最新人教版高中数学选修2-2第一章定积分的概念1
最新人教版高中数学选修2-2第一章《定积分的简单应用》教材梳理
庖丁巧解牛知识·巧学一、定积分在几何中的应用定积分可以用来计算曲边梯形的面积,某些曲面面积可以表示成几个曲边梯形面积的和或差的形式,因此也可以用定积分来计算.知识拓展 求面积的解题步骤:①画出图形; ②确定图形范围,定出积分的上、下限;③确定被积函数,注意分清被积函数的上、下位置; ④写出平面图形面积的定积分表达式;⑤运用微积分基本公式计算定积分,求出平面图形的面积. 二、定积分在物理中的应用 1.变速直线运动的路程物体做变速直线运动经过的路程s,等于其速度函数v=v(t)〔v(t)≥0〕在时间区间[a,b ]上的定积分,即s=⎰badt t v )(.方法点拨 变速直线运动的速度函数往往是分段函数.所以求积分时要利用定积分的性质将其分成几段积分的和. 2.变力做功如果力是变力F(x)(F 是x 的函数),那么,物体沿着与F 相同的方向从x=a 移动到x=b 时,力F 做的功W=⎰badx x F )(.深化升华 只有当物体沿着与F 相同的方向从x=a 移动到x=b 时,力F 做的功才是W=⎰badx x F )(.当方向不同时,算法不同.问题·探究问题1 被积函数f(x)在区间[a,b ]上恒为正值时(如图1-7-2),定积分⎰badx x f )(表示什么呢?图1-7-2思路:本题考查定积分的几何意义,可以利用定积分来表示曲边梯形的面积. 探究:表示曲边梯形AMNB 的面积. 问题2 计算下列定积分:⎰⎰⎰ππππ2020sin ,sin ,sin xdx xdx xdx ,由计算结果你能发现什么结论?思路:利用微积分基本定理,计算曲边梯形的面积,从中发现结论. 探究:因为(-cosx)′=sinx, 所以⎰πsin xdx =(-cosx)π0=(-cosπ)-(-cos0)=2;⎰ππ2sin xdx =(-cosx)π20=(-cos2π)-(-cosπ)=-2;⎰π20sin xdx =(-cosx)π20=(-cos2π)-(-cos0)=0.由以上结果可以发现,定积分的值可能取正值,可能取负值,也可能取0.(1)当对应的曲边梯形位于x 轴上方时,定积分的值取正值,且等于曲边梯形的面积;(2)当对应的曲边梯形位于x 轴下方时,定积分的值取负值,且等于曲边梯形的面积的相反数; (3)当位于x 轴上方的曲边梯形面积等于位于x 轴下方的曲边梯形面积时,定积分的值为0. 典题·热题例1如图1-7-3,求直线y=2x+3与抛物线y=x 2所围成的图形的面积.图1-7-3思路分析:从图形可以看出,所求图形的面积可以转化为一个梯形与一个曲边梯形面积的差,进而可以用定积分求出面积.为了确定被积函数和积分的上,下限,我们需要求出两条曲线交点的横坐标.解:由方程组⎩⎨⎧=+=2,32xy x y 2可得x 1=-1,x 2=3. 故所求图形的面积为S=33231)3()32(31331231231=-+=-+----⎰⎰x x x dx x dx x . 深化升华 求平面图形面积的一般步骤是: ①画图,并将图形分割成若干曲边梯形;②对每个曲边梯形确定其存在的范围,从而确定积分上限和下限; ③确定被积函数;④求出各曲边梯形的面积和,即各积分的绝对值之和. 拓展延伸 求由曲线y 2=x 和y=x 2所围成图形的面积.解:如图1-7-4,为了确定图形的范围,先求出这两条曲线的交点的横坐标.由⎪⎩⎪⎨⎧==22,xy x y 得出交点的横坐标为x=0及x=1.图1-7-4所以所求图形的面积为S=313132)3132(103231021=-=-=-⎰⎰x x dx x dx x . 例2求椭圆⎩⎨⎧==tb y t a x sin ,cos (0≤t≤2π)的面积.思路分析:椭圆是中心对称图形,故只需算出第一象限内的面积,再乘以4就是椭圆的面积. 解:如图1-7-5所示,椭圆在第一象限的面积图1-7-5P=4)22sin (2sin )sin (sin )cos (sin 022020220abt t ab tdt ab dt t a t b t a td b ydx aπππππ=-==-∙==⎰⎰⎰⎰所以S=4P=πab.例3一辆汽车的速度—时间曲线图如图1-7-6所示,求此汽车在这1 min 内行驶的路程.图1-7-6思路分析:由速度—时间曲线图可写出速度函数的表达式,进而运用公式可求得路程s. 解:由速度—时间曲线易知,v(t)=⎪⎩⎪⎨⎧∈+-∈∈].0640[,905.1]4010[,30]101[,3,;,,;,t t t t t 由变速直线运动的路程公式可得s=dt t dt tdt ⎰⎰⎰+-++6040401010)905.1(303604024010100)9043(3023t t t +-++==1 350(m).答:此汽车在这1 min 内行驶的路程是1 350 m. 方法归纳 ①由定积分的几何意义知,⎰badt t v )(表示由曲线v=v(t),直线t=a,t=b 及v=0围成图形的面积.故有以下解法:由定积分的几何意义知,此汽车在这1 min 行驶的路程s 等于梯形OABC 的面积, 即s=S 梯形OABC =230)6030(⨯+=1 350(m).②变速直线运动的路程:物体做变速直线运动经过的路程s,等于其速度函数v=v(t)〔v(t)≥0〕在时间区间[a,b ]上的定积分,即s=⎰badt t v )(.拓展延伸 某技术监督局对一家颗粒输送仪生产厂进行产品质量检测时,发现该厂生产的颗粒输送仪,其运动规律属于变速直线运动,且速度v(单位:m/s)与时间t(单位:s)满足函数关系:v(t)=⎪⎩⎪⎨⎧≤≤≤≤+≤≤.6020,140,2010,604,100,2t t t t t 某公司拟购买一台颗粒输送仪,要求1 min 行驶的路程超过7673 m,问该厂生产的颗粒输送仪能否被列入拟挑选的对象之一?思路分析:必须首先利用定积分将这家生产厂生产的颗粒输送仪1 min 行驶的路程计算出来,再与7 673作比较得出结论.解:由变速直线运动的路程公式有s=x t t t t dt dt t dt t 6020201021003602020101002140)602(31140)604(+++=+++⎰⎰⎰=7 13331(m)<7 673(m).答:不可以列入.例4一物体在力F(x)=2 004x+1(单位:N)的作用下,沿与力F 相同的方向,从x=1处运动到x=2处,求力F 做的功. 思路分析:力F 做的功就是⎰21)(dx x F解:W=⎰+21)12004(dx x =(1 002x 2+x)21=3 007(J).答:力F 所做的功为3 007 J.深化升华 应用问题最后要还原到题目中去用文字作答.例5设有一长为25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm,求使弹簧伸长到40 cm 所做的功.思路分析:因为弹簧的力是一个变力,所以不能用常规方法解,要用定积分去求解. 解:设x 表示弹簧伸长的厘米数,F(x)表示加在弹簧上的力,则F(x)=kx. 依题意,使弹簧伸长5 cm,需要的力是100 N, 即100=5k,k=20,于是F(x)=20x. 现在需计算由x=0到x=15所做的功:W=1502151020x xdx =⎰2 250(N·cm).深化升华 本题考的是求变力所做的功:一物体在力F 的作用下,沿着与力F 相同的方向移动了s,则F 所做的功为W=Fs.如果力是变力F(x),由定积分的定义,物体沿与F 相同的方向从x=a 移到x=b 时,则力F 所做的功是W=⎰badx x F )(.例6列车以72 km/h 的速度行驶,当制动时列车获得加速度a=-0.4 m/s 2,问列车应在进站前多长时间以及离车站多远处开始制动?思路分析:因列车停在车站时,速度为0,故应先求速度的表达式,之后令v=0,求出t,再据v 和t 应用定积分计算出路程.解:已知列车的速度v 0=72 km/h=20 m/s,列车制动时获得的加速度a=-0.4 m/s 2.设列车由开始制动到经过t 秒后的速度为v,则v=v 0+⎰tadt 0=20-⎰tdt 04.0=20-0.4t.令v=0得t=50(s).设列车由开始制动到停止所走过的路程为s, 则有s=⎰⎰-=5050)4.020(t vdt dt=500(m).答:列车应在到站前50 s,离车站500 m处开始制动.。
人教版A版高中数学选修2-2:定积分的概念教学内容
求和:求出n个小矩形面积之和,作为曲边梯
n
形面积S的近似值,即S Sn i1
1 f i 1 n n
n
由 Sn
i 1
1 f i 1 n n
n
1
i
1
2
i1 n n
1
0
1
1
2
1
2
2
1
n
1
2
n n n n n n n
1 n3
n
1n2n
1
0.8
0.6
0.4
f(x) = x2
0.2
01
n
0.2
2 3 4 0.5 nn n
i 1 i nn
f (i 1) n
1 n
A
1
f(i) n
f (i 1) n
f(i) n
1 n
1 n
1.5
2
0.4
1.4
以第一种方1.2法为例,可把曲边梯形分割成n个小矩形
1
0.8
0.6
0.4
f(x) = x2
0.2
0
0.5
1
0.2
当分割的小矩形越来越多时,观察所有的矩形面积之 1.4
和与曲边梯形的面积有什么关系
1.2
1
0.8
0.6
n = 10.00
0.4
f(x) = x2
0.2
0
0.5
1
0.2
当分割的1.4小矩形越来越多时,观察所有的矩形面积之 和与曲边梯形的面积有什么关系
1.2
1
0.8
0.6
n = 20.00
即S
数学选修2-2人教新课标A版1-5-3定积分的概念课件(32张)
(3)ʃ1-1(x3+3x)dx.
解
∵y=x3+3x 为奇函数,∴
1 1
(x3+3x)dx=0.
解析答案
类型三 定积分的性质 例 3 计算ʃ3-3( 9-x2-x3)dx 的值. 解 如图, 由定积分的几何意义得 ʃ3-3 9-x2dx=π×232=92π,ʃ3-3x3dx=0, 由定积分性质得 ʃ3-3( 9-x2-x3)dx=ʃ3-3 9-x2dx-ʃ3-3x3dx=92π.
答案
返回
题型探究
类型一 定积分的概念
例1 (1)定积分ʃbaf(x)dx的大小( A ) A.与f(x)和积分区间有关,与ξi的取法无关 B.与f(x)有关,与区间及ξi的取法无关 C.与f(x)及ξ1的取法有关,与区间无关 D.与f(x)、积分区间和ξi的取法都有关 解析 由定积分的概念可得.
重点难点 个个击破
解析答案
(2)用定积分的定义计算ʃ30x2dx.
反思与感悟
解析答案
跟踪训练1 用定义计算 ʃ21(1+x)dx .
解析答案
类型二 定积分的几何意义 例2 (1)如图所示,f(x)在区间[a,b]上,则阴影部分的面积S为( ) A.ʃbaf(x)dx B.ʃcaf(x)dx-ʃbcf(x)dx C.-ʃcaf(x)dx-ʃbcf(x)dx D.-ʃcaf(x)dx+ʃbcf(x)dx
第一章 §1.5定积分的概念
1.5.3 定积分的概念
学习目标
1.了解定积分的概念,会用定义求定积分. 2.理解定积分的几何意义. 3.掌握定积分的基本性质.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 定积分的概念
思考 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共 同点. 答 两个问题均可以通过“分割、近似代替、求和、取极限”解决,都 可以归结为一个特定形式和的极限.
最新人教版高中数学选修2-2第一章《定积分在物理中的应用》知识梳理
1.7.2 定积分在物理中的应用1.通过具体实例了解定积分在物理中的应用.2.会求变速直线运动的路程、位移和变力做功问题.利用定积分求变速直线运动的路程和位移时,应如何区分路程和位移?【做一做1】 已知自由下落物体的速度为v =gt ,则物体从t =0到t =t 0所走过的路程为( )A.13gt 20B .gt 20 C.12gt 20 D.14gt 20【做一做2】 一物体在F (x )=5x +3(单位:N)的作用下,沿与力F 相同的方向,从x =0处运动到x =5(单位:m)处,则F (x )做的功等于( )A .75 JB .77.5 JC .79.5 JD .80 J答案:s =∫b a v (t )d t W =∫b a F (x )d x思考探究提示:分清运动过程中物体运动的变化情况,即找出v (t )≥0的时间段及v (t )<0的时间段,然后分别求积分即求各段上的位移.而路程是各段位移的绝对值之和.【做一做1】 C s =00220001d 22t t t gt t g gt ⎛⎫=⋅= ⎪⎝⎭⎰.故选C. 【做一做2】 B W =∫50F (x )d x =∫50(5x +3)d x=⎝⎛⎭⎫5x 22+3x |50=1252+15=77.5(J).故选B.1.在变速直线运动中,如何求路程、位移?剖析:用定积分解决变速直线运动的位移与路程的问题时,分清运动过程中的变化情况是解题的关键,做变速直线运动的物体所经过的路程是位移的绝对值之和,从时刻t =a 到时刻t =b 所经过的路程s 和位移s 1分别为(1)若v(t)≥0(a≤t≤b),则s=∫b a v(t)d t,s1=∫b a v(t)d t.(2)若v(t)≤0(a≤t≤b),则s=-∫b a v(t)d t,s1=∫b a v(t)d t.(3)在区间[a,c]上v(t)≥0,在区间[c,b]上v(t)<0,则s=∫c a v(t)d t-∫b c v(t)d t,s1=∫b a v(t)d t.对于给出速度—时间曲线的问题,关键是由图象得到速度的解析式及积分的上、下限,需要注意是分段函数的要分段求路程,然后求和.2.如何求变力做功?剖析:(1)求变力做功,要根据物理学的实际意义,求出变力F的表达式,这是求功的关键.(2)由功的物理意义,已知物体在变力F(x)的作用下,沿力F(x)的方向做直线运动,使物体从x=a移到x=b(a<b).因此,求功之前还应求出位移的起始位置与终止位置.(3)根据变力做功公式W=∫b a F(x)d x即可求出变力F(x)所做的功.求变力做功时,要注意单位,F(x)的单位为N,x的单位为m.题型一求变速直线运动的路程、位移【例题1】有一动点P沿x轴运动,在时间t时的速度为v(t)=8t-2t2(速度的正方向与x轴正方向一致).求:(1)点P从原点出发,当t=6时,求点P离开原点的路程和位移;(2)点P从原点出发,经过时间t后又返回原点时的t值.分析:(1)解不等式v(t)>0或v(t)<0→确定积分区间→求t=6时的路程以及位移(2)求定积分∫t0v(t)d t→令∫t0v(t)d t=0,求t反思:(1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算,否则会出现计算失误.如本例第(1)小题求解时,易出现路程和位移相同的错误.题型二求变力所做的功【例题2】设有一长25 cm的弹簧,若加以100 N的力,则弹簧伸长到30 cm,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使弹簧由25 cm伸长到40 cm所做的功.分析:先根据拉长弹簧所用的力与其伸长的长度成正比求拉力F(x)的表达式,然后用积分求变力做功.反思:解决变力做功注意以下两个方面:①首先要将变力用其方向上的位移表示出来,这是关键的一步.②根据变力做功的公式将其转化为求定积分的问题.题型三利用定积分求解其他物理问题【例题3】A,B两站相距7.2 km,一辆电车从A站开往B站,电车开出t s后到达途中C点,这一段速度为1.2t(m/s),到C点速度达24 m/s,从C点到B站前的D点也以1.2 t(m/s)的速度行驶,从D点开始刹车,经t s后,速度为(24-1.2t)m/s.在B点恰好停车,试求:(1)A ,C 间的距离;(2)B ,D 间的距离;(3)电车从A 站到B 站所需的时间.分析:做变速运动的物体所经过的路程s ,等于其速度函数v =v (t ),v (t )≥0在时间区间[a ,b ]上的积分,即s =∫b a v (t )d t .需根据题意写出函数v =v (t ),确定时间区间,用定积分求解.反思:本题是利用定积分解决物理问题,分清运动过程中的变化情况是解题的关键.答案:【例题1】 解:(1)由v (t )=8t -2t 2≥0,得0≤t ≤4,即当0≤t ≤4时,P 点向x 轴正方向运动,当t >4时,P 点向x 轴负方向运动.故t =6时,点P 离开原点的路程为s 1=∫40(8t -2t 2)d t -∫64(8t -2t 2)d t=⎝⎛⎭⎫4t 2-23t 3|40-⎝⎛⎭⎫4t 2-23t 3|64=1283. 当t =6时,点P 的位移为∫60(8t -2t 2)d t =⎝⎛⎭⎫4t 2-23t 3|60=0. (2)依题意∫t 0(8t -2t 2)d t =0,即4t 2-23t 3=0,解得t =0或t =6, t =0对应于P 点刚开始从原点出发的情况,t =6是所求的值.【例题2】 解:设x 表示弹簧伸长的量(单位:m),F (x )表示加在弹簧上的力(单位:N). 由题意,得F (x )=kx ,且当x =0.05 m 时,F (0.05)=100 N ,即0.05k =100,∴k =2 000.∴F (x )=2 000x .∴将弹簧由25 cm 伸长到40 cm 时所做的功为W =∫0.150 2 000x d x =1 000x 2|0.150=22.5(J).【例题3】 解:设A 到C 经过t 1 s ,由1.2t =24得t 1=20(s),∴AC =∫2001.2t d t =0.6t 2|200=240(m).(2)设从D →B 经过t 2 s ,由24-1.2t 2=0得t 2=20(s),∴DB =∫200(24-1.2t )d t =240(m).(3)CD =7 200-2×240=6 720(m).从C 到D 的时间为t 3=6 72024=280(s). 于是所求时间为20+280+20=320(s).1一质点沿直线以v =3t +2(t 的单位:s ,v 的单位:m/s)的速度运动,则该质点在第3 s 到第6 s 间的运动路程为( )A .46 mB .46.5 mC .87 mD .47 m2一物体在力F (x )=3x 2-2x +5(力的单位:N ,位移的单位:m)作用下沿与力F (x )相同的方向由x =5 m 直线运动到x =10 m 处,作用力F (x )所做的功为( )A .925 JB .850 JC .825 JD .800 J3一物体在力F (x )=15-3x 2(力的单位:N ,位移的单位:m)作用下沿与力F (x )成30°角的方向由x =1直线运动到x =2处,作用力F (x )所做的功为( )B. C.D.J 24一物体以v (t )=t 2-3t +8(m/s)的速度运动,则其在前30 s 内的平均速度为________.5一物体在力F (x )(单位:N)的作用下沿与力F 相同的方向运动,力—位移曲线如图所示.求该物体从x =0处运动到x =4(单位:m)处,力F (x )做的功.答案:1.B S =66263333d (32)d 22v t t t t t ⎛⎫=+=+ ⎪⎝⎭⎰⎰ =223362632322⎛⎫⎛⎫⨯+⨯-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭=46.5(m).2.C W =105()d F x x ⎰=102321055(325)(5)x x x x x -+=-+⎰=(103-102+5×10)-(53-52+5×5)=825(J).3.C W=22232111()cos30d (153)d )F x x x x x x ︒=-=-⎰=[(30-8)-(15-1)]=.4.263 m/s 由定积分的物理意义,得s =30232300013(38)d 832t t t t t t ⎛⎫-+=-+ ⎪⎝⎭⎰ =7 890(m),789030s v t ===263(m/s). 5.分析:先根据图象确定力关于位移的函数关系式,再利用定积分求解.解:由力—位移曲线可知F (x )=1023424x x x ⎧⎨+<⎩≤≤≤﹐0﹐﹐﹐因此该物体从x =0处运动到x =4处力F (x )做的功为242240202310d (34)d 10446(J)2x x x x x x ⎛⎫++=++= ⎪⎝⎭⎰⎰.。
【高中数学选修2-2】1.5.3定积分的概念
b
f (x)dx。
aa
aa
a cc
a
c
Oa
c
bx
b f ( x )dx c1 f ( x )dx
c2 f ( x )dx
b
f ( x )dx
a
a
c1
c2
小结
1、求曲边梯形面积 分割-----近似代替-----求和-----取极限
2、定积分定义 3、定积分几何意义 4、定积分计算性质
为f(xi),宽为Dx的小矩形面积f(xi)Dx
y
近似之; (3)求和:求n个小矩形面积的和
y=f(x)
Sn(为曲边梯形n 面积的近似值);
s sn f xi Dx
i 1
(4)取极限:所求曲边梯形的面积S为
n
s
lim
Dx0
sn
lim Dx0 i1
f
nO
xi
Dx lim n i1
a
三、定积分的计算性质 性质3. 定积分关于积分区间具有可加性
b
c
b
a f ( x )dx a f ( x )dx c f ( x )dx
y
y=f(x)
思考:从定积分的几何
意义解释性质⑶
b
f
b
(xf)(dxx)dx
c
c
f
(fx)(xd)bxdfx(bx)bdfx(fx()xdc)xdf。 x(。 x)dx
根据定积分的几何意义,如何用定积分表示图中阴影部分 的面积?
y
yf (x)
b
S1
f (x)dx
a
y g(x)
b
S2
g ( x)dx
a
Oa
最新人教版高中数学选修2-2第一章《定积分的概念》示范教案
1.5.3 定积分的概念教材分析《定积分的概念》从曲边梯形的面积及变速直线运动的共同特征概括出定积分的概念,它是学生学习定积分的基础,为学习定积分的应用作好铺垫.因此这节课有承前启后的作用,是本章的重点内容之一.本节课的重点是:理解并掌握定积分的概念、定积分的几何意义.理解定积分的概念是难点.主要是这种“以曲代直”“逼近”的思想方法在学生的头脑中并没有与之相联系的认知结构,只有将头脑中原有的认知结构加以改组和顺应,在几节课内达到深刻理解这种思想方法是难点所在.课时分配 1课时.教学目标 知识与技能目标通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;能用定积分的定义求简单的定积分;理解掌握定积分的几何意义;借助于几何直观的基本思想,理解定积分的概念.过程与方法目标培养学生的逻辑思维能力和创新意识. 情感、态度与价值观激发学生主动探索学习的精神.重点难点重点:定积分的概念、定积分的几何意义. 难点:定积分概念的理解.教学过程引入新课提出问题:回忆前面曲边梯形的面积、变速运动的路程等问题的解决方法与步骤. 活动成果:分割→近似代替→求和→取极限活动设计:将以下问题及其解决步骤通过多媒体投影到屏幕上.物体做变速直线运动,速度函数为v =v(t),求它在a ≤t ≤b 内的位移s.步骤如下: (1)分割:用分点a =t 0<t 1<t 2<…<t n =b 将时间区间[a ,b]等分成n 个小区间[t i -1,t i ](i =1,2,…,n),其中第i 个时间区间的长度为Δt =t i -t i -1,物体在此时间段内经过的路程为Δs i .(2)近似代替:当Δt 很小时,在[t i -1,t i ]上任取一点ξi ,以v(ξi )来代替[t i -1,t i ]上各时刻的速度,则Δs i ≈v(ξi )·Δt i .(3)求和:s =1nii S=∆∑≈∑i =1nv(ξi )Δt. (4)取极限:Δt →0时,上式右端的和式作为s 近似值的误差会趋于0,因此s =0lim t ∆→∑i =1nv(ξi )Δt.探究新知提出问题1:请同学们对求曲边梯形的面积和变速运动的路程两个实例的四个步骤对比分析,找出共同点.活动设计:先让学生独立思考,再分小组讨论、交流.活动成果:1.二者都通过四个步骤——分割、近似代替、求和、取极限来解决问题; 2.解决这两个问题的思想方法是相同的,都采用了“逼近”的思想. 总结:类似的问题都可以通过这种方法来解决,而且最终结果都可以归结为这种类型的和式的极限.提出问题2:你能不能类似地将在区间[a ,b]上连续的问题函数f(x)的最终结果归结为这种类型的和式的极限.活动设计:学生先独立思考,必要时允许学生合作、讨论、交流.学情预测:开始学生的回答可能不全面、不准确,但在教师的不断补充、纠正下,会趋于完善.活动成果:师生共同概括出定积分的概念:一般地,设函数f(x)在区间[a ,b]上连续,用分点 a =x 0<x 1<x 2<…<x i -1<x i <…<x n =b将区间[a ,b]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n),作和式:∑i =1n f(ξi )Δx =∑i =1nb -an f(ξi ),当n →∞时,上述和式无限接近某个常数,那么称该常数为函数f(x)在区间[a ,b]上的定积分.记为⎠⎛a bf(x)dx ,即⎠⎛abf(x)dx =lim n →∞∑ni =1b -anf(ξi ), 其中f(x)称为被积函数,x 叫做积分变量,[a ,b]叫做积分区间,b 叫做积分上限,a 叫做积分下限,f(x)dx 叫做被积式.教师补充以下几点:(1)定积分⎠⎛a b f(x)dx 是一个常数;(2)定积分⎠⎛ab f(x)dx 是一种特定形式的和式∑i =1nb -a n f(ξi )的极限,即⎠⎛a bf(x)dx 表示当n →∞时,和式∑i =1n b -a n f(ξi )所趋向的定值;(3)对区间[a ,b]的分割是任意的,只要保证每一小区间的长度都趋向于0就可以了;(4)考虑到定义的一般性,ξi 是第i 个小区间上任意取定的点,但在解决实际问题或计算定积分时,可以把ξi 都取为每个小区间的左端点(或都取为右端点),以便得出结果.设计意图通过上述操作、思考问题使学生建立起对定积分的初步、直观的认识,并训练和培养学生的抽象概括能力.提出问题3:你能说说定积分的几何意义吗?活动设计:学生独立解决,必要时,教师指导、提示.学情预测:如果学生回答此问题有困难,可提示学生回顾求曲边梯形面积的例子.活动成果:结合课本本节图1.57总结定积分⎠⎛ab f(x)dx(f(x)≥0)的几何意义:如果在区间[a ,b]上函数f(x)连续且恒有f(x)≥0,那么定积分⎠⎛ab f(x)dx 表示由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积.提出问题4:思考课本本节的探究问题. 活动设计:学生独立思考,并给出答案.活动成果:通过对定积分几何意义的理解,学生不难考虑到如何用定积分表示位于x 轴上方的两条曲线y =f 1(x),y =f 2(x)与直线x =a ,x =b 围成的平面图形面积.由于图中用虚线给出了辅助线,学生易得到阴影部分的面积为S =⎠⎛a b f 1(x)dx -⎠⎛ab f 2(x)dx.教师引导学生根据定积分的定义,可以得出定积分的如下性质: 性质1:⎠⎛a b kf(x)dx =k ⎠⎛ab f(x)dx(k 为常数);性质2:⎠⎛a b [f 1(x)±f 2(x)]dx =⎠⎛a b f 1(x)dx±⎠⎛abf 2(x)dx ;性质3:⎠⎛ab f(x)dx =⎠⎛ac f(x)dx +⎠⎛cb f(x)dx(其中a<c<b).提出问题5:性质1等式两边的两个定积分上、下限和被积函数分别是什么? 活动设计:以提问的形式让学生直接作答.提出问题6:你能从定积分的几何意义解释性质3吗? 活动设计:学生思考、交流、探索解决问题. 学情预测:若学生解决问题有困难,教师可辅助学生用图象的方法帮助学生从几何直观上感知性质3的成立.活动成果:教师指出性质3为定积分对积分区间的可加性,它对把区间[a ,b]分成有限个(两个以上)小区间的情形也成立.给出以上3个性质,便于我们计算定积分.理解新知1.用定义求定积分的一般方法是:①分割:n 等分区间[a ,b];②近似代替:取点ξi ∈[x i -1,x i ];③求和:∑i =1nb -an f(ξi );④取极限:⎠⎛ab f(x)dx =lim n →∞∑i =1n b -an f(ξi ).2.一般情况下,定积分∫b a f(x)dx 的几何意义是介于x 轴、函数f(x)的图形以及直线x =a ,x =b 之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号.即∫b a f(x)dx =x 轴上方面积-x 轴下方的面积.运用新知例1利用定积分的定义,计算定积分∫10x 3dx 的值. 解:令f(x)=x 3. (1)分割在区间[0,1]上等间隔地插入n -1个点,将区间[0,1]等分成n 个小区间[i -1n ,in](i =1,2,…,n),每个小区间的长度为Δx =i n -i -1n =1n.(2)近似代替、求和取ξi =i n (i =1,2,…,n),则∫10x 3dx ≈S n =∑i =1n (i n )3·1n =1n 4∑i =1n i 3=1n 4·n 2(n +1)24=14(1+1n)2.(3)取极限∫10x 3dx =lim n →∞S n=lim n →∞ 14(1+1n )2=14. 例2根据定积分的几何意义推出下列定积分的值.(1)∫10xdx ;(2)∫R 0R 2-x 2dx.思路分析:如果在区间[a ,b]上函数f(x)连续且恒有f(x)≥0,那么定积分∫b a f(x)dx 表示由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积.(1)中的定积分的值即为由直线x =0,x =1,y =0和y =x 所围成的图形的面积;(2)中的定积分的值为由直线x =0,x =R ,y =0和曲线y =R 2-x 2所围成的图形的面积.解:(1)由图象可知,由直线x =0,x =1,y =0和y =x 所围成的图形为一个直角三角形,两条直角边边长均为1,则面积为12×1×1=12,所以∫10xdx =12. (2)由图象可知,由直线x =0,x =R ,y =0和曲线y =R 2-x 2所围成的图形面积即为圆x 2+y 2=R 2面积的14,则面积为14πR 2,所以∫R 0R 2-x 2dx =14πR 2. 变练演编例 计算定积分∫20x 3dx 的值,并从几何上解释这个值表示什么?解:计算定积分∫20x 3dx 的值: (1)分割在区间[0,2]上等间隔地插入n -1个点,将区间[0,2]等分成n 个小区间[2(i -1)n ,2in ](i =1,2,…,n),每个小区间的长度为Δx =2i n -2(i -1)n =2n.(2)近似代替、求和取ξi =2in(i =1,2,…,n),则∫20x 3dx ≈S n =∑i =1n(2i n )3·2n =16n 4∑i =1n i 3=16n 4·n 2(n +1)24=4(1+1n)2. (3)取极限∫20x 3dx =lim n →∞S n =lim n →∞4(1+1n )2=4. 由定积分的几何意义,可知这个值表示由直线y =0,x =0,x =2和曲线y =x 3所围成的图形的面积.活动设计:学生在理解例1和例2的基础上,独立完成此例练习. 设计意图设置本题意在让学生进一步理解定积分的定义和其几何意义,训练学生思维的灵活性. 达标检测1. lim n →∞ 1n[cos πn +cos 2πn +…+cos (n -1)πn +cos nπn ]写成定积分的形式,可记为( )A .∫π0cosxdx B.1π∫π0cosxdxC .∫10cosxdx D .∫π0cosx xdx2.用定积分表示由曲线y =x 3和直线y =x 所围成的图形面积. 3.当f(x)≥0时,定积分∫b a f(x)dx 的几何意义是__________; 当f(x)≤0时,定积分∫b a f(x)dx 的几何意义是__________.4.根据定积分的几何意义,求∫2-24-x 2dx 的值. 答案:1.B 2.∫10(x -x 3)dx.3.由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积 由直线x =a ,x =b(a ≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积的相反数4.2π. 课堂小结1.知识收获:(1)定积分的概念;(2)定义法求简单的定积分;(3)定积分的几何意义. 2.方法收获:联想、归纳、总结的思想方法. 3.思维收获:从特殊到一般. 布置作业习题1.5A 组3、4题. 补充练习 基础练习1.将和式的极限lim n →∞ 1α+2α+…+n αn α+1(α>0)表示成定积分为( ) A .∫101xdx B .∫10x αdx C .∫101x αdx D .∫10(x n)αdx 2.将和式lim n →∞(1n +1+1n +2+…+12n )表示为定积分__________.3.曲线y =x 2,y =1所围成的图形的面积可用定积分表示为__________.拓展练习4.用定积分定义求∫10|x 2-4|dx 的值. 答案:1.B 2.∫101x +1dx 3.∫1-1(1-x 2)dx 4.233. 设计说明通过两个实例让学生自己总结出定积分的概念,这符合思维认识发展的一般规律,也符合数学发展的一般规律,同时激发学生进一步学习的浓厚兴趣,学生也从中学到了联想、猜测的归纳、总结的思想方法.例题的设置,主要是为了强化本节课的重点,通过学生自己亲自尝试、体验,才能深刻理解“分割、近似代替、求和、取极限”的微积分思想方法.本节的设计既符合教学论中的巩固性原则,也符合素质教育理论中面向全体的基本要求.备课资料备选例题:利用定义计算定积分∫10(2x -x 2)dx ,并从几何上解释这个值表示什么?思路分析:利用定积分性质1、2,可将∫10(2x -x 2)dx 转化为2∫10xdx -∫10x 2dx ,利用定积分的定义分别求出∫10xdx ,∫10x 2dx ,就能得到定积分∫10(2x -x 2)dx 的值.解:∫10(2x -x 2)dx =∫102xdx -∫10x 2dx =2∫10xdx -∫10x 2dx ,用定义求∫10xdx 的值.(1)分割在区间[0,1]上等间隔地插入n -1个点,将区间[0,1]等分成n 个小区间 [i -1n ,i n ](i =1,2,…,n),每个小区间的长度为Δx =i n -i -1n =1n . (2)近似代替、求和取ξi =i n (i =1,2,…,n),则∫10xdx ≈S n =∑i =1n i n ·1n =1n 2·n (n +1)2=n +12n.(3)取极限∫10xdx =lim n →∞S n =lim n →∞n +12n =12. 同理可求得∫10x 2dx =13,所以∫10(2x -x 2)dx =2×12-13=23. 由定积分的几何意义,可知这个值表示由直线y =2x ,x =1和曲线y =x 2所围成的图形的面积.(设计者:孙娜)。
高中数学选修2-2第1章1.5.3定积分的概念课件人教A版
������ (x)dx =
(x2 + 1)
(2)定积分就是和的极限 lim ∑ ������(������t)·Δx,而
n →∞i=1
������ a
������(x)dx 只是这种极限的一种记号.
-7-
目标导航
题型一 题型二
知识梳理
重难聚焦
典例透析
利用定义计算定积分
【例 1】 利用定积分的定义,计算 1 (3x + 2)dx 的值. 分析:将区间[1,2]等分为 n 个小区间,利用函数在每个小区间上 的左端点值求出 Sn,其极限即为所求. 解:令 f(x)=3x+2. (1)分割 在区间[1,2]上等间隔地插入(n-1)个分点,把区间[1,2]等分成 n 个小区间
=
(3)取极限
2 1
13 3 13 (3x + 2)dx = lim ������n = lim = . n →∞ n →∞ 2 2n 2
������ g(x)dx na
解析:利用定积分的性质进行判断,选项 C 不成立. 例如
1
xdx = 2 ,
1 0
1
1 0
x2dx = 3 ,
1
1
1 0
x3dx = 4.
-6-
1
但 0 x3dx ≠ 答案:C
xdx · 0 x2dx, 故选C.
目标导航
知识梳理
重难聚焦
典例透析
如何正确认识定积分的概念? 剖析:(1)定积分是一个数值(极限值),它的值仅仅取决于被积函 数与积分的上、下限,而与积分变量用什么字母表示无关,即
-3-
目标导航
知识梳理 知识梳理
重难聚焦
典例透析
人教课标版高中数学选修2-2《定积分的概念》教案-新版
1.5.3 定积分的概念一、教学目标 1.核心素养通过定积分的概念的学习,提升分析问题、解决问题的能力、抽象概括能力和逻辑思维能力. 2.学习目标(1)借助几何直观体会定积分的基本思想; (2)初步了解定积分的概念. 3.学习重点定积分的概念与定积分的几何意义 4.学习难点 定积分的概念 二、教学设计 (一)课前设计 1.预习任务任务:预习教材P 45—P 48,完成相应练习题 2.预习自测 1.设f (x )=⎩⎪⎨⎪⎧x 2(x ≥0),2x(x <0),则⎠⎛-11f (x )dx 等于( )A .⎠⎛-11x 2dxB .⎠⎛-112x dC .⎠⎛-10x 2dx +⎠⎛012x dxD .⎠⎛-102x dx +⎠⎛01x 2dx 答案:D2.定积分⎰13(-3)dx 等( )A .-6B .6C .-3D .3 答案:A3.已知t >0,若⎠⎛0t (2x -2)dx =8,则t =( )A .1B .-2C .-2或4D .4 答案:D (二)课堂设计 1.知识回顾求曲边梯形面积的步骤①分割:把区间[a ,b ]等分成n 个小区间;②近似代替:对每个小曲边梯形“以直代曲”,用小矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值;③求和:计算出n 个小矩形的面积之和n S ,n S 即为曲边梯形面积的近似值; ④取极限:求lim n n S S →+∞=(S 即为曲边梯形的面积)2.问题探究问题探究一 什么是定积分?学生活动:阅读课本相应内容,找到定积分的定义,并概括出求定积分的基本步骤:如果函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b-=<<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点()12i i ,,...,n ξ=,作和式11()()nni i i i b af x f nξξ==-∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分,记做()ba f x dx ⎰.即1()lim ()nbi a n i b af x dx f nξ→∞=-=∑⎰.这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式.问题探究二 定积分的几何意义. 学生活动:定积分的定义和我们上节课所讲的曲边梯形的面积的求法有没有相同之处?你能说明定积分的几何意义吗?定积分的定义与曲边梯形面积的求法本质是相同的.如果在区间[,]a b 上()f x 连续且恒有()0f x ≥,则定积分()baf x dx ⎰的几何意义是由,,0x a x b y ===与()y f x =所围成的曲边梯形的面积.问题探究三 学生活动:根据定积分的几何意义,论证定积分的性质 定积分的性质:(1)()()bba akf x dx k f x dx =⎰⎰(k 为常数)(2)1212[()()]()()bbba a af x f x dx f x dx f x dx ±=±⎰⎰⎰; (3)()()()bcba a cf x dx f x dx f x dx =±⎰⎰⎰(其中a c b <<). 性质(1)(2)称为定积分的线性性质,性质(3)称为定积分对积分区间的可加性.例1.计算定积分21(1)x dx+⎰详解:所求定积分即为如图阴影部分面积,面积为52.即:215(1)2x dx +=⎰点拨:从定积分的几何意义出发解题3.课堂总结 【知识梳理】1.定积分的定义:如果函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点i ξ(1,2,,)i n =,作和式11()()nni i i i b af x f nξξ==-∆=∑∑,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分,记做()baf x dx ⎰.即1()lim ()nbi a n i b af x dx f nξ→∞=-=∑⎰. 这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式2.定积分的几何意义:如果在区间[,]a b 上()f x 连续且恒有()0f x ≥,则定积分()baf x dx ⎰的几何意义是由,,0x a x b y ===与()y f x =所围成的曲边梯形的面积3.定积分的性质:(1)()()b ba a kf x dx k f x dx =⎰⎰ (k 为 常 数 )(2)1212[()()]()()b b ba a af x f x dx f x dx f x dx ±=±⎰⎰⎰; (3)()()()bcba a cf x dx f x dx f x dx =±⎰⎰⎰(其中a c b <<). 性质(1)(2)称为定积分的线性性质,性质(3)称为定积分对积分区间的可加性.【重难点突破】(1)计算定积分过程中的两个常用结论 ①211(1)(21)6ni i n n n ==++∑;②231(1)2ni n n i =+⎡⎤=⎢⎥⎣⎦∑; ③11101110lim k k k k kk k n k k k a n a n a n a a b b n b n b n b ---→∞-⋅++++=⋅++++(其中i a ,i b 为常数,0,1,,i k =).(2)定积分的概念①定积分()ba f x dx ⎰就是和式1()ni i b af n ξ=-∑的极限,即()b a f x dx ⎰表示当n →∞时,和式1()ni i b af n ξ=-∑所趋向的定值. ②在计算定积分的过程中,为了计算的方便,我们常常将定义中的i ξ取为第i (1,2,,i n =)个小区间的左端点或右端点.③定积分()ba f x dx ⎰的值只取决于被积函数()f x 与积分上、下限,而与积分变量用什么字母表示无关,即()()()b b ba a a f x dx f u du f t dt ===⎰⎰⎰.(3)定积分的几何意义①当()f x 对应的曲线位于x 轴上方时,定积分的值为正值,且等于曲边图形的面积;当()f x 对应的曲线位于x 轴下方时,定积分的值为负值,且等于曲边图形面积的相反数;当()f x 对应的曲线x 轴上、下方都有时,定积分等于曲边图形面积的代数和,即等于x 轴上方曲边图形的面积减去x 轴下方曲边图形的面积.②定积分有很多实际意义,如:变速运动路程21()t t s v t dt =⎰;变力做功()baW F r dr =⎰.(4)根据定积分的几何意义,易得以下性质: ①在区间[,]a b 上,若()0f x ≥,则()0baf x dx ≥⎰;②在区间[,]a b 上,若()()f x g x ≤,则()()bba a f x dx g x dx ≤⎰⎰;③()()b baaf x dx f x dx ≤⎰⎰.(5)定积分的性质的推广 ①11221122[()()()]()()()bb bbn n n n a aaak f x k f x k f x dx k f x dx k f x dx k f x dx +++=+++⎰⎰⎰⎰;②121()()()()nbc c ba a c c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰(其中12n a c c c b <<<<<).4.随堂检测1.定积分⎠⎛ab f (x )dx 的大小( )A .与y =f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与y =f (x )有关,与积分区间[a ,b ]和ξi 的取法无关C .与y =f (x )和ξi 的取法有关,与积分区间[a ,b ]无关D .与y =f (x )、积分区间[a ,b ]、ξi 的取法均无关 答案:A解析:【知识点:定积分】定积分的大小仅与被积函数和积分的上、下限有关. 2.下列结论中成立的个数是( ) ①⎠⎛01x 3dx =∑i =1ni 3n 3·1n ;②⎠⎛01x 3dx =(i -1)3n 3·1n ; ③⎠⎛01x 3dx =i 3n 3·1nA .0B .1C .2D .3 答案:C解析:【知识点:定积分】积分是一个极限的形式,根据积分的定义可知②③正确. 3.定积分⎠⎛13(-3)dx 等于( ) A .-6 B .6 C .-3 D .3 答案:A解析:【知识点:定积分】⎠⎛133dx 表示图中阴影部分的面积S =3×2=6,⎠⎛13(-3)dx =-⎠⎛133dx =-6. 4.已知函数f (x )=sin 5x +1,根据函数的性质、积分的性质和积分的几何意义,探求f (x )dx 的值,结果是( )A.16+π2 B .π C .1 D .0 答案:B解析:【知识点:定积分】(sin 5x +1)dx =sin 5xdx +1dx ,∵y =sin 5x 在[-π2,π2]上是奇函数,∴sin 5xdx =0.而1dx ==π,故f (x )dx =π,故选B.5.设a =⎠⎛01x 13dx ,b =⎠⎛01x 2dx ,c =⎠⎛01x 3dx ,则a ,b ,c 的大小关系是( )A .c >a >bB .a >b >cC .a =b >cD .a >c >b 答案:B.解析:【知识点:定积分】根据定积分的几何意义,易知⎠⎛01x 3dx <⎠⎛01x 2dx <⎠⎛01x 13dx ,即a >b >c ,故选B.(三)课后作业 基础型 自主突破1.定积分⎠⎛01(2+1-x 2)dx =________.答案:24π+解析:【知识点:定积分】原式=⎠⎛012dx +⎠⎛011-x 2dx .∵⎠⎛012dx =2,⎠⎛011-x 2dx =π4,∴⎠⎛01(2+1-x 2)dx =π4+2.2.直线x =1,x =-1,y =0及曲线y =x 3+sin x 围成的平面图形的面积可用定积分表示为________. 答案:S =2⎠⎛01(x 3+sin x )dx .解析:【知识点:定积分】因y =x 3+sin x 为奇函数,故⎠⎛0-1(x 3+sin x )dx =-⎠⎛01(x 3+sin x )dx <0,所以S =2⎠⎛01(x 3+sin x )dx .3.若y =f (x )的图象如图所示,定义F (x )=⎠⎛0x f (t )dt ,x ∈[0,1],则下列对F (x )的性质描述正确的有________.(1)F (x )是[0,1]上的增函数; (2)F ′(1)=0;(3)F (x )是[0,1]上的减函数; (4)∃x 0∈[0,1]使得F (1)=f (x 0). 答案:(1),(2),(4) 解析:【知识点:定积分】由定积分的几何意义可知,F (x )表示图中阴影部分的面积,且F (1)=⎠⎛01f (t )dt 为一个常数,当x 逐渐增大时,阴影部分的面积也逐渐增大,所以F (x )为增函数,故(1),(2)正确,(3)错误.由定积分的几何意义可知,必然∃x 0∈[0,1],使S 1=S 2,此时矩形ABCO 的面积与函数f (x )的图象与坐标轴围成的区域的面积相等,即F (1)=⎠⎛01f (t )dt =f (x 0),故(4)正确.所以对F (x )的性质描述正确的有(1),(2),(4). 4.用定积分表示下列阴影部分的面积(不要求计算):答案:见解析解析:【知识点:定积分】(1)sin xdx .(2) ⎠⎛-42⎠⎛2-412x 2dx .(3)-⎠⎛49-x 12dx =⎠⎛49x 12dx .5.已知⎠⎛01x 3dx =14,⎠⎛12x 3dx =154,⎠⎛12x 2dx =73,⎠⎛24x 2dx =563,求:(1)⎠⎛023x 3dx ;(2)⎠⎛146x 2dx ;(3)⎠⎛12(3x 2-2x 3)dx . 答案:见解析解析:【知识点:定积分】(1)⎠⎛023x 3dx =3⎠⎛02x 3dx =3(⎠⎛01x 3dx +⎠⎛12x 3dx )=3⎝ ⎛⎭⎪⎫14+154=12.(2)⎠⎛146x 2dx =6(⎠⎛12x 2dx +⎠⎛24x 2dx )=6⎝ ⎛⎭⎪⎫73+563=126.(3)⎠⎛12(3x 2-2x 3)dx =3⎠⎛12x 2dx -2⎠⎛12x 3dx =3×73-2×154=-12.能力型 师生共研6.将和式的极限 1p +2p +3p +…+n p n p +1(p >0)表示成定积分为( )A.⎠⎛011x dxB.⎠⎛01x p dxC.⎠⎛01⎝ ⎛⎭⎪⎫1x pd D.⎠⎛01⎝ ⎛⎭⎪⎫x n p dx 答案:B解析:【知识点:定积分】 令ξi =in ,f (x )=x p ,则1p +2p +3p +…+n pn p +1=∑i =1n1n f (ξi )=⎠⎛01x p dx .7.将(1n +1+1n +2+…+12n )表示为定积分为________. 答案:⎠⎛0111+x dx解析:【知识点:定积分】 由定积分的定义(1n +1+1n +2+…+12n )=∑i =1n(1in +1)·1n =∑i =1n(n n +i )·1n=⎠⎛0111+x dx . 8.设f (x )=⎩⎨⎧-2x +4,x >1,x +1,0≤x ≤1,求⎠⎛02f (x )dx .答案:见解析解析:【知识点:定积分】∵f (x )=⎩⎨⎧-2x +4,x >1,x +1,0≤x ≤1,∴⎠⎛02f (x )dx =⎠⎛01(x +1)dx +⎠⎛12(-2x +4)dx .又由定积分的几何意义得 ⎠⎛01(x +1)dx =12(1+2)×1=32, ⎠⎛12(-2x +4)dx =12×1×2=1, ∴⎠⎛02f (x )dx =32+1=52. 9.抛物线y =12x 2将圆面x 2+y 2≤8分成两部分,现在向圆面上均匀投点,这些点落在图中阴影部分的概率为14+16π,求⎠⎛02(8-x 2-12x 2)dx .答案:见解析解析:【知识点:定积分】 解方程组⎩⎪⎨⎪⎧x 2+y 2=8,y =12x 2,得x =±2.∴阴影部分的面积为⎠⎛-22(8-x 2-12x 2)dx .∵圆的面积为8π,∴由几何概型可得阴影部分的面积是8π·(14+16π)=2π+43.由定积分的几何意义得⎠⎛02(8-x 2-12x 2)dx =12⎠⎛-22 (8-x 2-12x 2)dx =π+23.探究型 多维突破10.已知函数f (x )=⎩⎨⎧x 3 x ∈[-2,2],2x x ∈[2,π],cos x x ∈[π,2π].则22()f x dx π-=⎰________.答案:见解析解析:【知识点:定积分】由定积分的几何意义知⎠⎛-22x 3dx =0,⎠⎛2π2xdx =(π-2)(2π+4)2=π2-4,由于cos x 关于32x π=对称,故2cos 0xdx ππ=⎰,由定积分的性质得⎠⎛-22πf (x )dx =⎠⎛-22x 3dx +⎠⎛2π2xdx +2cos xdx ππ⎰=π2-4.11.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分⎠⎛01f (x )dx .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分⎠⎛01f (x )dx 的近似值为________________. 答案:见解析解析:【知识点:定积分】因为0≤f (x )≤1且由积分的定义知:⎠⎛01f (x )dx 是由直线x =0,x =1及曲线y =f (x )与x 轴所围成的面积.又产生的随机数对在如图所示的正方形内,正方形面积为1,且满足y i ≤f (x i )的有N 1个点,即在函数f (x )的图象上及图象下方有N 1个点,所以用几何概型的概率公式得:f (x )在x =0到x =1上与x 轴围成的面积为N 1N×1=N 1N ,即⎠⎛01f (x )dx =N 1N .自助餐1.已知⎠⎛a b f (x )dx =6,则⎠⎛a b 6f (x )dx 等于( )A .6B .6(b -a )C .36D .不确定 答案:C解析:【知识点:定积分】 2.11x dx --⎰等于( )A .11()x dx --⎰B .11xdx -⎰C .0110()x dx xdx --+⎰⎰D .0110()xdx x dx -+-⎰⎰ 答案:C解析:【知识点:定积分】3.设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a b f (x )dx 的符号( )A .一定是正的B .一定是负的C .当0<a <b 时是正的D .以上都不对 答案:A解析:【知识点:定积分】4.若⎠⎛a b f (x )dx =1,⎠⎛a b g (x )dx =-3,则⎠⎛a b [2f (x )+g (x )]dx =( )A .2B .-3C .-1D .4 答案:C解析:【知识点:定积分】5.设a =10⎰x 13dx ,b =10⎰x 2dx ,c =1⎰x 3dx ,则a ,b ,c 的大小关系是( )A .c >a >bB .a >b >cC .a =b >cD .a >c >b 答案:B解析:【知识点:定积分】根据定积分的几何意义,易知⎰01x 3dx <⎰01x 2dx <⎰01x 13dx ,即a >b >c .6.由曲线y =x 2-1,直线x =0,x =2和x 轴围成的封闭图形的面积(如图)可表示为( )A.220(1)x dx -⎰B.2201x dx -⎰C.220(1)x dx -⎰D.122201(1)(1)x dx x dx -+-⎰⎰ 答案:B解析:【知识点:定积分】由定积分的几何意义知,阴影部分的面积为2121222211(1)(1)(1)(1)x dx x dx x dx x dx ---=-++⎰⎰⎰⎰2201x dx =-⎰7.⎠⎛06(2x -4)dx =____________. 答案:12解析:【知识点:定积分】A (0,-4),B (6,8),M (2,0),S △AOM =12×2×4=4,S △MBC =12×4×8=16,∴⎠⎛06(2x-4)dx =16-4=128.已知f (x )是一次函数,其图象过点(3,4)且⎠⎛01f (x )dx =1,则f (x )的解析式为_________________. 答案:f (x )=65x +25解析:【知识点:定积分】设f (x )=ax +b (a ≠0),∵f (x )图象过(3,4)点,∴3a +b =4.又⎠⎛01f (x )dx =⎠⎛01(ax +b )dx =a ⎠⎛01xdx +⎠⎛01bdx =12a +b =1.解方程组⎩⎪⎨⎪⎧3a +b =4,12a +b =1,得⎩⎪⎨⎪⎧a =65,b =25.∴f (x )=65x +25.9.定积分⎠⎛-33(9-x 2-x 3)dx 的值为________.答案:92π 解析:【知识点:定积分】 如图,由定积分的几何意义,得⎠⎛-339-x 2dx =π×322=9π2,⎠⎛-33x 3dx =0.由定积分的性质,得 ⎠⎛-33(9-x 2-x 3)dx =⎠⎛-339-x 2dx -⎠⎛-33x 3dx =9π2. 10.已知f (x )=错误!未找到引用源。
最新-高中数学 153定积分的概念1课件 新人教A版选修2-2 精品
y yf (x)
b
c
b
f (x)dx f (x)dxf 来自x)dx。aa
c
Oa
bx
特别地,当 ab 时,有b a
f (x)dx0。
定积分的几何意义:
当f(x)0时,由yf (x)、xa、xb 与 x 轴所围成的
曲边梯形位于 x 轴的下方,
积分 b f (x)dx 在几何上表示 y a
上述曲边梯形面积的负值。
的面积?
y
yf (x)
b
b
S S1 S2
a
f (x)dx
g(x)dx
a
b
S1
ya
fg((x))dx
b
S2
g ( x)dx
a
O aa
bx
三: 定积分的基本性质
性质1.
b
b
a kf ( x )dx ka f ( x )dx
性质2.
b
b
b
[ f ( x ) g( x )]dx f ( x )dx g( x )dx
b
a
f
(x)dx,即即b b aa
nn
ff((xx))ddxxlimlim f n0i1i1
b(ni)axfi。(i
)
定积分的定义:
即
b a
f
(x)dx
lim
n
n i1
b
n
a
f
(i )
定积分的相关名称:
———叫做积分号, y
f(x) ——叫做被积函数,
y f (x)
f(x)dx —叫做被积表达式,
1.5.3 定积分的概念
一、定积分的定义
从求曲边梯形面积S的过程中可以看出,通过“四步
人教版数学高二选修2-2讲义1.5.3定积分的概念
1.5.3定积分的概念1.了解定积分的概念.(难点)2.理解定积分的几何意义.(重点、易混点)3.掌握定积分的几何性质.(重点、难点)[基础·初探]教材整理1 定积分的概念阅读教材P45内容,完成下列问题.如果函数f(x)在区间[a,b]上连续,用分点a=x0<x1<…<x i-1<x i<…<x n=b将区间[a,b]等分成n个小区间,在每个小区间[x i-1,x i]上任取一点ξi(i=1,2,…,n),作和式∑i=1nf(ξi)Δx=________________,当n→∞时,上述和式无限接近某个常数,这个常数叫做函数f(x)在区间[a,b]上的定积分,记作⎠⎛ab f(x)d x,即⎠⎛ab f(x)d x=__________.其中a与b分别叫做__________与__________,区间[a,b]叫做______,函数f(x)叫做____________,x叫做__________,f(x)d x叫做__________.【答案】∑i=1n b-an f(ξi)limn→∞∑i=1n b-an f(ξi)积分下限积分上限积分区间被积函数积分变量被积式⎠⎛12(x+1)d x的值与直线x=1,x=2,y=0,f(x)=x+1围成的梯形的面积有什么关系?【解析】由定积分的概念知:二者相等.教材整理2 定积分的几何意义阅读教材P46的内容,完成下列问题.从几何上看,如果在区间[a,b]上函数f(x)连续且恒有f(x)≥0,那么定积分⎠⎛ab f(x)d x表示由__________________所围成的曲边梯形的面积.这就是定积分⎠⎛ab f(x)d x的几何意义.【答案】直线x=a,x=b,y=0和曲线y=f(x)判断(正确的打“√”,错误的打“×”)(1)⎠⎛ab f(x)d x=⎠⎛ab f(t)d t.()(2)⎠⎛ab f(x)d x的值一定是一个正数.()(3)⎠⎛12x d x<⎠⎛22x d x()【答案】(1)√(2)×(3)√教材整理3定积分的性质阅读教材P47的内容,完成下列问题.1.⎠⎛ab kf(x)d x=________________________(k为常数).2.⎠⎛ab[f1(x)±f2(x)]d x=⎠⎛abf1(x)d x±__________________.3.⎠⎛ab f(x)d x=______________(其中a<c<b).【答案】 1.k⎠⎛ab f(x)d x 2.⎠⎛ab f2(x)d x 3.⎠⎛ac f(x)d x+⎠⎛cb f(x)d x填空:(1)由y=0,y=cos x,x=0,x=π2围成的图形的面积用定积分的形式表示为__________.(2)⎠⎛-11f(x)d x=⎠⎛-10f(x)d x+__________.(3)⎠⎛ab(x2+2x)d x=⎠⎛ab2x d x+________.【答案】(1)⎠⎜⎛π2cos x d x(2)⎠⎛1f(x)d x(3)⎠⎛ab x2d x[小组合作型]利用定义求定积分利用定积分的定义,计算⎠⎛12(3x+2)d x的值.【精彩点拨】根据定积分的意义,分四步求解,即分割、近似代替、求和、取极限.【自主解答】令f(x)=3x+2.(1)分割在区间[1,2]上等间隔地插入n-1个分点,将区间[1,2]等分成n个小区间⎣⎢⎡⎦⎥⎤n+i-1n,n+in(i=1,2,…,n),每个小区间的长度为Δx=n+in-n+i-1n=1n.(2)近似代替、作和取ξi=n+i-1n(i=1,2,…,n),则S n=∑i=1nf⎝⎛⎭⎪⎫n+i-1n·Δx=∑i=1n⎣⎢⎡⎦⎥⎤3(n+i-1)n+2·1n=∑i=1n⎣⎢⎡⎦⎥⎤3(i-1)n2+5n=3n2[0+1+2+…+(n-1)]+5=32×n2-nn2+5=132-32n.(3)取极限⎠⎛12(3x+2)d x=limn→∞S n=limn→∞⎝⎛⎭⎪⎫132-32n=132.利用定义求定积分的步骤[再练一题]1.利用定积分的定义计算⎠⎛12(-x 2+2x )d x 的值.【解】 令f (x )=-x 2+2x . (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分为n 个小区间⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n (i =1,2,…,n ),每个小区间的长度为Δx =i n -i -1n =1n . (2)近似代替、作和取ξi =1+in (i =1,2,…,n ),则 S n =∑i =1nf ⎝ ⎛⎭⎪⎫1+i n ·Δx=∑i =1n⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n =-1n 3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n 2[(n +1)+(n +2)+(n +3)+…+2n ]=-1n 3⎣⎢⎡⎦⎥⎤2n (2n +1)(4n +1)6-n (n +1)(2n +1)6+2n 2·n (n +1+2n )2 =-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n . (3)取极限⎠⎛12(-x 2+2x )d x =lim n →∞S n =lim n →∞ ⎣⎢⎡-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +⎦⎥⎤3+1n=23.定积分的几何意义利用定积分的几何意义求下列定积分. (1)⎠⎛-33-39-x 2d x ;(2)⎠⎛03(2x +1)d x ; (3)⎠⎛-11-1(x 3+3x )d x . 【导学号:62952046】【精彩点拨】 对于本题(1)、(2)可先确定被积函数、积分区间,画出图形,然后用几何法求出图形面积,从而确定定积分的值;对于(3)可根据被积函数的奇偶性求解.【自主解答】 (1)曲线y =9-x 2表示的几何图形为以原点为圆心以3为半径的上半圆如图(1)所示.其面积为S =12·π·32=92π.由定积分的几何意义知⎠⎛-339-x 2d x =92π.(2)曲线f (x )=2x +1为一条直线.⎠⎛03(2x +1)d x 表示直线f (x )=2x +1,x =0,x=3围成的直角梯形OABC 的面积,如图(2).其面积为S =12(1+7)×3=12.根据定积分的几何意义知⎠⎛03(2x +1)d x =12.(3)∵y=x3+3x在区间[-1,1]上为奇函数,图象关于原点对称,∴曲边梯形在x轴上方部分面积与x轴下方部分面积相等.由定积分的几何意义知⎠⎛-11(x3+3x)d x=0.定积分的几何意义的应用(1)利用定积分的几何意义求⎠⎛ab f(x)d x的值的关键是确定由曲线y=f(x),直线x=a,x=b及y=0所围成的平面图形的形状.常见的图形有三角形、直角梯形、矩形、圆等可求面积的平面图形.(关键词:平面图形的形状)(2)不规则的图形常利用分割法将图形分割成几个容易求定积分的图形求面积,要注意分割点要确定准确.(关键词:分割)[再练一题]2.上例(1)中变为⎠⎜⎛-32329-x2d x,如何求解?【解】由y=9-x2,知x2+y2=9(y≥0),x∈⎣⎢⎡⎦⎥⎤-32,32,其图象如图所示:由定积分的几何意义,知⎠⎜⎛-32329-x2d x等于圆心角为60°的弓形C ED的面积与矩形ABC D的面积之和.S弓形=12×π3×32-12×3×332=6π-934,S矩形=|AB|×|BC|=2×32×9-⎝⎛⎭⎪⎫322=932,∴⎠⎜⎛-32329-x2d x=6π-934+932=6π+934.[探究共研型]定积分性质的应用探究1 【提示】 可先把每一段函数的定积分求出后再相加. 探究2 怎样求奇(偶)函数在区间[a ,b ]上的定积分?【提示】 ①若奇函数y =f (x )的图象在[-a ,a ]上连续,则⎠⎛-a a f (x )d x =0;②若偶函数y =g (x )的图象在[-a ,a ]上连续,则⎠⎛-aa g (x )d x =2⎠⎛0a g (x )d x .(1)f (x )=⎩⎨⎧x +1,0≤x <1,2x 2,1≤x ≤2,则⎠⎛02f (x )d x =( )A.⎠⎛02(x +1)d xB.⎠⎛022x 2d x C.⎠⎛01(x +1)d x +⎠⎛122x 2d x D.⎠⎛122x d x +⎠⎛02(x +1)d x (2)已知⎠⎛02f (x )d x =8,则⎠⎛02[f (x )-2x ]d x =________.【自主解答】 (1)∵f (x )在[0,2]上是连续的,由定积分的性质(3)得⎠⎛02f (x )d x=⎠⎛01f (x )d x +⎠⎛12f (x )d x =⎠⎛01(x +1)d x +⎠⎛122x 2d x . (2)由定积分的性质(2)可得⎠⎛02[f (x )-2x ]d x =⎠⎛02f (x )d x -⎠⎛022x d x =⎠⎛02f (x )d x -2⎠⎛02x d x . 又∵⎠⎛02f (x )d x =8,⎠⎛02x d x =12×2×2=2,∴⎠⎛2[f(x)-2x]d x=⎠⎛2f(x)d x-2⎠⎛2x d x=8-2×2=4.【答案】(1)C(2)4利用定积分的性质求定积分的技巧灵活应用定积分的性质解题,可以把比较复杂的函数拆成几个简单函数,把积分区间分割成可以求积分的几段,进而把未知的问题转化为已知的问题,在运算方面更加简洁.应用时注意性质的推广:(1)⎠⎛ab[f1(x)±f2(x)±…±f n(x)]d x=⎠⎛ab f1(x)d x±⎠⎛ab f2(x)d x±…±⎠⎛ab f n(x)d x;(2)⎠⎛ab f(x)d x=⎠⎜⎛ac1f(x)d x+⎠⎜⎛c1c2f(x)d x+…+⎠⎜⎛c nb f(x)d x(其中a<c1<c2<…<c n<b,n∈N*).[再练一题]3.已知⎠⎛e x d x=e22,⎠⎛e x2d x=e33,求下列定积分的值.(1)⎠⎛e(2x+x2)d x;(2)⎠⎛e(2x2-x+1)d x.【解】(1)⎠⎛e(2x+x2)d x=2⎠⎛e x d x+⎠⎛e x2d x=2×e22+e33=e2+e33.(2)⎠⎛e(2x2-x+1)d x=2⎠⎛e x2d x-⎠⎛e x d x+⎠⎛e1d x,因为已知⎠⎛e x d x=e22,⎠⎛e x2d x=e33,又由定积分的几何意义知:⎠⎛0e 1d x 等于直线x =0,x =e ,y =0,y =1所围成的图形的面积,所以⎠⎛0e 1d x =1×e =e ,故⎠⎛0e (2x 2-x +1)d x =2×e 33-e 22+e =23e 3-12e 2+e.1.下列等式不成立的是( )A.⎠⎛a b [mf (x )+ng (x )]d x =m ⎠⎛a b f (x )d x +n ⎠⎛a b g (x )d xB.⎠⎛a b [f (x )+1]d x =⎠⎛ab f (x )d x +b -a C.⎠⎛a b f (x )g (x )d x =⎠⎛a b f (x )d x ·⎠⎛ab g (x )d x D.⎠⎛-2π2πsin x d x =⎠⎛-2π0sin x d x +⎠⎛02πsin x d x【解析】 利用定积分的性质可判断A ,B ,D 成立,C 不成立. 例如⎠⎛02x d x =2,⎠⎛022d x =4,⎠⎛022x d x =4,即⎠⎛022x d x ≠⎠⎛02x d x ·⎠⎛022d x . 【答案】 C2.图1-5-3中阴影部分的面积用定积分表示为( )图1-5-3A.⎠⎛012x dxB.⎠⎛01(2x -1)d xC.⎠⎛01(2x +1)d xD.⎠⎛01(1-2x )d x 【解析】 根据定积分的几何意义,阴影部分的面积为⎠⎛012x d x -⎠⎛011d x =⎠⎛01(2x-1)d x.【答案】 B3.由y=sin x,x=0,x=π2,y=0所围成图形的面积写成定积分的形式是________.【导学号:62952047】【解析】∵0<x<π2,∴sin x>0.∴y=sin x,x=0,x=π2,y=0所围成图形的面积写成定积分的形式为⎠⎜⎛π2sin x d x.【答案】⎠⎜⎛π2sin x d x4.若⎠⎛ab[f(x)+g(x)]d x=3,⎠⎛ab[f(x)-g(x)]d x=1,则⎠⎛ab[2g(x)]d x=________.【解析】⎠⎛ab[2g(x)]d x=⎠⎛ab[(f(x)+g(x))-(f(x)-g(x))]d x=⎠⎛ab[f(x)+g(x)]d x-⎠⎛ab[f(x)-g(x)]d x=3-1=2.【答案】 25.用定积分的几何意义求⎠⎛-114-x2d x.【解】由y=4-x2可知x2+y2=4(y≥0),其图象如图.⎠⎛-114-x2d x等于圆心角为60°的弓形C E D的面积与矩形ABCD的面积之和.S弓形=12×π3×22-12×2×2sinπ3=2π3- 3.S矩形=|AB|·|BC|=2 3.高中数学-打印版 精心校对完整版 ∴⎠⎛-114-x 2d x =23+2π3-3=2π3+ 3.。
高中数学人教A版选修(2-2)1.5 教学课件 《定积分的概念》(人教A版)
人民教育出版社 高二年级 | 选修2-2
即
b a
f
( x)dx
lim
n
n i1
ba n
f
(i )
定积分的相关名称: ———叫做积分号, f(x) ——叫做被积函数, f(x)dx —叫做被积表达式, x ———叫做积分变量, a ———叫做积分下限, b ———叫做积分上限, [a, b] —叫做积分区间。
c
b
x
畅言教育
例1 利用定积的定义,计算 1 x3dx的值 0 解 令f (x)=x3
(1)分割
人民教育出版社 高二年级 | 选修2-2
s
v(t)dt。
a
v v(t)
Oa
t
b
畅言教育
人民教育出版社 高二年级 | 选修2-2
根据定积分的定义右边图形的面积为
S
1
f (x)dx
1 x2dx 1
0
0
3
v DS1 DS2
2
g
g
DS3
g gD S 4
v(t )
DSj
t2 2
gD S n
根据定积分的定义左边图形的面积为
n
i 1
f i x
n ba i1 n
f i
当n→∞时,上式无限接近某个常数,这个常数叫做函数
f (x)在区间[a,b]上的定积分
记作 b a
f
xdx
b a
f xdx lim n
n i 1
ba n
f i
畅言教育 定积分的定义:
b
n
a
f
(i )
最新人教版高中数学选修2-2第一章《定积分的概念》教材梳理
庖丁巧解牛知识·巧学一、曲边梯形的面积 1.曲边梯形我们把直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形. 2.曲边梯形面积的算法把区间[a,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,每个小曲边梯形“以直代曲”,即用矩形的面积近似替代小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值.方法点拨 拆分越来越细,近似程度就会越来越好,即用划归为计算矩形面积和逼近的思想方法求出曲边梯形的面积. 3.求曲边梯形面积的步骤(1)分割:将[a,b ]等分成n 个小区间:[a,a+n a b -],[a+n a b -,a+na b )(2-],…,[a+n a b n ))(1(--,b ].第i 个区间为[a+n a b i ))(1(--,a+na b i )(-].分别过n 个小区间的端点作y 轴的平行线将曲边梯形分成n 个小曲边梯形,每个小曲边梯形的面积记作ΔS 1、ΔS 2,…,ΔS n .S=∑=∆ni iS1.(2)近似代替:当Δx 很小时,可用小矩形的面积ΔS i ′近似地代替ΔS i , 即ΔS i ≈ΔS i ′=f [a+na b i ))(1(--]Δx.(3)求和:S n =∑='∆ni iS 1.(4)取极限:S=∑=∞→∞→'∆=ni i n nn S S1lim lim .深化升华 ①近似代替时,用第i 个小区间左端点对应的函数值与Δx 相乘求出的为不足近似值.用右端点对应的函数值与Δx 相乘求出的为过剩近似值;当n→∞时这两种取法求得的曲面面积是相同的,实质上只要取区间[a+n a b i ))(1(--,a+na b i )(-]内任何一点对应的函数值计算小曲面的面积,只要n→∞,求得的结果都一样. ②求和时首先可提公因式n1,再将和进行处理,算出S n . ③取极限时注意n→∞. 二、汽车行驶的路程一般地,如果物体做变速直线运动,速度函数为v=v(t),那么我们可以采用分割、近似代替、求和、取极限的方法,求出它在a≤t≤b 内所做的位移s.方法点拨 其解决的方法与求曲边梯形面积类似,我们采取“以不变代变”的方法,把求变速直线运动的路程问题,化归为求匀速直线运动的路程问题. 三、定积分的概念 1.定积分的概念如果函数f(x)在区间[a,b ]上连续,用分点a=x 0<x 1<…<x i -1<x i <…<x n =b,将区间[a,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i=1,2,…,n),作和式x=∑∑==-=∆ni n i inab x f 11)(εf(ξi ),当n→∞时,上述和式无限接近于某个常数,这个常数叫做函数f(x)在区间[a,b ]上的定积分,记作dx x f ba⎰)(,即∑⎰=-=ni i baf nab dx x f 1)()(ε.这里a 与b 分别叫做积分下限和积分上限,区间[a,b ]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式.疑点突破 ①定积分是一种“和”的极限.在定积分的定义中,含着分割、近似代替、求和、取极限这种解决问题的思想.这种思想方法来源于“计算底在区间[a,b ]上,高为y=f(x)的曲边梯形的面积”等问题.②定积分上限和下限之间的关系.在定义中假设a<b.当a=b 或a>b 时,不难验证dx x f aa⎰)(=0,dx x f b a⎰)(=dx x f ab⎰-)(.③定积分的值仅与被积函数f(x)及积分区间[a,b ]有关,与积分变量用什么字母无关. ④定积分dx x f ba⎰)(存在的必要条件是函数f(x)在区间[a,b ]上有界.因此,当函数f(x)在区间[a,b ]上无界时,定积分dx x f ba⎰)(是不存在的.⑤定积分是一个常数.因为定积分是一种“和”的极限值,所以是一个常数,因此,(dx x f ba⎰)()′=0,d dx x f ba⎰)(=0.2.定积分的几何意义图1-5-1当函数f(x)在区间[a,b ]上恒为正时,定积分dx x f ba⎰)(的几何意义是以曲线f(x)为曲边的曲边梯形的面积.一般情况下(如图1-5-1),定积分dx x f b a⎰)(的几何意义是介于x 轴、函数f(x)的图象以及直线x=a 、x=b 之间各部分面积的代数和,在x 轴上方的面积取正号;在x 轴下方的面积取负号. 3.定积分的性质由定积分的定义,可得到定积分的如下性质: (1)dx x kf ba ⎰)(=k dx x f ba⎰)((k 为常数).(2)⎰⎰⎰±=±ba b abadx x f dx x f dx x f x f )()()]()([2121.(3)⎰⎰⎰+=bcc abadx x f dx x f dx x f )()()(深化升华 不论a,b,c 三点的相互位置如何,恒有⎰⎰⎰+=bcc abadx x f dx x f dx x f )()()(.这一性质表明定积分对于积分区间具有可加性. 知识拓展 性质4.若在区间[a,b ]上,f(x)≥0,则dx x f ba⎰)(≥0.推论1.若在区间[a,b ]上,f(x)≤g(x),则dx x f ba⎰)(≤dx x g ba⎰)(.推论2.|dx x f ba⎰)(|≤⎰badx x f |)(|.性质5.(估值定理)设函数f(x)在区间[a,b ]上的最小值与最大值分别为m 与M,则 m(b-a)≤dx x f ba⎰)(≤M(b -a).证明:因为m≤f(x)≤M,由性质4的推论1得⎰bamdx ≤dx x f ba⎰)(≤⎰baMdx ,即m⎰badx ≤dx x f b a⎰)(≤M ⎰badx .故m(b-a)≤dx x f ba⎰)(≤M(b -a).利用这个性质,由被积函数在积分区间上的最小值及最大值,可以估计出积分值的大致范围. 问题·探究问题1 火箭发射后t s 的速度为v(t),假定0≤t≤10,对函数v(t)按f(x 1)Δx+f(x 2)Δx+…+f(x n )Δx 式所作的和具有怎样的实际意义?思路:本题考查“近似代替”“无限细分”和“无穷积累”的数学思想方法. 探究:将区间[0,10]等分成n 个小区间,每个小区间的长度为Δt,在每个小区间上取一点,依次为t 1,t 2,…,t i ,…,t n ,虽然火箭的速度不是常数,但在一个小区间内其变化很小,所以可以用v(t 1)来代替火箭在第一个小区间上的速度,这样v(t 1)Δt≈火箭在第一个时段内运行的路程;同理,v(t 2)Δt≈火箭在第二个时段内运行的路程,从而S n =v(t 1)Δt+v(t 2)Δt+…+v(t n )Δt≈火箭在10 s 内运行的总路程.这就是函数v(t)在时间区间[0,10]上按f(x 1)Δx+f(x 2)Δx+…+f(x n )Δx 所作的和的实际背景. 当Δt 无限趋近于0,S n 就是无限趋近于火箭在10 s 内所运行的总路程. 问题2 定积分的几何意义是什么?思路:利用定积分的定义,先分割,再近似代替,然后作和,求出极限即得所求. 探究:从几何上看,如果在区间[a,b ]上函数f(x)连续且恒有f(x)≥0,那么定积分dx x f ba⎰)(表示由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积.这就是定积分dxx f ba⎰)(的几何意义. 典题·热题例n n nn nn222)1()21()11(lim ++++∞→ =_________________.思路解析: n n nn nn222)1()21()11(lim ++++∞→=∑+=∞→n i n n ni e 121)1ln(lim =∑+=∞→n i n n ni e11)1ln(2lim =⎰21ln 2xdxe答案:e ⎰21ln 2xdxe例2用定积分的定义求出由y=3x,x=0,x=1,y=0围成的图形的面积.思路分析:利用定积分的定义,先分割,再近似代替,然后作和,求出极限即得面积. 解:(1)分割:把区间[0,1]等分成n 个小区间[n i n i ,1-](i=1,2,…n).其长度为Δx=n1,把曲边梯形分成n 个小曲边梯形,其面积记为ΔS i (i=1,2,…n).(2)近似代替:用小矩形面积代替小曲边梯形面积,ΔS i =f(n i 1-)Δx=3·n i 1-·n 1=23n(i-1),(i=1,2,…n). (3)作和:21213)1(3n i n S ni ni i =-=∆∑∑==[1+2+…+(n -1)]=n n 123-∙. (4)求极限:S=23123lim )1(3lim12=-∙=-∞→=∞→∑n n i nn ni n . 深化升华 本题考查的是用定积分的方法求面积,用定积分的定义求面积是定积分的一个应用方式,也是定积分产生的源泉.通常的做法就是将图形分成一些非常小的图形,然后求出这些小图形面积的和,最后再求极限.例3已知某运动的物体做变速直线运动,它的速度v 是时间t 的函数v(t),求物体在t=0到t=t 0这段时间内所经过的路程s.思路分析:利用定积分的定义,先分割,再近似代替,然后作和,求出极限即得路程. 解:(1)分割:将时间区间[0,t 0]分成n 等份:[nit n i ,10-t 0](i=1,2,…,n),每个小区间所表示的时间为Δt=nt 0;各区间物体运动的距离记作Δs i (i=1,2,…,n). (2)近似代替:在每个小区间上以匀速直线运动的路程近似代替变速直线运动的距离.在小区间[00,1t nit n i -]上任取一时刻ξi (i=1,2,…,n).用时刻ξi 的速度v(ξi )近似代替第i 个小区间上的速度.由匀速直线运动的路程公式,每个小区间上物体运动所经过的距离可以近似地表示为Δs i ≈v(ξi )Δt(i=1,2,…,n).(3)求和:因为每个小区间上物体运动的距离可以用这一区间上做匀速直线运动的路程近似代替,所以在时间[0,t 0]内物体运动的距离s,就可以用这一物体分别在n 个小区间上作n 个匀速直线运动的路程和近似代替,即s=∑∑==∆≈∆ni in i it v S 11)(ε.(4)求极限:当所分时间区间越短,即Δt=n t 0越小时,∑=∆ni i t v 1)(ε的值越接近于s.因此,当n→∞,即Δt=n t 0→0时,∑=∆ni i t v 1)(ε的极限,就是所求的物体在时间区间[0,t 0]上经过的路程.由此得到s=∑=∞→∆ni in t v 1)(limε.深化升华 s=∑=∞→∆ni in t v 1)(limε为做变速直线运动的物体在[0,t 0]这段时间内所运动的路程,其中ξi 为区间[00,1t n i t n i -]上的任意值,取ξi =n i 1-t 0时,s=∑=∞→∆-ni n t t n i v 10)1(lim ;取ξi =n i t 0时,s=∑=∞→∆ni n t t n iv 10)(lim ;取ξi =i i n t n it n t i )1()1(000-=⨯-时,s=∑=∞→∆-ni n t i i nt v 1])1([lim.当物体做匀速直线运动时,上面的结论仍成立. 例4利用定积分的几何意义,说明下列等式. (1)⎰12xdx =1;(2)21112π=-⎰-dx x .思路分析:定积分的几何意义是指曲边梯形的面积,只要理解被积函数和积分极限的意义,并作出图形,即可得到解决. 解:(1)如图1-5-2,⎰12xdx 表示由曲线y=2x,直线x=0,x=1,y=0所围成的图形(直角三角形)的面积, 由S Δ=21×2×1=1,故⎰102xdx =1.(2)如图1-5-3,⎰--1121dx x 表示圆x 2+y 2=1在第一、二象限的上半圆的面积.由S 半圆=2π,又在x 轴上方,故21112π=-⎰-dx x .图1-5-2 图1-5-3 例5利用定积分计算⎰23dx x 的值.思路分析:令f(x)=x 3,按分割、近似代替、作和、求极限四步求解.解:令f(x)=x 3.⎰23dx x ≈∑=-+ni ni a f 1)2(·n 2=∑=n i ni n 13)2(2=]321[16])2()4()2[(233334333n n n n n n n ++++=+++2222)1(4)1(4n n n n +=+∙= 取极限⎰23dx x =22)1(4lim nn n +∞→=4. 误区警示 将区间[0,2]分成n 个小区间,每个区间长为n2,并且第i 个区间是[n i n i 2,)1(2-],习惯上按n1计算ξ. 例6估计定积分⎰+π023sin 21dx x的值. 思路分析:首先计算出被积函数在给定区间上的最大值和最小值,然后利用估值定理求解. 解:∵当x ∈[0,π]时,0≤sinx≤1,∴0≤23sin x≤1, 因此有2≤2+23sin x≤3,31≤x23sin 21+≤21, 于是由估值定理有2sin 21323πππ≤+≤⎰dx x.。
高中数学选修2-2-定积分的概念及其简单应用
定积分的概念及其简单应用知识集结知识元定积分的应用知识讲解1.定积分的应用【应用概述】正如前面定积分的概念哪里所说,定积分表示的是一个面积,是一个大于零的数.那么它在实际当中的应用也就和求面积相关.例1:定积分|sin x|dx的值是.解:|sin x|dx==﹣cos x+cos x=1+1+0﹣(﹣1)=3.这个题如果这样子出,|sin x|在区间(0,)上与x轴所围成的面积,那么就成了一个应用题.如何解这类应用题呢?其实就是构建一个定积分,找到区间和要积分的函数即可.【定积分在求面积中的应用】1、直角坐标系下平面图形的面积2、极坐标系下平面图形的面积由连续曲线r=r(θ)及射线θ=α,θ=β所围成的平面图形的面积(图6)为3、用定积分求平面图形的面积的步骤a)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;b)解方程组求出每两条曲线的交点,以确定积分的上、下限;c)具体计算定积分,求出图形的面积.例题精讲定积分的应用例1.直线x=1,x=e与曲线y=围成的面积是()A.B.C.D.例2.由曲线,直线y=x所围成的封闭图形的面积是()A.B.C.D.1例3.抛物线y=x2-1与直线y=x+1所围成的平面图形的面积是()A.B.C.5D.用定积分研究简单几何体的体积知识讲解1.用定积分求简单几何体的体积【知识点的知识】1、已知平行截面面积的立体的体积2、旋转体的体积例题精讲用定积分研究简单几何体的体积例1.祖暅原理也称祖氏原理,是我国数学家祖暅提出的一个设计集合求积的著名命题:“幂势既同,则积不容异”,“幂”是截面积,“势”是几何体的高,意思是两个同高的立体,如在等高处截面积相等,则体积相等.由曲线x2=4y,x2=-4y,x=4,x=-4围成图形绕y轴旋转一周所得为旋转体的体积为V1:满足x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转一周所得旋转体的体积为V2,则()A.V1=V2B.V1=V2C.V1=V2D.V1=2V2例2.曲线y=e x,直线x=0,x=与x轴围成的平面图形绕x轴旋转一周得到旋转体的体积是()A.B.C.D.例3.曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.B.C.D.。
人教A版高中数学选修2-2课件3.26定积分的概念(一)
验证得圆面积的计算公式并求出较精确的圆周率值。求出了π=3、
14124 的数值。不仅如此,他还继续计算,直到算出圆内接正 3072 边
形的面积,求出更精确的圆周率值π=3.1416.
正是基于对刘徽割圆术的继承与发展,祖冲之得到当时一非凡的
成果:得到 3.1415926的数值.约率为 22/7;密率为 355/113.
问题解决的思想:分割→近似代替→求和→取极限
例1.求抛物线y=x2、直线x=1和x轴所围成的曲边图形的面积S.
解:把底边[0,1]分成n等份,然后在每个分点作底边的垂线, 这样曲边三角形被分成n个窄条,用矩形来近似代替,然后把 这些小矩形的面积加起来,得到一个近似值:
y
因此,我们有理由相信,这个
Sn
像是一条连续不断的曲线,那么就把函数 y f ( x) 称
为区间 I 上的连续函数.(不加说明,下面研究的都是
连续函数)
y
f(b)
y=f(x)
曲边梯形的 面积怎么求?
f(a)
这就是定积分所
oa
bx
要解决的问题.
你知道圆的面积公式怎么来的吗?
A
魏晋时期的数学家刘徽,在我国最早
D
创立了割圆术来把握圆的面积. 割圆术 就是用圆内接正多边形来近似代替圆.刘
1 n3
(12
22
(n 1)2 )
1 n3
(n
1)n(2n 6
1)
n
n
1
2
1 n
. 3
O 12 nn
k
n
x
人教版高中数学选修2-2《1.5.3:定积分的概念》
y
所以
1
0
1 x dx =
2
4
1 x
小结
1、定积分的概念
b
a
ba f ( x)dx = lim f (i ) n n i =1
n
2、几何意义
当f x 0时, f ( x)dx = S
a
b
当f x 0时, f ( x)dx = S
O a
b a
b x
b a
S = S1 S2 = f ( x)dx g ( x)dx
ba 当f x 0时,定积分 f x dx = lim f i a n n i =1 1值是正还是负? y
b n
探究1:
2此时它的值还是阴影
y=f (x)
部分面积吗?如果不是 , 两者之间又是什么关系 呢?
解:
2
2
sin xdx
y
f(x)=sinx
2
1
S1 -1
S2
2
x
2
2
f ( x)dx =
0
2
f ( x)dx 2 f ( x)dx
0
= S 2 S1 = 0
结论:
(1)若奇函数 y = f x 的图像在 a, a
上连续,则
f x dx = 0;
y y=f ( x)
O
a y=g(x)
b
x
S = S1 S2 = f ( x)dx g ( x)dx
a a
b
b
结论:
高中数学定积分的概念教案新人教版选修
高中数学定积分的概念教案新人教版选修一、教学目标1. 理解定积分的概念,掌握定积分的定义方法和性质。
2. 学会利用定积分解决实际问题,提高运用数学知识解决实际问题的能力。
3. 培养学生的逻辑思维能力、创新能力和合作能力。
二、教学内容1. 定积分的概念:定积分的定义、定积分的性质。
2. 定积分的计算:牛顿-莱布尼茨公式、定积分的换元法、分部积分法。
3. 定积分在实际问题中的应用。
三、教学重点与难点1. 重点:定积分的概念、性质,定积分的计算方法。
2. 难点:定积分的理解和运用,定积分的计算技巧。
四、教学方法1. 采用问题驱动法,引导学生主动探究定积分的概念和性质。
2. 利用案例分析法,让学生学会将实际问题转化为定积分问题。
3. 运用讨论法,培养学生的合作能力和创新思维。
五、教学过程1. 导入:通过生活中的实例,引导学生思考如何求解曲边图形的面积。
2. 探究定积分的概念:讲解定积分的定义,让学生理解定积分的基本思想。
3. 学习定积分的性质:引导学生通过举例,总结定积分的性质。
4. 定积分的计算:讲解牛顿-莱布尼茨公式,教授换元法和分部积分法。
5. 应用定积分解决实际问题:让学生分组讨论,选取实例进行分析。
6. 总结与反馈:对所学内容进行总结,收集学生反馈,及时调整教学方法。
六、教学评价1. 评价学生对定积分概念的理解程度,通过课堂提问、作业批改等方式进行。
2. 评价学生对定积分性质的掌握情况,通过课后练习、小测验等方式进行。
3. 评价学生运用定积分解决实际问题的能力,通过分组讨论、课堂展示等方式进行。
七、教学资源1. PPT课件:制作精美的PPT课件,展示定积分的概念、性质和计算方法。
2. 教学案例:收集与生活实际相关的案例,用于引导学生运用定积分解决实际问题。
3. 练习题库:编写一定数量的练习题,用于巩固学生对定积分的理解和运用。
八、教学进度安排1. 第1周:导入定积分的概念,讲解定积分的定义和性质。
人教版A版高中数学选修2-2第一章+1.5《定积分的概念》【素材】
1.5定积分的概念一、教材分析课程定位:定积分是一节重要的基础理论课。
通过本节课的学习,使学生获得够用的微积分、向量代数及空间解析几何的基本知识、必要的基础理论和常用的运算方法,为学习后续课程的学习和进一步扩展数学知识奠定必要的基础。
地位作用:本节课选自人教A版选秀2-2第一章第5节,定积分的概念是高中数学的重点,也是高等数学中最主要的经典理论。
这节课上承导数、不定积分,下接定积分在几何、物理等其他学科中的应用。
教学内容:本节内容为定积分概念,主要包括三方面内容:两个引例――曲边梯形的面积和变速直线运动的路程;定积分的定义及几何意义;定积分的性质。
教学目标:知识目标――通过探求曲边梯形的面积,使学生了解“分割、近似、求和、取极限”的思想方法;能力目标――通过类比“割圆术”,引导学生萌发“以直代曲”的想法,逐步培养学生的辨证思维能力和知识迁移的能力;情感目标――从实践中创设情境,渗透“化整为零零积整”的辨证唯物观,培养学生的创新意识和科技服务于生活的人文精神。
二、教学方法学情分析:学生具备一定初等数学基础知识,但学生的基础不扎实。
教学方法:数学课程对于高中学生来说,往往难度很大,教学时力求从学生已有知识和实际学习情况出发引入新课,启发、诱导学生参与教学活动,提出问题、分析问题、解决问题,适当采用自学辅导法(阅读教材)、通过以上方法的运用,让学生掌握重点知识,突破难点,提高应用知识的能力。
教师特别要做到:(1)在介绍数学概念的时候,力争以实例引入,使概念尽可能不以严格“定义”的形式出现。
(2)在介绍基本定理的时候,尽可能地在通俗易懂的叙述中渐入主题,让学生有一种“水到渠成”之感。
(3)在讲解运算规则和规律时,用一些精简易记的文字语言解读数学公式,加强学生对数学公式涵义的理解。
三、设计理念以问题为教学主线,本节课的教学终始以问题的解决为线索。
这节课属于概念教学,遵循概念教学的五流程:体验概念、提炼概念、形成概念、巩固概念和应用概念。
最新人教版高中数学选修2-2第一章《定积分的概念》知识讲解
1.5.3 定积分的概念1.了解定积分的概念. 2.理解定积分的几何意义. 3.掌握定积分的基本性质.1.定积分的概念一般地,如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<x 2<…<x i …<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式______________,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作____________________,这里a 与b 分别叫做__________与________,区间[a ,b ]叫做________,函数f (x )叫做_______,x 叫做__________,f (x )d x 叫做________.【做一做1】 定积分()baf x dx ⎰的大小( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x )、积分区间[a ,b ]和ξi 的取法都有关 2.定积分的几何意义如果在区间[a ,b ]上函数f (x )连续且恒有________,那么定积分()baf x dx ⎰表示由________和__________所围成的曲边梯形的面积.在区间[a ,b ]上函数f (x )<0时,()baf x dx ⎰表示的含义是什么?【做一做2】 用定积分表示如图所示的阴影部分的面积(不要求计算)S =__________.3.定积分的基本性质 (1)∫b a kf (x )d x =__________(k 为常数); (2)∫b a [f 1(x )±f 2(x )]d x =________±________; (3)∫b a f (x )d x =________+________(其中a <c <b ).(1)定积分的性质(1)(2)称为定积分的线性性质.定积分的性质(3)称为定积分对积分区间的可加性,这个性质可以用图形直观地表示出来.(2)定积分的性质的推广.①∫b a [f 1(x )±f 2(x )±…±f n (x )]d x =∫ba f 1(x )d x ±∫b a f 2(x )d x ±…±∫b a f n (x )d x ;②∫b a f (x )d x =∫c 1a f (x )d x +∫c 2c 1f (x )d x +…+∫b c n f (x )d x (其中n ∈N *).【做一做3】 下列等式不成立的是( )A.∫b a [mf (x )+ng (x )]d x =m ∫b a f (x )d x +n ∫ba g (x )d xB.∫b a [f (x )+1]d x =∫ba f (x )d x +b -aC.∫b a f (x )g (x )d x =∫ba f (x )d x ·∫b a g (x )d xD.∫2π-2πsin x d x =∫0-2πsin x d x +∫2π0sin x d x答案:1.∑i =1nf (ξi )Δx =∑i =1nb -a n f (ξi ) ∫ba f (x )d x =lim n →∞ ∑i =1nb -a n f (ξi ) 积分下限 积分上限积分区间 被积函数 积分变量 被积式【做一做1】 A 根据定积分的概念可知,选项A 正确,选项B ,C ,D 都不正确,故选A.2.f (x )≥0 直线x =a ,x =b (a ≠b ),y =0 曲线y =f (x ) 思考讨论提示:如果在区间[a ,b ]上,函数f (x )<0,那么曲边梯形位于x 轴的下方,如图所示. 由于Δx i >0,f (ξi )<0,故f (ξi )·Δx i <0,从而定积分∫b a f (x )d x <0,这时它等于图中所示曲边梯形面积的相反数,即∫b a f (x )d x =-S 或S =-∫ba f (x )d x .【做一做2】 ∫2-4x 22d x 由定积分的几何意义,可得S =∫2-4x 22d x . 3.(1)k ∫b a f (x )d x (2)∫b a f 1(x )d x ∫ba f 2(x )d x(3)∫c a f (x )d x ∫bc f (x )d x【做一做3】 C 利用定积分的性质进行判断,选项C 不成立.例如∫10x d x =12,∫10x 2d x =13,∫10x 3d x =14. 但∫10x 3d x ≠∫10x d x ·∫10x 2d x .故选C.1.如何正确认识定积分的概念?剖析:(1)定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即∫b a f (x )d x =∫b a f (u )d u =∫ba f (t )d t =…(称为积分形式的不变性),另外定积分∫b a f (x )d x 与积分区间[a ,b ]息息相关,不同的积分区间,所得的值可能也不同,例如∫10(x 2+1)d x 与∫30(x 2+1)d x 的值就不同.(2)定积分就是和的极限lim n→∞∑i =1nf (ξi )·Δx ,而∫b a f (x )d x 只是这种极限的一种记号. (3)函数f (x )在区间[a ,b ]上连续这一条件是不能忽视的,它保证了和的极限(定积分)的存在(实际上,函数连续是定积分存在的充分条件,而不是必要条件).2.如何理解定积分的几何意义?剖析:(1)当函数f (x )≥0时,定积分∫b a f (x )d x 在几何上表示由直线x =a ,x =b (a <b ),y =0及曲线y =f (x )所围成的曲边梯形的面积.(2)当函数f (x )≤0时,曲边梯形位于x 轴的下方,此时∫b a f (x )d x 等于曲边梯形面积S 的相反数,即∫b a f (x )d x =-S .(3)当f (x )在区间[a ,b ]上有正有负时,定积分∫b a f (x )d x 表示介于x 轴、函数f (x )的图象及直线x =a ,x =b (a ≠b )之间各部分面积的代数和(在x 轴上方的取正,在x 轴下方的取负).如图所示,∫b a f (x )d x =A 1-A 2+A 3-A 4(A 1,A 2,A 3,A 4表示各阴影部分的面积).(4)∫b a f (x )d x ,∫b a |f (x )|d x ,||∫b a f (x )d x 在几何意义上有不同的含义,绝不能等同看待,由于被积函数f (x )在闭区间[a ,b ]上可正可负,也就是它的图象可以在x 轴上方,也可以在x 轴下方,还可以在x 轴的上下两侧,所以∫b a f (x )d x 表示由x 轴,函数f (x )的曲线及直线x =a ,x =b (a ≠b )围成的图形各部分面积的代数和;而|f (x )|是非负的,所以∫b a |f (x )|d x 表示在区间[a ,b ]上以|f (x )|的图象为曲边的曲边梯形的面积;而||∫b a f (x )d x 则是∫ba f (x )d x 的绝对值,三者的值一般情况下是不相同的.注意:(1)∫b a f (x )d x 不一定表示面积,也可能是面积的相反数.(2)定积分可以是面积,可以是体积,可以是功,可以是路程,还可以是压力,总之定积分还可表示更多的实际意义.3.如何求奇、偶函数的定积分? 剖析:若f (x )在[-a ,a ]上连续,则(1)当f (x )是偶函数时,∫a -a f (x )d x =2∫a0f (x )d x ; (2)当f (x )是奇函数时,∫a -a f (x )d x =0.题型一 利用定义计算定积分【例题1】 利用定积分的定义,计算∫21(3x +2)d x 的值.分析:将区间[1,2]等分为n 个小区间,利用函数在每个小区间上的左端点值求出S n ,其极限即为所求.反思:利用定义求定积分的关键仍然是“分割、近似代替、求和、取极限”这一过程.其中,将“近似代替、求和”作为一个步骤处理条理性更强.题型二 利用几何直观计算定积分【例题2】 说明下列定积分所表示的意义,并根据其意义求出定积分的值:(1)∫102d x ;(2)∫21x d x ;(3)∫1-11-x 2d x .分析:利用定积分的几何意义表示出相应图形,图形的面积即为定积分的值. 反思:利用定积分所表示的意义求∫b a f (x )d x 的值的关键是确定由曲线y =f (x ),直线x =a ,直线x =b 及x 轴所围成的平面图形的形状.常见形状是三角形、直角梯形、矩形、圆等可求面积的平面图形.题型三 利用定积分的性质求定积分 【例题3】 (1)计算∫3-3(9-x 2-x 3)d x 的值; (2)已知f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,2),4-x ,x ∈[2,3),52-x 2,x ∈[3,5],求f (x )在区间[0,5]上的定积分.分析:可先根据定积分的几何意义求出相关函数的定积分,再根据定积分的性质进行加减运算.反思:求定积分时应注意利用定积分的性质及几何意义. 题型四 利用定积分表示平面图形的面积【例题4】 利用定积分的性质和定义表示下列曲线围成的平面区域的面积.(1)y =0,y =x ,x =2;(2)y =x -2,x =y 2.分析:先准确作出函数的图象,再根据图象及几何意义进行表示. 反思:用定积分表示曲线围成的平面区域的面积的步骤是: ①准确画出各曲线围成的平面区域;②把平面区域分割成容易表示的几部分,同时要注意x 轴下方有没有区域; ③解曲线组成的方程组,确定积分的上、下限; ④根据积分的性质写出结果.答案:【例题1】 解:令f (x )=3x +2. (1)分割.在区间[1,2]上等间隔地插入(n -1)个分点,把区间[1,2]等分成n 个小区间⎣⎡⎦⎤n +i -1n,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =n +i n -n +i -1n =1n .(2)近似代替、求和.取ξi =n +i -1n(i =1,2,…,n ),则S n =∑i =1nf ⎝⎛⎭⎫n +i -1n ·Δx =∑i =1n ⎣⎡⎦⎤3(n +i -1)n +2·1n =∑i =1n⎣⎡⎦⎤3(i -1)n 2+5n =3n 2[0+1+2+…+(n -1)]+5=32×n 2-n n 2+5=132-32n.(3)取极限.∫21(3x +2)d x =lim n →∞ S n =lim n →∞ ⎝⎛⎭⎫132-32n =132. 【例题2】 解:(1)∫102d x 表示的是图(1)中阴影所示长方形的面积,由于这个长方形的面积为2,所以∫102d x =2.(1) (2) (3)(2)∫21x d x 表示的是图(2)中阴影所示梯形的面积,由于这个梯形的面积为32,所以∫21x d x =32. (3)∫1-11-x 2d x 表示的是图(3)中阴影所示半径为1的半圆的面积,其值为π2, 所以∫1-11-x 2d x =π2. 【例题3】 解:(1)如图,由定积分的几何意义,得∫3-39-x 2d x =π×322=9π2,∫3-3x 3d x =0. 由定积分的性质,得 ∫3-3(9-x 2-x 3)d x =∫3-39-x 2d x -∫3-3x 3d x =9π2.(2)如图,由定积分的几何意义,得 ∫20x d x =12×2×2=2, ∫32(4-x )d x =12×(1+2)×1=32, ∫53⎝⎛⎭⎫52-x 2d x =12×2×1=1,∴∫50f (x )d x =∫20x d x +∫32(4-x )d x +∫53⎝⎛⎭⎫52-x 2d x =2+32+1=92. 【例题4】 解:(1)曲线所围成的区域如图(1)所示,设此面积为S ,则S =∫20(x -0)d x =∫20x d x .(2)曲线所围成的平面区域如图(2)所示,由⎩⎪⎨⎪⎧y =x -2,y 2=x ,得交点(1,-1),(4,2). S =A 1+A 2,A 1由y =x ,y =-x ,x =1围成; A 2由y =x ,y =x -2,x =1和x =4围成. ∴A 1=∫10[x -(-x )]d x , A 2=∫41[x -(x -2)]d x .∴S =∫102x d x +∫41(x -x+2)d x .1设f (x )在[a ,b ]上连续,将[a ,b ]n 等分,在每个小区间上任取ξi ,则()d baf x x ⎰等于( )A .1lim()ni n i f ξ→∞-∑B .1lim()ni n i b af n ξ→∞--⋅∑ C .1lim()niin i f ξξ→∞-⋅∑D .1lim()(1)niii n i f ξξξ→∞-⋅--∑2设连续函数f (x )>0,则当a <b 时,定积分()d baf x x ⎰的符号( )A .一定是正的B .一定是负的C .当0<a <b 时是正的,当a <b <0时是负的D .以上结论都不正确 3已知定积分6()d f x x ⎰=8,且f (x )为偶函数,则66()d f x x -⎰等于( )A .0B .16C .12D .84由y =cos x ,x =0,x =2π,y =0所围成的图形的面积表示为定积分的形式是__________.5利用定积分的几何意义求2x -⎰.答案:1.B 根据定积分的概念可知,B 选项正确,其余均不等于()d baf x x ⎰,故选B.2.A 根据定积分()d baf x x ⎰的几何意义可知,()d baf x x ⎰一定是正实数,故选A.3.B 偶函数的图象关于y 轴对称,故666()d 2()d 16f x x f x x -==⎰⎰.故选B.4.20cos d x x π⎰由定积分的定义和几何意义可知S =20cos d x x π⎰.5.分析:定积分()d baf x x ⎰的几何意义是由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积.解:如图,定积分2x -⎰表示由直线x =-2,x =2,y =0与曲线y 所围成的图形的面积,计算可得面积为2222ππ⨯=,所以2x -⎰=2π.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
������
a 与 b 分别叫做积分下限与积分上限,区
间[a,b]叫做积分区间,函数 f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被 积式.
-3-
1.1 DNA重组技术的基本工具
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
������ ������ ������ ������ ������ ������
kf(x)dx=k f(x)dx=
[f1(x)± f2(x)]dx=
b b f (x)dx± f (x)dx; 1 a a 2 ������ ������ f ( x )d x+ f(x)dx(其中 a<c<b). ������ ������
������ ������
f(x)dx 表示的含义
是什么? 提示:如果在区间[a,b]上,函数 f(x)<0,那么曲边梯形位于 x 轴的下方,如 图所示.
由于 Δxi>0,f(ξi)<0,故 f(ξi)·Δxi<0,从而定积分 于图中所示曲边梯形面积 S 的相反数,即
������ ������
f(x)dx<0,这时它等
3 0
(x +1)dx 的值就不同.
2
-5-
1.1 DNA重组技术的基本工具
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
2.定积分的几何意义 如果在区间[a, b]上函数 f(x)连续且恒有 f(x)≥0,那么定积分
������ ������
-4-
1.1 DNA重组技术的基本工具
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
思考 2 定积分
间有关系吗 ?
������ ������
f(x)dx 中,定极限值),它的值仅仅取决于被积函数与积分 的上、下限,而与积分变量用什么字母表示无关,即
f(x)dx 表
示由直线 x=a,x=b(a ≠ b),y=0 和曲线 y=f(x)所围成的曲边梯形的面积.
-6-
1.1 DNA重组技术的基本工具
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
思考 3 在区间[a,b]上函数 f(x)<0 时,
1.5.3 定积分的概念
-1-
1.1 DNA重组技术的基本工具
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
课程目标 1.了解定积分的概念. 2.理解定积分的几何意义. 3.掌握定积分的基本性质.
学习脉络
-2-
1.1 DNA重组技术的基本工具
������ ������
f(x)dx(k 为常数);
-8-
1.1 DNA重组技术的基本工具
探究四
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究一
探究二
探究三
利用定义计算定积分
用定义法求定积分的四个步骤是 :(1)分割 ;(2)近似代替;(3)求和;(4)取极 限.其中分割通常都是对积分区间进行等分,近似代替时通常取区间的左端 点或右端点,求和时要注意一些求和公式的灵活运用. 【典型例题 1】 利用定积分的定义,计算 解:把区间[0,1]分成 n 等份,分别为 0, 小区间的长度为 Δx= , 取 ξi= (i=1,2,…,n),
������ ������ ������ ������
f(x)dx=
������ ������
f(u)du=
������ ������
f(t)dt=…(称为积分形式的不变性),另外定积分
1 0
f(x)dx 与积分区间[a, b]息息相关,不同的积分区间,定积分的积分上限与 (x +1)dx 与
2
下限不同,所得的值也就不同,例如
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
1.定积分的概念 一般地,如果函数 f(x)在区间[a,b]上连续,用分点 a=x0<x1<x2<…<xi…<xn=b 将区间[a,b]等分成 n 个小区间,在每个小区间 [xi-1,xi]上任取一点 ξi(i=1,2,…,n),作和式∑ f(ξi)Δx= ∑
������ =1 ������
������-������ f(ξi),当 ������ ������ =1
������
n→∞时,上
述和式无限接近某个常数,这个常数叫做函数 f(x)在区间[a,b]上的定积分, 记作
������ ������
f(x)dx= lim ∑
������-������ f(ξi),这里 ������ →∞������ =1 ������
������ ������
������ f(x)dx. f(x)dx=-S 或 S=- ������ -7-
1.1 DNA重组技术的基本工具
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
3.定积分的基本性质 (1) (2) (3)
思考 1 在定积分的定义中,对区间[a ,b]的分法是否是任意
的?ξi 的取法是否是任意的 ? 提示:定积分定义中,对于区间[a,b]的分法是任意的,不一定是等分,只 要保证每一个小区间的长度都趋向于 0 就可以,采用等分的方式是为了便 于作和.另外,关于 ξi 的取法也是任意的,实际用定积分定义计算定积分时为 了方便,常把 ξi 都取为每个小区间的左(或右)端点.
-91 0
(x +2)dx. ,…,
������-1 ������ , ������ ������
2
1 ������
,
1 2 , ������ ������
,…,
������-1 ,1 ������
,
1 ������
������ ������
1.1 DNA重组技术的基本工具
探究四
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI