常微分方程求解_图文.ppt
合集下载
常微分方程 PPT课件
分曲线和积分曲线族的概念,只不过此时积分曲线所在的空间维数不同,我们将
在第4章详细讨论.
最后,我们要指出,本书中按习惯用
代替
而 分别代表
本节要点: 1.常微分程的定义,方程的阶,隐式方程,显式方程,线性方程,非线性方程. 2.常微分方程解的定义,通解,特解,通积分,特积分. 3.初值问题及初值问题解的求法. 4.解的几何意义,积分曲线.
所以它们都是一阶齐次方程.因此,一阶齐次微分方程可以 写为
(1.27)
1.3.1 齐次方程的解法 方程(1.27)的特点是它的右端是一个以为
变元的函数,经过如下的变量变换,它能化 为变量可分离方程.
令 则有 代入方程(1.27)得
(1.28)
方程(1.28)是一个 变量可分离方程,当 时,分离 变量并积分,得到它的通积分 (1.29)
常微分方程课件
第一章 初等积方法 第二章 基本定理 第三章 线性微分方程 第四章 线性微分方程组 第五章 定性与稳定性概念 第六章 一阶偏微方程初步
第1讲 微分方程与解 微分方程
什么是微分方程?它是怎样产生的?这是首先要回答的问题.
300多年前,由牛顿(Newton,1642-1727)和莱布尼兹 (Leibniz,1646-1716)所创立的微积分学,是人类科学史上划
(1.13)
显然,方程(1.4)是一阶线性方程;方程(1.5)是一阶非线性方程;方程 (1.6)是二阶线性方程;方程(1.7)是二阶非线性方程.
通解与特解
微分方程的解就是满足方程的函数,可定义如下.
定义1.1 设函数 在区间I上连续,且有直
到n阶的导数.如果把
代入方程(1.11),得到在
区间I上关于x的恒等式,
简单常微分方程29页PPT
简单常微分方程
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
常微分方程全册ppt课件
z z (5) z ; x y
2u 2u (6) 2 x y uz 0 . 2 x y
都是偏微分方程 注: 本课程主要研究常微分方程,同时把常微分方程简称 为微分方程或方程
微分方程的阶 定义 微分方程中出现的未知函数的最高阶导数或微分的阶数称为 微分方程的阶数.
z z (5) z ; x y
2 3
(2) xdy ydx 0 ;
d 4x d 2x (4) 5 2 3x sin t ; 4 dt dt
2u 2u (6) 2 x y uz 0 . 2 x y
常微分方程 如果在一个微分方程中,自变量的个数只有一个,则这样 的微分方程称为常微分方程
两种群竞争模型
Lorenz方程
Lorenz吸引子,蝴蝶效应
对初值的敏感性
分形(fractal)
吸引盆
总结
微分方程反映量与量之间的关系,与时间有关,是一个动态系 统 从已知的自然规律出发,考虑主要因素,构造出由自变量、未 知函数及其导数的关系史,即微分方程,从而建立数学模型 数学模型的建立有多种方式 研究微分方程的解和解结构的性质,检查是否与实际相吻合, 不断改进模型 由微分方程发现或预测新的规律和性质
如:
dy (1) 2x dx
是一阶微分方程
(2) xdy ydx 0
d 2x dx (3) tx x 0 2 dt dt
d 4x d 2x (4) 5 2 3x sin t 4 dt dt
3
是二阶微分方程
是四阶微分方程
n阶微分方程的一般形式为
此ppt下载后可自行编辑
教学课件
常微分方程
相关主题