﹣2x+m=0总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选D.点评:本题考查了根地判别式,一元二次方程根地情况与判别式△地关系:(1)△>0⇔方程有两个不相等地实数根;(2)△=0⇔方程有两个相等地实数根;(3)△<0⇔方程没有实数根.11. (•株洲,第2题,3分)x取下列各数中地哪个数时,二次根式有意义()A.﹣2 B.0 C.2 D.4考点:二次根式有意义地条件.分析:二次根式地被开方数是非负数.解答:依题意,得x﹣3≥0,解得,x≥3.观察选项,只有D符合题意.故选:D.点评:考查了二次根式地意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中地被开方数必须是非负数,否则二次根式无意义.12. (•株洲,第6题,3分)一元一次不等式组地解集中,整数解地个数是()A.4 B.5 C.6 D.7考点:一元一次不等式组地整数解.分析:先求出不等式地解集,再求出不等式组地解集,找出不等式组地整数解即可.解答:∵解不等式2x+1>0得:x>﹣12,解不等式x﹣5≤0得:x≤5,∴不等式组地解集是﹣12<x≤5,整数解为0,1,2,3,4,5,共6个,故选C.点评:本题考查了解一元一次不等式,解一元一次不等式组地应用,解此题地关键是求出不等式组地解集.13.(•滨州,第6题3分)a,b都是实数,且a<b,则下列不等式地变形正确地是()A.a+x>b+x B.﹣a+1<﹣b+1C.3a<3b D.>考点:不等式地性质分析:根据不等式地性质1,可判断A,根据不等式地性质3、1可判断B,根据不等式地性质2,可判断C、D.解答:A、不等式地两边都加或都减同一个整式,不等号地方向不变,故A错误;B、不等式地两边都乘或除以同一个负数,不等号地方向改变,故B错误;C、不等式地两边都乘以或除以同一个正数,不等号地方向不变,故C正确;D、不等式地两边都乘以或除以同一个正数,不等号地方向不变,故D错误;故选:C.点评:本题考查了不等式地性质,不等式地两边都乘或除以同一个负数,不等号地方向改变.14.(•德州,第6题3分)不等式组地解集在数轴上可表示为()A.B.C.D.考点:在数轴上表示不等式地解集;解一元一次不等式组分析:先求出不等式组中每一个不等式地解集,再求出它们地公共部分,然后把不等式地解集表示在数轴上即可.解不等式组得:,再分别表示在数轴上即可得解.解答:解得,故选:D.点评:本题考查了在数周表示不等式地解集,把每个不等式地解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上地点把数轴分成若干段,如果数轴地某一段上面表示解集地线地条数与不等式地个数一样,那么这段就是不等式组地解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.(年山东泰安,第15题3分)若不等式组有解,则实数a地取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣36分析:先求出不等式组中每一个不等式地解集,不等式组有解,即两个不等式地解集有公共部分,据此即可列不等式求得a地范围.解答:,解①得:x<a﹣1,解②得:x≥﹣37,则a﹣1>﹣37,解得:a>﹣36.故选C.点评:本题考查地是一元一次不等式组地解,解此类题目常常要结合数轴来判断.还可以观察不等式地解,若x>较小地数、<较大地数,那么解集为x介于两数之间.二.填空题1. (•广东,第15题4分)不等式组地解集是.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式地解集,找出两解集地公共部分即可.解答:,由①得:x<4;由②得:x>1,则不等式组地解集为1<x<4.故答案为:1<x<4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题地关键.2.(•新疆,第10题5分)不等式组地解集是.考点:解一元一次不等式组分析:先求出不等式组中每一个不等式地解集,再求出它们地公共部分就是不等式组地解集.解答:,解①得:x>﹣5,解②得:x<﹣2,则不等式组地解集是:﹣5<x<﹣2.故答案是:﹣5<x<﹣2.点评:本题考查地是一元一次不等式组地解,解此类题目常常要结合数轴来判断.还可以观察不等式地解,若x>较小地数、<较大地数,那么解集为x介于两数之间.3.(•温州,第13题5分)不等式3x﹣2>4地解是.考点:解一元一次不等式.分析:先移项,再合并同类项,把x地系数化为1即可.解答:移项得,3x>4+2,合并同类项得,3x>6,把x地系数化为1得,x>2.故答案为:x>2.点评:本题考查地是解一元一次不等式,熟知解一元一次不等式地基本步骤是解答此题地关键.4.(•毕节地区,第17题5分)不等式组地解集为.考点:解一元一次不等式组分析:分别求出各不等式地解集,再求出其公共解集即可.解答:,由①得,x≤1,由②得,x≥﹣4,故此不等式组地解集为:﹣4≤x≤1.故答案为:﹣4≤x≤1.点评:本题考查地是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”地原则是解答此题地关键.5.(•武汉,第18题6分)已知直线y=2x﹣b经过点(1,﹣1),求关于x地不等式2x﹣b≥0地解集.考点:一次函数与一元一次不等式分析:把点(1,﹣1)代入直线y=2x﹣b得到b地值,再解不等式.解答:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3.解2x﹣3≥0得,x≥.点评:本题考查了一次函数与一元一次不等式,要知道,点地坐标符合函数解析式.6.(•四川自贡,第12题4分)不等式组地解集是.考点:解一元一次不等式组分析:分别求出各不等式地解集,再求出其公共解集即可.解答:,由①得,x≤32,由②得,x>1,故此不等式组地解集为:1<x≤32.故答案为:1<x≤32.点评:本题考查地是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”地原则是解答此题地关键.7.(·浙江金华,第11题4分)写出一个解为x1≥地一元一次不等式.考点:1.开放型;2.不等式地解集.分析:根据不等式地性质,从x≥1逆推即可得到一元一次不等式:x1x10≥⇒-≥(答案不唯一).解答:x10-≥(答案不唯一).8. (•株洲,第16题,3分)如果函数y=(a﹣1)x2+3x+地图象经过平面直角坐标系地四个象限,那么a地取值范围是.考点:抛物线与x轴地交点分析:函数图象经过四个象限,需满足3个条件:(I)函数是二次函数;(II)二次函数与x轴有两个交点;(III)二次函数与y轴地正半轴相交.解答:函数图象经过四个象限,需满足3个条件:(I)函数是二次函数.因此a﹣1≠0,即a≠1①(II)二次函数与x轴有两个交点.因此△=9﹣4(a﹣1)=﹣4a﹣11>0,解得a<﹣②(III)二次函数与y轴地正半轴相交.因此>0,解得a>1或a<﹣5③综合①②③式,可得:a<﹣5.故答案为:a<﹣5.点评:本题考查二次函数地图象与性质、二次函数与x轴地交点、二次函数与y轴交点等知识点,解题关键是确定“函数图象经过四个象限”所满足地条件.9. (年江苏南京,第15题,2分)铁路部门规定旅客免费携带行李箱地长、宽、高之和不超过160cm,某厂家生产符合该规定地行李箱,已知行李箱地高为30cm,长与宽地比为3:2,则该行李箱地长地最大值为cm.考点:一元一次不等式地应用.分析:设长为3x,宽为2x,再由行李箱地长、宽、高之和不超过160cm,可得出不等式,解出即可.解答:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱地长地最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式地应用,解答本题地额关键是仔细审题,找到不等关系,建立不等式.10. (年江苏南京,第16题,2分)已知二次函数y=ax2+bx+c中,函数y与自变量x地部分对应值如表:x…﹣1 0 1 2 3 …y…10 5 2 1 2 …则当y<5时,x地取值范围是.考点:二次函数与不等式分析:根据表格数据,利用二次函数地对称性判断出x=4时,y=5,然后写出y<5时,x 地取值范围即可.解答:由表可知,二次函数地对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x地取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5地另一个x地值是解题地关键.三.解答题1. (•安徽省,第20题10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨地收费标准,共支付餐厨和建筑垃圾处理费5200元.从年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业年处理地这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理地餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量地3倍,则年该企业最少需要支付这两种垃圾处理费共多少元?考点:一次函数地应用;二元一次方程组地应用;一元一次不等式地应用.分析:(1)设该企业2013年处理地餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业年处理地餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a 元,先求出x地范围,由于a地值随x地增大而增大,所以当x=60时,a值最小,代入求解.解答:(1)设该企业2013年处理地餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理地餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业年处理地餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a 元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a地值随x地增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:年该企业最少需要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式地应用,找准等量关系正确地列出方程是解决本题地关键;2. (•珠海,第12题6分)解不等式组:.考点:解一元一次不等式组.分析:分别求出各不等式地解集,再求出其公共解集即可.解答:,由①得,x>﹣2,由②得,x≤﹣1,故此不等式组地解集为:﹣2<x≤﹣1.点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”地法则是解答此题地关键.3. (•珠海,第20题9分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y地取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∵y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y地取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y地取值范围是.(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y地取值范围(结果用含a地式子表示).考点:一元一次不等式组地应用.专题:阅读型.分析:(1)根据阅读材料所给地解题过程,直接套用解答即可;(2)理解解题过程,按照解题思路求解.解答:(1)∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y地取值范围是1<x+y<5;(2)∵x﹣y=a,∴x=y+a,又∵x<﹣1,∴y+a<﹣1,∴y<﹣a﹣1,又∵y>1,∴1<y<﹣a﹣1,…①同理得:a+1<x<﹣1,…②由①+②得1+a+1<y+x<﹣a﹣1+(﹣1),∴x+y地取值范围是a+2<x+y<﹣a﹣2.点评:本题考查了一元一次不等式组地应用,解答本题地关键是仔细阅读材料,理解解题过程,难度一般.4. (•广西玉林市、防城港市,第24题9分)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废地电动车数量是上一年年底电动车拥有量地10%,假定每年新增电动车数量相同,问:(1)从今年年初起每年新增电动车数量最多是多少万辆?(2)在(1)地结论下,今年年底到明年年底电动车拥有量地年增长率是多少?(结果精确到0.1%)考点:一元二次方程地应用;一元一次不等式地应用.分析:(1)根据题意分别求出今年将报废电动车地数量,进而得出明年报废地电动车数量,进而得出不等式求出即可;(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量地年增长率.解答:(1)设从今年年初起每年新增电动车数量是x万辆,由题意可得出:今年将报废电动车:10×10%=1(万辆),∴[(10﹣1)+x](1﹣10%)+x≤11.9,解得:x≤2.答:从今年年初起每年新增电动车数量最多是2万辆;(2)∵今年年底电动车拥有量为:(10﹣1)+x=11(万辆),明年年底电动车拥有量为:11.9万辆,∴设今年年底到明年年底电动车拥有量地年增长率是y,则11(1+y)=11.9,解得:y≈0.082=8.2%.答:今年年底到明年年底电动车拥有量地年增长率是8.2%.点评:此题主要考查了一元一次不等式地应用以及一元一次方程地应用,分别表示出今年与明年电动车数量是解题关键.5.(年四川资阳,第22题9分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调地采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱地采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调地数量不少于冰箱数量地,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台地销售单价售出空调和冰箱,且全部售完.在(1)地条件下,问采购空调多少台时总利润最大?并求最大利润.考点:二次函数地应用;一元一次不等式组地应用.分析:(1)设空调地采购数量为x台,则冰箱地采购数量为(20﹣x)台,然后根据数量和单价列出不等式组,求解得到x地取值范围,再根据空调台数是正整数确定进货方案;(2)设总利润为W元,根据总利润等于空调和冰箱地利润之和整理得到W与x地函数关系式并整理成顶点式形式,然后根据二次函数地增减性求出最大值即可.解答:解:(1)设空调地采购数量为x台,则冰箱地采购数量为(20﹣x)台,由题意得,,解不等式①得,x≥11,解不等式②得,x≤15,所以,不等式组地解集是11≤x≤15,∵x为正整数,∴x可取地值为11、12、13、14、15,所以,该商家共有5种进货方案;(2)设总利润为W元,y=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100,2则W=(1760﹣y1)x1+(1700﹣y2)x2,=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x),=1760x+20x2﹣1500x+10x2﹣800x+12000,=30x2﹣540x+12000,=30(x﹣9)2+9570,当x>9时,W随x地增大而增大,∵11≤x≤15,∴当x=15时,W最大值=30(15﹣9)2+9570=10650(元),答:采购空调15台时,获得总利润最大,最大利润值为10650元.点评:本题考查了二次函数地应用,一元一次不等式组地应用,(1)关键在于确定出两个不等关系,(2)难点在于用空调地台数表示出冰箱地台数并列出利润地表达式.6.(年天津市,第19题8分)解不等式组请结合题意填空,完成本题地解答:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②地解集在数轴上表示出来;(Ⅳ)原不等式组地解集为.考点:解一元一次不等式组;在数轴上表示不等式地解集.分析:分别求出各不等式地解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:(I)解不等式①,得x≥﹣1;(II)解不等式②得,x≤1,(III)在数轴上表示为:;(IN)故此不等式地解集为:﹣1≤x≤1.故答案分别为:x≥﹣1,x≤1,﹣1≤x≤1.点评:本题考查地是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”地原则是解答此题地关键.7.(•舟山,第21题8分)某汽车专卖店销售A,B两种型号地新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车地售价各为多少元.(2)甲公司拟向该店购买A,B两种型号地新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组地应用;二元一次方程组地应用分析:(1)每辆A型车和B型车地售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B 两种型号地新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:(1)每辆A型车和B型车地售价分别是x万元、y万元.则,解得.答:每辆A型车地售价为18万元,每辆B型车地售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得 2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组地应用和二元一次方程组地应用.解决问题地关键是读懂题意,找到关键描述语,进而找到所求地量地等量关系.8.(年广东汕尾,第23题11分)某校为美化校园,计划对面积为1800m2地区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化地面积是乙队每天能完成绿化地面积地2倍,并且在独立完成面积为400m2区域地绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化地面积分别是多少m2?(2)若学校每天需付给甲队地绿化费用为0.4万元,乙队为0.25万元,要使这次地绿化总费用不超过8万元,至少应安排甲队工作多少天?分析:(1)设乙工程队每天能完成绿化地面积是xm2,根据在独立完成面积为400m2区域地绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设至少应安排甲队工作x天,根据这次地绿化总费用不超过8万元,列出不等式,求解即可.解答:(1)设乙工程队每天能完成绿化地面积是xm2,根据题意得:﹣=4,解得:x=50经检验x=50是原方程地解,则甲工程队每天能完成绿化地面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化地面积分别是100m2、50m2;(2)设至少应安排甲队工作x天,根据题意得:0.4x+×0.25≤8,解得:x≥10,答:至少应安排甲队工作10天.点评:此题考查了分式方程地应用,关键是分析题意,找到合适地数量关系列出方程和不等式,解分式方程时要注意检验.9.(•襄阳,第24题10分)我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同地树苗共6000棵,且甲种树苗不得多于乙种树苗,.某承包商以26万元地报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗地平均费用为8元,甲、乙两种树苗地购买价及成活率如表:品种购买价(元/棵)成活率甲20 90%乙32 95%设购买甲种树苗x棵,承包商获得地利润为y元.请根据以上信息解答下列问题:(1)设y与x之间地函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%地利润,应如何选购树苗?(3)政府与承包商地合同要求,栽植这批树苗地成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则城府另给予工程款总额6%地奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?考点:一次函数地应用;一元一次不等式组地应用分析:(1)根据利润等于价格减去成本,可得答案;(2)根据利润不低于中标价16%,可得不等式,根据解不等式,可得答案;(3)分类讨论,成活率不低于93%且低于94%时,成活率达到94%以上(含94%),可得相应地最大值,根据有理数地比较,可得答案.解答:(1)y=260000﹣[20x+32(6000﹣x)+8×6000=12x+20000,自变量地取值范围是:0<x≤3000;(2)由题意,得12x+20000≥260000×16%,解得:x≥1800,∴1800≤x≤3000,购买甲种树苗不少于1800棵且不多于3000棵;(3)①若成活率不低于93%且低于94%时,由题意得。
中考数学 不等式(组)专题训练(含答案)精选全文完整版
可编辑修改精选全文完整版2020中考数学 不等式(组)专题训练(含答案)一、单选题(共有10道小题)1.实数a b c ,,在数轴上对应的点如下图所示,则下列式子中正确的是()A .ac bc >B .––a b a b =C .–a b c -<<D .––––a c b c >2.如图,在数轴上表示不等式组1010x x ->⎧⎨+≥⎩的解集,其中正确的是()3.适合不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩的全部整数解的和是( )A . -1B . 0C .1D . 2 4.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( )A .a ≤-3B .a <-3C .a >3D .a ≥35.不等式组102123x x ⎧->⎪⎨⎪-<⎩的解集为( )A.12x >B.1x <-C.211x <<-D.12x >- 6.一元一次不等式()122573x x --≥-的解集为()A.109x ≥B.209x ≥C.109x ≤D.209x ≤ xcb aABDC7.不等式组()1132230x x x ⎧+≥-⎪⎨⎪-->⎩的最大整数解为( )A . 8B .6C .5D .48.不等式2<10x 的解集在数轴上表示正确的是( )9.不等式210x ->的解集是( )A.12x>B. 12x <C. 12x >-D. 12x <-10.若不等式02>-ax 的解集为x <-2,则关于y 的方程02=+ay 的解为( )A .y =-1B .y =1C .y =-2D .y =2二、填空题(共有7道小题)11.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒, 步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于米12.不等式组8<4-121>7-3x x x x +⎧⎪+⎨⎪⎩的解集为 .13.不等式()133x m m ->-的解集为1x >,则m 的值为 14.不等式组11343x x ⎧≤⎪⎨⎪-<⎩的解集是________.15.解不等式组21 1 21 3 x x +≥-⎧⎨+≤⎩①②,请结合题意填空,完成本题的解答(1)解不等式①,得(2)解不等式②,得(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为:16.不等式组()32423x x x --≥⎧⎪⎨<⎪⎩的解集是________.A C DB17.已知关于x 的不等式组2132x x x m+⎧>-⎪⎨⎪<⎩的所有整数解的和是-7,则m 的取值范围是三、计算题(共有2道小题) 18.已知3=x 是关于x 的不等式32223xax x >+-的解,求a 的取值范围.19.解不等式组:()3242113x x x x ⎧-≥-⎪⎨+>-⎪⎩ 并写出它的所有的整数解.四、解答题(共有5道小题)20.某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本。
中考数学真题分类汇编第一期专题6不等式组含解析
不等式(组)一、选择题1.(xx•山东滨州•3分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.B.C.D.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.2.(xx·山东临沂·3分)不等式组的正整数解的个数是()A.5 B.4 C.3 D.2【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的整数.【解答】解:解不等式1﹣2x<3,得:x>﹣1,解不等式≤2,得:x≤3,则不等式组的解集为﹣1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选:C.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.3.(xx·山东泰安·3分)不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5【分析】根据解不等式组,可得不等式组的解,根据不等式组的解有3个整数解,可得答案.【解答】解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,解得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选:B.【点评】本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.4. (xx•湖南省永州市•4分)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关【分析】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.【解答】解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.【点评】此题考查一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.5. (xx•株洲市•3分)下列哪个选项中的不等式与不等式组成的不等式组的解集为.( )A. B. C. D.【答案】C【解析】分析:首先计算出不等式5x>8+2x的解集,再根据不等式的解集确定方法:大小小大中间找可确定另一个不等式的解集,进而选出答案.详解:5x>8+2x,解得:x>,根据大小小大中间找可得另一个不等式的解集一定是x<5,故选:C.点睛:此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.6. (xx年江苏省宿迁)若a<b,则下列结论不一定成立的是()。
2021全国中考数学试卷分类-06 不等式(组)及其应用(含解析)
06 不等式(含解析)一、选择题1.(2021•浙江湖州,T3,3分)不等式3x ﹣1>5的解集是( )A .x >2B .x <2C .x >43D .x <43【考点】解一元一次不等式.【专题】一元一次不等式(组)及应用;运算能力.【分析】不等式移项合并,把x 系数化为1,即可求出解集.【解答】解:不等式3x ﹣1>5,移项合并得:3x >6,解得:x >2.故选:A .【点评】此题考查了解一元一次不等式,熟练掌握解不等式的方法是解本题的关键.2.(2021浙江丽水,5,3分)若﹣3a >1,两边都除以﹣3,得( )A .a <31-B .a >31-C .a <﹣3D .a >﹣3【考点】不等式的性质.【分析】根据不等式的性质3求出答案即可.【解答】解:∵﹣3a >1,∴不等式的两边都除以﹣3,得a <31-, 故选:A .【点评】本题考查了不等式的性质,能灵活运用不等式的性质3进行变形是解此题的关键,注意:不等式的两边都除以同一个负数,不等号的方向要改变.3.(3分)(2021•河北)已知a >b ,则一定有﹣4a □﹣4b ,“□”中应填的符号是( )A .>B .<C .≥D .= 【考点】不等式的性质.【专题】方程与不等式;推理能力.【分析】根据不等式的性质:不等式两边同时乘以负数,不等号的方向改变,即可选出答案.【解答】解:根据不等式的性质,不等式两边同时乘以负数,不等号的方向改变.∵a>b,∴﹣4a<﹣4b.故选:B.【点评】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.4.(2021•浙江嘉兴,T10,3分)已知点P(a,b)在直线y=﹣3x﹣4上,且2a﹣5b≤0,则下列不等式一定成立的是()A.ab≤52B.ab≥52C.ba≥25D.ba≤25【考点】不等式的性质;一次函数图象上点的坐标特征.【分析】结合选项可知,只需要判断出a和b的正负即可,点P(a,b)在直线y=﹣3x ﹣4上,代入可得关于a和b的等式,再代入不等式2a﹣5b≤0中,可判断出a与b正负,即可得出结论.【解答】解:∵点P(a,b)在直线y=﹣3x﹣4上,∴﹣3a﹣4=b,又2a﹣5b≤0,∴2a﹣5(﹣3a﹣4)≤0,解得a≤﹣2017<0,当a=﹣2017时,得b=﹣817,∴b≥﹣8 17,∵2a﹣5b≤0,∴2a≤5b,∴ba≤25.故选:D.【点评】本题主要考查一次函数上点的坐标特征,不等式的基本性质等,判断出a与b 的正负是解题关键.5.(2021江苏南通,8,3分)若关于x的不等式组2312xx a+>⎧⎨-≤⎩恰有3个整数解,则实数a的取值范围是()A.7<a<8B.7<a≤8C.7≤a<8D.7≤a≤8【考点】一元一次不等式组的整数解.【专题】一元一次不等式(组)及应用;运算能力.【分析】先求出每个不等式的解集,再求出不等式组的解集,求出不等式组的3个整数解是5,6,7,再求出a的取值范围即可.【解答】解:2312xx a+>⎧⎨-≤⎩①②,解不等式①,得x>4.5,解不等式②,得x≤a,所以不等式组的解集是4.5<x≤a,∵关于x的不等式组2312xx a+>⎧⎨-≤⎩恰有3个整数解(整数解是5,6,7),∴7≤a<8,故选:C.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式组的解集和不等式组的整数解得出a的范围是解此题的关键.6.(2021广西贵港,6,3分)不等式1<2x﹣3<x+1的解集是()A.1<x<2 B.2<x<3 C.2<x<4 D.4<x<5【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求出各不等式的解集,再求出其公共部分即可.【解答】解:不等式组化为123231xx x<-⎧⎨-<+⎩①②,由不等式①,得x>2,由不等式②,得x<4,故原不等式组的解集是2<x<4,故选:C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2021湖南邵阳,7,3分)下列数值不是不等式组51341233x xx x->-⎧⎪⎨-≤-⎪⎩的整数解的是()A.﹣2B.﹣1C.0D.1【考点】一元一次不等式组的整数解.【专题】计算题;运算能力.【分析】先分别求每个不等式的解集,取其解集的公共部分作为不等式组的解集,然后再确定其整数解.【解答】解:51341233x xx x->-⎧⎪⎨-≤-⎪⎩①②,解不等式①,得:x>﹣32,解不等式②,得:x≤1,∴不等式组的解集为:﹣32<x≤1,∴不等式组的整数解为﹣1,0,1,故选:A.【点评】本题考查解一元一次不等式组,掌握解不等式组的步骤准确计算是解题关键.8.(2021广西北部湾经济区,12,3分)定义一种运算:a*b=,,a a bb a b≥⎧⎨<⎩,则不等式(2x+1)*(2﹣x)>3的解集是()A.x>1或x<13B.﹣1<x<13C.x>1或x<﹣1 D.x>13或x<﹣1【考点】有理数的混合运算;解一元一次不等式.【专题】一元一次不等式(组)及应用;运算能力.【分析】分x+1≥2和x+1<2两种情况,根据新定义列出不等式组分别求解可得.【解答】解:由新定义得212213x xx+≥-⎧⎨+>⎩或21223x xx+<-⎧⎨->⎩,解得x>1或x<﹣1 故选:C.【点评】此题考查的是一元一次不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.(2021重庆B卷,2,4分)不等式x>5的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集.【专题】数与式;数感.【分析】明确x>5在数轴上表示5的右边的部分即可.【解答】解:不等式x>5的解集在数轴上表示为:5右边的部分,不包括5,故选:A.【点评】本题考查了不等式解集在数轴上的表示,明确“左小右大、空无实有”是解题的关键.10.(2021重庆A卷,3,4分)不等式x≤2在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集.【专题】一元一次不等式(组)及应用;几何直观.【分析】先在数轴上找出表示数2的点,再向数轴的负方向画出即可.【解答】解:不等式x≤2的解集在数轴上表示为:,故选:D.【点评】本题考查了在数轴上表示不等式的解集,注意:不等式x≤2的解集在数轴上表示用实心点“•”.11.(2021•浙江金华,T4,3分)一个不等式的解集在数轴上表示如图,则这个不等式可以是()A.x+2>0 B.x﹣2<0 C.2x≥4D.2﹣x<0【考点】在数轴上表示不等式的解集;解一元一次不等式.【专题】一元一次不等式(组)及应用;几何直观;运算能力.【分析】解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】解:A、x>﹣2,故A错误;B、x<2,故B正确;C、x≥2,故C错误;D、x>2,故D错误.故选:B.【点评】本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.(2021湖南岳阳,4,3分)已知不等式组1024xx-<⎧⎨≥-⎩,其解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1<0,得:x<1,解不等式2x≥﹣4,得:x≥﹣2,则不等式组的解集为﹣2≤x<1,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题1.(2021浙江温州,14,5分)不等式组343215xx-<⎧⎪+⎨≥⎪⎩的解集为1≤x<7.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣3<4,得:x<7,解不等式325x+≥1,得:x≥1,则不等式组的解集为1≤x<7,故答案为:1≤x<7.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(3分)(2021•黑龙江)关于x的一元一次不等式组有解,则a的取值范围是a<6.【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求出每一个不等式的解集,根据不等式组有解,利用口诀:大小小大中间找可得关于a的不等式,解之即可.【解答】解:解不等式2x﹣a>0,得:x>,解不等式3x﹣4<5,得:x<3,∵不等式组有解,∴<3,解得a<6,故答案为:a<6.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2021辽宁大连,11,3分)不等式3x<x+6的解集是x<3.【考点】解一元一次不等式.【专题】一元一次不等式(组)及应用;运算能力.【分析】移项,合并同类项,系数化成1即可.【解答】解:3x<x+6,移项,得3x﹣x<6,合并同类项,得2x<6,系数化成1,得x<3,故答案为:x<3.【点评】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.4\.(2021湖南张家界,12,3分)不等式2217xx>⎧⎨+≤⎩的正整数解为3.【考点】一元一次不等式组的整数解.【专题】一元一次不等式(组)及应用;运算能力.【分析】求出第二个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,从而得出答案.【解答】解:解不等式2x+1≤7,得:x≤3,所以不等式组的解集为2<x≤3,则不等式组的正整数解为3,故答案为:3.【点评】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2021辽宁丹东,12,3分)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是k>﹣1且k≠0.【考点】根的判别式.【分析】由方程有两个不等实数根可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:2040k b ac ≠⎧⎨∆=->⎩,即0440k k ≠⎧⎨∆=+>⎩, 解得:k >﹣1且k ≠0.故答案为:k >﹣1且k ≠0.【点评】本题考查了根的判别式以及解一元一次不等式组,解题的关键是得出关于k 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式组)是关键.6.(2021辽宁丹东,13,3分)不等式组213x x m -<⎧⎨>⎩无解,则m 的取值范围 m ≥2 . 【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】先求出每个不等式的解集,再根据已知得出关于m 的不等式,求出不等式的解集即可.【解答】解:213x x m -<⎧⎨>⎩①②,解不等式①得:x <2,解不等式②x >m ,∵不等式组无解∴m ≥2,故答案为:m ≥2.【点评】本题主要考查了解一元一次不等式组,能够根据不等式的解集和已知得出关于m 的不等式是解题的关键.7.(2021•黑龙江绥化•T17•3分)某学校计划为“建***百年,铭记***史”演讲比赛购买奖品.已知购买2个A 种奖品和4个B 种奖品共需100元;购买5个A 种奖品和2个B 种奖品共需130元.学校准备购买A ,B 两种奖品共20个,且A 种奖品的数量不小于B 种奖品数量的25,则在购买方案中最少费用是 330 元.【考点】二元一次方程组的应用;一元一次不等式的应用;一次函数的应用.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;一次函数及其应用;应用意识.【分析】设A种奖品的单价为x元,B种奖品的单价为y元,根据“购买2个A种奖品和4个B种奖品共需100元;购买5个A种奖品和2个B种奖品共需130元”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,设购买A种奖品m个,则购买B种奖品(20﹣m)个,根据购买A种奖品的数量不小于B种奖品数量的25,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合m为整数即可得出m≥6,设购买总费用为w元,利用总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:设A种奖品的单价为x元,B种奖品的单价为y元,依题意得:24100 52130x yx y+=⎧⎨+=⎩,解得:2015 xy=⎧⎨=⎩.设购买A种奖品m个,则购买B种奖品(20﹣m)个.∵A种奖品的数量不小于B种奖品数量的25,∴m≥25(20﹣m),∴m≥407,又∵m为整数,∴m≥6.设购买总费用为w元,则w=20m+15(20﹣m)=5m+300,∵5>0,∴w随m的增大而增大,∴当m=6时,w取得最小值,最小值=5×6+300=330.故答案为:330.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,根据各数量之间的关系,找出w关于m的函数关系式是解题的关键.三、解答题1.(2021•四川凉山州•T18•5分)解不等式:1-3x﹣x<3﹣24x+.【考点】解一元一次不等式.【专题】一元一次不等式(组)及应用;运算能力.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项,系数化为1可得.【解答】解:去分母,得:4(1﹣x)﹣12x<36﹣3(x+2),去括号,得:4﹣4x﹣12x<36﹣3x﹣6,移项、合并,得:﹣13x<26,系数化为1得,x>﹣2.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的性质是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2.(2021•四川乐山•T17•9分)当x取何正整数值时,代数式32x+与213x-的值的差大于1.【考点】代数式求值;解一元一次不等式.【专题】一元一次不等式(组)及应用;运算能力.【分析】根据题意列出关于x的一元一次不等式32x+﹣213x->1,先去分母,然后通过移项、合并同类项、化系数为1进行解答即可.【解答】解:依题意得:32x+﹣213x->1,去分母,得:3(x+3)﹣2(2x﹣1)>6,去括号,得:3x+9﹣4x+2>6,移项,得:3x﹣4x>6﹣2﹣9,合并同类项,得:﹣x>﹣5,系数化为1,得:x<5.【点评】本题考查了解一元一次不等式.根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.3.(2021浙江宁波,1,4分)(2)解不等式组:⎩⎨⎧≤-<+03912x x .【考点】完全平方公式;平方差公式;解一元一次不等式组. 【专题】整式;运算能力.【分析】(2)分别解不等式,进而得出不等式组的解集. 【解答】解:(2)⎩⎨⎧≤-<+②①03912x x ,解①得:x <4, 解②得:x ≥3,∴原不等式组的解集是:3≤x <4.【点评】此题主要考查了乘法公式以及解一元一次不等式组,正确掌握乘法公式是解题关键.4.(2021广西贺州市,20,6分)解不等式组:()2552314x x x x +>+⎧⎨-<⎩①②.【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集. 【解答】解:解不等式①,得:x <1, 解不等式②,得:x >﹣3, 则不等式组的解集为﹣3<x <1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 5.(2021浙江绍兴,1,4分)(2)解不等式:5x +3≥2(x +3).【考点】实数的运算;零指数幂;解一元一次不等式;特殊角的三角函数值. 【专题】计算题;实数;一元一次不等式(组)及应用;运算能力.【分析】(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项,系数化为1可得.【解答】解:(2)5x +3≥2(x +3), 去括号得:5x +3≥2x +6,移项得:5x ﹣2x ≥6﹣3, 合并同类项得:3x ≥3, 解得:x ≥1.【点评】本题主要考查实数的运算与解一元一次不等式,解题的关键是熟练掌握不等式的性质.6.(10分)(2021江苏徐州,20,10分)(2)解不等式组:213238x x x -≤⎧⎨+>+⎩.【考点】解一元二次方程﹣因式分解法;解一元一次不等式组. 【专题】一元二次方程及应用;一元一次不等式(组)及应用;运算能力. 【分析】(2)先求出每个不等式的解集,再求出不等式组的解集即可. 【解答】解:(2)213238x x x -≤⎧⎨+>+⎩①②,解不等式①,得x ≤2, 解不等式②,得x <﹣3, 所以不等式组的解集是x <﹣3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.7. (2021•常州,20,8分)解不等式组:(2).【考点】解二元一次方程组;解一元一次不等式组.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;运算能力.【分析】(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集. 【解答】解:(2)解不等式3x +6>0,得:x >﹣2, 解不等式x ﹣2<﹣x ,得:x <1, 则不等式组的解集为﹣2<x <1.【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2021•浙江杭州,T17,6分)以下是圆圆解不等式组2(1)1(1)2xx+>-⎧⎨-->-⎩①②的解答过程:解:由①,得2+x>﹣1,所以x>﹣3.由②,得1﹣x>2,所以﹣x>1,所以x>﹣1.所以原不等式组的解是x>﹣1.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.【考点】解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:圆圆的解答过程有错误,正确过程如下:由①得2+2x>﹣1,∴2x>﹣3,∴x>﹣32,由②得1﹣x<2,∴﹣x<1,∴x>﹣1,∴不等式组的解集为x>﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2021湖北武汉,17,8分)解不等式组21,4101,x xx x≥-⎧⎨+>+⎩①②请按下列步骤完成解答.(1)解不等式①,得x≥﹣1;(2)解不等式②,得x>﹣3;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是x≥﹣1.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】一元一次不等式(组)及应用;运算能力.【分析】先解出两个不等式,然后在数轴上表示出它们的解集,即可写出不等式组的解集.【解答】解:21, 4101,x xx x≥-⎧⎨+>+⎩①②(1)解不等式①,得x≥﹣1;(2)解不等式②,得x>﹣3;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是x≥﹣1.故答案为:x≥﹣1;x>﹣3;x≥﹣1.【点评】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法.10.(2021海南,17,12分)(1)计算:23+|﹣3|÷3﹣25×5﹣1;(2)解不等式组261126xx x>-⎧⎪-+⎨≤⎪⎩并把它的解集在数轴(如图)上表示出来.【考点】负整数指数幂;二次根式的混合运算;在数轴上表示不等式的解集;解一元一次不等式组.【专题】二次根式;一元一次不等式(组)及应用;运算能力.【分析】(1)利用乘方的意义、绝对值的意义、二次根式的性质和负整数指数幂的意义计算;(2)分别解两个不等式得到x>﹣3和x≤2,再利用大小小大中间找得到不等式组的解集,然后在数轴上表示其解集.【解答】解:(1)原式=8+3÷3﹣5×1 5=8+1﹣1 =8;(2)261126xx x>-⎧⎪⎨-+≤⎪⎩①②,解①得x>﹣3,解②得x≤2,所以不等式组的解集为﹣3<x≤2,解集在数轴上表示为:【点评】本题考查了二次根式的混合运算:掌握二次根式的性质和负整数指数幂的意义是解决问题的关键.也考查了解不等式组.11.(2021内蒙古鄂尔多斯,17,8分)(1)解不等式组()432411152x xx x⎧--⎪⎨-+>-⎪⎩①②,并把解集在数轴上表示出来.(2)先化简:222444(2)2x x xxx x x-++÷--,再从2-,0,1,2中选取一个合适的x的值代入求值.【考点】分式的化简求值;解一元一次不等式组;在数轴上表示不等式的解集【专题】计算题;一元一次不等式(组)及应用;分式;运算能力【分析】(1)运用不等式性质分别解不等式①和②,然后借助数轴求解集的公共部分即可;(2)运用分式性质和因式分解进行化简,然后再选取合适的值代入计算.【解答】解:(1)由①得,4364x x-+,2x-;由②得,2(1)5(1)10x x->+-,225510x x->+-,33x->-,1x <,所以不等式组的解集是:21x -<, 它们的解集在数轴上表示如下:(2)222444(2)2x x x x x x x -++÷--222(2)24()(2)x x x x x x x -+÷---224x x x x --=÷- 2(2)(2)x x x x x -=⨯-+- 12x =-+, 0x ≠,2,2-,∴当1x =时,原式13=-.【点评】本题考查不等式性质及分式化简,重点是不等式两边同乘(除)一个负数时,注意要改变不等号方向;分式化简求值时,要注意选取使分式有意义的值代入计算. 12. (2021•湘西州)解不等式组:,并在数轴上表示它的解集.【考点】在数轴上表示不等式的解集;解一元一次不等式组. 【专题】一元一次不等式(组)及应用;运算能力.【分析】先求出不等式的解集,在数轴上表示出不等式的解集,最后求出不等式组的解集即可.【解答】解:解不等式①,得x >, 解不等式②,得x ≤1, 在数轴上表示不等式的解集为:,所以不等式组无解.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.13.(2021贵州安顺市,17,12分)(1)有三个不等式2x +3<﹣1,﹣5x >15,3(x ﹣1)>6,请在其中任选两个不等式,组成一个不等式组,并求出它的解集; 【考点】整式的加减;单项式乘多项式;完全平方公式;解一元一次不等式组.【专题】计算题;整式;一元一次不等式(组)及应用;运算能力.【分析】(1)根据题意,挑选两个不等式,组成不等式组.然后解之即可. 【解答】(1)解:第一种组合:231515x x +<-⎧⎨->⎩①②,解不等式①,得x <﹣2, 解不等式②,得x <﹣3 ∴原不等式组的解集是x <﹣3;第二种组合:()2311x x +<-⎧⎨3->6⎩①②,解不等式①,得x <﹣2, 解不等式②,得x >3, ∴原不等式组无解;第三种组合:()51531x x ->⎧⎨->6⎩①②,解不等式①,得x <﹣3, 解不等式②,得x >3, ∴原不等式组无解; (任选其中一种组合即可);【点评】本题考查了解一元一次不等式组,解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了;也考查了整式的运算.14.(9分)(2021•河北)已知训练场球筐中有A 、B 两种品牌的乒乓球共101个,设A 品牌乒乓球有x 个.(1)淇淇说:“筐里B 品牌球是A 品牌球的两倍.”嘉嘉根据她的说法列出了方程:101﹣x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法说明A 品牌球最多有几个.【考点】由实际问题抽象出一元一次方程;一元一次不等式的应用.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;应用意识.【分析】(1)解嘉嘉所列的方程可得出x的值,由x的值不为整数,即可得出淇淇的说法不正确;(2)设A品牌乒乓球有x个,则B品牌乒乓球有(101﹣x)个,根据B品牌球比A品牌球至少多28个,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中的最大整数值即可得出结论.【解答】解:(1)嘉嘉所列方程为101﹣x=2x,解得:x=33,又∵x为整数,∴x=33不合题意,∴淇淇的说法不正确.(2)设A品牌乒乓球有x个,则B品牌乒乓球有(101﹣x)个,依题意得:101﹣x﹣x≥28,解得:x≤36,又∵x为整数,∴x可取的最大值为36.答:A品牌球最多有36个.【点评】本题考查了一元一次不等式的应用以及由实际问题抽象出一元一次方程,解题的关键是:(1)通过解一元一次方程,求出x的值;(2)根据各数量之间的关系,正确列出一元一次不等式.15.(2021•湖北省黄冈•T22•10分)2021年是中国***建***100周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如表所示:甲种客车乙种客车载客量/(人/辆)40 55租金/(元/辆)500 600(1)共需租11辆大客车;(2)最多可以租用多少辆甲种型号大客车?(3)有几种租车方案?哪种租车方案最节省钱?【考点】有理数的混合运算;一元一次不等式的应用.【专题】一元一次不等式(组)及应用;应用意识.【分析】(1)利用租用乙种型号大客车的数量=师生人数÷每辆车的载客量,可求出租用乙种型号大客车的数量,结合共有11名教师且每辆汽车上至少要有一名教师,即可得出租车数量;(2)设租用x辆甲种型号大客车,则租用(11﹣x)辆乙种型号大客车,根据可乘坐人数=每辆车的载客量×租车数量,结合560人都有座,即可得出关于x的一元一次不等式,解之取其中的最大整数值即可得出结论;(3)由(2)中x的取值范围结合x为正整数,即可得出各租车方案,利用总租金=每辆车的租金×租车数量,可分别求出选择各方案所需租车费用,比较后即可得出结论.【解答】解:(1)∵549+11=560(人),560÷55=10(辆)……10(人),10+1=11(辆),且共有11名教师,每辆汽车上至少要有一名教师,∴共需租11辆大客车.故答案为:11.(2)设租用x辆甲种型号大客车,则租用(11﹣x)辆乙种型号大客车,依题意得:40x+55(11﹣x)≥560,解得:x≤3.答:最多可以租用3辆甲种型号大客车.(3)∵x≤3,且x为正整数,∴x=1或2或3,∴有3种租车方案,方案1:租用1辆甲种型号大客车,10辆乙种型号大客车;方案2:租用2辆甲种型号大客车,9辆乙种型号大客车;方案3:租用3辆甲种型号大客车,8辆乙种型号大客车.选择方案1所需租车费用为500×1+600×10=6500(元),选择方案2所需租车费用为500×2+600×9=6400(元),选择方案3所需租车费用为500×3+600×8=6300(元).∵6500>6400>6300,∴租车方案3最节省钱.【点评】本题考查了一元一次不等式的应用以及有理数的混合运算,解题的关键是:(1)利用租用乙种型号大客车的数量=师生人数÷每辆车的载客量,求出租用乙种型号大客车的数量;(2)根据各数量之间的关系,正确列出一元一次不等式;(3)利用总租金=每辆车的租金×租车数量,分别求出选择各方案所需租车费用.16.(2021广东广州,21,8分)民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”、“广东技工”、“南粤家政”三项培训工程,今年计划新增加培训共100万人次.(1)若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次;(2)“粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业,据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?【考点】一元一次方程的应用;一元一次不等式的应用.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;应用意识.【分析】(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,根据今年计划新增加培训共100万人次,即可得出关于x的一元一次方程,解之即可得出结论;(2)设李某的年工资收入增长率为m,利用李某今年的年工资收入=李某去年的年工资收入×(1+增长率),结合预计李某今年的年工资收入不低于12.48万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最小值即可得出结论.【解答】解:(1)设“南粤家政”今年计划新增加培训x万人次,则“粤菜师傅”今年计划新增加培训2x万人次,依题意得:31+2x+x=100,解得:x=23.。
2021年全国各省市数学中考分类汇编不等式与不等式组含答案
2021年年年年年年年年年年年年年年年年年年年年年年年年年一、选择题1. (2021·安徽省)设a ,b ,c 为互不相等的实数,且b =45a +15c ,则下列结论正确的是( )A. a >b >cB. c >b >aC. a −b =4(b −c)D. a −c =5(a −b)2. (2021·辽宁省阜新市)不等式组{2−2x ≤4x +1>3的解集,在数轴上表示正确的是( )A. B.C.D.3. (2021·湖南省湘潭市)不等式组{x +1≥24x −8<0的解集在数轴上表示正确的是( )A.B.C.D.4. (2021·重庆市)不等式x ≤2在数轴上表示正确的是( )A.B.C.D.5. (2021·贵州省遵义市)小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x 支签字笔,则下列不等关系正确的是( )A. 5×2+2x ≥30B. 5×2+2x ≤30C. 2×2+2x ≥30D. 2×2+5x ≤306. (2021·江苏省南通市)若关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解,则实数a的取值范围是( )A. 7<a <8B. 7<a ≤8C. 7≤a <8D. 7≤a ≤87. (2021·广西壮族自治区桂林市)将不等式组{x >−2x ≤3的解集在数轴上表示出来,正确A.B.C.D.8. (2021·广西壮族自治区南宁市)定义一种运算:a *b ={a,a ≥bb,a <b,则不等式(2x +1)*(2-x )>3的解集是( )A. x >1或x <13 B. −1<x <13 C. x >1或x <−1D. x >13或x <−19. (2021·内蒙古自治区包头市)定义新运算“⨂”,规定:a ⨂b =a -2b .若关于x 的不等式x ⨂m >3的解集为x >-1,则m 的值是( )A. −1B. −2C. 1D. 210. (2021·山东省济宁市)不等式组{x +3≥2x−12−x >−2的解集在数轴上表示正确的是( )A.B.C.D.11. (2021·黑龙江省)若关于x 的分式方程2x−bx−2=3的解是非负数,则b 的取值范围是( )A. b ≠4B. b ≤6且b ≠4C. b <6且b ≠4D. b <612. (2021·内蒙古自治区呼和浩特市)已知关于x 的不等式组{−2x −3≥1x 4−1≥a−12无实数解,则a 的取值范围是( )A. a ≥−52B. a ≥−2C. a >−52D. a >−213. (2021·广西壮族自治区贵港市)不等式1<2x -3<x +1的解集是( )A. 1<x <2B. 2<x <3C. 2<x <4D. 4<x <514. (2021·浙江省嘉兴市)已知点P (a ,b )在直线y =-3x -4上,且2a -5b ≤0,则下列不等式一定成立的是( )A. a b ≤52B. a b ≥52C. b a ≥25D. b a ≤2515. (2021·吉林省)不等式2x -1>3的解集是( )A. x >1B. x >2C. x <1D. x <2二、填空题16. (2021·辽宁省丹东市)不等式组{2x −1<3x >m 无解,则m 的取值范围______ .17. (2021·辽宁省大连市)不等式3x <x +6的解集是______ .18. (2021·黑龙江省哈尔滨市)不等式组{3x −7<2x −5≤10的解集是______ .19. (2021·天津市)不等式组{12x −1<03x +8≥−x的解集是__.20. (2021·湖北省襄阳市)不等式组{x +2≥4x −12x >1−x的解集是______ .21. (2021·湖北省荆门市)关于x 的不等式组{−(x −a)<31+2x 3≥x −1恰有2个整数解,则a 的取值范围是______ .22. (2021·湖南省益阳市)已知x 满足不等式组{x >−1x −2≤0,写出一个符合条件的x 的值______ .23. (2021·黑龙江省)已知关于x 的不等式组{3(x −a)≥2(x −1)2x−13≤2−x 2有5个整数解,则a 的取值范围是______ .24. (2021·贵州省黔东南苗族侗族自治州)不等式组{5x +2>3(x −1)12x −1≤7−32x的解集是______ . 25. (2021·山东省东营市)不等式组{2x−13−5x+12≤15x −1<3(x +1)的解集为__________.26. (2021·黑龙江省)关于x 的一元一次不等式组{2x −a >03x −4<5无解,则a 的取值范围是______ .27. (2021·湖南省张家界市)不等式{x >22x +1≤7的正整数解为______ .28. (2021·黑龙江省绥化市)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A 种奖品和4个B 种奖品共需100元;购买5个A 种奖品和2个B 种奖品共需130元.学校准备购买A ,B 两种奖品共20个,且A 种奖品的数量不小于B 种奖品数量的25,则在购买方案中最少费用是______ 元.29. (2021·黑龙江省双鸭山市)关于x 的一元一次不等式组{2x −a >03x −4<5有解,则a 的取值范围是______ .30. (2021·吉林省长春市)不等式组{2x >−1x ≤1的所有整数解为______ .三、解答题31. (2021·广西壮族自治区百色市)解不等式组{5x ≥8+x1+2x 3>x −2,并把解集在数轴上表示出来.32. (2021·安徽省)解不等式:x−13-1>0.33. (2021·贵州省遵义市)(1)计算(-1)2+|√2-2|+√8-2sin45°;(2)解不等式组:{x −1≥2①2x +3<13②.34. (2021·贵州省毕节市)x 取哪些正整数值时,不等式5x +2>3(x -1)与2x−13≤3x+16都成35. (2021·江苏省徐州市)(1)解方程:x 2-4x -5=0;(2)解不等式组:{2x −1≤3x +2>3x +8.36. (2021·辽宁省阜新市)为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成.已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装36间教室比甲公司安装同样数量的教室多用3天.(1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天1000元,乙公司安装费每天500元,现需安装教室120间,若想尽快完成安装工作且安装总费用不超过18000元,则最多安排甲公司工作多少天?37.(2021·湖南省郴州市)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?38.(2021·山东省)在2018春季环境整治活动中,某社区计划对面积为1600m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y关于x 的函数关系式;(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.39.(2021·黑龙江省牡丹江市)某商场计划购进一批篮球和足球,其中篮球的单价比足球多30元.已知用360元购进的足球和用480元购进的篮球数量相等.(1)问篮球和足球的单价各是多少元?(2)若篮球的售价为150元,足球的售价为110元,商场计划用不超过10350元购进两种球共100个,其中篮球不少于40个,问商场共有几种货方案?哪种方案商场获利最大?(3)某希望小学为庆祝中国共产党成立100周年,举行百人球操表演,准备购买(2)中商场购进的这100个篮球和足球,商场知晓后决定从中拿出30个球赠送给这所希望小学,这样,希望小学相当于七折购买这批球.请直接写出商场赠送的30个球中篮球和足球的个数.40.(2021·江苏省南通市)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A超市的购物金额为:300×0.9+(500-300)×0.7=410(元);去B超市的购物金额为:100+(500-100)×0.8=420(元).(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.参考答案1.D2.C3.D4.D5.D6.C7.B8.C9.B10.B11.B12.D13.C14.D15.B16.m≥217.x<318.x<319.-2≤x<220.1<x≤1321.5≤a<622.023.-1<a≤0324.−5<x≤4225.-1≤x<226.a≥627.328.33029.a<630.0、131.解:解不等式5x≥8+x,得:x≥2,解不等式1+2x>x-2,得:x<7,3则不等式组的解集为2≤x<7,将不等式组的解集表示在数轴上如下:32.解:x−13-1>0,去分母,得 x -1-3>0,移项及合并同类项,得 x >4.33.解:(1)原式=1+2-√2+2√2-2×√22=3+√2-√2 =3;(2)解不等式①,得:x ≥3, 解不等式②,得:x <5, 则不等式组的解集为3≤x <5.34.解:根据题意解不等式组{5x +2>3(x −1)①2x−13≤3x+16②, 解不等式①,得:x >-52, 解不等式②,得:x ≤3, ∴-52<x ≤3,故满足条件的正整数有1、2、3.35.解:(1)x 2-4x -5=0,(x -5)(x +1)=0, x -5=0或x +1=0, 解得:x 1=5,x 2=-1;(2){2x −1≤3①x +2>3x +8②, 解不等式①,得x ≤2,解不等式②,得x <-3,所以不等式组的解集是x <-3.36.解:(1)设乙公司每天安装x 间教室,则甲公司每天安装1.5x 间教室, 根据题意得:36x −361.5x =3,解得:x =4,经检验,x =4是所列方程的解,则1.5x =1.5×4=6, 答:甲公司每天安装6间教室,乙公司每天安装4间教室;(2)设安排甲公司工作y 天,则乙公司工作120−6y 4 天, 根据题意得:1000y +120−6y 4×500≤18000,解这个不等式,得:y ≤12,答:最多安排甲公司工作12天.37.解:(1)设A 奖品的单价为x 元,则B 奖品的单价为(x -25)元, 由题意得:800x ×3=1700−800x−25,解得:x =40,经检验,x =40是原方程的解,则x -25=15,答:A 奖品的单价为40元,则B 奖品的单价为15元;(2)设购买A 种奖品的数量为m 件,则购买B 种奖品的数量为(100-m )件,由题意得:{40×0.8×m ≥72040×0.8×m +15×0.8×(100−m)≤1700, 解得:22.5≤m ≤25,∵m 为正整数,∴m 的值为23,24,25,∴有三种方案:①购买A 种奖品23件,B 种奖品77件;②购买A 种奖品24件,B 种奖品76件;③购买A种奖品25件,B种奖品75件.38.解:(1)设乙队每天能完成绿化面积为am2,则甲队每天能完成绿化面积为2am2 根据题意得:400 a −4002a=5解得a=40经检验,a=40为原方程的解则甲队每天能完成绿化面积为80m2答:甲、乙两工程队每天能完成绿化的面积分别为80m2、40m2 (2)由(1)得80x+40y=1600整理的:y=-2x+40(3)由已知y+x≤25∴-2x+40+x≤25解得x≥15总费用W=0.6x+0.25y=0.6x+0.25(-2x+40)=0.1x+10∵k=0.1>0∴W随x的增大而增大∴当x=15时,W最低=1.5+10=11.539.解:设足球单价为x元,则篮球单价为(x+30)元,由题意得:360 x =480x+30,解得:x=90,经检验:x=90是原分式方程的解,则x+30=120,答:足球单价为90元,则篮球单价为120元;(2)设购买篮球x个,则购买足球(100-x)个,由题意得:120x+90(100-x)≤10350,解得:x ≤45,∵篮球不少于40个,∴40≤x ≤45,∴有6种方案:设商场获利w 元,由题意得:w =(150-120)x +(110-90)(100-x )=10x +2000,∵10>0,∴w 随x 的增大而增大,∴x =45时,w 有最大值,100-45=55(个),答:商场共有6种货方案,购买篮球45个,购买足球55个,商场获利最大; (3)设商场赠送的30个球中篮球m 个,足球(30-m )个,由题意得:110×[55-(30-m )]+150×(45-m )=(150×45+110×55)×0.7, 解得:m =272,∵m 是正整数,∴m =13或14,30-m =17或16,答:商场赠送的30个球中篮球13个和足球17个或篮球14个和足球16个.40.解:(1)由题意可得,当x ≤300时,y A =0.9x ;当x >300时,y A =0.9×300+0.7(x -300)=0.7x +60,故y A ={0.9x(x ≤300)0.7x +60(x >300); 当x >100时,y B =100+0.8(x -100)=0.8x +20;y B ={100(x ≤100)0.8x +20(x >100); (2)由题意,得0.9x >0.8x +20,解得x >200,∴200<x ≤300时,到B 超市更省钱;0.7x +60>0.8x +20,解得x <400,∴300<x <400,到B 超市更省钱;0.7x +60=0.8x +20,解得x =400,∴当x =400时,两家超市一样;0.7x +60<0.8x +20,解得x >400,∴当x >400时,到A 超市更省钱;综上所述,当200<x<400到B超市更省钱;当x=400时,两家超市一样;当x>400时,到A超市更省钱.。
2016年各地中考数学解析版试卷分类汇编(第一期):不等式(组).doc
不等式(组)一、选择题1.(2016·黑龙江大庆)当0<x<1时,x2、x、的大小顺序是()A.x2B.<x<x2C.<x D.x<x2<【考点】不等式的性质.【分析】先在不等式0<x<1的两边都乘上x,再在不等式0<x<1的两边都除以x,根据所得结果进行判断即可.【解答】解:当0<x<1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<,又∵x<1,∴x2、x、的大小顺序是:x2<x<.故选(A)【点评】本题主要考查了不等式,解决问题的根据是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm 或>.2. (2016·新疆)不等式组的解集是()A.x≤1 B.x≥2 C.1≤x≤2 D.1<x<2【考点】解一元一次不等式组.【专题】计算题.【分析】分别解两个不等式得到x≥1和x≤2,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≥1,解②得x≤2,所以不等式组的解集为1≤x≤2.故选C.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到. 3. (2016·四川达州·3分)不等式组的解集在数轴上表示正确的是( ) A . B .C .D .【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集. 【解答】解:由①得,x ≤3; 由②得,x >﹣;所以,不等式组的解集为﹣<x ≤3. 故选A .4. (2016·四川乐山·3分)不等式组20210x x +>⎧⎨-≤⎩的所有整数解是()A 1-、0 ()B 2-、1- ()C 0、1 ()D 2-、1-、0答案:A122x -<≤,整数有-1.0。
九年级数学全国各地中考数学试题分类汇编(第一期) 专题6 不等式(组)(含解析)
不等式(组)一.选择题1. (2019•湖北天门•3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(2019甘肃省陇南市)(3分)不等式2x+9≥3(x+2)的解集是()A.x≤3B.x≤﹣3 C.x≥3D.x≥﹣3【分析】先去括号,然后移项、合并同类项,再系数化为1即可.【解答】解:去括号,得2x+9≥3x+6,移项,合并得﹣x≥﹣3系数化为1,得x≤3;故选:A.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.3. (2019•湖南衡阳•3分)不等式组的整数解是()A.0 B.﹣1 C.﹣2 D.1【分析】先求出不等式组的解集,再求出整数解,即可得出选项.【解答】解:解不等式①得:x<0,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x<0,∴不等式组的整数解是﹣1,故选:B.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.4. (2019•湖南衡阳•3分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1 B.﹣1<x<0C.x<﹣1或0<x<2 D.﹣1<x<0或x>2【分析】根据一次函数图象在反比例函数图象上方的x的取值范围便是不等式kx+b>的解集.【解答】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,∴不等式kx+b>的解集是x<﹣1或0<x<2故选:C.【点评】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.5.(2019•浙江宁波•4分)不等式>x的解为()A.x<1 B.x<﹣1 C.x>1 D.x>﹣1【分析】去分母、移项,合并同类项,系数化成1即可.【解答】解:>x,3﹣x>2x,3>3x,x<1,故选:A.【点评】本题考查了解一元一次不等式,注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.6. (2019•山东省德州市•4分)不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.0【考点】不等式组的非负整数解【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解答】解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.7. (2019•甘肃武威•3分)不等式2x+9≥3(x+2)的解集是()A.x≤3B.x≤﹣3 C.x≥3D.x≥﹣3【分析】先去括号,然后移项、合并同类项,再系数化为1即可.【解答】解:去括号,得2x+9≥3x+6,移项,合并得﹣x≥﹣3系数化为1,得x≤3;故选:A.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8. (2019•湖南怀化•4分)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55 B.72 C.83 D.89【分析】设该村共有x户,则母羊共有(5x+17)只,根据“每户发放母羊7只时有一户可分得母羊但不足3只”列出关于x的不等式组,解之求得整数x的值,再进一步计算可得.【解答】解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.【点评】本题主要考查一元一次不等式组的应用,解题的关键是理解题意找到题目蕴含的不等关系,并据此得出不等式组.9. (2019•湖南岳阳•3分)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1.x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3B .c <﹣2C .c <D .c <1【分析】由函数的不动点概念得出x 1.x 2是方程x 2+2x +c =x 的两个实数根,由x 1<1<x 2知,解之可得.【解答】解:由题意知二次函数y =x 2+2x +c 有两个相异的不动点x 1.x 2是方程x 2+2x +c =x 的两个实数根, 且x 1<1<x 2, 整理,得:x 2+x +c =0, 则.解得c <﹣2, 故选:B .【点评】本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念,并据此得出关于c 的不等式.10.(2019,山西,3分)不等式组⎩⎨⎧<->-42231x x 的解集是( )A.4>xB.1->xC.41<<-xD.1-<x【解析】4,31>>-x x ;1,22,422-><-<-x x x ;∴4>x ,故选A11. (2019•南京•2分)实数A.B.c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( ) A . B .C .D .【分析】根据不等式的性质,先判断c 的正负.再确定符合条件的对应点的大致位置. 【解答】解:因为a >b 且ac <bc , 所以c <0.选项A 符合a >b ,c <0条件,故满足条件的对应点位置可以是A .选项B不满足a>b,选项C.D不满足c<0,故满足条件的对应点位置不可以是B.C.D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.12(201▪9广西河池▪3分)不等式组的解集是()A.x≥2B.x<1 C.1≤x<2 D.1<x≤2【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x≤2,解②得:x>1.则不等式组的解集是:1<x≤2.故选:D.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13. (2019•山东省滨州市•3分)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【考点】不等式组的解法【分析】直接利用关于原点对称点的性质得出关于a的不等式组进而求出答案.【解答】解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,∴,解得:a<2.则a的取值范围在数轴上表示正确的是:.故选:C.【点评】此题主要考查了关于原点对称点的性质以及解不等式组,正确掌握是解题关键.14. (2019•山东省聊城市•3分)若不等式组无解,则m的取值范围为()A.m≤2B.m<2 C.m≥2D.m>2【考点】解一元一次不等式组【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m的不等式,解之可得.【解答】解:解不等式<﹣1,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二.填空题1. (2019•山东省滨州市•5分)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为x>3.【考点】一次函数与一元一次不等式的关系【分析】根据直线y=kx+b(k<0)经过点A(3,1),正比例函数y=x也经过点A从而确定不等式的解集.【解答】解:∵正比例函数y=x也经过点A,∴kx+b<x的解集为x>3,故答案为:x>3.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.2. (2019•江苏泰州•3分)不等式组的解集为x<﹣3..【分析】求出不等式组的解集即可.【解答】解:等式组的解集为x<﹣3,故答案为:x<﹣3.【点评】本题考查了不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.3. (2019•湖南株洲•3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为a<1且a为有理数.【分析】根据题意列出不等式,解之可得,【解答】解:根据题意知2﹣a>1,解得a<1,故答案为:a<1且a为有理数.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4. (2019•山东省德州市•4分)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= 1.1.【考点】列出代数式【分析】根据题意列出代数式解答即可.【解答】解;根据题意可得:{3.9}+{﹣1.8}﹣{1}=3.9﹣3﹣1.8+2﹣1+1=1.1,故答案为:1.1【点评】此题考查解一元一次不等式,关键是根据题意列出代数式解答.5. (2019▪黑龙江哈尔滨▪3分)不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6. (2019•甘肃•3分)不等式组的最小整数解是0.【分析】求出不等式组的解集,确定出最小整数解即可.【解答】解:不等式组整理得:,∴不等式组的解集为﹣1<x≤2,则最小的整数解为0,故答案为:0【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.7. (2019•湖南长沙•3分)不等式组的解集是﹣1≤x<2.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集.【解答】解:解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,故答案为:﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8. (2019•湖南邵阳•3分)不等式组的解集是﹣2≤x<﹣1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9. (2019▪黑龙江哈尔滨▪3分)不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2019•浙江金华•4分)不等式3x-6≤9的解是________.【答案】x≤5【考点】解一元一次不等式【解析】【解答】解:∵3x-6≤9,∴x≤5.故答案为:x≤5.【分析】根据解一元一次不等式步骤解之即可得出答案.11.(2019•浙江绍兴•5分)不等式3x﹣2≥4的解为x≥2.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,3x≥4+2,合并同类项得,3x≥6,把x的系数化为1得,x≥2.故答案为:x≥2.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.3.4.5.6.7.8.9.10.三.解答题1.(2019▪黑龙江哈尔滨▪10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?【分析】(1)设每副围棋x元,每副中国象棋y元,根据题意得:,求解即可;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,即可求解;【解答】解:(1)设每副围棋x元,每副中国象棋y元,根据题意得:,∴,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,∴z≤25,∴最多可以购买25副围棋;【点评】本题考查二元一次方程组,一元一次不等式的应用;能够通过已知条件列出准确的方程组和不等式是解题的关键.2.((2019,山西,9分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元). (1)请分别写出y 1,y 2与x 之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.【解析】(1)x y x y 40;2003021=+= (2)由21y y <得:x x 4020030<+解得:20>x ,∴当20>x 时选择方式一比方式2省钱3.(2019,四川成都,6分)解不等式组:⎪⎩⎪⎨⎧+<--≤-②211425①54)2(3x x x x解: 5463-≤-x x1-∴≥x x 2425+-< 2<x ∴4.(2019,四川巴中,8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【分析】①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得分式方程,解之即可;②设购买甲种物品y 件,则乙种物品购进(55﹣y )件,由题意得不等式,从而得解. 【解答】解:①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得:=解得x =90经检验,x =90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元. ②设购买甲种物品y 件,则乙种物品购进(55﹣y )件 由题意得:5000≤100y +90(55﹣y )≤5050 解得5≤y ≤10∴共有6种选购方案.【点评】本题考查了分式方程的应用以及一元一次不等式的整数解的问题.本题中等难度.5.(2019,山东淄博,5分)解不等式【分析】将已知不等式两边同乘以2,然后再根据移项、合并同类项、系数化为1求出不等式的解集.【解答】解:将不等式两边同乘以2得,x﹣5+2>2x﹣6解得x<3.【点评】解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变,在不等式的两边同时乘以或除以同一个正数不等号的方向不变,在不等式的两边同时乘以或除以同一个负数不等号的方向改变.6.(2019▪湖北黄石▪7分)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.【分析】先求出不等式组的解集,进而求得P点的坐标,即可求得点P所在的象限.【解答】解:,解①得:x≥4,解②得:x≤4,则不等式组的解是:x=4,∵=1,2x﹣9=﹣1,∴点P的坐标为(1,﹣1),∴点P在的第四象限.【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7. (2019•湖南衡阳•8分)某商店购进A.B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A.B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A.B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?【分析】(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,根据数量=总价÷单价结合花费300元购买A商品和花费100元购买B商品的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买B商品m个,则购买A商品(80﹣m)个,根据A商品的数量不少于B商品数量的4倍并且购买A.B商品的总费用不低于1000元且不高于1050元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可找出各购买方案.【解答】解:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,购买一个B商品需要5元.(2)设购买B商品m个,则购买A商品(80﹣m)个,依题意,得:,解得:15≤m≤16.∵m为整数,∴m=15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.8. (2019•山东省滨州市•10分)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求出x的整数解,由分式有意义的条件确定最终符合分式的x的值,代入计算可得.【解答】解:原式=[﹣]•=•=,解不等式组得1≤x<3,则不等式组的整数解为1.2,又x≠±1且x≠0,∴x=2,∴原式=.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元一次不等式组的能力.9. (2019•广东•6分)解不等式组:【答案】解:由①得x>3,由②得x>1,∴原不等式组的解集为x>3.【考点】解一元一次不等式组10. (2019•广东•7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x个,则足球(60-x)个.由题意得70x+80(60-x)=4600,解得x=20则60-x =60-20=40.答:篮球买了20个,足球买了40个. (2)设购买了篮球y 个. 由题意得 70y ≤80(60-x ),解得y ≤32 答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用 11. ( 2019甘肃省兰州市)(本题5分)解不等式组:⎪⎩⎪⎨⎧-<++<-131512x x x x【答案】2<x <6.【考点】不等式组的解法. 【考察能力】计算能力. 【难度】中等.【解析】 解:⎪⎩⎪⎨⎧-<++<-131512x x x x由①得:x <6由②得:x >2所以原不等式组的解集为:2<x <6.12. (2019•广西贵港•10分)(1)计算:﹣(﹣3)0+()﹣2﹣4sin 30°;(2)解不等式组:,并在数轴上表示该不等式组的解集.【分析】(1)先计算算术平方根、零指数幂、负整数指数幂、代入三角函数值,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:(1)原式=2﹣1+4﹣4× =2﹣1+4﹣2 =3;① ② ① ②(2)解不等式6x ﹣2>2(x ﹣4),得:x >﹣, 解不等式﹣≤﹣,得:x ≤1,则不等式组的解集为﹣<x ≤1, 将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13. (2019•江苏苏州•5分)()152437x x x +<⎧⎪⎨+>+⎪⎩解不等式组: 【解答】解:由①得15x +<4x <由②得()2437x x +>+2837x x +>+1x ->- 1x <1x <所以14. (2019•江苏连云港•6分)解不等式组【分析】先求出两个不等式的解集,再求其公共解. 【解答】解:,由①得,x >﹣2, 由②得,x <2,所以,不等式组的解集是﹣2<x <2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15. (2019•湖南湘西州•6分)解不等式组:并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣2<1得x<3,解不等式4x+5>x+2,得:x>﹣1,则不等式组的解集为﹣1<x<3,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16. (2019•湖南岳阳•8分)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的,求休闲小广场总面积最多为多少亩?【分析】(1)设改造土地面积是x亩,则复耕土地面积是(600+x)亩.根据“复耕土地面积+改造土地面积=1200亩”列出方程并解答;(2)设休闲小广场总面积是y亩,则花卉园总面积是(300﹣y)亩,根据“休闲小广场总面积不超过花卉园总面积的”列出不等式并解答.【解答】解:(1)设改造土地面积是x亩,则复耕土地面积是(600+x)亩,由题意,得x+(600+x)=1200解得x=300.则600+x=900.答:改造土地面积是300亩,则复耕土地面积是900亩;(2)设休闲小广场总面积是y亩,则花卉园总面积是(300﹣y)亩,由题意,得y≤(300﹣y).解得y≤75.故休闲小广场总面积最多为75亩.答:休闲小广场总面积最多为75亩.【点评】考查了一元一次不等式的应用和一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.17. (2019•山东省滨州市•12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【分析】(1)可设辆甲种客车与1辆乙种客车的载客量分别为x人,y人,根据等量关系2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人,列出方程组求解即可;(2)根据题意列出不等式组,进而求解即可.【解答】解:(1)设辆甲种客车与1辆乙种客车的载客量分别为x人,y人,,解得:,答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x辆,依题意有:,解得:6>x≥4,因为x取整数,所以x=4或5,当x=4时,租车费用最低,为4×400+2×280=2160.【点评】本题考查一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.18. (2019•山东省聊城市•8分)某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:第一次第二次A品牌运动服装数/件20 30B品牌运动服装数/件30 40累计采购款/元10200 14400 (1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.【解答】解:(1)设A,B两种品牌运动服的进货单价各是x元和y元,根据题意可得:,解得:,答:A,B两种品牌运动服的进货单价各是240元和180元;(2)设购进A品牌运动服m件,购进B品牌运动服(m+5)件,则240m+180(m+5)≤21300,解得:m≤40,经检验,不等式的解符合题意,。
不等式(组)及其应用(解析版)-2023年中考数学真题分项汇编(全国通用)
不等式(组)及其应用一、单选题1(2023·内蒙古·统考中考真题)关于x的一元一次不等式x-1≤m的解集在数轴上的表示如图所示,则m的值为()A.3B.2C.1D.0【答案】B【分析】先求出不等式的解集,然后对比数轴求解即可.【详解】解:x-1≤m解得x≤m+1,由数轴得:m+1=3,解得:m=2,故选:B.【点睛】题目主要考查求不等式的解集及参数,熟练掌握求不等式解集的方法是解题关键.2(2023·湖南常德·统考中考真题)不等式组x-3<23x+1≥2x的解集是()A.x<5B.1≤x<5C.-1≤x<5D.x≤-1【答案】C【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】x-3<2①3x+1≥2x②解不等式①,移项,合并同类项得,x<5;解不等式②,移项,合并同类项得,x≥-1故不等式组的解集为:-1≤x<5.故选:C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3(2023·湖北·统考中考真题)不等式组3x-1≥x+1x+4>4x-2的解集是()A.1≤x<2B.x≤1C.x>2D.1<x≤2【答案】A【分析】先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集.【详解】解:3x-1≥x+1①x+4>4x-2②解不等式①得:x≥1,解不等式②得:x<2,∴不等式组的解集为1≤x<2,【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.4(2023·广东·统考中考真题)一元一次不等式组x-2>1x<4的解集为()A.-1<x<4B.x<4C.x<3D.3<x<4【答案】D【分析】第一个不等式解与第二个不等式的解,取公共部分即可.【详解】解:x-2>1①x<4②解不等式①得:x>3结合②得:不等式组的解集是3<x<4,故选:D.【点睛】本题考查解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解题的关键.5(2023·湖北宜昌·统考中考真题)解不等式1+4x3>x-1,下列在数轴上表示的解集正确的是( ).A. B.C. D.【答案】D【分析】按去分母、去括号、移项、合并同类项,未知数系数化为1的步骤求出解集,再把解集在数轴上表示出来,注意包含端点值用实心圆点,不包含端点值用空心圆点,即可求解.【详解】解:1+4x>3x-34x-3x>-3-1x>-4,解集在数轴上表示为故选:D.【点睛】本题考查了一元一次不等式的解法及解集在数轴上的表示方法,掌握解法及表示方法是解题的关键.6(2023·浙江宁波·统考中考真题)不等式组x+1>0x-1≤0的解在数轴上表示正确的是()A. B.C. D.【分析】根据一元一次不等式组的解法先求出不等式组的解集,再在数轴上表示即可得到答案.【详解】解:x +1>0①x -1≤0② ,由①得x >-1;由②得x ≤1;∴原不等式组的解集为-1<x ≤1,在数轴上表示该不等式组的解集如图所示:,故选:C .【点睛】本题考查一元一次不等式组解集的求法及在数轴上的表示,熟练掌握不等式组解集的求解原则“同大取大、同小取小、大小小大中间找、大大小小无解了”是解决问题的关键.7(2023·四川眉山·统考中考真题)关于x 的不等式组x >m +35x -2<4x +1 的整数解仅有4个,则m 的取值范围是()A.-5≤m <-4B.-5<m ≤-4C.-4≤m <-3D.-4<m ≤-3【答案】A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:x >m +3①5x -2<4x +1② ,由②得:x <3,解集为m +3<x <3,由不等式组的整数解只有4个,得到整数解为2,1,0,-1,∴-2≤m +3<-1,∴-5≤m <-4;故选:A .【点睛】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到-2≤m +3<-1是解此题的关键.8(2023·四川遂宁·统考中考真题)若关于x 的不等式组4x -1 >3x -15x >3x +2a的解集为x >3,则a 的取值范围是()A.a >3B.a <3C.a ≥3D.a ≤3【答案】D【分析】分别求出各不等式的解集,再根据不等式组的解集是x >3求出a 的取值范围即可.【详解】解:4x -1 >3x -1①5x >3x +2a ②解不等式①得:x >3,解不等式②得:x >a ,∵关于x的不等式组4x-1>3x-15x>3x+2a的解集为x>3,∴a≤3,故选:D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题9(2023·全国·统考中考真题)不等式4x-8>0的解集为.【答案】x>2【分析】根据移项、化系数为1,的步骤解一元一次不等式即可求解.【详解】解:4x-8>04x>8解得:x>2,故答案为:x>2.【点睛】本题考查了求一元一次不等式的解集,熟练掌握不等式的性质是解题的关键.10(2023·辽宁大连·统考中考真题)9>-3x的解集为.【答案】x>-3【分析】根据不等式的性质解不等式即可求解.【详解】解:9>-3x,解得:x>-3,故答案为:x>-3.【点睛】本题考查了求不等式的解集,熟练掌握不等式的性质是解题的关键.11(2023·四川乐山·统考中考真题)不等式x-1>0的解集是.【答案】x>1【分析】直接移项即可得解.【详解】解:∵x-1>0,∴x>1,故答案为:x>1.【点睛】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解答本题的关键.12(2023·黑龙江·统考中考真题)关于x的不等式组x+5>0x-m≤1有3个整数解,则实数m的取值范围是.【答案】-3≤m<-2/-2>m≥-3【分析】解不等式组,根据不等式组有3个整数解得出关于m的不等式组,进而可求得m的取值范围.【详解】解:解不等式组x+5>0x-m≤1得:-5<x≤m+1,∵关于x的不等式组x+5>0x-m≤1有3个整数解,∴这3个整数解为-4,-3,-2,∴-2≤m +1<-1,解得:-3≤m <-2,故答案为:-3≤m <-2.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,正确得出关于m 的不等式组是解题的关键.13(2023·广东·统考中考真题)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打折.【答案】8.8【分析】设打x 折,由题意可得5×x10-4≥4×10%,然后求解即可.【详解】解:设打x 折,由题意得5×x10-4≥4×10%,解得:x ≥8.8;故答案为:8.8.【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键.14(2023·山东聊城·统考中考真题)若不等式组x -12≥x -232x -m ≥x 的解集为x ≥m ,则m 的取值范围是.【答案】m ≥-1【分析】分别求出两个不等式的解集,根据不等式组的解集即可求解.【详解】解:x -12≥x -23①2x -m ≥x ② ,解不等式①得:x ≥-1,解不等式②得:x ≥m ,∵不等式组的解集为:x ≥m ,∴m ≥-1.故答案为:m ≥-1.【点睛】本题考查了解一元一次不等式组,根据不等式的解求参数的取值范围,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.15(2023·湖南·统考中考真题)关于x 的不等式12x -1>0的解集为.【答案】x >2【分析】根据一元一次不等式的解法即可得出结果.【详解】解:12x -1>0,移项,得12x >1,系数化为1,得x >2.故答案为:x >2.【点睛】本题考查了一元一次不等式的解法,熟练掌握不等式的性质是本题的关键.16(2023·山东滨州·统考中考真题)不等式组2x-4≥2,3x-7<8的解集为.【答案】3≤x<5【分析】分别解两个不等式,再取两个解集的公共部分即可.【详解】解:2x-4≥2①3x-7<8②,由①得:x≥3,由②得:x<5,∴不等式组的解集为:3≤x<5;故答案为:3≤x<5【点睛】本题考查的是一次不等式组的解法,掌握一元一次不等式组的解法步骤与方法是解本题的关键.17(2023·浙江温州·统考中考真题)不等式组x+3≥23x-12<4的解是.【答案】-1≤x<3【分析】根据不等式的性质先求出每一个不等式的解集,再求出它们的公共部分即可.【详解】解不等式组:x+3≥2①3x-12<4②解:由①得,x≥-1;由②得,x<3所以,-1≤x<3.故答案为:-1≤x<3.【点睛】本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知求公共解的原则是解题关键.18(2023·重庆·统考中考真题)若关于x的一元一次不等式组x+32≤42x-a≥2,至少有2个整数解,且关于y的分式方程a-1y-2+42-y=2有非负整数解,则所有满足条件的整数a的值之和是.【答案】4【分析】先解不等式组,确定a的取值范围a≤6,再把分式方程去分母转化为整式方程,解得y= a-12,由分式方程有正整数解,确定出a的值,相加即可得到答案.【详解】解:x+32≤4①2x-a≥2②解不等式①得:x≤5,解不等式②得:x≥1+a 2,∴不等式的解集为1+a2≤x≤5,∵不等式组至少有2个整数解,∴1+a2≤4,解得:a≤6;∵关于y的分式方程a-1y-2+42-y=2有非负整数解,∴a-1-4=2y-2解得:y=a-1 2,即a-12≥0且a-12≠2,解得:a≥1且a≠5∴a的取值范围是1≤a≤6,且a≠5∴a可以取:1,3,∴1+3=4,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.19(2023·四川泸州·统考中考真题)关于x,y的二元一次方程组2x+3y=3+ax+2y=6的解满足x+y>22,写出a的一个整数值.【答案】7(答案不唯一)【分析】先解关于x、y的二元一次方程组的解集,再将x+y>22代入,然后解关于a的不等式的解集即可得出答案.【详解】将两个方程相减得x+y=a-3,∵x+y>22,∴a-3>22,∴a>3+22,∵4<8<9,∴2<22<3,∴5<22+3<6,∴a的一个整数值可以是7.故答案为:7(答案不唯一).【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,整体代入的思想方法是解答本题的亮点.20(2023·四川凉山·统考中考真题)不等式组5x+2>3x-112x-1≤7-32x的所有整数解的和是.【答案】7【分析】先分别解不等式组中的两个不等式,得到不等式组的解集,再确定整数解,最后求和即可.【详解】解:5x+2>3x-1①12x-1≤7-32x②,由①得:5x-3x>-3-2,∴2x>-5,解得:x>-5 2;由②得:x-2≤14-3x,整理得:4x≤16,解得:x≤4,∴不等式组的解集为:-52<x≤4,∴不等式组的整数解为:-2,-1,0,1,2,3,4;∴-2+-1+0+1+2+3+4=7,故答案为:7【点睛】本题考查的是求解一元一次不等式组的整数解,熟悉解一元一次不等式组的方法与步骤是解本题的关键.21(2023·四川宜宾·统考中考真题)若关于x的不等式组2x+1>x+a①x2+1≥52x-9②所有整数解的和为14,则整数a的值为.【答案】2或-1【分析】根据题意可求不等式组的解集为a-1<x≤5,再分情况判断出a的取值范围,即可求解.【详解】解:由①得:x>a-1,由②得:x≤5,∴不等式组的解集为:a-1<x≤5,∵所有整数解的和为14,①整数解为:2、3、4、5,∴1≤a-1<2,解得:2≤a<3,∵a为整数,∴a=2.②整数解为:-1,0,1,2、3、4、5,∴-2≤a-1<-1,解得:-1≤a<0,∵a为整数,∴a=-1.综上,整数a的值为2或-1故答案为:2或-1.【点睛】本题考查了含参数的一元一次不等式组的整数解问题,掌握一元一次不等式组的解法,理解参数的意义是解题的关键.三、解答题22(2023·湖南·统考中考真题)解不等式组:7x-14≤0①2x+3>x+4②,并把它的解集在数轴上表示出来.【答案】不等式组的解集为:-2<x≤2.画图见解析【分析】先解不等式组中的两个不等式,再在数轴上表示两个不等式的解集,从而可得答案.【详解】解:7x -14≤0①2x +3 >x +4② ,由①得:x ≤2,由②得:2x +6>x +4,∴x >-2,在数轴上表示其解集如下:∴不等式组的解集为:-2<x ≤2.【点睛】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握不等式组的解法与步骤是解本题的关键.23(2023·山东·统考中考真题)解不等式组:5x -2<3x +1 ,3x -23≥x +x -22.【答案】x ≤23【分析】分别求出各个不等式的解,再取各个解集的公共部分,即可.【详解】解:解5x -2<3x +1 得:x <52,解3x -23≥x +x -22得:x ≤23,∴不等式组的解集为x ≤23.【点睛】本题主要考查解一元一次不等式组,熟练掌握解不等式组的基本步骤,是解题的关键.24(2023·福建·统考中考真题)解不等式组:2x +1<3,①x 2+1-3x4≤1.②【答案】-3≤x <1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:2x +1<3,①x 2+1-3x4≤1.②解不等式①,得x <1.解不等式②,得x ≥-3.所以原不等式组的解集为-3≤x <1.【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.25(2023·湖北武汉·统考中考真题)解不等式组2x -4<2①3x +2≥x ② 请按下列步骤完成解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是.【答案】(1)x <3(2)x ≥-1(3)见解析(4)-1≤x <3【分析】(1)直接解不等式①即可解答;(2)直接解不等式①即可解答;(3)在数轴上表示出①、②的解集即可;(3)数轴上表示的不等式的解集,确定不等式组的解集即可.【详解】(1)解:2x -4<2,2x <6x <3.故答案为:x <3.(2)解:3x +2≥x ,2x ≥-2x ≥-1.故答案为:x ≥-1.(3)解:把不等式①和②的解集在数轴上表示出来:(4)解:由图可知原不等式组的解集是-1≤x <3.故答案为:-1≤x <3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集和在数轴上表示不等式的解集是解答本题的关键.26(2023·浙江·统考中考真题)解一元一次不等式组:x +2>32x -1<5 .【答案】1<x <3【分析】根据不等式的性质,解一元一次不等式,然后求出两个解集的公共部分即可.【详解】解:x +2>3①2x -1<5②解不等式①,得x >1,解不等式②,得x <3,∴原不等式组的解是1<x <3.【点睛】本题主要考查解一元一次不等式组,掌握不等式的性质,解一元一次不等式的方法是解题的关键.27(2023·湖南永州·统考中考真题)解关于x 的不等式组2x -2>03x -1 -7<-2x【答案】1<x <2【分析】分别解不等式组的两个不等式,再取两个不等式的解集的公共部分,即为不等式组的解集.【详解】解:2x-2>0①3x-1-7<-2x②,解①得,x>1,解②得,x<2,∴原不等式组的解集为1<x<2.【点睛】本题考查了解一元一次不等式组的解集,取两个不等式的解集的公共部分的口诀为:“大大取大,小小取小,大小小大取中间,大大小小则无解”,熟知上述口诀是解题的关键.28(2023·江苏苏州·统考中考真题)解不等式组:2x+1>0, x+13>x-1.【答案】-12<x<2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:2x+1>0①x+13>x-1②解不等式①得:x>-1 2解不等式②得:x<2∴不等式组的解集为:-12<x<2【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.29(2023·湖南·统考中考真题)解不等式组:x-4≤0①2x+1<3x②【答案】2<x≤4【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:x-4≤0①2x+1<3x②解不等式①得:x≤4解不等式②得:x>2∴不等式组的解集为:2<x≤4.【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.30(2023·湖南岳阳·统考中考真题)解不等式组:2x+1>x+3,①2x-4<x.②【答案】2<x<4【分析】按照解不等式组的基本步骤求解即可.【详解】∵2x+1>x+3,①2x-4<x.②,解①的解集为x>2;解②的解集为x<4,∴原不等式组的解集为2<x<4.【点睛】本题考查了不等式组的解法,熟练掌握解不等式组的基本步骤是解题的关键.31(2023·江苏扬州·统考中考真题)解不等式组2x-1+1>-3,x-1≤1+x3,并把它的解集在数轴上表示出来.【答案】-1<x≤2,数轴表示见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:2x-1+1>-3①x-1≤1+x3②解不等式①得x>-1·,解不等式②,得:x≤2,把不等式①和②的解集在数轴上表示出来:则不等式组的解集为:-1<x≤2.【点睛】本题考查的是解一元一次不等式组,在数轴上表示不等式的解集,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.32(2023·上海·统考中考真题)解不等式组3x>x+6 12x<-x+5【答案】3<x<10 3【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.【详解】解:3x>x+6①12x<-x+5②,解不等式①得:x>3,解不等式②得:x<10 3,则不等式组的解集为3<x<10 3.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.33(2023·甘肃武威·统考中考真题)解不等式组:x>-6-2x x≤3+x4【答案】-2<x≤1【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:解不等式组:x>-6-2x①x≤3+x4②,解不等式①,得x>-2.解不等式②,得x≤1.因此,原不等式组的解集为-2<x≤1.【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.34(2023·内蒙古赤峰·统考中考真题)某集团有限公司生产甲乙两种电子产品共8万件,准备销往东南亚国家和地区.已知2件甲种电子产品与3件乙种电子产品的销售额相同:3件甲种电子产品比2件乙种电子产品的销售多1500元.(1)求甲种电子产品与乙种电子产品销售单价各多少元?(2)若使甲乙两种电子产品的销售总收入不低于5400万元,则至少销售甲种电子产品多少件?【答案】(1)甲种电子产品的销售单价是900元,乙种电子产品的单价为600元;(2)至少销售甲种电子产品2万件【分析】(1)设甲种电子产品的销售单价x元,乙种电子产品的销售单价y元,根据等量关系:①2件甲种电子产品与3件乙种电子产品的销售额相同,②3件甲种电子产品比2件乙种电子产品的销售多1500元,列出方程组求解即可;(2)可设销售甲种电子产品a万件,根据甲、乙两种电子产品的销售总收入不低于5400万元,列出不等式求解即可.【详解】(1)解:设甲种电子产品的销售单价是x元,乙种电子产品的单价为y元.根据题意得:2x=3y3x-2y=1500,解得:x=900 y=600;答:甲种电子产品的销售单价是900元,乙种电子产品的单价为600元.(2)解:设销售甲种电子产品a万件,则销售乙种电子产品8-a万件.根据题意得:900a+6008-a≥5400.解得:a≥2.答:至少销售甲种电子产品2万件.【点睛】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系及等量关系.35(2023·内蒙古通辽·统考中考真题)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.(1)求每台A型机器,B型机器每天分别搬运货物多少吨?(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.【答案】(1)每台A型机器,B型机器每天分别搬运货物90吨和100吨;(2)当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.【分析】(1)设每台B型机器每天搬运x吨,则每台A型机器每天搬运x-10吨,根据题意列出分式方程,解方程、检验后即可解答;(2设公司计划采购A型机器m台,则采购B型机器30-m台,再题意列出一元一次不等式组,解不等式组求出m的取值范围,再列出公司计划采购A型机器m台与采购支出金额w的函数关系式,最后利用一次函数的增减性求最值即可.【详解】(1)解:设每台B型机器每天搬运x吨,则每台A型机器每天搬运x-10吨,由题意可得:450x-10=500x,解得:x=100经检验,x=100是分式方程450x-10=500x的解每台A型机器每天搬运x-10=100-10=90吨答:每台A型机器,B型机器每天分别搬运货物90吨和100吨(2)解:设公司计划采购A型机器m台,则采购B型机器30-m台由题意可得:90m+10030-m≥2880 1.5m+230-m≤55,解得:4≤m≤12,公司采购金额:w=1.5m+230-m=-0.5m+60∵-0.5<0∴w随m的增大而减小∴当m=12时,公司采购金额w有最小值,即w=-0.5×12+60=54,∴当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.【点睛】本题主要考查了分式方程的应用、不等式组的应用、一次函数的应用等知识点,理解题意正确列出分式方程、不等式组和一次函数解析式是解答本题的关键.36(2023·广东深圳·统考中考真题)某商场在世博会上购置A,B两种玩具,其中B玩具的单价比A 玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.(1)求A,B玩具的单价;(2)若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A玩具?【答案】(1)A、B玩具的单价分别为50元、75元;(2)最多购置100个A玩具.【分析】(1)设A玩具的单价为x元每个,则B玩具的单价为x+25元每个;根据“购置2个B玩具与1个A玩具共花费200元”列出方程即可求解;(2)设A玩具购置y个,则B玩具购置2y个,根据“购置玩具的总额不高于20000元”列出不等式即可得出答案.【详解】(1)解:设A玩具的单价为x元,则B玩具的单价为x+25元;由题意得:2x+25+x=200;解得:x=50,则B玩具单价为x+25=75(元);答:A、B玩具的单价分别为50元、75元;(2)设A玩具购置y个,则B玩具购置2y个,由题意可得:50y+75×2y≤20000,解得:y≤100,∴最多购置100个A玩具.【点睛】本题考查一元一次方程和一元一次不等式的应用,属于中考常规考题,解题的关键在于读懂题目,找准题目中的等量关系或不等关系.37(2023·河南·统考中考真题)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.【答案】(1)活动一更合算;(2)400元;(3)当300≤a<400或600≤a<800时,活动二更合算【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为0.8a元,活动二当0<a<300时,所需付款为a元,当300≤a<600时,所需付款为a-80元,然后根据题意列出不等式 元,当600≤a<900时,所需付款为a-160即可求解.【详解】(1)解:购买一件原价为450元的健身器材时,活动一需付款:450×0.8=360元,活动二需付款:450-80=370元,∴活动一更合算;(2)设这种健身器材的原价是x元,则0.8x=x-80,解得x=400,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a元,则活动一所需付款为:0.8a元,活动二当0<a<300时,所需付款为:a元,当300≤a<600时,所需付款为:a-80元,当600≤a<900时,所需付款为:a-160元,①当0<a<300时,a>0.8a,此时无论a为何值,都是活动一更合算,不符合题意,②当300≤a<600时,a-80<0.8a,解得300≤a<400,即:当300≤a<400时,活动二更合算,③当600≤a<900时,a-160<0.8a,解得600≤a<800,即:当600≤a<800时,活动二更合算,综上:当300≤a<400或600≤a<800时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.38(2023·湖北荆州·统考中考真题)荆州古城旁“荆街”某商铺打算购进A,B两种文创饰品对游客销售.已知1400元采购A种的件数是630元采购B种件数的2倍,A种的进价比B种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购B种的件数不低于390件,不超过A 种件数的4倍.(1)求A,B饰品每件的进价分别为多少元?(2)若采购这两种饰品只有一种情况可优惠,即一次性采购A种超过150件时,A种超过的部分按进价打6折.设购进A种饰品x件,①求x的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)A 种饰品每件进价为10元,B 种饰品每件进价为9元;(2)①120≤x ≤210且x 为整数,②当采购A 种饰品210件,B 种饰品390件时,商铺获利最大,最大利润为3630元【分析】(1)分别设出A ,B 饰品每件的进价,依据数量列出方程求解即可;(2)①依据题意列出不等式即可;②根据不同的范围,列出不同函数关系式,分别求出最大值,比较即可得到李荣最大值.【详解】(1)(1)设A 种饰品每件的进价为a 元,则B 种饰品每件的进价为a -1 元.由题意得:1400a =630a -1×2,解得:a =10,经检验,a =10是所列方程的根,且符合题意.A 种饰品每件进价为10元,B 种饰品每件进价为9元.(2)①根据题意得:600-x ≥390600-x ≤4x ,解得:120≤x ≤210且x 为整数;②设采购A 种饰品x 件时的总利润为w 元.当120≤x ≤150时,w =15×600-10x -9600-x ,即w =-x +3600,∵-1<0,∴w 随x 的增大而减小.∴当x =120时,w 有最大值3480.当150<x ≤210时,w =15×600-10×150+10×60%x -150 -9600-x 整理得:w =3x +3000,∵3>0,∴w 随x 的增大而增大.∴当x =210时,w 有最大值3630.∵3630>3480,∴w 的最大值为3630,此时600-x =390.即当采购A 种饰品210件,B 种饰品390件时,商铺获利最大,最大利润为3630元.【点睛】本题考查了分式方程的应用,一元一次不等式组的应用,一次函数利润最大化方案问题,关键是对分段函数的理解和正确求出最大值.39(2023·山东聊城·统考中考真题)今年五一小长假期间,我市迎来了一个短期旅游高峰.某热门景点的门票价格规定见下表:票的种类A B C 购票人数/人1~5051~100100以上票价/元504540某旅行社接待的甲、乙两个旅游团共102人(甲团人数多于乙团),在打算购买门票时,如果把两团联合作为一个团体购票会比两团分别各自购票节省730元.(1)求两个旅游团各有多少人?(2)一个人数不足50人的旅游团,当游客人数最低为多少人时,购买B 种门票比购买A 种门票节省?【答案】(1)甲团人数有58人,乙团人数有44人;(2)当游客人数最低为46人时,购买B 种门票比购。
2022年中考数学真题分类汇编:不等式及不等式组(含答案)
2022年年年年年年年年年——年年年年年年年年年年年年年年一、选择题1. (2022·辽宁省大连市)不等式4x <3x +2的解集是( )A. x >−2B. x <−2C. x >2D. x <22. (2022·广西壮族自治区河池市)如果点P(m,1+2m)在第三象限内,那么m 的取值范围是( )A. −12<m <0B. m >−12C. m <0D. m <−123. (2022·辽宁省盘锦市)不等式12x −1≤7−32x 的解集在数轴上表示为( )A.B.C.D.4. (2022·吉林省长春市)不等式x +2>3的解集是( )A. .x <1B. .x <5C. x >1D. .x >55. (2022·湖南省邵阳市)关于x 的不等式组{−13x >23−x,12x −1<12(a −2)有且只有三个整数解,则a 的最大值是( )A. 3B. 4C. 5D. 66. (2022·广东省深圳市)一元一次不等式组{x −1≥0x <2的解集为( )A.B.C.D.7. (2022·山东省聊城市)关于x ,y 的方程组{2x −y =2k −3,x −2y =k的解中x 与y 的和不小于5,则k 的取值范围为( ) A. k ≥8 B. k >8 C. k ≤8 D. k <88.(2022·湖南省张家界市)把不等式组{x+1>0x+3≤4的解集表示在数轴上,下列选项正确的是( )A. B.C. D.9.(2022·贵州省遵义市)关于x的一元一次不等式x−3≥0的解集在数轴上表示为( )A. B.C. D.10.(2022·吉林省)y与2的差不大于0,用不等式表示为( )A. y−2>0B. y−2<0C. y−2≥0D. y−2≤011.(2022·广西壮族自治区梧州市)不等式组{x>−1x<2的解集在数轴上表示为( )A. B.C. D.12.(2022·内蒙古自治区包头市)若m>n,则下列不等式中正确的是( )A. m−2<n−2B. −12m>−12nC. n−m>0D. 1−2m<1−2n13.(2022·湖南省株洲市)不等式4x−1<0的解集是( )A. x>4B. x<4C. x>14D. x<1414.(2022·湖南省衡阳市)不等式组{x+2≥12x<x+3的解集在数轴上表示正确的是( )A.B.C.D.15. (2022·浙江省嘉兴市)不等式3x +1<2x 的解集在数轴上表示正确的是( )A.B.C.D.二、填空题16. (2022·青海省)不等式组{2x +4≥06−x >3的所有整数解的和为______.17. (2022·辽宁省营口市)不等式组{2x +4>69−x >1的解集为______.18. (2022·山东省聊城市)不等式组{x −6≤2−x,x −1>3x 2的解集是______.19. (2022·贵州省铜仁市)不等式组{−2x ≤6x +1<0的解集是______.20. (2022·黑龙江省大庆市)满足不等式组{2x −5≤0x −1>0的整数解是______.21. (2022·黑龙江省鹤岗市)若关于x 的一元一次不等式组{2x −1<3x −a <0的解集为x <2,则a 的取值范围是______.22. (2022·山西省)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价______元.23. (2022·四川省达州市)关于x 的不等式组{−x +a <23x−12≤x +1恰有3个整数解,则a 的取值范围是______.24. (2022·河南省)不等式组{x −3≤0,x 2>1的解集为______.三、解答题25. (2022·广东省广州市)解不等式:3x −2<4.26. (2022·甘肃省兰州市)解不等式:2(x −3)<8.27. (2022·湖南省郴州市)为响应乡村振兴号召,在外地创业成功的大学毕业生小姣毅然返乡当起了新农人,创办了果蔬生态种植基地.最近,为给基地蔬菜施肥,她准备购买甲、乙两种有机肥.已知甲种有机肥每吨的价格比乙种有机肥每吨的价格多100元,购买2吨甲种有机肥和1吨乙种有机肥共需1700元. (1)甲、乙两种有机肥每吨各多少元?(2)若小姣准备购买甲、乙两种有机肥共10吨,且总费用不能超过5600元,则小姣最多能购买甲种有机肥多少吨?28. (2022·山东省烟台市)求不等式组{2x ≤3x −1,1+3(x −1)<2(x +1)的解集,并把它的解集表示在数轴上.29. (2022·湖南省常德市)解不等式组{5x −1>3x −4−13x ≤23−x .30. (2022·江苏省扬州市)解不等式组{x −2≤2x,x −1<1+2x 3,并求出它的所有整数解的和.31. (2022·四川省自贡市)解不等式组:{3x <65x +4>3x +2,并在数轴上表示其解集.32.(2022·黑龙江省哈尔滨市)绍云中学计划为绘画小组购买某种品牌的A、B两种型号的颜料,若购买1盒A种型号的颜料和2盒B种型号的颜料需用56元;若购买2盒A种型号的颜料和1盒B种型号的颜料需用64元.(1)求每盒A种型号的颜料和每盒B种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A种型号的颜料?33.(2022·广西壮族自治区河池市)为改善村容村貌,阳光村计划购买一批桂花树和芒果树.已知桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元.(1)桂花树和芒果树的单价各是多少元?(2)若该村一次性购买这两种树共60棵,且桂花树不少于35棵.设购买桂花树的棵数为n,总费用为w元,求w关于n的函数关系式,并求出该村按怎样的方案购买时,费用最低?最低费用为多少元?34.(2022·湖北省咸宁市)某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?35.(2022·四川省遂宁市)某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元.那么有哪几种购买方案?参考答案1.D2.D3.C4.C5.C6.D7.A8.D9.B10.D11.C12.D13.D14.A15.B16.017.1<x<818.x<−219.−3≤x<−120.221.a≥222.3223.2<a≤324.2<x≤325.解:移项得:3x<4+2,合并同类项得:3x<6,系数化为1得:x<2.26.解:去括号,得:2x−6<8,移项,得:2x<8+6,合并同类项,得:2x<14,两边同乘以12,得:x <7. 故原不等式的解集是x <7.27.解:(1)设甲种有机肥每吨x 元,乙种有机肥每吨y 元,依题意得:{x −y =1002x +y =1700,解得:{x =600y =500.答:甲种有机肥每吨600元,乙种有机肥每吨500元. (2)设购买甲种有机肥m 吨,则购买乙种有机肥(10−m)吨, 依题意得:600m +500(10−m)≤5600, 解得:m ≤6.答:小姣最多能购买甲种有机肥6吨.28.解:{2x ≤3x −1①1+3(x −1)<2(x +1)②,由①得:x ≥1, 由②得:x <4,∴不等式组的解集为:1≤x <4, 将不等式组的解集表示在数轴上如下:29.解:由5x −1>3x −4,得:x >−32,由−13x ≤23−x ,得:x ≤1, 则不等式组的解集为−32<x ≤1.30.解:{x −2≤2x ①x −1<1+2x 3②, 解不等式①,得:x ≥−2, 解不等式②,得:x <4, ∴原不等式组的解集是−2≤x <4,∴该不等式组的整数解是−2,−1,0,1,2,3, ∵−2+(−1)+0+1+2+3=3, ∴该不等式组所有整数解的和是3.31.解:由不等式3x <6,解得:x <2,由不等式5x +4>3x +2,解得:x >−1, ∴不等式组的解集为:−1<x <2, ∴在数轴上表示不等式组的解集为:32.解:(1)设每盒A 种型号的颜料x 元,每盒B 种型号的颜料y 元,依题意得:{x +2y =562x +y =64,解得:{x =24y =16.答:每盒A 种型号的颜料24元,每盒B 种型号的颜料16元.(2)设该中学可以购买m 盒A 种型号的颜料,则可以购买(200−m)盒B 种型号的颜料, 依题意得:24m +16(200−m)≤3920, 解得:m ≤90.答:该中学最多可以购买90盒A 种型号的颜料.33.解:(1)设桂花树的单价是x 元,则芒果树的单价是(x −40)元,根据题意得:3x +2(x −40)=370, 解得x =90,∴x −40=90−40=50,答:桂花树的单价是90元,芒果树的单价是50元; (2)根据题意得:w =90n +50(60−n)=40n +3000, ∴w 关于n 的函数关系式为w =40n +3000, ∵40>0,∴w 随n 的增大而增大, ∵桂花树不少于35棵, ∴n ≥35,∴n =35时,w 取最小值,最小值为40×35+3000=4400(元), 此时60−n =60−35=25(棵),答:w 关于n 的函数关系式为w =40n +3000,购买桂花树35棵,购买芒果树25棵时,费用最低,最低费用为4400元.34.解:(1)设购买一份甲种快餐需要x 元,购买一份乙种快餐需要y 元,依题意得:{x +2y =702x +3y =120,解得:{x =30y =20.答:购买一份甲种快餐需要30元,购买一份乙种快餐需要20元. (2)设购买乙种快餐m 份,则购买甲种快餐(55−m)份, 依题意得:30(55−m)+20m ≤1280, 解得:m ≥37.答:至少买乙种快餐37份.35.解:(1)设篮球的单价为a 元,足球的单价为b 元,由题意可得:{2a +3b =5103a +5b =810,解得{a =120b =90,答:篮球的单价为120元,足球的单价为90元; (2)设采购篮球x 个,则采购足球为(50−x)个, ∵要求篮球不少于30个,且总费用不超过5500元, ∴{x ≥30120x +90(50−x)≤5500, 解得30≤x ≤3313, ∵x 为整数,∴x 的值可为30,31,32,33, ∴共有四种购买方案,方案一:采购篮球30个,采购足球20个; 方案二:采购篮球31个,采购足球19个; 方案三:采购篮球32个,采购足球18个; 方案四:采购篮球33个,采购足球17个.。
2023年全国各地中考数学真题分类汇编之不等式(组)及其应用(含解析)
不等式(组)及其应用一、单选题1.(2023·内蒙古·统考中考真题)关于的一元一次不等式的解集在数轴上的表示如图所示,则的值为()A.3B.2C.1D.02.(2023·湖南常德·统考中考真题)不等式组的解集是()A.B.C.D.3.(2023·湖北·统考中考真题)不等式组的解集是()A.B.C.D.4.(2023·广东·统考中考真题)一元一次不等式组的解集为()A.B.C.D.5.(2023·湖北宜昌·统考中考真题)解不等式,下列在数轴上表示的解集正确的是().A.B.C.D.6.(2023·浙江宁波·统考中考真题)不等式组的解在数轴上表示正确的是()A.B.C.D.7.(2023·四川眉山·统考中考真题)关于x的不等式组的整数解仅有4个,则m的取值范围是()A.B.C.D.8.(2023·四川遂宁·统考中考真题)若关于x的不等式组的解集为,则a的取值范围是()A.B.C.D.二、填空题9.(2023·全国·统考中考真题)不等式的解集为__________.10.(2023·辽宁大连·统考中考真题)的解集为_______________.11.(2023·四川乐山·统考中考真题)不等式的解集是__________.12.(2023·黑龙江·统考中考真题)关于的不等式组有3个整数解,则实数的取值范围是__________.13.(2023·广东·统考中考真题)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于,则最多可打_______折.14.(2023·山东聊城·统考中考真题)若不等式组的解集为,则m的取值范围是______.15.(2023·湖南·统考中考真题)关于的不等式的解集为_______.16.(2023·山东滨州·统考中考真题)不等式组的解集为___________.17.(2023·浙江温州·统考中考真题)不等式组的解是___________.18.(2023·重庆·统考中考真题)若关于x的一元一次不等式组,至少有2个整数解,且关于y的分式方程有非负整数解,则所有满足条件的整数a的值之和是___________.19.(2023·四川泸州·统考中考真题)关于,的二元一次方程组的解满足,写出的一个整数值___________.20.(2023·四川凉山·统考中考真题)不等式组的所有整数解的和是_________.21.(2023·四川宜宾·统考中考真题)若关于x的不等式组所有整数解的和为,则整数的值为___________.三、解答题22.(2023·湖南·统考中考真题)解不等式组:,并把它的解集在数轴上表示出来.23.(2023·山东·统考中考真题)解不等式组:.24.(2023·福建·统考中考真题)解不等式组:25.(2023·湖北武汉·统考中考真题)解不等式组请按下列步骤完成解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是________.26.(2023·浙江·统考中考真题)解一元一次不等式组:.27.(2023·湖南永州·统考中考真题)解关于x的不等式组28.(2023·江苏苏州·统考中考真题)解不等式组:29.(2023·湖南·统考中考真题)解不等式组:30.(2023·湖南岳阳·统考中考真题)解不等式组:31.(2023·江苏扬州·统考中考真题)解不等式组并把它的解集在数轴上表示出来.32.(2023·上海·统考中考真题)解不等式组33.(2023·甘肃武威·统考中考真题)解不等式组:34.(2023·内蒙古赤峰·统考中考真题)某集团有限公司生产甲乙两种电子产品共8万件,准备销往东南亚国家和地区.已知2件甲种电子产品与3件乙种电子产品的销售额相同:3件甲种电子产品比2件乙种电子产品的销售多元.(1)求甲种电子产品与乙种电子产品销售单价各多少元?(2)若使甲乙两种电子产品的销售总收入不低于万元,则至少销售甲种电子产品多少件?35.(2023·内蒙古通辽·统考中考真题)某搬运公司计划购买A,B两种型号的机器搬运货物,每台A型机器比每台B型机器每天少搬运10吨货物,且每台A型机器搬运450吨货物与每台B型机器搬运500吨货物所需天数相同.(1)求每台A型机器,B型机器每天分别搬运货物多少吨?(2)每台A型机器售价1.5万元,每台B型机器售价2万元,该公司计划采购两种型号机器共30台,满足每天搬运货物不低于2880吨,购买金额不超过55万元,请帮助公司求出最省钱的采购方案.36.(2023·广东深圳·统考中考真题)某商场在世博会上购置A,B两种玩具,其中B玩具的单价比A玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.(1)求A,B玩具的单价;(2)若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A玩具?37.(2023·河南·统考中考真题)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.38.(2023·湖北荆州·统考中考真题)荆州古城旁“荆街”某商铺打算购进,两种文创饰品对游客销售.已知1400元采购种的件数是630元采购种件数的2倍,种的进价比种的进价每件多1元,两种饰品的售价均为每件15元;计划采购这两种饰品共600件,采购种的件数不低于390件,不超过种件数的4倍.(1)求,饰品每件的进价分别为多少元?(2)若采购这两种饰品只有一种情况可优惠,即一次性采购种超过150件时,种超过的部分按进价打6折.设购进种饰品件,①求的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.39.(2023·山东聊城·统考中考真题)今年五一小长假期间,我市迎来了一个短期旅游高峰.某热门景点的门票价格规定见下表:人们的环保观念也在逐渐加深.绿色出行成为大家的生活理念,乙两种型号的自行车,其中甲型自行车进货价格为每台元,乙型自行车进货价格为每台元.该公司销售台甲型自行车和台乙型自行车,可获利元,销售台甲型自行车和台乙型自行车,可获利元.该公司销售一台甲型、一台乙型自行车的利润各是多少元?为满足大众需求,该公司准备加购甲、乙两种型号的自行车共台,且资金不超过元,最少需要备,每套设备由1个A部件和3个B部件组成,这种设备必须成套运输.已知1个A部件和2个B部件的总质量为2.8吨,2个A部件和3个B部件的质量相等.(1)求1个A部件和1个B部件的质量各是多少;(2)卡车一次最多可运输多少套这种设备通过此大桥?42.(2023·天津·统考中考真题)解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得________________;(2)解不等式②,得________________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为________________.43.(2023·湖南怀化·统考中考真题)某中学组织学生研学,原计划租用可坐乘客人的种客车若干辆,则有人没有座位;若租用可坐乘客人的种客车,则可少租辆,且恰好坐满.(1)求原计划租用种客车多少辆?这次研学去了多少人?(2)若该校计划租用、两种客车共辆,要求种客车不超过辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若种客车租金为每辆元,种客车租金每辆元,应该怎样租车才最合算?44.(2023·江西·统考中考真题)今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?45.(2023·云南·统考中考真题)蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买两种型号的帐篷.若购买种型号帐篷2顶和种型号帐篷4顶,则需5200元;若购买种型号帐篷3顶和种型号帐篷1顶,则需2800元.(1)求每顶种型号帐篷和每顶种型号帐篷的价格;(2)若该景区需要购买两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买种型号帐篷数量不超过购买种型号帐篷数量的,为使购买帐篷的总费用最低,应购买种型号帐篷和种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?46.(2023·四川眉山·统考中考真题)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校为提高学生的阅读品味,现决定购买获得矛盾文学奖的甲、乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元,购买3本甲种书和2本乙种书共需165元.(1)求甲,乙两种书的单价分别为多少元:(2)若学校决定购买以上两种书的总费用不超过3200元,那么该校最多可以购买甲种书多少本?47.(2023·四川凉山·统考中考真题)凉山州雷波县是全国少有的优质脐橙最适生态区.经过近20年的发展,雷波脐橙多次在中国西部农业博览会上获得金奖,雷波县也被誉名为“中国优质脐橙第一县”,某水果商为了解雷波脐橙的市场销售情况,购进了雷波脐橙和资中血橙进行试销.在试销中,水果商将两种水果搭配销售,若购买雷波脐橙3千克,资中血橙2千克,共需78元人民币;若购买雷波脐橙2千克,资中血橙3千克,共需72元人民币.(1)求雷波脐橙和资中血橙每千克各多少元?(2)一顾客用不超过1440元购买这两种水果共100千克,要求雷波脐橙尽量多,他最多能购买雷波脐橙多少千克?48.(2023·四川广安·统考中考真题)“广安盐皮蛋”是小平故里的名优特产,某超市销售两种品牌的盐皮蛋,若购买9箱种盐皮蛋和6箱种盐皮蛋共需390元;若购买5箱种盐皮蛋和8箱种盐皮蛋共需310元.(1)种盐皮蛋、种盐皮蛋每箱价格分别是多少元?(2)若某公司购买两种盐皮蛋共30箱,且种的数量至少比种的数量多5箱,又不超过种的2倍,怎样购买才能使总费用最少?并求出最少费用.参考答案一、单选题1.【答案】B【分析】先求出不等式的解集,然后对比数轴求解即可.【详解】解:解得,由数轴得:,解得:,故选:B.【点拨】题目主要考查求不等式的解集及参数,熟练掌握求不等式解集的方法是解题关键.2.【答案】C【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解不等式①,移项,合并同类项得,;解不等式②,移项,合并同类项得,故不等式组的解集为:.故选:C.【点拨】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.【答案】A【分析】先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集.【详解】解:解不等式①得:,解不等式②得:,∴不等式组的解集为,故选:A.【点拨】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.4.【答案】D【分析】第一个不等式解与第二个不等式的解,取公共部分即可.【详解】解:解不等式得:结合得:不等式组的解集是,故选:D.【点拨】本题考查解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解题的关键.5.【答案】D【分析】按去分母、去括号、移项、合并同类项,未知数系数化为的步骤求出解集,再把解集在数轴上表示出来,注意包含端点值用实心圆点,不包含端点值用空心圆点,即可求解.【详解】解:,解集在数轴上表示为故选:D.【点拨】本题考查了一元一次不等式的解法及解集在数轴上的表示方法,掌握解法及表示方法是解题的关键.6.【答案】C【分析】根据一元一次不等式组的解法先求出不等式组的解集,再在数轴上表示即可得到答案.【详解】解:,由①得;由②得;原不等式组的解集为,在数轴上表示该不等式组的解集如图所示:,故选:C.【点拨】本题考查一元一次不等式组解集的求法及在数轴上的表示,熟练掌握不等式组解集的求解原则“同大取大、同小取小、大小小大中间找、大大小小无解了”是解决问题的关键.7.【答案】A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m的范围即可.【详解】解:,由②得:,解集为,由不等式组的整数解只有4个,得到整数解为2,1,0,,∴,∴;故选:A.【点拨】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到是解此题的关键.8.【答案】D【分析】分别求出各不等式的解集,再根据不等式组的解集是求出a的取值范围即可.【详解】解:解不等式①得:,解不等式②得:,∵关于的不等式组的解集为,∴,故选:D.【点拨】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题9.【答案】【分析】根据移项、化系数为1,的步骤解一元一次不等式即可求解.【详解】解:解得:,故答案为:.【点拨】本题考查了求一元一次不等式的解集,熟练掌握不等式的性质是解题的关键.10.【答案】【分析】根据不等式的性质解不等式即可求解.【详解】解:,解得:,故答案为:.【点拨】本题考查了求不等式的解集,熟练掌握不等式的性质是解题的关键.11.【答案】【分析】直接移项即可得解.【详解】解:∵,∴,故答案为:.【点拨】本题主要考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解答本题的关键.12.【答案】/【分析】解不等式组,根据不等式组有3个整数解得出关于m的不等式组,进而可求得的取值范围.【详解】解:解不等式组得:,∵关于的不等式组有3个整数解,∴这3个整数解为,,,∴,解得:,故答案为:.【点拨】本题考查了解一元一次不等式组,一元一次不等式组的整数解,正确得出关于m的不等式组是解题的关键.13.【答案】8.8【分析】设打x折,由题意可得,然后求解即可.【详解】解:设打x折,由题意得,解得:;故答案为:8.8.【点拨】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键.14.【答案】【分析】分别求出两个不等式的解集,根据不等式组的解集即可求解.【详解】解:,解不等式①得:,解不等式②得:,∵不等式组的解集为:,∴.故答案为:.【点拨】本题考查了解一元一次不等式组,根据不等式的解求参数的取值范围,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.15.【答案】【分析】根据一元一次不等式的解法即可得出结果.【详解】解:,移项,得,系数化为1,得.故答案为:.【点拨】本题考查了一元一次不等式的解法,熟练掌握不等式的性质是本题的关键.16.【答案】【分析】分别解两个不等式,再取两个解集的公共部分即可.【详解】解:,由①得:,由②得:,∴不等式组的解集为:;故答案为:【点拨】本题考查的是一次不等式组的解法,掌握一元一次不等式组的解法步骤与方法是解本题的关键.17.【答案】【分析】根据不等式的性质先求出每一个不等式的解集,再求出它们的公共部分即可.【详解】解不等式组:解:由①得,;由②得,所以,.故答案为:.【点拨】本题主要考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知求公共解的原则是解题关键.18.【答案】4【分析】先解不等式组,确定a的取值范围,再把分式方程去分母转化为整式方程,解得,由分式方程有正整数解,确定出a的值,相加即可得到答案.【详解】解:解不等式①得:,解不等式②得:,∴不等式的解集为,∵不等式组至少有2个整数解,∴,解得:;∵关于y的分式方程有非负整数解,∴即且,解得:且∴a的取值范围是,且∴a可以取:1,3,∴,故答案为:4.【点拨】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.19.【答案】7(答案不唯一)【分析】先解关于x、y的二元一次方程组的解集,再将代入,然后解关于a的不等式的解集即可得出答案.【详解】将两个方程相减得,∵,∴,∴,∵,∴,∴,∴的一个整数值可以是7.故答案为:7(答案不唯一).【点拨】本题主要考查了解二元一次方程组和解一元一次不等式,整体代入的思想方法是解答本题的亮点.20.【答案】7【分析】先分别解不等式组中的两个不等式,得到不等式组的解集,再确定整数解,最后求和即可.【详解】解:,由①得:,∴,由②得:,整理得:,解得:,∴不等式组的解集为:,∴不等式组的整数解为:,,0,1,2,3,4;∴,故答案为:7【点拨】本题考查的是求解一元一次不等式组的整数解,熟悉解一元一次不等式组的方法与步骤是解本题的关键.21.【答案】或【分析】根据题意可求不等式组的解集为,再分情况判断出的取值范围,即可求解.【详解】解:由①得:,由②得:,不等式组的解集为:,所有整数解的和为,①整数解为:、、、,,解得:,为整数,.②整数解为:,,,、、、,,解得:,为整数,.综上,整数的值为或故答案为:或.【点拨】本题考查了含参数的一元一次不等式组的整数解问题,掌握一元一次不等式组的解法,理解参数的意义是解题的关键.三、解答题22.【答案】不等式组的解集为:.画图见解析【分析】先解不等式组中的两个不等式,再在数轴上表示两个不等式的解集,从而可得答案.【详解】解:,由①得:,由②得:,∴,在数轴上表示其解集如下:∴不等式组的解集为:.【点拨】本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握不等式组的解法与步骤是解本题的关键.23.【答案】【分析】分别求出各个不等式的解,再取各个解集的公共部分,即可.【详解】解:解得:,解得:,∴不等式组的解集为.【点拨】本题主要考查解一元一次不等式组,熟练掌握解不等式组的基本步骤,是解题的关键.24.【答案】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①,得.所以原不等式组的解集为.【点拨】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.25.【答案】(1)(2)(3)见解析(4)【分析】(1)直接解不等式①即可解答;(2)直接解不等式①即可解答;(3)在数轴上表示出①、②的解集即可;(3)数轴上表示的不等式的解集,确定不等式组的解集即可.【详解】(1)解:,.故答案为:.(2)解:,.故答案为:.(3)解:把不等式和的解集在数轴上表示出来:(4)解:由图可知原不等式组的解集是.故答案为:.【点拨】本题考查的是解一元一次不等式组,正确求出每一个不等式解集和在数轴上表示不等式的解集是解答本题的关键.26.【答案】【分析】根据不等式的性质,解一元一次不等式,然后求出两个解集的公共部分即可.【详解】解:解不等式②,得,∴原不等式组的解是.【点拨】本题主要考查解一元一次不等式组,掌握不等式的性质,解一元一次不等式的方法是解题的关键.27.【答案】【分析】分别解不等式组的两个不等式,再取两个不等式的解集的公共部分,即为不等式组的解集.【详解】解:,解①得,,解②得,,原不等式组的解集为.【点拨】本题考查了解一元一次不等式组的解集,取两个不等式的解集的公共部分的口诀为:“大大取大,小小取小,大小小大取中间,大大小小则无解”,熟知上述口诀是解题的关键.28.【答案】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①得:解不等式②得:∴不等式组的解集为:【点拨】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.29.【答案】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①得:∴不等式组的解集为:.【点拨】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.30.【答案】【分析】按照解不等式组的基本步骤求解即可.【详解】∵,解①的解集为;解②的解集为,∴原不等式组的解集为.【点拨】本题考查了不等式组的解法,熟练掌握解不等式组的基本步骤是解题的关键.31.【答案】,数轴表示见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式①得·,解不等式②,得:,把不等式①和②的解集在数轴上表示出来:则不等式组的解集为:.【点拨】本题考查的是解一元一次不等式组,在数轴上表示不等式的解集,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.32.【答案】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.【详解】解:,解不等式②得:,则不等式组的解集为.【点拨】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.33.【答案】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:解不等式组:,解不等式①,得.解不等式②,得.因此,原不等式组的解集为.【点拨】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.34.【答案】(1)甲种电子产品的销售单价是元,乙种电子产品的单价为元;(2)至少销售甲种电子产品万件【分析】(1)设甲种电子产品的销售单价元,乙种电子产品的销售单价元,根据等量关系:件甲种电子产品与件乙种电子产品的销售额相同,件甲种电子产品比件乙种电子产品的销售多元,列出方程组求解即可;(2)可设销售甲种电子产品万件,根据甲、乙两种电子产品的销售总收入不低于万元,列出不等式求解即可.【详解】(1)解:设甲种电子产品的销售单价是元,乙种电子产品的单价为元.根据题意得:,解得:;答:甲种电子产品的销售单价是元,乙种电子产品的单价为元.(2)解:设销售甲种电子产品万件,则销售乙种电子产品万件.根据题意得:.解得:.答:至少销售甲种电子产品万件.【点拨】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系及等量关系.35.【答案】(1)每台A型机器,B型机器每天分别搬运货物90吨和100吨;(2)当购买A型机器人12台,B 型机器人18台时,购买总金额最低是54万元.【分析】(1)设每台B型机器每天搬运x吨,则每台A型机器每天搬运吨,根据题意列出分式方程,解方程、检验后即可解答;(2设公司计划采购A型机器m台,则采购B型机器台,再题意列出一元一次不等式组,解不等式组求出m的取值范围,再列出公司计划采购A型机器m台与采购支出金额w的函数关系式,最后利用一次函数的增减性求最值即可.【详解】(1)解:设每台B型机器每天搬运x吨,则每台A型机器每天搬运吨,由题意可得:,解得:经检验,是分式方程的解每台A型机器每天搬运吨答:每台A型机器,B型机器每天分别搬运货物90吨和100吨(2)解:设公司计划采购A型机器m台,则采购B型机器台由题意可得:,解得:,公司采购金额:∵∴w随m的增大而减小∴当时,公司采购金额w有最小值,即,∴当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.【点拨】本题主要考查了分式方程的应用、不等式组的应用、一次函数的应用等知识点,理解题意正确列出分式方程、不等式组和一次函数解析式是解答本题的关键.36.【答案】(1)A.B玩具的单价分别为50元、75元;(2)最多购置100个A玩具.。
全国各地2019年中考数学真题分类解析汇编 06不等式
不等式一、选择题1. ( 2018•广西贺州,第7题3分)不等式的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:,解得,故选:A.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2. ( 2018•广西玉林市、防城港市,第10题3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是(),3.(2019年云南省,第3题3分)不等式组的解集是()A. x>B.﹣1≤x<C.x<D.x≥﹣1考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x≥﹣1,故此不等式组的解集为:x>.故选A.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2019年广东汕尾,第3题4分)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y分析:根据不等式的基本性质,进行选择即可.解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A正确;B、根据不等式的性质2,可得>,故B正确;C、根据不等式的性质1,可得x+3>y+3,故C正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D错误;故选D.点评:本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(2018•毕节地区,第5题3分)下列叙述正确的是()6.(2018•武汉)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()天,频率为:7.(2018•邵阳,第6题3分)不等式组的解集在数轴上表示正确的是(),解得8.(2018·台湾,第22题3分)图为歌神KTV 的两种计费方案说明.若晓莉和朋友们打算在此KTV 的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?( )A .6B .7C .8D .9分析:设晓莉和朋友共有x 人,分别计算选择包厢和选择人数的费用,然后根据选择包厢计费方案会比人数计费方案便宜,列不等式求解. 解:设晓莉和朋友共有x 人,若选择包厢计费方案需付:900×6+99x 元,若选择人数计费方案需付:540×x +(6﹣3)×80×x =780x(元), ∴900×6+99x <780x , 解得:x >5400681=7633681.∴至少有8人. 故选C .点评:本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.9. (2018•湘潭,第6题,3分)式子有意义,则x 的取值范围是( )此题考查了二次根式的意义和性质.概念:式子(考查了二次根式的意义和性质.概念:式子(12. (2018•株洲,第6题,3分)一元一次不等式组的解集中,整数解的个数是()13.(2018•滨州,第6题3分)a,b都是实数,且a<b,则下列不等式的变形正确的是()>14.(2018•德州,第6题3分)不等式组的解集在数轴上可表示为()B,再分别表示在数轴上即可得解.解得,15.(2019年山东泰安,第15题3分)若不等式组有解,则实数a的取值范围是()A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣36分析:先求出不等式组中每一个不等式的解集,不等式组有解,即两个不等式的解集有公共部分,据此即可列不等式求得a的范围.解:,解①得:x<a﹣1,解②得:x≥﹣37,则a﹣1>﹣37,解得:a>﹣36.故选C.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.二.填空题1. ( 2018•广东,第15题4分)不等式组的解集是1<x<4 .考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解答:解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.2.(2018•新疆,第10题5分)不等式组的解集是.,3.(2018•温州,第13题5分)不等式3x﹣2>4的解是x>2 .4.(2018•毕节地区,第17题5分)不等式组的解集为﹣4≤x≤1 .5.(2018•武汉,第18题6分)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.≥6.(2018•四川自贡,第12题4分)不等式组的解集是1<x≤.,由①得,的一元一次不等式▲ .-≥(答案不唯一).【答案】x10【解析】≥⇒-≥(答案不唯一).试题分析:根据不等式的性质,从x≥1逆推即可得到一元一次不等式:x1x10考点:1.开放型;2.不等式的解集.8. (2018•株洲,第16题,3分)如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是a<﹣5 .)②轴的正半轴相交.因此9. (2019年江苏南京,第15题,2分)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.考点:一元一次不等式的应用。
2022年中考数学真题分类汇编:不等式与不等式组1(含答案)
2022年年年年年年年年年年年年年年年年年一、选择题1.(2022·广西壮族自治区南宁市)不等式2x−4<10的解集是( )A. x<3B. x<7C. x>3D. x>72.(2022·福建省)不等式组{x−1>0,x−3≤0的解集是( )A. x>1B. 1<x<3C. 1<x≤3D. x≤33.(2022·广西壮族自治区桂林市)把不等式x−1<2的解集在数轴上表示出来,正确的是( )A.B.C.D.4.(2022·内蒙古自治区赤峰市)解不等式组{x≤3①x>−1②时,不等式①、②的解集在同一数轴上表示正确的是( )A. B.C. D.5.(2022·山西省)不等式组{2x+1≥34x−1<7的解集是( )A. x≥1B. x<2C. 1≤x<2D. x<126.(2022·湖南省娄底市)不等式组{3−x≥12x>−2的解集在数轴上表示正确的是( )A. B.B.C. D.7. (2022·内蒙古自治区包头市)若m >n ,则下列不等式中正确的是( )A. m −2<n −2B. −12m >−12n C. n −m >0D. 1−2m <1−2n8. (2022·辽宁省盘锦市)不等式12x −1≤7−32x 的解集在数轴上表示为( )A.B.C.D.9. (2022·吉林省长春市)不等式x +2>3的解集是( )A. .x <1B. .x <5C. x >1D. .x >510. (2022·湖南省邵阳市)关于x 的不等式组{−13x >23−x,12x −1<12(a −2)有且只有三个整数解,则a 的最大值是( )A. 3B. 4C. 5D. 611. (2022·广东省深圳市)一元一次不等式组{x −1≥0x <2的解集为( )A.B.C.D.12. (2022·山东省聊城市)关于x ,y 的方程组{2x −y =2k −3,x −2y =k的解中x 与y 的和不小于5,则k 的取值范围为( )A. k ≥8B. k >8C. k ≤8D. k <8二、填空题13. (2022·四川省宜宾市)不等式组{3−2x ≥5,x+22>−1的解集为______.14. (2022·湖北省十堰市)关于x 的不等式组中的两个不等式的解集如图所示,则该不等式组的解集为______.15. (2022·黑龙江省哈尔滨市)不等式组{3x +4≥04−2x <−1的解集是______.16. (2022·黑龙江省绥化市)不等式组{3x −6>0x >m的解集为x >2,则m 的取值范围为______.17. (2022·河南省)不等式组{x −3≤0,x 2>1的解集为______.18. (2022·浙江省绍兴市)关于x 的不等式3x −2>x 的解集是______.19. (2022·四川省达州市)关于x 的不等式组{−x +a <23x−12≤x +1恰有3个整数解,则a 的取值范围是______.20. (2022·北京市)甲工厂将生产的Ⅰ号、Ⅱ号两种产品共打包成5个不同的包裹,编号分别为A ,B ,C ,D ,E ,每个包裹的重量及包裹中Ⅰ号、Ⅱ号产品的重量如下: 包裹编号 Ⅰ号产品重量/吨 Ⅱ号产品重量/吨 包裹的重量/吨 A 5 1 6 B 3 2 5 C 2 3 5 D 4 3 7 E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂. (1)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案______(写出要装运包裹的编号);(2)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,同时装运的Ⅱ号产品最多,写出满足条件的装运方案______(写出要装运包裹的编号).三、解答题21. (2022·江苏省盐城市)解不等式组:{2x +1≥x +22x −1<12(x +4).22. (2022·上海市)解关于x 的不等式组:{3x >x −44+x 3>x +2.23. (2022·北京市)解不等式组:{2+x >7−4x,x <4+x 2..24. (2022·广西壮族自治区百色市)解不等式2x +3≥−5,并把解集在数轴上表示出来.25. (2022·湖南省长沙市)解不等式组:{3x >−8−x①2(x −1)≤6②.26. (2022·河北省)整式3(13−m)的值为P . 27. (1)当m =2时,求P 的值;28. (2)若P 的取值范围如图所示,求m 的负整数值.29. (2022·天津市)解不等式组{2x ≥x −1,①x +1≤3.②30. 请结合题意填空,完成本题的解答. 31. (Ⅰ)解不等式①,得______; 32. (Ⅱ)解不等式②,得______;33. (Ⅲ)把不等式①和②的解集在数轴上表示出来: 34.35. (Ⅳ)原不等式组的解集为______.36.(2022·广西壮族自治区河池市)为改善村容村貌,阳光村计划购买一批桂花树和芒果树.已知桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元.37.(1)桂花树和芒果树的单价各是多少元?38.(2)若该村一次性购买这两种树共60棵,且桂花树不少于35棵.设购买桂花树的棵数为n,总费用为w元,求w关于n的函数关系式,并求出该村按怎样的方案购买时,费用最低?最低费用为多少元?39.(2022·辽宁省铁岭市)多功能家庭早餐机可以制作多种口味的美食,深受消费者的喜爱,在新品上市促销活动中,已知8台A型早餐机和3台B型早餐机需要1000元,6台A型早餐机和1台B型早餐机需要600元.40.(1)每台A型早餐机和每台B型早餐机的价格分别是多少元?41.(2)某商家欲购进A,B两种型号早餐机共20台,但总费用不超过2200元,那么至少要购进A型早餐机多少台?42.(2022·四川省内江市)为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:学校计划此次劳动实践活动的租金总费用不超过3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?43.(2022·黑龙江省哈尔滨市)绍云中学计划为绘画小组购买某种品牌的A、B两种型号的颜料,若购买1盒A种型号的颜料和2盒B种型号的颜料需用56元;若购买2盒A种型号的颜料和1盒B种型号的颜料需用64元.44.(1)求每盒A种型号的颜料和每盒B种型号的颜料各多少元;45.(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A种型号的颜料?46.(2022·广西壮族自治区玉林市)我市某乡村振兴果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨;因龙眼大量上市,价格下跌,第二次购买龙眼的价格为0.3万元/吨,两次购买龙眼共用了7万元.47.(1)求两次购买龙眼各是多少吨?48.(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?49.(2022·湖北省咸宁市)某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.50.(1)买一份甲种快餐和一份乙种快餐各需多少元?51.(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?52.(2022·湖南省岳阳市)为迎接湖南省第十四届运动会在岳阳举行,某班组织学生参加全民健身线上跳绳活动,需购买A,B两种跳绳若干.若购买3根A种跳绳和1根B种跳绳共需140元;若购买5根A种跳绳和3根B种跳绳共需300元.53.(1)求A,B两种跳绳的单价各是多少元?54.(2)若该班准备购买A,B两种跳绳共46根,总费用不超过1780元,那么至多可以购买B种跳绳多少根?55.(2022·江苏省宿迁市)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.56.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为______元;乙超市的购物金额为______元;57.(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?参考答案1.B2.C3.D4.A5.C6.C7.D8.C9.C10.C11.D12.A13.−4<x≤−114.0≤x≤115.x>5216.m≤217.2<x≤318.x>119.2<a≤320.ABC(或ABE或AD或ACD或BCD)ABE或BCD21.解:{2x+1≥x+2①2x−1<12(x+4)②,解不等式①,得x≥1,解不等式②,得x<2,故原不等式组的解集为:1≤x<2.22.解:{3x>x−4①4+x3>x+2②,由①得,3x−x>−4,2x>−4,解得x>−2,由②得,4+x>3x+6,x−3x>6−4,−2x>2,解得x<−1,所以不等式组的解集为:−2<x<−1.23.解:由2+x>7−4x,得:x>1,由x<4+x2,得:x<4,则不等式组的解集为1<x<4.24.解:移项得:2x≥−5−3,合并同类项得:2x≥−8,两边同时除以2得:x≥−4,解集表示在数轴上如下:25.解:{3x>−8−x①2(x−1)≤6②,解不等式①得:x>−2,解不等式②得:x≤4,∴原不等式组的解集为:−2<x≤4.26.解:(1)根据题意得,P=3(13−2)=3×(−53)=−5;(2)由数轴知,P≤7,即3(13−m)≤7,解得m≥−2,∵m为负整数,∴m=−1.−2.27.x≥−1x≤2−1≤x≤228.解:(1)设桂花树的单价是x元,则芒果树的单价是(x−40)元,根据题意得:3x+2(x−40)=370,解得x=90,∴x−40=90−40=50,答:桂花树的单价是90元,芒果树的单价是50元;(2)根据题意得:w=90n+50(60−n)=40n+3000,∴w关于n的函数关系式为w=40n+3000,∵40>0,∴w 随n 的增大而增大, ∵桂花树不少于35棵, ∴n ≥35,∴n =35时,w 取最小值,最小值为40×35+3000=4400(元), 此时60−n =60−35=25(棵),答:w 关于n 的函数关系式为w =40n +3000,购买桂花树35棵,购买芒果树25棵时,费用最低,最低费用为4400元.29.解:(1)设A 型早餐机每台x 元,B 型早餐机每台y 元,依题意得:{8x +3y =10006x +y =600, 解得:{x =80y =120,答:每台A 型早餐机80元,每台B 型早餐机120元; (2)设购进A 型早餐机n 台,依题意得: 80n +120(20−n)≤2200, 解得:n ≥5,答:至少要购进A 型早餐机5台.30.解:(1)设参加此次劳动实践活动的老师有x 人,参加此次劳动实践活动的学生有(30x +7)人,根据题意得:30x +7=31x −1, 解得x =8,∴30x +7=30×8+7=247,答:参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人; (2)师生总数为247+8=255(人), ∵每位老师负责一辆车的组织工作, ∴一共租8辆车,设租甲型客车m 辆,则租乙型客车(8−m)辆, 根据题意得:{35m +30(8−m)≥255400m +320(8−m)≤3000,解得3≤m ≤5.5, ∵m 为整数, ∴m 可取3、4、5,∴一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)设租甲型客车m 辆,则租乙型客车(8−m)辆,由(2)知:3≤m ≤5.5,设学校租车总费用是w 元,w =400m +320(8−m)=80m +2560,∵80>0,∴w 随m 的增大而增大,∴m =3时,w 取最小值,最小值为80×3+2560=2800(元),答:学校租车总费用最少是2800元.31.解:(1)设每盒A 种型号的颜料x 元,每盒B 种型号的颜料y 元,依题意得:{x +2y =562x +y =64, 解得:{x =24y =16. 答:每盒A 种型号的颜料24元,每盒B 种型号的颜料16元.(2)设该中学可以购买m 盒A 种型号的颜料,则可以购买(200−m)盒B 种型号的颜料, 依题意得:24m +16(200−m)≤3920,解得:m ≤90.答:该中学最多可以购买90盒A 种型号的颜料.32.解:(1)设第一次购买龙眼x 吨,则第二次购买龙眼(21−x)吨,由题意得:0.4x +0.3(21−x)=7,解得:x =7,∴21−x =21−7=14(吨),答:第一次购买龙眼7吨,则第二次购买龙眼14吨;(2)设把y 吨龙眼加工成桂圆肉,则把(21−y)吨龙眼加工成龙眼干,由题意得:10×0.2y +3×0.5(21−y)≥39,解得:y ≥15,∴至少需要把15吨龙眼加工成桂圆肉,答:至少需要把15吨龙眼加工成桂圆肉.33.解:(1)设购买一份甲种快餐需要x 元,购买一份乙种快餐需要y 元,依题意得:{x +2y =702x +3y =120,解得:{x =30y =20. 答:购买一份甲种快餐需要30元,购买一份乙种快餐需要20元.(2)设购买乙种快餐m 份,则购买甲种快餐(55−m)份, 依题意得:30(55−m)+20m ≤1280,解得:m ≥37.答:至少买乙种快餐37份.34.解:(1)设A 种跳绳的单价为x 元,B 种跳绳的单价为y 元.根据题意得:{3x +y =1405x +3y =300, 解得:{x =30y =50, 答:A 种跳绳的单价为30元,B 种跳绳的单价为50元.(2)设购买B 种跳绳a 根,则购买A 种跳绳(46−a)根,由题意得:30(46−a)+50a ≤1780,解得:a ≤20,答:至多可以购买B 种跳绳20根.35.300 240。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式(组)一.选择题1. (2019•湖北天门•3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(2019甘肃省陇南市)(3分)不等式2x+9≥3(x+2)的解集是()A.x≤3B.x≤﹣3 C.x≥3D.x≥﹣3【分析】先去括号,然后移项、合并同类项,再系数化为1即可.【解答】解:去括号,得2x+9≥3x+6,移项,合并得﹣x≥﹣3系数化为1,得x≤3;故选:A.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.3. (2019•湖南衡阳•3分)不等式组的整数解是()A.0 B.﹣1 C.﹣2 D.1【分析】先求出不等式组的解集,再求出整数解,即可得出选项.【解答】解:解不等式①得:x<0,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x<0,∴不等式组的整数解是﹣1,故选:B.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.4. (2019•湖南衡阳•3分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1 B.﹣1<x<0C.x<﹣1或0<x<2 D.﹣1<x<0或x>2【分析】根据一次函数图象在反比例函数图象上方的x的取值范围便是不等式kx+b>的解集.【解答】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,∴不等式kx+b>的解集是x<﹣1或0<x<2故选:C.【点评】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.5.(2019•浙江宁波•4分)不等式>x的解为()A.x<1 B.x<﹣1 C.x>1 D.x>﹣1【分析】去分母、移项,合并同类项,系数化成1即可.【解答】解:>x,3﹣x>2x,3>3x,x<1,故选:A.【点评】本题考查了解一元一次不等式,注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.6. (2019•山东省德州市•4分)不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.0【考点】不等式组的非负整数解【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解答】解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.7. (2019•甘肃武威•3分)不等式2x+9≥3(x+2)的解集是()A.x≤3B.x≤﹣3 C.x≥3D.x≥﹣3【分析】先去括号,然后移项、合并同类项,再系数化为1即可.【解答】解:去括号,得2x+9≥3x+6,移项,合并得﹣x≥﹣3系数化为1,得x≤3;故选:A.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.8. (2019•湖南怀化•4分)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55 B.72 C.83 D.89【分析】设该村共有x户,则母羊共有(5x+17)只,根据“每户发放母羊7只时有一户可分得母羊但不足3只”列出关于x的不等式组,解之求得整数x的值,再进一步计算可得.【解答】解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.【点评】本题主要考查一元一次不等式组的应用,解题的关键是理解题意找到题目蕴含的不等关系,并据此得出不等式组.9. (2019•湖南岳阳•3分)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1.x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3B .c <﹣2C .c <D .c <1【分析】由函数的不动点概念得出x 1.x 2是方程x 2+2x +c =x 的两个实数根,由x 1<1<x 2知,解之可得.【解答】解:由题意知二次函数y =x 2+2x +c 有两个相异的不动点x 1.x 2是方程x 2+2x +c =x 的两个实数根, 且x 1<1<x 2, 整理,得:x 2+x +c =0, 则.解得c <﹣2, 故选:B .【点评】本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念,并据此得出关于c 的不等式.10.(2019,山西,3分)不等式组⎩⎨⎧<->-42231x x 的解集是( )A.4>xB.1->xC.41<<-xD.1-<x【解析】4,31>>-x x ;1,22,422-><-<-x x x ;∴4>x ,故选A11. (2019•南京•2分)实数A.B.c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是( ) A . B .C .D .【分析】根据不等式的性质,先判断c 的正负.再确定符合条件的对应点的大致位置. 【解答】解:因为a >b 且ac <bc , 所以c <0.选项A 符合a >b ,c <0条件,故满足条件的对应点位置可以是A .选项B不满足a>b,选项C.D不满足c<0,故满足条件的对应点位置不可以是B.C.D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.12(201▪9广西河池▪3分)不等式组的解集是()A.x≥2B.x<1 C.1≤x<2 D.1<x≤2【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x≤2,解②得:x>1.则不等式组的解集是:1<x≤2.故选:D.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13. (2019•山东省滨州市•3分)已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【考点】不等式组的解法【分析】直接利用关于原点对称点的性质得出关于a的不等式组进而求出答案.【解答】解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,∴,解得:a<2.则a的取值范围在数轴上表示正确的是:.故选:C.【点评】此题主要考查了关于原点对称点的性质以及解不等式组,正确掌握是解题关键.14. (2019•山东省聊城市•3分)若不等式组无解,则m的取值范围为()A.m≤2B.m<2 C.m≥2D.m>2【考点】解一元一次不等式组【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m的不等式,解之可得.【解答】解:解不等式<﹣1,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二.填空题1. (2019•山东省滨州市•5分)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为x>3.【考点】一次函数与一元一次不等式的关系【分析】根据直线y=kx+b(k<0)经过点A(3,1),正比例函数y=x也经过点A从而确定不等式的解集.【解答】解:∵正比例函数y=x也经过点A,∴kx+b<x的解集为x>3,故答案为:x>3.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.2. (2019•江苏泰州•3分)不等式组的解集为x<﹣3..【分析】求出不等式组的解集即可.【解答】解:等式组的解集为x<﹣3,故答案为:x<﹣3.【点评】本题考查了不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.3. (2019•湖南株洲•3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为a<1且a为有理数.【分析】根据题意列出不等式,解之可得,【解答】解:根据题意知2﹣a>1,解得a<1,故答案为:a<1且a为有理数.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4. (2019•山东省德州市•4分)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= 1.1.【考点】列出代数式【分析】根据题意列出代数式解答即可.【解答】解;根据题意可得:{3.9}+{﹣1.8}﹣{1}=3.9﹣3﹣1.8+2﹣1+1=1.1,故答案为:1.1【点评】此题考查解一元一次不等式,关键是根据题意列出代数式解答.5. (2019▪黑龙江哈尔滨▪3分)不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6. (2019•甘肃•3分)不等式组的最小整数解是0.【分析】求出不等式组的解集,确定出最小整数解即可.【解答】解:不等式组整理得:,∴不等式组的解集为﹣1<x≤2,则最小的整数解为0,故答案为:0【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.7. (2019•湖南长沙•3分)不等式组的解集是﹣1≤x<2.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集.【解答】解:解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为:﹣1≤x<2,故答案为:﹣1≤x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8. (2019•湖南邵阳•3分)不等式组的解集是﹣2≤x<﹣1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+4<3,得:x<﹣1,解不等式≤1,得:x≥﹣2,则不等式组的解集为﹣2≤x<﹣1,故答案为:﹣2≤x<﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9. (2019▪黑龙江哈尔滨▪3分)不等式组的解集是x≥3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式≤0,得:x≥3,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥3,故答案为:x≥3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(2019•浙江金华•4分)不等式3x-6≤9的解是________.【答案】x≤5【考点】解一元一次不等式【解析】【解答】解:∵3x-6≤9,∴x≤5.故答案为:x≤5.【分析】根据解一元一次不等式步骤解之即可得出答案.11.(2019•浙江绍兴•5分)不等式3x﹣2≥4的解为x≥2.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,3x≥4+2,合并同类项得,3x≥6,把x的系数化为1得,x≥2.故答案为:x≥2.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.3.4.5.6.7.8.9.10.三.解答题1.(2019▪黑龙江哈尔滨▪10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?【分析】(1)设每副围棋x元,每副中国象棋y元,根据题意得:,求解即可;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,即可求解;【解答】解:(1)设每副围棋x元,每副中国象棋y元,根据题意得:,∴,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z副,则购买象棋(40﹣z)副,根据题意得:16z+10(40﹣z)≤550,∴z≤25,∴最多可以购买25副围棋;【点评】本题考查二元一次方程组,一元一次不等式的应用;能够通过已知条件列出准确的方程组和不等式是解题的关键.2.((2019,山西,9分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y 1(元),选择方式二的总费用为y 2(元). (1)请分别写出y 1,y 2与x 之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x 在什么范围时,选择方式一比方式二省钱.【解析】(1)x y x y 40;2003021=+= (2)由21y y <得:x x 4020030<+解得:20>x ,∴当20>x 时选择方式一比方式2省钱3.(2019,四川成都,6分)解不等式组:⎪⎩⎪⎨⎧+<--≤-②211425①54)2(3x x x x解: 5463-≤-x x Θ1-∴≥x x 2425+-<Θ 2<x ∴4.(2019,四川巴中,8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【分析】①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得分式方程,解之即可;②设购买甲种物品y 件,则乙种物品购进(55﹣y )件,由题意得不等式,从而得解. 【解答】解:①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得:=解得x =90经检验,x =90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元. ②设购买甲种物品y 件,则乙种物品购进(55﹣y )件 由题意得:5000≤100y +90(55﹣y )≤5050 解得5≤y ≤10∴共有6种选购方案.【点评】本题考查了分式方程的应用以及一元一次不等式的整数解的问题.本题中等难度.5.(2019,山东淄博,5分)解不等式【分析】将已知不等式两边同乘以2,然后再根据移项、合并同类项、系数化为1求出不等式的解集.【解答】解:将不等式两边同乘以2得,x﹣5+2>2x﹣6解得x<3.【点评】解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变,在不等式的两边同时乘以或除以同一个正数不等号的方向不变,在不等式的两边同时乘以或除以同一个负数不等号的方向改变.6.(2019▪湖北黄石▪7分)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.【分析】先求出不等式组的解集,进而求得P点的坐标,即可求得点P所在的象限.【解答】解:,解①得:x≥4,解②得:x≤4,则不等式组的解是:x=4,∵=1,2x﹣9=﹣1,∴点P的坐标为(1,﹣1),∴点P在的第四象限.【点评】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7. (2019•湖南衡阳•8分)某商店购进A.B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A.B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A.B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?【分析】(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,根据数量=总价÷单价结合花费300元购买A商品和花费100元购买B商品的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买B商品m个,则购买A商品(80﹣m)个,根据A商品的数量不少于B商品数量的4倍并且购买A.B商品的总费用不低于1000元且不高于1050元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可找出各购买方案.【解答】解:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,购买一个B商品需要5元.(2)设购买B商品m个,则购买A商品(80﹣m)个,依题意,得:,解得:15≤m≤16.∵m为整数,∴m=15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.8. (2019•山东省滨州市•10分)先化简,再求值:(﹣)÷,其中x是不等式组的整数解.【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求出x的整数解,由分式有意义的条件确定最终符合分式的x的值,代入计算可得.【解答】解:原式=[﹣]•=•=,解不等式组得1≤x<3,则不等式组的整数解为1.2,又x≠±1且x≠0,∴x=2,∴原式=.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元一次不等式组的能力.9. (2019•广东•6分)解不等式组:【答案】解:由①得x>3,由②得x>1,∴原不等式组的解集为x>3.【考点】解一元一次不等式组10. (2019•广东•7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x个,则足球(60-x)个.由题意得70x+80(60-x)=4600,解得x=20则60-x =60-20=40.答:篮球买了20个,足球买了40个. (2)设购买了篮球y 个. 由题意得 70y ≤80(60-x ),解得y ≤32 答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用 11. ( 2019甘肃省兰州市)(本题5分)解不等式组:⎪⎩⎪⎨⎧-<++<-131512x x x x【答案】2<x <6.【考点】不等式组的解法. 【考察能力】计算能力. 【难度】中等.【解析】 解:⎪⎩⎪⎨⎧-<++<-131512x x x x由①得:x <6由②得:x >2所以原不等式组的解集为:2<x <6.12. (2019•广西贵港•10分)(1)计算:﹣(﹣3)0+()﹣2﹣4sin 30°;(2)解不等式组:,并在数轴上表示该不等式组的解集.【分析】(1)先计算算术平方根、零指数幂、负整数指数幂、代入三角函数值,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:(1)原式=2﹣1+4﹣4× =2﹣1+4﹣2 =3;① ② ① ②(2)解不等式6x ﹣2>2(x ﹣4),得:x >﹣, 解不等式﹣≤﹣,得:x ≤1,则不等式组的解集为﹣<x ≤1, 将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13. (2019•江苏苏州•5分)()152437x x x +<⎧⎪⎨+>+⎪⎩解不等式组: 【解答】解:由①得15x +<4x <由②得()2437x x +>+2837x x +>+1x ->- 1x <1x <所以14. (2019•江苏连云港•6分)解不等式组【分析】先求出两个不等式的解集,再求其公共解. 【解答】解:,由①得,x >﹣2, 由②得,x <2,所以,不等式组的解集是﹣2<x <2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15. (2019•湖南湘西州•6分)解不等式组:并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣2<1得x<3,解不等式4x+5>x+2,得:x>﹣1,则不等式组的解集为﹣1<x<3,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16. (2019•湖南岳阳•8分)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的,求休闲小广场总面积最多为多少亩?【分析】(1)设改造土地面积是x亩,则复耕土地面积是(600+x)亩.根据“复耕土地面积+改造土地面积=1200亩”列出方程并解答;(2)设休闲小广场总面积是y亩,则花卉园总面积是(300﹣y)亩,根据“休闲小广场总面积不超过花卉园总面积的”列出不等式并解答.【解答】解:(1)设改造土地面积是x亩,则复耕土地面积是(600+x)亩,由题意,得x+(600+x)=1200解得x=300.则600+x=900.答:改造土地面积是300亩,则复耕土地面积是900亩;(2)设休闲小广场总面积是y亩,则花卉园总面积是(300﹣y)亩,由题意,得y≤(300﹣y).解得y≤75.故休闲小广场总面积最多为75亩.答:休闲小广场总面积最多为75亩.【点评】考查了一元一次不等式的应用和一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.17. (2019•山东省滨州市•12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【分析】(1)可设辆甲种客车与1辆乙种客车的载客量分别为x人,y人,根据等量关系2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人,列出方程组求解即可;(2)根据题意列出不等式组,进而求解即可.【解答】解:(1)设辆甲种客车与1辆乙种客车的载客量分别为x人,y人,,解得:,答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x辆,依题意有:,解得:6>x≥4,因为x取整数,所以x=4或5,当x=4时,租车费用最低,为4×400+2×280=2160.【点评】本题考查一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.18. (2019•山东省聊城市•8分)某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:第一次第二次A品牌运动服装数/件20 30B品牌运动服装数/件30 40累计采购款/元10200 14400 (1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.【解答】解:(1)设A,B两种品牌运动服的进货单价各是x元和y元,根据题意可得:,解得:,答:A,B两种品牌运动服的进货单价各是240元和180元;(2)设购进A品牌运动服m件,购进B品牌运动服(m+5)件,则240m+180(m+5)≤21300,解得:m≤40,经检验,不等式的解符合题意,。