机器学习研究进展40页PPT

合集下载

机器学习课程讲义和PPT课件(含配套实战案例)

机器学习课程讲义和PPT课件(含配套实战案例)

3
聚类算法
将数据按照相似性分组,如市场细分和社交网络分析。
监督学习和无监督学习
监督学习使用带有标记的数据来训练模型,无监督学习则使用未标记的数据 进行训练。
机器学习的评估方法
准确率: 模型预测与实际结果相符的比例。 召回率: 正确识别的样本数量与所有实际样本数量的比例。 F1值: 综合考虑准确率和召回率的度量指标。 交叉验证: 利用同一数据集进行重复实验,以平均得到更可靠的模型评估结果。
分类和回归的区别
1 分类
根据输入的特征将数据分为不同的类 别,如判断邮件是否为垃圾邮件。
2 回归
根据特征预测输出的连续值,如预测 房价。
SVMБайду номын сангаас持向量机
支持向量机是一种有效的分类和回归算法,通过最大化分类间隔来找到最佳 的决策边界。
决策树和随机森林
决策树
使用树形结构表示决策过程,每个节点代表一个 特征。
随机森林
由多个决策树组成的集成学习算法,通过投票来 作出最终预测。
神经网络与深度学习
神经网络是一种基于生物神经元的模型,深度学习则是利用多层神经网络来 解决复杂的问题。
机器学习课程讲义和PPT课件 (含配套实战案例)
为初学者提供全面的机器学习知识,从基础算法到实战案例全方位掌握。课 程内容涵盖监督学习、无监督学习、神经网络等核心模块。
什么是机器学习
机器学习是一种人工智能领域的应用,通过使用统计和算法模型,让计算机 从数据中学习并改善性能。
机器学习的应用领域
自然语言处理
使用机器学习技术来处理和理解自然语言, 如聊天机器人和语音识别。
图像识别
利用机器学习算法识别和分析图像中的对 象,如人脸识别和物体检测。

机器学习课件ppt

机器学习课件ppt
详细描写
逻辑回归通过将输入变量映射到概率 值来工作,然后使用阈值将概率值转 换为二进制类别。它通常用于二元分 类问题,如点击率猜测或敲诈检测。
决策树
总结词
决策树是一种监督学习算法,它通过树形结构进行决策和分 类。
详细描写
决策树通过递归地将数据集划分为更小的子集来工作,直到 到达终止条件。每个内部节点表示一个特征的测试,每个分 支表示测试的一个结果,每个叶节点表示一个类标签。
深度学习的应用场景包括图像 辨认、语音辨认、自然语言处 理和推举系统等。
强化学习
01
强化学习是机器学习的一个分支 ,通过让智能体与环境交互来学 习最优的行为策略。
02
强化学习的特点是基于环境的反 馈来不断优化行为,以到达最终
的目标。
常见的强化学习算法包括Qlearning、SARSA和Deep Qnetwork等。
计算机视觉
机器学习在计算机视觉领域的应用包 括图像分类、目标检测、人脸辨认等 。
推举系统
机器学习在推举系统中的应用是通过 分析用户行为和偏好来推举相关的内 容或产品。
语音助手
机器学习在语音助手中的应用是通过 语音辨认和自然语言处理技术来理解 用户意图并作出相应回应。
02
机器学习基础
线性回归
总结词
线性回归是一种通过拟合数据点来猜测连续值的算法。
详细描写
线性回归通过找到最佳拟合直线来猜测因变量的值,该直线基于自变量和因变 量之间的关系。它使用最小二乘法来拟合数据,并输出一个线性方程,可以用 来进行猜测。
逻辑回归
总结词
逻辑回归是一种用于分类问题的算法 ,它将连续的输入变量转换为二进制 的输出变量。
数据清洗
去除特殊值、缺失值和重复数据,确保数据质量。

机器学习精选ppt精选全文

机器学习精选ppt精选全文
人工神经网络
人工神经网络
1 生物神经元及人工神经元的组成2 人工神经网络的模型 2 .1 人工神经元的模型 2 .2 常用的激活转移函数 2 .3 MP模型神经元
1、生物神经元及人工神经元的组成
神经元也称神经细胞,它是生物神经系统的最基本单元,它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突,见图5(a)。
5
监督学习
决策树(简单问题)人工神经网络(大量样本)支持向量机(小样本)
决策树学习
决策树学习 1.什么是决策树 决策树(decision tree)也称判定树,它是由对象的若干属性、属性值和有关决策组成的一棵树。其中的节点为属性(一般为语言变量),分枝为相应的属性值(一般为语言值)。从同一节点出发的各个分枝之间是逻辑“或”关系;根节点为对象的某一个属性;从根节点到每一个叶子节点的所有节点和边,按顺序串连成一条分枝路径,位于同一条分枝路径上的各个“属性-值”对之间是逻辑“与”关系,叶子节点为这个与关系的对应结果,即决策。例如图1就是一棵决策树。其中,A, B, C代表属性,ai, bj, ck代表属性值,dl代表对应的决策。处于同一层的属性(如图中的B, C)可能相同,也可能不相同,所有叶子节点(如图中的dl ,l=1,2,…, 6)所表示的决策中也可能有相同者。
由图1不难看出,一棵决策树上从根节点到每一个叶子节点的分枝路径上的诸“属性-值”对和对应叶子节点的决策,刚好就构成一个产生式规则:诸“属性-值”对的合取构成规则的前提,叶子节点的决策就是规则的结论。例如,图1中从根节点A到叶子节点d2的这一条分枝路径就构成规则:(A= a1)∧(B = b2) => d2而不同分枝路径所表示的规则之间为析取关系。

2024版机器学习ppt课件

2024版机器学习ppt课件

机器学习ppt课件contents •机器学习概述•监督学习算法•非监督学习算法•神经网络与深度学习•强化学习与迁移学习•机器学习实践案例分析目录01机器学习概述03重要事件包括决策树、神经网络、支持向量机等经典算法的提出,以及深度学习在语音、图像等领域的突破性应用。

01定义机器学习是一门研究计算机如何从数据中学习并做出预测的学科。

02发展历程从符号学习到统计学习,再到深度学习,机器学习领域经历了多次变革和发展。

定义与发展历程计算机视觉自然语言处理推荐系统金融风控机器学习应用领域用于图像识别、目标检测、人脸识别等任务。

根据用户历史行为推荐相似或感兴趣的内容。

用于文本分类、情感分析、机器翻译等任务。

用于信贷审批、反欺诈、客户分群等场景。

A BC D机器学习算法分类监督学习包括线性回归、逻辑回归、决策树、随机森林等算法,用于解决有标签数据的预测问题。

半监督学习结合监督学习和无监督学习的方法,利用部分有标签数据进行训练。

无监督学习包括聚类、降维、异常检测等算法,用于解决无标签数据的探索性问题。

强化学习通过与环境交互来学习策略,常用于游戏AI 、自动驾驶等领域。

02监督学习算法线性回归与逻辑回归线性回归一种通过最小化预测值与真实值之间的均方误差来拟合数据的算法,可用于预测连续型变量。

逻辑回归一种用于解决二分类问题的算法,通过sigmoid函数将线性回归的输出映射到[0,1]区间,表示样本属于正类的概率。

两者联系与区别线性回归用于回归问题,逻辑回归用于分类问题;逻辑回归在线性回归的基础上引入了sigmoid函数进行非线性映射。

支持向量机(SVM)SVM原理SVM是一种二分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略是使间隔最大化,最终可转化为一个凸二次规划问题的求解。

核函数当数据在原始空间线性不可分时,可通过核函数将数据映射到更高维的特征空间,使得数据在新的特征空间下线性可分。

SVM优缺点优点包括在高维空间中有效、在特征维度高于样本数时依然有效等;缺点包括对参数和核函数的选择敏感、处理大规模数据效率低等。

最新机器学习研究:综述 - Read ppt课件

最新机器学习研究:综述 - Read ppt课件

泛化能力的几何解释(示意图)
线性可分问题
n 定理: n 如果一个样本集合是线性可分的,它们一
定可以构成两个不相交的闭凸集。 n 这样,线性可分问题变为计算两个闭凸集
的最大边缘问题。
线性不可分问题
n 划分问题:怎样获得两个不相交 的闭凸集。
n 泛化问题:怎样使两个闭凸集之 间的距离最大。
核技术
n 可以证明,一定存在一个映射,称为核函 数,将在欧式空间定义的样本映射到特征 空间(一个更高维的空间),使得在特征空 间上,样本构成两个不相交的闭凸集。
n 研究核函数选择的技术称为核技术。
SVM
n 给定核函数,如果它可以保证将样本集合 在特征空间变换为两个不相交的闭凸集, 则对这个样本集合的最大边缘可以通过二 次规划、计算几何等方法获得。由此,可 以获得支持向量。
三个要求
n 一致性假设:机器学习任务的本质。 n 对样本空间的划分:决定对样本的有
效性。 n 泛化能力:决定对世界的有效性。
一致性假设
n 假设世界W与被观察的对象集合Q具 有某种相同的性质。
n 称为一致性假设。
基于统计的假设
n 原则上说,存在各种各样的一致性假 设。
n 在统计意义下,一般假设: n W与Q具有同分布。或, n 给定世界W的所有对象独立同分布。
其泛化能力不同,泛化能力最强的划分就 是我们希望的分类器。
Duda的泛化能力描述
n 以样本个数趋近无穷大来描述模型的 泛化能力。
n 泛化能力需要使用世界W来刻画,是 无法构造的判据。
n 均方差可作为目标函数。
评述
n 由于人们没有找到基于样本集合Q的描述 泛化能力的数学工具。另外,线性不可分 问题是一个困难。

机器学习研究及最新进展PPT课件

机器学习研究及最新进展PPT课件


机械式学习
执行环 节
指导式学习 归纳式学习 类比学习
一个基于知识库的智能系统
2019/9/22
可编辑
3
机器学习的定义
通过经验提高系统自身的性能的过程
(系统自我改进)。
机器学习的重要性:
• 机器学习是人工智能的主要核心研究领域之一, 也是现代 智能系统的关键环节和瓶颈。
• 很难想象: 一个没有学习功能的系统是能被称为是具有智 能的系统。
2019/9/22
可编辑
4
实例1:网络安全问题
入侵检测系统IDS:
是否是入侵?是何种入侵?
如何检测?
•历史数据:以往的正常访问 模式及其表现、以往的入 侵模式及其表现……
•对当前访问模式分类
这是一个典型的机器学习问 题
常用技术: 神经网络,决策树,支持向量机, 贝叶斯分类器,k近邻,聚类,序
列分析,免疫网络等 ……
Computer Systems Performance Prediction
Banking Applications Credit Applications Fraud Detection
Character Recognition (US Postal Service)
Web Applications Document Classification Learning User Preferences
Class of Tasks: Learning to drive on highways
from
vision stereos.
Knowledge:
recorded driver.
Images and steering commands while observing a human

2024《机器学习》ppt课件完整版

2024《机器学习》ppt课件完整版

《机器学习》ppt课件完整版•引言•机器学习基础知识•监督学习算法目录•无监督学习算法•深度学习基础•强化学习与迁移学习•机器学习实践与应用引言机器学习的定义与目标定义目标机器学习的目标是让计算机系统能够自动地学习和改进,而无需进行明确的编程。

这包括识别模式、预测趋势以及做出决策等任务。

早期符号学习01统计学习阶段02深度学习崛起0301020304计算机视觉自然语言处理推荐系统金融风控机器学习基础知识包括结构化数据(如表格数据)和非结构化数据(如文本、图像、音频等)。

数据类型特征工程特征选择方法特征提取技术包括特征选择、特征提取和特征构造等,旨在从原始数据中提取出有意义的信息,提高模型的性能。

包括过滤式、包装式和嵌入式等,用于选择对模型训练最有帮助的特征。

如主成分分析(PCA )、线性判别分析(LDA )等,用于降低数据维度,减少计算复杂度。

数据类型与特征工程损失函数与优化算法损失函数优化算法梯度下降变种学习率调整策略模型评估与选择评估指标评估方法模型选择超参数调优过拟合模型在训练集上表现很好,但在测试集上表现较差,泛化能力不足。

欠拟合模型在训练集和测试集上表现都不佳,未能充分学习数据特征。

防止过拟合的方法包括增加数据量、使用正则化项、降低模型复杂度等。

解决欠拟合的方法包括增加特征数量、使用更复杂的模型、调整超参数等。

机器学习中的过拟合与欠拟合监督学习算法线性回归与逻辑回归线性回归逻辑回归正则化二分类问题核技巧软间隔与正则化030201支持向量机(SVM )决策树与随机森林剪枝决策树特征重要性随机森林一种集成学习方法,通过构建多棵决策树并结合它们的输出来提高模型的泛化性能。

Bagging通过自助采样法(bootstrap sampling)生成多个数据集,然后对每个数据集训练一个基学习器,最后将所有基学习器的输出结合起来。

Boosting一种迭代式的集成学习方法,每一轮训练都更加关注前一轮被错误分类的样本,通过加权调整样本权重来训练新的基学习器。

《机器人的学习研究进展深度学习及应用》PPT教案模板

《机器人的学习研究进展深度学习及应用》PPT教案模板
既然像素级的特征表示方法没有作用,那怎样的表示才有 用呢?
1995 年前后,Bruno Olshausen和 David Field 两位 学者任职 Cornell University,他们试图同时用生理学和 计算机的手段,双管齐下,研究视觉问题。
他们收集了很多黑白风景照片,从这些照片中,提取出 400个小碎片,每个小碎片的尺寸均为 16x16 像素,不 妨把这400个碎片标记为 S[i], i = 0,.. 399。接下来,再 从这些黑白风景照片中,随机提取另一个碎片,尺寸也是 16x16 像素,不妨把这个碎片标记为 T些特征好哪些 不好呢?
我们说机器学习是一门专门研究计算机怎样模拟 或实现人类的学习行为的学科。那人类的视觉系 统是怎么工作的呢?为什么在茫茫人海,芸芸众 生,滚滚红尘中我们都可以找到另一个她(因为 ,你存在我深深的脑海里,我的梦里、我的心里、 我的歌声里……)。
1.1 概述
为什么拥有大数据的互联网公司争相投入大量资源研发深 度学习技术。听起来感觉deeplearning很牛那样。
➢ 那什么是deep learning? ➢ 为什么有deep learning? ➢ 它是怎么来的? ➢ 又能干什么呢? ➢ 目前存在哪些困难呢?
这些问题的简答都需要慢慢来。咱们先来了解下机器学习 (人工智能的核心)的背景。
度学习(Deep Learning)
1.深度学习概述
1.7 Deep learning与Neural Network 1.8 Deep learning训练过程 1.9 Deep Learning的常用模型或者方法
1.1 概述
Artificial Intelligence,也就是人工智能 ,就像长生不老和星际漫游一样,是人类 最美好的梦想之一。虽然计算机技术已经 取得了长足的进步,但是到目前为止,还 没有一台电脑能产生“自我”的意识。

机器学习.pptx

机器学习.pptx

可解释性和公平性关注
提高机器学习模型的可解释性 ,确保决策公平合理,避免歧 视和偏见。
社会责任担当
积极承担社会责任,推动机器 学习技术为人类带来福祉,促 进社会进步。
THANKS FOR WATCHING
感谢您的观看
跨学科交叉研究
机器学习与生物学、医学、物理学等学科交叉,推动科学研究和应 用创新。
跨界合作推动产业变革
机器学习技术与各行业深度融合,推动产业升级和变革。
可持续发展和社会责任关注
数据隐私和安全保护
加强数据隐私保护,防止数据 泄露和滥用,保障用户权益。
环境可持续性考虑
在机器学习模型训练和部署过 程中考虑能源消耗、碳排放等 环境因素,推动绿色AI发展。
自训练算法
先用已标记数据训练一个初始分 类器,然后用这个分类器对未标 记数据进行预测,将预测结果作 为伪标签加入到训练集中,再重
新训练分类器。
生成模型算法
如半监督生成对抗网络(SGAN )等,通过生成模型来利用未标
记数据提高学习性能。
强化学习算法
价值迭代算法
通过不断更新状态值函数来寻找最优 策略,适用于环境模型已知的情况。
解决方法
03
通过调整模型复杂度、增加或减少特征、改变正则化参数等方
式来缓解过拟合或欠拟合问题。
模型选择与调优策略
01
模型选择
根据问题的特点和数据的性质,选择合适的模型进行建模。例如,对于
分类问题,可以选择逻辑回归、支持向量机、决策树等模型;对于回归
问题,可以选择线性回归、神经网络等模型。
02
参数调优
与统计学的关系
机器学习算法大量运用了 统计学的理论和方法,如 概率论、假设检验、回归 分析等。

机器学习研究及最新进展

机器学习研究及最新进展

• Secondary immune response
– Remember past encounters – Faster response the second time around
2019/1/7
Y. Tan---Artificial Immune Sys.
5
Immune cells
• There are two primarily types of lymphocytes:
2019/1/7
Y. Tan---Artificial Immune Sys.
12
Immune Pattern Recognition
BCR or Antibody
B-cell Receptors (Ab) Epitopes Antigen
B-cell
• The immune recognition is based on the complementarity between the binding region of the receptor and a portion of the antigen called epitope. • Antibodies present a single type of receptor, antigens might present several epitopes. – This means that each antibody can recognize a single antigen
2019/1/7
Y. Tan---Artificial Immune Sys.
7
Multiple layers of the immune system
Pathogens
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档