spss案例之问卷
SPSS信效度难度区分度分析举例
SPSS信效度难度区分度分析举例假设我们正在开展一个关于健康生活方式的调查研究,为了评估参与者的健康行为,我们设计了一个由20个问题组成的问卷。
这些问题涉及到饮食、运动、睡眠以及其他与健康相关的行为。
首先,我们需要将这些问题输入SPSS软件进行分析。
假设我们将这些问题编号为Q1至Q20,以便进行数据输入和分析。
第一步是计算每个问题的信度。
信度是指问卷测量的稳定性和一致性,也就是说,当我们重复使用问卷时,是否能够获得相似的结果。
可以使用内部一致性系数,例如Cronbach's α,来评估信度。
在SPSS中,可以通过如下步骤计算:1.打开SPSS软件,点击"变量视图"选项卡,输入各个问题的名称和数据类型。
2.回到"数据视图"选项卡,输入参与者的数据。
3.点击"分析"菜单,选择"可靠性分析"。
4.在弹出的"可靠性分析"对话框中,将所有的问题添加到"题目"一栏中。
5. 在"统计量"一栏中,选择"Cronbach's α"。
6.点击"确定"进行分析。
SPSS将计算每个问题的Cronbach's α系数,并将结果显示在分析结果窗口中。
如果Cronbach's α系数大于0.7,则说明这些问题具有良好的内部一致性,信度较高。
接下来,我们需要计算每个问题的难度和区分度。
难度是指被试者平均得分的水平,也就是说,大多数被试者的回答是什么。
区分度是指问题能够区分出不同被试者之间的差异程度,也就是说,得分高的被试者在这个问题上与得分低的被试者之间是否有明显的差异。
可以使用点双列相关和韦勒系数来评估难度和区分度。
在SPSS中,可以通过如下步骤计算:1.打开SPSS软件,点击"变量视图"选项卡,输入各个问题的名称和数据类型(如果还没有输入)。
用spss处理调查问卷分析
当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理,在此,我们以spss为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量﹑数据录入﹑统计分析和结果保存.下面将从这四个方面来对问卷的处理做详细的介绍.Spss处理:第一步:定义变量大多数情况下我们需要从头定义变量,在打开SPSS后,我们可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View两个标签,只需单击左下方的Variable View 标签就可以切换到变量定义界面开始定义新变量。
在表格上方可以看到一个变量要设置如下几项:name(变量名)、type(变量类型)、width(变量值的宽度)、decimals(小数位) 、label(变量标签) 、Values(定义具体变量值的标签)、Missing(定义变量缺失值)、Colomns(定义显示列宽)、Align(定义显示对齐方式)、Measure(定义变量类型是连续、有序分类还是无序分类).我们知道在spss中,我们可以把一份问卷上面的每一个问题设为一个变量,这样一份问卷有多少个问题就要有多少个变量与之对应,每一个问题的答案即为变量的取值.现在我们以问卷第一个问题为例来说明变量的设置.为了便于说明,可假设此题为:1.请问你的年龄属于下面哪一个年龄段( )?A:20—29 B:30—39 C:40—49 D:50--59那么我们的变量设置可如下: name即变量名为1,type即类型可根据答案的类型设置,答案我们可以用1、2、3、4来代替A、B、C、D,所以我们选择数字型的,即选择Numeric, width宽度为4,decimals即小数位数位为0(因为答案没有小数点),label即变量标签为“年龄段查询”。
Values用于定义具体变量值的标签,单击Value框右半部的省略号,会弹出变量值标签对话框,在第一个文本框里输入1,第二个输入20—29,然后单击添加即可.同样道理我们可做如下设置,即1=20—29、2=30—39、3=40—49、4=50--59;Missing,用于定义变量缺失值, 单击missing 框右侧的省略号,会弹出缺失值对话框, 界面上有一列三个单选钮,默认值为最上方的“无缺失值”;第二项为“不连续缺失值”,最多可以定义3个值;最后一项为“缺失值范围加可选的一个缺失值”,在此我们不设置缺省值,所以选中第一项如图;Colomns,定义显示列宽,可自己根据实际情况设置;Align,定义显示对齐方式,有居左、居右、居中三种方式;Measure,定义变量类型是连续、有序分类还是无序分类。
spss主成分分析案例
spss主成分分析案例SPSS主成分分析案例。
主成分分析(Principal Component Analysis, PCA)是一种常用的数据降维方法,它可以将原始变量转换成一组新的互相无关的变量,这些新变量被称为主成分。
主成分分析可以帮助我们发现数据中的模式和结构,从而更好地理解数据的特性。
本文将以一个实际案例来介绍如何在SPSS软件中进行主成分分析,并解释如何解读分析结果。
案例背景:某公司想要了解员工的工作满意度,为了更全面地了解员工对工作的感受,公司设计了一份包含多个问题的调查问卷,涉及到工作内容、工作环境、薪酬福利等方面。
为了简化分析,公司希望利用主成分分析来提取出最能代表员工工作满意度的几个维度。
数据收集:公司对全体员工进行了调查,共有300份有效问卷。
每份问卷包含了20个问题,涉及到不同方面的工作满意度评价。
这些问题涵盖了工作内容、同事关系、上级领导、薪酬福利等多个方面。
数据分析:首先,我们需要将数据导入SPSS软件中,然后依次点击“分析”-“数据降维”-“主成分”命令。
在弹出的对话框中,我们选择需要进行主成分分析的变量,即员工对不同问题的评分。
在选择了变量后,我们可以点击“选项”按钮,对分析进行进一步设置,比如选择旋转方法、提取条件等。
在进行了上述设置后,我们点击“确定”按钮,SPSS将会为我们生成主成分分析的结果。
在结果中,我们可以看到提取的主成分个数、每个主成分的方差解释比例、成分矩阵等信息。
通过这些信息,我们可以判断提取的主成分是否符合要求,以及每个主成分的解释能力如何。
解读结果:在这个案例中,我们提取了3个主成分,这3个主成分分别解释了总方差的60%、25%和15%。
成分矩阵显示了每个问题对应的主成分载荷,通过分析载荷大小,我们可以判断每个主成分所代表的具体内容。
比如,第一个主成分可能代表工作内容满意度,第二个主成分可能代表同事关系满意度,第三个主成分可能代表薪酬福利满意度。
利用SPSS分析调查问卷数据
断其填写肯定有误 逻辑检查法 例 如:某消费者在前面说不知道某调味品后面却
说每天都在使用显然前后矛盾 计算审核法 例如:在家庭收支结构中家庭总收入远小于总支
出和储蓄之和那肯定有错
案例 错误的数据不如没有数据
国内一家知名的电视机生产企业2004年初设立了20多人的市 场研究部门开展了同样的调研问卷完全相同结构的抽样两 组数据结论却差异巨大正是因为这次调查部门被注销、人 员被全部裁减
其他功能
1、纵向追加记录/横向合并功能 2、数据一致性检验:双录入时
Epdidata教程
第三节 问卷资料的分析
一基础数据分析
• 通过频数分布、表列、图表对整理后的调查资料 进行一些基本的数据分析使之能清晰明了地反映 调查总体属性的分布态势和相互关系有助于后续 分析和预测
• 1. 频数分布
✓调查有关单个变量的信息 ✓了解对一个变量选择不同取值的调查对象的数量 ✓不同取值的出现频率以百分比形式展现
组的性质界限和数量界限也就确定了
2、组数和组距的确定
1组数和组距如何确定当全距确定时组距大则组数小组距小则组 数多如果分组过多组距必小则不易观察数列分布的规律性如果分 组过少组距必大会使组中值缺乏代表性各组组中值应对本组有良 好的代表性组距的确定一般可以请专家或以经验法确定组数一般 常分为10~15组
2答非所问的答案一旦发现应通过电话询问进行纠正 或按不详值对待;
3乏兴回答的错误如所有问题都选择同一固定编号答 案或者一笔带过若干个问题如这种乏兴回答仅属个别问卷 应彻底抛弃如这类回答的问卷有一定的数目且集中出现在 同一类问题群上应把这些问卷作为一个独立的子样本看待 在资料分析时给予适当的注意
SPSS测量问卷信效度分析
SPSS测量问卷信效度分析在社会科学研究中,问卷调查是一种常用的数据收集方法。
为了确保测量工具的有效性和可靠性,我们需要进行信效度分析。
本文将介绍如何使用SPSS软件对问卷进行信效度分析的步骤和方法。
一、信度分析信度是指测量工具在不同时间点或者多个观察者之间的一致性和稳定性。
常用的信度检验方法有重测法、分半法和内部一致性法。
在SPSS中,我们可以使用Cronbach's Alpha系数来计算问卷的内部一致性。
1. 导入数据首先,将收集到的问卷数据导入SPSS软件中。
确保每个问题都用不同的变量来表示,并且每个被试者的数据都在一行中。
2. 创建变量在菜单栏中选择"变量视图",然后逐个输入每个问题的变量名和相关信息,比如问题的编号、内容和选项。
3. 计算Cronbach's Alpha系数在菜单栏中选择"分析" - "计算变量" - "反向",对需要反向计分的问题进行操作。
然后,在菜单栏中选择"数据" - "描述性统计" - "可信度分析",选择需要进行信度分析的变量,然后点击"统计值",选择"Cronbach's Alpha系数"并点击"确定"。
Cronbach's Alpha系数的取值范围为0到1,数值越大表示问卷的内部一致性越高。
通常,如果Cronbach's Alpha系数大于0.7,可以认为问卷具有较好的内部一致性。
二、效度分析效度是指问卷是否能够真实地反映出所要测量的概念或者特征。
常用的效度检验方法包括内容效度、构效度和准则效度。
在SPSS中,我们可以通过因子分析和相关系数来进行效度分析。
1. 因子分析因子分析可以用来确定问卷中的维度或者潜在变量。
在菜单栏中选择"分析" - "数据降维" - "因子",选择需要进行因子分析的变量,然后点击"提取",选择主成分分析或者最大似然法,并选择因子的数量。
利用SPSS分析调查问卷数据
§1 如何用图来表示数据?
定量变量的图表示:1.直方图
• 对于一个定量变量,比如某个地区 (地区1)测量了163个高三男生的身 高(S3height1.txt)。
• 用图形来表示这个数据,使人们能够 看出这个数据的大体分布或“形状” 的一个办法是画直方图(histogram)。
• 图1就是利用这个数据由SPSS软件所 画的直方图。
图 3.1 地 区 1高 三 男 生 身 高 的 直 方 图
Std. Dev (标准差)=10.91,Mean(均值)=170.9,N(人数)=163
定量变量的图表示:2.盒型图
• 简单一些的是盒形图(boxplot,又称 箱图、箱线图、盒子图)。
• 图2的左边一个是根据地区1高三男生 的身高数据所绘的盒形图;其右边的 图代表另一个地区(地区2)的高三 学生的身高 。 (height.txt,height.sav,第三章例.xls)
数据录入
Rich.sav
数据 \Rich.xls
(rich.sav):福布斯世界富豪排行榜 Rank:排名 Name:姓名 Citizenship:国籍 Region:地区 Age:年龄 NetWorth:净财富(10亿美元) Residence :居住地
问卷调查数据常用的统计分析方法
频数分析、描述统计分析和列联表分析 这是问卷调查最基本、 最常用的分析方法。频数分析是描述统计的初步,分门别类的 统计有效样本量,计算其比重。频数分析可以计算的统计量有: 分位数、中位数、众数等,并可以绘制柱状图、直方图、饼图。
调查问卷中的数据编码和录入
调查问卷中的数据编码和录入
调查问卷中的数据编码和录入
调查问卷中的数据编码和录入
• 把一份问卷上面的每一个问题设为一个变量,这样一份问 卷有多少个问题就要有多少个变量与之对应,每一个问题 的答案即为变量的取值.现在我们以问卷第一个问题为例 来说明变量的设置.为了便于说明,可假设此题为: 1.请问你的年龄属于下面哪一个年龄段( )? A:20—29 B:30—39 C:40—49 D:50--59
使用SPSS进行问卷调查数据分析
使用SPSS进行问卷调查数据分析一、数据收集和预处理1.1 问卷设计与发放在进行问卷调查之前,首先需要设计好问卷内容和结构。
问卷设计应该具有明确的目的和清晰的问题表达,以便获取有效的数据。
设计好的问卷可以通过线上平台或者线下发放的方式进行分发。
1.2 数据收集在问卷发放完成后,需要对收集到的数据进行整理和归档。
将收集到的问卷数据进行编码和录入,确保数据的准确性和一致性。
1.3 数据清洗在进行数据分析之前,需要对收集到的数据进行清洗。
这一步包括检查和处理异常值、缺失值和重复值。
通过SPSS软件可以方便地进行数据清洗和处理。
二、描述性统计分析2.1 频数分析频数分析可以帮助我们了解样本中各变量的分布情况。
通过SPSS的频数分析功能,可以计算出每个选项的选择人数和所占比例,并生成频数表和频数图。
2.2 中心趋势测量中心趋势测量主要包括均值、中位数和众数的计算。
通过SPSS的描述性统计功能,可以得到各个变量的均值、标准差、最小值和最大值等统计指标。
同时,还可以绘制盒须图以描述数据的分布情况。
2.3 分类变量分析对于分类变量,可以通过计算各类别的百分比和绘制饼图或条形图来展示数据。
SPSS的交叉表功能可以帮助我们对分类变量进行交叉分析,比较不同类别之间的差异。
三、相关性分析相关性分析可以帮助我们了解变量之间的相关关系。
通过SPSS的相关分析功能,可以计算出两个变量之间的相关系数,并进行显著性检验。
相关系数的取值范围为-1到1,接近1表示正向相关,接近-1表示负向相关,接近0表示无相关。
四、多变量分析4.1 回归分析回归分析可以用来探究自变量与因变量之间的关系,并预测因变量的取值。
SPSS的回归分析功能可以通过计算回归方程和检验回归系数的显著性来评估自变量对因变量的解释程度。
4.2 方差分析方差分析用于比较多个样本的均值是否存在差异。
SPSS的方差分析功能可以通过计算组间平方和、组内平方和和总平方和来判断差异的显著性。
调查问卷spss分析报告范文
调查问卷spss分析报告范文报告目的:该报告旨在分析对某产品进行的调查问卷结果,以便了解消费者对该产品的态度和看法。
调查问卷设计:本次调查采用了一份包括10个问题的问卷,涉及了产品质量、价格、外观设计、服务态度等方面。
采用了5点评分制度,其中1代表非常不满意,5代表非常满意。
样本特征:总共有300份问卷被回收,其中男性占55%,女性占45%。
受访者年龄分布均匀,主要集中在25-40岁之间。
分析结果:经过数据录入和SPSS分析,得出了以下结果:1.产品质量方面,有66%的受访者给予4分或5分评价,表明大多数人对产品质量较为满意。
2.在价格方面,有42%的受访者给予3分评价,表示对价格持中立态度;有30%的受访者给予4分评价,认为价格较为合理。
3.在外观设计方面,有50%的受访者给予4分评价,表示对产品外观较为满意;有20%的受访者给予3分评价,认为产品外观一般。
4.在服务态度方面,有60%的受访者给予4分或5分评价,表示对产品服务态度较为满意。
结论:通过对调查问卷的分析,可以得出消费者对该产品整体较为满意的结论。
然而,在价格和外观设计方面还有一定的改进空间。
建议企业在日后的产品设计和定价上加强优化,以提升消费者满意度。
此外,调查发现男性和女性在对产品的评价上存在一定的差异。
男性对产品质量和外观设计的评价更为严格,而女性对服务态度的关注程度较高。
因此,在产品推广和服务提升方面,可以有针对性地进行改进,以满足不同性别消费者的需求。
此外,年龄也对消费者的态度产生了一定的影响。
年龄较大的消费者更注重产品的性能和质量,而年轻消费者更看重产品的外观设计和价格。
因此,在产品销售策略上,可以根据不同年龄段的消费者需求量身定制相应的营销方式。
综上所述,通过对调查问卷的分析可以帮助企业更好地了解消费者对产品的看法和需求,为产品的改进和市场营销提供重要的参考依据。
希望企业在今后能够针对调查结果进行有效的改进和营销策略的制定,以提升产品竞争力和满足消费者需求。
利用SPSS软件分析调查问卷的可靠性
们在做调查问卷时,最看重的是调查问卷的科学性和有效性,如果一个问卷设计出来无法有效地考察问卷中所涉及的各个因素,那么我们为调查问卷所作的抽样、调查、分析、结论等一系列的工作也就白做了。
那么,我们如何来检验设计好的调查问卷是否有效呢?信度分析是评价调查问卷是否具有稳定性和可靠性的有效的分析方法。
二、信度分析的提出及分析方法信度,又叫可靠性,是指问卷的可信程度。
它主要表现检验结果的一贯性、一致性、再现性和稳定性。
一个好的测量工具,对同一事物反复多次测量,其结果应该始终保持不变才可信[1]。
例如,我们用一把尺子测量一张桌子的高度,今天测量得高度与明天测量的高度不同,那么我们就会对这把尺子产生怀疑。
因此,一张设计合理的调查问卷应该具有它的可靠性和稳定性。
调查问卷的评价体系是以量表形式来体现的,编制的合理性决定着评价结果的可用性和可信性。
问卷的信度分析包括内在信度分析和外在信度分析。
内在信度重在考察一组评价项目是否测量同一个概念,这些项目之间是否具有较高的内在一致性。
一致性程度越高,评价项目就越有意义,其评价结果的可信度就越强。
外在信度是指在不同时间对同批被调查者实施重复调查时,评价结果是否具有一致性。
如果两次评价结果相关性较强,说明项目的概念和内容是清晰的,因而评价的结果是可信的。
信度分析的方法有多种,有Alpha 信度和分半信度等,都是通过不同的方法来计算信度系数,再对信度系数进行分析[2]。
目前最常用的是Alpha信度系数法,一般情况下我们主要考虑量表的内在信度——项目之间是否具有较高的内在一致性。
通常认为,信度系数应该在0~1之间,如果量表的信度系数在0.9以上,表示量表的信度很好;如果量表的信度系数在0.8~0.9之间,表示量表的信度可以接受;如果量表的信度系数在0.7~0.8之间,表示量表有些项目需要修订;如果量表的信度系数在0.7以下,表示量表有些项目需要抛弃。
我们可以通过目前比较流行的SPSS软件对调查问卷进行信度分析,这样我们就可以判断一个调查问卷是否具有稳定性和可靠性。
SPSS-多重响应-频率和交叉表案例分析(问卷调查分析)
SPSS-多重响应-频率和交叉表案例分析(问卷调查分析)2011-09-29 16:35马上要国庆了,公司待遇不错,一口气放10天假,真是太高兴了,已经买了飞机票,飞机票贵的一滚,来回居然要2000多,伤不起啊!!在10.1休假前,希望跟大家讨论一下SPSS-多重响应--频率和交叉表分析,希望大家能够多提点提点在云南电信网上营业厅做了一个关于“客户不使用电信3g业务的原因有哪些的问卷调查,问题所示:这份问卷调查总更有35人参与,样本容量偏少,其中1:选择 A :3G资费过高的有 14人2:选择 B: 网络覆盖率低,信号不稳定的 15人3:选择 C:买手机太麻烦的 15人4:选择 D: 换手机号麻烦 15人5:选择 E: 3G功能用处不大 9人6:选择F: 朋友使用后,觉得不好 10人第一步:我们将 A , B, C , D , E ,F,六个答案选项分别做为一个单独的变量,分别赋值为“0”和“1”,0代表没有被选中,“1”代表被选中,这个就是所谓的“二分法”在SPSS中进行数据编码后,如下所示:点击“分析-多重响应---定义变量集---进入如下所示页面:根据如上图所示,填写变量集名称,标签,以及在”二分法” 计算值选项中填入“1”再点击”添加“ 添加成后,点击”关闭“按钮再点击”分析-多重响应--频率分析----分析结果如下所示:上图结果很直观,结果,我就不分析了百分比=N/总计 =14/78=17.9%个案百分比=N/参与人数(有效人数)=14/33=42.4% 下面来进行“交叉表”分析,如下所示:从上图可知:多重响应交叉表中有“行,列,层”三个选框1:我们将“变量集" 移入”行“列表框内,将”客户类型“移入”列框内,层选框可以不选,有需要时再选,层选项框是用来分层进行统计分析的(我进行了分层,如上图所示)比如:我想计算每一个答案有多少被选中,有多少没有选中,可以采用分层,分为“选中”和“未选中”两个层次“客户类型”是指来进行“问卷调查”人的分类,分为“3g老客户”“3g一般客户” "很少用3g客户“”不用3g客户“等类型,点击“选项”进入如下所示页面:点击确定,可以得到如下结果:因为我们上图选中的“列”所以,计算的是列单元格百分比,也进行了分层处理,分为“没有选中”和“选中”两个层次。
spss案例调查问卷
SPSS案例调查问卷背景介绍SPSS(Statistical Product and Service Solutions,统计产品和服务解决方案)是一种被广泛使用的统计分析软件,被许多研究者和专业人士用于数据分析和统计建模。
在本文中,我们将介绍一个关于学生心理健康调查的案例,通过SPSS软件对调查问卷收集到的数据进行分析。
调查问卷设计调查问卷主要涉及学生的心理健康状况、生活压力因素、学习情况等方面。
问卷包括开放式和封闭式问题,旨在全面了解学生的心理健康状况,并为后续数据分析提供丰富的信息。
数据收集调查问卷通过在线表格的形式发送给参与调查的学生,他们可以在指定时间内填写问卷。
收集到的数据包括学生的基本信息、心理健康相关问题的回答以及其他相关信息。
数据处理在数据收集完成后,我们将数据导入SPSS软件中进行处理。
首先需要进行数据清洗,包括处理缺失值、异常值和数据格式转换等步骤,以保证数据的准确性和完整性。
数据分析在数据清洗完成后,我们将进行各种统计分析,以揭示学生的心理健康状况和与之相关的因素。
常见的分析包括描述性统计、相关性分析、回归分析等,以及适用于特定情况的高级统计方法。
结果解释最终的分析结果将以图表和统计数据的形式展示,帮助我们更直观地理解学生心理健康状况的现状和影响因素。
我们将结合理论和实际情况进行结果解释,并为学校或相关机构提出合理的建议和措施。
结论通过SPSS软件对学生心理健康调查问卷的数据进行分析,我们可以全面了解学生的心理健康状况,并找出可能存在的问题和改进方向。
这将有助于学校和社会更好地关注学生的心理健康问题,提供更好的支持和帮助。
参考文献•Smith, A. (2015). Introduction to SPSS. Wiley Press.•Jones, B. (2018). Data Analysis Using SPSS. Springer.以上是关于SPSS案例调查问卷的文档,详细介绍了调查问卷设计、数据收集、数据处理、数据分析、结果解释以及最终结论。
(完整版)利用SPSS分析调查问卷数据
(2)相斥原则。相斥即不重复,就是说在一种分组中每一条 资料只能归属为一类中,而不能既归于这类又归于那类,以至 于在不同类别中重复出现。即类与类要相互排斥。
对开放式问题的答案整理程序:
(1)重新调查 (2)填充
①找一个中间值代替 ②用一个逻辑答案代替 ③删除处理
(3)空缺
2、分 组
分组
文字资料
数字资料
一、文字资料的分类
对于调研问卷中的开放式问题,很多回答都是文字资料,对 于这些文字资料我们需要根据其资料的性质、内容或特征把相 异的资料挑出来,把相同或相近的资料归为一类,这样才能进 行后期的数据分析。
这家企业的老总训斥调研部门的主管:“如果按照你的 数据,我要增加一倍的生产计划,最后的损失恐怕不止千万 。”
问题:本案例对你有何启示?
分析提示:市场调查是直接指导营销实践的大事,对错是 非可以得到市场验证,只是人们往往忽视了市场调查本身 带来的风险。一句“错误的数据不如没有数据”,包含了 众多中国企业家对数据的恐慌和无奈。
调查问卷的整理与录入
一、问卷的整理 二、问卷的录入 三、问卷的分析
第一节 问卷的整理程序
问卷整理程序
数
图
审 分编 录据
表
处
制
核 组码 入理
作
1、审 核
审核分为 两个层面
实地审核
一般方式:
复查和回访
资料审核
主要内容包括:
•资料的时效性—准 •资料的完整性—缺 •资料的正确性—误
调查资料审核的主要内容
(1)完备性 (2)完整性 (3)正确性 (4)时效性 (5)真伪性
SPSS问卷数据分析操作实例
SPSS问卷数据分析操作实例在当今社会,数据的收集和分析对于了解各种现象、解决问题以及做出决策起着至关重要的作用。
问卷作为一种常见的数据收集工具,通过合理设计和有效发放,可以获取大量有价值的信息。
而 SPSS (Statistical Package for the Social Sciences)作为一款功能强大的统计分析软件,为我们处理和分析问卷数据提供了便捷和高效的途径。
接下来,我将通过一个具体的实例,为您详细介绍如何使用 SPSS 进行问卷数据分析。
假设我们进行了一项关于消费者对某品牌手机满意度的调查,共收集了 500 份有效问卷。
问卷中包含了消费者的个人信息(如年龄、性别、职业等)、对手机外观、性能、价格、售后服务等方面的满意度评价(采用 1-5 分的评分制,1 分为非常不满意,5 分为非常满意)以及是否会推荐给他人等问题。
首先,打开 SPSS 软件,将问卷数据导入到软件中。
SPSS 支持多种数据格式的导入,如 Excel、CSV 等。
在导入数据后,我们需要对数据进行初步的整理和检查,确保数据的完整性和准确性。
接下来,我们对消费者的个人信息进行描述性统计分析。
选择“分析” “描述统计” “频率”,将年龄、性别、职业等变量放入变量框中,点击“确定”。
这样,我们可以得到这些变量的频数分布、百分比、均值、中位数等统计量,从而了解调查对象的基本特征。
对于满意度评价的变量,我们可以计算其均值和标准差,以了解消费者对各方面的平均满意度水平和差异程度。
选择“分析” “描述统计” “描述”,将满意度评价变量放入变量框中,勾选“均值”和“标准差”,点击“确定”。
为了进一步探究不同性别、年龄或职业的消费者在满意度方面是否存在差异,我们可以进行方差分析或独立样本 t 检验。
例如,如果要比较男性和女性消费者在手机性能满意度上的差异,选择“分析” “比较均值” “独立样本 t 检验”,将性能满意度变量作为检验变量,性别变量作为分组变量,点击“确定”。
用spss写关于智商的分析调查问卷
用spss写关于智商的分析调查问卷篇一:如何利用SPSS软件分析调查问卷的信度利用SPSS软件分析调查问卷的信度在做调查问卷时,最看重的是调查问卷的科学性和有效性,如果一个问卷设计出来无法有效地考察问卷中所涉及的各个因素,那么我们为调查问卷所作的抽样、调查、分析、结论等一系列的工作也就白做了。
那么,我们如何来检验设计好的调查问卷是否有效呢?信度分析是评价调查问卷是否具有稳定性和可靠性的有效的分析方法。
二、信度分析的提出及分析方法信度,又叫可靠性,是指问卷的可信程度。
它主要表现检验结果的一贯性、一致性、再现性和稳定性。
一个好的测量工具,对同一事物反复多次测量,其结果应该始终保持不变才可信[1]。
例如,我们用一把尺子测量一张桌子的高度,今天测量得高度与明天测量的高度不同,那么我们就会对这把尺子产生怀疑。
因此,一张设计合理的调查问卷应该具有它的可靠性和稳定性。
调查问卷的评价体系是以量表形式来体现的,编制的合理性决定着评价结果的可用性和可信性。
问卷的信度分析包括内在信度分析和外在信度分析。
内在信度重在考察一组评价项目是否测量同一个概念,这些项目之间是否具有较高的内在一致性。
一致性程度越高,评价项目就越有意义,其评价结果的可信度就越强。
外在信度是指在不同时间对同批被调查者实施重复调查时,评价结果是否具有一致性。
如果两次评价结果相关性较强,说明项目的概念和内容是清晰的,因而评价的结果是可信的。
信度分析的方法有多种,有Alpha 信度和分半信度等,都是通过不同的方法来计算信度系数,再对信度系数进行分析[2]。
目前最常用的是Alpha信度系数法,一般情况下我们主要考虑量表的内在信度——项目之间是否具有较高的内在一致性。
通常认为,信度系数应该在0~1之间,如果量表的信度系数在0.9以上,表示量表的信度很好;如果量表的信度系数在0.8~0.9之间,表示量表的信度可以接受;如果量表的信度系数在0.7~0.8之间,表示量表有些项目需要修订;如果量表的信度系数在0.7以下,表示量表有些项目需要抛弃。
SPSS问卷调查问题
关于学习成绩与学习行为、学习态度以及学习焦虑的问题调查
Q1 性别单选题
本题选项:
1 男
2 女
Q2 年级单选题
本题选项:
1 大一
2 大二
3 大三
4 大四
5 其他
Q3 课外会主动预习复习单选题
本题选项:
1 经常会
2 偶尔会
3 从来不
Q4 成绩如何单选题
本题选项:
1 很好
2中上
3 一般
4 及格
5 较差
Q5 对专业学习的满意程度单选题
本题选项:
1 很不满意
2 不满意
3 一般
4 满意
5 很满意
Q6 对学习的态度单选题
本题选项:
1 认真积极在学习
2 上课听课,按时完成作业
3 想听就听,但会完成作业
4 不听课,自己学习
5 不听课不学习,抄作业
6 看心情去上课
7 很少去上课
Q7 会出现焦虑吗单选题
本题选项:
1 严重焦虑
2 考前会有
3 很少,看重要性
4 几乎不会
Q8 你自己的学习行为单选题
本题选项:
1 上课一直专心致志做笔记
2 偶尔做笔记
3 只在书上划,不做笔记
4 只看书听老师讲课
5 上课只听老师讲课
6 一直玩手机
7 上课吃东西
8 和同学组队嘻哈玩闹
Q9 考试前你的心理状态单选题
本题选项:
1 放松
2 担心
3 焦虑
4 严重焦虑
Q10 对学习成绩有较大影响的因素多选题本题选项:
1 学习行为
2 学习态度
3 学习焦虑
4 学习方法
5 周围环境
6 学习压力。
运用SPSS对调查问卷分析报告
欢迎参与调查
问题1:您的家庭所在地(单选题)乡镇
城市
农村
问题2:您的性别(单选题)
男
女
问题3:3.您的年级(单选题)
大1
大2
大3
大4
问题4:您每月的生活费(单选题)500
500-800
800以上
问题5:您的消费主要用于(多选题)
伙食
学习
娱乐游戏
购物
其它
恋爱
问题6::您消费的主要来源(多选题)
父母给予
勤工俭学
外校***
其他
作为当代大学生,都有着旺盛的消费需求,但是却没有获得足够的经济能力,在消费上会受到很大的制约,消费观念和消费实力都对大学生有着重要的影响,为了了解当代大学生的消费现状,因此展开这次的调查活动,以便能为大学生的正确消费观念带来一些指导性建议,希望同学们能尽力的配合,谢谢!。
SPSS问卷数据的基本操作练习样例
问卷数据的基本操作1.数据文件“成绩.sav”和“问卷.sav”分别为学生的学业成绩和问卷测查结果,请将两个数据文件合并,命名为“student.sav”。
2.请将变量名“type”加标签“学科类别”,值加标签“1=理科;2=文科”;请将变量名“gender”加标签“性别”,值加标签“1=男生;2=女生“;请将变量名“dusheng”加标签“是否独生子女”,值加标签“1=独生子女;2=非独生子女”;请将变量名“home”加标签“家庭所在地”,值加标签“1=城市,2=县镇,3=农村”;对于问卷的每一道题加变量标签和值的标签。
3. 在数据文件“学号+姓名+EX1.sav”中,(1)变量t60到t64测量的是师生关系(评价分数为1-5分,分数越高表明师生关系越好),请计算每个学生评价的师生关系水平(要求在5个题目中作答3题及其以上为有效作答),并保存变量名“师生关系”;(2)变量t65到t70测量的是学校环境(评价分数为1-5分,其中t68,t69,t70为反向计分题),请计算每个学生评价的学校环境的水平(要求在6个题目中作答4题及其以上为有效作答),并保存变量名“学校环境”;提示:在计算前需要先转换反向计分的题目。
4.描述参加测试的群体的特征。
(包括男女生人数及所占比例、文理科人数所占比例、独生子女及非独生子女人数及比例、城乡学生人数及其所占比例)。
5. 采用恰当的图表描述下面数据(1)独生子女和非独生子女所占的比例;(2)学生对学习总体兴趣的评价结果。
(题目:你现在对学习的总体感觉是)(3)文科生语文成绩的分布特点;(4)分文理科描述学生对学习总体兴趣与学业成绩的关系;(5)理科生师生关系和理综成绩的关系;5.用探索性分析(Explore)探讨理科生综合成绩的分布特点(如是否服从正态分布、是否存在极端数据等;注意要根据数据分析或图的结果下结论)6.采用描述统计完成下面分析,并整理表格(1)对理科学生,分析各科成绩的平均分数和标准差;(2)对理科学生,分析不同性别学生各科成绩的平均分数和标准差;(3)分析不同地域(城市、县镇、农村)学生师生关系的平均分和标准差;(4)对于理科生,按照学业成绩总分将学生分为高、中、低三个组,其中高分组占25%,低分组占25%,中间组占50%;(5)对于理科生,计算每个学生学业总成绩对应的百分等级。
用SPSS分析调查问卷精简版
用SPSS分析调查问卷一、一般问题处理1 单选题:答案只能有一个选项例一当前贵组织机构是否设有面向组织的职业生涯规划系统?A有B 正在开创C没有D曾经有过但已中断编码:只定义一个变量,Value值1、2、3、4分别代表A、B、C、D 四个选项。
录入:录入选项对应值,如选C则录入32 多选题:答案可以有多个选项,其中又有项数不定多选和项数定多选。
(1)方法一(二分法):例二贵处的职业生涯规划系统工作涵盖哪些组群?画钩时请把所有提示考虑在内。
A月薪员工B日薪员工C钟点工编码:把每一个相应选项定义为一个变量,每一个变量Value值均如下定义:“0” 未选,“1” 选。
录入:被调查者选了的选项录入1、没选录入0,如选择被调查者选AC,则三个变量分别录入为1、0、1。
(2)方法二:(多重分类法)例三你认为开展保持党员先进性教育活动的最重要的目标是那三项:1()2 ()3()A、提高党员素质B、加强基层组织C、坚持发扬民主D、激发创业热情E、服务人民群众F、促进各项工作编码:定义三个变量分别代表题目中的1、2、3三个括号,三个变量Value值均同样的以对应的选项定义,即:“1” A,“2” B,“3” C,“4” D,“5” E,“6” F录入:录入的数值1、2、3、4、5、6分别代表选项ABCDEF,相应录入到每个括号对应的变量下。
如被调查者三个括号分别选ACF,则在三个变量下分别录入1、3、6。
注:能用方法二编码的多选题也能用方法一编码,但是项数不定的多选只能用二分法,即方法一是多选题一般处理方法。
3 排序题:对选项重要性进行排序例四您购买商品时在①品牌②流行③质量④实用⑤价格中对它们的关注程度先后顺序是(请填代号重新排列)第一位第二位第三位第四位第五位编码:定义五个变量,分别可以代表第一位第五位,每个变量的Value都做如下定义:“1” 品牌,“2” 流行,“3” 质量,“4” 实用,“5” 价格录入:录入的数字1、2、3、4、5分别代表五个选项,如被调查者把质量排在第一位则在代表第一位的变量下输入“3“。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学生运动社团成員认真休闲研究问卷
亲爱的受访者:
您好!这是一份关于社会关系同认真休闲关系研究的调查问卷,主要目的是想透过问卷了解您参与运动认真休闲的情况以及参与的利益感知。
您的宝贵意见对本次调研有莫大的帮助,恳切的希望您能完成问卷。
所得的资料,仅供学术研究和统计分析之用,个人资料会以代号来代替,绝不会外泄或做论文分析以外的用途,敬请安心填写,并感谢您的支持! 顺颂 台安!
运动认真休闲是指,非工作时间内系统的参与一种业余的、嗜好的、自愿的体育活动。
1、请问,您加入的是 体育社团。
3、请您对这项运动的依附的认可程度打分(1非常不认可,2不认可,3无意见,4认可,5非常认可)
4、参与这项活动后,请您对下列休闲意义的认可程度打分(1非常不认可,2不认可,3无意见,4认可,5非常认可)
·个人信息部分
1、您的性别: ☐男 ☐女
2、您的年龄: ☐16-20岁 ☐21-25岁 ☐26-29岁 ☐30-39岁 ☐40及以上
3、您目前: ☐大一 ☐大二 ☐大三 ☐大四 ☐硕士 ☐博士 ☐其他(请说明)
4、您的婚姻状况:☐单身 ☐未婚有(男)女朋友 ☐已婚 ☐离异 ☐不方便回答
5、您参与这项运动有多久了?
☐半年-1年内 ☐1年到2年内 ☐2年-3年内 ☐3年-5年内 ☐5年及以上 6、这项运动对您而言,难度有多大?
☐1分很容易 ☐2分容易 ☐3分一般 ☐4分有难度 ☐5分非常难 7、您认为自身的体能状态如何?
☐1分很不好 ☐2分不好 ☐3分一般 ☐4分好 ☐5分非常好 8、您的专业:
☐哲学类 ☐法学类 ☐经济学类 ☐教育学类 ☐历史学类 ☐文学类(含艺术类) ☐理学类 ☐工学类 ☐农学类 ☐医学类 ☐管理学类 ☐其他(请说明) 9、您加入社团的时间有多久?
☐半年-1年内 ☐1年到2年内 ☐2年-3年内 ☐3年到4年内 ☐4年及以上 10、您所在的院校
非常感谢您的参与!
填写日期: 填写地点:
1 2
1 2 3 4 5 99。