2015-2016学年高中数学 第三章 导数应用综合测试 北师大版选修2-2
新北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(答案解析)(5)
一、选择题1.已知函数()23ln 6f x x kx x =-+,若()0f x >的解集为(),m n ,且(),m n 中只有两个整数,则( ) A .k 无最值 B .k 的最小值为123ln 24+ C .k 的最大值为123ln 24+ D .k 的最小值为6ln33+ 2.已知函数()()2xf x ax e x =+-(其中2a >-),若函数()f x 为R 上的单调减函数,则实数a 的取值范围为( ) A .()2,1-- B .(]2,0-C .(]1,0-D .(]2,1--3.已知3()ln 44x f x x x=-+,2()24g x x ax =--+,若对1(0,2]x ∀∈,2[1,2]x ∃∈,使得12()()f x g x ≥成立,则a 的取值范围是( )A .1[,)8-+∞B .258ln 2[,)16-+∞ C .15[,]84-D .5(,]4-∞4.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞D .()8,+∞5.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在()f x 图象上;(2)点A ,B 关于原点对称,则称点对()A B ,是函数()f x 的一个“和谐点对”,()A B ,与()B A ,可看作一个“和谐点对”.已知函数22(0)()2(0)x x x x f x x e⎧+<⎪=⎨≥⎪⎩则()f x 的“和谐点对”有( )A .1个B .2个C .3个D .4个6.已知函数()f x '是函数()f x 的导函数,()11f e=,对任意实数都有()()0f x f x '->,设()()x f x F x e=则不等式()21F x e <的解集为( ) A .(),1-∞B .()1,+∞C .()1,eD .(),e +∞7.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为( )A .1,4⎛⎫-∞- ⎪⎝⎭B .1,4⎛⎫-+∞ ⎪⎝⎭C .1,8⎛⎫-+∞ ⎪⎝⎭D .1,8⎛⎫-∞- ⎪⎝⎭8.对于函数()cos x f x e x x =-,((0,))x π∈,下列结论正确的个数为( ) ①()f x '为减函数 ②()f x '存在极小值 ③()f x 存在最大值 ④()f x 无最小值 A .0B .1C .2D .39.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( ) A . B .C .D .10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .1 B .2 C .e D .2e二、填空题13.已知函数()ln (1)=+-f x x a x ,当()f x 有最大值,且最大值大于22a -时,则a 的取值范围是__________.14.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.15.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.16.已知函数()211020x e x x x ef x lnx x x⎧--+≤⎪⎪=⎨⎪⎪⎩,,>,若方程f (x )﹣m =0恰有两个实根,则实数m 的取值范围是_____.17.已知函数()()2ln 2f x x x g x x x a ==-++,,若∀x 1,x 2∈(0,+∞),f (x 1)≥g(x 2)恒成立,则实数a 的取值范围为__________18.已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',且()10f =,当0x <时,()()+0f x f x x'>,则使得()0f x >成立的x 的取值范围是________. 19.已知在正四棱锥P ABCD -中,4PA =,则当该正四棱锥的体积最大时,它的高h 等于______.20.设m R ∈,若函数()332f x x x m =-+在0,3⎡⎤⎣⎦上的最大值与最小值之差为2,则实数m 的取值范围是______.三、解答题21.如图,在半径为30cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A 、B 在直径上,点C 、D 在圆周上.(1)怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积;(2)若将所截得的矩形铝皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形罐子体积最大?并求最大体积. 22.已知函数()3213f x x ax bx ab =-+++. (1)若()f x 是奇函数,且有三个零点,求b 的取值范围; (2)若()f x 在1x =处有极大值223-,求当[]1,2x ∈-时()f x 的值域. 23.如图是一个半径为2千米,圆心角为3π的扇形游览区的平面示意图C 是半径OB 上一点,D 是圆弧AB 上一点,且//CD OA .现在线段OC ,线段CD 及圆弧DB 三段所示位置设立广告位,经测算广告位出租收入是:线段OC 处每千米为2a 元,线段CD 及圆弧DB 处每千米均为a 元.设AOD x ∠=弧度,广告位出租的总收入为y 元.(1)求y 关于x 的函数解析式,并指出该函数的定义域;(2)试问:x 为何值时,广告位出租的总收入最大?并求出其最大值. 24.已知函数()xf x ax e =-(a R ∈,e 为自然对数的底数).(1)讨论()f x 的单调性;(2)当1x ≥-,()232f x a x ≤--恒成立,求整数a 的最大值.25.一件要在展览馆展出的文物类似于圆柱体,底面直径为0.8米,高1.2米,体积约为0.5立方米,为了保护文物需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不少于1.2米,高是底面边长的2倍,保护罩内充满保护文物的无色气体,气体每立方米500元,为防止文物发生意外,展览馆向保险公司进行了投保,保险费用和保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元. (1)若保护罩的底面边长为2.5米,求气体费用和保险费用之和; (2)为使气体费用和保险费用之和最低,保护罩该如何设计?26.设函数2()(41)43x f x e ax a x a ⎡⎤=-+++⎣⎦.(1)0a >时,求()y f x =的单调增区间;(2)若()f x 在2x =处取得极小值,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 原不等式化为3ln 6x kx x >-,设()()3ln ,6xg x h x kx x==-,画出函数图象,结合函数图象列不等式求解即可. 【详解】由()23ln 60f x x kx x =-+>,得3ln 6xkx x>-, 设()()3ln ,6xg x h x kx x==-, ()()231ln x g x x-'=,()()00,0g x x e g x x e >⇒<<⇒''所以()g x 在()0,e 的上单调递增,在(),e +∞单调递减, 而()6h x kx =-的图象是一条恒过点()0,6-的直线, 函数()g x 与()h x 的图象如图所示,依题意得,01m <<,若(),m n 中只有两个整数,这两个整数只能是1和2,则()()()()2233g h g h ⎧>⎪⎨≤⎪⎩,即3ln 2262ln 336k k ⎧>-⎪⎨⎪≤-⎩,解得6ln 3123ln 234k ++≤<, 故k 的最小值为6ln33+, 故选:D. 【点睛】方法点睛:函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.2.D解析:D 【分析】令()()(2)1x g x f x ax a e ='=++-,则()(2)x g x ax a e '=++.分0a =,0a >,20a -<<三类讨论,即可求得实数a 的取值范围即可. 【详解】解:令()()(2)1x g x f x ax a e ='=++-,则()(22)x g x ax a e '=++,(ⅰ)当0a =时,()20x g x e '=>,()g x 在R 递增,即()21x f x e '=-在R 递增, 令()0f x '=,解得:2x ln =-,故()f x 在(,2)ln -∞-递减,在(2,)ln -+∞递增,()f x 不单调,与题意不符; (ⅱ)当0a >时,由2()0(2)g x x a '>⇒>-+,2()0(2)g x x a '<⇒<-+,222()(2)10aming x g ae a--∴=--=--<,(0)10g a =+>,∴此时函数()f x '存在异号零点,与题意不符;(ⅲ)当20a -<<,由()0g x '>,可得2(2)x a <-+,由()0g x '<可得2(2)x a>-+,()g x ∴在2(,2)a -∞--上单调递增,在2(2a--,)+∞上单调递减,故222()(2)1amaxg x g ae a--=--=--,由题意知,2210a ae ----恒成立, 令22t a--=,则上述不等式等价于12t e t+,其中1t >, 易证,当0t >时,112tte t >+>+, 当(1t ∈-,0]时12te t+成立, 由2120a-<--,解得21a -<-. 综上,当21a -<-时,函数()f x 为R 上的单调函数,且单调递减; 故选:D . 【点睛】本题主要考查了利用导数研究函数的单调性,突出考查等价转化思想与分类讨论思想的应用,考查逻辑思维能力与推理证明能力,考查参数范围问题及求解函数的值域,属于函数与导数的综合应用.3.A解析:A 【分析】先求()f x 最小值,再变量分离转化为对应函数最值问题,通过求最值得结果 【详解】 因为()(]3ln x 0,244x f x x x=-+∈,, 所以22113(1)(3)()01444x x f x x x x x---'=--==⇒=,(3舍去) 从而01,()0;12,()0;x f x x f x ''<<<<<>即1x =时()f x 取最小值12, 因此[]x 1,2∃∈,使得21242x ax ≥--+成立,724x a x ≥-+的最小值,因为724x x -+在[]1,2上单调递减,所以724xx -+的最小值为271288-+=-,因此18a ≥-,选A.【点睛】本题考查不等式恒成立与存在性问题,考查综合分析与转化求解能力,属中档题.4.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=-令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max 182g x g ⎛⎫==- ⎪⎝⎭, 所以8b >-,故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.5.B解析:B 【分析】问题转化为0,()x f x ≥关于原点对称的函数与2()2f x x x =+在(,0)-∞交点的个数,先求出0,()x f x ≥关于原点对称的函数()g x ,利用导数方法求出2()2g x x x =+在(,0)-∞解的个数,即可得出结论. 【详解】设(,)(0)P x y x ≤是()(0)y f x x =≥关于原点对称函数图象上的点,则点P 关于原点的对称点为()P x y '--,在()(0)y f x x =≥上, 2,2x x y y e e--==-,设()2(0)x g x e x =-≤, “和谐点对”的个数即为()g x 与()f x 在(,0)-∞交点的个数, 于是222x e x x -=+,化为2220(0)x e x x x ++=<, 令2()22(0)x x e x x x ϕ=++<,下面证明方程()0x ϕ=有两解, 由于20x e >,所以220x x +<,解得20x -<<,∴只要考虑(20)x ∈-,即可, ()222x x e x ϕ'=++,()x ϕ'在区间(20)-,上单调递增, 而2(2)2420e ϕ-'-=-+<,1(1)20e ϕ-'-=>, ∴存在0(2,1)x ∈--使得0()0x ϕ'=, 当0(2,),()0,()x x x x ϕϕ∈-'<单调递减,0(,0),()0,()x x x x ϕϕ∈'>单调递增,而2(2)20e ϕ--=>,10()(1)210x e ϕϕ-<-=-<,(0)20ϕ=>,∴函数()ϕx 在区间(21)--,,(1,0)-分别各有一个零点, 即()f x 的“和谐点对”有2个. 故选:B . 【点睛】本题考查函数的新定义,等价转化为函数图象的交点,利用函数导数研究单调性,结合零点存在性定理是解题的关键,考查逻辑思维能力和运算求解能力,属于常考题.6.B解析:B 【解析】 ∵()()xf x F x e=∴2()()()()()x x x xf x e f x e f x f x F x e e''--'== ∵对任意实数都有()()0f x f x -'> ∴()0F x '<,即()F x 在R 上为单调减函数 又∵()11f e= ∴21(1)F e =∴不等式()21F x e <等价于()(1)F x F < ∴不等式()21F x e <的解集为(1,)+∞ 故选B点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<,构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等.7.C解析:C 【分析】先假设函数()f x 不存在增区间,则()f x 单调递减,利用()f x 的导数恒小于零列不等式,将不等式分离常数后,利用配方法求得常数a 的取值范围,再取这个取值范围的补集,求得题目所求实数a 的取值范围. 【详解】若函数()f x 不存在增区间,则函数()f x 单调递减, 此时()1210f x ax x'=+-≤在区间()0,∞+恒成立, 可得2112a x x ≤-,则22111111244x x x ⎛⎫-=--≥- ⎪⎝⎭,可得18a ≤-,故函数存在增区间时实数a 的取值范围为1,8⎛⎫-+∞ ⎪⎝⎭.故选C. 【点睛】本小题主要考查利用导数研究函数的单调性,考查不等式恒成立问题的求解策略,属于中档题.8.C解析:C 【分析】对函数求导,然后结合导数与单调性及极值及最值的关系对选项进行判断即可检验. 【详解】解:()(cos sin )1x f x e x x '=--,()2sin x f x e x ''=-,(0,)x π∈,所以()0f x ''<,()f x '单调递减,不存在极小值,①正确,②错误; 因为(0)0f '=,()0f π'<,故()0f x '<恒成立,函数()f x 单调递减,没有最小值,故③错误,④正确. 故选:C . 【点睛】本题主要考查了利用导数研究函数的单调性,极值及最值的判断,属于中档题.9.C解析:C 【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-, 当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<, 所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x ,即x →+∞时,()0f x >,则D 错误. 故选:C.【点睛】本题考查了函数图象的识别,属于中档题.10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.B解析:B 【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解. 【详解】构造()()g x f x x =+,则()()1g x f x ''=+, 又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=, 所以()(1)g e g <,即()0f e e +<, 所以()f e e <-. 故选:B 【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.C解析:C 【分析】求得y kx =与x y e =的图象相切时的k 值,结合图象可得结论. 【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()xf x e '=,切线方程为000()-=-xx y e e x x ,切线过原点,∴000x x ee x -=-⋅,01x =,∴(1)kf e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.二、填空题13.【解析】的定义域为∴若则∴函数在上单调递增在上无最大值;若则当时当时所以在上单调递增在上单调递减故在取得最大值最大值为∵∴令∵在单调递增∴当时当时∴的取值范围为故答案为点睛:本题考查了导数与函数的单 解析:(0,1)【解析】()()ln 1f x x a x =+-的定义域为∞(0,+),∴11axf x a x x-'=-=(), 若0a ≤,则()0f x '>,∴函数()f x 在∞(0,+)上单调递增,()f x 在∞(0,+)上无若0a >,则当10x a ∈(,)时,()0f x '>,当1x a∈+∞(,)时,()0f x '<,所以()f x 在10a(,)上单调递增,在1a+∞(,)上单调递减,故()f x 在1x a=取得最大值,最大值为11f lna a a =-+-(),∵122f a a ⎛⎫>- ⎪⎝⎭,∴10lna a +-<, 令()1g a lna a =+-,∵()g a 在∞(0,+)单调递增,0g =(1), ∴当01a <<时,()0g a <,当1a >时,()0>g a ,∴a 的取值范围为()0,1,故答案为()0,1.点睛:本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题;先求导,再分类讨论,根据导数即可判断函数的单调性,根据单调性求出函数的最大值,再构造函数()1g a lna a =+-,根据函数的单调性即可求出a 的范围.14.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞.本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.15.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际 解析:33【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+3(2)(2)x x =+-,令3()(2)(2),02h x x x x =+-<<,利用导数求其最值. 【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=, 所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+2(2)4x x =+-3(2)(2),02x x x =+-<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+, (0,1),()0,()x h x h x ∈'>单调递增, (1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值33故答案为:33 【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.16.【分析】通过求导得出分段函数各段上的单调性从而画出图像若要方程f (x )﹣m=0恰有两个实根只需y=m 与y=f (x )恰有两个交点即可从而得出的取值范围【详解】(1)x≤0时f′(x )=ex ﹣x ﹣1易知解析:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,【分析】通过求导,得出分段函数各段上的单调性,从而画出图像.若要方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点即可,从而得出m 的取值范围. 【详解】(1)x ≤0时,f ′(x )=e x ﹣x ﹣1,易知f ′(0)=0,而f ″(x )=e x ﹣1<0,所以f ′(x )在(﹣∞,0]上递减,故f ′(x )≥f ′(0)=0,故f (x )在(﹣∞,0]上递增, 且f (x )≤f (0)11e=+,当x →﹣∞时,f (x )→﹣∞. (2)x >0时,()21'lnxf x x -=,令f ′(x )>0,得0<x <e ;f ′(x )<0得x >e ; 故f (x )在(0,e )上递增,在(e ,+∞)递减, 故x >0时,()1()max f x f e e==;x →0时,f (x )→﹣∞;x →+∞时,f (x )→0. 由题意,若方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线y =m 在图示①,②位置时,与y =f (x )有两个交点,所以m 的范围是:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 故答案为:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 【点睛】本题考查了方程根的问题转化为函数图像交点问题,以及利用导数求函数单调性.考查了转化思想和数形结合,属于中档题.17.【分析】求导后即可求得根据二次函数的性质可得再由恒成立问题的解决方法可得即可得解【详解】求导得则当时函数单调递减;当时函数单调递增;所以;函数为开口向下对称轴为的二次函数所以当时;由题意可知即故答案解析:11a e≤--【分析】求导后即可求得()()11f x f ee --≥=-,根据二次函数的性质可得()()11g x g a ≤=+,再由恒成立问题的解决方法可得11a e -+≤-,即可得解. 【详解】求导得()ln 1f x x '=+,则当()10,x e -∈时,()0f x '<,函数()f x 单调递减;当()1,x e -∈+∞时,()0f x '>,函数()f x 单调递增;所以()()11f x f e e--≥=-;函数()22g x x x a =-++为开口向下,对称轴为1x =的二次函数, 所以当()0,x ∈+∞时,()()11g x g a ≤=+; 由题意可知11a e -+≤-即11a e -≤--. 故答案为:11a e -≤--. 【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.18.【分析】结合所给不等式构造函数可证明在时单调递减根据为偶函数且可得单调性的示意图结合函数图像即可求得使成立的的取值范围【详解】令则由题意可知当时不等式两边同时乘以可得即所以在时单调递减因为定义在上的 解析:()()1,00,1-【分析】结合所给不等式,构造函数()()g x x f x =⋅,可证明()g x 在0x <时单调递减,根据()f x 为偶函数且()10f =,可得()g x 单调性的示意图,结合函数图像即可求得使()0f x >成立的x 的取值范围.【详解】令()()g x x f x =⋅,则()()()g x f x x f x '=+⋅' 由题意可知当0x <时,()()+0f x f x x'>,不等式两边同时乘以x 可得()()+0xf x f x '<,即()0g x '<,所以()()g x x f x =⋅在0x <时单调递减, 因为定义在()(),00,-∞⋃+∞上的()f x 为偶函数, 所以()()g x x f x =⋅为定义在()(),00,-∞⋃+∞上的奇函数,且()10f =,所以()()110g g =-=,由奇函数性质可得()()g x x f x =⋅函数图像示意图如下图所示:所以当0x <时,()0f x >的解集为()1,0-,当0x >时,()0f x >的解集为()0,1, 综上可知,()0f x >的解集为()()1,00,1-故答案为:()()1,00,1-.【点睛】本题考查了函数奇偶性及单调性的综合应用,构造函数判断函数的单调性,数形结合法解不等式,属于中档题.19.【分析】设正四棱锥的底面边长为即可由表示出和的等量关系进而表示出正四棱锥的体积利用导函数判断单调性由单调性即可求得最值并求得取最值时的高的值【详解】设正四棱锥的底面边长为因为所以即所以正四棱锥的体积 43【分析】设正四棱锥P ABCD -的底面边长为a ,即可由4PA =表示出a 和h 的等量关系,进而表示出正四棱锥P ABCD -的体积.利用导函数,判断单调性,由单调性即可求得最值,并求得取最值时的高h 的值. 【详解】设正四棱锥P ABCD -的底面边长为a ,因为4PA =,所以22162ah +=,即22322a h =-,所以正四棱锥P ABCD -的体积()2313220333V a h h h h ==->, 可得232'23V h =-,令'0V =,解得h =当03h <<,可得'0V >,可知V 在03h <<内单调递增,当h >'0V <,可知V 在h >所以当h =P ABCD -的体积取得最大值,即16322313V ⎛⎫-⨯ =⎪⎝⎭=【点睛】本题考查了正四棱锥的性质与应用,四棱锥的体积公式,利用导数求函数的最值及取最值时的自变量,属于中档题.20.【分析】设结合导数可得函数的值域为最大值与最小值之差为从而得到函数的值域为最大值与最小值之差也为然后根据题意可得或即可求得答案【详解】设则函数在区间上单调递减在区间上单调递增函数的值域为最大值与最小 解析:][(),01,-∞⋃+∞【分析】设3()3,g x x x x =-∈结合导数可得函数()y g x =的值域为[]2,0-,最大值与最小值之差为2,从而得到函数33,2y x x x m ⎡=-+∈⎣的值域为[]22,2m m -+,最大值与最小值之差也为2.然后根据题意可得220m -+≥或20m ≤,即可求得答案. 【详解】设()33,g x x x x ⎡=-∈⎣,则()()()233311g x x x x ==-'-+,∴函数()y g x =在区间[)0,1上单调递减,在区间(上单调递增.()00g =,()12g =- ,0g= ,∴函数()y g x =的值域为[]2,0-,最大值与最小值之差为2,∴函数33,2y x x x m ⎡=-+∈⎣的值域[]22,2m m -+,最大值与最小值之差也为2.()332f x x x m =-+在x ∈上的最大值与最小值之差为2,∴220m -+≥或20m ≤,解得m 1≥. 或0m ≤. .∴实数m 的取值范围为][(),01,-∞⋃+∞.故答案为:][(),01,-∞⋃+∞. 【点睛】本题考查用导数研究函数的最值问题,具有综合性和难度,解题的关键是注意将问题进行合理的转化,考查了分析能力和计算能力,属于难题.三、解答题21.(1)取BC 为152cm 时,矩形ABCD 的面积最大,最大值为2900cm ;(2)取BC 为103cm 时,做出的圆柱形罐子体积最大,最大值为60003π.【分析】(1)设BC x =,矩形ABCD 的面积为S ,()22229002900S x x x x =-=-,利用基本不等式求解最值;(2)设圆柱底面半径为r ,高为x ,体积为V .由229002AB x r π=-=,得2900x r π-=,()231900V r h x x ππ==-,其中030x <<,利用导函数求解最值.【详解】 (1)连结OC .设BC x =,矩形ABCD 的面积为S . 则22900AB x =-030x <<.所以()()2222229002900900900S x x x x x x =-=-+-=. 当且仅当22900x x =-,即152x =时,S 取最大值为2900cm . 所以,取BC 为152cm 时,矩形ABCD 的面积最大,最大值为2900cm . (2)设圆柱底面半径为r ,高为x ,体积为V .由229002AB x r π=-=,得2900x r π-=,所以()231900V r h x x ππ==-,其中030x <<.由()2190030V x π='-=,得x =因此()31900V x x π=-在(上是增函数,在()上是减函数.所以当x =V .取BC 为时,做出的圆柱形罐子体积最大,最大值为3cm π.【点睛】此题考查函数模型的应用:(1)合理设未知数,建立函数关系,需要注意考虑定义域; (2)利用基本不等式求最值,要注意最值取得的条件;(3)利用导函数讨论函数单调性求解最值,注意自变量的取值范围. 22.(1)()0,∞+;(2)5022,33⎡⎤--⎢⎥⎣⎦. 【分析】(1)先由函数奇偶性,得到0a =,得出()313f x x bx =-+,对其求导,分别讨论0b ≤和0b >两种情况,根据导数的方法判定函数单调性,结合零点个数,即可求出结果; (2)先对函数求导,根据极大值求出2,5.a b =-⎧⎨=⎩,根据函数单调性,即可求出值域.【详解】(1)∵()f x 是定义域为R 的奇函数,所以0a =,且()00f =. ∴()313f x x bx =-+, ∴()2f x x b '=-+.当0b ≤时,()20f x x b '=-+≤,此时()f x 在R 上单调递减,()f x 在R 上只有一个零点,不合题意.当0b >时,()20f x x b '=-+>,解得x <<∴()f x 在(,-∞,)+∞上单调递减,在(上单调递增,∵()f x 在R 上有三个零点,∴0f >且(0f <,即3103f=-+>,即0>,而0>恒成立,∴0b >. 所以实数b 的取值范围为()0,∞+.(2)()22f x x ax b '=-++,由已知可得()1120f a b '=-++=,且()122133f a b ab =-+++=-, 解得2,3,a b =⎧⎨=-⎩或2,5.a b =-⎧⎨=⎩ 当2a =,3b =-时,()3212363f x x x x =-+--,()243f x x x '=-+-, 令()0f x '≥,即2430x x -+-≥,解得13x ≤≤,令()0f x '<,即2430x x -+-<,解得1x <或3x >,即函数()f x 在(),1-∞上单调递减,在()1,3上单调递增,在()3,+∞上单调递减; 所以1x =是()f x 的极小值点,与题意不符.当2a =-,5b =时,()32125103f x x x x =--+-,()245f x x x '=--+. 令()0f x '≥,即2450x x --+≥,解得51x -≤≤;令()0f x '<,即2450x x --+<,解得5x <-或1x >,即函数()f x 在(),5-∞-上单调递减,在()5,1-上单调递增,在()1,+∞上单调递减; 所以1x =是()f x 的极大值点,符合题意,故2a =-,5b =.又∵[]1,2x ∈-,∴()f x 在[]1,1-上单调递增,在[]1,2上单调递减.又()5013f '-=-,()2213f =-,()3223f =-. 所以()f x 在[]1,2-上的值域为5022,33⎡⎤--⎢⎥⎣⎦. 【点睛】思路点睛: 导数的方法求函数零点的一般步骤:先对函数求导,由导数的方法求出函数的单调性区间,根据函数极值的定义,求出函数的的极值,再根据函数函数的零点个数,确定极值的取值情况,进而可得出结果.23.(1)2cos ,0,33y a x x x x ππ⎫⎛⎫=+-+∈⎪ ⎪⎭⎝⎭;(2)当6x π=时,广告位出租的总收入最大,最大值为26a π⎫⎪⎭元. 【分析】(1)根据题意,利用正弦定理求得OC 的值,再求弧长DB ,求出函数y 的解析式,写出x 的取值范围;(2)求函数y 的导数,利用导数判断函数的单调性,求出函数的最值和对应x 的值.【详解】(1)因为//CD OA ,所以ODC AOD xrad ∠=∠=.在OCD ∆中,23OCD π∠=,3COD x π∠=-,2OD km =. 由正弦定理,得2432sin 3sin sin 33OC CD x x ππ===⎛⎫- ⎪⎝⎭, 得43sin 3OC xkm =,43sin 33CD x km π⎛⎫=- ⎪⎝⎭. 又圆弧DB 长为23x km π⎛⎫-⎪⎝⎭, 所以43432sin sin 23333y a x a x x ππ⎡⎤⎛⎫⎛⎫=⨯+⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦ 23sin cos ,0,33a x x x x ππ⎛⎫⎛⎫=+-+∈ ⎪ ⎪⎝⎭⎝⎭. (2)记()23sin cos 3f x a x x x π⎛⎫=+-+⎪⎝⎭, 则()()'23cos sin 122cos 16f x a x x a x π⎡⎤⎛⎫=--=+- ⎪⎢⎥⎝⎭⎣⎦, 令()'0f x =,得6x π=.当x 变化时,()'f x ,()f x 的变化如下表:所以()f x 在6x π=处取得极大值,这个极大值就是最大值,即2323666f a a πππ⎛⎫⎫⎫=⨯= ⎪⎪⎪⎝⎭⎭⎭. 故当6x π=时,广告位出租的总收入最大,最大值为236a π⎫⎪⎭元. 【点睛】本题考查了三角函数模型的应用问题,考查利用导数知识处理最值问题,考查函数与方程思想,是中档题.24.(1)见解析;(2)1.【分析】(1)按照0a ≤、0a >分类,结合导函数的正负即可得解;(2)转化条件为2231ex x ax a ++-≤在[)1,-+∞上恒成立,令()223,1x x ax a g x x e++-=≥-,按照4a ≥、4a <分类,结合导数确定函数()g x 的最大值即可得解.【详解】(1)当0a ≤时,()f x 在R 上单调递减;当0a >时,()xf x a e '=-, 故当ln x a <时,有()0f x '>,所以()f x 在(),ln a -∞单调递增;当ln x a >时,有()0f x '<,所以()f x 在()ln ,a +∞上单调递减;所以当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞上单调递增,在()ln ,a +∞上单调递减;(2)因为当1x ≥-时,()232f x a x ≤--恒成立, 所以2231ex x ax a ++-≤在[)1,-+∞上恒成立, 令()223,1x x ax a g x x e++-=≥-, 则()()()()22313e ex x x a x a x x a g x ⎡⎤-+-+--++-⎣⎦'==, ①当31a -≤-即4a ≥时,()0g x '≤,()g x 在[)1,-+∞单调递减, 则要使()()121g a e -=-≤,解得12a e ≤+(不合题意); ②当31a ->-即4a <时,则当()1,3x a ∈--时,()0g x '>,函数()g x 单调递增;当()3,x a ∈-+∞时,()0g x '<,函数()g x 单调递减;则要使()()()()233max 3323631a a a a a a a g x g a e e---+-+--=-==≤ 令31t a =->-,3a t =-,设()3,1t t h t t e +=>-,则要使()1h t ≤, 因为()20et t h t --'=<,所以()h t 在()1,-+∞单调递减,而()11h >,()21h <,所以整数t 的最小值为2,故整数a 的最大值为1.【点睛】本题考查了利用导数研究函数的单调性及解决不等式恒成立问题,考查了运算求解能力与逻辑推理能力,属于中档题.25.(1)23055元;(2)保护罩为底面边长为2米,高为4米的正四棱柱【分析】(1)根据定义先求保险费用,再计算正四棱柱体积,进而求气体费用,最后求和得结果; (2)先列出气体费用和保险费用之和函数关系式,再利用导数求最值,即得结果.【详解】(1)保险费用为24800076802.5= 正四棱柱体积为22.5(2 2.5)⨯⨯所以气体费用为2500[2.5(2 2.5)0.5]15375⨯⨯⨯-=因此气体费用和保险费用之和为76801537523055+=(元);(2)设正四棱柱底面边长为a 米,则 1.2a ≥因此气体费用和保险费用之和23224800048000500[(2)0.5]1000250y a a a a a=+⨯⨯-=+- 因为2396000300002y a a a'=-+=∴= 当2a >时,0y '>,当1.22a ≤<时,0y '<, 因此当2a =时,y 取最小值,保护罩为底面边长为2米,高为4米的正四棱柱时,气体费用和保险费用之和最低.【点睛】本题考查利用导数求函数最值、列函数解析式,考查基本分析求解能力,属中档题. 26.(1)分类讨论,答案见解析;(2)1,2⎛⎫+∞⎪⎝⎭. 【分析】(1)对函数求导得()(1)(2)x f x ax x e '=--,然后分12a >,102a << 和12a =三种情况令导函数大于零,可求得()y f x =的单调增区间;(2)对函数求导,讨论0a =,12a >,102a <≤,0a <,由极小值的定义,即可得到所求a 的取值范围【详解】解:(1)因为()2()e 4143x f x ax a x a ⎡⎤=-+++⎣⎦,所以2()(21)2(1)(2)x x f x ax a x e ax x e '⎡⎤=-++=--⎣⎦, 当12a >时,令()0f x '>,得:1x a <或2x >, 当102a <<时,令()0f x '>,得:2x <或1x a >, 当12a =时,0f x 恒成立 . 综上,当12a >时,单调递增区间是()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭ 当102a <<时,单调递增区间是()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭ 当12a =时,()f x 在R 上单调递增 (2)2()(21)2(1)(2)x x f x ax a x e ax x e '⎡⎤=-++=--⎣⎦,由(1)得,若12a >,()f x 在2x =处取得极小值; 102a <≤,所以2不是()f x 的极小值点. 0a =时,()(1)(2)e 0,2x f x x x '=--><,()(1)(2)0,2x f x x e x '=--<>,2是()f x 的极大值点,0a <时,()0f x '>,得:12x a <<,令()0f x '<,得:1x a <或2x > 2是()f x 的极大值点,综上可知,a 的取值范围是1,2⎛⎫+∞⎪⎝⎭. 【点睛】此题考查导数的应用,考查利用导数求单调区间和极值,考查分类讨论的数学思想,属于中档题。
北师大版高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)
一、选择题1.已知函数()()ln 0f x ax x a =->有两个零点1x ,2x ,且122x x <,则a 的取值范围是( )A .2,ln 2⎛⎫+∞ ⎪⎝⎭ B .20,ln 2⎛⎫ ⎪⎝⎭C .23,ln 3⎛⎫+∞ ⎪ ⎪⎝⎭ D .230,ln 3⎛⎫⎪ ⎪⎝⎭2.已知函数()3sin f x x x ax =+-,则下列结论错误的是( ) A .()f x 是奇函数B .若0a =,则()f x 是增函数C .当3a=-时,函数()f x 恰有三个零点D .当3a =时,函数()f x 恰有两个极值点3.已知函数f (x )=x 3-12x ,若f (x )在区间(2m ,m +1)上单调递减,则实数m 的取值范围是 ( ) A .-1≤m ≤1B .-1<m ≤1C .-1<m <1D .-1≤m <14.已知函数()32f x x bx cx =++的图象如图所示,则2212x x +等于( )A .23B .43C .83D .1635.等差数列{a n }中的a 2、a 4030是函数321()4613f x x x x =-+- 的两个极值点,则log 2(a 2016)=( ) A .2B .3C .4D .56.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭7.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >8.已知定义在R 上的函数()y xf x '=的图象(如图所示)与x 轴分别交于原点、点(2,0)-和点(2,0),若3-和3是函数()f x 的两个零点,则不等式()0f x >的解集( )A .(-∞,2)(2-⋃,)+∞B .(-∞,3)(3-,)+∞C .(-∞,3)(0-⋃,2)D .(3-,0)(3⋃,)+∞9.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB 的最小值为() A .1B .2C 2D 310.设函数()'f x 是函数()()f x x R ∈的导函数,当0x ≠时,3()()0f x f x x'+<,则函数31()()g x f x x =-的零点个数为( ) A .3 B .2 C .1D .011.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-12.已知函数22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩函数()()g x f x m =-有两个零点,则实数m 的取值范围为( )A .28,e ⎛⎫-∞ ⎪⎝⎭B .28,4e ⎛⎤⎥⎝⎦C .[)28,4,e ⎛⎫-∞⋃+∞ ⎪⎝⎭ D .280,e ⎛⎫ ⎪⎝⎭ 二、填空题13.已知函数()2e 2=++xf x ax a ,若不等式()()1≥+f x ax x 对任意[]2,5x ∈恒成立,则实数a 的取值范围是____________.14.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________15.已知函数()24ln f x x x a x =++,若函数()f x 在()1,2上是单调函数,则实数a 的取值范围是______.16.设动直线x m =与函数()32f x x =,()ln g x x =的图象分别交于点M ,N ,则线段MN 长度的最小值为______.17.如图,等腰直角ABC 底边4BC =,E 为BC 上异于B ,C 的一个动点,点F 在AB上,且EF BC ⊥,现将BEF 沿EF 折起到B EF '的位置,则四棱锥B AFEC '-体积的最大值为___________.18.设函数()21ln 12f x x x bx =+-+(b 为常数),若函数()f x 在[]1,3上存在单调减区间,则实数b 的取值范围是______. 19.已知函数21()ln 2f x x a x =+,若对任意两个不等的正实数1x ,2x 都有()()12122f x f x x x ->-恒成立,则实数a 的取值范围是____20.已知函数()32sin f x x x =-,若2(3)(3)0f a a f a -+-<,则实数a 的取值范围是__________.三、解答题21.已知函数432()f x ax x bx =++(),a b ∈R ,()()()g x f x f x '=+是偶函数. (1)求函数()g x 的极值以及对应的极值点. (2)若函数43221()()(1)4h x f x x c x x cx c =++--++,且()h x 在[]2,5上单调递增,求实数c 的取值范围.22.已知函数()xf x ax e =-(a R ∈,e 为自然对数的底数).(1)讨论()f x 的单调性;(2)当1x ≥-,()232f x a x ≤--恒成立,求整数a 的最大值.23.已知函数()ln 1x f x ae x =--.(1)设2x =是()f x 的极值点,求()f x 的单调区间; (2)证明:当1a e≥时,()0f x ≥. 24.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为 (米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升). (1)求y 关于v 的函数关系式;(2)若c≤v≤15(c>0),求当下潜速度v 取什么值时,总用氧量最少. 25.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围. 26.已知32()1,f x x ax a R =++∈. (1)若()f x 在23x =处取极值,求()f x 在点(,1)a -处切线方程; (2)若函数()f x 在区间[]01,最小值为-1,求a .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据已知可进行分离参数后,构造函数,两个零点1x ,2x ,求解a 的范围和切点,可得1201x x <<<,且()()12f x f x =,结合1x 与2x 的大小关系及函数的性质可求1x 的范围,然后结合函数单调性进行求解即可. 【详解】解:函数()()ln 0f x ax x a =-> 有两个零点1x ,2x , 令()0f x =,可得e xa x =令()e xg x x=即()()2e 1x x g x x-'=, 令()0g x '=,可得1x =, 可得当()0,1x ∈时,则()0g x '<, 当()1,x ∈+∞时,则()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,可得1201x x <<<,(i )若1102x <<,则21120x x >>>,符合题意; (ii )若1112x <<,则2121x x >>, 根据单调性,可得()()122f x f x <, 即()()112f x f x <,可得1111ln 22ln ax x ax x -<-,1ln 2x ∴>,综合(i )(ii )得,1x 的取值范围是()ln 2,1. 又()g x 在()ln 2,1上单调递减,可得()()ln 2g x g >, 即2ln 2a. 故选:A . 【点睛】本题主要考查了导数的几何意义的应用及利用导数求解参数的取值范围,体现了转化思想的应用.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.C解析:C 【分析】对A,根据奇函数的定义判定即可. 由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥,所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,将a 的值代入分别计算分析,可判断选项B ,C ,D【详解】对A, ()3sin f x x x ax =+-的定义域为R ,且()()()3sin f x x x ax -=-+-+3sin ()x x ax f x =--+=-.故A 正确.由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''= 所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-对B, 当0a =时,()2'cos 30f x x x =+>,所以()f x 是增函数,故B 正确.对C,当3a=-时,由上可知, ()()014f x f a ''≥=-=,所以()f x 是增函数,故不可能有3个零点.故C 错误.对D,当3a =时,()2cos 33f x x x '=+-,由上可知在()0-∞,上单调递减,在()0+∞,上单调递增.则()()min 0132f x f ''==-=-,()1cos10f '-=>,()1cos10f '=>所以存在()()121,0,0,1x x ∈-∈,使得()10fx '=,()20f x '=成立则在()1,x -∞上,()0f x '>,在()12,x x 上,()0f x '<,在()2,x +∞上,()0f x '>.所以函数()3sin 3f x x x x =+-在()1,x -∞单调递增,在()12,x x 的单调递减,在()2,x +∞单调递增.所以函数()f x 恰有两个极值点,故D 正确.故选:C 【点睛】关键点睛:本题主要考查利用导数分析函数的单调性从而得出函数的零点和极值情况,解答本题的关键是对原函数的单调性分析,由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,经过多次求导分析出单调性,属于中档题. 3.D解析:D 【解析】因为f ′(x)=3x 2-12=3(x +2)(x -2),令f ′(x)<0⇒-2<x<2,所以函数f(x)=x 3-12x 的单调递减区间为(-2,2),要使f(x)在区间(2m ,m +1)上单调递减,则区间(2m ,m +1)是区间(-2,2)的子区间,所以221212m m m m ≥-⎧⎪+≤⎨⎪+>⎩从中解得-1≤m<1,选D.点睛:导数与函数的单调性(1)函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =在该区间为增函数;如果()0f x '<,则()y f x =在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间或存在单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.4.C解析:C 【分析】先利用函数的零点,计算b 、c 的值,确定函数解析式,再利用函数的极值点为x ,xz ,利用导数和一元二次方程根与系数的关系计算所求值即可 【详解】由图可知,()0f x =的3个根为0,1,2,()()110,28420f b c f b c ∴=++==++=,解得3,2b c =-=,又由图可知,12,x x 为函数f (x )的两个极值点,()23620f x x x ∴=-+='的两个根为12,x x ,121222,3x x x x ∴+==, ()222121212482433x x x x x x ∴+=+-=-=, 故选:C 【点睛】本题主要考查了导数在函数极值中的应用,一元二次方程根与系数的关系,整体代入求值的思想方法.5.A解析:A 【解析】2240302016220162()86084,log log 42f x x x a a a a =-+=∴+=⇒='== ,选A.点睛:在解决等差、等比数列的运算问题时,注意利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.6.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+,0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.7.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1xx xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x ex '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增; 当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭, 令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.8.B解析:B 【分析】根据()y xf x '=的图像可得()'f x 在R 上的正负值,进而求得原函数的单调性,再结合()f x 的零点画出()f x 的简图,进而求得不等式()0f x >的解集.【详解】由图,当(),2x ∈-∞-时()0xf x '>,故()0f x '<,()f x 为减函数; 当()2,0x ∈-时()0xf x '<,故()0f x '>,()f x 为增函数; 当()0,2x ∈时()0xf x '<,故()0f x '<,()f x 为减函数; 由图,当()2,x ∈+∞时()0xf x '>,故()0f x '>,()f x 为增函数; 又3-和3是函数()f x 的两个零点,画出()f x 的简图如下:故不等式()0f x >的解集为()(),33,-∞-+∞.故选:B【点睛】本题主要考查了根据关于导函数的图像,分析原函数单调性从而求得不等式的问题.需要根据题意分段讨论导函数的正负,属于中档题.9.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(), 令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B . 【点睛】本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.10.D解析:D 【分析】构造函数3()()1F x x f x =-,可得出3()()F x g x x=,利用导数研究函数()y F x =的单调性,得出该函数的最大值为负数,从而可判断出函数()y F x =无零点,从而得出函数3()()F x g x x =的零点个数. 【详解】设3()()1F x x f x =-,则3233()()()3()()f x F x x f x x f x x f x x '''⎡⎤=+=+⎢⎥⎣⎦. 当0x ≠时,3()()0f x f x x'+<, 当0x >时,30x >,故()0F x '<,所以,函数()y F x =在(0,)+∞上单调递减; 当0x <时,30x <,故()0F x '>,所以,函数()y F x =在(,0)-∞上单调递增. 所以max ()(0)10F x F ==-<,所以,函数()y F x =没有零点, 故331()()()F x g x f x x x=-=也没有零点.故选:D . 【点睛】本题考查函数零点个数的判断, 解题的关键就是要结合导数不等式构造新函数,并利用导数分析函数的单调性与最值,必要时借助零点存在定理进行判断,考查分析问题和解决问题的能力,属于中档题.11.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.12.D解析:D 【分析】函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22xx xf x e+=对其求导判断单调性,作出()y f x =的图象,数形结合即可求解. 【详解】令()()0g x f x m =-=可得()f x m =,所以函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22x x x f x e +=,()()()2222222x x x x x e e x x x f x e e+-+-'==, 当2x >时()220xx f x e-'=<,()f x 单调递减, 当2x ≤时,()2f x x =+单调递增, 所以()f x 图象如图所示:当2x =时,()22222282f e e+⨯==,所以280x e <<, 故选:D 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、填空题13.【分析】原不等式可化为当时该不等式恒成立当时不等式可化为从而构造函数求导并判断单调性可求出令即可【详解】由题意不等式可化为当时恒成立;当时不等式可化为令则求导得所以在上单调递减在上单调递增所以则综上 解析:(3,e ⎤-∞⎦【分析】原不等式可化为()e 2xa x ≥-,当2x =时,该不等式恒成立,当(]2,5x ∈时,不等式可化为e 2x a x ≥-,从而构造函数()e 2xg x x =-,求导并判断单调性,可求出()min g x ,令()min g x a ≥即可. 【详解】由题意,不等式()2e 21x ax a ax x ++≥+可化为()e 2xa x ≥-, 当2x =时,()e 2xa x ≥-恒成立;当(]2,5x ∈时,不等式可化为e 2xa x ≥-, 令()e 2xg x x =-,(]2,5x ∈,则()min g x a ≥,求导得()()()2e 32x x g x x -'=-,所以()g x 在()2,3上单调递减,在[]3,5上单调递增,所以()()3min 3e g x g ==,则3e a ≤,综上所述,实数a 的取值范围是(3,e ⎤-∞⎦. 故答案为:(3,e ⎤-∞⎦.【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为e 2xa x ≥-,通过构造函数()e 2xg x x =-,令()min g x a ≥,可求出a 的取值范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.14.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调解析:1,e ⎛⎤-∞ ⎥⎝⎦【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln xk x=有解,构造函数()ln xf x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点,∴等价于方程ln kx x =在0x >时有解,即ln xk x=有解,设()ln xf x x =, 则()21ln xf x x -'=, 由()0f x '>,解得0x e <<,此时函数单调递增, 由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e⎛⎤-∞ ⎥⎝⎦.故答案为:1,e⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.15.【分析】对函数进行求导导函数在区间上恒非正或恒非负进行求解即可【详解】由题意得:函数的定义域为由题意可知:或在区间上恒成立当在区间上恒成立时当时因此有;当在区间上恒成立时当时因此有综上所述:实数的取 解析:(,16][6,)-∞-+∞【分析】对函数进行求导,导函数在区间()1,2上恒非正或恒非负进行求解即可. 【详解】由题意得:函数()f x 的定义域为()0+∞,, 2'()+4ln ()2+4af x x x a x f x x x=+⇒=+,由题意可知:'()0f x ≥或'()0f x ≤在区间()1,2上恒成立.当'()0f x ≥在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≥⇒≥--=-+, 当()1,2x ∈时,()2(24)166x x --∈--,,因此有6a ≥-; 当'()0f x ≤在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≤⇒≤--=-+, 当()1,2x ∈时,()2(24)166x x --∈-,,因此有16a ≤-, 综上所述:实数a 的取值范围是(,16][6,)-∞-+∞. 故答案为:(,16][6,)-∞-+∞. 【点睛】本题考查了已知函数在区间上的单调性求参数取值范围,考查了导数的应用,考查了数学运算能力,属于中档题.16.【分析】构造函数利用导数求得的最小值进而求得线段长度的最小值【详解】构造函数则所以在上递增令解得所以在上递增在上递减所以的最小值为也即的最小值为故答案为:【点睛】本小题主要考查利用导数研究函数的最值 解析:()11ln 63+ 【分析】构造函数()()()()0h x f x g x x =->,利用导数求得()h x 的最小值,进而求得线段MN 长度的最小值. 【详解】构造函数()()()()32ln 0h x f x g x x x x =-=->,则()()'2''2116,120h x x h x x x x=-=+>, 所以()'h x 在()0,∞+上递增,令()'0h x =解得136x -==. 所以()h x 在130,6-⎛⎫ ⎪⎝⎭上递增,在136,-⎛⎫+∞ ⎪⎝⎭上递减, 所以()h x 的最小值为()3111333111626ln 6ln 61ln 6333h ---⎛⎫⎛⎫=⨯-=+=+ ⎪ ⎪⎝⎭⎝⎭.也即MN 的最小值为()11ln 63+. 故答案为:()11ln 63+【点睛】本小题主要考查利用导数研究函数的最值,考查化归与转化的数学思想方法,属于中档题.17.【分析】设则设根据四棱锥的体积公式可求得四棱锥体积为利用正弦函数的最大值以及导数求得的最大值可得结果【详解】设则设则四棱锥的高四边形的面积为则四棱锥体积为当且仅当时取等号令则令得令得所以函数在上递增【分析】设BE x =,则B E EF x '==(04)x <<,设B EC θ'∠=,根据四棱锥的体积公式可求得四棱锥B AFEC '-体积为31sin (8)6x x θ-,利用正弦函数的最大值以及导数求得31(8)(04)6y x x x =-<<的最大值可得结果.【详解】设BE x =,则B E EF x '==(04)x <<,设B EC θ'∠=,则四棱锥B AFEC '-的高sin sin h B E x θθ'==, 四边形AFEC 的面积为22111424222x x ⨯⨯-=-, 则四棱锥B AFEC '-体积为211sin (4)32x x θ⨯-3311sin (8)(8)66x x x x θ=-≤-,当且仅当sin 1θ=,2πθ=时取等号,令31(8)(04)6y x x x =-<<, 则21(83)6y x '=-,令0y '>,得0x <<0y '<4x <<, 所以函数31(8)(04)6y x x x =-<<在上递增,在上递减,所以当x =31(8)6y x x =-所以当,23x πθ==时,四棱锥B AFEC '-【点睛】本题考查了棱锥的体积公式,考查了正弦函数的最值,考查了利用导数求函数的最值,属于中档题.18.【分析】根据题意将函数在上存在单调减区间转化为在上有解则只需:只需在内即可结合基本不等式即可求出的取值范围【详解】解:由题意知:在上存在单调减区间在上有解即在上有解即在上有解只需在内即可当且仅当时取 解析:()2,+∞【分析】根据题意,将函数()f x 在[]1,3上存在单调减区间,转化为()0f x '<在[]1,3上有解,则只需:只需在[]1,3内min1b x x ⎛⎫>+ ⎪⎝⎭即可,结合基本不等式,即可求出b 的取值范围. 【详解】解:由题意知:()()21ln 102f x x x bx x =+-+>,()211x bx f x x b x x-+'∴=+-=, ()f x 在[]1,3上存在单调减区间,()0f x '∴<在[]1,3上有解,即10x b x+-<在[]1,3上有解,即1>+b x x 在[]1,3上有解,只需在[]1,3内,min 1b x x ⎛⎫>+ ⎪⎝⎭即可, 0x,12x x∴+≥,当且仅当1x =时取得最小值2,即在在[]1,3内min12x x ⎛⎫+= ⎪⎝⎭, 所以:2b >,则b 的取值范围是:()2,+∞. 故答案为:()2,+∞. 【点睛】本题考查导数的应用,以及基本不等式的应用,考查转化思想和计算能力.19.【分析】由条件不妨设恒成立即为恒成立构造函数只需在上为增函数即可即求恒成立时的取值范围【详解】依题意不妨设恒成立恒成立设即在上为增函数恒成立只需的取值范围是故答案为:【点睛】本题考查函数的单调性求参 解析:[1,)+∞【分析】由条件不妨设12x x >,()()12122f x f x x x ->-恒成立,即为()()112222f x x f x x ->-恒成立,构造函数()()2g x f x x =-,只需()g x 在(0,)+∞上为增函数即可,即求()0g x '≥恒成立时a 的取值范围. 【详解】依题意,不妨设12x x >,()()12122f x f x x x ->-恒成立,()()112222f x x f x x ->-恒成立,设()()2g x f x x =-即12()(),()g x g x g x >在(0,)+∞上为增函数,2()2,()1220ln ag x x g x x x a x x'=-+-+=≥, 22,(0,)a x x x ≥-+∈+∞恒成立,只需2max (2)1,(0,)a x x x ≥-+=∈+∞,a ∴的取值范围是[1,)+∞.故答案为:[1,)+∞. 【点睛】本题考查函数的单调性求参数范围,构造函数把问题等价转化为函数的单调性是解题的关键,属于中档题.20.(13)【分析】确定函数为奇函数增函数化简得到解得答案【详解】函数为奇函数函数单调递增即即解得故答案为:【点睛】本题考查了利用函数的单调性和奇偶性解不等式意在考查学生对于函数性质的灵活运用解析:(1,3) 【分析】确定函数为奇函数,增函数,化简得到233a a a -<-,解得答案. 【详解】()32sin f x x x =-,()()32sin f x x x f x -=-+=-,函数为奇函数,'()32cos 0f x x =->,函数单调递增,2(3)(3)0f a a f a -+-<,即2(3)(3)(3)f a a f a f a -<--=-,即233a a a -<-,解得13a <<. 故答案为:()1,3. 【点睛】本题考查了利用函数的单调性和奇偶性解不等式,意在考查学生对于函数性质的灵活运用.三、解答题21.(1)函数()g x的一个极大值点为,对应的极大值为9,另一个极大值点为9;函数()g x 极小值点为0,对应的极小值为0;(2)4,13⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求出()g x 的表达式,结合函数的奇偶性即可求出140a b ⎧=-⎪⎨⎪=⎩,从而可确定()g x 的解析式,求出导数即可求出函数的极值点和极值.(2)结合第一问可得()h x 的解析式,从而可求出2()32h x cx x c '=-+,由()h x 的单调性可得213c x x≥+在[]2,5上恒成立,设()13m x x x=+,利用导数求出()m x 在[]2,5上的最小值,从而可求出实数c 的取值范围. 【详解】解:(1)∵432()f x ax x bx =++,∴32()432f x ax x bx '=++,∴432()()()(41)(3)2g x f x f x ax a x b x bx '=+=+++++,因为()g x 为偶函数,∴41020a b +=⎧⎨=⎩,解得140a b ⎧=-⎪⎨⎪=⎩,∴431()4f x x x =-+,则421()34g x x x =-+,∴3()6(g x x x x x x '=-+=-, 由()0g x '>,解得x <或0x <<()0g x '<,解得>x0x <<;∴()g x在(,-∞,(单调递增;在(),)+∞单调递减.∴函数()g x的一个极大值点为(9g =,9g =;函数()g x 极小值点为0,对应的极小值为()00g =. (2)由(1)知431()4f x x x =-+,∴43221()()(1)4h x f x x c x x cx c =++--++322cx x cx c =-++,∴2()32h x cx x c '=-+,因为函数()h x 在[]2,5上单调递增, ∴2320cx x c -+≥在[]2,5上恒成立,即2221313x c x x x≥=++在[]2,5上恒成立,设()13m x x x =+,令()22213130x m x x x -'=-==,解得[]2,5x =,当[]2,5x ∈时,()0m x '>,所以()13m x x x=+在[]2,5上单调递增, 则()()1322m x m ≥=,所以24=13132c ≥. 【点睛】 方法点睛:已知奇偶性求函数解析式时,常用方法有:一、结合奇偶性的定义,若已知偶函数,则()()f x f x -=,若已知奇函数,则()()f x f x -=-,从而可求出函数解析式;二、由奇偶性的性质,即偶函数加偶函数结果也是偶函数,奇函数加奇函数结果也是奇函数. 22.(1)见解析;(2)1. 【分析】(1)按照0a ≤、0a >分类,结合导函数的正负即可得解;(2)转化条件为2231e xx ax a ++-≤在[)1,-+∞上恒成立,令()223,1xx ax a g x x e++-=≥-,按照4a ≥、4a <分类,结合导数确定函数()g x 的最大值即可得解. 【详解】(1)当0a ≤时,()f x 在R 上单调递减; 当0a >时,()xf x a e '=-,故当ln x a <时,有()0f x '>,所以()f x 在(),ln a -∞单调递增; 当ln x a >时,有()0f x '<,所以()f x 在()ln ,a +∞上单调递减; 所以当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞上单调递增,在()ln ,a +∞上单调递减; (2)因为当1x ≥-时,()232f x a x ≤--恒成立,所以2231e xx ax a ++-≤在[)1,-+∞上恒成立, 令()223,1xx ax a g x x e ++-=≥-,则()()()()22313e exx x a x a x x a g x ⎡⎤-+-+--++-⎣⎦'==,①当31a -≤-即4a ≥时,()0g x '≤,()g x 在[)1,-+∞单调递减, 则要使()()121g a e -=-≤,解得12a e≤+(不合题意); ②当31a ->-即4a <时,则当()1,3x a ∈--时,()0g x '>,函数()g x 单调递增; 当()3,x a ∈-+∞时,()0g x '<,函数()g x 单调递减; 则要使()()()()233max3323631aa a a a a ag x g a e e ---+-+--=-==≤ 令31t a =->-,3a t =-,设()3,1tt h t t e +=>-,则要使()1h t ≤, 因为()20e tth t --'=<,所以()h t 在()1,-+∞单调递减, 而()11h >,()21h <,所以整数t 的最小值为2, 故整数a 的最大值为1. 【点睛】本题考查了利用导数研究函数的单调性及解决不等式恒成立问题,考查了运算求解能力与逻辑推理能力,属于中档题.23.(1)在()0,2上单调递减,在(2,)+∞上单调递增;(2)证明见解析.【分析】(1)由()20f '=可得212a e =,由导函数的符号可得函数的单调区间; (2)当1a e 时,()ln 1x e f x x e--()g x =,利用导数证明()0g x ≥即可. 【详解】(1)()f x 的定义域为1(0,),()e x f x a x'+∞=-. 由题设知,()20f '=,所以212a e =. 从而22111()ln 1,()22x x f x e x f x e e e x'=--=-. 当02x <<时,()0f x <′;当2x >时,()0f x >′.所以()f x 在()0,2上单调递减,在(2,)+∞上单调递增.(2)证明:当1a e 时,()ln 1x e f x x e--. 设()ln 1x e g x x e =--,则1()x e g x e x'=-为(0,)+∞上的增函数, 当01x <<时,()0(1)g g x '<'=;当1x >时,()(1)0g x g ''>=.所以()g x 在(0,1)上递减,在(1,)+∞上递增,所以1x =是()g x 的最小值点.故当0x >时,()()10g x g ≥=.因此,当1ae时,()()0f x g x ≥≥. 【点睛】本题考查了由函数的极值点求参数,考查了利用导数求函数的单调区间,考查了利用导数证明不等式,属于中档题.24.(1)见解析;(2)若c<3102,则当v =3102时,总用氧量最少;若c≥3102,则当v =c 时,总用氧量最少.【分析】(1)结合题意可得y 关于v 的函数关系式.(2)由(1)中的函数关系,求导后得到当0<v<3102时,函数单调递减;当v>3102时,函数单调递增.然后再根据c 的取值情况得到所求的速度.【详解】(1)由题意,下潜用时 (单位时间),用氧量为×=+ (升), 水底作业时的用氧量为10×0.9=9(升),返回水面用时= (单位时间),用氧量为×1.5= (升), 因此总用氧量232409,(0)50v y v v=++>. (2)由(1)得232409,(0)50v y v v=++>, ∴y′=-=,令y′=0得v =3102,当0<v<3102时,y′<0,函数单调递减;当v>3102时,y′>0,函数单调递增.①若c<3102 ,则函数在(c ,3102)上单调递减,在(3102,15)上单调递增, ∴ 当v =3102②若c≥3102,则y 在[c ,15]上单调递增,∴ 当v =c 时,总用氧量最少.【点睛】(1)在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.(2)用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.25.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e > 【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =,∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.26.(1)y x =;(2)3a=-. 【分析】(1)求出导函数,结合()f x 在23x =处取极值,导函数为0,求解a ,然后求解切线的斜率,求解切线方程.(2)令()0f x '=,求出极值点,若0a ,若32a -,若302a >>-,判断导函数的符号判断函数的单调性求解函数的极值与最值,然后推出结果.【详解】 解:(1)∵2()3()3f x x x a '=+,又()f x 在23x =处取极值, ∴2()03f '=得1a =-, 当1a =-时2()33f x x x ⎛⎫'=- ⎪⎝⎭,函数在(),0-∞和2,3⎛⎫+∞ ⎪⎝⎭上单调递增,在20,3⎛⎫ ⎪⎝⎭上单调递减,满足题意;∴32()1f x x x =-+,切点为(1,1),切线斜率为(1)1k f '==∴()f x 在点(1,1)的切线方程为y x = (2)∵2()3()3a f x x x '=+,令()0f x '=得0x =或23a - 若0a ≥,则(0,1)x ∈时()0f x '>,()f x 在[0,1]为增函数此时min ()(0)11f x f ==>-舍去若32a ≤-,则213a -≥,此时(0,1)x ∈时()0f x '<,()f x 在[0,1]为减函数 min ()(1)21f x f a ==+=-,得33(,)2a =-∈-∞-满足题意 若302a >>-,则2013a <-<,此时2(0,)3x a ∈-时()0f x '<,2(,1)3a x ∈-时()0f x '>()f x 在2(0,)3a -单调递减,在2(,1)3a -单调递增,此时3min24()()11327a a f x f =-=+=-解得3(,0)2a =-舍去 综合以上得3a=-【点睛】 本题考查函数的导数的应用,函数的极值以及函数的最值的求法,考查转化思想以及计算能力,属于难题.。
(常考题)北师大版高中数学高中数学选修2-2第三章《导数应用》测试(有答案解析)
一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.已知函数()2sin ln 6xf x a x x a π⎛⎫=+-⎪⎝⎭(0a >,且1a ≠),对任意1,x []20,1x ∈,不等式()()212f x f x a -≤-恒成立,则实数a 的最小值是( )A .2eB .eC .3D .23.已知函数f (x )=x 3-12x ,若f (x )在区间(2m ,m +1)上单调递减,则实数m 的取值范围是( ) A .-1≤m ≤1B .-1<m ≤1C .-1<m <1D .-1≤m <14.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a 的取值范围为( )A .11,27⎛⎫-∞-⎪⎝⎭B .1,C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭5.已知函数()32114332f x x mx x =-+-在区间[]12,上是增函数,则实数m 的取值范围为( ) A .45m ≤≤B .24m ≤≤C .2m ≤D .4m ≤6.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭7.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<8.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c 若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( ) A .6π B .4π C .3π D .2π 9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .202011.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<12.已知函数()22ln f x x x =-,若关于x 的不等式()0f x m -≥在[]1,e 上有实数解,则实数m 的取值范围是( ) A .()2,2e -∞-B .(2,2e ⎤-∞-⎦C .(],1-∞D .(),1-∞二、填空题13.若函数f (x )cosx a sinx +=在(0,2π)上单调递减,则实数a 的取值范围为___. 14.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.15.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数均有(1)()'()0x f x xf x -+>成立,且()1y f x e =+-是奇函数,则不等式()0x xf x e ->的解集是_________.16.已知定义在()0,∞+上的函数()f x 满足()()0xf x f x '->,其中()'f x 是函数()f x 的导函数.若2(2020)(2020)(2)f k k f ⋅-<-⋅,则实数k 的范围为________ 17.关于x 的不等式2ln 0x x kx x -+≥恒成立,实数k 的取值范围是__________. 18.已知函数()xf x e =,()g x ex =,若存在12,x x R ∈,使得()()12f x g x m ==,则21x x -的最小值为______.19.已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',且()10f =,当0x <时,()()+0f x f x x'>,则使得()0f x >成立的x 的取值范围是________. 20.已知在正四棱锥P ABCD -中,4PA =,则当该正四棱锥的体积最大时,它的高h 等于______.三、解答题21.已知:函数()sin cos =-f x x x x . (1)求()f π'; (2)求证:当(0,)2x π∈时,31()3f x x <;(3)若()cos f x kx x x >-对(0,)2x π∈恒成立,求实数k 的最大值.22.有一边长为的正方形铁片,铁片的四角截去四个边长为的小正方形,然后做成一个无盖方盒.(1)试把方盒的容积表示成的函数;(2)求多大时,做成方盒的容积最大.23.某工厂经奥组委授权生产销售伦敦奥运会吉祥物(精灵“文洛克”)饰品,生产该饰品的全部成本c 与生产的饰品的件数x (单位:万件)满足函数32120075c x =+(单位:万元);该饰品单价p (单位:元)的平方与生产的饰品件数x (单位:万件)成反比,现已知生产该饰品100万件时,其单价50p =元.且工厂生产的饰品都可以销售完.设工厂生产该饰品的利润为()f x (万元)(注:利润=销售额-成本)(1)求函数()y f x =的表达式.(2)当生产该饰品的件数x (万件)为多少时,工厂生产该饰品的利润最大. 24.已知函数()sin x f x e x =. ⑴求函数()f x 的单调区间; ⑵如果对于任意的[0,]2x π∈,()f x kx ≥总成立,求实数k 的取值范围.25.设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()(),e f e 处的切线方程;(2)当1≥x 时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围. 26.已知函数()(1)ln f x x x =+.(1)求()y f x =在1x =处的切线方程:(2)已知实数2k >时,求证:函数()y f x =的图象与直线l :(1)y k x =-有3个交点.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>,∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.A解析:A 【分析】由导数求得()f x 在[0,1]上单调递增,求得函数的最值,把任意1,x []20,1x ∈,不等式 ()()212f x f x a -≤-恒成立,转化为()()max min 2f x f x a -≤-,进而求得a 的取值范围,得到最小值. 【详解】由题意,显然2a ≥, 因为函数()2sin ln 6xf x a x x a π⎛⎫=+-⎪⎝⎭,可得()ln (1)cos()36x f x a a x ππ'=-+,又由[0,1],2x a ∈≥,可得ln 0,10,cos()036xa a x ππ>-≥>,故()0f x '>,函数()f x 在[0,1]上单调递增, 故()()max min (1)1ln ,(0)1f x f a a f x f ==+-==, 对任意1,x []20,1x ∈,不等式()()212f x f x a -≤-恒成立, 即()()max min 2f x f x a -≤-,所以1ln 12a a a +--≤-,即ln 2a ≥,解得2a e ≥, 即实数a 的最小值为2e . 故选:A. 【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3.D解析:D 【解析】因为f ′(x)=3x 2-12=3(x +2)(x -2),令f ′(x)<0⇒-2<x<2,所以函数f(x)=x 3-12x 的单调递减区间为(-2,2),要使f(x)在区间(2m ,m +1)上单调递减,则区间(2m ,m +1)是区间(-2,2)的子区间,所以221212m m m m ≥-⎧⎪+≤⎨⎪+>⎩从中解得-1≤m<1,选D.点睛:导数与函数的单调性(1)函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =在该区间为增函数;如果()0f x '<,则()y f x =在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间或存在单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.4.C解析:C 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.5.D解析:D 【分析】求函数的导函数,利用导函数与原函数单调性的关系进行判断,要使()f x 在区间[]12,上是增函数,则()0f x '≥在[]12,上恒成立,分离参数m ,即可得到答案. 【详解】由题得2()4f x x mx '=-+,要使()f x 在区间[]12,上是增函数,则()0f x '≥在[]12,上恒成立,即240x mx -+≥,则244x m x x x+≤=+在[]12,上恒成立,又44x x +≥=,当且仅当2x =时,等号成立,所以4m ≤, 故答案选D 【点睛】本题主要考查导数与原函数单调性之间的关系,将含参问题转化为最值成立,是解决本题的关键,属于中档题.6.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+, 0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.7.D解析:D 【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x -=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=, 而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.8.C解析:C 【解析】 函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=- ,22222210cos 22a cb b ac ac B ac +-=--+≤⇒=≥()0,(0,].3B B ππ∈∴∈故最大值为:3π.故答案为C .9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数.由()3,2f π=-故可得22h π⎛⎫=- ⎪⎝⎭,又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭,故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.A解析:A 【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解. 【详解】设函数()32f x nx x n =+-,则()232f x nx '=+,当n 时正整数时,可得()0f x '>,则()f x 为增函数, 因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=, 因此2320201(2342020)101120192019a a a ++=++++=.故选:A. 【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+是解答的关键. 11.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点;当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.12.B解析:B 【分析】由题意可得()max m f x ≤,利用导数求出函数()f x 在区间[]1,e 上的最大值,由此可求得实数a 的取值范围. 【详解】由题意可知,存在[]1,3x ∈,使得()m f x ≤,则()max m f x ≤.()22ln f x x x =-,则()()()22112222x x x f x x x x x-+-'=-==, 当[]1,3x ∈时,()0f x '≥,所以,函数()f x 在区间[]1,e 上单调递增,则()()2max 2f x f e e ==-,22m e ∴≤-,因此,实数m 的取值范围是(2,2e ⎤-∞-⎦.故选:B. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、填空题13.a≥﹣1【分析】将函数f (x )在(0)上单调递减转化在(0)上恒成立即在(0)上恒成立再求最大值即可【详解】因为函数f (x )在(0)上单调递减所以在(0)上恒成立即在(0)上恒成立因为所以所以所以故解析:a ≥﹣1.【分析】 将函数f (x )cosx a sinx +=在(0,2π)上单调递减,转化()21cos 0sin a xf x x --'=≤在(0,2π)上恒成立 即1cos a x ≥-在(0,2π)上恒成立 再求1cos x -最大值即可.【详解】因为函数f (x )cosx asinx+=在(0,2π)上单调递减,所以()21cos 0sin a xf x x --'=≤在(0,2π)上恒成立 ,即1cos a x ≥-在(0,2π)上恒成立 , 因为0,2x π⎛⎫∈ ⎪⎝⎭, 所以()cos 0,1x ∈, 所以1(,1]cos x-∈-∞-, 所以1a ≥-. 故答案为:1a ≥- 【点睛】本题主要考查了导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.14.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际解析:【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+=3()(2)(2),02h x x x x =+-<<,利用导数求其最值. 【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=, 所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+2(2)4x x =+-3(2)(2),02x x x =+-<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+, (0,1),()0,()x h x h x ∈'>单调递增, (1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值33故答案为:33 【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.15.【分析】将问题转化为解不等式令根据函数的单调性以及奇偶性求出的范围即可【详解】由可得令则故在上单调递增又是奇函数故故解得:故答案为:【点睛】本题主要考查了函数的单调性问题考查导数的应用以及函数的奇偶 解析:()1,+∞【分析】将问题转化为解不等式()1xxf x e >,令()()xxf x g x e=,根据函数的单调性以及奇偶性求出x 的范围即可. 【详解】由()0xxf x e ->可得()1xxf x e>,令()()x xf x g x e =,则()()()()10xx f x xf x g x e -+''=>,故()g x 在R 上单调递增,又()1y f x e =+-是奇函数,故()1f e =,()11g =,故()()1g x g >,解得:1x >, 故答案为:()1,+∞. 【点睛】本题主要考查了函数的单调性问题,考查导数的应用以及函数的奇偶性,属于中档题.16.【分析】构造函数利用导数研究在区间的单调性由此求得实数的取值范围【详解】设函数在单调递增依题意的定义域为所以故故答案为:【点睛】本小题主要考查利用导数研究不等式属于中档题 解析:()2020,2022【分析】 构造函数()()()0f x g x x x=>,利用导数研究()g x 在区间()0,∞+的单调性,由此求得实数k 的取值范围. 【详解】 设函数()()()0f x g x x x=>,2()()()0xf x f x g x x='-'>, ()g x ∴在()0,∞+单调递增.依题意,()f x 的定义域为()0,∞+,所以20200,2020k k ->>,2(2020)(2020)(2)f k k f ⋅-<-⋅,(2020)(2)20202f k f k -∴<-,故020202k <-<,20202022k ∴<<. 故答案为:()2020,2022 【点睛】本小题主要考查利用导数研究不等式,属于中档题.17.【分析】根据不等式恒成立分离参数并构造函数求得导函数结合导数性质可判断的单调区间与最小值即可求得的取值范围【详解】在恒成立即恒成立即令则当即解得当即解得所以在上为减函数在上增函数所以所以故答案为:【解析:1,1e ⎛⎤-∞- ⎥⎝⎦【分析】根据不等式恒成立,分离参数并构造函数()ln 1g x x x =+,求得导函数()g x ',结合导数性质可判断()g x 的单调区间与最小值,即可求得k 的取值范围. 【详解】2ln 0x x kx x -+≥在()0,∞+恒成立,即ln 10x x k -+≥恒成立,即ln 1k x x ≤+,令()ln 1g x x x =+,则()ln 1g x x '=+, 当()0g x '≥,即ln 10x +≥,解得1x e ≥, 当()0g x '<,即ln 10x +<,解得10x e<< 所以()g x 在10,e ⎛⎫ ⎪⎝⎭上为减函数,在1,e ⎡⎫+∞⎪⎢⎣⎭上增函数, 所以()min 1111ln 11g x g e e ee ⎛⎫==+=- ⎪⎝⎭, 所以11k e≤-故答案为:1,1e⎛⎤-∞- ⎥⎝⎦.【点睛】本题考查了分离参数与构造函数法的应用,由导函数求函数的最值及参数的取值范围,属于中档题.18.【分析】由可得则设即求函数的最小值求导得出单调性即可得到答案【详解】由即且所以则设函数则令得令得所以函数在上单调递减在上单调递增则函数的最小值为所以的最小值为故答案为:【点睛】本题考查根据题目条件构 解析:ln 22【分析】由()()12f x g x m ==,可得212ln ,m x m x e ==,则221ln m x x m e -=-,设()2ln x h x x e=-,即求函数()h x 的最小值,求导得出单调性即可得到答案.【详解】由()()12f x g x m ==,即1xe m ==且0m >.所以212ln ,m x m x e ==,则221ln m x x m e -=- 设函数()2ln x h x x e =-,则()2212x eh x x e x ex-'=-=.令()0h x '>,得x >,令()0h x '<,得0x <<所以函数()h x 在0⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.则函数()h x 的最小值为11ln 222e h e =⨯-=. 所以21x x -的最小值为ln 22故答案为:ln 22【点睛】本题考查根据题目条件构造函数,利用导数求函数的最小值,属于中档题.19.【分析】结合所给不等式构造函数可证明在时单调递减根据为偶函数且可得单调性的示意图结合函数图像即可求得使成立的的取值范围【详解】令则由题意可知当时不等式两边同时乘以可得即所以在时单调递减因为定义在上的 解析:()()1,00,1-【分析】结合所给不等式,构造函数()()g x x f x =⋅,可证明()g x 在0x <时单调递减,根据()f x 为偶函数且()10f =,可得()g x 单调性的示意图,结合函数图像即可求得使()0f x >成立的x 的取值范围.【详解】令()()g x x f x =⋅,则()()()g x f x x f x '=+⋅' 由题意可知当0x <时,()()+0f x f x x'>,不等式两边同时乘以x 可得()()+0xf x f x '<,即()0g x '<,所以()()g x x f x =⋅在0x <时单调递减, 因为定义在()(),00,-∞⋃+∞上的()f x 为偶函数, 所以()()g x x f x =⋅为定义在()(),00,-∞⋃+∞上的奇函数,且()10f =,所以()()110g g =-=,由奇函数性质可得()()g x x f x =⋅函数图像示意图如下图所示:所以当0x <时,()0f x >的解集为()1,0-,当0x >时,()0f x >的解集为()0,1, 综上可知,()0f x >的解集为()()1,00,1-故答案为:()()1,00,1-.【点睛】本题考查了函数奇偶性及单调性的综合应用,构造函数判断函数的单调性,数形结合法解不等式,属于中档题.20.【分析】设正四棱锥的底面边长为即可由表示出和的等量关系进而表示出正四棱锥的体积利用导函数判断单调性由单调性即可求得最值并求得取最值时的高的值【详解】设正四棱锥的底面边长为因为所以即所以正四棱锥的体积 解析:433【分析】设正四棱锥P ABCD -的底面边长为a ,即可由4PA =表示出a 和h 的等量关系,进而表示出正四棱锥P ABCD -的体积.利用导函数,判断单调性,由单调性即可求得最值,并求得取最值时的高h 的值. 【详解】设正四棱锥P ABCD -的底面边长为a ,因为4PA =,所以22162ah +=,即22322a h =-,所以正四棱锥P ABCD -的体积()2313220333V a h h h h ==->, 可得232'23V h =-, 令'0V =,解得43h =当0h <<,可得'0V >,可知V 在0h <<当h >'0V <,可知V 在h >所以当h =P ABCD -的体积取得最大值,即16322313V ⎛⎫-⨯ =⎪⎝⎭=【点睛】本题考查了正四棱锥的性质与应用,四棱锥的体积公式,利用导数求函数的最值及取最值时的自变量,属于中档题.三、解答题21.(1)0;(2)证明见解析;(3)2π.【分析】(1)首先求函数的导数,再代入求()f π'的值;(2)首先设函数()()313g x f x x =-,求函数的导数,利用导数正负判断函数的单调性,求得函数()max 0g x <,(3)首先不等式等价于sin x kx >对(0)2x π∈,恒成立,参变分离后转化为sin x k x <对(0)2x π∈,恒成立,利用导数求函数sin ()xh x x=的最小值,转化为求实数k 的最大值. 【详解】()cos (cos sin )sin f x x x x x x x '=--=(1)()0f π'=;(2)令31()()3g x f x x =-,则2()sin (sin )g x x x xx x x '=-=-,当(0)2x π∈,时,设()sin t x x x =-,则()cos 10t x x '=-< 所以()t x 在(0)2x π∈,单调递减,()sin (0)0t x x x t =-<=即sin x x <,所以()0g x '<所以()g x 在(0)2π,上单调递减,所以()(0)0g x g <=,所以31()3f x x <. (3)原题等价于sin x kx >对(0)2x π∈,恒成立, 即sin x k x <对(0)2x π∈,恒成立, 令sin ()xh x x=,则22cos sin ()()x x x f x h x x x -'==-. 易知()sin 0f x x x '=>,即()f x 在(0)2π,单调递增, 所以()(0)0f x f >=,所以()0h x '<, 故()h x 在(0)2π,单调递减,所以2()2k h π≤=π. 综上所述,k 的最大值为2π.【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:1.讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;2.分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围. 22.(1)见解析;(2) 6a . 【详解】解: 2322221212(1)(2?44(0)2(2)'128'0,()26v a x xax ax a x x v ax ax a a av x x x x =-=-+<<=-+===)令舍,根据,列表,得到函数的极值和单调性06a(,) 6a(,)62a aV’+9-v增极大值 减6a x =时,max 2()27v x = 【点睛】此题是一道应用题,主要还是考查导数的定义及利用导数来求区间函数的最值,利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力,解题的关键是求导要精确.23.(1)()()325001200075f x x x x =-->;(2)25万件 【分析】 (1)设2kp x=,代入100x =,50p =求出k 的值,然后由已知给出的关系式列式即可;(2)求出(1)中所得函数的导函数,利用导数求函数的极大值,即可得函数的最大值 【详解】(1)依题意:设2kp x=,代入100x =,50p =得:41025k =⨯, ∴500p x =,故()()325001200075f x x x x =--> (2)由(1)得()2250675f x x x '=- 则()22506002575f x x x x'>⇔>⇔<< 所以函数()f x 在()0,25上递增,在()25,+∞上递减,所以函数()f x 在25x =处有极大 值:因为()f x 在0,上只有唯一极值,所以函数()f x 在25x =处有最大值;故当生产该饰品25万件时,可以获得最大利润.【点睛】此题考查了函数的模型的选择及应用,考查了利用导数求函数的最值,属于中档题 24.(1)()f x 的单调递增区间为3(2,2)44k k ππππ-+,单调递减区间为37(2,2)44k k ππππ++()k Z ∈;(2)(,1]-∞ 【详解】试题分析:⑴求出函数的导数令其大于零得增区间,令其小于零得减函数;⑵令()()sin x g x f x kx e x kx =-=-,要使()f x kx ≥总成立,只需[0,]2x π∈时min ()0g x ≥,对讨论,利用导数求的最小值.试题(1) 由于()sin x f x e x =,所以'()sin cos (sin cos )2sin()4x x x x f x e x e x e x x e x π=+=+=+.当(2,2)4x k k ππππ+∈+,即3(2,2)44x k k ππππ∈-+时,'()0f x >; 当(2,22)4x k k πππππ+∈++,即37(2,2)44x k k ππππ∈++时,'()0f x <. 所以()f x 的单调递增区间为3(2,2)44k k ππππ-+()k ∈Z , 单调递减区间为37(2,2)44k k ππππ++()k ∈Z . (2) 令()()sin x g x f x kx e x kx =-=-,要使()f x kx ≥总成立,只需[0,]2x π∈时min ()0g x ≥.对()g x 求导得()(sin cos )x g x e x x k =+-',令()(sin cos )x h x e x x =+,则()2cos 0x h x e x '=>,((0,)2x π∈)所以()h x 在[0,]2π上为增函数,所以2()[1,]h x e π∈.对分类讨论:① 当1k ≤时,()0g x '≥恒成立,所以()g x 在[0,]2π上为增函数,所以min ()(0)0g x g ==,即()0g x ≥恒成立;② 当21k e π<<时,()0g x '=在上有实根0x ,因为()h x 在(0,)2π上为增函数,所以当0(0,)x x ∈时,()0g x '<,所以0()(0)0g x g <=,不符合题意;③ 当2k e π≥时,()0g x '≤恒成立,所以()g x 在(0,)2π上为减函数,则()(0)0g x g <=,不符合题意.综合①②③可得,所求的实数的取值范围是(,1]-∞.考点:利用导数求函数单调区间、利用导数求函数最值、构造函数. 25.(1)230x e y e +-=(2)(,0]-∞ 【详解】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为()'f e ,最后根据点斜式求切线方程(2)构造函数()()2ln 1g x x a x =--,利用导数并按0a ≤,10<2a <,12a ≥进行分类讨论,通过函数的单调性以及最值进行与0比较,可得结果. 试题(1)根据题意可得,()2f e e=, ()2ln 'xf x x -=,所以()22ln 1'e f e e e -==-,即21k e =-, 所以在点()(),e f e 处的切线方程为()221y x e e e-=--,即230x e y e +-=. (2)根据题意可得,()()()221ln 110a x x a xf x xxx-----=≥在1≥x 恒成立,令()()2ln 1g x x a x =--,()1x ≥,所以()12g x ax x-'=, 当0a ≤时,()0g x '>,所以函数()y g x =在[)1,+∞上是单调递增, 所以()()10g x g ≥=, 所以不等式()()21a x f x x->成立,即0a ≤符合题意;当0a >时,令120ax x-=,解得x =1=,解得12a =,当10<2a <1,所以()g x '在⎛ ⎝上()0g x '>,在+⎫∞⎪⎪⎭上()0g x '<,所以函数()y g x =在⎛ ⎝上单调递增,在+⎫∞⎪⎪⎭上单调递减,21111ln 1ln g a a a a a a a ⎛⎫⎛⎫⎛⎫=--=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()1ln h a a a a =--+,()222111'10a a h a a a a -+=-++=>恒成立,则()h a 在10,2⎛⎫ ⎪⎝⎭单调递增 所以()1111ln 2ln2202222h a h ⎛⎫<=--+=+-< ⎪⎝⎭, 所以存在10g a ⎛⎫< ⎪⎝⎭, 所以102a <<不符合题意;②当12a ≥1≤()0g x '≤在[)1,+∞上恒成立,所以函数()y g x =在[)1,+∞上是单调递减,所以()()10g x g ≤= 显然12a ≥不符合题意; 综上所述,a 的取值范围为{}|0a a ≤ 26.(1)22y x =-;(2)证明见解析. 【分析】(1)对函数求导,求得()()1,1f f ',利用点斜式即可求得切线方程; (2)构造(1)()ln 1k x h x x x -=-+,将问题转化为证明()h x 有3个零点;再对()h x 求导,根据函数单调性,即可证明. 【详解】(1)因为()(1)ln f x x x =+,所以1()ln x f x x x'+=+, 所以(1)2f '=,又因为(1)0f =,所以()f x 在1x =处的切线方程22y x =-; (2)当2k >时,函数()y f x =的图象与直线l 交点的个数等价于 函数(1)()ln 1k x h x x x -=-+的零点个数, 因为22212(1)2()(1)(1)k x kxh x x x x x +-'=-=++,(0,)x ∈+∞,设2()(22)1g x x k x =+-+,因为二次函数()g x 在x ∈R 时,(0)10g =>,(1)420g k =-<, 所以存在1(0,1)x ∈,2(1,)x ∈+∞,使得()10g x =,()20g x =, 所以()h x 在()10,x 上单调递增,在()12,x x 上单调递减, 在()2,x +∞上单调递增.因为(1)0h =,所以()1(1)0h x h >=,()2(1)0h x h <=, 因此()h x 在()12,x x 上存在一个零点1x =; 又因为当e k x -=时,()()()e 12e e 0e 1e 1k k k kkk k h k -------=--=<++,所以()h x 在()1e ,kx -上存在一个零点;当e k x =时,()()e 12e 0e 1e 1k k kk k h k k -⎛⎫=-=> ⎪++⎝⎭,所以()h x 在()2,e kx 上存在一个零点.所以,函数()y f x =的图象与直线l :(1)y k x =-有3个交点. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查运用导数研究函数性质的方法,考查运算能力,考查函数与方程的数学思想方法和分析问题、解决问题的能力.。
新北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(有答案解析)(5)
一、选择题1.已知函数()()2xf x ax e x =+-(其中2a >-),若函数()f x 为R 上的单调减函数,则实数a 的取值范围为( ) A .()2,1--B .(]2,0-C .(]1,0-D .(]2,1--2.设函数()3xf x xe =,若存在唯一的负整数0x ,使得()00f x kx k <-,则实数k 的取值范围是( )A .23,0e ⎡⎫-⎪⎢⎣⎭B .30,2e ⎡⎫⎪⎢⎣⎭C .236,e e ⎛⎫-- ⎪⎝⎭D .223,2e e ⎡⎫⎪⎢⎣⎭3.已知函数()ln f x x ax =-有两个零点,则实数a 的取值范围为( )A .1a e<B .0a <C .0a ≤D .10a e<<4.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( ) A .15a <≤ B .25a <≤ C .25a ≤≤D .35a <≤5.已知函数32()f x x bx cx d =+++在区间[1,2]-上是减函数,那么b c + ( ) A .有最小值152 B .有最大值152 C .有最小值152- D .有最大值152-6.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( ) A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞7.函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .8.函数2()(3)x f x x e =-的单调递增区间是( ) A .(,0)-∞ B .(0)+∞, C .(,3)-∞和(1)+∞, D .(-3,1) 9.已知()321233y x bx b x =++++是R 上的单调增函数,则b 的取值范围是( ) A . 1b <-或2b > B .1,b ≤-或b 2≥C .12b -<<D .12b -≤≤10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.函数()21ln 2f x x x =-在区间()0,2上的最大值为( ) A .12-B .0C .12D .无最大值二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.已知定义域为R 的函数()f x 满足1122f ⎛⎫=⎪⎝⎭,()40f x x '+>,其中()f x '为()f x 的导函数,则不等式()sin cos20f x x -≥的解集为______.15.若函数f (x )cosx a sinx +=在(0,2π)上单调递减,则实数a 的取值范围为___. 16.已知()(sin )x f x e x a =+在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数,则实数a 的取值范围是________.17.已知定义在()0,∞+上的函数()f x 满足()()0xf x f x '->,其中()'f x 是函数()f x 的导函数.若2(2020)(2020)(2)f k k f ⋅-<-⋅,则实数k 的范围为________18.设动直线x m =与函数()32f x x =,()ln g x x =的图象分别交于点M ,N ,则线段MN 长度的最小值为______.19.已知函数()2xe f x ax x =-,(0,)x ∈+∞,当12x x <时,不等式1221()0()f x f x x x -<恒成立,则实数a 的取值范围为_____________.20.已知函数2()x f x ae x =-有两个极值点,则实数a 的取值范围是_______.三、解答题21.已知函数)(21ln 2f x x ax x =-+有两个极值点)(1212,x x x x <. (1)求a 的取值范围; (2)求证:21>x 且)(2132f x x <-. 22.已知函数()322=-+f x x ax b .(1)4a =时,()f x 在区间[]1,1-的最小值为-5,求b 的值 (2)讨论()f x 的单调性;23.已知函数()2f x x ax b =++,不等式()0f x ≤的解集为[]1,3-.(1)求函数()f x 的解析式; (2)求方程()4ln f x x x =根的个数. 24.已知函数()42ln af x ax x x=--. (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若函数()f x 在其定义域内为增函数,求实数a 的取值范围; (3)设函数6()eg x x=,若在区间[1,]e 上至少存在一点0x ,使得00()()f x g x >成立,求实数a 的取值范围.25.已知函数()321f x x bx cx =++-的图象在()()1,1f 处的切线经过点()2,4,且()f x 的一个极值点为-1.(1)求()f x 的极值;(2)已知方程()0f x m -=在[]22-,上恰有一个实数根,求m 的取值范围. 26.已知函数321()12f x x x ax =-++.(1)当2a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间32,2⎡⎤-⎢⎥⎣⎦上的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】令()()(2)1x g x f x ax a e ='=++-,则()(2)x g x ax a e '=++.分0a =,0a >,20a -<<三类讨论,即可求得实数a 的取值范围即可. 【详解】解:令()()(2)1x g x f x ax a e ='=++-,则()(22)x g x ax a e '=++,(ⅰ)当0a =时,()20x g x e '=>,()g x 在R 递增,即()21x f x e '=-在R 递增, 令()0f x '=,解得:2x ln =-,故()f x 在(,2)ln -∞-递减,在(2,)ln -+∞递增,()f x 不单调,与题意不符; (ⅱ)当0a >时,由2()0(2)g x x a '>⇒>-+,2()0(2)g x x a '<⇒<-+,222()(2)10aming x g ae a--∴=--=--<,(0)10g a =+>,∴此时函数()f x '存在异号零点,与题意不符;(ⅲ)当20a -<<,由()0g x '>,可得2(2)x a <-+,由()0g x '<可得2(2)x a>-+,()g x ∴在2(,2)a -∞--上单调递增,在2(2a--,)+∞上单调递减,故222()(2)1amaxg x g ae a--=--=--,由题意知,2210a ae ----恒成立, 令22t a --=,则上述不等式等价于12t e t+,其中1t >,易证,当0t >时,112tte t >+>+, 当(1t ∈-,0]时12te t+成立, 由2120a-<--,解得21a -<-. 综上,当21a -<-时,函数()f x 为R 上的单调函数,且单调递减; 故选:D . 【点睛】本题主要考查了利用导数研究函数的单调性,突出考查等价转化思想与分类讨论思想的应用,考查逻辑思维能力与推理证明能力,考查参数范围问题及求解函数的值域,属于函数与导数的综合应用.2.D解析:D 【分析】利用到函数研究其图象,令3x y xe =,y kx k =-,从而讨论两个函数的性质作出3x y xe =与y kx k =-的图象,从而结合图象可得解. 【详解】()3x f x xe =,令y kx k =-,()3(1)x f x e x '=+,()3x f x xe ∴=在(-∞,1]-上是减函数,在(1,)-+∞上是增函数,又y kx k =-是恒过点(1,0)的直线,∴作()3x f x xe =与y kx k =-的图象如下:当直线y kx k =-与()3x f x xe =相切时, 设切点为(,3)x x xe ,3331xx x xe e xe x =+-,则x =,x =令()3x g x xe kx k =-+ 结合图象可知:(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩解得:2232k e e<故选:D【点睛】关键点睛:解答本题的关键是数形结合思想的灵活运用.作出两个函数的图象后,通过观察分析得到存在唯一的负整数01x =-,使得()00f x kx k <-,即(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩.3.D解析:D 【分析】求出()f x 的导数,可得0a ≤时函数单调递增,不满足题意,0a >时,利用()max 0f x >可得.【详解】可知()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=, 当0a ≤时,()0f x '≥恒成立,()f x 单调递增,则()f x 不可能有两个零点; 当0a >时,10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增;1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减,则()f x 在1x a=处取得极大值即最大值11ln 1f a a ⎛⎫=- ⎪⎝⎭,要满足()ln f x x ax =-有两个零点,则1ln 10a ->,解得10a e<<, 综上,10a e<<. 故选:D. 【点睛】方法点睛:本题考查利用导数研究函数的零点,根据零点个数求参数,一般如下步骤: (1)求出函数的定义域,求出函数的导数;(2)先讨论参数范围(以明显使得导数为正或负为参数界点讨论); (3)利用导数正负讨论函数单调性,得出极值或最值; (4)以极值或最值列出满足条件的等式或不等式,即可求出.4.A解析:A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥ ⎪⎝⎭,从而可求出实数a 的范围.【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-, 因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭, 故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤, 故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.5.D解析:D 【解析】试题分析:由f (x )在[-1,2]上是减函数,知f′(x )=3x 2+2bx+c≤0,x ∈[-1,2], 则f′(-1)=3-2b+c≤0,且f′(2)=12+4b+c≤0,⇒15+2b+2c≤0⇒b+c≤-152,故选D.考点:本题主要考查了函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.点评:解决该试题的关键是先对函数f (x )求导,然后令导数在[-1,2]小于等于0即可求出b+c 的关系,得到答案.6.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′,令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 7.B解析:B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x--≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.8.D解析:D 【解析】∵函数f(x)=(3-x 2)e x , ∴f′(x)=-2xe x +(3-x 2)e x =(3-2x-x 2)e x . 由f′(x)>0,得到f′(x)=(3-2x-x 2)e x >0, 即3-2x-x 2>0,则x 2+2x-3<0,解得-3<x <1, 即函数的单调增区间为(-3,1). 本题选择D 选项.9.D解析:D 【分析】利用三次函数()321233y x bx b x =++++的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题. 【详解】∵()321233y x bx b x =++++,∴222y x bx b '=+++, ∵函数是R 上的单调增函数,∴2220x bx b +++≥在R 上恒成立, ∴0∆≤,即244(2)0b b -+≤.∴12b -≤≤ 故选:D. 【点睛】本题考查根据导函数研究函数的单调性,属于中档题.可导函数在某一区间上是单调函数,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()'f x 在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式0∆≤来进行求解.10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.B解析:B 【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解. 【详解】构造()()g x f x x =+,则()()1g x f x ''=+, 又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=, 所以()(1)g e g <,即()0f e e +<,所以()f e e <-. 故选:B 【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.A解析:A 【分析】利用导数分析函数()f x 在区间()0,2上的单调性,由此可求得该函数在区间()0,2上的最大值. 【详解】()21ln 2f x x x =-,()211x f x x x x-'∴=-=.当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当12x <<时,()0f x '<,此时,函数()f x 单调递减. 所以,当()0,2x ∈时,()()max 112f x f ==-. 故选:A. 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数()f x 在区间[],a b 上单调,则()f a 与f b 一个为最大值,另一个为最小值;(2)若函数()f x 在区间[],a b 内有极值,则要求先求出函数()f x 在区间[],a b 上的极值,再与()f a 、f b 比大小,最大的为最大值,最小的为最小值;(3)若函数()f x 在区间[],a b 上只有唯一的极大点,则这个极值点就是最大(最小)值点,此结论在导数的实际应用中经常用到.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m >【分析】转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果. 【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点, 当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m > 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】引入函数求导后利用已知条件得即为增函数计算题设不等式又化为由单调性可求解最后再由正弦函数性质得出结论【详解】设则∴单调递增即为∴∴故答案为:【点睛】关键点点睛:本题考查用导数解函数不等式解题解析:52,266k k ππππ⎡⎤++⎢⎥⎣⎦k Z ∈ 【分析】引入函数2()()21g x f x x =+-,求导后利用已知条件得()0g x '>,即()g x 为增函数,计算102g ⎛⎫= ⎪⎝⎭,题设不等式又化为(sin )(0)g x g ≥,由单调性可求解.最后再由正弦函数性质得出结论. 【详解】设2()()21g x f x x =+-,则()()40g x f x x ''=+>,∴()g x 单调递增.2111210222g f ⎛⎫⎛⎫⎛⎫=+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 2(sin )cos2(sin )2sin 10f x x f x x -=+-≥即为1(sin )2g x g ⎛⎫≥ ⎪⎝⎭,∴1sin 2x ≥,∴522,66k x k k Z ππππ+≤≤+∈. 故答案为:52,266k k ππππ⎡⎤++⎢⎥⎣⎦k Z ∈【点睛】关键点点睛:本题考查用导数解函数不等式,解题关键是引入新函数2()()21g x f x x =+-,利用导数确定单调性,不等式转化为()g x 的不等式,从而求解.解题时要善于观察,分析如何引入函数,引入什么样的函数.15.a≥﹣1【分析】将函数f (x )在(0)上单调递减转化在(0)上恒成立即在(0)上恒成立再求最大值即可【详解】因为函数f (x )在(0)上单调递减所以在(0)上恒成立即在(0)上恒成立因为所以所以所以故解析:a ≥﹣1.【分析】 将函数f (x )cosx a sinx +=在(0,2π)上单调递减,转化()21cos 0sin a xf x x --'=≤在(0,2π)上恒成立 即1cos a x ≥-在(0,2π)上恒成立 再求1cos x -最大值即可.【详解】因为函数f (x )cosx asinx +=在(0,2π)上单调递减,所以()21cos 0sin a xf x x --'=≤在(0,2π)上恒成立 ,即1cos a x ≥-在(0,2π)上恒成立 ,因为0,2x π⎛⎫∈ ⎪⎝⎭, 所以()cos 0,1x ∈, 所以1(,1]cos x-∈-∞-, 所以1a ≥-.故答案为:1a ≥- 【点睛】本题主要考查了导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.16.【分析】利用在上恒成立等价于在上恒成立利用正弦函数的性质得出在的最小值即可得出的范围【详解】在上恒成立即在上恒成立则故答案为:【点睛】本题主要考查了由函数的单调性求参数的范围属于中档题 解析:[)1,-+∞【分析】利用()0f x '≥在0,2π⎡⎤⎢⎥⎣⎦4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立,利用4x π⎛⎫+ ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦的最小值,即可得出a 的范围. 【详解】()(sin )cos (sin cos )04x x x x f x e x a e x e x x a e x a π⎤⎛⎫'=++=++=++≥ ⎪⎥⎝⎭⎦在0,2π⎡⎤⎢⎥⎣⎦上恒成立4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立 0,2x π⎡⎤∈⎢⎥⎣⎦,3,444x πππ⎡⎤∴+∈⎢⎥⎣⎦sin 42x π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎣⎦,4x π⎛⎫⎡+∈ ⎪⎣⎝⎭则1,1a a ≥-≥- 故答案为:[)1,-+∞ 【点睛】本题主要考查了由函数的单调性求参数的范围,属于中档题.17.【分析】构造函数利用导数研究在区间的单调性由此求得实数的取值范围【详解】设函数在单调递增依题意的定义域为所以故故答案为:【点睛】本小题主要考查利用导数研究不等式属于中档题 解析:()2020,2022【分析】 构造函数()()()0f x g x x x=>,利用导数研究()g x 在区间()0,∞+的单调性,由此求得实数k 的取值范围. 【详解】 设函数()()()0f x g x x x=>,2()()()0xf x f x g x x='-'>, ()g x ∴在()0,∞+单调递增.依题意,()f x 的定义域为()0,∞+,所以20200,2020k k ->>,2(2020)(2020)(2)f k k f ⋅-<-⋅,(2020)(2)20202f k f k -∴<-,故020202k <-<,20202022k ∴<<. 故答案为:()2020,2022 【点睛】本小题主要考查利用导数研究不等式,属于中档题.18.【分析】构造函数利用导数求得的最小值进而求得线段长度的最小值【详解】构造函数则所以在上递增令解得所以在上递增在上递减所以的最小值为也即的最小值为故答案为:【点睛】本小题主要考查利用导数研究函数的最值 解析:()11ln 63+ 【分析】构造函数()()()()0h x f x g x x =->,利用导数求得()h x 的最小值,进而求得线段MN 长度的最小值. 【详解】构造函数()()()()32ln 0h x f x g x x x x =-=->,则()()'2''2116,120h x x h x x x x=-=+>, 所以()'h x 在()0,∞+上递增,令()'0h x =解得136x -==. 所以()h x 在130,6-⎛⎫ ⎪⎝⎭上递增,在136,-⎛⎫+∞ ⎪⎝⎭上递减, 所以()h x 的最小值为()3111333111626ln 6ln 61ln 6333h ---⎛⎫⎛⎫=⨯-=+=+ ⎪ ⎪⎝⎭⎝⎭.也即MN 的最小值为()11ln 63+. 故答案为:()11ln 63+ 【点睛】本小题主要考查利用导数研究函数的最值,考查化归与转化的数学思想方法,属于中档题.19.【分析】根据题意得到函数单调递增求导根据导数大于等于零得到构造求导得到单调区间计算函数最小值得到答案【详解】当时不等式即故函数单调递增恒成立即设故函数在上单调递减在上单调递增故故故答案为:【点睛】本解析:(,]4e-∞【分析】根据题意得到函数()()g x xf x =单调递增,求导根据导数大于等于零得到4xe a x≤,构造()4xe F x x=,求导得到单调区间,计算函数最小值得到答案. 【详解】当12x x <时,不等式1221()0()f x f x x x -<,即()()1122x f x x f x <, 故函数()()g x xf x =单调递增,()()22xg x xf x e ax ==-,()'40xg x e ax =-≥恒成立,即4xe a x≤,设()4xe F x x =,()()21'4x e x F x x-=,故函数在()0,1上单调递减,在()1,+∞上单调递增, 故()()min 14eF x F ==,故4e a ≤. 故答案为:(,]4e -∞. 【点睛】本题考查了根据函数的单调性求参数范围,意在考查学生的计算能力和应用能力,确定函数()()g x xf x =单调递增是解题的关键.20.【分析】求出函数的导数问题转化为和在上有2个交点根据函数的单调性求出的范围从而求出的范围即可【详解】若函数有两个极值点则和在上有2个交点时即递增时递减故(1)而恒成立所以故答案为:【点睛】本题考查了解析:2(0,)e. 【分析】求出函数的导数,问题转化为y a =和2()xxg x e =在R 上有2个交点,根据函数的单调性求出()g x 的范围,从而求出a 的范围即可. 【详解】()2x f x ae x '=-,若函数2()x f x ae x =-有两个极值点, 则y a =和2()xxg x e =在R 上有2个交点, 22()xxg x e -'=, (,1)x ∈-∞时,即()0g x '>,()g x 递增,(1,)x ∈+∞时,()0g x '<,()g x 递减,故()max g x g =(1)2e=, 而20x xe >恒成立,所以20a e<<, 故答案为:2(0,)e. 【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.三、解答题21.(1)2a >;(2)证明见解析. 【分析】(1)利用题中的条件函数有两个极值点,相当于导数等于零有两个解,对函数求导,对函数加以分析,最后求得结果;(2)构造相应的函数,研究函数的图像,找出其对应的最值,最后求得结果. 【详解】解:(1))(211x ax f x x a x x='-+=-+,即方程210x ax -+=有两相异正根,即方程1a x x =+有两相异正根,由1y x x=+图象可知2a >. (2)要证)(2132f x x <-,只要证2222113ln 22x ax x x -+<-, 1x 、2x 为方程210x ax -+=的两根,121=x x ,2221ax x =+.只要证)(2222221311ln 22x x x x -++<-;只要证3222213ln 22x x x x --+<-; 2x 为方程210x ax -+=的较大根,212ax >>. 令)()(32222221ln 12g x x x x x x =--+>. )()(222223ln 12g x x x x '=-+>,)()(222221301g x x x x =-+<'>';)(22223ln 2g x x x +'=-在)(1,+∞上单调减,所以)(()210g x g ''<<恒成立;)(2g x 在)(1,+∞上单调减,)(()2312g x g <=-.【点睛】:思路点睛:该题属于导数的综合题,在做题的过程中,紧紧抓住导数与函数性质的关系,导数大于零单调增,导数小于零,函数单调减,借用二阶导来进一步研究函数的性质,对于不等式的证明问题,注意转化为最值来处理. 22.(1)1b =;(2)答案见解析. 【分析】(1)求导求出函数的单调区间,比较(1),(1)f f -得到函数的最小值为65b -=-即得解;(2)先求导,再对a 分三种情况得到函数的单调性. 【详解】(1)()3224f x x x b =-+,所以()2682(34)f x x x x x '=-=-,令()>00f x x '∴<,;()<00f x x '∴>,; 所以函数的单调递增区间为[1,0]-,单调递减区间为[0,1], 因为(1)246,(1)2f b b f b -=--+=-=-, 所以()f x 在区间[]1,1-的最小值65,1b b -=-∴=. (2)()()26223f x x ax x x a '=-=-.令0f x ,得0x =或3ax =. 若0a >,则当(),0,3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,0f x ;当0,3⎛⎫∈ ⎪⎝⎭a x 时,0f x .故()f x 在,0,,3a ⎛⎫+∞⎪⎝⎭单调递增,在0,3a⎛⎫⎪⎝⎭单调递减; 若0a =,()f x 在(),-∞+∞单调递增;若0a <,则当(),0,3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,0fx ;当,03⎛⎫∈⎪⎝⎭a x 时,0f x .故()f x 在,3a ⎛⎫-∞ ⎪⎝⎭,0,单调递增,在,03⎛⎫⎪⎝⎭a 单调递减.【点睛】方法点睛:用导数求函数的单调区间步骤:求函数的定义域D →求导'()f x →解不等式'()f x >()<0得解集P →求D P ⋂,得函数的单调递增(减)区间.23.(1)()223f x x x =--;(2)有且只有一个根.【分析】(1)根据不等式的解集与方程根的对应关系,列出关于,a b 的方程组,从而求解出,a b 的值,则()f x 的解析式可求; (2)将问题转化为求方程34ln 20x x x---=根的数目,构造新函数()34ln 2g x x x x=---, 利用导数分析()g x 的单调性和极值,由此判断出()g x 的零点个数,从而方程()4ln f x x x =根的个数可确定.【详解】解:(1)∵不等式()0f x ≤的解集为[]1,3-, ∴20x ax b ++=的两个根分别为1-和3. ∴()()1313a b ⎧-=-+⎪⎨=-⨯⎪⎩.即2a =-,3b =-,故函数()f x 的解析式为()223f x x x =--.(2)由(1),设()22334ln 4ln 2x x g x x x x x x--=-=---,∴()g x 的定义域为()0,∞+,()()()2213341x x g x x x x--'=+-=, 令()0g x '=,得11x =,23x =.当x 变化时,()g x ',()g x 的取值变化情况如下表:当03x <≤时,140g x g ≤=-<, 当3x >时,()55553ee 202212290eg =--->--=>. 又因为()g x 在()3,+∞上单调递增,因而()g x 在()3,+∞上只有1个零点, 故()g x 仅有1个零点.即方程()4ln f x x x =有且只有一个根. 【点睛】思路点睛:利用导数分析方程根的个数的思路: (1)将方程根的个数问题转化为函数零点的个数问题;(2)将原方程变形,构造新函数,分析新函数的单调性、极值、最值;(3)根据新函数的单调性、极值、最值得到新函数的零点个数,则方程根的个数可确定. 24.(1) 3y x = (2) 1[,)2+∞(3)28(,)41ee +∞- 【分析】(1)求出f (x )的导数,求出f′(1),f (1),代入切线方程即可;(2)求出函数的导数,通过讨论a 的范围结合二次函数的性质得到函数的单调性,从而求出a 的具体范围;(3)构造函数ϕ(x )=f (x )﹣g (x ),x ∈[1,e],只需ϕ(x )max >0,根据函数的单调性求出ϕ(x )max ,从而求出a 的范围. 【详解】(1)解: 当1a =时,()142ln f x x x x =--,()1412ln13f =--=, ()212'4f x x x=+-, 曲线()f x 在点()()1,1f 处的斜率为()'13f =, 故曲线()f x 在点()()1,1f 处的切线方程为()331y x -=-,即3y x =(2)解: ()222242'4a ax x a f x a x x x-+=+-=. 令()242h x ax x a =-+,要使()f x 在定义域()0,+∞内是增函数,只需()h x ≥0在区间()0,+∞内恒成立. 依题意0a >,此时()242h x ax x a =-+的图象为开口向上的抛物线,()211444h x a x a a a ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,其对称轴方程为()10,4x a =∈+∞,()min 14h x a a =-,则只需14a a -≥0,即a ≥12时,()h x ≥0,()'f x ≥0,所以()f x 定义域内为增函数,实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.(3)解: 构造函数()()()x f x g x φ=-,[]1,x e ∈,依题意()max 0x φ>, 由(2)可知a ≥12时,()()()x f x g x φ=-为单调递增函数, 即()1642ln e x a x x x x φ⎛⎫=--- ⎪⎝⎭在[]1,e 上单调递增, ()()max 1480x e a e e φφ⎛⎫==--> ⎪⎝⎭,则2288214142eea e e e >>=>-,此时,()()()0e f e g e φ=->,即()()f e g e >成立. 当a ≤2841e e -时,因为[]1,x e ∈,140x x->, 故当x 值取定后,()x φ可视为以a 为变量的单调递增函数, 则()x φ≤281642ln 41e ex x e x x ⎛⎫--- ⎪-⎝⎭,[]1,x e ∈, 故()x φ≤281642ln 041e ee e e e e⎛⎫---= ⎪-⎝⎭, 即()f x ≤()g x ,不满足条件. 所以实数a 的取值范围是28,41e e ⎛⎫+∞ ⎪-⎝⎭. 【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题. 25.(1)()0f x =极大值,()3227f x -=极小值.(2)(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭【分析】(1)首先求出函数的导函数,求出函数在()()1,1f 处的切线方程,由点()2,4过切线,即可得到321b c +=,再由函数的一个极值点为1-则()'1320f b c -=-+=,即可求出函数解析式,最后利用导数求出函数的极值;(2)依题意可得函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点,结合函数图象,即可得解; 【详解】解:(1)∵()2'32f x x bx c =++,∴()'132f b c =++,∴()f x 的图象在()()1,1f 处的切线方程为()()()321y b c b c x -+=++-. ∵该切线经过点()2,4,∴()()()43221b c b c -+=++-,即321b c +=①.又∵()f x 的一个极值点为-1,∴()'1320f b c -=-+=②. 由①②可知1b =,1c =-,故()321f x x x x =+--.()2'321f x x x =+-,令()'0f x =,得1x =-或13x =.当x 变化时,()'f x ,()f x 的变化情况如下表:故()()10f x f =-=极大值,()327f x f ⎛⎫==-⎪⎝⎭极小值. (2)∵方程()0f x m -=在[]22-,上恰有一个实数根, ∴函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点. ∵()23f -=-,()29f =,结合函数()f x 的图象,∴(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭.【点睛】本题考查利用导数研究函数的极值,函数与方程思想,数形结合思想的应用,属于中档题. 26.(1)210x y -+=;(2)4927. 【分析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程。
新北师大版高中数学高中数学选修2-2第三章《导数应用》检测卷(包含答案解析)(3)
一、选择题1.已知函数()3sin f x x x ax =+-,则下列结论错误的是( )A .()f x 是奇函数B .若0a =,则()f x 是增函数C .当3a=-时,函数()f x 恰有三个零点D .当3a =时,函数()f x 恰有两个极值点 2.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<3.已知函数()3ln f x x x =-与()3g x x ax =-的图像上存在关于x 轴的对称点,则实数a的取值范围为( ) A .()e -∞,B .1e ⎛⎤-∞ ⎥⎝⎦,C .(]e -∞, D .1e ⎛⎫-∞ ⎪⎝⎭,4.f (x )是定义在R 上的偶函数,当x <0时,f (x )+x •f '(x )<0,且f (﹣3)=0,则不等式f (x )>0的解集为( ) A .(﹣3,0)∪(3,+∞) B .(﹣3,0)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣∞,﹣3)∪(0,3) 5.函数y =x 3+x 的递增区间是( ) A .(0,+∞) B .(-∞,1) C .(-∞,+∞)D .(1,+∞)6.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为( ) A .1,4⎛⎫-∞-⎪⎝⎭ B .1,4⎛⎫-+∞ ⎪⎝⎭ C .1,8⎛⎫-+∞ ⎪⎝⎭D .1,8⎛⎫-∞- ⎪⎝⎭7.已知()321233y x bx b x =++++是R 上的单调增函数,则b 的取值范围是( ) A . 1b <-或2b > B .1,b ≤-或b 2≥C .12b -<<D .12b -≤≤8.若1201x x ,则( )A .2121ln ln xxe e x x ->-B .2121ln ln x x e e x x -<-C .1221xxx e x e > D .1221xxx e x e < 9.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃10.若121x x >>,则( ) A .1221xxx e x e > B .1221x xx e x e < C .2112ln ln x x x x >D .2112ln ln x x x x <11.如果不等式3310x ax ++≥对于[]1,1x ∈-恒成立,则实数a 的取值范围是( )A.⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C.2,3⎡-⎢⎣⎦D .2,3⎛⎤-∞- ⎥⎝⎦12.已知函数22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩函数()()g x f x m =-有两个零点,则实数m 的取值范围为( )A .28,e ⎛⎫-∞ ⎪⎝⎭B .28,4e ⎛⎤⎥⎝⎦C .[)28,4,e ⎛⎫-∞⋃+∞ ⎪⎝⎭ D .280,e ⎛⎫ ⎪⎝⎭二、填空题13.已知函数1()cos ,()(0)2axf x xg x e a a π==-+≠,若1x ∃、2[0,1]x ∈,使得()()12f x g x =,则实数a 的取值范围为________.14.已知关于x 的方程20--=x e x k 有2个不相等的实数根,则k 的取值范围是___________.15.现有一块边长为3的正方形铁片,在铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,则该方盒容积的最大值是______. 16.321313y x x x =--+的极小值为______. 17.已知函数()321213f x x x ax =+-+,若函数()f x 在()2,2-上有极值,则实数a 的取值范围为______.18.设函数()22ln f x x x x =+-,若关于x 的方程()2f x x x a =++在(]0,2上恰有两个相异实根,则实数a 的范围是______.19.已知函数()32sin f x x x =-,若2(3)(3)0f a a f a -+-<,则实数a 的取值范围是__________.20.若函数()2ln 12f x x mx x -+=有极值,则函数()f x 的极值之和的取值范围是________. 三、解答题21.已知函数()()ln 0af x x a a x=-+>. (1)若曲线()y f x =在点()()1,1f 处与x 轴相切,求a 的值; (2)求函数()f x 在区间()1,e 上的零点个数;(3)若1x ∀、()21,x e ∈,()()()12120x x f x f x ⎡⎤-->⎣⎦,试写出a 的取值范围.(只需写出结论) 22.已知函数()f x 的图象在[,]a b 上连续不断,定义:1()min{()|}f x f t a t x =≤≤([,])x a b ∈, 2()max{()|}f x f t a t x =≤≤([,])x a b ∈.其中,min{()|}f x x D ∈表示函数()f x 在D 上的最小值,max{()|}f x x D ∈表示函数()f x 在D 上的最大值.若存在最小正整数k ,使得21()()()f x f x k x a -≤-对任意的[,]x a b ∈成立,则称函数()f x 为[,]a b 上的“k 阶收缩函数”.(Ⅰ)若()cos f x x =,[0,]x π∈,试写出1()f x ,2()f x 的表达式;(Ⅱ)已知函数2()f x x =,[1,4]x ∈-,试判断()f x 是否为[1,4]-上的“k 阶收缩函数”,如果是,求出对应的k ;如果不是,请说明理由;(Ⅲ)已知0b >,函数32()3f x x x =-+是[0,]b 上的2阶收缩函数,求b 的取值范围. 23.已知2()2ln f x x x =- (1)求()f x 的最小值; (2)若21()2f x tx x ≥-在(]0,1x ∈内恒成立,求t 的取值范围. 24.已知函数f(x)=12x 2+lnx. (1)求函数f(x)的单调区间; (2)求证:当x>1时,12 x 2+lnx<23x 3. 25.已知函数()ln ()af x x a R x=+∈. (1)讨论函数()f x 的单调性;(2)当0a >时,若函数()f x 在[1,]e 上的最小值是2,求a 的值. 26.设函数21()2x f x x e =. (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】对A,根据奇函数的定义判定即可. 由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥,所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,将a 的值代入分别计算分析,可判断选项B ,C ,D【详解】对A, ()3sin f x x x ax =+-的定义域为R ,且()()()3sin f x x x ax -=-+-+3sin ()x x ax f x =--+=-.故A 正确.由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''= 所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-对B, 当0a =时,()2'cos 30f x x x =+>,所以()f x 是增函数,故B 正确.对C,当3a=-时,由上可知, ()()014f x f a ''≥=-=,所以()f x 是增函数,故不可能有3个零点.故C 错误.对D,当3a =时,()2cos 33f x x x '=+-,由上可知在()0-∞,上单调递减,在()0+∞,上单调递增.则()()min 0132f x f ''==-=-,()1cos10f '-=>,()1cos10f '=>所以存在()()121,0,0,1x x ∈-∈,使得()10fx '=,()20f x '=成立则在()1,x -∞上,()0f x '>,在()12,x x 上,()0f x '<,在()2,x +∞上,()0f x '>.所以函数()3sin 3f x x x x =+-在()1,x -∞单调递增,在()12,x x 的单调递减,在()2,x +∞单调递增.所以函数()f x 恰有两个极值点,故D 正确.故选:C 【点睛】关键点睛:本题主要考查利用导数分析函数的单调性从而得出函数的零点和极值情况,解答本题的关键是对原函数的单调性分析,由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,经过多次求导分析出单调性,属于中档题. 2.D解析:D 【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x -=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=,而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.3.B解析:B 【分析】由题中对称知f (x )=﹣g (x )有解,即lnx a x =在(0,+∞)有解,令()lnxh x x=,求函数导数,分析单调性可得值域,进而可得解.函数f (x )=lnx ﹣x 3与g (x )=x 3﹣ax 的图象上存在关于x 轴的对称点, ∴f (x )=﹣g (x )有解, ∴lnx ﹣x 3=﹣x 3+ax , ∴lnx =ax ,即lnxa x=在(0,+∞)有解, 令()lnx h x x =,则()1'lnxh x x-=. 当()()()0,,0,?x e h x h x >'∈单调递增; ()()(),,0?x e h x h x ∈+'∞<,单调递减.()()1max h x h e e==,且()0,x h x →→-∞,所以1a e≤. 故选B. 【点睛】本题主要考查了利用导数研究方程的根,涉及函数对称的处理,考查了计算能力,属于中档题.4.B解析:B 【分析】构造函数()()g x xf x =,根据条件确定()g x 奇偶性与单调性,最后根据单调性解不等式. 【详解】令()()g x xf x =,因为f (x )是定义在R 上的偶函数,所以g (x )是定义在R 上的奇函数,当x <0时,()()()0g x f x xf x ''=+<,即()g x 在(,0)-∞上单调递减,又(0)0g = 因此()g x 在(0,)+∞上单调递减,因为f (﹣3)=0,所以(3)0(3)0g g -=∴=, 当(3,0)x ∈-时,()(3)0()0,()0g x g xf x f x <-=∴<>; 当(,3)x ∈-∞-时,()(3)0()0,()0g x g xf x f x >-=∴><; 当(0,3)x ∈时,()(3)0()0,()0g x g xf x f x >=∴>>; 当(3,)x ∈+∞时,()(3)0()0,()0g x g xf x f x <=∴<<; 综上,不等式f (x )>0的解集为(﹣3,0)∪(0,3) 故选:B 【点睛】本题考查函数奇偶性、单调性、利用单调性解不等式,考查综合分析求解能力,属中档题.5.C解析:Cy ′=3x 2+1>0对于任何实数都恒成立.6.C解析:C 【分析】先假设函数()f x 不存在增区间,则()f x 单调递减,利用()f x 的导数恒小于零列不等式,将不等式分离常数后,利用配方法求得常数a 的取值范围,再取这个取值范围的补集,求得题目所求实数a 的取值范围. 【详解】若函数()f x 不存在增区间,则函数()f x 单调递减, 此时()1210f x ax x'=+-≤在区间()0,∞+恒成立, 可得2112a x x ≤-,则22111111244x x x ⎛⎫-=--≥- ⎪⎝⎭,可得18a ≤-,故函数存在增区间时实数a 的取值范围为1,8⎛⎫-+∞ ⎪⎝⎭.故选C. 【点睛】本小题主要考查利用导数研究函数的单调性,考查不等式恒成立问题的求解策略,属于中档题.7.D解析:D 【分析】利用三次函数()321233y x bx b x =++++的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题. 【详解】∵()321233y x bx b x =++++,∴222y x bx b '=+++, ∵函数是R 上的单调增函数,∴2220x bx b +++≥在R 上恒成立, ∴0∆≤,即244(2)0b b -+≤.∴12b -≤≤ 故选:D. 【点睛】本题考查根据导函数研究函数的单调性,属于中档题.可导函数在某一区间上是单调函数,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()'f x 在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式0∆≤来进行求解.8.C【分析】令()x e f x x=,(01)x <<,()()ln 01xg x e x x =-<<,求出函数的导数,通过讨论x的范围,求出函数的单调区间,从而判断结论. 【详解】令()x e f x x =,(01)x <<,则2(1)()0x e x f x x -'=<,故()f x 在(0,1)递减,若1201x x ,则12()()f x f x >,故1212x x e e x x >,即1221x xx e x e >,故C 正确,D 不正确; 令()()ln 01xg x e x x =-<<,则11()x xxe g x e x x-'=-=,令()1x h x xe =-,可知()h x 在()0,1单调递增,且(0)10,(1)10h h e =-<=->,则存在()00,1x ∈,使得0()0h x =, 则当()00,x x ∈时,()0h x <,即()0g x '<,()g x 在()00,x 单调递减, 当()0,1x x ∈时,()0h x >,即()0g x '>,()g x 在()0,1x 单调递增, 所以()g x 在()0,1不单调,故A ,B 错误. 故选:C. 【点睛】本题考查了函数的单调性问题,考查导数的应用,是一道中档题.9.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.10.A解析:A 【分析】根据条件构造函数,再利用导数研究单调性,进而判断大小. 【详解】①令()()1x e f x x x =>,则()()21'0x x e f x x-=>,∴()f x 在1,上单调递增,∴当121x x >>时,1212x x e e x x >,即1221x xx e x e >,故A 正确.B 错误. ②令()()ln 1x g x x x =>,则()21ln 'xg x x-=,令()0g x =,则x e =, 当1x e <<时,()'0g x >;当x e >时,()'0g x <,∴()g x 在()1,e 上单调递增, 在(),e +∞上单调递减,易知C ,D 不正确, 故选A . 【点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题.11.A解析:A 【分析】分0x =、10x -≤<、01x <≤三种情况讨论,利用参变量分离法计算出实数a 在各种情况下的取值范围,综合可得出实数a 的取值范围. 【详解】由已知,不等式3310x ax ++≥对于[]1,1x ∈-恒成立. ①当0x =时,则有10≥恒成立,此时a R ∈; ②当10x -≤<时,由3310x ax ++≥可得213a x x≤--, 令()21f x x x =--,()32211220x f x x x x-'=-+=>, 所以,函数()f x 在区间[)1,0-上为增函数,则()()min 10f x f =-=,则30a ≤,得0a ≤;③当01x <≤时,由3310x ax ++≥可得213a x x≥--, 令()32120x f x x -'==可得x =,列表如下:此时,函数()f x在x =处取得极大值,亦即最大值,即()2maxf x =-=⎝⎭3a ∴≥2a ≥-.综上所述,实数a的取值范围是⎡⎤⎢⎥⎣⎦.故选:A. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.12.D解析:D 【分析】函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x ex x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22xx xf x e+=对其求导判断单调性,作出()y f x =的图象,数形结合即可求解. 【详解】令()()0g x f x m =-=可得()f x m =,所以函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22x x x f x e +=,()()()2222222x x x x x e e x x x f x e e+-+-'==, 当2x >时()220xx f x e-'=<,()f x 单调递减, 当2x ≤时,()2f x x =+单调递增,所以()f x 图象如图所示:当2x =时,()22222282f e e+⨯==,所以280x e <<, 故选:D 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、填空题13.【分析】根据余弦型函数的性质求出当时函数的值域分类讨论利用指数型函数的性质求出函数在时的值域然后根据存在的定义进行求解即可【详解】因为所以因此在时单调递减所以有当时函数是单调递增函数当时即因为使得所解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】根据余弦型函数的性质求出当1[0,1]x ∈时,函数()1y f x =的值域,分类讨论利用指数型函数的性质,求出函数()2y g x =在2[0,1]x ∈时的值域,然后根据存在的定义进行求解即可. 【详解】因为1[0,1]x ∈,所以1[0,]x ππ∈,因此1()f x 在1[0,1]x ∈时,单调递减, 所以有11(1)()(0)1()1f f x f f x ≤≤⇒-≤≤.当0a >时,函数1()2axg x e a =-+是单调递增函数,当2[0,1]x ∈时, ()2(0)(1)g g x g ≤≤,即231()22a a g x e a -≤≤-+, 因为1x ∃、2[0,1]x ∈,使得()()12f x g x =,所以有:()3121112a a e a ⎧-≤⎪⎪⎨⎪-+≥-⎪⎩, 令'1()(0)()12aa h a e a a h a e =-+>⇒=-, 因为0a >,所以'()0h a >,因此函数 ()h a 单调递增, 所以有3()(0)2h a h >=,因此不等式组(1)的解集为:12a ≥,而0a >,所以12a ≥;当0a <时,函数1()2axg x e a =-+是单调递减函数,当2[0,1]x ∈时, ()2(1)(0)g g x g ≤≤,即213()22a e a g x a -+≤≤-, 因为1x ∃、2[0,1]x ∈,使得()()12f x g x =,所以有()1122312ae a a ⎧-+≤⎪⎪⎨⎪-≥-⎪⎩:, 令'1()(0)()12aa h a e a a h a e =-+<⇒=-, 因为0a <,所以'()0h a <,因此函数 ()h a 单调递减, 所以有3()(0)2h a h >=,因此不等式组 (2)的解集为空集, 综上所述:12a ≥. 故答案为:1,2⎡⎫+∞⎪⎢⎣⎭【点睛】关键点睛:根据不等式112ae a -+≥构造新函数,利用导数求出新函数的最小值是解题的关键.14.【分析】把关于x 的方程有2个不相等的实数根转化为与函数的图象有两个不同的交点利用导数求得函数的单调性与极值即可求解【详解】由题意关于x 的方程有2个不相等的实数根即函数与函数的图象有两个不同的交点设则 解析:(22ln2,)-+∞【分析】把关于x 的方程20--=x e x k 有2个不相等的实数根,转化为y k =与函数2x y e x =-的图象有两个不同的交点,利用导数求得函数()2x f x e x =-的单调性与极值,即可求解. 【详解】由题意,关于x 的方程20--=x e x k 有2个不相等的实数根, 即函数y k =与函数2x y e x =-的图象有两个不同的交点,设()2x f x e x =-,则()2x f x e '=-,令()20x f x e '=-=,解得ln 2x =, 所以函数的减区间为(,ln 2)-∞,增区间为(ln 2,)+∞, 所以函数()f x 的最小值为(ln 2)22ln 2f =-,且当x →-∞时,()f x →+∞,当x →∞时,()f x →+∞, 要使得2x e x k -=有2个不相等的实数根,所以22ln 2k >-. 即实数k 的取值范围是(22ln2,)-+∞. 故答案为:(22ln2,)-+∞. 【点睛】本题主要考查了利用导数研究方程的根,其中解答中把方程根的个数转化为两个函数的图象的交点的个数,利用导数求得函数的单调性与极值是解答的关键,着重考查转化思想,以及运算与求解能力.15.【分析】根据题意得到方盒底面是正方形边长为高为建立方盒容积的函数模型为再用导数法求解最值【详解】由题意得:方盒底面是正方形边长为高为所以方盒的容积为当时时所以当时取得最大值最大值为2故答案为:2【点 解析:2【分析】根据题意得到方盒底面是正方形,边长为32x -,高为x ,建立方盒容积的函数模型为()2323324129,02V x x x x x x =-⨯=-+<<,再用导数法求解最值. 【详解】由题意得:方盒底面是正方形,边长为32x -,高为x ,所以方盒的容积为()2323324129,02V x x x x x x =-⨯=-+<<, 213122491222V x x x x ⎛⎫⎛⎫'=-+=-- ⎪⎪⎝⎭⎝⎭,当102x <<时,0V '>,1322x <<时,0V '<,所以当12x =时,V 取得最大值,最大值为2. 故答案为:2 【点睛】本题主要考查导数的实际问题中的应用,还考查了运算求解的能力,属于中档题.16.【分析】求导根据导数正负得到函数单调区间得到函数的极小值为计算得到答案【详解】则当和时函数单调递增;当时函数单调递减故函数极小值为故答案为:【点睛】本题考查了利用导数求极值意在考查学生的计算能力和应 解析:8-【分析】求导,根据导数正负得到函数单调区间得到函数的极小值为()3f ,计算得到答案. 【详解】()321313y f x x x x ==--+,则()()()2'2331f x x x x x =--=-+, 当()3,x ∈+∞和(),1x ∈-∞-时,()'0f x >,函数单调递增; 当()1,3x ∈-时,()'0f x <,函数单调递减, 故函数极小值为()32313333183f ⨯--⨯+=-=. 故答案为:8-. 【点睛】本题考查了利用导数求极值,意在考查学生的计算能力和应用能力.17.【分析】求出函数的导数利用函数的极值点转化列出不等式求解即可【详解】解:可得导函数的对称轴为x =﹣1f (x )在(﹣22)上有极值可得或可得或解得故答案为:【点睛】本题考查函数的导数的应用函数的极值的解析:1,42⎛⎫- ⎪⎝⎭【分析】求出函数的导数,利用函数的极值点,转化列出不等式求解即可. 【详解】 解:()321213f x x x ax =+-+, 可得()'222fx x x a =+-,导函数的对称轴为x =﹣1,f (x )在(﹣2,2)上有极值,可得(2)0(1)0f f >⎧⎨-<''⎩或(2)0(1)0f f ->⎧⎨-<''⎩,可得44201220a a +->⎧⎨--<⎩或44201220a a -->⎧⎨--<⎩,解得1,42a ⎛⎫∈-⎪⎝⎭. 故答案为:1,42⎛⎫- ⎪⎝⎭.【点睛】本题考查函数的导数的应用,函数的极值的求法,考查转化思想以及计算能力.18.【分析】根据题意得转化为直线和函数的图像有两个不同的交点利用导数研究函数的单调性和最值即可得出实数a 的范围【详解】由及得令根据题意可得:直线和函数的图像有两个不同的交点令得此时函数单调递减令得此时函 解析:(]1,2ln 2-【分析】根据题意得ln a x x =-,转化为直线y a =和函数()ln g x x x =-,(]0,2x ∈的图像有两个不同的交点,利用导数研究函数()g x 的单调性和最值,即可得出实数a 的范围. 【详解】由()22ln f x x x x =+-及()2f x x x a =++,得ln a x x =-,令()ln g x x x =-,根据题意可得:直线y a =和函数()ln g x x x =-,(]0,2x ∈的图像有两个不同的交点,1()1g x x'=-, 令()0g x '<,得01x <<,此时函数()g x 单调递减, 令()0g x '>,得12x <≤,此时函数()g x 单调递增,所以,当1x =时,函数()ln g x x x =-,(]0,2x ∈取得最小值,值为(1)1g =, 又(2)2ln 2g =-,且当210x e <<时, 2211()22ln 2g x g e e⎛⎫>=+>- ⎪⎝⎭,故当12ln 2a <≤-时,直线y a =和函数()ln g x x x =-,(]0,2x ∈的图像有两个不同的交点,所以实数a 的范围是(]1,2ln 2-. 故答案为:(]1,2ln 2-. 【点睛】本题主要考查的是函数零点问题,本题解题的关键是转化为两函数图像的交点问题,利用导数研究函数的单调性和最值,考查学生的分析问题能力,是中档题.19.(13)【分析】确定函数为奇函数增函数化简得到解得答案【详解】函数为奇函数函数单调递增即即解得故答案为:【点睛】本题考查了利用函数的单调性和奇偶性解不等式意在考查学生对于函数性质的灵活运用解析:(1,3) 【分析】确定函数为奇函数,增函数,化简得到233a a a -<-,解得答案. 【详解】()32sin f x x x =-,()()32sin f x x x f x -=-+=-,函数为奇函数,'()32cos 0f x x =->,函数单调递增,2(3)(3)0f a a f a -+-<,即2(3)(3)(3)f a a f a f a -<--=-,即233a a a -<-,解得13a <<. 故答案为:()1,3. 【点睛】本题考查了利用函数的单调性和奇偶性解不等式,意在考查学生对于函数性质的灵活运用.20.【分析】先求导方程在上有根求出的范围根据韦达定理即可化简根据的范围即可求出【详解】解:的定义域是存在极值在上有根即方程在上有根设方程的两根为即故函数的极值之和的取值范围是故答案为:【点睛】本题考查了 解析:(,3)-∞-【分析】先求导,方程210x mx -+=在(0,)+∞上有根求出m 的范围,根据韦达定理即可化简12()()f x f x +,根据m 的范围即可求出.【详解】 解:()f x 的定义域是(0,)+∞,211()x mx f x x m x x-+'=-+=,()f x 存在极值,()0f x ∴'=在(0,)+∞上有根,即方程210x mx -+=在(0,)+∞上有根. 设方程210x mx -+=的两根为1x ,2x ,∴240m ∆=->,120x x m +=>,121=x x即2m >22121212121()()()()()2f x f x x x m x x lnx lnx ∴+=+-+++,2121212121()()2x x x x m x x lnx x =+--++, 22112m m =--,21132m =--<-, 故函数()f x 的极值之和的取值范围是(,3)-∞- 故答案为:(,3)-∞- 【点睛】本题考查了导数函数极值的关系,以及韦达定理及二次函数的性质,考查了分析问题解决问题的能力,属于中档题三、解答题21.(1)1a =;(2)答案见解析;(3)(][)0,1,e +∞.【分析】(1)由题意可得()10f '=,由此可解得实数a 的值; (2)求得()2x af x x-'=,对实数a 的取值进行分类讨论,分析函数()f x 在区间()1,e 上的单调性,结合零点存在定理可得出结论; (3)根据(2)中的讨论可写出实数a 的取值范围. 【详解】(1)()221a x af x x x x'-=-=, 因为()y f x =在点()()1,1f 处与x 轴相切,且()10f =, 所以()110f a '=-=,解得1a =. 经检验1a =符合题意; (2)由(1)知()2x af x x-'=,令()0f x '=,得x a =. (i )当01a <≤时,()1,x e ∈,()0f x '>,函数()f x 在区间()1,e 上单调递增, 所以()()10f x f >=, 所以函数()f x 在区间()1,e 上无零点;(ii )当1a e <<时,若1x a <<,则()0f x '<,若a x e <<,则()0f x '>. 函数()f x 在区间()1,a 上单调递减,在区间(),a e 上单调递增, 且()10f =,()1ea f e a =-+. 当()10af e a e=-+>,即11e a e <<-时,函数()f x 在区间()1,e 上有一个零点;当()10af e a e=-+≤时,即当e e e 1a <-≤时,函数()f x 在区间()1,e 上无零点; (iii )当a e ≥时,()1,x e ∈,()0f x '<,函数()f x 在区间()1,e 上单调递减, 所以()()10f x f <=, 所以函数()f x 在区间()1,e 上无零点.综上:当01a <≤或ee 1a ≥-时,函数()f x 在区间()1,e 上无零点; 当11ea e <<-时,函数()f x 在区间()1,e 上有一个零点. (3)01a <≤或a e ≥. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.22.(1)1()cos ,[0,]f x x x π=∈,2()1,[0,]f x x π=∈. (2)存在4k =,使得()f x 是[-1,4]上的“4阶收缩函数”.(31b <≤ 【解析】试题分析:(1)根据()f x 的最大值可求出1()f x ,2()f x 的解析式;(2)根据函数2()f x x =,[14]x ∈-,上的值域,先求出1()f x ,2()f x 的解析式,再根据21()()()f x f x k x a -≤-求出k 的取值范围得到答案.(3)先对函数()f x 求导判断函数的单调性,进而写出1()f x ,2()f x 的解析式,然后再由21()()()f x f x k x a -≤-求出k 的取值范围. 试题(1)由题意可得:()1cos f x x =,[]0x π∈,,()21f x =,[]0x π∈,. (2)()[)[]2110004x x f x x ⎧∈-⎪=⎨∈⎪⎩,,,,,()[)[]2211114x f x x x ⎧∈-⎪=⎨∈⎪⎩,,,,,()()[)[)[]221211010114x x f x f x x x x ⎧-∈-⎪-=∈⎨⎪∈⎩,,,,,,当[]10x ,∈-时,()211x k x -≤+,∴1k x ≥-,2k ≥; 当()01x ∈,时,()11k x ≤+,∴11k x ≥+,∴1k ≥; 当[]14x ∈,时,()21x k x ≤+,∴21x k x ≥+,165k ≥综上所述,165k ≥.即存在4k =,使得()f x 是[]14-,上的“4阶收缩函数”. (3)()()23632f x x x x x =-+'=--,令()0f x '=得0x =或2x =.函数()f x 的变化情况如下:令0f x =得0x =或3x =.(1)当2b ≤时,()f x 在[]0b ,上单调递增,因此,()()3223f x f x x x ==-+,()()100f x f ==.因为()323f x x x =-+是[]0b ,上的“二阶收缩函数”,所以,①()()()2120f x f x x -≤-,对[]0x b ,∈恒成立; ②存在[]0x b ,∈,使得()()()210f x f x x ->-成立. ①即:3232x x x -+≤对[]0x b ,∈恒成立,由3232x x x -+≤解得01x ≤≤或2x ≥. 要使3232x x x -+≤对[]0x b ,∈恒成立,需且只需01b <≤. ②即:存在[]0x b ,∈,使得()2310x x x -+<成立.由()2310x x x -+<解得0x <或3322x <<.所以,只需32b >.综合①②1b <≤ (2)当23b <≤时,()f x 在[]02,上单调递增,在[]2b ,上单调递减,因此,()()224f x f ==,()()100f x f ==,()()214f x f x -=,0x x -=,显然当0x =时,()()()2120f x f x x -≤-不成立,(3)当3b >时,()f x 在[]02,上单调递增,在[]2b ,上单调递减,因此,()()224f x f ==,()()10f x f b =<,()()()2144f x f x f b -=->,0x x -=,显然当0x =时,()()()2120f x f x x -≤-不成立.综合(1)(2)(31b <≤. 23.(1)1 ;(2)(],1-∞. 【分析】(1)先求函数的导函数,求出函数的极值,并将它与函数的端点值进行比较即可.(2)要求若21()2f x tx x ≥-在(]0,1x ∈内恒成立,即转化为312ln 2xt x x x≤+-在(]0,1x ∈内恒成立,只需求312ln ()xh x x x x=+-(]0,1x ∈内的最小值即可. 【详解】(1)函数的定义域为()0,∞+设()()2112()2x x f x x x x+-'=-=, 由()0f x '>得:1x >,由()0f x '<得:01x <<,所以()f x 在()0,1单调递减,在()1,+∞单调递增,min ()(1)1f x f ==,(2)若21()2f x tx x ≥-在(]0,1x ∈内恒成立, 可得312ln 2x t x x x≤+-在(]0,1x ∈内恒成立, 令312ln ()x h x x x x =+-,4224232ln ()x x x xh x x--+'=, 因为(]0,1x ∈,所以430x -<,220x -<,22ln 0x x <,40x >, 所以()0h x '<,可得()h x 在()0,1上单调递减, 所以当1x =时,312ln ()xh x x x x=+-有最小值2, 得22t ≤,所以1t ≤, 故t 的取值范围是(],1-∞, 【点睛】本题主要考查了利用导数求闭区间上函数的最值,以及求函数恒成立问题,属于基础题. 24. (1) f(x)的单调增区间为(0,+∞) (2)略 【分析】(1)对函数求导,根据定义域,即可判断其单调性,从而知单调区间. (2)证明当x>1时,2312ln 23x x x +<,只需证当x>1时,3221ln 032x x x -->, 可设3221()ln 32g x x x x =--,只需证明1x >时,()0>g x ,因此,利用导数研究()g x 的单调性,得出()(1)0g x g >>,结论得证. 【详解】(1)依题意知函数的定义域为{x|x>0},∵f′(x)=x +,故f′(x)>0,∴f(x)的单调增区间为(0,+∞).(2)设g(x)=x 3-x 2-lnx ,∴g′(x)=2x 2-x -,∵当x>1时,g′(x)=>0,∴g(x)在(1,+∞)上为增函数,∴g(x)>g(1)=>0,∴当x>1时, x 2+lnx<x 3.【点睛】(1)求函数的单调区间,首先要考虑函数的定义域,然后求导,导函数大于0,可求单调递增区间,导函数小于0,可求单调递减区间.对于单调函数只需说明导函数大于0(小于0)即可.(2)证明不等式一般是证明与函数有关的不等式在某个范围内成立,解题时可转化为求函数最值(或值)的问题处理.25.(1)见解析;(2),a e =.【分析】(1)求得()2x a f x x ='-,分类讨论,即可求解函数的单调性; (2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,分1a e <<和a e ≥两种情况讨论,求得函数的最小值,即可求解.【详解】(1)定义域为()0,+∞,求得()221a x a f x x x x='-=-, 当0a ≤时,()0f x '>,故()f x 在()0,+∞单调递增 ,当0a >时,令()0f x '=,得 x a =,所以当()0,x a ∈时,()0f x '<,()f x 单调递减 当(),x a ∈+∞时,()0f x '>,()f x 单调递增.(2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,所以 ()()min 12f x f a ===(舍去),当1a e <<时,由(1)知()f x 在[]1,a 单调递减,在[],a e 单调递增所以()()min ln 12f x f a a ==+=,解得a e = (舍去),当a e ≥时,由(1)知()f x 在[]1,e 单调递减,所以()()min ln 12a a f x f e e e e==+=+=,解得a e = , 综上所述,a e =.【点睛】本题主要考查了导数在函数中的应用,其中解答中熟记函数的导数与函数的关系,准确判定函数的单调性,求得函数的最值是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.26.(1)(,2)(0,)()f x -∞-+∞和为的增区间,(2,0)()f x -为的减区间. (2)m <0 .【详解】解:(1)21()(2)22xxx e f x xe x e x x '=+=+ 令(2)0,02,(,2)(0,)()2xe x x x xf x +>><-∴-∞-+∞或和为的增区间, (2)0,20,(2,0)()2xe x x xf x +<-<<∴-为的减区间. (2)x ∈[-2,2]时,不等式f (x )>m 恒成立等价于min ()f x >m, 令:21()(2)022xxx e f x xe x e x x =+'=+= ∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点2222(2),(2)2,(0)0,()[0,2]f f e f f x e e -===∴∈, ∴m <0。
新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(答案解析)(3)
一、选择题1.设函数()3xf x xe =,若存在唯一的负整数0x ,使得()00f x kx k <-,则实数k 的取值范围是( ) A .23,0e ⎡⎫-⎪⎢⎣⎭B .30,2e ⎡⎫⎪⎢⎣⎭C .236,e e ⎛⎫--⎪⎝⎭D .223,2e e ⎡⎫⎪⎢⎣⎭2.已知函数()2ln f x x ax x =-+有两个不同的零点,则实数a 的取值范围是( )A .0,1B .(),1-∞C .0,D .11,e ⎛⎫ ⎪⎝⎭3.已知函数()3sin f x x x ax =+-,则下列结论错误的是( ) A .()f x 是奇函数B .若0a =,则()f x 是增函数C .当3a=-时,函数()f x 恰有三个零点D .当3a =时,函数()f x 恰有两个极值点4.已知函数()ln f x x x =-,则()f x 的图象大致为( )A .B .C .D .5.已知函数32()f x x bx cx d =+++在区间[1,2]-上是减函数,那么b c + ( ) A .有最小值152 B .有最大值152 C .有最小值152- D .有最大值152-6.函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .[1,)+∞D .(1,)+∞7.设函数()f x 在R 上存在导数()f x ',对任意的x ∈R ,有()()2f x f x x +-=,且在[)0,+∞上有()f x x '>.若()()222f k f k k --≥-,则k 的取值范围是( )A .(],0-∞B .(],1-∞C .1,22⎡⎤⎢⎥⎣⎦D .50,2⎡⎤⎢⎥⎣⎦8.内接于半径为R 的球且体积最大的圆柱体的高为( ) A .233R B .33R C .332R D .32R 9.函数()21xy x e =-的图象大致是( )A .B .C .D .10.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( ) A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞⎪⎝⎭D .11,26a ⎛⎫∈-⎪⎝⎭ 11.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .1 B .2 C .e D .2e12.函数()21ln 2f x x x =-在区间()0,2上的最大值为( ) A .12-B .0C .12D .无最大值二、填空题13.若函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是____. 14.已知||()cos x f x e x =+,则不等式(21)(1)f x f x -≥-的解集为__________. 15.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.16.函数()333f x x bx b =-+在()0,1内有且只有一个极小值,则实数b 的取值范围是________17.已知函数()2x e f x ax x=-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为________.18.设直线x t =与函数()2f x x =,()2lng x x =的图象分别交于点,M N ,则当MN达到最小值时,t 的值为________.19.函数()ln xf x x=在(),1a a +上单调递增,则实数a 的取值范围为______. 20.已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',且()10f =,当0x <时,()()+0f x f x x'>,则使得()0f x >成立的x 的取值范围是________. 三、解答题21.已知函数()()211ln ,022f x x a x a R a =--∈≠. (1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 的单调区间;(3)若对任意的[)1,x ∈+∞,都有()0f x ≥成立,求a 的取值范围. 22.设函数3222ln 11(),()28a x x f x g x x x x +==-+. (1)若曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,求函数()f x 的解析式;(2)如果对于任意的1213,[,]22x x ∈,都有112()()x f x g x ⋅≥成立,试求实数a 的取值范围.23.已知函数()2(1)xf x x e ax =--,(a R ∈).(1)若12a =,求()f x 的极值; (2)若0x ≥时,()0f x ≥,求实数a 的取值范围. 24.已知函数()1ln (1)2f x x a x =--. (1)若2a =-,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若不等式()0f x <对任意(1,)x ∈+∞恒成立,求实数a 的取值范围. 25.已知函数()1xf x x ae =-+,()a R ∈(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论()f x 的单调性.26.已知函数32()f x x ax bx c =+++.f (x )在点x=0处取得极值,并且在区间[0,2]和[4,5上具有相反的单调性. (1)求实数b 的值; (2)求实数a 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用到函数研究其图象,令3x y xe =,y kx k =-,从而讨论两个函数的性质作出3x y xe =与y kx k =-的图象,从而结合图象可得解. 【详解】()3x f x xe =,令y kx k =-,()3(1)x f x e x '=+,()3x f x xe ∴=在(-∞,1]-上是减函数,在(1,)-+∞上是增函数,又y kx k =-是恒过点(1,0)的直线,∴作()3x f x xe =与y kx k =-的图象如下:当直线y kx k =-与()3x f x xe =相切时, 设切点为(,3)x x xe ,3331xx x xe e xe x =+-, 则152x -=,152x +=;令()3x g x xe kx k =-+ 结合图象可知:(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩解得:2232k e e<故选:D【点睛】关键点睛:解答本题的关键是数形结合思想的灵活运用.作出两个函数的图象后,通过观察分析得到存在唯一的负整数01x =-,使得()00f x kx k <-,即(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩.2.A解析:A 【分析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解. 【详解】 由题意得2ln x xa x +=有两个零点 2431(1)(ln (2)12ln x x x x x x x a x x +-+-='-=) 令()12ln (0)g x x x x =--> ,则2()10g x x'=--<且(1)0g = 所以(0,1),()0,0x g x a ∈>'>,2ln x xa x +=在(0,1)上为增函数, 可得),(1a ∈-∞,当(1,),()0,0x g x a ∈+∞<<',2ln x xa x+=在(1,)+∞上单调递减, 可得(0,1)∈a , 即要2ln x xa x+=有两个零点有两个零点,实数a 的取值范围是()0,1. 故选:A 【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.3.C解析:C 【分析】对A,根据奇函数的定义判定即可. 由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥,所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,将a 的值代入分别计算分析,可判断选项B ,C ,D【详解】对A, ()3sin f x x x ax =+-的定义域为R ,且()()()3sin f x x x ax -=-+-+3sin ()x x ax f x =--+=-.故A 正确.由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''= 所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-对B, 当0a =时,()2'cos 30f x x x =+>,所以()f x 是增函数,故B 正确.对C,当3a=-时,由上可知, ()()014f x f a ''≥=-=,所以()f x 是增函数,故不可能有3个零点.故C 错误.对D,当3a =时,()2cos 33f x x x '=+-,由上可知在()0-∞,上单调递减,在()0+∞,上单调递增.则()()min 0132f x f ''==-=-,()1cos10f '-=>,()1cos10f '=>所以存在()()121,0,0,1x x ∈-∈,使得()10fx '=,()20f x '=成立则在()1,x -∞上,()0f x '>,在()12,x x 上,()0f x '<,在()2,x +∞上,()0f x '>.所以函数()3sin 3f x x x x =+-在()1,x -∞单调递增,在()12,x x 的单调递减,在()2,x +∞单调递增.所以函数()f x 恰有两个极值点,故D 正确.故选:C 【点睛】关键点睛:本题主要考查利用导数分析函数的单调性从而得出函数的零点和极值情况,解答本题的关键是对原函数的单调性分析,由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,经过多次求导分析出单调性,属于中档题.4.A解析:A 【解析】函数的定义域为0x ≠ ,当0()ln()x f x x x <⇒=-- ,为增函数,故排除B ,D ,当0()ln x f x x x >⇒=-,'111()x xf x x --==,当1,()0.01()0x f x x f x >'<<⇒'><故函数是先减后增; 故选A .5.D解析:D 【解析】试题分析:由f (x )在[-1,2]上是减函数,知f′(x )=3x 2+2bx+c≤0,x ∈[-1,2], 则f′(-1)=3-2b+c≤0,且f′(2)=12+4b+c≤0,⇒15+2b+2c≤0⇒b+c≤-152,故选D. 考点:本题主要考查了函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.点评:解决该试题的关键是先对函数f (x )求导,然后令导数在[-1,2]小于等于0即可求出b+c 的关系,得到答案.6.A解析:A 【分析】首先对函数求导,将函数在给定区间上单调增,转化为其导数在相应区间上大于等于零恒成立,构造新函数,利用导数研究其最值,求得结果. 【详解】()2ln 1f x ax x '=--,若函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增, 则()0f x '≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 则ln 12x a x +≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 令ln 11(),[,)2x g x x x e+=∈+∞, 则2222ln 2ln ()42x xg x x x --'==-,可以得出01x <<时()0g x '>,当1x >时()0g x '<,所以函数()g x 在1[,1]e上单调递增,在[1,)+∞上单调递减, 所以max 1()(1)2g x g ==,所以12a ≥, 故选:A. 【点睛】该题考查的是与导数有关的问题,涉及到的知识点为根据函数在给定区间上单调增,确定参数的取值范围,属于中档题目.7.B解析:B 【分析】构造函数()()212g x f x x =-,可得()g x 在[)0,+∞上单调递增,利用奇偶性的定义知()g x 是奇函数,进而求解不等式即可.【详解】由题意当0x ≥时,()f x x '>,构造函数()()212g x f x x =-, 则()()'0g x f x x '=->,得()g x 在[)0,+∞上单调递增, 又由条件()()2f x f x x +-=得()()0g x g x +-=.所以()g x 是奇函数,又()g x 在[)0,+∞上单调递增且()00g =,所以()g x 在R 上单调递增,由()()222f k f k k --≥-,得()()20k g k g --≥,即()()2g k g k -≥, 根据函数()g x 在R 上单调递增,可得2k k -≥,解得1k ≤. 故选:B 【点睛】本题考查导数在函数单调性中的应用,考查函数的奇偶性,属于中档题.8.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得230h <<,故此时()V h 单调递增, 令()0V h '<232h R <<,故此时()V h 单调递减. 故()23max V h V ⎫=⎪⎪⎝⎭.即当23h =时,圆柱的体积最大. 故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.9.A解析:A 【分析】根据函数图象,当12x <时,()210xy x e =-<排除CD ,再求导研究函数单调性得()21x y x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,排除B 得答案.【详解】解:因为12x <时,()210x y x e =-<,所以C ,D 错误; 因为()'21x y x e =+, 所以当12x <-时,'0y <, 所以()21x y x e =-在区间1,2⎛⎫-∞-⎪⎝⎭上单调递减, 所以A 正确,B 错误.故选:A.【点睛】 本小题主要考查函数的性质对函数图象的影响,并通过对函数的性质来判断函数的图象等问题.已知函数的解析式求函数的图像,常见的方法是,通过解析式得到函数的值域和定义域,进行排除,由解析式得到函数的奇偶性和轴对称性,或者中心对称性,进行排除,还可以代入特殊点,或者取极限.10.C解析:C【分析】 本题首先可根据题意得出2241ax ax f x x ,令2241g x ax ax ,然后根据()f x 在()1,3上不单调得出函数()g x 与x 轴在()1,3上有交点,最后分为0a =、0a ≠两种情况进行讨论,即可得出结果.【详解】()2124124ax ax f x ax a x x--'=--=, 若()f x 在()1,3上不单调,令2241g x ax ax ,对称轴为1x =,则函数2241g xax ax 与x 轴在()1,3上有交点, 当0a =时,显然不成立;当0a ≠时,则()()21680130a a g g ⎧∆=+>⎪⎨⋅<⎪⎩,解得16a >或12a <-, 易知()f x 在()1,3上不单调的一个充分不必要条件是1,2a ⎛⎫∈+∞⎪⎝⎭, 故选:C.【点睛】 关键点点睛:本题考查函数单调性问题,若函数在否个区间内不单调,则函数的导函数在这个区间内有零点且穿过x 轴,考查二次函数性质的应用,考查充分条件与必要条件的判定,是中档题.11.C解析:C【分析】求得y kx =与x y e =的图象相切时的k 值,结合图象可得结论.【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()x f x e '=,切线方程为000()-=-x x y e e x x ,切线过原点,∴000x x e e x -=-⋅,01x =,∴(1)k f e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.12.A解析:A【分析】利用导数分析函数()f x 在区间()0,2上的单调性,由此可求得该函数在区间()0,2上的最大值.【详解】()21ln 2f x x x =-,()211x f x x x x-'∴=-=.当01x <<时,()0f x '>,此时,函数()f x 单调递增;当12x <<时,()0f x '<,此时,函数()f x 单调递减.所以,当()0,2x ∈时,()()max 112f x f ==-. 故选:A.【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数()f x 在区间[],a b 上单调,则()f a 与f b 一个为最大值,另一个为最小值;(2)若函数()f x 在区间[],a b 内有极值,则要求先求出函数()f x 在区间[],a b 上的极值,再与()f a 、f b 比大小,最大的为最大值,最小的为最小值;(3)若函数()f x 在区间[],a b 上只有唯一的极大点,则这个极值点就是最大(最小)值点,此结论在导数的实际应用中经常用到. 二、填空题13.0【详解】此题考查导数的应用;所以当时原函数递减当原函数递增;因为在上不单调所以在上即有减又有增所以解析:0123t t <<<<或【详解】 此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以0113{{01231131t t t t t t <<<<∴<<<<<+<+或或 14.【分析】首先根据题意得到为偶函数利用导数求出的单调区间再根据单调区间解不等式即可【详解】又因为所以为偶函数当时因为所以故在为增函数又因为为偶函数所以在为减函数因为所以解得或故答案为:【点睛】本题主要 解析:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【分析】首先根据题意得到()f x 为偶函数,利用导数求出()f x 的单调区间,再根据单调区间解不等式即可.【详解】又因为x ∈R ,()()()||||cos cos x x f x e x e x f x --=+-=+=,所以()f x 为偶函数.当0x >时,()cos x f x e x =+,()sin x f x e x '=-,因为0x >,e 1x >,所以()sin 0x f x e x '=->,故()f x 在()0,∞+为增函数.又因为()f x 为偶函数,所以()f x 在(),0-∞为减函数.因为(21)(1)f x f x -≥-,所以211x x -≥-,解得23x ≥或0x ≤. 故答案为:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【点睛】本题主要考查利用导数研究函数的单调性,同时考查了函数的奇偶,属于中档题. 15.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.16.【分析】对函数求导得令得在根据题意求解即可【详解】对函数求导得因为函数在内有且只有一个极小值所以有实数根所以所以根据图像在和上单调递增在上单调递减所以当时函数取得极小值故由题知所以故答案为:【点睛】 解析:()0,1【分析】对函数求导得()2'33f x x b =-,令()'=0f x ,得x =0b >,在根据题意()0,1求解即可.【详解】对函数()333f x x bx b =-+求导得,()2'33f x x b =-, 因为函数在()0,1内有且只有一个极小值,所以()2'33=0f x x b =-有实数根,所以0b >,x = 所以根据()2'33f x x b =-图像, ()f x 在(-∞-,和)+∞上单调递增,在(上单调递减,所以当x =()0,1,所以()0,1b ∈故答案为:()0,1【点睛】本题考查函数导数与极值的关系,一般可利用导数求函数极值和二次函数的性质等求解. 17.【分析】由当时不等式恒成立变形得到当时不等式恒成立即在上是增函数然后由在上是恒成立求解【详解】因为当时不等式恒成立即当时不等式恒成立所以在上是增函数所以在上是恒成立即在上是恒成立令所以当时当时所以当 解析:2,12e ⎛⎤-∞ ⎥⎝⎦ 【分析】由当21x x >时,不等式()()12210f x f x x x -<恒成立,变形得到当21x x >时,不等式()()1122x f x x f x <恒成立,即()()g x xf x =,在()0,x ∈+∞上是增函数,然后由()0g x '≥,在()0,x ∈+∞上是恒成立求解.【详解】因为当21x x >时,不等式()()12210f x f x x x -<恒成立,即当21x x >时,不等式()()1122x f x x f x <恒成立,所以()()g x xf x =,在()0,x ∈+∞上是增函数,所以()230x g x e ax '=-≥,在()0,x ∈+∞上是恒成立, 即23xe a x≤,在()0,x ∈+∞上是恒成立, 令2()3xe h x x=, 所以()32()3x e x h x x -'=, 当02x <<时,()0h x '<,当2x >时,()0h x '>,所以当2x =时,()h x 取得最小值,最小值为212e , 所以实数a 的取值范围为2,12e ⎛⎤-∞ ⎥⎝⎦. 故答案为:2,12e ⎛⎤-∞ ⎥⎝⎦. 【点睛】本题主要考查导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.18.1【分析】先构造函数:设再利用导数求函数的单调性及极值:由即函数在为减函数在为增函数即得解【详解】解:设则当时当时即函数在为减函数在为增函数即即当达到最小值时的值为1故答案为:【点睛】本题考查了构造 解析:1【分析】先构造函数:设2()()()2h t f t g t t lnt =-=-,再利用导数求函数的单调性及极值:由22(1)(1)()2t t h t t t t-+'=-=,即函数()h t 在(0,1)为减函数,在(1,)+∞为增函数,即()()1min h t h =,得解.【详解】解:设2()()()2h t f t g t t lnt =-=-, 则22(1)(1)()2t t h t t t t-+'=-=, 当01t <<时,()0h t '<,当1t >时,()0h t '>,即函数()h t 在(0,1)为减函数,在(1,)+∞为增函数,即()()1min h t h =,即当||MN 达到最小值时,t 的值为1,故答案为:1.【点睛】本题考查了构造函数求距离的最值及导数的应用,属于中档题.19.【分析】先求出得到在上单调递增要使得在上单调递增则从而得到答案【详解】由函数有由得得所以在上单调递增在上单调递减又函数在上单调递增则则解得:故答案为:【点睛】本题考查函数在某区间上的单调性求参数的范 解析:[]0,1e -【分析】先求出()21ln x f x x-'=,得到()f x 在()0e ,上单调递增,要使得在(),1a a +上单调递增,则()(),10a a e +⊆,,从而得到答案.【详解】由函数()ln x f x x =有()()2ln 1ln 0x x f x x x x-'==> 由()0f x '>得0x e <<,()0f x '<得x e >.所以()f x 在()0e ,上单调递增,在(),e +∞上单调递减,又函数()ln x f x x=在(),1a a +上单调递增,则()(),10a a e +⊆,则01a a e ≥⎧⎨+≤⎩,解得:01a e ≤≤-. 故答案为:[]0,1e -【点睛】本题考查函数在某区间上的单调性,求参数的范围,属于基础题.20.【分析】结合所给不等式构造函数可证明在时单调递减根据为偶函数且可得单调性的示意图结合函数图像即可求得使成立的的取值范围【详解】令则由题意可知当时不等式两边同时乘以可得即所以在时单调递减因为定义在上的 解析:()()1,00,1- 【分析】结合所给不等式,构造函数()()g x x f x =⋅,可证明()g x 在0x <时单调递减,根据()f x 为偶函数且()10f =,可得()g x 单调性的示意图,结合函数图像即可求得使()0f x >成立的x 的取值范围.【详解】令()()g x x f x =⋅,则()()()g x f x x f x '=+⋅'由题意可知当0x <时,()()+0f x f x x'>,不等式两边同时乘以x 可得()()+0xf x f x '<,即()0g x '<,所以()()g x x f x =⋅在0x <时单调递减,因为定义在()(),00,-∞⋃+∞上的()f x 为偶函数,所以()()g x x f x =⋅为定义在()(),00,-∞⋃+∞上的奇函数,且()10f =,所以()()110g g =-=,由奇函数性质可得()()g x x f x =⋅函数图像示意图如下图所示:所以当0x <时,()0f x >的解集为()1,0-,当0x >时,()0f x >的解集为()0,1, 综上可知,()0f x >的解集为()()1,00,1- 故答案为:()()1,00,1-.【点睛】本题考查了函数奇偶性及单调性的综合应用,构造函数判断函数的单调性,数形结合法解不等式,属于中档题. 三、解答题21.(1)22y x =-+;(2)答案见解析;(3)()(],00,1-∞. 【分析】(1)求出切点坐标和切线的斜率即得解;(2)先求导再对a 分类讨论即得函数的单调区间;(3)任意的[)1,x ∈+∞,()min 0f x ≥,再对a 分类讨论即得解.【详解】(1)3a =时,()2113ln 22f x x x =--,()10f = ()3f x x x'=-,()12f '=- ∴()y f x =在点()()1,1f 处的切线方程为22y x =-+所以所求的切线方程为22y x =-+; (2)()()20a x a f x x x x x-'=-=> ①当0a <时,()20x a f x x-'=>恒成立,函数()f x 的递增区间为()0,∞+②当0a >时,令()0f x '=,解得x =x =( 当0a <时,()20x a f x x-'=>恒成立,函数()f x 的递增区间为()0,∞+;当0a >时,函数()f x 的递增区间为)+∞,递减区间为(. (3)对任意的[)1,x ∈+∞,使()0f x ≥成立,只需任意的[)1,x ∈+∞,()min 0f x ≥ ①当0a <时,()f x 在[)1,+∞上是增函数,所以只需()10f ≥,而()111ln1022f a =--=, 所以0a <满足题意;②当01a <≤时,01<≤,()f x 在[)1,+∞上是增函数,所以只需()10f ≥而()111ln1022f a =--=, 所以01a <≤满足题意;③当1a >1>,()f x 在⎡⎣上是减函数,)+∞上是增函数,所以只需0f≥即可,而()10f f <=,从而1a >不满足题意; 综合①②③实数a 的取值范围为()(],00,1-∞. 【点睛】方法点睛:用导数求函数的单调区间的步骤:求函数的定义域D →求导'()f x →解不等式'()f x >()<0得解集P →求D P ⋂,得函数的单调递增(减)区间.求函数的单调区间是函数的必备基本功,要熟练掌握灵活运用.22.(1)21ln ()x x f x x +=;(2)12a ≥.【分析】 (1)求导3ln 4()x x x a f x x --'=,由已知得(1)1f '=-,求出12a =得解 (2)求导2()34g x x x '=-得到()g x 在(12)32, 上的最大值为1()12g = 转化11()1,x f x ⋅≥ 得到1112ln a x x x ≥-在113[,]22x ∈恒成立.构造函数1111()ln ,h x x x x =-求得1()h x 的最大值为(1)1h =,得解【详解】 (1)3ln 4()x x x af x x--'=, ∵曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,∴(1)1f '=-, 12a ∴=.21ln ()x x f x x +∴= (2)2()34g x x x '=-,∴14(,)23x ∈,()0g x '<,43(,)32x ∈,()0g x '>,∴()g x 在14(,)23上递减,在43(,)32上递增,∴()g x 在14(,)23上的最大值为131()1,()224g g ==较大者,即()1g x ≤,∵对于任意的113[,]22x ∈,都有112()()x f x g x ⋅≥成立, ∴11()1,x f x ⋅≥ 1112ln 1,a x x x +∴≥ 即对任意的111113(,),2ln 22x a x x x ∈≥-成立. 令1111()ln ,h x x x x =-,11()ln h x x '=-,∴11(,1)2x ∈,1()0h x '>,13(1,)2x ∈,1()0h x '<,∴1()h x 在1(,1)2上递增,在3(1,)2上递减,1()h x 的最大值为(1)1h =, ∴21a ≥,12a ≥. 【点睛】本题考查函数导数几何意义及利用导数研究函数最值及不等式恒成立求参数范围.属于基础题.23.(1)极大值是112e-,()f x 的极小值是0(2)1a ≤ 【分析】(1)()()2112xx f x e x =--,求导()()()110x f x x e '=+-=,判断()f x ',()f x 变化求得极值;(2)解法一:分离a,求最值得a 的范围,解法二: ()xf x e a '=-,讨论a 的范围得解 【详解】 (1)当12a =时,()()2112xx f x e x =-- ()()()110x f x x e '=+-=时,则1x =-,0x =.当x 变化时,()f x ',()f x 变化状态如下表:所以()f x 的极大值是()12f e-=-,()f x 的极小值是()00f = (2))等价于当0x ≥时,()()10xf x x e ax =--≥恒成立解法一: 当0x =,等号成立,当x>0,()10x e f x a x -≥⇔≤,设()1x e g x x-=()min a g x ≤,由经典不等式1x e x >+ ∴1a ≤或者()21x x xe e g x x-+'=,()1x x x xe e ϕ=-+,()0x x x xx e xe e xe ϕ='+-=> ()x ϕ↑,()()00ϕϕ>=x ∴()0g x '>,()g x ↑,又()0,1x g x →→ ∴1a ≤解法二: ()xf x e a '=-,0x ≥,1x e ≥若1a ≤,则()0xf x e a ='-≥,()f x ↑,∴()()00f x f ≥=,即不等式恒成立.(充分性)若1a >,()0xf x e a '=-= ∴0ln 0x a =>()00,x x ∈,()0f x '<,()f x ↓,()()00f x f ≤=,这与当0x ≥时,()10xf x e ax =--≥恒成立相矛盾(必要性)【点睛】本题考查函数与导数的极值,考查不等式恒成立,考查转化化归能力,考查计算能力,是中档题24.(1)22y x =-;(2)[2,)+∞. 【分析】(1)2a =-时()ln 1f x x x =+-求导,得到在切点(1,0)处切线斜率,代入点斜式即可;(2) 求导()22axf x x-'=对a 分情况讨论,讨论函数的单调性,结合题目要求()0f x <对任意(1,)x ∈+∞恒成立名即可得到实数a 的取值范围;【详解】解:(1)因为2a =-时,()()1ln 11f x x x f x x'=+-⇒=+, 所以切点为(1,0),(1)2k f '==,所以2a =-时,曲线()y f x =在点(1,(1))f 处的切线方程22y x =-. (2)因为()()112ln (1)222a ax f x x a x f x x x-'=--⇒=-=, ①当0a ≤时,()()1,0x f x '∈+∞>,,所以()f x 在(1,)+∞上单调递增,()()10f x f >=,所以0a ≤不合题意.②当2a ≥时,即201a<≤时,()2()2022a x ax a f x x x--'==<在(1,)+∞恒成立, 所以()f x 在(1,)+∞上单调递减,有()()10f x f <=,所以2a ≥满足题意. ③当02a <<时,即21>a时,由()0f x '>,可得21x a <<,由()0f x '<,可得2x a>, 所以()f x 在2(1,)a上单调递增,()f x 在2(,)a +∞上单调递减,所以()2()10f f a>=所以02a <<不合题意,综上所述,实数a 的取值范围是[2,)+∞. 【点睛】本题考查函数的切线方程,讨论函数的单调性和利用导数解决恒成立问题,属于中档题. 25.(1)()11y e x =+-;(2)当0a ≥时,()f x 在(),-∞+∞上单调递增;当0a <时,()f x 在1,ln a ⎛⎫⎛⎫-∞-⎪ ⎪⎝⎭⎝⎭上单调递增,在1ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. 【分析】(1)根据导数的几何意义求出切线的斜率,由点斜式可得切线方程;(2)求出导函数后,按照0a ≥和0a <分类讨论,由()'f x 0>和()0f x '<分别可得函数的增区间和减区间. 【详解】()()()1x f x ae a R x R '=+∈∈,(1)由题得:1a =,则()1xf x e '=+,()1xf x x e =-+()11k f e '==+,()1f e =∴()()11y e e x -=+-,即()11y e x =+-所以曲线()y f x =在点()()1,1f 处的切线方程为()11y e x =+-. (2)()1xf x ae '=+,当0a ≥时,由()0f x '>,此时()f x 在(),-∞+∞上单调递增, 当0a <时,由()0f x '>,得10xae +>,解得1ln x a ⎛⎫<- ⎪⎝⎭,由()0f x '<,得10x ae +<,解得1ln x a ⎛⎫>- ⎪⎝⎭,所以()f x 在1,ln a ⎛⎫⎛⎫-∞-⎪ ⎪⎝⎭⎝⎭上单调递增,在1ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. 综上所述:当0a ≥时,()f x 在(),-∞+∞上单调递增;当0a <时,()f x 在1,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递增,在1ln ,a ⎛⎫⎛⎫-+∞ ⎪⎪⎝⎭⎝⎭上单调递减. 【点睛】本题考查了利用导数的几何意义求切线方程,考查了分类讨论思想,考查了利用导数研究函数的单调性,属于中档题. 26.(1)0b =(2)63a -≤≤- 【分析】(1)根据()f x 在点0x =处取得极值,可得(0)0f '=,建立等量关系,求出参数b 即可. (2)由条件“在单调区间[0,2]和[4,5]上具有相反的单调性”可知函数的极值点应介于[2,4]即可. 【详解】(1)2()32f x x ax b '=++,因为()f x 在点0x =处取得极值, 所以()0f x '=,即得0b =;经检验可知:b =0符合题意. (2)令(0)0f '=,即2320x ax +=, 解得0x =或23x a =-.依题意有203a ->.因为在函数在单调区间[0,2]和[4,5]上具有相反的单调性,所以应有243a ≤-≤, 解得63a -≤≤-. 【点睛】本小题主要考查运用导数研究函数的单调性及极值等基础知识,考查综合分析和解决问题的能力.。
新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(含答案解析)(1)
一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( ) A .15a <≤ B .25a <≤ C .25a ≤≤D .35a <≤3.函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .4.已知函数()f x 对定义域R 内的任意x 都有()()22f x f x +=-,且当2x ≠时其导函数()f x '满足()()2xf x f x ''>,若24a <<则( )A .()()()223log af f f a <<B .()()()23log 2af f a f <<C .()()()2log 32af a f f <<D .()()()2log 23af a f f <<5.以下不等式不成立的是( ) A .sin x x >,0,2x π⎛⎫∈ ⎪⎝⎭B .1ln x x -≥,()0,x ∈+∞C .10x e x --≥,x ∈RD .ln 10x x e +->,()0,x ∈+∞6.已知函数()f x '是函数()f x 的导函数,()11f e=,对任意实数都有()()0f x f x '->,设()()x f x F x e=则不等式()21F x e <的解集为( ) A .(),1-∞B .()1,+∞C .()1,eD .(),e +∞7.已知函数()y f x =在R 上可导且()02f =,其导函数()f x '满足()()02f x f x x '>--,对于函数()()x f x g x e=,下列结论错误..的是( ). A .函数()g x 在()2,+∞上为单调递增函数 B .2x =是函数()g x 的极小值点 C .0x ≤时,不等式()2xf x e ≤恒成立D .函数()g x 至多有两个零点8.已知可导函数()f x 的定义域为(,0)-∞,其导函数()'f x 满足()2()0xf x f x '->,则不等式2(2020)(2020)(1)0f x x f +-+-<的解集为( ) A .(,2021)-∞-B .(2021,2020)--C .(2021,0)-D .(2020,0)-9.内接于半径为R 的球且体积最大的圆柱体的高为( ) A.3R BC.2R D.2R 10.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞11.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .1 B .2 C .e D .2e12.已知函数22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩函数()()g x f x m =-有两个零点,则实数m 的取值范围为( )A .28,e ⎛⎫-∞ ⎪⎝⎭B .28,4e ⎛⎤⎥⎝⎦C .[)28,4,e ⎛⎫-∞⋃+∞ ⎪⎝⎭ D .280,e ⎛⎫ ⎪⎝⎭二、填空题13.函数()21ln 2f x x x ax =+-存在与直线30x y -=平行的切线,则实数a 的取值范围是________. 14.若函数()21ln 2f x x b x ax =++在()1,2上存在两个极值点,则()39b a b ++的取值范围是_______.15.已知||()cos x f x e x =+,则不等式(21)(1)f x f x -≥-的解集为__________. 16.已知函数()24ln f x x x a x =++,若函数()f x 在()1,2上是单调函数,则实数a 的取值范围是______.17.关于x 的不等式2ln 0x x kx x -+≥恒成立,实数k 的取值范围是__________. 18.已知函数()ln g x a x =,若对[1,]x e ∀∈,都有2()(2)g x x a x ≥-++恒成立,则实数a 的取值范围是________.19.若函数()ln 1f x ax x =--有零点,则实数a 的取值范围是___________. 20.已知定义在R 上的连续函数()y f x =对任意实数x 满足(4)()f x f x -=,(()2)0x f x -'>,则下列命题正确的有________.①若(2)(6)0f f <,则函数()y f x =有两个零点; ②函数(2)y f x =+为偶函数;③(sin12cos12)f f >︒+︒; ④若12x x <且124x x +>,则12()()f x f x <.三、解答题21.已知函数()42ln af x ax x x=--. (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若函数()f x 在其定义域内为增函数,求实数a 的取值范围; (3)设函数6()eg x x=,若在区间[1,]e 上至少存在一点0x ,使得00()()f x g x >成立,求实数a 的取值范围. 22.设函数()()21xf x ea x =-+.(1)讨论()f x 的单调性;(2)若()0f x >对x ∈R 恒成立,求a 的取值范围. 23.设函数()()()ln 10f x x x =+≥,()()()101x x a g x x x ++=≥+.(1)证明:()2f x x x ≥-. (2)若()()f x xg x +≥恒成立,求a 的取值范围; (3)证明:当*n ∈N 时,()2121ln 149n n n -+>+++. 24.设函数f (x )=ln x +kx,k ∈R . (1)若曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 25.已知函数()(1)ln f x x x =+. (1)求()y f x =在1x =处的切线方程:(2)已知实数2k >时,求证:函数()y f x =的图象与直线l :(1)y k x =-有3个交点. 26.已知函数2()2ln f x x mx x =-+ (m R ∈).(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若45m <<,且()f x 有两个极值点12,x x ,其中12x x <,求12()()f x f x -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增.∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.A解析:A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥ ⎪⎝⎭,从而可求出实数a 的范围. 【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-, 因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭, 故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤, 故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.3.B解析:B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x--≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4.C解析:C 【分析】由()f x =(4)f x -得到函数的对称性,(2)()0x f x '->得到函数的单调性,结合关系即可得到结论. 【详解】由于函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -, 可知函数关于2x =对称,根据条件2x ≠时,有()2(),xf x f x ''> 得(2)()0x f x '->,当2x >时()f x 递增,当2x <时()f x 单调递减, 因为24a <<所以4216a <<,21log 2a <<,因为2x =是对称轴,所以22log 3a <<,所以22log 32aa <<<, 所以2(log )(3)(2)af a f f <<, 故选:C. 【点睛】本题主要考查函数值的大小比较,根据导数判断函数的单调性,再利用对称性、单调性比较大小.5.D解析:D 【分析】针对ABC 选项中的不等式构造函数,然后利用导数研究函数的单调性,由此判断出不等式成立,利用特殊值判断出D 选项不等式不成立. 【详解】A.令()sin x x x f -=,0,2x π⎛⎫∈ ⎪⎝⎭,由()cos 10x x f '=->,则()f x 在0,2x π⎛⎫∈ ⎪⎝⎭单调递增,则()()00sin 0sin f x f x x x x >=⇒->⇒>,不等式成立 B.令()1ln f x x x =--,()0,x ∈+∞,由()111x f x x x-'=-=,当()0,1x ∈,()0f x '<,()f x 单调递减,当()1,x ∈+∞,()0f x '>,()f x 单调递增,则()()101ln 01ln f x f x x x x ≥=⇒--≥⇒-≥,不等式成立C.令()1xf x e x =--,x ∈R ,由()1xf x e '=-,当(),0x ∈-∞,()0f x '<,()f x 单调递减,当()0,x ∈+∞,()0f x '>,()f x 单调递增, 则()()0010xf x f e x =⇒--≥≥,不等式成立D.令()ln 1xf x x e =+-,()0,x ∈+∞,当1x =时,()110f e =-<,所以不等式不成立. 故选:D 【点睛】本小题主要考查利用导数证明不等式,属于中档题.6.B解析:B 【解析】 ∵()()xf x F x e =∴2()()()()()x x x xf x e f x e f x f x F x e e ''--'==∵对任意实数都有()()0f x f x -'> ∴()0F x '<,即()F x 在R 上为单调减函数 又∵()11f e= ∴21(1)F e=∴不等式()21F x e<等价于()(1)F x F < ∴不等式()21F x e<的解集为(1,)+∞ 故选B点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<,构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等.7.C解析:C 【分析】由()()02f x f x x '>--,利用导数求出函数()g x 的单调区间以及函数的极值,根据单调性、极值判断每个选项,从而可得结论. 【详解】()()xf xg x e =, 则()()()xf x f xg x e '-'=, 2x >时,()()0f x f x '->,故()y g x =在(2,)+∞递增,A 正确;2x <时,()()0f x f x '-<,故()y g x =在(,2)-∞递减,故2x =是函数()y g x =的极小值点,故B 正确; 若g (2)0<,则()y g x =有2个零点, 若g (2)0=,则函数()y g x =有1个零点, 若g (2)0>,则函数()y g x =没有零点,故D 正确; 由()y g x =在(,2)-∞递减,则()y g x =在(,0)-∞递减,由0(0)(0)2f g e==,得0x 时,()(0)g x g , 故()2xf x e,故()2x f x e ≥,故C 错误; 故选:C . 【点睛】本题考查了利用导数研究函数的单调性、极值、零点问题,考查了构造函数法的应用,是一道综合题.8.B解析:B 【分析】由题可得当(,0)x ∈-∞时,()2()0xf x f x '->,进而构造函数2()()f x g x x=,可判断()g x 在(,0)-∞上的单调性,进而可将不等式转化为(2020)(1)g x g +<-,利用()g x 的单调性,可求出不等式的解集. 【详解】解:构造2()()(0)f x g x x x =<,则243()2()()2()()x f x x f x xf x f x g x x x ''⋅-⋅-'==,因为()2()0xf x f x '->,则()0g x '<∴函数()g x 在(,0)-∞上是减函数,∵不等式2(2020)(2020)(1)0f x x f +-+-<,且()2(1)(1)(1)1f g f --==--,等价于()()()()()2220201120201f x f g x +-<=-+-,即为(2020)(1)g x g +<-,所以2020120200x x +>-⎧⎨+<⎩,解得20212020x -<<-.故选:B 【点睛】本题考查函数单调性的应用,构造函数2()()f x g x x =是解决本题的关键,属于中档题. 9.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得230h <<,故此时()V h 单调递增, 令()0V h '<232h R <<,故此时()V h 单调递减. 故()23max V h V ⎫=⎪⎪⎝⎭.即当23h =时,圆柱的体积最大. 故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.10.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立,即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数. 由()3,2f π=-故可得22h π⎛⎫=-⎪⎝⎭, 又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.11.C解析:C 【分析】求得y kx =与x y e =的图象相切时的k 值,结合图象可得结论. 【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()xf x e '=,切线方程为000()-=-xx y e e x x ,切线过原点,∴000x x ee x -=-⋅,01x =,∴(1)kf e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.12.D解析:D 【分析】函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22xx xf x e+=对其求导判断单调性,作出()y f x =的图象,数形结合即可求解. 【详解】令()()0g x f x m =-=可得()f x m =,所以函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22x x x f x e +=,()()()2222222x x x x x e e x x x f x e e+-+-'==, 当2x >时()220xx f x e-'=<,()f x 单调递减, 当2x ≤时,()2f x x =+单调递增, 所以()f x 图象如图所示:当2x =时,()22222282f e e+⨯==,所以280x e <<, 故选:D 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、填空题13.【分析】原命题等价于有解再求的最小值即得解【详解】由题意得故存在切点使得所以有解因为所以(当且仅当时取等号)所以即则实数的取值范围是故答案为:【点睛】方法点睛:形如的有解问题等价于不是所以本题只要求解析:[)1,-+∞. 【分析】原命题等价于13t a t +=+有解,再求1tt +的最小值即得解. 【详解】 由题意,得()1f x x a x'=+-, 故存在切点()(),P t f t ,使得13t a t+-=, 所以13t a t+=+有解,因为0t >,所以12t t+(当且仅当1t =时取等号), 所以32a +, 即1a -,则实数a 的取值范围是[)1,-+∞. 故答案为:[)1,-+∞. 【点睛】方法点睛:形如()a f x =的有解问题,等价于[()]min a f x ≥,不是[()]max a f x ≥,所以本题只要求出1tt +的最小值即得解.14.【分析】先求导设把问题转化为在上存在两个零点设为且再利用韦达定理求解代入整理利用二次函数求取值范围即可【详解】因为所以设因为函数在上存在两个极值点所以在上存在两个零点所以在上存在两个零点设为且所以根解析:814,16⎛⎫⎪⎝⎭【分析】先求导,设()2g x x ax b =++,把问题转化为()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠,再利用韦达定理求解,代入()39b a b ++,整理利用二次函数求取值范围即可. 【详解】 因为()()21ln 02f x x b x ax x =++>, 所以()2b x ax bf x x a x x++'=++=,设()2g x x ax b =++,因为函数()f x 在()1,2上存在两个极值点, 所以()f x '在()1,2上存在两个零点,所以()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠, 所以根据韦达定理有:1212x x ax x b +=-⎧⎨⋅=⎩,故()23939b a b b ab b ++=++()()21212121239x x x x x x x x =⋅-⋅++⋅()()22112233x x x x =--,因为()11,2x ∈,所以221113993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭, 222223993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭,由于12x x ≠, 所以()()22112281334,16x x x x ⎛⎫--∈⎪⎝⎭. 故答案为:814,16⎛⎫⎪⎝⎭.【点睛】思路点睛:利用导数研究函数的极值问题.把函数在区间存在两个极值点的问题转化为导函数在区间内存在两个零点,利用韦达定理得到参数和系数的关系,最后利用二次函数求取值范围.15.【分析】首先根据题意得到为偶函数利用导数求出的单调区间再根据单调区间解不等式即可【详解】又因为所以为偶函数当时因为所以故在为增函数又因为为偶函数所以在为减函数因为所以解得或故答案为:【点睛】本题主要解析:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【分析】首先根据题意得到()f x 为偶函数,利用导数求出()f x 的单调区间,再根据单调区间解不等式即可. 【详解】又因为x ∈R ,()()()||||cos cos x x f x e x e x f x --=+-=+=,所以()f x 为偶函数.当0x >时,()cos x f x e x =+,()sin x f x e x '=-, 因为0x >,e 1x >,所以()sin 0x f x e x '=->, 故()f x 在()0,∞+为增函数.又因为()f x 为偶函数,所以()f x 在(),0-∞为减函数. 因为(21)(1)f x f x -≥-,所以211x x -≥-,解得23x ≥或0x ≤. 故答案为:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【点睛】本题主要考查利用导数研究函数的单调性,同时考查了函数的奇偶,属于中档题.16.【分析】对函数进行求导导函数在区间上恒非正或恒非负进行求解即可【详解】由题意得:函数的定义域为由题意可知:或在区间上恒成立当在区间上恒成立时当时因此有;当在区间上恒成立时当时因此有综上所述:实数的取 解析:(,16][6,)-∞-+∞【分析】对函数进行求导,导函数在区间()1,2上恒非正或恒非负进行求解即可. 【详解】由题意得:函数()f x 的定义域为()0+∞,, 2'()+4ln ()2+4af x x x a x f x x x=+⇒=+,由题意可知:'()0f x ≥或'()0f x ≤在区间()1,2上恒成立.当'()0f x ≥在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≥⇒≥--=-+, 当()1,2x ∈时,()2(24)166x x --∈--,,因此有6a ≥-; 当'()0f x ≤在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≤⇒≤--=-+, 当()1,2x ∈时,()2(24)166x x --∈-,,因此有16a ≤-, 综上所述:实数a 的取值范围是(,16][6,)-∞-+∞. 故答案为:(,16][6,)-∞-+∞. 【点睛】本题考查了已知函数在区间上的单调性求参数取值范围,考查了导数的应用,考查了数学运算能力,属于中档题.17.【分析】根据不等式恒成立分离参数并构造函数求得导函数结合导数性质可判断的单调区间与最小值即可求得的取值范围【详解】在恒成立即恒成立即令则当即解得当即解得所以在上为减函数在上增函数所以所以故答案为:【解析:1,1e ⎛⎤-∞- ⎥⎝⎦ 【分析】根据不等式恒成立,分离参数并构造函数()ln 1g x x x =+,求得导函数()g x ',结合导数性质可判断()g x 的单调区间与最小值,即可求得k 的取值范围. 【详解】2ln 0x x kx x -+≥在()0,∞+恒成立,即ln 10x x k -+≥恒成立,即ln 1k x x ≤+,令()ln 1g x x x =+,则()ln 1g x x '=+,当()0g x '≥,即ln 10x +≥,解得1x e ≥, 当()0g x '<,即ln 10x +<,解得10x e<< 所以()g x 在10,e ⎛⎫ ⎪⎝⎭上为减函数,在1,e ⎡⎫+∞⎪⎢⎣⎭上增函数, 所以()min 1111ln 11g x g e e e e⎛⎫==+=- ⎪⎝⎭, 所以11k e≤-故答案为:1,1e⎛⎤-∞- ⎥⎝⎦.【点睛】本题考查了分离参数与构造函数法的应用,由导函数求函数的最值及参数的取值范围,属于中档题.18.【分析】由已知条件推导出令由此利用导数性质能求出的取值范围【详解】解:由题意得到:且等号不能同时取所以即因而令又当时从而(仅当时取等号)在上为增函数的最小值为的取值范围是即故答案为:【点睛】本题考查 解析:(],1-∞-【分析】由已知条件推导出22x x a x lnx--,([1,])x e ∈,令22()x x f x x lnx -=-,([1,])x e ∈,由此利用导数性质能求出a 的取值范围. 【详解】解:由题意得到:2()2a x lnx x x --.[]1,x e ∈,1lnx x ∴且等号不能同时取,所以lnx x <,即0x lnx ->,因而22x x a x lnx --,([1,])x e ∈令22()x x f x x lnx-=-,([1,])x e ∈,又2(1)(22)()()x x lnx f x x lnx -+-'=-, 当[]1,x e ∈时,10x -,1lnx ,220x lnx +->, 从而()0f x '(仅当1x =时取等号), ()f x 在[]1,e 上为增函数,()f x ∴的最小值为()11f =-,a ∴的取值范围是1a -,即(],1a ∈-∞-故答案为:(],1-∞-. 【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意构造法和导数性质的合理运用,属于中档题.19.【分析】变换得到设求导得到单调性画出图像得到答案【详解】由题可知函数的定义域为函数有零点等价于有实数根即设则则函数在上单调递增在上单调递减且画出图像如图所示:根据图像知故答案为:【点睛】本题考查了利 解析:(,1]-∞【分析】 变换得到ln 1x a x+=,设()ln 1x g x x +=,求导得到单调性,画出图像得到答案.【详解】由题可知函数()f x 的定义域为()0,∞+ 函数()ln 1f x ax x =--有零点, 等价于()ln 10f x ax x =--=有实数根()ln 10f x ax x =--=,即ln 1x a x+=, 设()ln 1x g x x +=,则()2ln 'xg x x -=. 则函数在()0,1上单调递增,在[)1,+∞上单调递减,且()11g =, 画出图像,如图所示:根据图像知1a ≤. 故答案为:(,1]-∞. 【点睛】本题考查了利用导数研究零点,参数分离画出图像是解题的关键.20.①②④【分析】根据已知条件得到函数的对称轴以及函数的单调性结合题意对选项进行逐一判断即可【详解】因为故关于对称;又故当时单调递增;时单调递减对①:若根据函数单调性显然则根据零点存在定理和函数单调性在解析:①②④ 【分析】根据已知条件得到函数的对称轴,以及函数的单调性,结合题意,对选项进行逐一判断即可. 【详解】因为(4)()f x f x -=,故()f x 关于2x =对称;又(()2)0x f x -'>,故当2x >时,()f x 单调递增;2x <时,()f x 单调递减. 对①:若(2)(6)0f f <,根据函数单调性,显然()()20,60f f ,则()20f -> 根据零点存在定理和函数单调性,()f x 在()()2,2,2,6-上各有1个零点,故①正确; 对②:因为()f x 关于2x =对称,故()2f x +关于0x =对称,故是偶函数,则②正确;对③:121257sin cos ︒+︒=︒<(),2-∞单调递减可知,()1212ff sin cos <︒+︒,故③错误;对④:因为12x x <,故可得1222x x -<-;因为124x x +>,故可得1222x x -<- 故2122x x ->-,又函数关于2x =对称,结合函数单调性, 故可得()()21f x f x >,故④正确. 综上所述:正确的有①②④. 故答案为:①②④. 【点睛】本题考查根据导数的正负判断函数的单调性,函数对称轴的识别,涉及辅助角公式的使用,利用函数单调性比较大小,属综合性中档题.三、解答题21.(1) 3y x = (2) 1[,)2+∞(3)28(,)41ee +∞- 【分析】(1)求出f (x )的导数,求出f′(1),f (1),代入切线方程即可;(2)求出函数的导数,通过讨论a 的范围结合二次函数的性质得到函数的单调性,从而求出a 的具体范围;(3)构造函数ϕ(x )=f (x )﹣g (x ),x ∈[1,e],只需ϕ(x )max >0,根据函数的单调性求出ϕ(x )max ,从而求出a 的范围. 【详解】(1)解: 当1a =时,()142ln f x x x x =--,()1412ln13f =--=, ()212'4f x x x=+-,曲线()f x 在点()()1,1f 处的斜率为()'13f =, 故曲线()f x 在点()()1,1f 处的切线方程为()331y x -=-,即3y x =(2)解: ()222242'4a ax x a f x a x x x-+=+-=. 令()242h x ax x a =-+,要使()f x 在定义域()0,+∞内是增函数,只需()h x ≥0在区间()0,+∞内恒成立. 依题意0a >,此时()242h x ax x a =-+的图象为开口向上的抛物线,()211444h x a x a a a ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,其对称轴方程为()10,4x a =∈+∞,()min 14h x a a =-,则只需14a a -≥0,即a ≥12时,()h x ≥0,()'f x ≥0,所以()f x 定义域内为增函数,实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.(3)解: 构造函数()()()x f x g x φ=-,[]1,x e ∈,依题意()max 0x φ>, 由(2)可知a ≥12时,()()()x f x g x φ=-为单调递增函数, 即()1642ln e x a x x x x φ⎛⎫=--- ⎪⎝⎭在[]1,e 上单调递增, ()()max 1480x e a e e φφ⎛⎫==--> ⎪⎝⎭,则2288214142eea e e e >>=>-,此时,()()()0e f e g e φ=->,即()()f e g e >成立. 当a ≤2841e e -时,因为[]1,x e ∈,140x x->, 故当x 值取定后,()x φ可视为以a 为变量的单调递增函数, 则()x φ≤281642ln 41e ex x e x x ⎛⎫--- ⎪-⎝⎭,[]1,x e ∈, 故()x φ≤281642ln 041e ee e e e e⎛⎫---= ⎪-⎝⎭, 即()f x ≤()g x ,不满足条件. 所以实数a 的取值范围是28,41e e ⎛⎫+∞ ⎪-⎝⎭. 【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.22.(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减;(2)20,e ⎡⎫⎪⎢⎣⎭. 【分析】(1)分别在0a ≤和0a >两种情况下,根据()f x '的正负可确定()f x 的单调性; (2)根据(1)的结论可确定0a <不合题意;当0a =时,根据指数函数值域可知满足题意;当0a >时,令()min 0f x >,由此构造不等式求得结果. 【详解】(1)由题意得:()22xf x e a '=-,当0a ≤时,()0f x '>,()f x ∴在R 上单调递增; 当0a >时,令()0f x '=得:1ln 22a x =. 当1ln 22a x <时,()0f x '<,()f x ∴在1,ln 22a ⎛⎫-∞ ⎪⎝⎭上单调递减;当1ln 22a x >时,()0f x '>,()f x ∴在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,ln22a ⎛⎫-∞ ⎪⎝⎭上单调递减. (2)由(1)可知:当0a <时,()f x 在R 上单调递增,当x →-∞时,20x e →,()1a x +→+∞,此时()0f x <,不合题意; 当0a =时,2()0x f x e =>恒成立,满足题意. 当0a >时,()f x 在1ln 22ax =处取最小值,且1ln ln 22222a a a a f ⎛⎫=-- ⎪⎝⎭,令ln 0222a a a -->,解得:20a e <<,此时()0f x >恒成立.综上所述:a 的取值范围为20,e ⎡⎫⎪⎢⎣⎭. 【点睛】本题考查导数在研究函数中的应用,涉及到利用导数讨论含参数函数的单调性、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论,将问题转化为函数最小值大于零的问题,由此构造不等式求得结果.23.(1)证明见解析;(2)(],1-∞;(3)证明见解析.【分析】(1)令函数()()2ln 1h x x x x =+-+,[)0,x ∈+∞,利用导数判断函数单调递增,从而可得()()00h x h ≥=,即证. (2)令()()ln 11axm x x x=+-+,转化为()0m x ≥恒成立,利用导数求出()()11x am x x +-'=+,讨论a 的取值,判断函数的单调性,求出()()()min 100m x m a m =-<=,即求.(3)由(1)()2ln 1x x x +≥-,令1x n =,*n ∈N ,整理可得()21ln 1ln n n n n-+->,然后将不等式相加即可证明. 【详解】(1)证明:令函数()()2ln 1h x x x x =+-+,[)0,x ∈+∞,()21221011x xh x x x x+'=+-=≥++,所以()h x 为单调递增函数,()()00h x h ≥=, 故()2ln 1x x x +≥-.(2)()()f x x g x +≥,即为()ln 11axx x+≥+, 令()()ln 11axm x x x=+-+,即()0m x ≥恒成立, ()()()()2111111a x ax x a m x x x x +-+-'=-=+++, 令()0m x '>,即10x a +->,得1x a >-.当10a -≤,即1a ≤时,()m x 在[)0,+∞上单调递增,()()00m x m ≥=,所以当1a ≤时,()0m x ≥在[)0,+∞上恒成立;当10a ->,即1a >时,()m x 在()1,a -+∞上单调递增,在[]0,1a -上单调递减, 所以()()()min 100m x m a m =-<=, 所以当1a >,()0m x ≥不恒成立. 综上所述:a 的取值范围为(],1-∞. (3)证明:由(1)知()2ln 1x x x +≥-,令1x n=,*n ∈N ,(]0,1x ∈, 211ln n n n n+->,即()21ln 1ln n n n n -+->,故有ln 2ln10->, 1ln 3ln 24->, ……()21ln 1ln n n n n-+->, 上述各式相加可得()2121ln 149n n n-+>+++. 【点睛】本题考查了利用导数证明不等式、利用导数研究不等式恒成立,考查了转化与划归的思想,属于中档题.24.(1)在(0,e )上单调递减,在(e ,+∞)上单调递增,极小值为2;(2)1,4⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求导后,根据导数的几何意义以及两直线垂直关系可得k =e ,再根据导数得到函数的单调性和极值;(2)转化为h (x )=f (x )-x =ln x +kx-x (x >0)在(0,+∞)上单调递减,接着转化为()h x '≤0在(0,+∞)上恒成立,即,k ≥-x 2+x =21124x 恒成立,利用二次函数求出最大值可得答案. 【详解】(1)由题意,得21()(0)kf x x x x '=->, ∵曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直, ∴()0f e '=,即210ke e -=,解得k =e , ∴221()(0)e x ef x x x x x-'=-=>, 由()'f x <0,得0<x <e ;由()'f x >0,得x >e , ∴f (x )在(0,e )上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e )=ln e +ee=2. ∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立,设h (x )=f (x )-x =ln x +kx-x (x >0),则h (x )在(0,+∞)上单调递减, ∴21()1kh x x x '=--≤0在(0,+∞)上恒成立, 即当x >0时,k ≥-x 2+x =21124x 恒成立, ∴k ≥14.故k 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查了导数的几何意义,考查了减函数的定义,考查了利用导数研究函数的单调性和极值,考查了利用导数处理不等式恒成立,属于中档题. 25.(1)22y x =-;(2)证明见解析. 【分析】(1)对函数求导,求得()()1,1f f ',利用点斜式即可求得切线方程; (2)构造(1)()ln 1k x h x x x -=-+,将问题转化为证明()h x 有3个零点;再对()h x 求导,根据函数单调性,即可证明. 【详解】(1)因为()(1)ln f x x x =+,所以1()ln x f x x x'+=+, 所以(1)2f '=,又因为(1)0f =,所以()f x 在1x =处的切线方程22y x =-; (2)当2k >时,函数()y f x =的图象与直线l 交点的个数等价于 函数(1)()ln 1k x h x x x -=-+的零点个数, 因为22212(1)2()(1)(1)k x kxh x x x x x +-'=-=++,(0,)x ∈+∞, 设2()(22)1g x x k x =+-+,因为二次函数()g x 在x ∈R 时,(0)10g =>,(1)420g k =-<, 所以存在1(0,1)x ∈,2(1,)x ∈+∞,使得()10g x =,()20g x =, 所以()h x 在()10,x 上单调递增,在()12,x x 上单调递减, 在()2,x +∞上单调递增.因为(1)0h =,所以()1(1)0h x h >=,()2(1)0h x h <=, 因此()h x 在()12,x x 上存在一个零点1x =;又因为当ekx -=时,()()()e 12e e 0e 1e 1k k k kkk k h k -------=--=<++,所以()h x 在()1e ,kx -上存在一个零点;当e k x =时,()()e 12e 0e 1e 1k k kk k h k k -⎛⎫=-=> ⎪++⎝⎭, 所以()h x 在()2,e kx 上存在一个零点.所以,函数()y f x =的图象与直线l :(1)y k x =-有3个交点. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查运用导数研究函数性质的方法,考查运算能力,考查函数与方程的数学思想方法和分析问题、解决问题的能力. 26.(1)4m ≤;(2)1504ln 24⎛⎫- ⎪⎝⎭,. 【分析】(1)由题意结合导数与函数单调性的关系可转化条件为22m x x≤+在(0,)+∞上恒成立,利用基本不等式求得22x x+的最小值即可得解; (2)由题意结合函数极值点的概念可得122mx x +=,121x x ⋅=,进而可得1112x <<,转化条件为21211211()()4ln f x f x x x x -=-+,令221()4ln g x x x x =-+(112x <<),利用导数求得函数()g x 的值域即可得解. 【详解】(1)()f x 的定义域为(0,)+∞, ∵()f x 在(0,)+∞上单调递增, ∴2()20f x x m x '=-+≥在(0,)+∞上恒成立,即22m x x≤+在(0,)+∞上恒成立,又224x x +≥=,当且仅当1x =时等号成立, ∴4m ≤;(2)由题意2222()2x mx f x x m x x-+'=-+=,∵()f x 有两个极值点12,x x ,∴12,x x 为方程2220x mx -+=的两个不相等的实数根, 由韦达定理得122mx x +=,121x x ⋅=,∵120x x <<,∴1201x x <<<, 又121112()2()(4,5)m x x x x =+=+∈,解得1112x <<, ∴()()2212111222()()2ln 2ln f x f x x mx x x mx x -=-+--+()()()()22121212122ln ln 2x x x x x x x x =-+--+-()()2221122ln ln x x x x =-+-2112114ln x x x =-+, 设221()4ln g x x x x =-+(112x <<), 则4222333242(21)2(1)()20x x x g x x x x x x---+--=-+='=<, ∴()g x 在1,12⎛⎫⎪⎝⎭上为减函数,又1111544ln 4ln 22424g ⎛⎫=-+=-⎪⎝⎭,(1)1100g =-+=, ∴150()4ln 24g x <<-, 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭,.【点睛】本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,牢记函数单调性与导数的关系、合理转化条件是解题关键,属于中档题.。
(常考题)北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(含答案解析)(1)
一、选择题1.已知函数()ln f x x x =-,则()f x 的图象大致为( )A .B .C .D .2.等差数列{a n }中的a 2、a 4030是函数321()4613f x x x x =-+- 的两个极值点,则log 2(a 2016)=( ) A .2B .3C .4D .53.已知定义域为R 的偶函数()f x ,其导函数为fx ,对任意[)0,x ∈+∞,均满足:()()2xf x f x >-'.若()()2g x x f x =,则不等式()()21g x g x <-的解集是( )A .(),1-∞-B .1,3⎛⎫-∞ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭4.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在()f x 图象上;(2)点A ,B 关于原点对称,则称点对()A B ,是函数()f x 的一个“和谐点对”,()A B ,与()B A ,可看作一个“和谐点对”.已知函数22(0)()2(0)x x x x f x x e⎧+<⎪=⎨≥⎪⎩则()f x 的“和谐点对”有( )A .1个B .2个C .3个D .4个5.若曲线21:(0)C y ax a =>与曲线2:xC y e =存在公共切线,则a 的取值范围为( )A .2[,)8e +∞B .2(0,]8eC .2[4e ,)+∞D .2(0,]4e6.f (x )是定义在R 上的偶函数,当x <0时,f (x )+x •f '(x )<0,且f (﹣3)=0,则不等式f (x )>0的解集为( ) A .(﹣3,0)∪(3,+∞) B .(﹣3,0)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞)D .(﹣∞,﹣3)∪(0,3)7.已知函数()3227f x x ax bx a a =++--在1x =处取得极大值10,则ab 的值为( ) A .23-B .23或2 C .2D .13-8.已知函数1()ln xf x x ax-=+,若函数()f x 在[1,)+∞上为增函数,则正实数a 的取值范围为( ) A .()0,1B .(01],C .()1,+∞D .[1,)+∞9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.设函数()'f x 是函数()()f x x R ∈的导函数,当0x ≠时,3()()0f x f x x'+<,则函数31()()g x f x x =-的零点个数为( ) A .3 B .2 C .1D .011.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( ) A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞⎪⎝⎭D .11,26a ⎛⎫∈-⎪⎝⎭ 二、填空题13.定义在()0,∞+上的函数()f x 满足()210x f x '+>,()15f =,则不等式()14f x x≤+的解集为______. 14.已知数列()*4n n b n N =∈.记数列{}n b 的前n 项和为n T .若对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立,则实数k 的取值范围为______.15.设()ln f x x =,若函数()()h x f x ax =-在区间()0,8上有三个零点,则实数a 的取值范围______.16.若函数()2x f x x e a =-恰有三个零点,则实数a 的取值范围是______.17.已知函数()xf x e =,()g x ex =,若存在12,x x R ∈,使得()()12f x g x m ==,则21x x -的最小值为______.18.若函数()ln f x x a x x =-+(a 为常数)在定义域上是增函数,则实数a 的取值范围是______.19.已知函数()ln =-xf x e a x 在[]1,4上单调递增,则a 的取值范围是______.20.已知()2sin cos f x x x x x =++,则不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>的解集为______.三、解答题21.函数()21xf x xe x =-+.(1)求函数()f x 在0x =处的切线方程;(2)讨论函数()()ln g x f x x x m =-+-的零点个数.22.如图,在半径为30cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A 、B 在直径上,点C 、D 在圆周上.(1)怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积;(2)若将所截得的矩形铝皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形罐子体积最大?并求最大体积. 23.已知函数()22ln f x x a x =+(1)若函数()f x 的图象在()()22f ,处的切线斜率为1,求实数a 的值;并求函数()f x 的单调区间; (2)若函数()()2g x f x x=+在[]1,2上是减函数,求实数a 的取值范围. 24.已知函数21(),()ln 2f x xg x a x ==. (1)若曲线()()y f x g x =-在2x =处的切线与直线370x y +-=垂直,求实数a 的值;(2)若[]1,e 上存在一点x ,使得()()()()00001f xg x g x f x ''+<-'成立,求实数a 的取值范围.25.已知函数32()f x x ax bx c =+++在1x =-与2x =处都取得极值. (1)求,a b 的值及函数()f x 的单调区间; (2)若对[2,3]x ∈-,不等式23()2f x c c +<恒成立,求c 的取值范围. 26.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}.(1)求函数f (x )的解析式; (2)求函数g (x )=()f x x-4ln x 的零点个数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】函数的定义域为0x ≠ ,当0()ln()x f x x x <⇒=-- ,为增函数,故排除B ,D ,当0()ln x f x x x >⇒=-,'111()x xf x x --==,当1,()0.01()0x f x x f x >'<<⇒'><故函数是先减后增; 故选A .2.A解析:A 【解析】2240302016220162()86084,log log 42f x x x a a a a =-+=∴+=⇒='== ,选A.点睛:在解决等差、等比数列的运算问题时,注意利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.C解析:C 【解析】试题分析:[)0,x ∈+∞时()()()()()22(2)0g x xf x x f x x f x xf x =+='+'>',而()()2g x x f x =也为偶函数,所以()()()()21212121321013g x g x g x g x x x x x x <-⇔<-⇔<-⇔+-<⇔-<<,选C.考点:利用函数性质解不等式【方法点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等4.B解析:B 【分析】问题转化为0,()x f x ≥关于原点对称的函数与2()2f x x x =+在(,0)-∞交点的个数,先求出0,()x f x ≥关于原点对称的函数()g x ,利用导数方法求出2()2g x x x =+在(,0)-∞解的个数,即可得出结论. 【详解】设(,)(0)P x y x ≤是()(0)y f x x =≥关于原点对称函数图象上的点,则点P 关于原点的对称点为()P x y '--,在()(0)y f x x =≥上, 2,2x x y y e e--==-,设()2(0)xg x e x =-≤, “和谐点对”的个数即为()g x 与()f x 在(,0)-∞交点的个数, 于是222x e x x -=+,化为2220(0)x e x x x ++=<, 令2()22(0)x x e x x x ϕ=++<,下面证明方程()0x ϕ=有两解,由于20x e >,所以220x x +<,解得20x -<<,∴只要考虑(20)x ∈-,即可, ()222x x e x ϕ'=++,()x ϕ'在区间(20)-,上单调递增, 而2(2)2420e ϕ-'-=-+<,1(1)20e ϕ-'-=>, ∴存在0(2,1)x ∈--使得0()0x ϕ'=, 当0(2,),()0,()x x x x ϕϕ∈-'<单调递减,0(,0),()0,()x x x x ϕϕ∈'>单调递增,而2(2)20e ϕ--=>,10()(1)210x e ϕϕ-<-=-<,(0)20ϕ=>,∴函数()ϕx 在区间(21)--,,(1,0)-分别各有一个零点, 即()f x 的“和谐点对”有2个. 故选:B . 【点睛】本题考查函数的新定义,等价转化为函数图象的交点,利用函数导数研究单调性,结合零点存在性定理是解题的关键,考查逻辑思维能力和运算求解能力,属于常考题.5.C解析:C 【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为求最值,求得a 的范围. 【详解】 由2(0)y axa =>,得2y ax '=,由x y e =,得x y e '=,曲线21:(0)C y ax a =>与曲线2:xC y e =存在公共切线, 则设公切线与曲线1C 切于点211(,)x ax ,与曲线2C 切于点22(,)xx e ,则22211212x x e ax ax e x x -==-,将212x e ax =代入2211212x e ax ax x x -=-,可得2122=+x x ,11212+∴=x e a x ,记12()2+=x e f x x,则122(2)()4xex f x x +-'=,当(0,2)x ∈时,()0f x '<,当(2,)x ∈+∞时,()0f x '>.∴当2x =时,2()4mine f x =. a ∴的范围是2[,)4e +∞. 故选:C 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,意在考查学生对这些知识的理解掌握水平.6.B解析:B 【分析】构造函数()()g x xf x =,根据条件确定()g x 奇偶性与单调性,最后根据单调性解不等式. 【详解】令()()g x xf x =,因为f (x )是定义在R 上的偶函数,所以g (x )是定义在R 上的奇函数,当x <0时,()()()0g x f x xf x ''=+<,即()g x 在(,0)-∞上单调递减,又(0)0g = 因此()g x 在(0,)+∞上单调递减,因为f (﹣3)=0,所以(3)0(3)0g g -=∴=, 当(3,0)x ∈-时,()(3)0()0,()0g x g xf x f x <-=∴<>; 当(,3)x ∈-∞-时,()(3)0()0,()0g x g xf x f x >-=∴><; 当(0,3)x ∈时,()(3)0()0,()0g x g xf x f x >=∴>>; 当(3,)x ∈+∞时,()(3)0()0,()0g x g xf x f x <=∴<<; 综上,不等式f (x )>0的解集为(﹣3,0)∪(0,3) 故选:B 【点睛】本题考查函数奇偶性、单调性、利用单调性解不等式,考查综合分析求解能力,属中档题.7.A解析:A 【分析】求导,根据题意得到()()11010f f ⎧=='⎪⎨⎪⎩,代入数据解得答案,再验证排除即可.【详解】()3227f x x ax bx a a =++--,则()'232f x x ax b =++,根据题意:()()2117101320f a b a a f a b '⎧=++--=⎪⎨=++=⎪⎩,解得21a b =-⎧⎨=⎩或69a b =-⎧⎨=⎩,当21a b =-⎧⎨=⎩时,()()()'2341311f x x x x x =-+=--,函数在1,13⎛⎫ ⎪⎝⎭上单调递减,在()1,+∞上单调递增,故1x =处取得极小值,舍去;当69a b =-⎧⎨=⎩时,()()()'23129313f x x x x x =-+=--,函数在(),1-∞上单调递增,在()1,3上单调递减,故1x =处取得极大值,满足.故6293a b -==-. 故选:A. 【点睛】本题考查了根据极值求参数,意在考查学生的计算能力和应用能力,多解是容易发生的错误.8.D解析:D 【分析】 根据函数1()ln xf x x ax-=+,求导得到()'f x ,然后根据函数()f x 在[1,)+∞上为增函数,转化为()0f x '≥在[1,)+∞上恒成立求解. 【详解】 函数1()ln xf x x ax-=+, ()2211()aax f x x ax ax --'=+=, 因为函数()f x 在[1,)+∞上为增函数, 所以()0f x '≥在[1,)+∞上恒成立, 又0a >,所以 10ax -≥在[1,)+∞上恒成立, 即1a x≥在[1,)+∞上恒成立, 令()()max 11g x g x x==,, 所以1a ≥, 故选:D 【点睛】本题主要考查函数的单调性与导数,还考查了运算求解的能力,属于中档题.9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可.不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数.由()3,2f π=-故可得22h π⎛⎫=- ⎪⎝⎭,又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.D解析:D 【分析】构造函数3()()1F x x f x =-,可得出3()()F x g x x=,利用导数研究函数()y F x =的单调性,得出该函数的最大值为负数,从而可判断出函数()y F x =无零点,从而得出函数3()()F x g x x=的零点个数. 【详解】设3()()1F x x f x =-,则3233()()()3()()f x F x x f x x f x x f x x '''⎡⎤=+=+⎢⎥⎣⎦. 当0x ≠时,3()()0f x f x x'+<, 当0x >时,30x >,故()0F x '<,所以,函数()y F x =在(0,)+∞上单调递减; 当0x <时,30x <,故()0F x '>,所以,函数()y F x =在(,0)-∞上单调递增. 所以max ()(0)10F x F ==-<,所以,函数()y F x =没有零点, 故331()()()F x g x f x x x=-=也没有零点.【点睛】本题考查函数零点个数的判断, 解题的关键就是要结合导数不等式构造新函数,并利用导数分析函数的单调性与最值,必要时借助零点存在定理进行判断,考查分析问题和解决问题的能力,属于中档题.11.B解析:B 【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解. 【详解】构造()()g x f x x =+,则()()1g x f x ''=+, 又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=, 所以()(1)g e g <,即()0f e e +<, 所以()f e e <-. 故选:B 【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.C解析:C 【分析】本题首先可根据题意得出2241ax ax fxx,令2241g xax ax ,然后根据()f x 在()1,3上不单调得出函数()g x 与x 轴在()1,3上有交点,最后分为0a =、0a ≠两种情况进行讨论,即可得出结果. 【详解】()2124124ax ax f x ax a x x--'=--=, 若()f x 在()1,3上不单调, 令2241g xax ax ,对称轴为1x =,则函数2241g xax ax 与x 轴在()1,3上有交点,当0a =时,显然不成立;当0a ≠时,则()()21680130a a g g ⎧∆=+>⎪⎨⋅<⎪⎩,解得16a >或12a <-,易知()f x 在()1,3上不单调的一个充分不必要条件是1,2a ⎛⎫∈+∞ ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查函数单调性问题,若函数在否个区间内不单调,则函数的导函数在这个区间内有零点且穿过x 轴,考查二次函数性质的应用,考查充分条件与必要条件的判定,是中档题.二、填空题13.【分析】设解不等式即解则结合条件得出的单调性且可解出不等式得出答案【详解】由设则故函数在上单调递增又故的解集为即的解集为故答案为:【点睛】本题考查根据条件构造函数根据函数单调性解不等式由条件构造出函 解析:(]0,1【分析】 设()()14g x f x x =--,解不等式()14f x x≤+,即解()0g x ≤,则()()221x f x g x x'+'=,结合条件,得出()g x 的单调性,且()10g =,可解出不等式得出答案. 【详解】由()210x f x '+>,设()()14g x f x x =--,则()()()222110x f x g x f x x x'+''=+=>. 故函数()g x 在()0,∞+上单调递增, 又()10g =,故()0g x ≤的解集为(]0,1, 即()14f x x≤+的解集为(]0,1. 故答案为:(]0,1 【点睛】本题考查根据条件构造函数,根据函数单调性解不等式,由条件构造出函数是本题的关键,属于中档题.14.【分析】先求得然后利用分离常数法通过构造函数法结合导数求得的取值范围【详解】由于公比为所以所以对任意的不等式恒成立即恒成立即对任意的恒成立构造函数则令解得而所以所以在上递增在上递减令所以故故答案为: 解析:34k ≥【分析】先求得n T ,然后利用分离常数法,通过构造函数法,结合导数,求得k 的取值范围. 【详解】由于14,4nn b b ==,公比为4,所以()()141441441414333n n n n T +-==-=--, 所以对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立, 即114843n k n +⋅≥-恒成立,即124126344n nn n k +--≥=对任意的*n N ∈恒成立. 构造函数()()6314x x f x x -=≥,则()()'6ln 43ln 464xx f x -⋅++=, 令'0f x解得041log 2x e =+. 而4411log log 2122e +>+=,44113log log 4222e +<+=, 所以012x <<.所以()f x 在[)01,x 上递增,在()0,x +∞上递减. 令634n nn a -=,1239,416a a ==,12a a >. 所以134n a a ≤=,故34k ≥. 故答案为:34k ≥ 【点睛】本小题主要考查等比数列前n 项和公式,考查不等式恒成立问题的求解,考查数列的单调性和最值的判断,属于难题.15.【分析】画出函数图像计算直线和函数相切时和过点的斜率根据图像得到答案【详解】故画出图像如图所示:当直线与函数相切时设切点为此时故解得;当直线过点时斜率为故故答案为:【点睛】本题考查了根据函数零点个数解析:3ln 21,8e ⎛⎫⎪⎝⎭【分析】()f x ax =,画出函数图像,计算直线和函数相切时和过点()8,ln8的斜率,根据图像得到答案. 【详解】()()0h x f x ax =-=,故()f x ax =,画出图像,如图所示:当直线与函数相切时,设切点为()00,x y ,此时()ln f x x =,()1'f x x=, 故01a x =,00y ax =,00ln y x =,解得0x e =,01y =,1a e=; 当直线过点()8,ln8时,斜率为3ln 28k =,故3ln 218a e<<. 故答案为:3ln 21,8e ⎛⎫⎪⎝⎭.【点睛】本题考查了根据函数零点个数求参数,意在考查学生的计算能力和综合应用能力.16.【分析】求导函数求出函数的极值利用函数恰有三个零点即可求实数的取值范围【详解】解:函数的导数为令则或可得函数在上单调递减和上单调递增或是函数的极值点函数的极值为:函数恰有三个零点则实数的取值范围是:解析:240,e ⎛⎫⎪⎝⎭【分析】求导函数,求出函数的极值,利用函数2()x f x x e a =-恰有三个零点,即可求实数a 的取值范围. 【详解】解:函数2x y x e =的导数为22(2)x x x y xe x e xe x '=+=+, 令0y '=,则0x =或2-,可得函数在()2,0-上单调递减,(,2)-∞-和(0,)+∞上单调递增,0∴或2-是函数y 的极值点,函数的极值为:(0)0f =,224(2)4f e e --==. 函数2()x f x x e a =-恰有三个零点,则实数a 的取值范围是:240,e ⎛⎫ ⎪⎝⎭.故答案为:240,e ⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.17.【分析】由可得则设即求函数的最小值求导得出单调性即可得到答案【详解】由即且所以则设函数则令得令得所以函数在上单调递减在上单调递增则函数的最小值为所以的最小值为故答案为:【点睛】本题考查根据题目条件构 解析:ln 22【分析】由()()12f x g x m ==,可得212ln ,m x m x e ==,则221ln m x x m e -=-,设()2ln x h x x e=-,即求函数()h x 的最小值,求导得出单调性即可得到答案.【详解】由()()12f x g x m ==,即1xe m ==且0m >.所以212ln ,m x m x e ==,则221ln m x x m e -=- 设函数()2ln x h x x e =-,则()2212x eh x x e x ex-'=-=.令()0h x '>,得x >,令()0h x '<,得0x <<所以函数()h x 在0⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.则函数()h x 的最小值为11ln 222e h e =⨯-=. 所以21x x -的最小值为ln 22故答案为:ln 22【点睛】本题考查根据题目条件构造函数,利用导数求函数的最小值,属于中档题.18.【分析】求导得到故根据均值不等式得到答案【详解】在上恒成立所以因为当且仅当时等号成立所以故答案为:【点睛】本题考查了根据函数单调性求参数意在考查学生的计算能力和转化能力解析:4a ≤【分析】求导得到()110f x x '=-+≥,故2min a ≤,根据均值不等式得到答案. 【详解】()110f x x '=-+≥在()0,∞+上恒成立,所以2min a ≤,因为24≥,当且仅当1x =时等号成立,所以4a ≤. 故答案为:4a ≤. 【点睛】本题考查了根据函数单调性求参数,意在考查学生的计算能力和转化能力.19.【分析】求出函数的导数问题转化为在恒成立令根据函数的单调性求出的范围即可【详解】解:若在递增则在恒成立即在恒成立令则在递增故故故答案为:【点睛】本题考查了函数的单调性最值问题考查导数的应用以及函数恒 解析:(],e -∞【分析】求出函数的导数,问题转化为x a xe 在[]1,4恒成立,令()x h x xe =,[]1,4x ∈,根据函数的单调性求出a 的范围即可. 【详解】解:()xa f x e x'=-, 若()f x 在[]1,4递增, 则()0f x '在[]1,4恒成立, 即x a xe 在[]1,4恒成立, 令()x h x xe =,[]1,4x ∈, 则()(1)0x h x x e '=+>,()h x 在[]1,4递增,故()()1min h x h e ==, 故a e ,故答案为:(],e -∞. 【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,属于中档题.20.【分析】先判断函数为偶函数再利用导数判断函数在递增从而将不等式转化为进一步可得不等式解对数不等式即可得答案【详解】的定义域为且即有即为偶函数;又时则在递增不等式即为即有可得即有即或解得或则解集为故答解析:()10,100,100⎛⎫+∞ ⎪⎝⎭【分析】先判断函数为偶函数,再利用导数判断函数在0x >递增,从而将不等式转化为()()lg 2f x f >,进一步可得不等式lg 2x >,解对数不等式即可得答案.【详解】()2sin cos f x x x x x =++的定义域为R ,且()()()()()22sin cos sin cos f x x x x x x x x x -=--+-+-=++,即有()()f x f x -=,即()f x 为偶函数;又0x >时,()()sin cos sin 22cos 0f x x x x x x x x '=+-+=+>, 则()f x 在0x >递增,不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>,即为()()()lg lg 22f x f x f +->,即有()()lg 2f x f >, 可得()()lg 2fx f >,即有lg 2x >, 即lg 2x >或lg 2x <-, 解得100x >或10100x <<, 则解集为()10,100,100⎛⎫+∞ ⎪⎝⎭. 故答案为:()10,100,100⎛⎫+∞ ⎪⎝⎭.【点睛】本题考查函数奇偶性、单调性的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意偶函数(||)()f x f x =这一性质的应用.三、解答题21.(1)1y x =-+;(2)答案见解析. 【分析】(1)利用导数求出函数()f x 在0x =处的切线的斜率,并求出切点的坐标,利用点斜式可求得所求切线的方程;(2)令()()ln ln 1xh x f x x xe x x =-=--+,则问题转化为直线y m =与函数()y h x =的图象的交点个数,利用导数分析函数()h x 的单调性与极值,数形结合可得出直线y m =与函数()y h x =的图象的交点个数,由此可得出结论. 【详解】(1)因为()()12xf x x e '=+-,所以()01f '=-,又()01f =,切点坐标为()0,1,所以函数()f x 在0x =处的切线方程为:1y x =-+; (2)构造函数()()()ln ln 10xh x f x x x xe x x x =-+=--+>则()()()()11111xx x xe h x x e x x+-'=+--=, 令()1xm x xe =-,()()10xm x x e '=+>,则()m x 在()0,∞+单调递增,且11022e m ⎛⎫=-<⎪⎝⎭,()110m e =->, 所以存在0,112x ⎛⎫∈⎪⎝⎭,使得()00m x =,即001xe x =,从而00ln x x =-.所以当()00,x x ∈时,()0m x <,即()0h x '<,则()h x 单调递减; 当()0,x x ∈+∞时,()0m x >,即()0h x '>,则()h x 单调递增.所以()()00000000min 01ln 112x h x h x x e x x x x x x ==--+=⋅-++=,如下图所示:所以当2m <时,()g x 没有零点; 当2m =时,()g x 有1个零点; 当2m >时,()g x 有2个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.22.(1)取BC 为152cm 时,矩形ABCD 的面积最大,最大值为2900cm ;(2)取BC 为103cm 时,做出的圆柱形罐子体积最大,最大值为60003π.【分析】(1)设BC x =,矩形ABCD 的面积为S ,()22229002900S x x x x =-=-,利用基本不等式求解最值;(2)设圆柱底面半径为r ,高为x ,体积为V .由229002AB x r π=-=,得2900x r π-=,()231900V r h x x ππ==-,其中030x <<,利用导函数求解最值.【详解】 (1)连结OC .设BC x =,矩形ABCD 的面积为S . 则22900AB x =-030x <<.所以()()2222229002900900900S x x x x x x =-=-+-=. 当且仅当22900x x =-,即152x =时,S 取最大值为2900cm . 所以,取BC 为152cm 时,矩形ABCD 的面积最大,最大值为2900cm . (2)设圆柱底面半径为r ,高为x ,体积为V .由229002AB x r π=-=,得2900x r -=所以()231900V r h x x ππ==-,其中030x <<. 由()2190030V x π='-=,得103x =因此()31900V x x π=-在(上是增函数,在()上是减函数.所以当x =V.取BC为3.【点睛】此题考查函数模型的应用:(1)合理设未知数,建立函数关系,需要注意考虑定义域; (2)利用基本不等式求最值,要注意最值取得的条件;(3)利用导函数讨论函数单调性求解最值,注意自变量的取值范围. 23.(1)3a =-,函数()f x的单调递减区间是(;单调递增区间是)+∞;(2)72a ≤-. 【分析】(1)利用导数的几何意义可知21f,求出a 的值,再进行列表,即可得答案;(2)将问题转化为()0g x '≤在[]1,2上恒成立,再进行参变分离,即可得答案; 【详解】(1)函数()f x 的定义域为()0,∞+,()22222a x af x x x x+'=+=, 由已知21f,解得3a =-.∴()(2x x f x x+'=.当x 变化时,()f x ',()f x 的变化情况如下:(2)由()222ln g x x a x x=++得()2222a g x x x x '=-++,由已知函数()g x 为[]1,2上的单调减函数, 则()0g x '≤在[]1,2上恒成立,即22220a x x x-++≤在[]1,2上恒成立.即21a x x≤-在[]1,2上恒成立. 令()21h x x x =-,在[]1,2上()2211220h x x x x x ⎛⎫'=--=-+< ⎪⎝⎭,所以()h x 在[]1,2为减函数.()()min 722h x h ==-,所以72a ≤-. 【点睛】本题考查导数的几何意义、根据函数的单调性求参数的取值范围,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的应用.24.(1)2a =-(2)21(,2),1e e ⎛⎫+-∞-+∞⎪-⎝⎭【分析】(1)将(),()f x g x 的解析式代入曲线()()y f x g x =-,根据导数几何意义及垂直直线的斜率关系即可求得a 的值;(2)将0x 代入导函数(),()f x g x '',并代入不等式中化简变形,构造函数1()ln am x x a x x+=-+,求得()m x '并令()0m x '=,对a 分类讨论即可确定满足题意的a 的取值范围.【详解】(1)由21()()ln 2y f x g x x a x =-=-, 得()a y x x x'=-.在2x =处的切线斜率为22a -,直线370x y +-=的斜率为13-, 由垂直直线的斜率关系可知232a-=, 解得2a =-. (2)21(),()ln 2f x xg x a x ==, 则(),()a f x x g x x'='=, 不等式()()()()00001f x g x g x f x ''+<-'等价于00001ln ax a x x x +<-. 整理得0001ln 0ax a x x +-+<. 构造函数1()ln am x x a x x+=-+,由题意知,在[]1,e 上存在一点0x ,使得()00m x <.22221(1)(1)(1)()1a a x ax a x a x m x x x x x+--+--+'=--==. 因为0x >,所以10x +>,令0mx '=(),得1x a =+. ①当11a +≤,即0a ≤时,()m x 在[]1,e 上单调递增.只需()120m a =+<,解得2a <-.②当11a e <+≤即01a e <≤-时,()m x 在1x a =+处取最小值.令(1)1ln(1)10m a a a a +=+-++<即11ln(1)a a a ++<+, 可得11ln(1)(*)a a a++<+. 令1t a =+,即1t e <≤,不等式(*)可化为1ln 1t t t +<-: 因为1t e <≤,所以不等式左端大于1,右端小于等于1,所以不等式不能成立. ③当1a e +>,即1a e >-时,()m x 在[]1,e 上单调递减, 只需1()0a m e e a e +=-+<,解得211e a >e +-. 综上所述,实数的取值范围是21(,2),1e e ⎛⎫+-∞-+∞ ⎪-⎝⎭. 【点睛】本题考查了导数的几何意义及由垂直关系求参数,导函数在解不等式中的应用,构造函数法分析函数的单调性、最值的综合应用,属于中档题.25.(1)3{26a b =-=-,()f x 的减区间为(1,2)-,增区间为(,1)-∞-,(2,)+∞;(2)7(,1)(,)2-∞-⋃+∞. 【详解】试题分析:(1)求出()'f x 并令其0=得到方程,把1x =-和2x =代入求出,a b 即可;(2)求出函数的最大值为()1f -,要使不等式恒成立,既要证()2312f c c -+<,即可求出c 的取值范围.试题(1)()232f x x ax b =++', 由题意得:()()10{20f f ''-==即320{1240a b a b -+=++=,解得3{26a b =-=-∴()32362f x x x x c =--+,()2336f x x x '=--. 令()0f x '<,解得12x -<<,令()0f x '>,解得1x <-或2x >∴()f x 的减区间为()1,2-,增区间为(),1-∞-,()2,+∞.(2)由(1)知,()f x 在(),1-∞-上单调递增;在()1,2-上单调递减;在()2,+∞上单调递增.∴[]2,3x ∈-时,()f x 的最大值即为()1f -与()3f 中的较大者.()712f c -=+,()932f c =-+,∴当1x =-时,()f x 取得最大值, 要使()232f x c c +<,只需()2312c f c >-+,即2275c c >+,解得1c <-或72c >. ∴c 的取值范围为()7,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 26.(1)f (x )=x 2-2x -3;(2)1个.【分析】(1)根据一元二次不等式的解集,可设f (x )=a (x +1)(x -3),再结合f (x )的最小值为-4即可求出a 的值,得到函数f (x )的解析式;(2)对g (x )求导可以得到g (x )的单调区间,在每个单调区间上研究函数g (x )的零点情况即可.【详解】(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R},∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0.∴f (x )min =f (1)=-4a =-4,a =1.故函数f (x )的解析式为f (x )=x 2-2x -3.(2)由(1)知g (x )=223x x x---4ln x =x -3x -4ln x -2, ∴g (x )的定义域为(0,+∞),g ′(x )=1+23x -4x =2(1)(3)x x x --, 令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的取值变化情况如下表:x(0,1) 1 (1,3) 3 (3,+∞) g ′(x )+ 0 - 0 + g (x ) 极大值 极小值当x >3时,g (e 5)=e 5-53e-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增, 因而g (x )在(3,+∞)上只有1个零点, 故g (x )仅有1个零点.【点睛】本题主要考查二次函数和导数在研究函数中的应用.。
新北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(2)
一、选择题1.已知函数()322f x x ax x =--+,则“2a ≤”是“()f x 在()2,4上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( ) A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-3.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<4.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB 的最小值为()A .1B .2C D 5.已知函数()y f x =在R 上可导且()02f =,其导函数()f x '满足()()02f x f x x '>--,对于函数()()x f x g x e=,下列结论错误..的是( ). A .函数()g x 在()2,+∞上为单调递增函数 B .2x =是函数()g x 的极小值点 C .0x ≤时,不等式()2xf x e ≤恒成立D .函数()g x 至多有两个零点6.已知()321233y x bx b x =++++是R 上的单调增函数,则b 的取值范围是( ) A . 1b <-或2b > B .1,b ≤-或b 2≥C .12b -<<D .12b -≤≤7.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃ B .(0,2)C .(0,3)D .(0,1][2,3)⋃8.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( )A .B .C .D .9.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <', 且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( ) A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞10.若121x x >>,则( ) A .1221xxx e x e > B .1221x xx e x e < C .2112ln ln x x x x >D .2112ln ln x x x x <11.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.函数()21ln 2f x x x =-在区间()0,2上的最大值为( ) A .12-B .0C .12D .无最大值二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________ 15.若函数()sin 2xxf x e ex -=-+,则不等式()()2210f x f x -+>的解集为________.16.已知数列()*4n n b n N =∈.记数列{}n b 的前n 项和为n T .若对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立,则实数k 的取值范围为______.17.已知函数()1x f x e ax =+-,若0,()0x f x 恒成立,则a 的取值范围是___________.18.已知函数()ln g x a x =,若对[1,]x e ∀∈,都有2()(2)g x x a x ≥-++恒成立,则实数a 的取值范围是________.19.已知函数()3223121x x f x x =+--在[],1m 上的最大值为17,则m =______.20.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 三、解答题21.如图,在半径为30cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A 、B 在直径上,点C 、D 在圆周上.(1)怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积;(2)若将所截得的矩形铝皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形罐子体积最大?并求最大体积.22.已知函数321()13f x x ax =-+.(1)若函数()1y f x =-是奇函数,直接写出a 的值; (2)求函数()f x 的单调递减区间;(3)若()1f x ≥在区间[3,)+∞上恒成立,求a 的最大值. 23.已知函数()f x 的图象在[,]a b 上连续不断,定义:1()min{()|}f x f t a t x =≤≤([,])x a b ∈, 2()max{()|}f x f t a t x =≤≤([,])x a b ∈.其中,min{()|}f x x D ∈表示函数()f x 在D 上的最小值,max{()|}f x x D ∈表示函数()f x 在D 上的最大值.若存在最小正整数k ,使得21()()()f x f x k x a -≤-对任意的[,]x a b ∈成立,则称函数()f x 为[,]a b 上的“k 阶收缩函数”.(Ⅰ)若()cos f x x =,[0,]x π∈,试写出1()f x ,2()f x 的表达式;(Ⅱ)已知函数2()f x x =,[1,4]x ∈-,试判断()f x 是否为[1,4]-上的“k 阶收缩函数”,如果是,求出对应的k ;如果不是,请说明理由;(Ⅲ)已知0b >,函数32()3f x x x =-+是[0,]b 上的2阶收缩函数,求b 的取值范围. 24.已知函数()xf x mx e =-(e 为自然对数的底数).(1)讨论函数()f x 的单调性;(2)已知函数()f x 在1x =处取得极大值,当[]0,3x ∈时,恒有2()0x f x ex p-+<,求实数p 的取值范围.25.已知函数()xf x e =,()215122g x x x =--(e 为自然对数的底数). (1)记()()ln F x x g x =+,求函数()F x 在区间[]1,3上的最大值与最小值; (2)若k ∈Z ,且()()0f x g x k +-≥对任意x ∈R 恒成立,求k 的最大值.26.设函数2()(41)43x f x e ax a x a ⎡⎤=-+++⎣⎦.(1)0a >时,求()y f x =的单调增区间;(2)若()f x 在2x =处取得极小值,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由()f x 在()2,4上单调递增,等价于23131222x a x x x-≤=-在()2,4上恒成立, 再求得114a ≤,再判断“2a ≤”与“114a ≤”的充分必要性即可. 【详解】解:若()f x 在()2,4上单调递增,则()23210f x x ax '=--≥,即23131222x a x x x-≤=-在()2,4上恒成立. 又31()22h x x x =-在()2,4上单调递增,则3111224x x ->,所以114a ≤. 故“2a ≤”是“()f x 在()2,4上单调递增”的充分不必要条件. 故选A. 【点睛】本题考查了由函数的单调性研究参数的范围,重点考查了充分必要条件,属中档题.2.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围.设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--, 所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点; 在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.3.D【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x -=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=, 而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.4.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(), 令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B . 【点睛】本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.5.C解析:C 【分析】由()()02f x f x x '>--,利用导数求出函数()g x 的单调区间以及函数的极值,根据单调性、极值判断每个选项,从而可得结论. 【详解】()()xf xg x e =, 则()()()xf x f xg x e '-'=, 2x >时,()()0f x f x '->,故()y g x =在(2,)+∞递增,A 正确;2x <时,()()0f x f x '-<,故()y g x =在(,2)-∞递减,故2x =是函数()y g x =的极小值点,故B 正确; 若g (2)0<,则()y g x =有2个零点, 若g (2)0=,则函数()y g x =有1个零点, 若g (2)0>,则函数()y g x =没有零点,故D 正确; 由()y g x =在(,2)-∞递减,则()y g x =在(,0)-∞递减, 由0(0)(0)2f g e==,得0x 时,()(0)g x g , 故()2xf x e,故()2x f x e ≥,故C 错误; 故选:C . 【点睛】本题考查了利用导数研究函数的单调性、极值、零点问题,考查了构造函数法的应用,是一道综合题.6.D解析:D 【分析】利用三次函数()321233y x bx b x =++++的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题. 【详解】∵()321233y x bx b x =++++,∴222y x bx b '=+++, ∵函数是R 上的单调增函数,∴2220x bx b +++≥在R 上恒成立, ∴0∆≤,即244(2)0b b -+≤.∴12b -≤≤ 故选:D. 【点睛】本题考查根据导函数研究函数的单调性,属于中档题.可导函数在某一区间上是单调函数,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()'f x 在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式0∆≤来进行求解.7.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.8.C解析:C 【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-, 当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<, 所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x ,即x →+∞时,()0f x >,则D 错误. 故选:C. 【点睛】本题考查了函数图象的识别,属于中档题.9.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e'-'=∴=<∴单调递减 (1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔>10.A解析:A 【分析】根据条件构造函数,再利用导数研究单调性,进而判断大小. 【详解】①令()()1x e f x x x =>,则()()21'0x x e f x x-=>,∴()f x 在1,上单调递增,∴当121x x >>时,1212x x e e x x >,即1221x xx e x e >,故A 正确.B 错误. ②令()()ln 1x g x x x =>,则()21ln 'xg x x-=,令()0g x =,则x e =, 当1x e <<时,()'0g x >;当x e >时,()'0g x <,∴()g x 在()1,e 上单调递增, 在(),e +∞上单调递减,易知C ,D 不正确, 故选A . 【点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题.11.B解析:B 【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解. 【详解】构造()()g x f x x =+,则()()1g x f x ''=+, 又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=, 所以()(1)g e g <,即()0f e e +<, 所以()f e e <-. 故选:B 【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.A解析:A 【分析】利用导数分析函数()f x 在区间()0,2上的单调性,由此可求得该函数在区间()0,2上的最大值.()21ln 2f x x x =-,()211x f x x x x-'∴=-=.当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当12x <<时,()0f x '<,此时,函数()f x 单调递减. 所以,当()0,2x ∈时,()()max 112f x f ==-. 故选:A. 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数()f x 在区间[],a b 上单调,则()f a 与f b 一个为最大值,另一个为最小值;(2)若函数()f x 在区间[],a b 内有极值,则要求先求出函数()f x 在区间[],a b 上的极值,再与()f a 、f b 比大小,最大的为最大值,最小的为最小值;(3)若函数()f x 在区间[],a b 上只有唯一的极大点,则这个极值点就是最大(最小)值点,此结论在导数的实际应用中经常用到.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m >【分析】转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果. 【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点, 当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m > 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调解析:1,e ⎛⎤-∞⎥⎝⎦【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln xk x=有解,构造函数()ln xf x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点,∴等价于方程ln kx x =在0x >时有解,即ln xk x=有解, 设()ln xf x x =, 则()21ln xf x x -'=,由()0f x '>,解得0x e <<,此时函数单调递增, 由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e⎛⎤-∞ ⎥⎝⎦.故答案为:1,e⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.15.【分析】根据奇偶性的定义可判断出为奇函数;利用导数可得到的单调性;将不等式转化为利用单调性可得自变量的大小关系解不等式可求得结果【详解】由题意得:为上的奇函数且不恒等于零在上单调递增等价于解得:故答解析:()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭【分析】根据奇偶性的定义可判断出()f x 为奇函数;利用导数可得到()f x 的单调性;将不等式转化为()()221f x f x ->-,利用单调性可得自变量的大小关系,解不等式可求得结果.【详解】由题意得:()()2sin2xx f x ee xf x --=--=- ()f x ∴为R 上的奇函数()2cos2x x f x e e x -'=++,2x x e e -+≥,2cos 22x ≤,()0f x '∴≥且不恒等于零 ()f x ∴在R 上单调递增()()2210f x f x -+>等价于()()()221f x f x f x ->-=-221x x ∴->-,解得:()1,1,2x ⎛⎫∈-∞-+∞ ⎪⎝⎭故答案为:()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭【点睛】本题考查利用函数的单调性和奇偶性解不等式的问题,关键是能够利用奇偶性的定义、导数的知识求得函数的单调性和奇偶性,从而将不等式转化为函数值的比较,利用单调性进一步得到自变量的大小关系.16.【分析】先求得然后利用分离常数法通过构造函数法结合导数求得的取值范围【详解】由于公比为所以所以对任意的不等式恒成立即恒成立即对任意的恒成立构造函数则令解得而所以所以在上递增在上递减令所以故故答案为: 解析:34k ≥【分析】先求得n T ,然后利用分离常数法,通过构造函数法,结合导数,求得k 的取值范围. 【详解】由于14,4nn b b ==,公比为4,所以()()141441441414333n n n n T +-==-=--, 所以对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立, 即114843n k n +⋅≥-恒成立,即124126344n nn n k +--≥=对任意的*n N ∈恒成立. 构造函数()()6314x x f x x -=≥,则()()'6ln 43ln 464xx f x -⋅++=, 令'0f x解得041log 2x e =+. 而4411log log 2122e +>+=,44113log log 4222e +<+=, 所以012x <<.所以()f x 在[)01,x 上递增,在()0,x +∞上递减. 令634n n n a -=,1239,416a a ==,12a a >. 所以134n a a ≤=,故34k ≥. 故答案为:34k ≥ 【点睛】本小题主要考查等比数列前n 项和公式,考查不等式恒成立问题的求解,考查数列的单调性和最值的判断,属于难题.17.【分析】求导得到讨论和两种情况计算时函数在上单调递减故不符合排除得到答案【详解】因为所以因为所以当即时则在上单调递增从而故符合题意;当即时因为在上单调递增且所以存在唯一的使得令得则在上单调递减从而故 解析:[1,)-+∞【分析】求导得到()x f x e a '=+,讨论10a +和10a +<两种情况,计算10a +<时,函数()f x 在[)00,x 上单调递减,故()(0)0f x f =,不符合,排除,得到答案。
北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(包含答案解析)
一、选择题1.已知()y f x =为R 上的可导函数,当0x ≠时,()()0f x f x x'+>,若()()1F x f x x=+,则函数()F x 的零点个数为( ) A .0B .1C .2D .0或22.已知函数()32f x x bx cx =++的图象如图所示,则2212x x +等于( )A .23B .43C .83D .1633.已知函数()f x 对定义域R 内的任意x 都有()()22f x f x +=-,且当2x ≠时其导函数()f x '满足()()2xf x f x ''>,若24a <<则( )A .()()()223log af f f a << B .()()()23log 2af f a f <<C .()()()2log 32af a f f <<D .()()()2log 23af a f f <<4.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB 的最小值为() A .1B .2C 2D 35.已知函数()3ln f x x x =-与()3g x x ax =-的图像上存在关于x 轴的对称点,则实数a 的取值范围为( ) A .()e -∞, B .1e ⎛⎤-∞ ⎥⎝⎦,C .(]e -∞, D .1e ⎛⎫-∞ ⎪⎝⎭,6.已知函数1()ln xf x x ax -=+,若函数()f x 在[1,)+∞上为增函数,则正实数a 的取值范围为( ) A .()0,1 B .(01],C .()1,+∞D .[1,)+∞7.已知()321233y x bx b x =++++是R 上的单调增函数,则b 的取值范围是( ) A . 1b <-或2b >B .1,b ≤-或b 2≥ C .12b -<< D .12b -≤≤8.若1201x x ,则( )A .2121ln ln x xe e x x ->- B .2121ln ln x x ee x x -<-C .1221xxx e x e > D .1221xxx e x e <9.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.函数()21ln 2f x x x =-在区间()0,2上的最大值为( ) A .12-B .0C .12D .无最大值12.已知函数()2x f x e =+,2()21g x x x =-+,若存在123,,,[0,1]n x x x x ∈,使得*122-1122-1()()()()+()()()()()+(),N n n n n n n f x f x f x g x g x g x g x g x f x f x n --++++=++++∈成立,则n 的最大值为( )(注:=2.71828e 为自然对数的底数)A .9B .8C .7D .6二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,6f π⎛⎫=⎪⎝⎭()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()f x >的解集为_____________.15.若函数()21ln 2f x x b x ax =++在()1,2上存在两个极值点,则()39b a b ++的取值范围是_______.16.已知关于x 的方程20--=x e x k 有2个不相等的实数根,则k 的取值范围是___________.17.若函数()()2212ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是______.18.若函数()2xf x x e a =-恰有三个零点,则实数a 的取值范围是______.19.已知函数()1ln f x x a x x=-+,存在不相等的常数m ,n ,使得()()''0f m f n ==,且10,m e ⎛⎤∈ ⎥⎝⎦,则()()f m f n -的最小值为____________.20.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 三、解答题21.已知函数()2f x x ax b =++,不等式()0f x ≤的解集为[]1,3-.(1)求函数()f x 的解析式; (2)求方程()4ln f x x x =根的个数. 22.已知函数()3213f x x ax bx ab =-+++. (1)若()f x 是奇函数,且有三个零点,求b 的取值范围; (2)若()f x 在1x =处有极大值223-,求当[]1,2x ∈-时()f x 的值域. 23.已知函数21()(1)ln 2f x x ax a x =-+-;(1)若12a <≤,求函数()f x 的单调递减区间; (2)求证:若15a <<,则对任意的120x x >>,有1212()()1f x f x x x ->--.24.已知函数()321f x x bx cx =++-的图象在()()1,1f 处的切线经过点()2,4,且()f x 的一个极值点为-1.(1)求()f x 的极值;(2)已知方程()0f x m -=在[]22-,上恰有一个实数根,求m 的取值范围. 25.已知函数32()4f x x ax =-+-. (I )若4()3f x x =在处取得极值,求实数a 的值; (II )在(I )的条件下,若关于x 的方程()[1,1]f x m =-在上恰有两个不同的实数根,求实数m 的取值范围.26.已知函数()ln 1f x ax x =++. (1)讨论函数()f x 的单调性;(2)对任意的0x >,不等式()xf x e ≤恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】利用导数分析出函数()()1g x xf x =+在区间(),0-∞和()0,∞+上的单调性,由此可判断出函数()()1g x xf x =+的函数值符号,由此可求得函数()y F x =的零点个数. 【详解】构造函数()()1g x xf x =+,其中0x ≠,则()()()g x f x xf x ''=+, 当0x ≠时,()()()()0'+'+=>f x xf x f x f x x x. 当0x <时,()()()0g x f x xf x =+'<',此时,函数()y g x =单调递减,则()()01g x g >=;当0x >时,()()()0g x f x xf x ''=+>,此时,函数()y g x =单调递增,则()()01g x g >=.所以,当0x <时,()()()110xf x F x f x x x+=+=<;当0x >时,()()()110xf x F x f x x x+=+=>. 综上所述,函数()y F x =的零点个数为0. 故选:A. 【点睛】本题考查利用导数研究函数的零点问题,构造函数()()1g x xf x =+是解题的关键,考查分析问题和解决问题的能力,属于中等题.2.C解析:C 【分析】先利用函数的零点,计算b 、c 的值,确定函数解析式,再利用函数的极值点为x ,xz ,利用导数和一元二次方程根与系数的关系计算所求值即可 【详解】由图可知,()0f x =的3个根为0,1,2,()()110,28420f b c f b c ∴=++==++=,解得3,2b c =-=,又由图可知,12,x x 为函数f (x )的两个极值点,()23620f x x x ∴=-+='的两个根为12,x x ,121222,3x x x x ∴+==,()222121212482433x x x x x x ∴+=+-=-=, 故选:C 【点睛】本题主要考查了导数在函数极值中的应用,一元二次方程根与系数的关系,整体代入求值的思想方法.3.C解析:C 【分析】由()f x =(4)f x -得到函数的对称性,(2)()0x f x '->得到函数的单调性,结合关系即可得到结论. 【详解】由于函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -, 可知函数关于2x =对称,根据条件2x ≠时,有()2(),xf x f x ''> 得(2)()0x f x '->,当2x >时()f x 递增,当2x <时()f x 单调递减, 因为24a <<所以4216a <<,21log 2a <<,因为2x =是对称轴,所以22log 3a <<, 所以22log 32aa <<<,所以2(log )(3)(2)af a f f <<,故选:C. 【点睛】本题主要考查函数值的大小比较,根据导数判断函数的单调性,再利用对称性、单调性比较大小.4.B解析:B 【分析】设A (a ,2 a+1),B (a ,a+lna ),求出|AB |,利用导数求出|AB |的最小值. 【详解】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(), 令y 1x lnx =+-,则y ′=11x-,∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选B . 【点睛】本题考查导数知识的运用,考查学生分析解决问题的能力及转化思想,利用求导得到函数的单调性进而求得最值是关键.5.B解析:B 【分析】由题中对称知f (x )=﹣g (x )有解,即lnx a x =在(0,+∞)有解,令()lnxh x x=,求函数导数,分析单调性可得值域,进而可得解. 【详解】函数f (x )=lnx ﹣x 3与g (x )=x 3﹣ax 的图象上存在关于x 轴的对称点, ∴f (x )=﹣g (x )有解, ∴lnx ﹣x 3=﹣x 3+ax ,∴lnx =ax ,即lnxa x=在(0,+∞)有解, 令()lnx h x x =,则()1'lnxh x x-=. 当()()()0,,0,?x e h x h x >'∈单调递增; ()()(),,0?x e h x h x ∈+'∞<,单调递减.()()1max h x h e e==,且()0,x h x →→-∞,所以1a e≤. 故选B. 【点睛】本题主要考查了利用导数研究方程的根,涉及函数对称的处理,考查了计算能力,属于中档题.6.D解析:D 【分析】根据函数1()ln xf x x ax-=+,求导得到()'f x ,然后根据函数()f x 在[1,)+∞上为增函数,转化为()0f x '≥在[1,)+∞上恒成立求解.【详解】函数1()ln xf x x ax-=+, ()2211()aax f x x ax ax --'=+=, 因为函数()f x 在[1,)+∞上为增函数, 所以()0f x '≥在[1,)+∞上恒成立, 又0a >,所以 10ax -≥在[1,)+∞上恒成立,即1a x ≥在[1,)+∞上恒成立, 令()()max 11g x g x x==,,所以1a ≥, 故选:D 【点睛】本题主要考查函数的单调性与导数,还考查了运算求解的能力,属于中档题.7.D解析:D 【分析】利用三次函数()321233y x bx b x =++++的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题. 【详解】∵()321233y x bx b x =++++,∴222y x bx b '=+++, ∵函数是R 上的单调增函数,∴2220x bx b +++≥在R 上恒成立, ∴0∆≤,即244(2)0b b -+≤.∴12b -≤≤ 故选:D. 【点睛】本题考查根据导函数研究函数的单调性,属于中档题.可导函数在某一区间上是单调函数,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()'f x 在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式0∆≤来进行求解.8.C解析:C 【分析】令()x e f x x=,(01)x <<,()()ln 01xg x e x x =-<<,求出函数的导数,通过讨论x的范围,求出函数的单调区间,从而判断结论. 【详解】令()x e f x x =,(01)x <<,则2(1)()0x e x f x x-'=<, 故()f x 在(0,1)递减,若1201x x ,则12()()f x f x >,故1212x x e e x x >,即1221x xx e x e >,故C 正确,D 不正确; 令()()ln 01xg x e x x =-<<,则11()x xxe g x e x x-'=-=,令()1xh x xe =-,可知()h x 在()0,1单调递增,且(0)10,(1)10h h e =-<=->,则存在()00,1x ∈,使得0()0h x =, 则当()00,x x ∈时,()0h x <,即()0g x '<,()g x 在()00,x 单调递减, 当()0,1x x ∈时,()0h x >,即()0g x '>,()g x 在()0,1x 单调递增, 所以()g x 在()0,1不单调,故A ,B 错误. 故选:C. 【点睛】本题考查了函数的单调性问题,考查导数的应用,是一道中档题.9.C解析:C 【解析】构造函数1ln ,0,10y x x x y x+='=>+> ,故函数ln y x x =+在0,上单调递增,即由“0a b >>” 可得到“ln ln a a b b +>+”,反之,由“ln ln a a b b +>+”亦可得到“0a b >>” 选C10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.A解析:A 【分析】利用导数分析函数()f x 在区间()0,2上的单调性,由此可求得该函数在区间()0,2上的最大值. 【详解】()21ln 2f x x x =-,()211x f x x x x-'∴=-=.当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当12x <<时,()0f x '<,此时,函数()f x 单调递减. 所以,当()0,2x ∈时,()()max 112f x f ==-. 故选:A. 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数()f x 在区间[],a b 上单调,则()f a 与f b 一个为最大值,另一个为最小值;(2)若函数()f x 在区间[],a b 内有极值,则要求先求出函数()f x 在区间[],a b 上的极值,再与()f a 、f b 比大小,最大的为最大值,最小的为最小值;(3)若函数()f x 在区间[],a b 上只有唯一的极大点,则这个极值点就是最大(最小)值点,此结论在导数的实际应用中经常用到.12.D解析:D 【分析】构造函数()()()h x f x g x =-,利用导数研究函数的单调性,求出函数的值域即可求解. 【详解】由122-1()()()()+()n n n f x f x f x g x g x -++++*122-1()()()()+(),N n n n g x g x g x f x f x n -=++++∈,变形为:()()()()()()112222n n f x g x f x g x f x g x ---+-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()()11n n n n f x g x f x g x --=-+-⎡⎤⎡⎤⎣⎦⎣⎦,设()()()h x f x g x =-,则()()()()()1122n n n h x h x h x h x h x --+=+++,()()()()2222121x x h x f x g x e x x e x x =-=+--+=-++,()22'=-+x h x e x ,当[]0,1x ∈时,()0h x '>,所以[]0,1x ∈时,()h x 单调递增,()22h x e ∴≤≤+,()()()122n h x h x h x -∴++的值域为()()()22,22n e n -+-⎡⎤⎣⎦,若存在123,,,[0,1]n x x x x ∈,使得()()()()()1122n n n h x h x h x h x h x --+=+++,则()42224n e ≤-≤+,44n e ∴≤≤+,且n *∈N ,n ∴的最大值为6.故选:D 【点睛】关键点点睛:本题考查了导数研究函数方程的根,解题的关键是构造函数()()()h x f x g x =-,考查了运算能力、分析能力. 二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m >【分析】转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果. 【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点, 当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()xy f x x e x =-=-,10xy e '=->,所以函数()xy f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m > 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调解析:,62ππ⎛⎫⎪⎝⎭【分析】 构造函数()()sin f x g x x=,再利用函数的单调性解不等式即可. 【详解】 解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x=, 则()()()2sin cos f x x f x xg x sin x'-'=,当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫⎪⎝⎭单调递增,∴不等式()f x x >,即()61sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>==即()6x g g π⎛>⎫⎪⎝⎭, 26x ππ∴<<故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.15.【分析】先求导设把问题转化为在上存在两个零点设为且再利用韦达定理求解代入整理利用二次函数求取值范围即可【详解】因为所以设因为函数在上存在两个极值点所以在上存在两个零点所以在上存在两个零点设为且所以根解析:814,16⎛⎫⎪⎝⎭【分析】先求导,设()2g x x ax b =++,把问题转化为()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠,再利用韦达定理求解,代入()39b a b ++,整理利用二次函数求取值范围即可. 【详解】 因为()()21ln 02f x x b x ax x =++>, 所以()2b x ax bf x x a x x++'=++=,设()2g x x ax b =++,因为函数()f x 在()1,2上存在两个极值点,所以()f x '在()1,2上存在两个零点,所以()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠, 所以根据韦达定理有:1212x x ax x b+=-⎧⎨⋅=⎩,故()23939b a b b ab b ++=++()()21212121239x x x x x x x x =⋅-⋅++⋅()()22112233x x x x =--,因为()11,2x ∈,所以221113993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭, 222223993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭,由于12x x ≠, 所以()()22112281334,16x x xx ⎛⎫--∈ ⎪⎝⎭.故答案为:814,16⎛⎫ ⎪⎝⎭. 【点睛】思路点睛:利用导数研究函数的极值问题.把函数在区间存在两个极值点的问题转化为导函数在区间内存在两个零点,利用韦达定理得到参数和系数的关系,最后利用二次函数求取值范围.16.【分析】把关于x 的方程有2个不相等的实数根转化为与函数的图象有两个不同的交点利用导数求得函数的单调性与极值即可求解【详解】由题意关于x 的方程有2个不相等的实数根即函数与函数的图象有两个不同的交点设则 解析:(22ln 2,)-+∞【分析】把关于x 的方程20--=x e x k 有2个不相等的实数根,转化为y k =与函数2xy e x =-的图象有两个不同的交点,利用导数求得函数()2xf x e x =-的单调性与极值,即可求解. 【详解】由题意,关于x 的方程20--=x e x k 有2个不相等的实数根, 即函数y k =与函数2xy e x =-的图象有两个不同的交点,设()2x f x e x =-,则()2x f x e '=-,令()20xf x e '=-=,解得ln 2x =,所以函数的减区间为(,ln 2)-∞,增区间为(ln 2,)+∞,所以函数()f x 的最小值为(ln 2)22ln 2f =-,且当x →-∞时,()f x →+∞,当x →∞时,()f x →+∞, 要使得2x e x k -=有2个不相等的实数根,所以22ln2k >-. 即实数k 的取值范围是(22ln 2,)-+∞. 故答案为:(22ln 2,)-+∞. 【点睛】本题主要考查了利用导数研究方程的根,其中解答中把方程根的个数转化为两个函数的图象的交点的个数,利用导数求得函数的单调性与极值是解答的关键,着重考查转化思想,以及运算与求解能力.17.或【分析】首先求出函数的导函数当时可得在定义域上单调递减再根据零点存在性定理可得在上存在唯一的零点当时由导数可得函数的单调性及最小值为令利用导数说明的单调性即可求出参数的值;【详解】解:因为定义域为解析:0a ≤或1a = 【分析】首先求出函数的导函数,当0a ≤时,可得()f x 在定义域上单调递减,再根据零点存在性定理可得()f x 在()0,1上存在唯一的零点,当0a >时,由导数可得函数()f x 的单调性及最小值为()min 1112ln f x f a a a ⎛⎫==+-⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞利用导数说明()g a 的单调性,即可求出参数a 的值; 【详解】解:因为()()2212ln 1f x ax a x x =+---,定义域为()0,∞+,所以()()()()()222122112221ax a x ax x f x ax a x x x+---+'=+--== 当0a ≤时,()0f x '<恒成立,即()f x 在定义域上单调递减,()()1310f a =-<,当0x +→时,20ax →,()210a x -→,2ln x -→+∞,所以()f x →+∞,所以()f x 在()0,1上存在唯一的零点,满足条件; 当0a >时,令()()()2110ax x f x x-+'=>,解得1x a >即函数在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()()()2110ax x f x x -+'=<,解得10x a <<即函数在10,a ⎛⎫⎪⎝⎭上单调递减,则()f x 在1x a =取值极小值即最小值,()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭, 令()112ln g a a a =+-,()0,a ∈+∞,则()2221210a g a a a a+'=+=>恒成立,即()112ln g a a a=+-在定义域上单调递增,且()112ln110g =+-=,所以要使函数()()2212ln 1f x ax a x x =+---只有一个零点,则()min 1112ln 0f x f a a a ⎛⎫==+-= ⎪⎝⎭,解得1a =,综上可得0a ≤或1a =; 故答案为:0a ≤或1a = 【点睛】本题考查利用导数研究函数的零点问题,考查分类讨论思想,属于中档题.18.【分析】求导函数求出函数的极值利用函数恰有三个零点即可求实数的取值范围【详解】解:函数的导数为令则或可得函数在上单调递减和上单调递增或是函数的极值点函数的极值为:函数恰有三个零点则实数的取值范围是:解析:240,e ⎛⎫⎪⎝⎭【分析】求导函数,求出函数的极值,利用函数2()xf x x e a =-恰有三个零点,即可求实数a 的取值范围. 【详解】解:函数2xy x e =的导数为22(2)x x x y xe x e xe x '=+=+,令0y '=,则0x =或2-,可得函数在()2,0-上单调递减,(,2)-∞-和(0,)+∞上单调递增, 0∴或2-是函数y 的极值点,函数的极值为:(0)0f =,224(2)4f e e --==. 函数2()xf x x e a =-恰有三个零点,则实数a 的取值范围是:240,e ⎛⎫ ⎪⎝⎭. 故答案为:240,e ⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.19.【分析】求出由已知可得为的两根求出关系并将用表示从而把表示为关于的函数设为利用的单调性即可求解【详解】因为的定义域为令即因为存在使得且即在上有两个不相等的实数根且所以∴令则当时恒成立所以在上单调递减解析:4e【分析】求出()f x ',由已知可得,m n 为()0f x '=的两根,求出,,m n a 关系,并将,n a 用m 表示,从而把()()f m f n -表示为关于m 的函数设为()h m ,利用()h m 的单调性,即可求解. 【详解】 因为()1ln f x x a x x=-+的定义域为()0,∞+, ()22211'1a x ax x x xf x ++=++=, 令()'0f x =,即210x ax ++=,()0,x ∈+∞,因为存在m ,n ,使得()()''0f m f n ==,且10,m e⎛⎤∈ ⎥⎝⎦,即210x ax ++=在()0,x ∈+∞上有两个不相等的实数根m ,n , 且m n a +=-,1⋅=m n ,所以1n m =,1a m m=--, ∴()()11111ln ln f m f m m m m m m m m m m n ⎛⎫⎛⎫=-+---+--- ⎪ ⎪-⎝⎭⎝⎭ 11l 2n m m m m m ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=,令()112ln h m m m m m m ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦, 则()()()22211121ln l 'n m m m m h m m m -+⎛⎫=-= ⎪⎝⎭, 当10,m e⎛⎤∈ ⎥⎝⎦时,()'0h m <恒成立, 所以()h m 在10,m e⎛⎤∈ ⎥⎝⎦上单调递减,∴()min 14h m h e e ⎛⎫== ⎪⎝⎭,即()()f m f n -的最小值为4e. 故答案为:4e. 【点睛】本题考查最值问题、根与系数关系、函数的单调性,应用导数是解题的关键,意在考查逻辑推理、计算求解能力,属于中档题.20.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x+=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】()1ln 2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-.∴ln 1x a x+=在0x >时有两个根, 令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==-当01x <<时,'()0g x >,当1x >时,'()0g x <,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<. 【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.三、解答题21.(1)()223f x x x =--;(2)有且只有一个根.【分析】(1)根据不等式的解集与方程根的对应关系,列出关于,a b 的方程组,从而求解出,a b 的值,则()f x 的解析式可求; (2)将问题转化为求方程34ln 20x x x---=根的数目,构造新函数()34ln 2g x x x x=---,利用导数分析()g x 的单调性和极值,由此判断出()g x 的零点个数,从而方程()4ln f x x x =根的个数可确定.【详解】解:(1)∵不等式()0f x ≤的解集为[]1,3-, ∴20x ax b ++=的两个根分别为1-和3.∴()()1313a b ⎧-=-+⎪⎨=-⨯⎪⎩.即2a =-,3b =-,故函数()f x 的解析式为()223f x x x =--.(2)由(1),设()22334ln 4ln 2x x g x x x x x x--=-=---,∴()g x 的定义域为()0,∞+,()()()2213341x x g x x x x--'=+-=, 令()0g x '=,得11x =,23x =.当x 变化时,()g x ',()g x 的取值变化情况如下表:当03x <≤时,140g x g ≤=-<, 当3x >时,()55553ee 202212290eg =--->--=>. 又因为()g x 在()3,+∞上单调递增,因而()g x 在()3,+∞上只有1个零点, 故()g x 仅有1个零点.即方程()4ln f x x x =有且只有一个根. 【点睛】思路点睛:利用导数分析方程根的个数的思路: (1)将方程根的个数问题转化为函数零点的个数问题;(2)将原方程变形,构造新函数,分析新函数的单调性、极值、最值;(3)根据新函数的单调性、极值、最值得到新函数的零点个数,则方程根的个数可确定. 22.(1)()0,∞+;(2)5022,33⎡⎤--⎢⎥⎣⎦. 【分析】(1)先由函数奇偶性,得到0a =,得出()313f x x bx =-+,对其求导,分别讨论0b ≤和0b >两种情况,根据导数的方法判定函数单调性,结合零点个数,即可求出结果;(2)先对函数求导,根据极大值求出2,5.a b =-⎧⎨=⎩,根据函数单调性,即可求出值域.【详解】(1)∵()f x 是定义域为R 的奇函数,所以0a =,且()00f =. ∴()313f x x bx =-+, ∴()2f x x b '=-+.当0b ≤时,()20f x x b '=-+≤,此时()f x 在R 上单调递减,()f x 在R 上只有一个零点,不合题意.当0b >时,()20f x x b '=-+>,解得x <<∴()f x 在(,-∞,)+∞上单调递减,在(上单调递增,∵()f x 在R 上有三个零点,∴0f >且(0f <,即3103f=-+>,即0>,而0>恒成立,∴0b >. 所以实数b 的取值范围为()0,∞+. (2)()22f x x ax b '=-++,由已知可得()1120f a b '=-++=,且()122133f a b ab =-+++=-, 解得2,3,a b =⎧⎨=-⎩或2,5.a b =-⎧⎨=⎩当2a =,3b =-时,()3212363f x x x x =-+--,()243f x x x '=-+-,令()0f x '≥,即2430x x -+-≥,解得13x ≤≤, 令()0f x '<,即2430x x -+-<,解得1x <或3x >,即函数()f x 在(),1-∞上单调递减,在()1,3上单调递增,在()3,+∞上单调递减; 所以1x =是()f x 的极小值点,与题意不符. 当2a =-,5b =时,()32125103f x x x x =--+-,()245f x x x '=--+. 令()0f x '≥,即2450x x --+≥,解得51x -≤≤; 令()0f x '<,即2450x x --+<,解得5x <-或1x >,即函数()f x 在(),5-∞-上单调递减,在()5,1-上单调递增,在()1,+∞上单调递减; 所以1x =是()f x 的极大值点,符合题意,故2a =-,5b =. 又∵[]1,2x ∈-,∴()f x 在[]1,1-上单调递增,在[]1,2上单调递减. 又()5013f '-=-,()2213f =-,()3223f =-. 所以()f x 在[]1,2-上的值域为5022,33⎡⎤--⎢⎥⎣⎦.【点睛】 思路点睛:导数的方法求函数零点的一般步骤:先对函数求导,由导数的方法求出函数的单调性区间,根据函数极值的定义,求出函数的的极值,再根据函数函数的零点个数,确定极值的取值情况,进而可得出结果. 23.(1){}|11x a x -<<;(2)证明见解析. 【分析】(1)求出()f x 的导函数,根据12a <≤可得到单调递减区间; (2)令21()()(1)ln 2g x f x x x ax a x x =+=-+-+()0x >,判断出单调性,利用12()()g x g x >可得答案.【详解】 (1)21()(1)ln 2f x x ax a x =-+-的定义域为(0+)∞,, [](1)(1)1()x x a a f x x a x x----'=-+=, 因为12a <≤,所以011a <-≤,当11a -=即2a =时,()f x 在(0+)∞,单调递增, 当011a <-<时,即02a <<,令()0f x '<得11a x -<<,所以()f x 单调递减, 单调递减区间为{}|11x a x -<<, 综上所述,2a =时,()f x 无单调递减区间; 02a <<时, ()f x 单调递减区间为{}|11x a x -<<. (2)设21()()(1)ln 2g x f x x x ax a x x =+=-+-+()0x >,则 21(1)1()1a x a x a g x x a x x-+-+-'=-++=, 令2()(1)1M x x a x a =+-+-,所以2(1)4(1)(1)(5)a a a a ∆=---=--, 因为15a <<,所以(1)(5)0a a ∆=--<,所以()0M x >,即()0g x '>,所以()g x 在(0+)∞,上单调递增, 对任意的120x x >>,有12()()g x g x >,即1122()()f x x f x x +>+,1212()()()f x f x x x ->--,所以1212()()1f x f x x x ->--.【点睛】利用导数()0f x '<求得函数的单调递减区间,利用导数()0f x '>求得函数的单调递增区间.24.(1)()0f x =极大值,()3227f x -=极小值.(2)(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭【分析】(1)首先求出函数的导函数,求出函数在()()1,1f 处的切线方程,由点()2,4过切线,即可得到321b c +=,再由函数的一个极值点为1-则()'1320f b c -=-+=,即可求出函数解析式,最后利用导数求出函数的极值;(2)依题意可得函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点,结合函数图象,即可得解; 【详解】解:(1)∵()2'32f x x bx c =++,∴()'132f b c =++,∴()f x 的图象在()()1,1f 处的切线方程为()()()321y b c b c x -+=++-. ∵该切线经过点()2,4,∴()()()43221b c b c -+=++-,即321b c +=①. 又∵()f x 的一个极值点为-1,∴()'1320f b c -=-+=②. 由①②可知1b =,1c =-,故()321f x x x x =+--.()2'321f x x x =+-,令()'0f x =,得1x =-或13x =.当x 变化时,()'f x ,()f x 的变化情况如下表:故()()10f x f =-=极大值,()327f x f ⎛⎫==-⎪⎝⎭极小值. (2)∵方程()0f x m -=在[]22-,上恰有一个实数根, ∴函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点.∵()23f -=-,()29f =, 结合函数()f x 的图象,∴(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭.【点睛】本题考查利用导数研究函数的极值,函数与方程思想,数形结合思想的应用,属于中档题. 25.(I )2a =;(II )(4,3]--. 【解析】试题分析:(Ⅰ)求导数,把43x =代入导函数为零可得关于a 的方程,解之可得实数a 的值,检验是否有极值即可;(Ⅱ)求()'f x ,利用导数研究函数的单调性,结合其变化规律可得函数的极值,数形结合可得答案. 试题 (I )由题意得,经检验满足条件(II )由(I )知令(舍去) 当x 变化时,的变化情况如下表:x-1(-1,0) 0 (0,1) 1- 0 +-1↘-4↗-3∵关于x 的方程上恰有两个不同的实数根∴实数m 的取值范围是26.(1)答案见解析;(2){}1a a e ≤-. 【分析】(1)分类讨论0a ≥,0a <两种情况,利用导数得出函数()f x 的单调性;(2)分类参数得出ln 1x e x a x --≤在(0,)+∞恒成立,利用导数得出ln 1()x e x g x x--=的最小值,即可得出实数a 的取值范围. 【详解】(1)定义域为(0,)+∞,11()ax f x a x x+'=+= ①若0a ≥,则()0f x '>,()f x 在(0,)+∞单调递增②若0a <,则1()a x a f x x⎛⎫+ ⎪⎝⎭'=1()00f x x a '>⇒<<-,1()0f x x a'<⇒>-()f x 在10,a ⎛⎫-⎪⎝⎭单调递增,1,a ⎛⎫-+∞ ⎪⎝⎭单调递减综上知①0a ≥,()f x 在(0,)+∞单调递增,②0a <,()f x 在10,a ⎛⎫-⎪⎝⎭单调递增,1,a ⎛⎫-+∞ ⎪⎝⎭单调递减 (2)不等式ln 1xax x e ++≤恒成立,等价于ln 1x e x a x--≤在(0,)+∞恒成立令ln 1()x e x g x x --=,0x >,则2(1)ln ()x x e xg x x-+'=令()(1)ln xh x x e x =-+,0x >,1()0xh x xe x'=+>. 所以()y h x =在(0,)+∞单调递增,而(1)0h =所以(0,1)x ∈时,()0h x <,即()0g x '<,()y g x =单调递减;(1,)x ∈+∞时,()0h x >,即()0g x '>,()y g x =单调递增所以在1x =处()y g x =取得最小值(1)1g e =-,所以1a e -≤ 即实数a 的取值范围是{}1a a e ≤- 【点睛】本题主要考查了利用导数求函数的单调性以及利用导数研究不等式的恒成立问题,属于中档题.。
新北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(1)
一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.已知函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点,则a 的取值范围是( ) A .(,]e -∞-B .(,1] -∞-C .[1,) -+∞D .[,)e3.已知函数()322f x x ax x =--+,则“2a ≤”是“()f x 在()2,4上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.已知3()ln 44x f x x x=-+,2()24g x x ax =--+,若对1(0,2]x ∀∈,2[1,2]x ∃∈,使得12()()f x g x ≥成立,则a 的取值范围是( )A .1[,)8-+∞B .258ln 2[,)16-+∞ C .15[,]84-D .5(,]4-∞5.等差数列{a n }中的a 2、a 4030是函数321()4613f x x x x =-+- 的两个极值点,则log 2(a 2016)=( ) A .2B .3C .4D .56.已知函数()f x 对定义域R 内的任意x 都有()()22f x f x +=-,且当2x ≠时其导函数()f x '满足()()2xf x f x ''>,若24a <<则( )A .()()()223log af f f a << B .()()()23log 2af f a f << C .()()()2log 32af a f f <<D .()()()2log 23af a f f <<7.下列函数中,在(0,+∞)上为增函数的是( ) A .y =sin 2xB .y =x 3-xC .y =x e xD .y =-x +ln(1+x )8.函数y =x 3+x 的递增区间是( )A .(0,+∞)B .(-∞,1)C .(-∞,+∞)D .(1,+∞)9.函数()ln sin f x x x =+(x ππ-≤≤且0x ≠)的大致图像是( )A .B .C .D .10.对于函数()cos x f x e x x =-,((0,))x π∈,下列结论正确的个数为( ) ①()f x '为减函数 ②()f x '存在极小值 ③()f x 存在最大值 ④()f x 无最小值 A .0B .1C .2D .311.函数()2cos f x x x =+在0,2π⎡⎤⎢⎥⎣⎦上的最大值为( ) A .2B .36π+C .13π+ D .33π+12.如果不等式3310x ax ++≥对于[]1,1x ∈-恒成立,则实数a 的取值范围是( )A .32⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C .322,3⎡-⎢⎣⎦D .2,3⎛⎤-∞- ⎥⎝⎦ 二、填空题13.若函数()21ln 2f x x b x ax =++在()1,2上存在两个极值点,则()39b a b ++的取值范围是_______.14.已知函数()24f x x ax =++(a ∈R ),()ln 2xg x x=+,若方程()0f g x ⎡⎤=⎣⎦有三个实根1x 、2x 、3x ,且123x x x <<,则2312123ln ln ln 222x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭的值为______.15.已知函数()e e xxf x -=-,有以下命题:①()f x 是奇函数; ②()f x 单调递增函数;③方程()22f x x x =+仅有1个实数根;④如果对任意(0,)x ∈+∞有()f x kx >,则k 的最大值为2. 则上述命题正确的有_____________.(写出所有正确命题的编号)16.已知函数()2x e f x ax x=-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为________.17.定义在()0,∞+上的函数()f x 满足()210x f x '+>,()15f =,则不等式()14f x x≤+的解集为______. 18.现有一块边长为3的正方形铁片,在铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,则该方盒容积的最大值是______.19.若函数()()2212ln 1f x ax a x x =+---只有一个零点,则实数a 的取值范围是______.20.已知函数2()2ln af x x x=+,其中0a >,若()2f x ≥恒成立,则实数a 的取值范围为________.三、解答题21.已知函数()()ln 0af x x a a x=-+>. (1)若曲线()y f x =在点()()1,1f 处与x 轴相切,求a 的值; (2)求函数()f x 在区间()1,e 上的零点个数;(3)若1x ∀、()21,x e ∈,()()()12120x x f x f x ⎡⎤-->⎣⎦,试写出a 的取值范围.(只需写出结论)22.已知:函数()sin cos =-f x x x x . (1)求()f π'; (2)求证:当(0,)2x π∈时,31()3f x x <;(3)若()cos f x kx x x >-对(0,)2x π∈恒成立,求实数k 的最大值.23.设函数()cos2sin f x x m x =+,()0,x π∈. (1)若函数()f x 在2x π=处的切线方程为1y =,求m 的值;(2)若()0,x π∀∈,()0f x >恒成立,求m 的取值范围. 24.已知函数21()2(2)2ln x f x a x a x =+-+ (1)当1a =时,求函数()f x 的极值;(2)求()f x 的单调区间. 25.已知2()2ln f x x x =- (1)求()f x 的最小值; (2)若21()2f x tx x ≥-在(]0,1x ∈内恒成立,求t 的取值范围. 26.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为 (米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升). (1)求y 关于v 的函数关系式;(2)若c≤v≤15(c>0),求当下潜速度v 取什么值时,总用氧量最少.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.52-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭,又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.B解析:B 【分析】根据题中条件,得到方程1ln xa e ex x x ⎛⎫=--++⎪⎝⎭有解,令1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域,对函数()h x 求导,判定其单调性,研究其值域,即可得出结果. 【详解】函数()x f x e ex a =-+与1()ln g x x x=+的图象上存在关于x 轴对称的点, 即方程1ln 0xe ex a x x -+++=有解,即方程1ln x a e ex x x ⎛⎫=--++ ⎪⎝⎭有解,令1()ln xh x e ex x x ⎛⎫=--++ ⎪⎝⎭,则a 的取值范围是()(0)y h x x =>的值域, 因为()22111()xx x h x e e e e x x x -⎛⎫⎡⎤'=--+-=--+ ⎪⎢⎥⎝⎭⎣⎦, 所以当1x =时,()0h x '=; 当01x <<时,0x e e -<,210x x -<,所以()21()0xx h x e e x -⎡⎤'=--+>⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递增;当1x >时,0x e e ->,210x x ->,所以()21()0xx h x e e x -⎡⎤'=--+<⎢⎥⎣⎦,则函数1()ln x h x e ex x x ⎛⎫=--++ ⎪⎝⎭单调递减;所以max ()(1)1h x h ==-, 画出函数()h x 的大致图像如下,由图像可得,()(],1h x ∈-∞-, 所以a 的取值范围(],1-∞-. 故选:B. 【点睛】本题主要考查导数的方法研究方程根的问题,考查函数与方程的应用,将问题转化为两函数交点的问题是解题的关键,属于常考题型.3.A解析:A 【分析】由()f x 在()2,4上单调递增,等价于23131222x a x x x-≤=-在()2,4上恒成立, 再求得114a ≤,再判断“2a ≤”与“114a ≤”的充分必要性即可. 【详解】解:若()f x 在()2,4上单调递增,则()23210f x x ax '=--≥,即23131222x a x x x-≤=-在()2,4上恒成立. 又31()22h x x x =-在()2,4上单调递增,则3111224x x ->,所以114a ≤. 故“2a ≤”是“()f x 在()2,4上单调递增”的充分不必要条件. 故选A. 【点睛】本题考查了由函数的单调性研究参数的范围,重点考查了充分必要条件,属中档题.4.A解析:A 【分析】先求()f x 最小值,再变量分离转化为对应函数最值问题,通过求最值得结果 【详解】 因为()(]3ln x 0,244x f x x x=-+∈,, 所以22113(1)(3)()01444x x f x x x x x---'=--==⇒=,(3舍去) 从而01,()0;12,()0;x f x x f x ''<<<<<>即1x =时()f x 取最小值12, 因此[]x 1,2∃∈,使得21242x ax ≥--+成立,724x a x ≥-+的最小值,因为724x x -+在[]1,2上单调递减,所以724xx -+的最小值为271288-+=-,因此18a ≥-,选A.【点睛】本题考查不等式恒成立与存在性问题,考查综合分析与转化求解能力,属中档题.5.A解析:A 【解析】2240302016220162()86084,log log 42f x x x a a a a =-+=∴+=⇒='== ,选A.点睛:在解决等差、等比数列的运算问题时,注意利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.6.C解析:C 【分析】由()f x =(4)f x -得到函数的对称性,(2)()0x f x '->得到函数的单调性,结合关系即可得到结论. 【详解】由于函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -, 可知函数关于2x =对称,根据条件2x ≠时,有()2(),xf x f x ''> 得(2)()0x f x '->,当2x >时()f x 递增,当2x <时()f x 单调递减, 因为24a <<所以4216a <<,21log 2a <<,因为2x =是对称轴,所以22log 3a <<, 所以22log 32aa <<<, 所以2(log )(3)(2)af a f f <<, 故选:C.【点睛】本题主要考查函数值的大小比较,根据导数判断函数的单调性,再利用对称性、单调性比较大小.7.C解析:C 【解析】A 在R 上是周期函数,2sin cos y x x =' ,导函数在(0,+∞)上有正有负,故原函数有增有减;.B 231,y x -'= 在(0,+∞),有正有负,所以原函数不是增函数,C x x y xe e '=+ 0> ,恒成立,故原函数单调递增;D 1111x y x x-=-+=++' ,在(0,+∞)上导函数为负,原函数应该是减函数. 故选C .点睛:判断函数的单调性的方法,可以根据导函数的正负来判断原函数的单调性.8.C解析:C 【解析】y ′=3x 2+1>0对于任何实数都恒成立.9.D解析:D 【分析】利用函数的奇偶性排除选项,能过导数求解函数极值点的个数,求出()f π的值,从而可判断选项 【详解】解:因为()ln sin()ln sin ()f x x x x x f x -=-+-=+=, 所以()f x 为偶函数,故排除B当0πx <≤时,()ln sin f x x x =+,则'1()cos f x x x=+, 令'()0f x =,则1cos x x=-, 作出1,cos y y x x==-的图像如图,可知两个函数图像有一个交点,就是函数的极值点,所以排除A 因为()ln 1f ππ=>,所以排除C ,当0x x =时,'0()0f x =,故0(0,)x x ∈时,函数()f x 单调递增,当0(,)x x π∈时,函数()f x 单调递减,所以D 满足. 故选:D 【点睛】此题考查了与三角函数有关的函数图像识别,利用了导数判断函数的单调性,考查数形结合的思想,属于中档题10.C解析:C 【分析】对函数求导,然后结合导数与单调性及极值及最值的关系对选项进行判断即可检验. 【详解】解:()(cos sin )1x f x e x x '=--,()2sin x f x e x ''=-,(0,)x π∈,所以()0f x ''<,()f x '单调递减,不存在极小值,①正确,②错误; 因为(0)0f '=,()0f π'<,故()0f x '<恒成立,函数()f x 单调递减,没有最小值,故③错误,④正确. 故选:C . 【点睛】本题主要考查了利用导数研究函数的单调性,极值及最值的判断,属于中档题.11.B解析:B 【分析】利用导数分析函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的单调性,进而可求得函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值. 【详解】()2cos f x x x =+,则()12sin f x x '=-,0,2x π⎡⎤∈⎢⎥⎣⎦,当()0f x '>时,则12sin 0x ->,解得06x π≤<;当()0f x '<时,12sin 0x -<,解得62x ππ<≤.所以,函数()y f x =在区间0,6π⎡⎫⎪⎢⎣⎭上单调递增,在区间,62ππ⎛⎤ ⎥⎝⎦上单调递减,因此,函数()y f x =在6x π=处取得极大值,亦即最大值,即()max 66f x f ππ⎛⎫== ⎪⎝⎭.故选:B. 【点睛】本题考查利用导数求解函数的最值,考查计算能力,属于中等题.12.A解析:A 【分析】分0x =、10x -≤<、01x <≤三种情况讨论,利用参变量分离法计算出实数a 在各种情况下的取值范围,综合可得出实数a 的取值范围. 【详解】由已知,不等式3310x ax ++≥对于[]1,1x ∈-恒成立. ①当0x =时,则有10≥恒成立,此时a R ∈; ②当10x -≤<时,由3310x ax ++≥可得213a x x≤--, 令()21f x x x =--,()32211220x f x x x x-'=-+=>, 所以,函数()f x 在区间[)1,0-上为增函数,则()()min 10f x f =-=,则30a ≤,得0a ≤;③当01x <≤时,由3310x ax ++≥可得213a x x≥--, 令()32120x f x x -'==可得x =,列表如下:2()2maxf x =-=⎝⎭3a ∴≥2a ≥-.综上所述,实数a的取值范围是⎡⎤⎢⎥⎣⎦. 故选:A. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、填空题13.【分析】先求导设把问题转化为在上存在两个零点设为且再利用韦达定理求解代入整理利用二次函数求取值范围即可【详解】因为所以设因为函数在上存在两个极值点所以在上存在两个零点所以在上存在两个零点设为且所以根解析:814,16⎛⎫⎪⎝⎭【分析】先求导,设()2g x x ax b =++,把问题转化为()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠,再利用韦达定理求解,代入()39b a b ++,整理利用二次函数求取值范围即可. 【详解】 因为()()21ln 02f x x b x ax x =++>, 所以()2b x ax bf x x a x x++'=++=,设()2g x x ax b =++,因为函数()f x 在()1,2上存在两个极值点, 所以()f x '在()1,2上存在两个零点,所以()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠,所以根据韦达定理有:1212x x ax x b +=-⎧⎨⋅=⎩,故()23939b a b b ab b ++=++()()21212121239x x x x x x x x =⋅-⋅++⋅()()22112233x x x x =--,因为()11,2x ∈,所以221113993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭, 222223993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭,由于12x x ≠, 所以()()22112281334,16x x xx ⎛⎫--∈ ⎪⎝⎭.故答案为:814,16⎛⎫⎪⎝⎭. 【点睛】思路点睛:利用导数研究函数的极值问题.把函数在区间存在两个极值点的问题转化为导函数在区间内存在两个零点,利用韦达定理得到参数和系数的关系,最后利用二次函数求取值范围.14.16【分析】利用导数画出函数的大致图象数形结合可得有两个不等实根满足且即可得解【详解】因为所以令得所以当时函数单调递增;当时函数单调递减又故可画出函数的大致图象如图所示:因为方程有三个实根故有两个不解析:16 【分析】利用导数画出函数()g x 的大致图象,数形结合可得()0f x =有两个不等实根,满足124t t =、121022t t e<<<<+,且111ln 2x t x =+,32223ln ln 22x x t x x =+=+,即可得解. 【详解】 因为()ln 2xg x x=+,()0,x ∈+∞, 所以()21ln xg x x-'=,令()0g x '=得x e =, 所以当()0,x e ∈时,()0g x '>,函数()g x 单调递增; 当(),x e ∈+∞时,()0g x '<,函数()g x 单调递减, 又()12g e e=+, 故可画出函数()g x 的大致图象,如图所示:因为方程()0f g x =⎡⎤⎣⎦有三个实根,故()0f x =有两个不等实根,不妨设两根为1t ,2t ,且12t t <,则124t t =, 所以121022t t e<<<<+, 则111ln 2x t x =+,32223ln ln 22x x t x x =+=+, 所以()22223121212123ln ln ln 22216x x x t t t t x x x ⎛⎫⎛⎫⎛⎫+++=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故答案为:16. 【点睛】本题考查了函数的零点与方程的根的关系,考查了利用导数研究函数的单调性和极值,属于中档题.15.①②④【分析】根据题意依次分析4个命题对于①由奇函数的定义分析可得①正确;对于②对函数求导分析可得分析可得②正确;对于③分析可得即方程有一根进而利用二分法分析可得有一根在之间即方程至少有2跟故③错误解析:①②④ 【分析】根据题意,依次分析4个命题,对于①、由奇函数的定义分析可得①正确;对于②、对函数()x x f x e e -=-求导,分析可得()0f x '>,分析可得②正确;对于③、2()2x x g x e e x x -=---,分析可得(0)0g =,即方程2()2f x x x =+有一根0x =,进而利用二分法分析可得()g x 有一根在(3,4)之间,即方程2()2f x x x =+至少有2跟,故③错误,对于④、由函数的恒成立问题的分析方法,分析可得④正确,综合可得答案. 【详解】解:根据题意,依次分析4个命题:对于①、()x x f x e e -=-,定义域是R ,且()()x x f x e e f x --=-=-,()f x 是奇函数;故①正确;对于②、若()x x f x e e -=-,则()0x x f x e e -'=+>,故()f x 在R 递增;故②正确; 对于③、2()2f x x x =+,令2()2x x g x e e x x -=---, 令0x =可得,(0)0g =,即方程2()2f x x x =+有一根0x =, ()3313130g e e =--<,()4414200g e e =-->, 则方程2()2f x x x =+有一根在(3,4)之间, 故③错误;对于④、如果对任意(0,)x ∈+∞,都有()f x kx >,即0x x e e kx --->恒成立, 令()x x h x e e kx -=--,且(0)0h =,若()0h x >恒成立,则必有()0x x h x e e k -'=+->恒成立, 若0x x e e k -+->,即1x xx x k e ee e-<+=+恒成立, 而12xxe e +,若有2k <, 故④正确;综合可得:①②④正确; 故答案为:①②④. 【点睛】本题考查函数的奇偶性、单调性的判定,以及方程的根与恒成立问题的综合应用,③关键是利用二分法,属于中档题.16.【分析】由当时不等式恒成立变形得到当时不等式恒成立即在上是增函数然后由在上是恒成立求解【详解】因为当时不等式恒成立即当时不等式恒成立所以在上是增函数所以在上是恒成立即在上是恒成立令所以当时当时所以当解析:2,12e ⎛⎤-∞ ⎥⎝⎦【分析】由当21x x >时,不等式()()12210f x f x x x -<恒成立,变形得到当21x x >时,不等式()()1122x f x x f x <恒成立,即()()g x xf x =,在()0,x ∈+∞上是增函数,然后由()0g x '≥,在()0,x ∈+∞上是恒成立求解.【详解】因为当21x x >时,不等式()()12210f x f x x x -<恒成立,即当21x x >时,不等式()()1122x f x x f x <恒成立, 所以()()g x xf x =,在()0,x ∈+∞上是增函数, 所以()230xg x e ax '=-≥,在()0,x ∈+∞上是恒成立,即23xe a x ≤,在()0,x ∈+∞上是恒成立,令2()3xe h x x=,所以()32()3x e x h x x-'=, 当02x <<时,()0h x '<,当2x >时,()0h x '>,所以当2x =时,()h x 取得最小值,最小值为212e,所以实数a 的取值范围为2,12e ⎛⎤-∞ ⎥⎝⎦.故答案为:2,12e ⎛⎤-∞ ⎥⎝⎦.【点睛】本题主要考查导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.17.【分析】设解不等式即解则结合条件得出的单调性且可解出不等式得出答案【详解】由设则故函数在上单调递增又故的解集为即的解集为故答案为:【点睛】本题考查根据条件构造函数根据函数单调性解不等式由条件构造出函 解析:(]0,1【分析】 设()()14g x f x x =--,解不等式()14f x x≤+,即解()0g x ≤,则()()221x f x g x x'+'=,结合条件,得出()g x 的单调性,且()10g =,可解出不等式得出答案. 【详解】由()210x f x '+>,设()()14g x f x x =--,则()()()222110x f x g x f x x x'+''=+=>. 故函数()g x 在()0,∞+上单调递增, 又()10g =,故()0g x ≤的解集为(]0,1,即()14f x x≤+的解集为(]0,1. 故答案为:(]0,1 【点睛】本题考查根据条件构造函数,根据函数单调性解不等式,由条件构造出函数是本题的关键,属于中档题.18.【分析】根据题意得到方盒底面是正方形边长为高为建立方盒容积的函数模型为再用导数法求解最值【详解】由题意得:方盒底面是正方形边长为高为所以方盒的容积为当时时所以当时取得最大值最大值为2故答案为:2【点 解析:2【分析】根据题意得到方盒底面是正方形,边长为32x -,高为x ,建立方盒容积的函数模型为()2323324129,02V x x x x x x =-⨯=-+<<,再用导数法求解最值. 【详解】由题意得:方盒底面是正方形,边长为32x -,高为x ,所以方盒的容积为()2323324129,02V x x x x x x =-⨯=-+<<, 213122491222V x x x x ⎛⎫⎛⎫'=-+=-- ⎪⎪⎝⎭⎝⎭,当102x <<时,0V '>,1322x <<时,0V '<,所以当12x =时,V 取得最大值,最大值为2. 故答案为:2 【点睛】本题主要考查导数的实际问题中的应用,还考查了运算求解的能力,属于中档题.19.或【分析】首先求出函数的导函数当时可得在定义域上单调递减再根据零点存在性定理可得在上存在唯一的零点当时由导数可得函数的单调性及最小值为令利用导数说明的单调性即可求出参数的值;【详解】解:因为定义域为解析:0a ≤或1a = 【分析】首先求出函数的导函数,当0a ≤时,可得()f x 在定义域上单调递减,再根据零点存在性定理可得()f x 在()0,1上存在唯一的零点,当0a >时,由导数可得函数()f x 的单调性及最小值为()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞利用导数说明()g a 的单调性,即可求出参数a 的值; 【详解】解:因为()()2212ln 1f x ax a x x =+---,定义域为()0,∞+,所以()()()()()222122112221ax a x ax x f x ax a x x x+---+'=+--== 当0a ≤时,()0f x '<恒成立,即()f x 在定义域上单调递减,()()1310f a =-<,当0x +→时,20ax →,()210a x -→,2ln x -→+∞,所以()f x →+∞,所以()f x 在()0,1上存在唯一的零点,满足条件; 当0a >时,令()()()2110ax x f x x-+'=>,解得1x a >即函数在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()()()2110ax x f x x -+'=<,解得10x a <<即函数在10,a ⎛⎫⎪⎝⎭上单调递减,则()f x 在1x a =取值极小值即最小值,()min 1112ln f x f a a a ⎛⎫==+- ⎪⎝⎭,令()112ln g a a a =+-,()0,a ∈+∞,则()2221210a g a a a a +'=+=>恒成立,即()112ln g a a a=+-在定义域上单调递增,且()112ln110g =+-=, 所以要使函数()()2212ln 1f x ax a x x =+---只有一个零点,则()min 1112ln 0f x f a a a ⎛⎫==+-= ⎪⎝⎭,解得1a =,综上可得0a ≤或1a =; 故答案为:0a ≤或1a = 【点睛】本题考查利用导数研究函数的零点问题,考查分类讨论思想,属于中档题.20.【分析】恒成立只需即可求出得出单调区间进而求出求解即可得出结论【详解】由得又函数的定义域为且当时;当时故是函数的极小值点也是最小值点且要使恒成立需则∴的取值范围为故答案为:【点睛】本题考查应用导数求 解析:[),e +∞【分析】()2f x ≥恒成立,只需min ()2f x ≥即可,求出()f x ',得出单调区间,进而求出min ()f x ,求解即可得出结论.【详解】由2()2ln a f x x x =+,得()233222()x a a f x x x x-'=-+=, 又函数()f x 的定义域为(0,)+∞且0a >,当0x <<()0f x '<;当x ()0f x '>,故x =()f x 的极小值点,也是最小值点,且ln 1f a =+,要使()2f x ≥恒成立,需ln 12a +≥,则a e ≥, ∴a 的取值范围为[),e +∞. 故答案为:[),e +∞. 【点睛】本题考查应用导数求函数的最值,恒成立问题等价转化为函数的最值,考查计算求解能力,属于中档题.三、解答题21.(1)1a =;(2)答案见解析;(3)(][)0,1,e +∞.【分析】(1)由题意可得()10f '=,由此可解得实数a 的值; (2)求得()2x af x x -'=,对实数a 的取值进行分类讨论,分析函数()f x 在区间()1,e 上的单调性,结合零点存在定理可得出结论; (3)根据(2)中的讨论可写出实数a 的取值范围. 【详解】(1)()221a x a f x x x x'-=-=, 因为()y f x =在点()()1,1f 处与x 轴相切,且()10f =, 所以()110f a '=-=,解得1a =. 经检验1a =符合题意; (2)由(1)知()2x af x x-'=,令()0f x '=,得x a =. (i )当01a <≤时,()1,x e ∈,()0f x '>,函数()f x 在区间()1,e 上单调递增, 所以()()10f x f >=, 所以函数()f x 在区间()1,e 上无零点;(ii )当1a e <<时,若1x a <<,则()0f x '<,若a x e <<,则()0f x '>. 函数()f x 在区间()1,a 上单调递减,在区间(),a e 上单调递增, 且()10f =,()1ea f e a =-+.当()10af e a e=-+>,即11e a e <<-时,函数()f x 在区间()1,e 上有一个零点;当()10af e a e=-+≤时,即当e e e 1a <-≤时,函数()f x 在区间()1,e 上无零点; (iii )当a e ≥时,()1,x e ∈,()0f x '<,函数()f x 在区间()1,e 上单调递减, 所以()()10f x f <=, 所以函数()f x 在区间()1,e 上无零点. 综上:当01a <≤或ee 1a ≥-时,函数()f x 在区间()1,e 上无零点; 当11ea e <<-时,函数()f x 在区间()1,e 上有一个零点. (3)01a <≤或a e ≥. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题. 22.(1)0;(2)证明见解析;(3)2π.【分析】(1)首先求函数的导数,再代入求()f π'的值;(2)首先设函数()()313g x f x x =-,求函数的导数,利用导数正负判断函数的单调性,求得函数()max 0g x <,(3)首先不等式等价于sin x kx >对(0)2x π∈,恒成立,参变分离后转化为sin x k x <对(0)2x π∈,恒成立,利用导数求函数sin ()xh x x=的最小值,转化为求实数k 的最大值. 【详解】()cos (cos sin )sin f x x x x x x x '=--=(1)()0f π'=;(2)令31()()3g x f x x =-,则2()sin (sin )g x x x xx x x '=-=-,当(0)2x π∈,时,设()sin t x x x =-,则()cos 10t x x '=-<所以()t x 在(0)2x π∈,单调递减,()sin (0)0t x x x t =-<=即sin x x <,所以()0g x '<所以()g x 在(0)2π,上单调递减,所以()(0)0g x g <=, 所以31()3f x x <. (3)原题等价于sin x kx >对(0)2x π∈,恒成立, 即sin x k x <对(0)2x π∈,恒成立, 令sin ()xh x x=,则22cos sin ()()x x x f x h x x x -'==-. 易知()sin 0f x x x '=>,即()f x 在(0)2π,单调递增, 所以()(0)0f x f >=,所以()0h x '<, 故()h x 在(0)2π,单调递减,所以2()2k h π≤=π. 综上所述,k 的最大值为2π.【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:1.讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;2.分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围. 23.(1)2;(2)()1,+∞. 【分析】(1)利用已知条件求出切点坐标,代入到原函数即可得到m 的值;(2)利用已知条件得到cos 2sin x m x >-,令()cos 212sin sin sin x g x x x x=-=-,sin x t =,(]0,1t ∈,得到()12g t t t=-,求导分析函数()g t 的单调性即可得到m 的取值范围.【详解】(1)由题意,函数()cos2sin f x x m x =+,()0,x π∈, 且函数()f x 在2x π=处的切线方程为1y =,所以该函数过点,12π⎛⎫⎪⎝⎭,故cos 2sin 112222f m m m πππ⎛⎫⎛⎫=⨯+=-+=⇒= ⎪ ⎪⎝⎭⎝⎭, 所以m 的值为2;(2)对()0,x π∀∈,()0f x >恒成立,即cos 2sin 0x m x +>,所以cos 2sin x m x >-,①又因为()0,x π∈,所以sin 0x >,故①可化简为cos 2sin x m x>-,② 令()2cos 212sin 12sin sin sin sin x x g x x x x x-=-=-=-, 再令sin x t =,则(]0,1t ∈,所以()12g t t t=-, ()2120g t t'=+>, 所以()g t 在(]0,1上单调递增,故()()max 1211g t g ==-=,又由②式可得,当(]0,1t ∈时,()m g t >恒成立,所以()max 1m g t >=,综上所述:m 的取值范围是:()1,+∞.【点睛】结论点睛:利用导数研究不等式恒成立问题.(1)()f x a ≥恒成立()min f x a ⇔≥;()f x a ≥成立()max f x a ⇔≥;(2)()f x b ≤恒成立()max f x b ⇔≤;()f x b ≤成立()min f x b ⇔≤;(3)()()f x g x >恒成立,令()()()F x f x g x =-,则()min 0F x >.24.(1)极大值为()512f =-,极小值为()22ln 24f =-;(2)详见解析. 【分析】(1)由导函数的正负可确定()f x 的单调性,进而确定极大值为()1f ,极小值为()2f ,代入可求得结果;(2)求得()f x '后,分别在0a ≤、02a <<、2a =和2a >四种情况下确定()f x '的正负,由此可得单调区间.【详解】(1)当1a =时,()212ln 32f x x x x =+-, ()()()()21223230x x x x f x x x x x x---+'∴=+-==>, ∴当()0,1x ∈和()2,+∞时,()0f x '>;当()1,2x ∈时,()0f x '<,()f x ∴在()0,1,()2,+∞上单调递增,在()1,2上单调递减,()f x ∴在1x =处取得极大值,在2x =处取得极小值,()f x ∴极大值为()512f =-,极小值为()22ln 24f =-.(2)由题意得:()()()()()()2222220x a x a x a x a f x x a x x x x-++--'=+-+==>, ①当0a ≤时,当()0,2x ∈时,()0f x '<;当()2,x ∈+∞时,()0f x '>,()f x ∴的单调递减区间为()0,2,单调递增区间为()2,+∞;②当02a <<时,当()0,x a ∈和()2,+∞时,()0f x '>;当(),2x a ∈时,()0f x '<,()f x ∴的单调递减区间为(),2a ,单调递增区间为()0,a ,()2,+∞;③当2a =时,()0f x '≥在()0,∞+上恒成立,()f x ∴的单调递增区间为()0,∞+,无单调递减区间;④当2a >时,当()0,2x ∈和(),a +∞时,()0f x '>;当()2,x a ∈时,()0f x '<,()f x ∴的单调递减区间为()2,a ,单调递增区间为()0,2,(),a +∞;综上所述:当0a ≤时,()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞;当02a <<时,()f x 的单调递减区间为(),2a ,单调递增区间为()0,a ,()2,+∞;当2a =时,()f x 的单调递增区间为()0,∞+,无单调递减区间;当2a >时,()f x 的单调递减区间为()2,a ,单调递增区间为()0,2,(),a +∞.【点睛】本题考查导数在研究函数中的应用,涉及到利用导数求解函数的极值、讨论含参数函数的单调性的问题;讨论含参数函数单调性的关键是能够通过导函数的零点所处的范围进行分类讨论,由此确定导函数的正负.25.(1)1 ;(2)(],1-∞.【分析】(1)先求函数的导函数,求出函数的极值,并将它与函数的端点值进行比较即可. (2)要求若21()2f x tx x ≥-在(]0,1x ∈内恒成立,即转化为312ln 2x t x x x ≤+-在(]0,1x ∈内恒成立,只需求312ln ()x h x x x x =+-(]0,1x ∈内的最小值即可. 【详解】(1)函数的定义域为()0,∞+设()()2112()2x x f x x x x+-'=-=, 由()0f x '>得:1x >,由()0f x '<得:01x <<, 所以()f x 在()0,1单调递减,在()1,+∞单调递增,min ()(1)1f x f ==,(2)若21()2f x tx x ≥-在(]0,1x ∈内恒成立, 可得312ln 2x t x x x≤+-在(]0,1x ∈内恒成立, 令312ln ()x h x x x x =+-,4224232ln ()x x x x h x x--+'=, 因为(]0,1x ∈,所以430x -<,220x -<,22ln 0x x <,40x >,所以()0h x '<,可得()h x 在()0,1上单调递减,所以当1x =时,312ln ()x h x x x x=+-有最小值2, 得22t ≤,所以1t ≤,故t 的取值范围是(],1-∞,【点睛】本题主要考查了利用导数求闭区间上函数的最值,以及求函数恒成立问题,属于基础题. 26.(1)见解析;(2)若c<3102,则当v =3102时,总用氧量最少;若c≥3102,则当v =c 时,总用氧量最少.【分析】(1)结合题意可得y 关于v 的函数关系式.(2)由(1)中的函数关系,求导后得到当0<v<3102时,函数单调递减;当v>3102时,函数单调递增.然后再根据c 的取值情况得到所求的速度.【详解】(1)由题意,下潜用时 (单位时间),用氧量为×=+ (升), 水底作业时的用氧量为10×0.9=9(升),返回水面用时= (单位时间),用氧量为×1.5= (升),因此总用氧量232409,(0)50vy vv=++>.(2)由(1)得232409,(0)50vy vv=++>,∴y′=-=,令y′=0得v=3102,当0<v<3102时,y′<0,函数单调递减;当v>3102时,y′>0,函数单调递增.①若c<3102,则函数在(c,3102)上单调递减,在(3102,15)上单调递增,∴当v=3102②若c≥3102,则y在[c,15]上单调递增,∴当v=c时,总用氧量最少.【点睛】(1)在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.(2)用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.。
北师大版高中数学选修2-2章本检测:第三章导数应用(含解析).docx
高中数学学习材料马鸣风萧萧*整理制作第三章 导数应用(选修2-2北师大版)建议用时 实际用时满分 实际得分120分钟150分一、选择题(本题共12小题,每小题5分,共60分) 1.下列说法正确的是 ( )A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值 2.函数()323922y x x x x =---<<有( )A .极大值5,极小值27-B .极大值5,极小值11-C .极大值5,无极小值D .极小值27-,无极大值 3.函数xx y 142+=的单调递增区间是( ) A .),0(+∞ B .)1,(-∞ C .⎪⎭⎫⎢⎣⎡+∞,21D .),1(+∞ 4.函数xxy ln =的最大值为( ) A.1e -B.eC.2eD.310 5.函数在区间[0,3]上的最大值与最小值分别是( )A.5,-15B.5,-4C.-4,-15D.5,-16 6. f (x )=- +3x 的极值点的个数是( )A.0B.1C.2D.37.已知函数y =f(x)是定义在R 上的奇函数,且当 x ∈(-∞,0)时,不等式恒成立.若,,,则a ,b ,c 的大小关系 是( ) A . B . C . D .8.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内的极小值点有( )A.1个B.2个C.3个D.4个9.已知函数f(x)=12x 3-x 2-72x ,则f(-a 2)与f(-1)的大小关系为( )A .f(-a 2)f(-1)B .f(-a 2)f(-1)C .f(-a 2)f(-1)D .f(-a 2)与f(-1)的大小关系不确定10.若某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =- +81x -234,则使该生产厂家获得最大年利润的年产量 为( )A.13万件B.11万件C.9万件D.7万件11.已知函数f(x)=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围 是( )A .(-1,2)B .(-∞,-3)∪(6,+∞)C .(-3,6)D .(-∞,-1)∪(2,+∞) 12.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f(x )g ′(x )>0,且g (-3)=0,则不等式f(x)g(x)<0的解集是( ) A .(-3,0)∪(3,+∞) B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)二、填空题(本题共4小题,每小题4分,共16分) 13. 若函数f (x )在区间(m ,2m +1)上是增函数,则m 的取值范围是 . 14.若32()(0)f x ax bx cx d a =+++>在R 上是增函数,则,,a b c 的关系式为 . 15. 已知函数f (x )=在x =2处有极大值,则常数m 的值是 .16.在曲线的切线斜率中斜率最小的切线方程是_________.三、解答题(本题共5小题,共74分) 17.(14分)已知函数(1)讨论函数f(x)的单调性;(2)求函数f(x)在[1,2]上的最大值.18.(14分)已知c bx ax x f ++=24)( 的图象经过点(0,1),且在1x =处的切线方程是2y x =-.(1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间.19.(14分)已知函数2()ln (0).f x x ax x a =-->(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为-2,求a 的值以及切线方程;(2)若()f x 是单调函数,求a 的取值范围.20.(16分)已知函数()ln f x ax x =+()a ∈R . (1)若2a =,求曲线()y f x =在1x =处切线的斜率;(2)求()f x 的单调区间;(3)设2()22g x x x =-+,若对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值范围.21.(16分)已知平面向量,若存在不同时为0的实数k 和t ,使2(3),,t k t =+-=-+x a b y a b 且⊥x y ,试确定函数()k f t =的单调区间.第三章导数应用答题纸得分:_________一、选择题题号123456789101112答案二、填空题13._____________ 14._____________15._____________16._____________三、解答题17.18.19.20.21.第三章 导数应用 答案一、 选择题1.D 解析:函数的极值与最值没有必然联系. 2.C 解析:令'23690,1yx x x =--==-得,或3当时,不满足题意,故舍去.当x 在(-2,2)上变化时,的变化情况如下表:x(-2,-1)-1(-1,2)+-y5由上表可知,函数y 有极大值5,无极小值.3.C 解析:令3'322181180,810,.2x y x x x x x -=-=≥-≥≥即得 4.A 解析:令'''22(ln )ln 1ln 0, e.x x x x xy x x x -⋅-====得当x 变化时,随x 的变化情况如下表:x(0,e)e(e ,+∞)+-y由上表可知,函数y 在x=e 时取得最大值,最大值. 5. A 解析:由,得. 令,得当变化时,,f(x)的变化情况如下表:(0,2)2(2,3)3- 0 +f(x)5 -15-4所以函数的最大值与最小值分别是5,-15.6. A 解析:因为f ′(x )=3-3x +3=0,-x +1=0无解,所以没有极值点.7.C 解析:设g(x)=xf(x),由y =f(x)为R 上的奇函数,可知g(x)为R 上的偶函数. 而g ′(x)=[xf(x)]′=f(x)+xf ′(x).由已知得,当x ∈(-∞,0)时,g ′(x)>0,故函数g(x)在(-∞,0)上单调递增. 由偶函数的性质可知,函数g(x)在(0,+∞)上单调递减. 因为=g(-2)=g(2),且,故.8.A 解析:若处取得极小值,则,在的左侧,在的右侧.据此可知,f(x)在开区间(a,b)内的极小值点有1个. 9.A 解析:由题意可得.由=12(3x -7)(x +1)=0,得x =-1或x =73.当时,为增函数; 当时,为减函数; 当x >时,为增函数.所以f(-1)是函数f(x)在(-∞,0]上的最大值.又因为-a 2≤0,故f(-a 2)≤ f(-1). 10. C 解析:,令y ′=0得x =9或x =-9(舍去),当0<x <9时,y ′>0;当x >9时,y ′<0,故当x =9时,函数有极大值,也是最大值,故选C.11.B 解析:因为函数f(x)=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,所以方程有两个不同的实数根. 由得m 的取值范围为. 12.D 解析:因为,则在x <0时是增函数.又因为分别是定义在R 上的奇函数和偶函数, 所以为奇函数,关于原点对称, 所以在x >0时也是增函数. 因为所以当时,可转化为,即; 当时,可转化为,即. 二、填空题13.-1<m ≤0 解析:∵ f ′(x )= ,令 f ′(x )>0,得-1<x <1,∴ f (x )的增区间为(-1,1).又∵ f (x )在区间(m ,2m +1)上是单调递增函数,∴∴ -1≤m ≤0.∵ 2m +1>m ,m >-1,∴ -1<m ≤0. 14.23b ac ≤ 解析:由题意知'2()320f x ax bx c =++≥恒成立,已知则,即15.6 解析:f (x )=.由题意得,解得m =2或m =6,当m =2时,f (2)是极小值,不合题意,舍去. 16.3x -y -11=0 解析:因为,令切线的斜率,当k 取最小值时,,此时切线的斜率为3,切点为(-1,-14),切线方程为,即. 三、解答题 17. 解:(1)当(2)当时,函数上单调递增,最大值为 当时,若,即若,即上单调递增,在上单调递减,最大值 为 若,即. 18.解:(1)因为c bx ax x f ++=24)(的图象经过点(0,1),所以1c =. ①'3'()42,(1)421f x ax bx k f a b =+==+=. ②由题意得切点为(1,1)-,则c bx ax x f ++=24)(的图象经过点(1,1)-,得. ③ 联立①②③得所以(2)令得 当x 变化时, x-+-+由上表可知,函数的单调递增区间为 19.解:(1)由题设,f '(1)=-2a =-2,所以a =1,此时f(1)=0,切线方程为y =-2(x -1),即2x +y -2=0. (2),令=1-8a . 当a ≥18时,≤0,f '(x)≤0,f(x)在(0,+∞)上单调递减. 当0<a <18时,>0,方程+1=0有两个不相等的正根, 不妨设,则当时,f '(x)<0,当时,f '(x)>0, 这时f(x)不是单调函数. 综上,a 的取值范围是[18,+). 20.解:(1)由已知1()2(0)f x x x'=+>,(1)213f '=+=. 故曲线()y f x =在1x =处切线的斜率为3.(2)11'()(0)ax f x a x x x+=+=>.①当0a ≥时,由于0x >,故10ax +>,'()0f x >, 所以函数()f x 的单调递增区间为.②当0a <时,由'()0f x =,得1x a=-.在区间1(0,)a -上,()0f x '>;在区间1(,)a-+∞上,()0f x '<,所以函数()f x 的单调递增区间为,单调递减区间为. (3)由已知,转化为max max ()()f x g x <,max ()2g x =.由(2)知,当0a ≥时,函数()f x 在(0,)+∞上单调递增,值域为R ,故不符合题意. (或者举出反例:存在33(e )e 32f a =+>,故不符合题意) 当0a <时,函数()f x 在上单调递增,在上单调递减, 故()f x 的极大值即为最大值,11()1ln()1ln()f a a a-=-+=----,马鸣风萧萧 所以21ln()a >---,解得31e a <-. 21.解:由13(3,1),(,)22=-=a b 得0,2, 1.∙===a b a b 22222[(3)]()0,(3)(3)0t k t k t k t t t ∙=+-∙-+=-+∙--∙+-=即,x y a b a b a a b a b b331430,()(3).4k t t k f t t t -+-===-即可化为 令当t 变化时,的变化情况如下表: t-1 (-1,1) 1 (1,+)+ 0 - 0 +由上表可知,的单调递增区间为单调递减区间为。
新北师大版高中数学高中数学选修2-2第三章《导数应用》检测题(有答案解析)(1)
一、选择题1.已知函数()()2xf x ax e x =+-(其中2a >-),若函数()f x 为R 上的单调减函数,则实数a 的取值范围为( ) A .()2,1--B .(]2,0-C .(]1,0-D .(]2,1--2.已知函数()322f x x ax x =--+,则“2a ≤”是“()f x 在()2,4上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数322()f x =x ax bx a +++在1x =处的极值为10,则a b -=( ). A .6-B .15-C .15D .6-或154.已知定义在R 上的函数()y xf x '=的图象(如图所示)与x 轴分别交于原点、点(2,0)-和点(2,0),若3-和3是函数()f x 的两个零点,则不等式()0f x >的解集( )A .(-∞,2)(2-⋃,)+∞B .(-∞,3)(3-,)+∞C .(-∞,3)(0-⋃,2)D .(3-,0)(3⋃,)+∞5.函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .[1,)+∞D .(1,)+∞6.若函数1()ln f x x a x =-+在区间(1,)e 上存在零点,则常数a 的取值范围为( ) A .01a <<B .11a e<< C .111a e-<< D .111a e+<< 7.设12x <<,则ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小关系是( ) A .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭B .222ln ln ln x x x x x x⎛⎫<< ⎪⎝⎭C .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭D .222ln ln ln x x xx x x ⎛⎫<<⎪⎝⎭8.已知函数1()ln xf x x ax-=+,若函数()f x 在[1,)+∞上为增函数,则正实数a 的取值范围为( ) A .()0,1B .(01],C .()1,+∞D .[1,)+∞9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.已知函数10()ln ,0x xf x x x x ⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e-,0) B .(12e-,0) C .(0,12e) D .(0,21e) 11.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.已知函数22,2()2,2xx xx f x ex x ⎧+>⎪=⎨⎪+≤⎩函数()()g x f x m =-有两个零点,则实数m 的取值范围为( )A .28,e ⎛⎫-∞ ⎪⎝⎭B .28,4e ⎛⎤⎥⎝⎦C .[)28,4,e ⎛⎫-∞⋃+∞ ⎪⎝⎭ D .280,e ⎛⎫ ⎪⎝⎭二、填空题13.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.14.已知函数()24ln f x x x a x =++,若函数()f x 在()1,2上是单调函数,则实数a 的取值范围是______.15.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数均有(1)()'()0x f x xf x -+>成立,且()1y f x e =+-是奇函数,则不等式()0x xf x e ->的解集是_________.16.现有一块边长为3的正方形铁片,在铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,则该方盒容积的最大值是______. 17.函数()3212132a f x x x x =-++的递减区间为()2,1--,则实数a 的值________. 18.已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',且()10f =,当0x <时,()()+0f x f x x '>,则使得()0f x >成立的x 的取值范围是________. 19.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 20.设函数()f x '是奇函数()f x ()x R ∈的导函数, ()20f -=,当0x >时,()()0xf x f x '-<,则不等式()0f x >的解集为______________. 三、解答题21.已知函数()ln f x x =. (1)令()()1axg x f x x =-+,若函数()g x 在其定义域上单调递增,求实数a 的取值范围;(2)求证:()2xf x e <-.22.已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 23.设函数3222ln 11(),()28a x x f x g x x x x +==-+. (1)若曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,求函数()f x 的解析式;(2)如果对于任意的1213,[,]22x x ∈,都有112()()x f x g x ⋅≥成立,试求实数a 的取值范围.24.已知函数()ln f x ax x =-. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.25.已知函数()2xf x e x a =-+,x ∈R ,曲线()y f x =的图象在点()()0,0f 处的切线方程为y bx =.(1)求,a b ,并证明()2f x x x ≥-+;(2)若()f x kx >对任意的()0,x ∈+∞恒成立,求实数k 的取值范围.26.一件要在展览馆展出的文物类似于圆柱体,底面直径为0.8米,高1.2米,体积约为0.5立方米,为了保护文物需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不少于1.2米,高是底面边长的2倍,保护罩内充满保护文物的无色气体,气体每立方米500元,为防止文物发生意外,展览馆向保险公司进行了投保,保险费用和保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元. (1)若保护罩的底面边长为2.5米,求气体费用和保险费用之和; (2)为使气体费用和保险费用之和最低,保护罩该如何设计?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】令()()(2)1x g x f x ax a e ='=++-,则()(2)x g x ax a e '=++.分0a =,0a >,20a -<<三类讨论,即可求得实数a 的取值范围即可. 【详解】解:令()()(2)1x g x f x ax a e ='=++-,则()(22)x g x ax a e '=++,(ⅰ)当0a =时,()20x g x e '=>,()g x 在R 递增,即()21x f x e '=-在R 递增, 令()0f x '=,解得:2x ln =-,故()f x 在(,2)ln -∞-递减,在(2,)ln -+∞递增,()f x 不单调,与题意不符; (ⅱ)当0a >时,由2()0(2)g x x a '>⇒>-+,2()0(2)g x x a '<⇒<-+,222()(2)10aming x g ae a--∴=--=--<,(0)10g a =+>,∴此时函数()f x '存在异号零点,与题意不符;(ⅲ)当20a -<<,由()0g x '>,可得2(2)x a <-+,由()0g x '<可得2(2)x a>-+,()g x ∴在2(,2)a -∞--上单调递增,在2(2a--,)+∞上单调递减,故222()(2)1amaxg x g ae a--=--=--,由题意知,2210a ae ----恒成立, 令22t a--=,则上述不等式等价于12t e t+,其中1t >, 易证,当0t >时,112tte t >+>+, 当(1t ∈-,0]时12te t+成立, 由2120a-<--,解得21a -<-. 综上,当21a -<-时,函数()f x 为R 上的单调函数,且单调递减; 故选:D . 【点睛】本题主要考查了利用导数研究函数的单调性,突出考查等价转化思想与分类讨论思想的应用,考查逻辑思维能力与推理证明能力,考查参数范围问题及求解函数的值域,属于函数与导数的综合应用.2.A解析:A 【分析】由()f x 在()2,4上单调递增,等价于23131222x a x x x-≤=-在()2,4上恒成立, 再求得114a ≤,再判断“2a ≤”与“114a ≤”的充分必要性即可. 【详解】解:若()f x 在()2,4上单调递增,则()23210f x x ax '=--≥,即23131222x a x x x-≤=-在()2,4上恒成立. 又31()22h x x x =-在()2,4上单调递增,则3111224x x ->,所以114a ≤. 故“2a ≤”是“()f x 在()2,4上单调递增”的充分不必要条件. 故选A. 【点睛】本题考查了由函数的单调性研究参数的范围,重点考查了充分必要条件,属中档题.3.C解析:C【分析】 由题,可得(1)0(1)10f f '=⎧⎨=⎩,通过求方程组的解,即可得到本题答案,记得要检验.【详解】因为322()f x =x ax bx a +++,所以2()32f x x ax b '=++,由题,得(1)0(1)10f f '=⎧⎨=⎩,即2320110a b a b a ++=⎧⎨+++=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,因为当3,3a b =-=时,2()3(1)0f x x '=-≥恒成立,()f x 在R 上递增,无极值,故舍去,所以4(11)15a b -=--=.故选:C 【点睛】本题主要考查含参函数的极值问题,得到两组解后检验,是解决此题的关键.4.B解析:B 【分析】根据()y xf x '=的图像可得()'f x 在R 上的正负值,进而求得原函数的单调性,再结合()f x 的零点画出()f x 的简图,进而求得不等式()0f x >的解集.【详解】由图,当(),2x ∈-∞-时()0xf x '>,故()0f x '<,()f x 为减函数; 当()2,0x ∈-时()0xf x '<,故()0f x '>,()f x 为增函数; 当()0,2x ∈时()0xf x '<,故()0f x '<,()f x 为减函数; 由图,当()2,x ∈+∞时()0xf x '>,故()0f x '>,()f x 为增函数; 又3-和3是函数()f x 的两个零点,画出()f x 的简图如下:故不等式()0f x >的解集为()(),33,-∞-+∞.故选:B 【点睛】本题主要考查了根据关于导函数的图像,分析原函数单调性从而求得不等式的问题.需要根据题意分段讨论导函数的正负,属于中档题.5.A解析:A 【分析】首先对函数求导,将函数在给定区间上单调增,转化为其导数在相应区间上大于等于零恒成立,构造新函数,利用导数研究其最值,求得结果. 【详解】()2ln 1f x ax x '=--,若函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增, 则()0f x '≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 则ln 12x a x +≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 令ln 11(),[,)2x g x x x e+=∈+∞, 则2222ln 2ln ()42x xg x x x --'==-,可以得出01x <<时()0g x '>,当1x >时()0g x '<,所以函数()g x 在1[,1]e上单调递增,在[1,)+∞上单调递减, 所以max 1()(1)2g x g ==,所以12a ≥, 故选:A. 【点睛】该题考查的是与导数有关的问题,涉及到的知识点为根据函数在给定区间上单调增,确定参数的取值范围,属于中档题目.6.C解析:C 【分析】先利用导数判断出函数()f x 在区间()1,e 上为增函数,再解不等式(1)ln110f a =-+<,1()ln 0f e e a e=-+>,即得解.【详解】由题得211()0f x x x'=+>在区间()1,e 上恒成立,所以函数1()ln f x x a x=-+在区间()1,e 上为增函数,所以(1)ln110f a =-+<,1()ln 0f e e a e=-+>, 可得111a e-<<. 故选:C. 【点睛】本题主要考查利用导数研究函数的单调性和零点,意在考查学生对这些知识的理解掌握水平.7.A解析:A 【解析】 试题分析:令,则,所以函数为增函数,所以,所以,即,所以;又因为,所以222ln ln ln ()x x x x x x<<,故应选.考点:1、导数在研究函数的单调性中的应用.8.D解析:D 【分析】 根据函数1()ln xf x x ax-=+,求导得到()'f x ,然后根据函数()f x 在[1,)+∞上为增函数,转化为()0f x '≥在[1,)+∞上恒成立求解. 【详解】 函数1()ln xf x x ax-=+, ()2211()aax f x x ax ax --'=+=, 因为函数()f x 在[1,)+∞上为增函数, 所以()0f x '≥在[1,)+∞上恒成立, 又0a >,所以 10ax -≥在[1,)+∞上恒成立, 即1a x≥在[1,)+∞上恒成立,令()()max 11g x g x x==,, 所以1a ≥, 故选:D 【点睛】本题主要考查函数的单调性与导数,还考查了运算求解的能力,属于中档题.9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数. 由()3,2f π=-故可得22h π⎛⎫=-⎪⎝⎭, 又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x =有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x =有两个交点, 又由()312ln xg x x -'=, 令12ln 0x -=,可得x e =,当(0,)x e ∈时,()0g x '>,则()g x 单调递增; 当(,)x e ∈+∞时,()0g x '<,则()g x 单调递减, 所以当x e =时,()max 12g x e=, 若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.11.B解析:B 【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解. 【详解】构造()()g x f x x =+,则()()1g x f x ''=+, 又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=, 所以()(1)g e g <,即()0f e e +<, 所以()f e e <-. 故选:B 【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.D解析:D 【分析】函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x ex x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22xx xf x e+=对其求导判断单调性,作出()y f x =的图象,数形结合即可求解. 【详解】令()()0g x f x m =-=可得()f x m =,所以函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22x x x f x e +=,()()()2222222x x x x x e e x x x f x e e+-+-'==,当2x >时()220xx f x e-'=<,()f x 单调递减, 当2x ≤时,()2f x x =+单调递增, 所以()f x 图象如图所示:当2x =时,()22222282f e e +⨯==,所以280x e <<, 故选:D 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、填空题13.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论解析:(1)(3)(4) 【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论. 【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦,所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误; 对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解; 令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增,22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4). 【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.14.【分析】对函数进行求导导函数在区间上恒非正或恒非负进行求解即可【详解】由题意得:函数的定义域为由题意可知:或在区间上恒成立当在区间上恒成立时当时因此有;当在区间上恒成立时当时因此有综上所述:实数的取 解析:(,16][6,)-∞-+∞【分析】对函数进行求导,导函数在区间()1,2上恒非正或恒非负进行求解即可. 【详解】由题意得:函数()f x 的定义域为()0+∞,, 2'()+4ln ()2+4af x x x a x f x x x=+⇒=+,由题意可知:'()0f x ≥或'()0f x ≤在区间()1,2上恒成立.当'()0f x ≥在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≥⇒≥--=-+, 当()1,2x ∈时,()2(24)166x x --∈--,,因此有6a ≥-; 当'()0f x ≤在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≤⇒≤--=-+, 当()1,2x ∈时,()2(24)166x x --∈-,,因此有16a ≤-, 综上所述:实数a 的取值范围是(,16][6,)-∞-+∞. 故答案为:(,16][6,)-∞-+∞. 【点睛】本题考查了已知函数在区间上的单调性求参数取值范围,考查了导数的应用,考查了数学运算能力,属于中档题.15.【分析】将问题转化为解不等式令根据函数的单调性以及奇偶性求出的范围即可【详解】由可得令则故在上单调递增又是奇函数故故解得:故答案为:【点睛】本题主要考查了函数的单调性问题考查导数的应用以及函数的奇偶 解析:()1,+∞【分析】将问题转化为解不等式()1xxf x e >,令()()xxf x g x e=,根据函数的单调性以及奇偶性求出x 的范围即可. 【详解】由()0xxf x e ->可得()1xxf x e>,令()()x xf x g x e =,则()()()()10xx f x xf x g x e -+''=>,故()g x 在R 上单调递增,又()1y f x e =+-是奇函数,故()1f e =,()11g =, 故()()1g x g >,解得:1x >,故答案为:()1,+∞. 【点睛】本题主要考查了函数的单调性问题,考查导数的应用以及函数的奇偶性,属于中档题.16.【分析】根据题意得到方盒底面是正方形边长为高为建立方盒容积的函数模型为再用导数法求解最值【详解】由题意得:方盒底面是正方形边长为高为所以方盒的容积为当时时所以当时取得最大值最大值为2故答案为:2【点 解析:2【分析】根据题意得到方盒底面是正方形,边长为32x -,高为x ,建立方盒容积的函数模型为()2323324129,02V x x x x x x =-⨯=-+<<,再用导数法求解最值. 【详解】由题意得:方盒底面是正方形,边长为32x -,高为x ,所以方盒的容积为()2323324129,02V x x x x x x =-⨯=-+<<, 213122491222V x x x x ⎛⎫⎛⎫'=-+=-- ⎪⎪⎝⎭⎝⎭,当102x <<时,0V '>,1322x <<时,0V '<,所以当12x =时,V 取得最大值,最大值为2. 故答案为:2 【点睛】本题主要考查导数的实际问题中的应用,还考查了运算求解的能力,属于中档题.17.【分析】根据题意求出函数的导函数则方程的两根为和利用韦达定理即可得到结论【详解】由题意因函数的递减区间为所以方程的两根为和由韦达定理可得:即故答案为:【点睛】本题考查了导函数的运算法则一元二次方程根 解析:3-【分析】根据题意,求出函数的导函数,则方程220x ax -+=的两根为2-和1-,利用韦达定理即可得到结论. 【详解】由题意,()22f x x ax =-+',因函数()f x 的递减区间为()2,1--,所以,方程220x ax -+=的两根为2-和1-, 由韦达定理可得:21a --=,即3a =-.故答案为:3-. 【点睛】本题考查了导函数的运算法则,一元二次方程根与系数的关系,属于基础题.18.【分析】结合所给不等式构造函数可证明在时单调递减根据为偶函数且可得单调性的示意图结合函数图像即可求得使成立的的取值范围【详解】令则由题意可知当时不等式两边同时乘以可得即所以在时单调递减因为定义在上的 解析:()()1,00,1-【分析】结合所给不等式,构造函数()()g x x f x =⋅,可证明()g x 在0x <时单调递减,根据()f x 为偶函数且()10f =,可得()g x 单调性的示意图,结合函数图像即可求得使()0f x >成立的x 的取值范围.【详解】令()()g x x f x =⋅,则()()()g x f x x f x '=+⋅' 由题意可知当0x <时,()()+0f x f x x'>,不等式两边同时乘以x 可得()()+0xf x f x '<,即()0g x '<,所以()()g x x f x =⋅在0x <时单调递减, 因为定义在()(),00,-∞⋃+∞上的()f x 为偶函数, 所以()()g x x f x =⋅为定义在()(),00,-∞⋃+∞上的奇函数,且()10f =,所以()()110g g =-=,由奇函数性质可得()()g x x f x =⋅函数图像示意图如下图所示:所以当0x <时,()0f x >的解集为()1,0-,当0x >时,()0f x >的解集为()0,1, 综上可知,()0f x >的解集为()()1,00,1-故答案为:()()1,00,1-.【点睛】本题考查了函数奇偶性及单调性的综合应用,构造函数判断函数的单调性,数形结合法解不等式,属于中档题.19.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值 解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x+=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】()1ln 2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-.∴ln 1x a x +=在0x >时有两个根, 令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==-当01x <<时,'()0g x >,当1x >时,'()0g x <,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<. 【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.20.【分析】根据当时构造函数求导在上是减函数再根据是奇函数在上是增函数由写出的解集【详解】设所以因为当时则所以在上是减函数又因为是奇函数所以在上是增函数因为所以所以当或时所以不等式的解集为故答案为:【点 解析:(),2(0,2)-∞-⋃【分析】根据当0x >时,()()0xf x f x '-<,构造函数()()f x g x x=,求导 ()()()20xf x f x g x x'-'=<,()g x 在()0,∞+上是减函数,再根据()f x 是奇函数,()g x 在(),0-∞上是增函数,由()20f -=,()20f =,写出()0f x >的解集. 【详解】 设()()f x g x x=, 所以()()()2xf x f x g x x'-'=, 因为当0x >时,()()0xf x f x '-<,则()0g x '<, 所以()g x 在()0,∞+上是减函数,又因为()f x 是奇函数,所以()g x 在(),0-∞上是增函数, 因为()20f -=,所以()20f =, 所以当2x <- 或02x <<时,()0f x >, 所以不等式()0f x >的解集为(),2(0,2)-∞-⋃. 故答案为:(),2(0,2)-∞-⋃ 【点睛】本题主要考查构造函数,用导数研究函数的单调性解不等式,还考查了运算求解的能力,属于中档题.三、解答题21.(1)(],4-∞;(2)证明见解析. 【分析】(1)由题意可知,()0g x '≥对任意的0x >恒成立,利用参变量分离法可得出()21x a x+≤,利用基本不等式求出函数()21x y x+=在区间()0,∞+上的最小值,由此可求得实数a 的取值范围;(2)利用导数分别证明出不等式ln 1≤-x x ,()120xx e x -<->,由此可证得所求不等式成立. 【详解】(1)()()ln 11ax ax g x f x x x x =-=-++的定义域为()0,∞+,()()211a g x x x '=-+,由题意可知,()0g x '≥对任意的0x >恒成立,可得()2112x a x xx+≤=++,当0x >时,由基本不等式可得1224x x ++≥=, 当且仅当1x x=时,即当1x =时,等号成立, 4a ∴≤,因此,实数a 的取值范围是(],4-∞;(2)先证明不等式ln 1≤-x x ,构造函数()ln 1g x x x =--,定义域为()0,∞+,()111x g x x x-'=-=,当01x <<时,()0g x '<;当1x >时,()0g x '>. 所以,函数()g x 的单调递增区间为()1,+∞,单调递减区间为()0,1,则()()min 10g x g ==,即ln 10x x --≥,ln 1x x ∴≤-.下面证明:当0x >时,12x x e -<-,构造函数()()()211xxh x e x e x =---=--,()1x h x e '=-,当0x >时,()0h x '>,所以,函数()h x 在区间()0,∞+上单调递增,()()00h x h ∴>=,即21x e x ->-.因此,ln 12x x x e ≤-<-,即()2xf x e <-.【点睛】第(1)问由函数在区间上的单调性求参数的取值范围,一般转化为导数不等式恒成立问题,常用参变量分离法或分类讨论法求解;第(2)问证明不等式ln 2x x e <-,可通过常用不等式ln 1≤-x x ,1x e x ≥+构造函数,利用导数法来得到证明.22.(1)见解析;(2)[1,+∞);(3)证明见解析. 【分析】(1)求导数可得2244(1)(2)ax a y ax x +-'=++,当1a 时函数在[)0+∞,上单调递增;当01a <<时易得函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,不等式()()1f x g x +在[0x ∈,)+∞时恒成立,当01a <<时,不等式00()()1f x g x +不成立,综合可得a 的范围; (3)由(2)的单调性易得11[(1)]122ln k lnk k <+-+,进而可得11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+,将上述式子相加可得结论. 【详解】解:(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增;当01a <<时,由0y '>可得x >∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立,当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证. 【点睛】本题考查导数的综合应用,涉及函数的单调性和恒成立以及不等式的证明,属于中档题. 23.(1)21ln ()x x f x x+=;(2)12a ≥. 【分析】 (1)求导3ln 4()x x x a f x x --'=,由已知得(1)1f '=-,求出12a =得解(2)求导2()34g x x x '=-得到()g x 在(12)32, 上的最大值为1()12g = 转化11()1,x f x ⋅≥ 得到1112ln a x x x ≥-在113[,]22x ∈恒成立.构造函数1111()ln ,h x x x x =-求得1()h x 的最大值为(1)1h =,得解【详解】(1)3ln 4()x x x a f x x --'=, ∵曲线()y f x =在点(1,(1))f 处的切线与30x y -+=垂直,∴(1)1f '=-,12a ∴=.21ln ()x x f x x +∴= (2)2()34g x x x '=-, ∴14(,)23x ∈,()0g x '<,43(,)32x ∈,()0g x '>,∴()g x 在14(,)23上递减,在43(,)32上递增,∴()g x 在14(,)23上的最大值为131()1,()224g g ==较大者,即()1g x ≤, ∵对于任意的113[,]22x ∈,都有112()()x f x g x ⋅≥成立,∴11()1,x f x ⋅≥ 1112ln 1,a x x x +∴≥ 即对任意的111113(,),2ln 22x a x x x ∈≥-成立.令1111()ln ,h x x x x =-, 11()ln h x x '=-, ∴11(,1)2x ∈,1()0h x '>,13(1,)2x ∈,1()0h x '<,∴1()h x 在1(,1)2上递增,在3(1,)2上递减,1()h x 的最大值为(1)1h =,∴21a ≥,12a ≥. 【点睛】本题考查函数导数几何意义及利用导数研究函数最值及不等式恒成立求参数范围.属于基础题.24.(1)答案见解析;(2)10,e ⎛⎫ ⎪⎝⎭ 【分析】(1)当1a =时,求导得到()111x f x x x -'=-=,然后解不等式()0f x '<和()0f x '>即可..(2)由()1f x a x '=-,当0a ≤时,()10f x a x'=-<,()f x 单调减不成立,当0a >时,()11a x a f x a x x⎛⎫- ⎪⎝⎭'=-=,易得1x a =是()f x 的极小值点,然后分1a e ≥,10a e<<两种情况,利用零点存在定理求解. 【详解】(1)当1a =时,由()111x f x x x-'=-=, 当()0,1x ∈时,()0f x '<,()f x 单调递减;当()1,x ∈+∞时,()0f x '>,()f x 单调递增;.(2)由()1f x a x'=-, 若0a ≤,()10f x a x'=-<, ()f x 单调减,()f x 最多有一个零点,不合题意;若0a >,()11a x a f x a x x⎛⎫- ⎪⎝⎭'=-=, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调减; 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调增, 则1x a=是()f x 的极小值点, (i )若111110ln 1ln 0a e f a e e a a a a ⎛⎫≥⇒<≤⇒=⋅-≥-= ⎪⎝⎭, 此时,()f x 最多有一个零点,不合题意;.(ii )当111110ln 1ln 0a e f a e e a a a a ⎛⎫<<⇒>⇒=⋅-<-= ⎪⎝⎭, 又1110f a e e ⎛⎫=⋅+> ⎪⎝⎭,故在11,e a ⎛⎫ ⎪⎝⎭内,()f x 有一个零点, 又∵10,x a ⎛⎫∈ ⎪⎝⎭时,()f x 单调递减, 在10,a ⎛⎫ ⎪⎝⎭内,()f x 有且只有一个零点. 由(1)知,ln 1ln11x x -≥-=,等号仅当1x =时成立,22442222ln 2ln 2f a a a a aa ⎛⎫⎛⎫=⋅-=-> ⎪ ⎪⎝⎭⎝⎭, 故在214,a a ⎛⎫ ⎪⎝⎭内,()f x 有一个零点, 又∵1,x a ⎛⎫∈+∞⎪⎝⎭时,()f x 单调增, 在1,a ⎛⎫+∞ ⎪⎝⎭内,()f x 有且只有一个零点. 所以a 的取值范围为10,e ⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查函数的单调性与导数以及函数的零点与导数,还考查了分类讨论的思想和运算求解的能力,属于中档题.25.(1)1a =-,1b =,证明见解析;(2)(),2e -∞-.【分析】(1)先求出()21x f x e x =--,则()()21xg x f x x x e x =+-=--,利用导数求出()()min 00g x g ==,不等式即得证;(2)价于()f x k x >对任意的0,恒成立,令()()f x x xϕ=,0x >,求出函数()y x ϕ=的最小值即得解.【详解】(1)根据题意,函数()2x f x e x a =-+,则()2xf x e x '=-,则()01f b '==, 由切线方程y bx =可得切点坐标为()0,0,将其代入()y f x =,解得1a =-, 故()21x f x e x =--,则()()21xg x f x x x e x =+-=--, 则()10xg x e '=-=,得0x =, 当(),0x ∈-∞,0g x,函数y g x 单调递减; 当()0,x ∈+∞,0g x ,函数y g x 单调递增;所以()()min 00g x g ==,所以()2f x x x ≥-+.(2)由()f x kx >对任意的当()0,x ∈+∞恒成立等价于()f x k x >对任意的0,恒成立,令()()f x x xϕ=,0x >,得()()()()()()()22222111x x x x e x e x x e x xf x f x x x x xϕ-------'-'===, 由(1)可知,当()0,x ∈+∞时,10x e x -->恒成立,令()0ϕ'>x ,得1x >;()0ϕ'<x ,得01x <<,所以()y x ϕ=的单调增区间为1,,单调减区间为0,1,故()()min 12x e ϕϕ==-,所以()min 2k x e ϕ<=-.所以实数k 的取值范围为(),2e -∞-.【点睛】本题主要考查利用导数求函数的最值,考查利用导数研究不等式的恒成立问题,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平.26.(1)23055元;(2)保护罩为底面边长为2米,高为4米的正四棱柱【分析】(1)根据定义先求保险费用,再计算正四棱柱体积,进而求气体费用,最后求和得结果; (2)先列出气体费用和保险费用之和函数关系式,再利用导数求最值,即得结果.【详解】(1)保险费用为24800076802.5= 正四棱柱体积为22.5(2 2.5)⨯⨯所以气体费用为2500[2.5(2 2.5)0.5]15375⨯⨯⨯-=因此气体费用和保险费用之和为76801537523055+=(元);(2)设正四棱柱底面边长为a 米,则 1.2a ≥因此气体费用和保险费用之和23224800048000500[(2)0.5]1000250y a a a a a=+⨯⨯-=+- 因为2396000300002y a a a'=-+=∴= 当2a >时,0y '>,当1.22a ≤<时,0y '<, 因此当2a =时,y 取最小值,保护罩为底面边长为2米,高为4米的正四棱柱时,气体费用和保险费用之和最低.【点睛】本题考查利用导数求函数最值、列函数解析式,考查基本分析求解能力,属中档题.。
(常考题)北师大版高中数学高中数学选修2-2第三章《导数应用》测试(包含答案解析)
一、选择题1.已知()y f x =为R 上的可导函数,当0x ≠时,()()0f x f x x'+>,若()()1F x f x x=+,则函数()F x 的零点个数为( ) A .0B .1C .2D .0或22.已知函数()32f x x bx cx =++的图象如图所示,则2212x x +等于( )A .23B .43C .83D .1633.已知函数32()f x x bx cx d =+++在区间[1,2]-上是减函数,那么b c + ( ) A .有最小值152 B .有最大值152 C .有最小值152- D .有最大值152-4.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞5.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( ) A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞6.已知函数322()f x =x ax bx a +++在1x =处的极值为10,则a b -=( ). A .6-B .15-C .15D .6-或157.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭8.已知函数()f x 对定义域R 内的任意x 都有()()22f x f x +=-,且当2x ≠时其导函数()f x '满足()()2xf x f x ''>,若24a <<则( )A .()()()223log af f f a << B .()()()23log 2af f a f << C .()()()2log 32af a f f <<D .()()()2log 23af a f f <<9.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .10.函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .[1,)+∞D .(1,)+∞11.若121x x >>,则( ) A .1221xxx e x e > B .1221x xx e x e < C .2112ln ln x x x x >D .2112ln ln x x x x <12.已知函数22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩函数()()g x f x m =-有两个零点,则实数m 的取值范围为( )A .28,e ⎛⎫-∞ ⎪⎝⎭B .28,4e ⎛⎤⎥⎝⎦C .[)28,4,e ⎛⎫-∞⋃+∞ ⎪⎝⎭ D .280,e ⎛⎫ ⎪⎝⎭ 二、填空题13.已知函数()24ln f x x x a x =++,若函数()f x 在()1,2上是单调函数,则实数a 的取值范围是______. 14.321313y x x x =--+的极小值为______. 15.函数()ln xf x x=在(),1a a +上单调递增,则实数a 的取值范围为______. 16.已知函数()f x 的导函数()y f x '=的图象如图所示,给出如下命题:①当20x -<<时,()0f x >;②(1)(0)f f -<;③函数()f x 在12x =-处切线的斜率小于零;④0是函数()f x 的一个极值点;其中正确的命题是___________.(写出所有正确命题的序号)17.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________. 18.已知函数21()ln 2f x x a x =+,若对任意两个不等的正实数1x ,2x 都有()()12122f x f x x x ->-恒成立,则实数a 的取值范围是____19.设函数()'f x 是偶函数()(0)f x x ≠的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是__________.20.设函数()2()1xf x x e =-,当0x ≥时,()1(0)f x ax a ≤+>恒成立,则a 的取值范围是________.三、解答题21.设函数()22f x x x k x =++,k ∈R . (Ⅰ)当1k =-时,解不等式()3f x >;(Ⅱ)若对任意[]1,2x ∈时,直线21y x =+恒在曲线()y f x =的上方,求k 的取值范围. 22.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;23.已经x ∈R ,(1)求证:1x e x ≥+ (其中, 2.71828e =);(2)n N +∈,求证:1(1)n n e +≤. 24.已知函数()xf x e =,()215122g x x x =--(e 为自然对数的底数).(1)记()()ln F x x g x =+,求函数()F x 在区间[]1,3上的最大值与最小值; (2)若k ∈Z ,且()()0f x g x k +-≥对任意x ∈R 恒成立,求k 的最大值. 25.已知函数()1xf x x ae =-+,()a R ∈(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论()f x 的单调性.26.设函数()f x =311x x++,[0,1]x ∈.证明: (Ⅰ)()f x 21x x ≥-+; (Ⅱ)34<()f x 32≤.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用导数分析出函数()()1g x xf x =+在区间(),0-∞和()0,∞+上的单调性,由此可判断出函数()()1g x xf x =+的函数值符号,由此可求得函数()y F x =的零点个数. 【详解】构造函数()()1g x xf x =+,其中0x ≠,则()()()g x f x xf x ''=+, 当0x ≠时,()()()()0'+'+=>f x xf x f x f x x x. 当0x <时,()()()0g x f x xf x =+'<',此时,函数()y g x =单调递减,则()()01g x g >=;当0x >时,()()()0g x f x xf x ''=+>,此时,函数()y g x =单调递增,则()()01g x g >=.所以,当0x <时,()()()110xf x F x f x x x+=+=<;当0x >时,()()()110xf x F x f x x x+=+=>. 综上所述,函数()y F x =的零点个数为0.故选:A. 【点睛】本题考查利用导数研究函数的零点问题,构造函数()()1g x xf x =+是解题的关键,考查分析问题和解决问题的能力,属于中等题.2.C解析:C 【分析】先利用函数的零点,计算b 、c 的值,确定函数解析式,再利用函数的极值点为x ,xz ,利用导数和一元二次方程根与系数的关系计算所求值即可 【详解】由图可知,()0f x =的3个根为0,1,2,()()110,28420f b c f b c ∴=++==++=,解得3,2b c =-=,又由图可知,12,x x 为函数f (x )的两个极值点,()23620f x x x ∴=-+='的两个根为12,x x ,121222,3x x x x ∴+==, ()222121212482433x x x x x x ∴+=+-=-=, 故选:C 【点睛】本题主要考查了导数在函数极值中的应用,一元二次方程根与系数的关系,整体代入求值的思想方法.3.D解析:D 【解析】试题分析:由f (x )在[-1,2]上是减函数,知f′(x )=3x 2+2bx+c≤0,x ∈[-1,2], 则f′(-1)=3-2b+c≤0,且f′(2)=12+4b+c≤0,⇒15+2b+2c≤0⇒b+c≤-152,故选D. 考点:本题主要考查了函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.点评:解决该试题的关键是先对函数f (x )求导,然后令导数在[-1,2]小于等于0即可求出b+c 的关系,得到答案.4.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.5.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′,令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 6.C解析:C 【分析】 由题,可得(1)0(1)10f f '=⎧⎨=⎩,通过求方程组的解,即可得到本题答案,记得要检验.【详解】因为322()f x =x ax bx a +++,所以2()32f x x ax b '=++,由题,得(1)0(1)10f f '=⎧⎨=⎩,即2320110a b a b a ++=⎧⎨+++=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,因为当3,3a b =-=时,2()3(1)0f x x '=-≥恒成立,()f x 在R 上递增,无极值,故舍去,所以4(11)15a b -=--=.故选:C 【点睛】本题主要考查含参函数的极值问题,得到两组解后检验,是解决此题的关键.7.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+, 0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.8.C解析:C 【分析】由()f x =(4)f x -得到函数的对称性,(2)()0x f x '->得到函数的单调性,结合关系即可得到结论. 【详解】由于函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -, 可知函数关于2x =对称,根据条件2x ≠时,有()2(),xf x f x ''> 得(2)()0x f x '->,当2x >时()f x 递增,当2x <时()f x 单调递减, 因为24a <<所以4216a <<,21log 2a <<,因为2x =是对称轴,所以22log 3a <<, 所以22log 32aa <<<, 所以2(log )(3)(2)af a f f <<, 故选:C. 【点睛】本题主要考查函数值的大小比较,根据导数判断函数的单调性,再利用对称性、单调性比较大小.9.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.10.A解析:A 【分析】首先对函数求导,将函数在给定区间上单调增,转化为其导数在相应区间上大于等于零恒成立,构造新函数,利用导数研究其最值,求得结果. 【详解】()2ln 1f x ax x '=--,若函数2()ln f x ax x x =-在1,e ⎡⎫+∞⎪⎢⎣⎭上单调递增, 则()0f x '≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 则ln 12x a x +≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立, 令ln 11(),[,)2x g x x x e+=∈+∞, 则2222ln 2ln ()42x xg x x x --'==-,可以得出01x <<时()0g x '>,当1x >时()0g x '<,所以函数()g x 在1[,1]e上单调递增,在[1,)+∞上单调递减, 所以max 1()(1)2g x g ==,所以12a ≥, 故选:A. 【点睛】该题考查的是与导数有关的问题,涉及到的知识点为根据函数在给定区间上单调增,确定参数的取值范围,属于中档题目.11.A解析:A 【分析】根据条件构造函数,再利用导数研究单调性,进而判断大小. 【详解】①令()()1x e f x x x =>,则()()21'0x x e f x x-=>,∴()f x 在1,上单调递增,∴当121x x >>时,1212x x e e x x >,即1221x xx e x e >,故A 正确.B 错误.②令()()ln 1x g x x x =>,则()21ln 'xg x x-=,令()0g x =,则x e =, 当1x e <<时,()'0g x >;当x e >时,()'0g x <,∴()g x 在()1,e 上单调递增, 在(),e +∞上单调递减,易知C ,D 不正确, 故选A . 【点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题.12.D解析:D 【分析】函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22xx xf x e+=对其求导判断单调性,作出()y f x =的图象,数形结合即可求解. 【详解】令()()0g x f x m =-=可得()f x m =,所以函数()()g x f x m =-有两个零点等价于22,2()2,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象与y m =的图象有两个不同的交点,当2x >时,()22x x x f x e +=,()()()2222222x x x x x e e x x x f x e e+-+-'==, 当2x >时()220xx f x e-'=<,()f x 单调递减, 当2x ≤时,()2f x x =+单调递增, 所以()f x 图象如图所示:当2x =时,()22222282f e e+⨯==,所以280x e <<, 故选:D 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.二、填空题13.【分析】对函数进行求导导函数在区间上恒非正或恒非负进行求解即可【详解】由题意得:函数的定义域为由题意可知:或在区间上恒成立当在区间上恒成立时当时因此有;当在区间上恒成立时当时因此有综上所述:实数的取 解析:(,16][6,)-∞-+∞【分析】对函数进行求导,导函数在区间()1,2上恒非正或恒非负进行求解即可. 【详解】由题意得:函数()f x 的定义域为()0+∞,, 2'()+4ln ()2+4af x x x a x f x x x=+⇒=+,由题意可知:'()0f x ≥或'()0f x ≤在区间()1,2上恒成立.当'()0f x ≥在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≥⇒≥--=-+,当()1,2x ∈时,()2(24)166x x --∈--,,因此有6a ≥-; 当'()0f x ≤在区间()1,2上恒成立时,222+40242(+1)2ax a x x x x+≤⇒≤--=-+, 当()1,2x ∈时,()2(24)166x x --∈-,,因此有16a ≤-, 综上所述:实数a 的取值范围是(,16][6,)-∞-+∞. 故答案为:(,16][6,)-∞-+∞. 【点睛】本题考查了已知函数在区间上的单调性求参数取值范围,考查了导数的应用,考查了数学运算能力,属于中档题.14.【分析】求导根据导数正负得到函数单调区间得到函数的极小值为计算得到答案【详解】则当和时函数单调递增;当时函数单调递减故函数极小值为故答案为:【点睛】本题考查了利用导数求极值意在考查学生的计算能力和应 解析:8-【分析】求导,根据导数正负得到函数单调区间得到函数的极小值为()3f ,计算得到答案. 【详解】()321313y f x x x x ==--+,则()()()2'2331f x x x x x =--=-+, 当()3,x ∈+∞和(),1x ∈-∞-时,()'0f x >,函数单调递增; 当()1,3x ∈-时,()'0f x <,函数单调递减, 故函数极小值为()32313333183f ⨯--⨯+=-=. 故答案为:8-. 【点睛】本题考查了利用导数求极值,意在考查学生的计算能力和应用能力.15.【分析】先求出得到在上单调递增要使得在上单调递增则从而得到答案【详解】由函数有由得得所以在上单调递增在上单调递减又函数在上单调递增则则解得:故答案为:【点睛】本题考查函数在某区间上的单调性求参数的范 解析:[]0,1e -【分析】 先求出()21ln xf x x-'=,得到()f x 在()0e ,上单调递增,要使得在(),1a a +上单调递增,则()(),10a a e +⊆,,从而得到答案. 【详解】由函数()ln xf x x =有()()2ln 1ln 0x x f x x x x -'==>由()0f x '>得0x e <<,()0f x '<得x e >.所以()f x 在()0e ,上单调递增,在(),e +∞上单调递减, 又函数()ln xf x x=在(),1a a +上单调递增,则()(),10a a e +⊆, 则01a a e ≥⎧⎨+≤⎩,解得:01a e ≤≤-. 故答案为:[]0,1e - 【点睛】本题考查函数在某区间上的单调性,求参数的范围,属于基础题.16.②④【分析】由导数的图象推不出当时;当时函数单调递增由此可判断②正确由可判断③错误由时时时可判断④正确【详解】由导数的图象推不出当时故①不一定正确当时函数单调递增所以故②正确因为所以函数在处切线的斜解析:②④ 【分析】由导数的图象推不出当20x -<<时,()0f x >;当20x -<<时0fx ,函数()f x 单调递增,由此可判断②正确,由102f ⎛⎫'-> ⎪⎝⎭可判断③错误,由0x >时0f x,0x =时0fx ,0x <时0f x 可判断④正确【详解】由导数的图象推不出当20x -<<时,()0f x >,故①不一定正确. 当20x -<<时0f x ,函数()f x 单调递增,所以(1)(0)f f -<,故②正确因为102f ⎛⎫'-> ⎪⎝⎭,所以函数()f x 在12x =-处切线的斜率大于零,故③错误因为0x >时0f x ,0x =时0f x ,0x <时0f x所以0是函数()f x 的一个极值点,故④正确 故答案为:②④ 【点睛】本题考查命题的真假判断和应用,解题时要熟练掌握导函数的图象和性质.17.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围. 【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-, 当1a ≥时,令2'()330f x ax =-=解得x =,且1>-<①当1x -<<()0,()f x f x '>为递增函数, ②当x <<()0,()f x f x '<为递减函数, ③1x <<时,()f x 为递增函数.所以()010f f ⎧≥⎪⎨⎝⎭⎪-≥⎩,即3320320a a ⎧⎪-+≥⎨⎝⎭⎝⎭⎪-++≥⎩, 解得15a ≤≤. 故答案为:15a ≤≤. 【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.18.【分析】由条件不妨设恒成立即为恒成立构造函数只需在上为增函数即可即求恒成立时的取值范围【详解】依题意不妨设恒成立恒成立设即在上为增函数恒成立只需的取值范围是故答案为:【点睛】本题考查函数的单调性求参 解析:[1,)+∞【分析】由条件不妨设12x x >,()()12122f x f x x x ->-恒成立,即为()()112222f x x f x x ->-恒成立,构造函数()()2g x f x x =-,只需()g x 在(0,)+∞上为增函数即可,即求()0g x '≥恒成立时a 的取值范围. 【详解】依题意,不妨设12x x >,()()12122f x f x x x ->-恒成立,()()112222f x x f x x ->-恒成立,设()()2g x f x x =-即12()(),()g x g x g x >在(0,)+∞上为增函数,2()2,()1220ln ag x x g x x x a x x'=-+-+=≥,22,(0,)a x x x ≥-+∈+∞恒成立,只需2max (2)1,(0,)a x x x ≥-+=∈+∞,a ∴的取值范围是[1,)+∞.故答案为:[1,)+∞. 【点睛】本题考查函数的单调性求参数范围,构造函数把问题等价转化为函数的单调性是解题的关键,属于中档题.19.【分析】构造函数讨论单调性和奇偶性结合特殊值即可求解【详解】设函数是偶函数所以函数是奇函数且当时即当时单调递减所以当时当时是偶函数所以当时当时所以使得成立的的取值范围是故答案为:【点睛】此题考查利用 解析:()()1,00,1-⋃【分析】 构造函数()()f x F x x=,讨论单调性和奇偶性,结合特殊值即可求解. 【详解】 设函数()()f x F x x =,()f x 是偶函数,()()()()f x f x F x F x x x--=-=-=-, 所以函数()F x 是奇函数,且()()()()1110,10F f f F ==-=-=, 当0x >时,()2()()0xf x f x F x x '-'=<,即当0x >时,()F x 单调递减,()01F =, 所以当01x <<时,()()0f x F x x=>,()0f x >, 当1x >时,()()0f x F x x=<,()0f x <, ()f x 是偶函数,所以当10x -<<时,()0f x >,当1x <-时,()0f x <,所以使得()0f x >成立的x 的取值范围是()()1,00,1-⋃. 故答案为:()()1,00,1-⋃ 【点睛】此题考查利用导函数讨论函数的单调性解决不等式相关问题,关键在于准确构造函数,需要在平常的学习中多做积累,常见的函数构造方法.20.【分析】求得在处的切线的斜率结合图像求得的取值范围【详解】函数对于一次函数令解得(负根舍去)所以在上递增在上递减画出的图像如下图所示由图可知要使当时恒成立只需大于或等于在处切线的斜率而所以故答案为: 解析:[1,)+∞【分析】求得()f x 在0x =处的切线的斜率,结合图像,求得a 的取值范围. 【详解】函数()2()1xf x x e =-,()01f =.对于一次函数()()10g x ax a =+>,()01g =.()()'221,0x f x xx e x =--+⋅≥,令'0f x,解得021x =-(负根舍去),所以()f x 在()00,x 上递增,在()0,x +∞上递减,画出()f x 的图像如下图所示.由图可知,要使当0x ≥时,()1(0)f x ax a ≤+>恒成立,只需a 大于或等于()f x 在0x =处切线的斜率.而()'01f=,所以1a ≥.故答案为:[1,)+∞【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题21.(Ⅰ)()1,+∞;(Ⅱ)31,4⎛⎫-- ⎪⎝⎭. 【分析】(Ⅰ)由1k =-时,不等式为223x x x -+>,然后分2x ≥,2x <讨论求解.(Ⅱ)将任意[]1,2x ∈时,不等式()21f x x <+恒成立,转化为112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立求解.【详解】(Ⅰ)当1k =-时,不等式()3f x >,即223x x x -+>,所以2(2)23x x x x ≥⎧⎨-+>⎩,或2(2)23x x x x <⎧⎨-+>⎩,,即得223x x ≥⎧⎨>⎩,或22430x x x <⎧⎨-+<⎩,,解得2x ≥或12x <<,所以原不等式的解集是()1,+∞;(Ⅱ)因为对任意[]1,2x ∈时,不等式()21f x x <+恒成立,即21x x k +<当[]1,2x ∈时恒成立,即12x k x+<,即111122x k x x x ⎛⎫⎛⎫-+<<-+ ⎪ ⎪⎝⎭⎝⎭, 故只要112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立即可, 即当[]1,2x ∈时,只要k 大于112x x ⎛⎫-+ ⎪⎝⎭的最大值且k 小于112x x ⎛⎫-+ ⎪⎝⎭的最小值,因为当[]1,2x ∈时,211111022x x x '⎡⎤⎛⎫⎛⎫-+=--≤ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,max 1112x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 211111022x x x '⎡⎤⎛⎫⎛⎫-+=-+< ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,min 11324x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 故所求k 的取值范围是31,4⎛⎫-- ⎪⎝⎭. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<;22.(1)答案见解析;(2)[)1,+∞. 【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果. 【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x ah x x x x x+'=+=>,当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>;()h x ∴在(上单调递减,在)+∞上单调递增.(2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-,即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2at x x x'=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200ax x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max21x x -+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用. 23.(1)证明见解析;(2)证明见解析. 【分析】(1)构造函数()1x f x e x =--,求函数的最小值大于等于零即可;(2)由(1)得1ne n ≥+,n N +∈,两边取对数得ln(1)n n ≥+,进而得11ln(1)n n ≥+,即1(1)n n e +≤. 【详解】解:(1)构造函数()1x f x e x =--,x ∈R()1x f x e =-',令()0f x '=,则0x =当x 在R 上变化时,()f x ,()'f x 变化如下表:从而:min 则:10x e x --≥则:1x e x ≥+在R 上恒成立.(2)由(1)可得:1x e x ≥+在R 上恒成立, 则n ∈+N 时,1n e n ≥+, 两边取对数,有:ln(1)n n ≥+ 则:11ln(1)n n≥+ 则:11ln(1)nn ≥+, 从而:1(1)ne n ≥+ 【点睛】本题考查利用导数证明不等式,考查化归转化思想,是中档题. 24.(1)()min 4ln 2F x =-+,()max 4ln3F x =-+;(2)1-. 【分析】(1)对函数()F x 求导,根据导数的方法研究其在[]1,3上的单调性,进而可得出最值; (2)先将不等式恒成立转化为215122xk e x x ≤+--对任意x ∈R 恒成立,令()215122x h x e x x =+--,根据导数的方法求出最值,即可得出结果. 【详解】(1)∵()()215ln ln 122F x x g x x x x =+=+--,∴()()()2122x x F x x--'=,令()0F x '=,则112x =,22x =, 当()1,2x ∈时,()()()21202x x F x x--'=<,则函数()F x 在区间()1,2上单调递减;当()2,3x ∈时,()()()21202x x F x x--'=>,则函数()F x 在区间()2,3上单调递增;∴()()min 24ln2F x F ==-+,又()()33ln 143F F =-<=-+,所以()max 4ln3F x =-+; (2)∵()()0f x g x k +->对任意x ∈R 恒成立,∴2151022x e x x k +---≥对任意x ∈R 恒成立, ∴215122xk e x x ≤+--对任意x ∈R 恒成立. 令()215122xh x e x x =+--,则()52x h x e x '=+-. 由于()10xh x e '=+>,所以()h x '在R 上单调递增.又()3002h =-<',()3102h e =->',121202h e ⎛⎫'=-< ⎪⎝⎭,3437044h e ⎛⎫'=-= ⎪⎝⎭,所以存在唯一的013,24x ⎛⎫∈⎪⎝⎭,使得()00h x '=, 且当()0,x x ∈-∞时,()0h x '<,()0,x x ∈+∞时,()0h x '>. 即()h x 在()0,x -∞单调递减,在()0,x +∞上单调递增. ∴()()02000min 15122xh x h x e x x ==+--. 又()00h x '=,即00502xe x +-=,∴0052x e x =-. ∴()()2200000051511732222h x x x x x x =-+--=-+. ∵013,24x ⎛⎫∈⎪⎝⎭,∴()0271,328h x ⎛⎫∈-- ⎪⎝⎭. 又∵215122xk e x x ≤+--对任意x ∈R 恒成立,∴()0k h x ≤, 又k ∈Z ,∴max 1k =-. 【点睛】本题主要考查用导数的方法求函数的最值,考查导数的方法研究等式恒成立问题,属于常考题型.25.(1)()11y e x =+-;(2)当0a ≥时,()f x 在(),-∞+∞上单调递增;当0a <时,()f x 在1,ln a ⎛⎫⎛⎫-∞-⎪ ⎪⎝⎭⎝⎭上单调递增,在1ln ,a ⎛⎫⎛⎫-+∞ ⎪⎪⎝⎭⎝⎭上单调递减. 【分析】(1)根据导数的几何意义求出切线的斜率,由点斜式可得切线方程;(2)求出导函数后,按照0a ≥和0a <分类讨论,由()'f x 0>和()0f x '<分别可得函数的增区间和减区间. 【详解】()()()1x f x ae a R x R '=+∈∈,(1)由题得:1a =,则()1x f x e '=+,()1x f x x e =-+()11k f e '==+,()1f e =∴()()11y e e x -=+-,即()11y e x =+-所以曲线()y f x =在点()()1,1f 处的切线方程为()11y e x =+-.(2)()1x f x ae '=+, 当0a ≥时,由()0f x '>,此时()f x 在(),-∞+∞上单调递增,当0a <时,由()0f x '>,得10x ae +>,解得1ln x a ⎛⎫<- ⎪⎝⎭,由()0f x '<,得10x ae +<,解得1ln x a ⎛⎫>- ⎪⎝⎭, 所以()f x 在1,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递增,在1ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. 综上所述:当0a ≥时,()f x 在(),-∞+∞上单调递增;当0a <时,()f x 在1,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递增,在1ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. 【点睛】本题考查了利用导数的几何意义求切线方程,考查了分类讨论思想,考查了利用导数研究函数的单调性,属于中档题.26.(Ⅰ)证明详见解析;(Ⅱ)证明详见解析.【解析】试题分析:本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.第一问,利用放缩法,得到41111x x x-≤++,从而得到结论;第二问,由01x ≤≤得3x x ≤,进行放缩,得到3()2f x ≤, 再结合第一问的结论,得到3()4f x >, 从而得到结论. 试题 (Ⅰ)因为44231()11,1()1x x x x x x x ----+-==--+ 由于[0,1]x ∈,有411,11x x x-≤++即23111x x x x -+-≤+, 所以2()1.f x x x ≥-+(Ⅱ)由01x ≤≤得3x x ≤,故31133(1)(21)33()11222(1)22x x f x x x x x x -+=+≤+-+=+≤+++ , 所以3()2f x ≤. 由(Ⅰ)得22133()1()244f x x x x ≥-+=-+≥, 又因为,所以3()4f x >. 综上,33().42f x <≤ 【考点】函数的单调性与最值、分段函数.【思路点睛】(Ⅰ)先用等比数列前n 项和公式计算231x x x -+-,再用放缩法可得23111x x x x-+-≤+,进而可证()21f x x x ≥-+;(Ⅱ)由(Ⅰ)的结论及放缩法可证()3342f x <≤.。
新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(包含答案解析)(3)
一、选择题1.已知函数()3sin f x x x ax =+-,则下列结论错误的是( )A .()f x 是奇函数B .若0a =,则()f x 是增函数C .当3a=-时,函数()f x 恰有三个零点D .当3a =时,函数()f x 恰有两个极值点 2.已知函数()2sin ln 6xf x a x x a π⎛⎫=+-⎪⎝⎭(0a >,且1a ≠),对任意1,x []20,1x ∈,不等式()()212f x f x a -≤-恒成立,则实数a 的最小值是( )A .2eB .eC .3D .23.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( ) A .15a <≤ B .25a <≤ C .25a ≤≤D .35a <≤4.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( )A .[1,)+∞B .(0,1]C .[2,)+∞D .(0,)+∞5.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( ) A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-6.已知函数()f x lnx =,若关于x 的方程()f x kx =恰有两个不相等的实数根, 则实数k 的取值范围是( ) A .1(0,)eB .(0,1]eC .1(2,eD .1(2,e7.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a 的取值范围为( ) A .11,27⎛⎫-∞-⎪⎝⎭B .1,C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭8.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<9.已知函数()f x '是函数()f x 的导函数,()11f e=,对任意实数都有()()0f x f x '->,设()()xf x F x e =则不等式()21F x e <的解集为( ) A .(),1-∞B .()1,+∞C .()1,eD .(),e +∞10.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e-,0) B .(12e-,0) C .(0,12e) D .(0,21e) 11.函数()21xy x e =-的图象大致是( )A .B .C .D .12.设动直线x m =与函数2()f x x =,()ln g x x =的图像分别交于,M N ,则MN 的最小值为( ) A .11ln 222+ B .11ln 222- C .1ln 2+ D .ln 21-二、填空题13.若函数的()1,2ln ,x m x e f x x x x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,其中e 是自然对数的底数,则实数m 的最小值是______.14.已知数列()*4n n b n N =∈.记数列{}n b 的前n 项和为n T .若对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立,则实数k 的取值范围为______.15.设()ln f x x =,若函数()()h x f x ax =-在区间()0,8上有三个零点,则实数a 的取值范围______. 16.设函数()21ln 12f x x x bx =+-+(b 为常数),若函数()f x 在[]1,3上存在单调减区间,则实数b 的取值范围是______. 17.函数()()21xf x x =-的最小值是______.18.已知函数()1ln f x x a x x=-+,存在不相等的常数m ,n ,使得()()''0f m f n ==,且10,m e ⎛⎤∈ ⎥⎝⎦,则()()f m f n -的最小值为____________.19.已知函数()f x 在R 上是偶函数,其导函数为()f x ',且()21f =,()0f x ≥.当0x >时,()()0xf x f x '+<恒成立,则不等式()21f x -≤的解集为______.20.已知()3226f x x x a =-+(a 为常数)在[]22-,上有最小值3,则()f x 在[]22-,上的最大值为______三、解答题21.已知函数()()2ln 1f x ax x =-+()0a ≠.(1)讨论()f x 的极值点的个数;(2)当0a >时,设()f x 的极值点为0x ,若()()00121f x x >-+,求a 的取值范围.22.已知函数()()3exf x xx a =-+,a R ∈.(1)当2a =-时,求()f x 在[]1,2-上的最大值和最小值; (2)若()f x 在()1,+∞上单调,求a 的取值范围. 23.已知函数()22ln f x x a x =+(1)若函数()f x 的图象在()()22f ,处的切线斜率为1,求实数a 的值;并求函数()f x 的单调区间;(2)若函数()()2g x f x x=+在[]1,2上是减函数,求实数a 的取值范围. 24.如图是一个半径为2千米,圆心角为3π的扇形游览区的平面示意图C 是半径OB 上一点,D 是圆弧AB 上一点,且//CD OA .现在线段OC ,线段CD 及圆弧DB 三段所示位置设立广告位,经测算广告位出租收入是:线段OC 处每千米为2a 元,线段CD 及圆弧DB 处每千米均为a 元.设AOD x ∠=弧度,广告位出租的总收入为y 元.(1)求y 关于x 的函数解析式,并指出该函数的定义域;(2)试问:x 为何值时,广告位出租的总收入最大?并求出其最大值.25.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE 和CDEF 是全等的等腰梯形,左右两坡屋面EAD 和FBC 是全等的三角形.点F 在平面ABCD 和BC 上的射影分别为H ,M .已知HM = 5 m ,BC = 10 m ,梯形ABFE 的面积是△FBC 面积的2.2倍.设∠FMH = θ π(0)4θ<<. (1)求屋顶面积S 关于θ的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k (k 为正的常数),下部主体造价与其 高度成正比,比例系数为16 k .现欲造一栋上、下总高度为6 m 的别墅,试问:当θ为何值时,总造价最低?26.已知函数()()1xf x ax e -=,曲线()y f x =在点()0,1-处的切线为310x y --=.(1)求a 的值; (2)求函数()f x 的极值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】对A,根据奇函数的定义判定即可. 由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥,所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,将a 的值代入分别计算分析,可判断选项B ,C ,D【详解】对A, ()3sin f x x x ax =+-的定义域为R ,且()()()3sin f x x x ax -=-+-+3sin ()x x ax f x =--+=-.故A 正确.由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''= 所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-对B, 当0a =时,()2'cos 30f x x x =+>,所以()f x 是增函数,故B 正确.对C,当3a=-时,由上可知, ()()014f x f a ''≥=-=,所以()f x 是增函数,故不可能有3个零点.故C 错误.对D,当3a =时,()2cos 33f x x x '=+-,由上可知在()0-∞,上单调递减,在()0+∞,上单调递增.则()()min 0132f x f ''==-=-,()1cos10f '-=>,()1cos10f '=>所以存在()()121,0,0,1x x ∈-∈,使得()10fx '=,()20f x '=成立则在()1,x -∞上,()0f x '>,在()12,x x 上,()0f x '<,在()2,x +∞上,()0f x '>.所以函数()3sin 3f x x x x =+-在()1,x -∞单调递增,在()12,x x 的单调递减,在()2,x +∞单调递增.所以函数()f x 恰有两个极值点,故D 正确.故选:C 【点睛】关键点睛:本题主要考查利用导数分析函数的单调性从而得出函数的零点和极值情况,解答本题的关键是对原函数的单调性分析,由条件可得()2cos 3f x x x a '=+-,则()sin 6f x x x ''=-+,()cos 60f x x ''=-+≥所以()sin 6f x x x ''=-+在R 上单调递增,且()00f ''=,所以当0x <时,()0f x ''<,当0x >时,()0f x ''>,则()2cos 3f x x x '=+在()0-∞,上单调递减,在()0+∞,上单调递增.则()()01f x f a ''≥=-,经过多次求导分析出单调性,属于中档题. 2.A解析:A 【分析】由导数求得()f x 在[0,1]上单调递增,求得函数的最值,把任意1,x []20,1x ∈,不等式()()212f x f x a -≤-恒成立,转化为()()max min 2f x f x a -≤-,进而求得a 的取值范围,得到最小值. 【详解】由题意,显然2a ≥,因为函数()2sin ln 6xf x a x x a π⎛⎫=+-⎪⎝⎭,可得()ln (1)cos()36x f x a a x ππ'=-+,又由[0,1],2x a ∈≥,可得ln 0,10,cos()036xa a x ππ>-≥>,故()0f x '>,函数()f x 在[0,1]上单调递增, 故()()max min (1)1ln ,(0)1f x f a a f x f ==+-==, 对任意1,x []20,1x ∈,不等式()()212f x f x a -≤-恒成立, 即()()max min 2f x f x a -≤-,所以1ln 12a a a +--≤-,即ln 2a ≥,解得2a e ≥, 即实数a 的最小值为2e . 故选:A. 【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3.A解析:A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥ ⎪⎝⎭,从而可求出实数a 的范围.【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-, 因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭,故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤, 故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.4.A解析:A 【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可. 【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,等价于()'211f x ax =-≥,1x 时恒成立, 0a时,()'0f x <,不合题意,0a >时,只需211ax -,即1ax在[1,)+∞恒成立, 故max 1()1a x=,故a 的范围是[1,)+∞, 故选:A 【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.5.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围. 【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--, 所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点; 在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.6.A解析:A 【分析】f (x )=kx 可变形为k lnxx=,关于x 的方程f (x )=kx 的实数根问题转化为直线y =k 与函数g (x )g (x )lnxx=的图象的交点个数问题,由导数运算可得函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数,又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=,画草图即可得解. 【详解】 设g (x )()f x lnx xx==, 又g ′(x )21lnxx-=, 当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0, 则函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数, 又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=, 即直线y =k 与函数g (x )的图象有两个交点时k 的取值范围为(0,1e), 故选A .【点睛】本题考查了导数的运算及方程与函数的互化及极限思想,属于中档题.7.C解析:C 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.8.D解析:D 【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x -=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=, 而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.9.B解析:B 【解析】 ∵()()xf x F x e=∴2()()()()()x x x xf x e f x e f x f x F x e e''--'== ∵对任意实数都有()()0f x f x -'> ∴()0F x '<,即()F x 在R 上为单调减函数 又∵()11f e= ∴21(1)F e =∴不等式()21F x e <等价于()(1)F x F < ∴不等式()21F x e <的解集为(1,)+∞ 故选B点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()x f x g x e=,()()0f x f x '+<,构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等.10.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x =有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x=, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x=有两个交点, 又由()312ln x g x x-'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=, 若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.11.A解析:A 【分析】根据函数图象,当12x <时,()210xy x e =-<排除CD ,再求导研究函数单调性得()21x y x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,排除B 得答案.【详解】 解:因为12x <时,()210xy x e =-<,所以C ,D 错误; 因为()'21xy x e =+, 所以当12x <-时,'0y <, 所以()21xy x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减, 所以A 正确,B 错误. 故选:A. 【点睛】本小题主要考查函数的性质对函数图象的影响,并通过对函数的性质来判断函数的图象等问题.已知函数的解析式求函数的图像,常见的方法是,通过解析式得到函数的值域和定义域,进行排除,由解析式得到函数的奇偶性和轴对称性,或者中心对称性,进行排除,还可以代入特殊点,或者取极限.12.A解析:A 【分析】将两个函数作差,得到函数()()y f x g x =-,利用导数再求此函数的最小值,即可得到结论. 【详解】设函数()()()2ln 0=-=->y f x g x x x x ,()212120-'∴=-=>x y x x x x,令0y '<,0x,0∴<<x ,函数在⎛ ⎝⎭上为单调减函数;令0y '>,0x,∴>x ,函数在⎫+∞⎪⎪⎝⎭上为单调增函数.2x ∴=时,函数取得极小值,也是最小值为111ln ln 22222-=+.故所求MN 的最小值即为函数2ln y x x =-的最小值11ln 222+. 故选:A. 【点睛】本题主要考查利用导数研究函数的最值,属于中档题.二、填空题13.【分析】利用导数可求得当时函数的值域是;当时函数的值域是从而可得进而可得结果【详解】当时此时函数在上递增值域是当时是减函数其值域是因为函数的值域是所以于是解得即实数的最小值是故答案为:【点睛】本题主 解析:312e - 【分析】利用导数可求得当x e ≥时,函数()f x 的值域是[)1,e -+∞;当x e <时,函数的值域是,2e m ⎛⎫-++∞ ⎪⎝⎭,从而可得,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞,进而可得结果. 【详解】当x e ≥时,'1(ln )10,x x x-=->此时函数()f x 在[),e +∞上递增,值域是[)1,e -+∞. 当x e <时,12x m -+是减函数,其值域是,2e m ⎛⎫-++∞ ⎪⎝⎭. 因为函数()1,2,x m x ef x x lnx x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,所以,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞. 于是1,2e m e -+≥-解得312e m ≥-,即实数m 的最小值是312e-. 故答案为:312e-. 【点睛】本题主要考查分段函数的值域问题,以及利用导数求函数的最值,考查对基础知识掌握的熟练程度以及灵活应用所学知识解答问题的能力,属于中档题.14.【分析】先求得然后利用分离常数法通过构造函数法结合导数求得的取值范围【详解】由于公比为所以所以对任意的不等式恒成立即恒成立即对任意的恒成立构造函数则令解得而所以所以在上递增在上递减令所以故故答案为: 解析:34k ≥【分析】先求得n T ,然后利用分离常数法,通过构造函数法,结合导数,求得k 的取值范围. 【详解】由于14,4nn b b ==,公比为4,所以()()141441441414333n n n n T +-==-=--, 所以对任意的*n N ∈,不等式4843n T k n ⎛⎫+≥- ⎪⎝⎭恒成立, 即114843n k n +⋅≥-恒成立,即124126344n nn n k +--≥=对任意的*n N ∈恒成立. 构造函数()()6314x x f x x -=≥,则()()'6ln 43ln 464xx f x -⋅++=, 令'0f x解得041log 2x e =+. 而4411log log 2122e +>+=,44113log log 4222e +<+=, 所以012x <<.所以()f x 在[)01,x 上递增,在()0,x +∞上递减. 令634n n n a -=,1239,416a a ==,12a a >. 所以134n a a ≤=,故34k ≥. 故答案为:34k ≥ 【点睛】本小题主要考查等比数列前n 项和公式,考查不等式恒成立问题的求解,考查数列的单调性和最值的判断,属于难题.15.【分析】画出函数图像计算直线和函数相切时和过点的斜率根据图像得到答案【详解】故画出图像如图所示:当直线与函数相切时设切点为此时故解得;当直线过点时斜率为故故答案为:【点睛】本题考查了根据函数零点个数解析:3ln 21,8e ⎛⎫⎪⎝⎭ 【分析】()f x ax =,画出函数图像,计算直线和函数相切时和过点()8,ln8的斜率,根据图像得到答案. 【详解】()()0h x f x ax =-=,故()f x ax =,画出图像,如图所示:当直线与函数相切时,设切点为()00,x y ,此时()ln f x x =,()1'f x x=, 故01a x =,00y ax =,00ln y x =,解得0x e =,01y =,1a e=; 当直线过点()8,ln8时,斜率为3ln 28k =,故3ln 218a e<<. 故答案为:3ln 21,8e ⎛⎫⎪⎝⎭.【点睛】本题考查了根据函数零点个数求参数,意在考查学生的计算能力和综合应用能力.16.【分析】根据题意将函数在上存在单调减区间转化为在上有解则只需:只需在内即可结合基本不等式即可求出的取值范围【详解】解:由题意知:在上存在单调减区间在上有解即在上有解即在上有解只需在内即可当且仅当时取 解析:()2,+∞【分析】根据题意,将函数()f x 在[]1,3上存在单调减区间,转化为()0f x '<在[]1,3上有解,则只需:只需在[]1,3内min1b x x ⎛⎫>+ ⎪⎝⎭即可,结合基本不等式,即可求出b 的取值范围. 【详解】解:由题意知:()()21ln 102f x x x bx x =+-+>, ()211x bx f x x b x x-+'∴=+-=, ()f x 在[]1,3上存在单调减区间,()0f x '∴<在[]1,3上有解,即10x b x+-<在[]1,3上有解,即1>+b x x 在[]1,3上有解,只需在[]1,3内,min 1b x x ⎛⎫>+ ⎪⎝⎭即可, 0x,12x x∴+≥,当且仅当1x =时取得最小值2,即在在[]1,3内min12x x ⎛⎫+= ⎪⎝⎭,所以:2b >,则b 的取值范围是:()2,+∞. 故答案为:()2,+∞. 【点睛】本题考查导数的应用,以及基本不等式的应用,考查转化思想和计算能力.17.【分析】对求导利用导数即可求得函数单调性和最小值【详解】因为故可得令解得;故当时单调递减;当时单调递增;当时单调递减且当趋近于1时趋近于正无穷;当趋近于正无穷时趋近于零函数图像如下所示:故的最小值为 解析:14-【分析】对()f x 求导,利用导数即可求得函数单调性和最小值, 【详解】 因为()()21xf x x =-,故可得()()311x f x x ---'=,令()0f x '=,解得1x =-;故当(),1x ∈-∞-时,()f x 单调递减; 当()1,1x ∈-时,()f x 单调递增; 当()1,x ∈+∞时,()f x 单调递减. 且()114f -=-, 当x 趋近于1时()f x 趋近于正无穷;当x 趋近于正无穷时,()f x 趋近于零. 函数图像如下所示:故()f x 的最小值为14-. 故答案为:14-.【点睛】本题考查利用导数研究函数的最值,属综合基础题.18.【分析】求出由已知可得为的两根求出关系并将用表示从而把表示为关于的函数设为利用的单调性即可求解【详解】因为的定义域为令即因为存在使得且即在上有两个不相等的实数根且所以∴令则当时恒成立所以在上单调递减解析:4e【分析】求出()f x ',由已知可得,m n 为()0f x '=的两根,求出,,m n a 关系,并将,n a 用m 表示,从而把()()f m f n -表示为关于m 的函数设为()h m ,利用()h m 的单调性,即可求解. 【详解】 因为()1ln f x x a x x=-+的定义域为()0,∞+, ()22211'1a x ax x x xf x ++=++=, 令()'0f x =,即210x ax ++=,()0,x ∈+∞,因为存在m ,n ,使得()()''0f m f n ==,且10,m e⎛⎤∈ ⎥⎝⎦,即210x ax ++=在()0,x ∈+∞上有两个不相等的实数根m ,n , 且m n a +=-,1⋅=m n ,所以1n m =,1a m m=--, ∴()()11111ln ln f m f m m m m m m m m m m n ⎛⎫⎛⎫=-+---+--- ⎪ ⎪-⎝⎭⎝⎭ 11l 2n m m m m m ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=,令()112ln h m m m m m m ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦, 则()()()22211121ln l 'n m m m m h m m m -+⎛⎫=-= ⎪⎝⎭, 当10,m e⎛⎤∈ ⎥⎝⎦时,()'0h m <恒成立, 所以()h m 在10,m e⎛⎤∈ ⎥⎝⎦上单调递减,∴()min 14h m h e e ⎛⎫==⎪⎝⎭,即()()f m f n -的最小值为4e.故答案为:4e. 【点睛】本题考查最值问题、根与系数关系、函数的单调性,应用导数是解题的关键,意在考查逻辑推理、计算求解能力,属于中档题.19.【分析】由时可得再利用偶函数的性质即可解决【详解】当时由及得所以故在上单调递减又为偶函数所以所以解得或故答案为:【点睛】本题考查解与抽象函数有关的不等式本题关键是找到函数的单调性以及利用偶函数的性质 解析:(][),04,-∞+∞【分析】由0x >时,()()0xf x f x '+<可得'()0f x <,再利用偶函数的性质(||)()f x f x =即可解决. 【详解】当0x >时,由()0f x ≥及()()0xf x f x '+<,得()()0xf x f x '<-≤,所以'()0f x <,故()f x 在(0,)+∞上单调递减,又()f x 为偶函数,所以()21f x -≤⇔(|2|)1(2)f x f -≤=所以|2|2x -≥,解得4x ≥或0x ≤. 故答案为:(][),04,-∞+∞【点睛】本题考查解与抽象函数有关的不等式,本题关键是找到函数()f x 的单调性以及利用偶函数的性质(||)()f x f x =,是一道中档题.20.43【分析】通过函数的导数可判断出在上单调递增在上单调递减比较和的大小从而可得在上的最小值再结合已知其最小值为3即可求出的值进而可求出函数在上的最大值【详解】因为所以当时;当时所以函数在上单调递增在解析:43 【分析】通过函数()f x 的导数可判断出()f x 在(2,0)-上单调递增,在(0,2)上单调递减,比较(2)f -和(2)f 的大小,从而可得()f x 在[2,2]-上的最小值,再结合已知其最小值为3,即可求出a 的值,进而可求出函数()f x 在[2,2]-上的最大值. 【详解】因为32()26f x x x a =-+,所以2()6126(2)f x x x x x '=-=-, 当(2,0)x ∈-时,()0f x '>;当(0,2)x ∈时,()0f x '<, 所以函数()f x 在(2,0)-上单调递增,在(0,2)上单调递减,所以()f x 的最大值为(0)f a =,又(2)40f a -=-+,(2)8f a =-+,因为(8)(40)320a a -+--+=>, 所以408a a -+<-+,所以()f x 在[2,2]-上的最小值为(2)403f a -=-+=, 所以43a =,所以()f x 的最大值为(0)43f =. 故答案为:43 【点睛】本题考查利用导数求闭区间上的函数最值问题.一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,最值必在端点处或极值点处取得.三、解答题21.(1)答案见解析;(2)⎛⎫⎪+∞⎪⎭. 【分析】(1)()21221211ax ax f x ax x x +-'=-=++,令()2221g x ax ax =+-,分两种情况讨论,判断方程()0g x =根的个数即可;(2)由(1)知()00g x =,即2002210ax ax +-=,()20012a x x =+,先求得01x ,进而可得答案即可.【详解】(1)()21221211ax ax f x ax x x +-'=-=++,令()2221g x ax ax =+- 当0a >时,由()10g -<知,()g x 在()1,-+∞有唯一零点, 故()f x 在()1,-+∞有一个极值点;当0a <时,()10g -<,()g x 的对称轴为12x =-,若方程()0g x =的0∆>,即2480a a +>,2a <-时,()g x 在()1,-+∞有两个零点,()f x 在()1,-+∞有两个极值点;若方程()0g x =的0∆≤,即2480a a +≤,20a -≤<时,()0g x ≤,()f x 在()1,-+∞上单减,无极值点.(2)由(1)知()00g x =,即2002210ax ax +-=,()20012a x x =+……(*)由0a >且010x +>得00x >,又∵()()00121f x x >-+,∴()()20001ln 121ax x x -+>-+代入(*)式,()()()00001ln 12121x x x x -+>-++,即()01ln 102x -+>解得01x <,∴001x <<, ∴.()20012a x x ⎛⎫⎪=∈+∞⎪+⎭. 【点睛】求函数()f x 极值的步骤:(1) 确定函数的定义域;(2) 求导数fx ;(3) 解方程()0,f x '=求出函数定义域内的所有根;(4) 列表检查fx 在0fx的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值.22.(1)最大值为24e ,最小值为2e -;(2)[)2,-+∞. 【分析】(1)2a =-代入()f x ,对函数求导,利用导数正负确定单调性即可;(2)先利用极限思想进行估值x →+∞时()0f x '>,来确定()f x 在()1,+∞上单增,()0f x '≥,再对32310x x a x -++-≥分离参数,研究值得分布即得结果.【详解】 (1)()()3231xf x exx a x '=-++-当2a =-时,()()()()()3233311xx f x exx x e x x x '=+--=+-+∴()f x '在()3,1--和()1,+∞上为正,在(),3-∞-和()1,1-上为负, ∴()f x 在()3,1--和()1,+∞上单增,在(),3-∞-和()1,1-上单减, 有()21f e-=-,()224f e =,()12f e =-, 故()f x 在[]1,2-上的最大值为24e ,最小值为2e -; (2)由()()3231xf x exx x a '=+-+-知,当x →+∞时,()0f x '>,若()f x 在()1,+∞上单调则只能是单增,∴()0f x '≥在()1,+∞恒成立,即32310x x a x -++-≥∴3231a x x x ≥--++,令()3231g x x x x =--++,1x >,则()23610g x x x '=--+<,∴()g x 在()1,+∞递减,()()12g x g <=-,∴[)2,a ∈-+∞. 【点睛】(1)利用导数研究函数()f x 的最值的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性;③利用单调性判断极值点,比较极值和端点值得到最值即可. (2)函数()f x 在区间I 上递增,则()0f x '≥恒成立;函数()f x 在区间I 上递减,则()0f x '≤恒成立.(3)解决恒成立问题的常用方法:①数形结合法;②分离参数法;③构造函数法. 23.(1)3a =-,函数()f x的单调递减区间是(;单调递增区间是)+∞;(2)72a ≤-. 【分析】(1)利用导数的几何意义可知21f,求出a 的值,再进行列表,即可得答案;(2)将问题转化为()0g x '≤在[]1,2上恒成立,再进行参变分离,即可得答案; 【详解】(1)函数()f x 的定义域为()0,∞+,()22222a x af x x x x+'=+=, 由已知21f,解得3a =-.∴()(2x x f x x+'=.当x 变化时,()f x ',()f x 的变化情况如下:由上表可知,函数f x 的单调递减区间是;单调递增区间是+∞.(2)由()222ln g x x a x x=++得()2222a g x x x x '=-++,由已知函数()g x 为[]1,2上的单调减函数,则()0g x '≤在[]1,2上恒成立,即22220a x x x-++≤在[]1,2上恒成立. 即21a x x≤-在[]1,2上恒成立. 令()21h x x x =-,在[]1,2上()2211220h x x x x x ⎛⎫'=--=-+< ⎪⎝⎭,所以()h x 在[]1,2为减函数.()()min 722h x h ==-,所以72a ≤-. 【点睛】本题考查导数的几何意义、根据函数的单调性求参数的取值范围,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的应用.24.(1)2cos ,0,33y a x x x x ππ⎫⎛⎫=+-+∈⎪ ⎪⎭⎝⎭;(2)当6x π=时,广告位出租的总收入最大,最大值为26a π⎫⎪⎭元. 【分析】(1)根据题意,利用正弦定理求得OC 的值,再求弧长DB ,求出函数y 的解析式,写出x 的取值范围;(2)求函数y 的导数,利用导数判断函数的单调性,求出函数的最值和对应x 的值. 【详解】(1)因为//CD OA ,所以ODC AOD xrad ∠=∠=. 在OCD ∆中,23OCD π∠=,3COD x π∠=-,2OD km =.由正弦定理,得22sin 3sinsin 33OC CD xx ππ===⎛⎫- ⎪⎝⎭,得OC xkm =,33CD x km π⎛⎫=- ⎪⎝⎭. 又圆弧DB 长为23x km π⎛⎫- ⎪⎝⎭,所以2233y a x a x x ππ⎤⎛⎫⎛⎫=+⨯-+-⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦2cos ,0,33a x x x x ππ⎫⎛⎫=+-+∈⎪ ⎪⎭⎝⎭.(2)记()2cos 3f x a x x x π⎫=+-+⎪⎭,则()()'23cos sin 122cos 16f x ax x a x π⎡⎤⎛⎫=--=+- ⎪⎢⎥⎝⎭⎣⎦,令()'0f x =,得6x π=.当x 变化时,()'f x ,()f x 的变化如下表:所以()f x 在6x π=处取得极大值,这个极大值就是最大值,即2323666f a a πππ⎛⎫⎫⎫=⨯= ⎪⎪⎪⎝⎭⎭⎭.故当6x π=时,广告位出租的总收入最大,最大值为236a π⎫⎪⎭元. 【点睛】本题考查了三角函数模型的应用问题,考查利用导数知识处理最值问题,考查函数与方程思想,是中档题. 25.(1)1600cos 4S πθθ⎛⎫=<< ⎪⎝⎭;(2)当θ为π6时该别墅总造价最低 【分析】(1)由题知FH ⊥HM ,在Rt △FHM 中,所以5FM cos θ=,得△FBC 的面积25cos θ,从而得到屋顶面积FBC ABFE 160S 2S2S cos θ梯形=+=;(2)别墅总造价为y S k h 16k =⋅+⋅=2sin θ80k 96k cos θ-⎛⎫⋅+ ⎪⎝⎭,令()2sin θf θcos θ-=,求导求最值即可 【详解】(1)由题意FH ⊥平面ABCD ,FM ⊥BC , 又因为HM ⊂平面ABCD ,得FH ⊥HM .在Rt △FHM 中,HM = 5,FMH θ∠=,所以5FM cos θ=. 因此△FBC 的面积为1525102cos θcos θ⨯⨯=. 从而屋顶面积FBCABFE S 2S2S =+梯形 252516022 2.2cos θcos θcos θ=⨯+⨯⨯=.所以S 关于θ的函数关系式为160S cos θ=(π0θ4<<). (2)在Rt △FHM 中,FH 5tan θ=,所以主体高度为h 65tan θ=-. 所以别墅总造价为y S k h 16k =⋅+⋅()160k 65tan θ16k cos θ=⋅+-⋅ 16080sin θk k 96k cos θcos θ=-+ 2sin θ80k 96k cos θ-⎛⎫=⋅+ ⎪⎝⎭记()2sin θf θcos θ-=,π0θ4<<, 所以()22sin θ1f θcos θ-=', 令()f θ0'=,得1sin θ2=,又π0θ4<<,所以πθ6=. 列表:所以当θ6=时,()f θ有最小值. 答:当θ为π6时该别墅总造价最低. 【点睛】本题考查函数的实际应用问题,将空间问题平面化,准确将S 表示为θ函数是关键,求最值要准确,是中档题26.(1)4;(2)极小值为344e --,无极大值. 【分析】(1)求出函数的导函数,利用(0)3f '=,可得a .(2)由(1)可得函数的解析式,利用导数研究函数的单调性,从而得到函数的极值; 【详解】解:(1)因为()()1xf x ax e -=,所以()()1xf x ax a e '=+-因为曲线()y f x =在点()0,1-处的切线为310x y --=. 所以(0)13f a '=-=,解得4a =(2)由(1)可得()()41xf x x e -=,所以()()43xf x x e '+=,令()0f x '>解得34x >-,即函数在3,4⎡⎫-+∞⎪⎢⎣⎭上单调递增,令()0f x '<解得34x <-,即函数在3,4⎛⎫-∞- ⎪⎝⎭上单调递减,故函数在34x =-处取得极小值,所以()34344f x f e -⎛⎫=-=- ⎪⎝⎭极小值,无极大值.【点睛】本题考查函数的导数的应用,切线方程以及函数的极值的求法,考查转化思想以及计算能力,属于中档题.。
(常考题)北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(含答案解析)(1)
一、选择题1.已知函数()()2xf x ax e x =+-(其中2a >-),若函数()f x 为R 上的单调减函数,则实数a 的取值范围为( ) A .()2,1--B .(]2,0-C .(]1,0-D .(]2,1--2.已知函数()()ln 0f x ax x a =->有两个零点1x ,2x ,且122x x <,则a 的取值范围是( )A .2,ln 2⎛⎫+∞⎪⎝⎭B .20,ln 2⎛⎫ ⎪⎝⎭C .⎫+∞⎪⎪⎝⎭D .⎛ ⎝⎭3.已知3()ln 44x f x x x=-+,2()24g x x ax =--+,若对1(0,2]x ∀∈,2[1,2]x ∃∈,使得12()()f x g x ≥成立,则a 的取值范围是( )A .1[,)8-+∞B .258ln 2[,)16-+∞ C .15[,]84- D .5(,]4-∞4.已知函数()f x lnx =,若关于x 的方程()f x kx =恰有两个不相等的实数根, 则实数k的取值范围是( )A .1(0,)eB .(0,1]eC .1(2,eD .1(2,e5.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( )A .()1,+∞B .[)3,+∞C .(],1-∞D .(],3-∞6.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a的取值范围为( )A .11,27⎛⎫-∞- ⎪⎝⎭B .1,C .5,127⎛⎫-⎪⎝⎭ D .11,127⎛⎫-⎪⎝⎭7.已知定义域为R 的偶函数()f x ,其导函数为f x ,对任意[)0,x ∈+∞,均满足:()()2xf x f x >-'.若()()2g x x f x =,则不等式()()21g x g x <-的解集是( )A .(),1-∞-B .1,3⎛⎫-∞ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭8.已知函数()f x 对定义域R 内的任意x 都有()()22f x f x +=-,且当2x ≠时其导函数()f x '满足()()2xf x f x ''>,若24a <<则( )A .()()()223log af f f a << B .()()()23log 2af f a f <<C .()()()2log 32af a f f <<D .()()()2log 23af a f f <<9.已知定义在R 上的可导函数()f x 的导函数为'()f x ,满足()'()f x f x >,且(0)1f =,则不等式()x e f x >(e 为自然对数的底数)的解集为( )A .(1,)-+∞B .(0,)+∞C .(1,)+∞D .(,0)-∞10.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .11.函数()ln sin f x x x =+(x ππ-≤≤且0x ≠)的大致图像是( )A .B .C .D .12.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .1B .2C .eD .2e二、填空题13.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________ 14.设动直线x m =与函数()32f x x =,()ln g x x =的图象分别交于点M ,N ,则线段MN 长度的最小值为______.15.函数()f x 在(0,+∞)上有定义,对于给定的正数K ,定义函数()()()(),,K f x f x K f x K f x K⎧≤⎪=⎨>⎪⎩,取函数()2253ln 2f x x x x =-,若对任意x ∈(0,+∞),恒有()()K f x f x =,则K 的最小值为______.16.已知函数()211020x e x x x ef x lnx x x⎧--+≤⎪⎪=⎨⎪⎪⎩,,>,若方程f (x )﹣m =0恰有两个实根,则实数m 的取值范围是_____.17.若函数()2xf x x e a =-恰有三个零点,则实数a 的取值范围是______.18.已知函数()2221,204ln 2,0x mx m x f x x m x x e ⎧----<≤⎪=⎨+->⎪⎩在区间()2,-+∞上有且只有三个零点,则实数m 的取值范围为______.19.函数()ln xf x x=在(),1a a +上单调递增,则实数a 的取值范围为______. 20.已知在正四棱锥P ABCD -中,4PA =,则当该正四棱锥的体积最大时,它的高h 等于______.三、解答题21.函数()21xf x xe x =-+.(1)求函数()f x 在0x =处的切线方程;(2)讨论函数()()ln g x f x x x m =-+-的零点个数.22.如图,在半径为30cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A 、B 在直径上,点C 、D 在圆周上.(1)怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积;(2)若将所截得的矩形铝皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形罐子体积最大?并求最大体积. 23.已知函数()2f x x ax b =++,不等式()0f x ≤的解集为[]1,3-.(1)求函数()f x 的解析式; (2)求方程()4ln f x x x =根的个数.24.已知函数()()21()xf x x e ax a R =--∈.(1)当1a =时,求()f x 的单调区间;(2)若0x =是()f x 的极大值点,求a 的取值范围. 25.已知函数()42ln af x ax x x=--. (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若函数()f x 在其定义域内为增函数,求实数a 的取值范围; (3)设函数6()eg x x=,若在区间[1,]e 上至少存在一点0x ,使得00()()f x g x >成立,求实数a 的取值范围.26.设函数()()()ln 10f x x x =+≥,()()()101x x a g x x x ++=≥+.(1)证明:()2f x x x ≥-. (2)若()()f x xg x +≥恒成立,求a 的取值范围; (3)证明:当*n ∈N 时,()2121ln 149n n n -+>+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】令()()(2)1x g x f x ax a e ='=++-,则()(2)x g x ax a e '=++.分0a =,0a >,20a -<<三类讨论,即可求得实数a 的取值范围即可. 【详解】解:令()()(2)1x g x f x ax a e ='=++-,则()(22)x g x ax a e '=++,(ⅰ)当0a =时,()20x g x e '=>,()g x 在R 递增,即()21x f x e '=-在R 递增, 令()0f x '=,解得:2x ln =-,故()f x 在(,2)ln -∞-递减,在(2,)ln -+∞递增,()f x 不单调,与题意不符; (ⅱ)当0a >时,由2()0(2)g x x a '>⇒>-+,2()0(2)g x x a'<⇒<-+,222()(2)10aming x g ae a--∴=--=--<,(0)10g a =+>,∴此时函数()f x '存在异号零点,与题意不符;(ⅲ)当20a -<<,由()0g x '>,可得2(2)x a <-+,由()0g x '<可得2(2)x a>-+,()g x ∴在2(,2)a -∞--上单调递增,在2(2a--,)+∞上单调递减,故222()(2)1a maxg x g ae a--=--=--,由题意知,2210aae ----恒成立,令22t a --=,则上述不等式等价于12t e t +,其中1t >, 易证,当0t >时,112tte t >+>+, 当(1t ∈-,0]时12te t+成立, 由2120a-<--,解得21a -<-. 综上,当21a -<-时,函数()f x 为R 上的单调函数,且单调递减; 故选:D . 【点睛】本题主要考查了利用导数研究函数的单调性,突出考查等价转化思想与分类讨论思想的应用,考查逻辑思维能力与推理证明能力,考查参数范围问题及求解函数的值域,属于函数与导数的综合应用.2.A解析:A 【分析】根据已知可进行分离参数后,构造函数,两个零点1x ,2x ,求解a 的范围和切点,可得1201x x <<<,且()()12f x f x =,结合1x 与2x 的大小关系及函数的性质可求1x 的范围,然后结合函数单调性进行求解即可. 【详解】解:函数()()ln 0f x ax x a =-> 有两个零点1x ,2x , 令()0f x =,可得e xa x =令()e xg x x=即()()2e 1x x g x x-'=, 令()0g x '=,可得1x =, 可得当()0,1x ∈时,则()0g x '<, 当()1,x ∈+∞时,则()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,可得1201x x <<<, (i )若1102x <<,则21120x x >>>,符合题意; (ii )若1112x <<,则2121x x >>, 根据单调性,可得()()122f x f x <, 即()()112f x f x <,可得1111ln 22ln ax x ax x -<-,1ln 2x ∴>,综合(i )(ii )得,1x 的取值范围是()ln 2,1. 又()g x 在()ln 2,1上单调递减,可得()()ln 2g x g >,即2ln 2a. 故选:A . 【点睛】本题主要考查了导数的几何意义的应用及利用导数求解参数的取值范围,体现了转化思想的应用.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.A解析:A 【分析】先求()f x 最小值,再变量分离转化为对应函数最值问题,通过求最值得结果【详解】 因为()(]3ln x 0,244x f x x x=-+∈,, 所以22113(1)(3)()01444x x f x x x x x---'=--==⇒=,(3舍去) 从而01,()0;12,()0;x f x x f x ''<<<<<>即1x =时()f x 取最小值12, 因此[]x 1,2∃∈,使得21242x ax ≥--+成立,724x a x ≥-+的最小值,因为724x x-+在[]1,2上单调递减,所以724x x -+的最小值为271288-+=-,因此18a ≥-,选A. 【点睛】本题考查不等式恒成立与存在性问题,考查综合分析与转化求解能力,属中档题.4.A解析:A 【分析】f (x )=kx 可变形为k lnxx=,关于x 的方程f (x )=kx 的实数根问题转化为直线y =k 与函数g (x )g (x )lnxx=的图象的交点个数问题,由导数运算可得函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数,又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g(e )1e=,画草图即可得解. 【详解】设g (x )()f x lnx xx==, 又g ′(x )21lnxx-=, 当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0, 则函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数, 又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=, 即直线y =k 与函数g (x )的图象有两个交点时k 的取值范围为(0,1e), 故选A .【点睛】本题考查了导数的运算及方程与函数的互化及极限思想,属于中档题.5.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.6.C解析:C 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<. 故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.7.C解析:C 【解析】试题分析:[)0,x ∈+∞时()()()()()22(2)0g x xf x x f x x f x xf x =+='+'>',而()()2g x x f x =也为偶函数,所以()()()()21212121321013g x g x g x g x x x x x x <-⇔<-⇔<-⇔+-<⇔-<<,选C.考点:利用函数性质解不等式【方法点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等8.C解析:C 【分析】由()f x =(4)f x -得到函数的对称性,(2)()0x f x '->得到函数的单调性,结合关系即可得到结论. 【详解】由于函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -, 可知函数关于2x =对称,根据条件2x ≠时,有()2(),xf x f x ''> 得(2)()0x f x '->,当2x >时()f x 递增,当2x <时()f x 单调递减,因为24a <<所以4216a <<,21log 2a <<,因为2x =是对称轴,所以22log 3a <<, 所以22log 32aa <<<,所以2(log )(3)(2)af a f f <<,故选:C. 【点睛】本题主要考查函数值的大小比较,根据导数判断函数的单调性,再利用对称性、单调性比较大小.9.B解析:B 【解析】 令()()()()()0,(0)1x xf x f x f xg x g x g e e-=∴=<'=' 所以()xe f x >()1(0)0g x g x ⇒=⇒ ,选B.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()x f x g x e=,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等10.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.11.D解析:D 【分析】利用函数的奇偶性排除选项,能过导数求解函数极值点的个数,求出()f π的值,从而可判断选项 【详解】解:因为()ln sin()ln sin ()f x x x x x f x -=-+-=+=, 所以()f x 为偶函数,故排除B当0πx <≤时,()ln sin f x x x =+,则'1()cos f x x x=+,令'()0f x =,则1cos x x=-, 作出1,cos y y x x==-的图像如图,可知两个函数图像有一个交点,就是函数的极值点,所以排除A 因为()ln 1f ππ=>,所以排除C ,当0x x =时,'0()0f x =,故0(0,)x x ∈时,函数()f x 单调递增,当0(,)x x π∈时,函数()f x 单调递减,所以D 满足. 故选:D 【点睛】此题考查了与三角函数有关的函数图像识别,利用了导数判断函数的单调性,考查数形结合的思想,属于中档题12.C解析:C 【分析】求得y kx =与xy e =的图象相切时的k 值,结合图象可得结论. 【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()xf x e '=,切线方程为000()-=-xx y e e x x ,切线过原点,∴000x x ee x -=-⋅,01x =,∴(1)kf e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.二、填空题13.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调解析:1,e ⎛⎤-∞ ⎥⎝⎦【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln xk x=有解,构造函数()ln xf x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点,∴等价于方程ln kx x =在0x >时有解,即ln xk x=有解, 设()ln xf x x=,则()21ln xf x x -'=, 由()0f x '>,解得0x e <<,此时函数单调递增, 由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e ⎛⎤-∞ ⎥⎝⎦.故答案为:1,e⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.14.【分析】构造函数利用导数求得的最小值进而求得线段长度的最小值【详解】构造函数则所以在上递增令解得所以在上递增在上递减所以的最小值为也即的最小值为故答案为:【点睛】本小题主要考查利用导数研究函数的最值 解析:()11ln 63+ 【分析】构造函数()()()()0h x f x g x x =->,利用导数求得()h x 的最小值,进而求得线段MN 长度的最小值. 【详解】构造函数()()()()32ln 0h x f x g x x x x =-=->,则()()'2''2116,120h x x h x x x x=-=+>, 所以()'h x 在()0,∞+上递增,令()'0h x =解得136x -==.所以()h x 在130,6-⎛⎫ ⎪⎝⎭上递增,在136,-⎛⎫+∞ ⎪⎝⎭上递减,所以()h x 的最小值为()3111333111626ln 6ln 61ln 6333h ---⎛⎫⎛⎫=⨯-=+=+ ⎪ ⎪⎝⎭⎝⎭.也即MN 的最小值为()11ln 63+. 故答案为:()11ln 63+ 【点睛】本小题主要考查利用导数研究函数的最值,考查化归与转化的数学思想方法,属于中档题.15.【分析】根据题意利用导数求出函数的最大值即可【详解】由得当时函数单调递减当时函数单调递增所以函数的最大值为:即所以要想恒有只需所以的最小值为故答案为:【点睛】本题考查了利用导数求函数最大值问题考查了解析:2332e【分析】根据题意,利用导数求出函数()2253ln 2f x x x x =-的最大值即可. 【详解】 由()2253ln 2f x x x x =-得()()213ln f x x x '=-, 当13x e >时,()0f x '<,函数()f x 单调递减, 当130x e <<时,()0f x '>,函数()f x 单调递增,所以函数()y f x =的最大值为:231332e f e ⎛⎫= ⎪⎝⎭,即()2332f x e ≤,所以要想恒有()()K f x f x =,只需2332K e ≥,所以K 的最小值为2332e .故答案为:2332e【点睛】本题考查了利用导数求函数最大值问题,考查了学生的数学阅读和运算求解能力.16.【分析】通过求导得出分段函数各段上的单调性从而画出图像若要方程f (x )﹣m=0恰有两个实根只需y=m 与y=f (x )恰有两个交点即可从而得出的取值范围【详解】(1)x≤0时f′(x )=ex ﹣x ﹣1易知解析:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,【分析】通过求导,得出分段函数各段上的单调性,从而画出图像.若要方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点即可,从而得出m 的取值范围. 【详解】(1)x ≤0时,f ′(x )=e x ﹣x ﹣1,易知f ′(0)=0,而f ″(x )=e x ﹣1<0,所以f ′(x )在(﹣∞,0]上递减,故f ′(x )≥f ′(0)=0,故f (x )在(﹣∞,0]上递增, 且f (x )≤f (0)11e=+,当x →﹣∞时,f (x )→﹣∞. (2)x >0时,()21'lnxf x x-=,令f ′(x )>0,得0<x <e ;f ′(x )<0得x >e ;故f (x )在(0,e )上递增,在(e ,+∞)递减, 故x >0时,()1()max f x f e e==;x →0时,f (x )→﹣∞;x →+∞时,f (x )→0. 由题意,若方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线y =m 在图示①,②位置时,与y =f (x )有两个交点,所以m 的范围是:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 故答案为:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 【点睛】本题考查了方程根的问题转化为函数图像交点问题,以及利用导数求函数单调性.考查了转化思想和数形结合,属于中档题.17.【分析】求导函数求出函数的极值利用函数恰有三个零点即可求实数的取值范围【详解】解:函数的导数为令则或可得函数在上单调递减和上单调递增或是函数的极值点函数的极值为:函数恰有三个零点则实数的取值范围是:解析:240,e ⎛⎫⎪⎝⎭【分析】求导函数,求出函数的极值,利用函数2()xf x x e a =-恰有三个零点,即可求实数a 的取值范围. 【详解】解:函数2xy x e =的导数为22(2)x x x y xe x e xe x '=+=+,令0y '=,则0x =或2-,可得函数在()2,0-上单调递减,(,2)-∞-和(0,)+∞上单调递增, 0∴或2-是函数y 的极值点,函数的极值为:(0)0f =,224(2)4f e e --==.函数2()xf x x e a =-恰有三个零点,则实数a 的取值范围是:240,e ⎛⎫ ⎪⎝⎭. 故答案为:240,e ⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.18.【分析】当时函数的图像是函数的图像进行上下平移而得到的求出的单调区间作出其图像可得在上函数至多有2个零点又当时则在上函数至多有1个零点根据条件所以在上有一个零点在上有2个零点则从而可得答案【详解】当解析:()2【分析】当0x >时,函数()f x 的图像是函数4ln xy x=的图像进行上下平移而得到的,求出4ln xy x=的单调区间,作出其图像,可得在()0+∞,上,函数()f x 至多有2个零点,又当20x -<≤时,()2010f m =--<,则在()20-,上,函数()f x 至多有1个零点,根据条件所以()f x 在20x -<≤上有一个零点,在()0,∞+上有2个零点,则()()()222042022210m e m f e e e m m +⎧>⎪⎪+⎪=->⎨⎪⎪--⨯--->⎪⎩,从而可得答案. 【详解】当0x >时,函数()f x 的图像是函数4ln xy x=的图像进行上下平移而得到的. 又由函数4ln xy x =有()241ln x y x-'=. 由()241ln 0x y x -'=>,得x e <,()241ln 0x y x-'=<,得x e >. 所以函数4ln xy x=在()0,e 上单调递增,在(),e +∞上单调递减,图像如图. 当1x >时,4ln 0xy x=>.所以在()0+∞,上,函数()f x 至多有2个零点. 当20x -<≤时,()2221f x x mx m =---,()2010f m =--<,其对称轴为x m =.此时二次方程22210x mx m ---=有两相异号的实根.所以在()20-,上,函数()f x 至多有1个零点. 因为函数()f x 在区间()2,-+∞上有且只有三个零点.所以()f x 在20x -<≤上有一个零点,在()0,∞+上有2个零点.则()()()222042022210m e m f e e e m m +⎧>⎪⎪+⎪=->⎨⎪⎪--⨯--->⎪⎩,解得:272m -<<故答案为:()27,2 【点睛】本题考查根据函数的零点个数求参数的取值范围,属于中档题.19.【分析】先求出得到在上单调递增要使得在上单调递增则从而得到答案【详解】由函数有由得得所以在上单调递增在上单调递减又函数在上单调递增则则解得:故答案为:【点睛】本题考查函数在某区间上的单调性求参数的范 解析:[]0,1e -【分析】 先求出()21ln xf x x -'=,得到()f x 在()0e ,上单调递增,要使得在(),1a a +上单调递增,则()(),10a a e +⊆,,从而得到答案. 【详解】 由函数()ln xf x x =有()()2ln 1ln 0x x f x x x x -'==>由()0f x '>得0x e <<,()0f x '<得x e >.所以()f x 在()0e ,上单调递增,在(),e +∞上单调递减, 又函数()ln xf x x=在(),1a a +上单调递增,则()(),10a a e +⊆, 则01a a e ≥⎧⎨+≤⎩,解得:01a e ≤≤-. 故答案为:[]0,1e - 【点睛】本题考查函数在某区间上的单调性,求参数的范围,属于基础题.20.【分析】设正四棱锥的底面边长为即可由表示出和的等量关系进而表示出正四棱锥的体积利用导函数判断单调性由单调性即可求得最值并求得取最值时的高的值【详解】设正四棱锥的底面边长为因为所以即所以正四棱锥的体积【分析】设正四棱锥P ABCD -的底面边长为a ,即可由4PA =表示出a 和h 的等量关系,进而表示出正四棱锥P ABCD -的体积.利用导函数,判断单调性,由单调性即可求得最值,并求得取最值时的高h 的值. 【详解】设正四棱锥P ABCD -的底面边长为a ,因为4PA =,所以22162ah +=,即22322a h =-,所以正四棱锥P ABCD -的体积()2313220333V a h h h h ==->, 可得232'23V h =-,令'0V =,解得h =当03h <<,可得'0V >,可知V 在03h <<内单调递增,当h >'0V <,可知V 在h >所以当h =P ABCD -的体积取得最大值,即16322313237V ⎛⎫-⨯⨯=⎪⎝⎭=.故答案为:3. 【点睛】本题考查了正四棱锥的性质与应用,四棱锥的体积公式,利用导数求函数的最值及取最值时的自变量,属于中档题.三、解答题21.(1)1y x =-+;(2)答案见解析. 【分析】(1)利用导数求出函数()f x 在0x =处的切线的斜率,并求出切点的坐标,利用点斜式可求得所求切线的方程;(2)令()()ln ln 1xh x f x x xe x x =-=--+,则问题转化为直线y m =与函数()y h x =的图象的交点个数,利用导数分析函数()h x 的单调性与极值,数形结合可得出直线y m =与函数()y h x =的图象的交点个数,由此可得出结论. 【详解】(1)因为()()12xf x x e '=+-,所以()01f '=-,又()01f =,切点坐标为()0,1,所以函数()f x 在0x =处的切线方程为:1y x =-+; (2)构造函数()()()ln ln 10xh x f x x x xe x x x =-+=--+>则()()()()11111xx x xe h x x e x x+-'=+--=, 令()1xm x xe =-,()()10xm x x e '=+>,则()m x 在()0,∞+单调递增,且1102m ⎛⎫=-<⎪⎝⎭,()110m e =->, 所以存在0,112x ⎛⎫∈⎪⎝⎭,使得()00m x =,即001xe x =,从而00ln x x =-.所以当()00,x x ∈时,()0m x <,即()0h x '<,则()h x 单调递减; 当()0,x x ∈+∞时,()0m x >,即()0h x '>,则()h x 单调递增.所以()()00000000min 01ln 112x h x h x x e x x x x x x ==--+=⋅-++=,如下图所示:所以当2m <时,()g x 没有零点; 当2m =时,()g x 有1个零点; 当2m >时,()g x 有2个零点. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.22.(1)取BC 为152cm 时,矩形ABCD 的面积最大,最大值为2900cm ;(2)取BC 为103cm 时,做出的圆柱形罐子体积最大,最大值为60003π.【分析】(1)设BC x =,矩形ABCD 的面积为S ,()22229002900S x x x x =-=-,利用基本不等式求解最值;(2)设圆柱底面半径为r ,高为x ,体积为V .由229002AB x r π=-=,得2900x r π-=,()231900V r h x x ππ==-,其中030x <<,利用导函数求解最值. 【详解】 (1)连结OC .设BC x =,矩形ABCD 的面积为S .则AB =030x <<.所以()222900900S x x ==≤+-=.当且仅当22900x x =-,即x =时,S 取最大值为2900cm .所以,取BC 为时,矩形ABCD 的面积最大,最大值为2900cm . (2)设圆柱底面半径为r ,高为x ,体积为V .由2AB r π==,得r π=,所以()231900V r h x x ππ==-,其中030x <<.由()2190030V x π='-=,得x =因此()31900V x x π=-在(上是增函数,在()上是减函数.所以当x =V 的最大值为π.取BC 为时,做出的圆柱形罐子体积最大,最大值为3cm π.【点睛】此题考查函数模型的应用:(1)合理设未知数,建立函数关系,需要注意考虑定义域; (2)利用基本不等式求最值,要注意最值取得的条件;(3)利用导函数讨论函数单调性求解最值,注意自变量的取值范围. 23.(1)()223f x x x =--;(2)有且只有一个根.【分析】(1)根据不等式的解集与方程根的对应关系,列出关于,a b 的方程组,从而求解出,a b 的值,则()f x 的解析式可求; (2)将问题转化为求方程34ln 20x x x---=根的数目,构造新函数()34ln 2g x x x x=---,利用导数分析()g x 的单调性和极值,由此判断出()g x 的零点个数,从而方程()4ln f x x x =根的个数可确定.【详解】解:(1)∵不等式()0f x ≤的解集为[]1,3-,∴20x ax b ++=的两个根分别为1-和3.∴()()1313a b ⎧-=-+⎪⎨=-⨯⎪⎩.即2a =-,3b =-,故函数()f x 的解析式为()223f x x x =--.(2)由(1),设()22334ln 4ln 2x x g x x x x x x--=-=---,∴()g x 的定义域为()0,∞+,()()()2213341x x g x x x x--'=+-=, 令()0g x '=,得11x =,23x =.当x 变化时,()g x ',()g x 的取值变化情况如下表:当03x <≤时,140g x g ≤=-<, 当3x >时,()55553ee 202212290eg =--->--=>. 又因为()g x 在()3,+∞上单调递增,因而()g x 在()3,+∞上只有1个零点, 故()g x 仅有1个零点.即方程()4ln f x x x =有且只有一个根. 【点睛】思路点睛:利用导数分析方程根的个数的思路: (1)将方程根的个数问题转化为函数零点的个数问题;(2)将原方程变形,构造新函数,分析新函数的单调性、极值、最值;(3)根据新函数的单调性、极值、最值得到新函数的零点个数,则方程根的个数可确定.24.(1)()f x 在()0-∞,和(ln 2,)+∞上单调递增,在(0,ln 2)上单调递减;(2)1(,)2+∞. 【分析】(1)将1a =代入,求出函数解析式,进而利用导数法,可求出函数的单调区间; (2)求导后对a 讨论,判定单调性结合0x =是()f x 的极大值点,可得a 的取值范围. 【详解】(1)当1a =时,()()21xf x x e x =--,()()2xf x x e '=-,()'0f x >得0x <或ln 2x > ,()'0f x <得0ln 2x <<,()f x ∴在()0-∞,和(ln 2,)+∞上单调递增,在(0,ln 2)上单调递减; (2)()()2xf x x e a '=-,当0a ≤时,20x e a ->,故()00f x x '>⇒>,()f x ∴在()0-∞,上单减, 在上(0,)+∞单增,0x =为极小值点,不合题意; 当0a >时,由()0f x '=得0x =或ln2x a =,0x =是极大值点, ln20a ∴>,即12a >, 故1(,)2a ∈+∞. 【点睛】本题主要考查的是利用导数研究函数的单调区间,利用导数研究函数极大值,掌握利用导函数研究函数的性质是解题的关键,考查学生的分析问题解决问题的能力,是中档题. 25.(1) 3y x = (2) 1[,)2+∞(3)28(,)41ee +∞- 【分析】(1)求出f (x )的导数,求出f′(1),f (1),代入切线方程即可;(2)求出函数的导数,通过讨论a 的范围结合二次函数的性质得到函数的单调性,从而求出a 的具体范围;(3)构造函数ϕ(x )=f (x )﹣g (x ),x ∈[1,e],只需ϕ(x )max >0,根据函数的单调性求出ϕ(x )max ,从而求出a 的范围. 【详解】(1)解: 当1a =时,()142ln f x x x x =--,()1412ln13f =--=, ()212'4f x x x=+-, 曲线()f x 在点()()1,1f 处的斜率为()'13f =, 故曲线()f x 在点()()1,1f 处的切线方程为()331y x -=-,即3y x =(2)解: ()222242'4a ax x a f x a x x x-+=+-=. 令()242h x ax x a =-+,要使()f x 在定义域()0,+∞内是增函数,只需()h x ≥0在区间()0,+∞内恒成立. 依题意0a >,此时()242h x ax x a =-+的图象为开口向上的抛物线,()211444h x a x a a a ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,其对称轴方程为()10,4x a =∈+∞,()min 14h x a a =-,则只需14a a -≥0,即a ≥12时,()h x ≥0,()'f x ≥0,所以()f x 定义域内为增函数,实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. (3)解: 构造函数()()()x f x g x φ=-,[]1,x e ∈,依题意()max 0x φ>, 由(2)可知a ≥12时,()()()x f x g x φ=-为单调递增函数, 即()1642ln ex a x x x x φ⎛⎫=--- ⎪⎝⎭在[]1,e 上单调递增,()()max 1480x e a e eφφ⎛⎫==--> ⎪⎝⎭,则2288214142e e a e e e >>=>-, 此时,()()()0e f e g e φ=->,即()()f e g e >成立. 当a ≤2841e e -时,因为[]1,x e ∈,140x x->, 故当x 值取定后,()x φ可视为以a 为变量的单调递增函数, 则()x φ≤281642ln 41e ex x e x x⎛⎫--- ⎪-⎝⎭,[]1,x e ∈, 故()x φ≤281642ln 041e ee e e e e⎛⎫---= ⎪-⎝⎭, 即()f x ≤()g x ,不满足条件. 所以实数a 的取值范围是28,41e e ⎛⎫+∞ ⎪-⎝⎭. 【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.26.(1)证明见解析;(2)(],1-∞;(3)证明见解析. 【分析】(1)令函数()()2ln 1h x x x x =+-+,[)0,x ∈+∞,利用导数判断函数单调递增,从而可得()()00h x h ≥=,即证. (2)令()()ln 11axm x x x=+-+,转化为()0m x ≥恒成立,利用导数求出()()11x am x x +-'=+,讨论a 的取值,判断函数的单调性,求出()()()min 100m x m a m =-<=,即求.(3)由(1)()2ln 1x x x +≥-,令1x n =,*n ∈N ,整理可得()21ln 1ln n n n n-+->,然后将不等式相加即可证明. 【详解】(1)证明:令函数()()2ln 1h x x x x =+-+,[)0,x ∈+∞,()21221011x xh x x x x+'=+-=≥++,所以()h x 为单调递增函数,()()00h x h ≥=, 故()2ln 1x x x +≥-.(2)()()f x x g x +≥,即为()ln 11axx x+≥+, 令()()ln 11axm x x x=+-+,即()0m x ≥恒成立, ()()()()2111111a x ax x a m x x x x +-+-'=-=+++, 令()0m x '>,即10x a +->,得1x a >-.当10a -≤,即1a ≤时,()m x 在[)0,+∞上单调递增,()()00m x m ≥=,所以当1a ≤时,()0m x ≥在[)0,+∞上恒成立;当10a ->,即1a >时,()m x 在()1,a -+∞上单调递增,在[]0,1a -上单调递减, 所以()()()min 100m x m a m =-<=, 所以当1a >,()0m x ≥不恒成立. 综上所述:a 的取值范围为(],1-∞. (3)证明:由(1)知()2ln 1x x x +≥-,令1x n=,*n ∈N ,(]0,1x ∈, 211lnn n n n+->,即()21ln 1ln n n n n -+->,故有ln 2ln10->,1ln 3ln 24->,……()21ln 1ln n n n n-+->, 上述各式相加可得()2121ln 149n n n-+>+++.【点睛】本题考查了利用导数证明不等式、利用导数研究不等式恒成立,考查了转化与划归的思想,属于中档题.。
(常考题)北师大版高中数学高中数学选修2-2第三章《导数应用》检测题(答案解析)(3)
一、选择题1.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( ) A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>2.函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .3.已知函数()32114332f x x mx x =-+-在区间[]12,上是增函数,则实数m 的取值范围为( ) A .45m ≤≤ B .24m ≤≤C .2m ≤D .4m ≤4.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e -∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞5.已知可导函数()()f x x R ∈满足()()f x f x '>,则当0a >时,()f a 和(0)a e f 的大小关系为( )A .()(0)a f a e f >B .()(0)a f a e f <C .()(0)a f a e f =D .()(0)a f a e f ≤6.内接于半径为R 的球且体积最大的圆柱体的高为( ) ABCD7.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞8.已知函数2()cos sin 2f x x x =,若存在实数M ,对任意12,R x x ∈都有()()12f x f x M -≤成立.则M 的最小值为( )ABC.4D9.设动直线x m =与函数2()f x x =,()ln g x x =的图像分别交于,M N ,则MN 的最小值为( ) A .11ln 222+ B .11ln 222- C .1ln 2+ D .ln 21-10.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( ) A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞⎪⎝⎭D .11,26a ⎛⎫∈-⎪⎝⎭ 11.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .1 B .2 C .e D .2e12.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<二、填空题13.已知()(sin )x f x e x a =+在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数,则实数a 的取值范围是________.14.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________15.如果圆柱轴截面的周长l (单位:cm )为定值,则体积最大值为____________3cm . 16.若函数()2xf x x e a =-恰有三个零点,则实数a 的取值范围是______.17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.已知函数()1ln f x x a x x=-+,存在不相等的常数m ,n ,使得()()''0f m f n ==,且10,m e ⎛⎤∈ ⎥⎝⎦,则()()f m f n -的最小值为____________.19.已知函数2()x f x ae x =-有两个极值点,则实数a 的取值范围是_______.20.已知函数()32sin f x x x =-,若2(3)(3)0f a a f a -+-<,则实数a 的取值范围是__________.三、解答题21.设函数()22f x x x k x =++,k ∈R . (Ⅰ)当1k =-时,解不等式()3f x >;(Ⅱ)若对任意[]1,2x ∈时,直线21y x =+恒在曲线()y f x =的上方,求k 的取值范围. 22.已知函数()ln f x x x =-.(1)求曲线()y f x =在点()1,(1)f 处的切线方程;(2)设函数()()g x f x a =+,若12,(0,]x x e ∈是函数g (x )的两个零点, ①求a 的取值范围; ②求证:121x x <. 23.已知函数()1ln xx f x x -=-. (1)求()f x 的单调区间;(2)求函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最大值和最小值(其中e 是自然对数的底数).24.设函数()(1)f x lnx m x =-+,2()2m g x x =,(0,)x m R >∈. (Ⅰ)若对任意121x x >>,1212()()1f x f x x x -<--恒成立,求m 的取值范围;(Ⅱ)()()()h x f x g x =+,讨论函数()y h x =的单调性. 25.已知函数32()4f x x ax =-+-. (I )若4()3f x x =在处取得极值,求实数a 的值;(II )在(I )的条件下,若关于x 的方程()[1,1]f x m =-在上恰有两个不同的实数根,求实数m 的取值范围.26.已知函数(),xf x e kx x R =-∈.(1)若k e =,试确定函数()f x 的单调区间; (2)若0k >,且对于任意x ∈R ,()0fx >恒成立,试确定实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.2.B解析:B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.3.D解析:D 【分析】求函数的导函数,利用导函数与原函数单调性的关系进行判断,要使()f x 在区间[]12,上是增函数,则()0f x '≥在[]12,上恒成立,分离参数m ,即可得到答案. 【详解】由题得2()4f x x mx '=-+,要使()f x 在区间[]12,上是增函数,则()0f x '≥在[]12,上恒成立,即240x mx -+≥,则244x m x x x+≤=+在[]12,上恒成立,又44x x +≥=,当且仅当2x =时,等号成立,所以4m ≤, 故答案选D 【点睛】本题主要考查导数与原函数单调性之间的关系,将含参问题转化为最值成立,是解决本题的关键,属于中档题.4.C解析:C【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立,即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.5.A解析:A 【分析】根据条件构造函数()()xf xg x e =,求导可知()g x 单调递增,比较(),(0)g a g 的大小,可得()f a 和(0)a e f 的大小关系.【详解】解:令()()x f x g x e =,则'''2()()()()()x x x xf x e f x e f x f xg x e e--==,因为()()f x f x '>,所以'()0g x >,所以()g x 在(),-∞+∞上单调递增;因为0a >,所以()(0)g a g >,即0()(0)af a f e e>,即()(0)a f a e f >. 故选:A. 【点睛】本题考查构造函数法比较大小,考查利用导数求函数的单调性,属于基础题.6.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得230h <<,故此时()V h 单调递增, 令()0V h '<232h R <<,故此时()V h 单调递减. 故()23max V h V ⎫=⎪⎪⎝⎭.即当23h =时,圆柱的体积最大. 故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.7.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立,即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数. 由()3,2f π=-故可得22h π⎛⎫=-⎪⎝⎭, 又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.8.C解析:C 【分析】令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()f x h t =,利用导数可求()max 27256h t =,从而得到()f x 的最值,故可得M 的取值范围,从而得到正确的选项. 【详解】3()2cos sin f x x x =,故622()4cos sin f x x x =,令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()4f x h t =,又()()()()()322131114h t t t t t t '=---=--, 若10,4t ⎛⎫∈ ⎪⎝⎭,则()0h t '>,故()h t '在10,4⎡⎤⎢⎥⎣⎦为增函数;若1,14t ⎛⎫∈ ⎪⎝⎭,则()0h t '<,故()h t '在1,14⎛⎤⎥⎝⎦为减函数; 故()max 27256h t =,故2max 27()64f x =,所以max ()f x =min ()f x =,当且仅当1sin 4cos x x ⎧=⎪⎪⎨⎪=⎪⎩时取最大值,当且仅当1sin 4cos x x ⎧=-⎪⎪⎨⎪=⎪⎩故4M ≥即M的最小值4. 故选:C. 【点睛】本题考查与三角函数有关的函数的最值,注意通过换元法把与三角函数有关的函数问题转化为多项式函数,后者可以利用导数来讨论,本题属于中档题.9.A解析:A 【分析】将两个函数作差,得到函数()()y f x g x =-,利用导数再求此函数的最小值,即可得到结论. 【详解】设函数()()()2ln 0=-=->y f x g x x x x ,()212120-'∴=-=>x y x x x x,令0y '<,0x,02∴<<x,函数在0,2⎛ ⎝⎭上为单调减函数;令0y '>,0x,∴>x,函数在2⎛⎫+∞ ⎪ ⎪⎝⎭上为单调增函数.x ∴=时,函数取得极小值,也是最小值为111ln 2222-=+.故所求MN 的最小值即为函数2ln y x x =-的最小值11ln 222+. 故选:A. 【点睛】本题主要考查利用导数研究函数的最值,属于中档题.10.C解析:C 【分析】本题首先可根据题意得出2241ax ax fxx,令2241g xax ax ,然后根据()f x 在()1,3上不单调得出函数()g x 与x 轴在()1,3上有交点,最后分为0a =、0a ≠两种情况进行讨论,即可得出结果. 【详解】()2124124ax ax f x ax a x x--'=--=, 若()f x 在()1,3上不单调, 令2241g xax ax ,对称轴为1x =,则函数2241g xax ax 与x 轴在()1,3上有交点,当0a =时,显然不成立;当0a ≠时,则()()21680130a a g g ⎧∆=+>⎪⎨⋅<⎪⎩,解得16a >或12a <-,易知()f x 在()1,3上不单调的一个充分不必要条件是1,2a ⎛⎫∈+∞ ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查函数单调性问题,若函数在否个区间内不单调,则函数的导函数在这个区间内有零点且穿过x 轴,考查二次函数性质的应用,考查充分条件与必要条件的判定,是中档题.11.C解析:C 【分析】求得y kx =与x y e =的图象相切时的k 值,结合图象可得结论. 【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()xf x e '=,切线方程为000()-=-xx y e e x x ,切线过原点,∴000x x ee x -=-⋅,01x =,∴(1)kf e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.12.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.二、填空题13.【分析】利用在上恒成立等价于在上恒成立利用正弦函数的性质得出在的最小值即可得出的范围【详解】在上恒成立即在上恒成立则故答案为:【点睛】本题主要考查了由函数的单调性求参数的范围属于中档题 解析:[)1,-+∞【分析】利用()0f x '≥在0,2π⎡⎤⎢⎥⎣⎦4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立,利用4x π⎛⎫+ ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦的最小值,即可得出a 的范围. 【详解】()(sin )cos (sin cos )04x x x x f x e x a e x e x x a e x a π⎤⎛⎫'=++=++=++≥ ⎪⎥⎝⎭⎦在0,2π⎡⎤⎢⎥⎣⎦上恒成立4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立 0,2x π⎡⎤∈⎢⎥⎣⎦,3,444x πππ⎡⎤∴+∈⎢⎥⎣⎦sin 42x π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎣⎦,4x π⎛⎫⎡+∈ ⎪⎣⎝⎭则1,1a a ≥-≥- 故答案为:[)1,-+∞ 【点睛】本题主要考查了由函数的单调性求参数的范围,属于中档题.14.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调解析:1,e ⎛⎤-∞ ⎥⎝⎦【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln xk x=有解,构造函数()ln xf x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点,∴等价于方程ln kx x =在0x >时有解,即ln xk x=有解, 设()ln xf x x =, 则()21ln xf x x -'=, 由()0f x '>,解得0x e <<,此时函数单调递增, 由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e⎛⎤-∞ ⎥⎝⎦.故答案为:1,e⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.15.【分析】设出圆柱的底面半径和高求出体积表达式通过求导求出体积的最大值【详解】设圆柱底面半径高圆柱轴截面的周长为定值则求导可得:令可得当时当时当时圆柱体积的有最大值圆柱体积的最大值是:故答案为:【点睛解析:3216l π 【分析】设出圆柱的底面半径和高,求出体积表达式,通过求导求出体积的最大值. 【详解】设圆柱底面半径R ,高H ,圆柱轴截面的周长l 为定值, 则42R H l +=22lH R ∴=- 22232222l l V SH R H R R R R ππππ⎛⎫∴===-=- ⎪⎝⎭求导可得:26V Rl R ππ'=- 令0V '=,可得260Rl R ππ-=,(6)0R l R π∴-= 60l R ∴-=6l R ∴=当6lR >时,(6)0V R l R π'=-< 当6lR <时,(6)0V R l R π'=-> 当6l R =时,圆柱体积的有最大值,圆柱体积的最大值是:32322216l l V R R πππ=-=故答案为:3216l π.【点睛】本题主要考查了根据导数求最值,解题关键是掌握根据导数求最值的方法,考查了分析能力和计算能力,属于中档题.16.【分析】求导函数求出函数的极值利用函数恰有三个零点即可求实数的取值范围【详解】解:函数的导数为令则或可得函数在上单调递减和上单调递增或是函数的极值点函数的极值为:函数恰有三个零点则实数的取值范围是:解析:240,e ⎛⎫⎪⎝⎭【分析】求导函数,求出函数的极值,利用函数2()x f x x e a =-恰有三个零点,即可求实数a 的取值范围. 【详解】解:函数2x y x e =的导数为22(2)x x x y xe x e xe x '=+=+, 令0y '=,则0x =或2-,可得函数在()2,0-上单调递减,(,2)-∞-和(0,)+∞上单调递增,0∴或2-是函数y 的极值点,函数的极值为:(0)0f =,224(2)4f e e --==. 函数2()x f x x e a =-恰有三个零点,则实数a 的取值范围是:240,e ⎛⎫ ⎪⎝⎭. 故答案为:240,e ⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x x g -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增; 又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <, ∴2a ≥.故答案为:2a ≥. 【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】求出由已知可得为的两根求出关系并将用表示从而把表示为关于的函数设为利用的单调性即可求解【详解】因为的定义域为令即因为存在使得且即在上有两个不相等的实数根且所以∴令则当时恒成立所以在上单调递减解析:4e【分析】求出()f x ',由已知可得,m n 为()0f x '=的两根,求出,,m n a 关系,并将,n a 用m 表示,从而把()()f m f n -表示为关于m 的函数设为()h m ,利用()h m 的单调性,即可求解. 【详解】 因为()1ln f x x a x x=-+的定义域为()0,∞+, ()22211'1a x ax x x x f x ++=++=, 令()'0f x =,即210x ax ++=,()0,x ∈+∞,因为存在m ,n ,使得()()''0f m f n ==,且10,m e⎛⎤∈ ⎥⎝⎦,即210x ax ++=在()0,x ∈+∞上有两个不相等的实数根m ,n , 且m n a +=-,1⋅=m n ,所以1n m =,1a m m=--, ∴()()11111ln ln f m f m m m m m m m m m m n ⎛⎫⎛⎫=-+---+--- ⎪ ⎪-⎝⎭⎝⎭ 11l 2n m m m m m ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=,令()112ln h m m m m m m ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦, 则()()()22211121ln l 'n m m m m h m m m -+⎛⎫=-=⎪⎝⎭, 当10,m e⎛⎤∈ ⎥⎝⎦时,()'0h m <恒成立,所以()h m 在10,m e⎛⎤∈ ⎥⎝⎦上单调递减,∴()min 14h m h e e ⎛⎫== ⎪⎝⎭,即()()f m f n -的最小值为4e. 故答案为:4e. 【点睛】本题考查最值问题、根与系数关系、函数的单调性,应用导数是解题的关键,意在考查逻辑推理、计算求解能力,属于中档题.19.【分析】求出函数的导数问题转化为和在上有2个交点根据函数的单调性求出的范围从而求出的范围即可【详解】若函数有两个极值点则和在上有2个交点时即递增时递减故(1)而恒成立所以故答案为:【点睛】本题考查了解析:2(0,)e. 【分析】求出函数的导数,问题转化为y a =和2()xxg x e =在R 上有2个交点,根据函数的单调性求出()g x 的范围,从而求出a 的范围即可. 【详解】()2x f x ae x '=-,若函数2()x f x ae x =-有两个极值点, 则y a =和2()x xg x e=在R 上有2个交点, 22()xxg x e -'=, (,1)x ∈-∞时,即()0g x '>,()g x 递增,(1,)x ∈+∞时,()0g x '<,()g x 递减,故()max g x g =(1)2e=, 而20x xe >恒成立,所以20a e<<, 故答案为:2(0,)e. 【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.20.(13)【分析】确定函数为奇函数增函数化简得到解得答案【详解】函数为奇函数函数单调递增即即解得故答案为:【点睛】本题考查了利用函数的单调性和奇偶性解不等式意在考查学生对于函数性质的灵活运用解析:(1,3) 【分析】确定函数为奇函数,增函数,化简得到233a a a -<-,解得答案. 【详解】()32sin f x x x =-,()()32sin f x x x f x -=-+=-,函数为奇函数,'()32cos 0f x x =->,函数单调递增,2(3)(3)0f a a f a -+-<,即2(3)(3)(3)f a a f a f a -<--=-,即233a a a -<-,解得13a <<. 故答案为:()1,3. 【点睛】本题考查了利用函数的单调性和奇偶性解不等式,意在考查学生对于函数性质的灵活运用.三、解答题21.(Ⅰ)()1,+∞;(Ⅱ)31,4⎛⎫-- ⎪⎝⎭. 【分析】(Ⅰ)由1k =-时,不等式为223x x x -+>,然后分2x ≥,2x <讨论求解. (Ⅱ)将任意[]1,2x ∈时,不等式()21f x x <+恒成立,转化为112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立求解.【详解】(Ⅰ)当1k =-时,不等式()3f x >,即223x x x -+>, 所以2(2)23x x x x ≥⎧⎨-+>⎩,或2(2)23x x x x <⎧⎨-+>⎩,,即得223x x ≥⎧⎨>⎩,或22430x x x <⎧⎨-+<⎩,, 解得2x ≥或12x <<, 所以原不等式的解集是()1,+∞;(Ⅱ)因为对任意[]1,2x ∈时,不等式()21f x x <+恒成立,即21x x k +<当[]1,2x ∈时恒成立,即12x k x+<,即111122x k x x x ⎛⎫⎛⎫-+<<-+ ⎪ ⎪⎝⎭⎝⎭,故只要112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立即可, 即当[]1,2x ∈时,只要k 大于112x x ⎛⎫-+ ⎪⎝⎭的最大值且k 小于112x x ⎛⎫-+ ⎪⎝⎭的最小值,因为当[]1,2x ∈时,211111022x x x '⎡⎤⎛⎫⎛⎫-+=--≤ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,max 1112x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 211111022x x x '⎡⎤⎛⎫⎛⎫-+=-+< ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,min 11324x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 故所求k 的取值范围是31,4⎛⎫-- ⎪⎝⎭. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<;22.(1)y =﹣1;(2)①(1,e ﹣1];②证明见解析. 【分析】(1)求出切线的斜率和切点坐标代入点斜式方程可得答案; (2)①求出()'g x 利用()g x 的单调性可得答案;②不妨设x 1<x 2,利用单调性可得()121g x g x ⎛⎫< ⎪⎝⎭,再证()2210g x g x ⎛⎫-< ⎪⎝⎭,构造函数()22222112ln g x g x x x x ⎛⎫-=-+ ⎪⎝⎭,再利用单调性可得答案.【详解】(1)1()1f x x='-,∴切线的斜率(1)0,(1)1f f '==-,则曲线y =f (x )在点()1,(1)f 处的切线方程为:y =﹣1; (2)①由g (x )=f (x )+a =ln x ﹣x +a ,x ∈(0,e ],1()1g x x'=-,令g ′(x )=0,解得:x =1, x ,g ′(x ),g (x )的变化如下:12g (1)=﹣1+a >0,即a >1,g (e )=1﹣e +a ≤0,即a ≤e ﹣1,令x =e ﹣a ,显然0<e ﹣a <1,有g (e ﹣a )=﹣e ﹣a <0,故a 的取值范围是(1,e ﹣1];②证明:不妨设x 1<x 2,由①可知x 1∈(0,1),x 2∈(0,e ), 故21(0,1)x ∈,要证x 1x 2<1,即证121x x <, 又121,(0,1)x x ∴∈,函数g (x )在(0,1)递增,即证()121g x g x ⎛⎫<⎪⎝⎭, ∵x 1,x 2∈(0,e )是函数g (x )的两个零点,故g (x 1)=g (x 2)=0,即证()221g x g x ⎛⎫< ⎪⎝⎭,只需证()2210g x g x ⎛⎫-< ⎪⎝⎭,()2222222221111ln ln 2ln g x g x x x x x x x x ⎛⎫⎛⎫-=---=-+ ⎪ ⎪⎝⎭⎝⎭,令()222212ln h x x x x =-+, 则()()222222221211x h x x x x -=-'=--, 当x 2∈(1,e ]时,h ′(x 2)<0,故h (x 2)在(1,e ]递减, h (x 2)<h (1)=0,故()2210g x g x ⎛⎫-< ⎪⎝⎭得证, 故121x x <. 【点睛】本题考查了导数的几何意义、根据零点求参数的范围的问题,关键点是构造函数利用函数的单调性求解,考查了学生分析问题、解决问题的能力.23.(1)()f x 在()0,1上单调递增,在()1+∞,上单调递减;(2)()f x 的最大值为0,最小值为2e -. 【分析】(1)求出()f x 的定义域和()21xf x x-'=,分别令()0f x '>,()0f x '<可得答案. (2)由(1)得()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,在[]1,e 上单调递减,求出()f x 极值和函数的端点值可得答案. 【详解】 (1)()11ln 1ln x x xf x x x ---==-,()f x 的定义域为()0,∞+. ∵()22111xf x x x x-'=-=,∴()001f x x '>⇒<<,()01f x x '<⇒>, ∴()11ln f x x x=--在()0,1上单调递增,在()1+∞,上单调递减.(2)由(1)得()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,在[]1,e 上单调递减, ∴()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最大值为()111ln101f =--=.又111ln 2f e e e e ⎛⎫=--=-⎪⎝⎭,()111ln f e e e e =--=-,且()1f f e e ⎛⎫< ⎪⎝⎭. ∴()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最小值为12f e e ⎛⎫=- ⎪⎝⎭.∴()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最大值为0,最小值为2e -.【点睛】把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了. 函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的,函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.24.(Ⅰ)1m ;(Ⅱ)答案见解析. 【分析】(Ⅰ)依题意,1122()()f x x f x x +<+,构造函数()()(1)k x f x x lnx mx x =+=->,则1()0(1)k x m x x'=->恒成立,由此即可求得m 的取值范围; (Ⅱ)表示出()h x ,求导,分类讨论即可得出其单调性情况. 【详解】(Ⅰ)依题意,121x x >>,1212()()1f x f x x x -<--,即1212()()()f x f x x x -<--,亦即1122()()f x x f x x +<+,令()()(1)k x f x x lnx mx x =+=->,由题意即知函数()y k x =在区间(1,)+∞上单调递减,则1()0(1)k x m x x'=->恒成立, ∴1m x在区间(1,)+∞上恒成立,故1m . (Ⅱ)2()(1)(0)2m h x lnx m x x m =-++>,1(1)(1)()(1)mx x h x m mx x x--'=-++=, 当0m =时,1()xh x x-'=, (0,1)x ∈,()0h x '>,()h x 递增,(1,)x ∈+∞,()0h x '<,()h x 递减,当0m <时,101m<<, (0,1)x ∈,()0h x '>,()h x 递增,(1,)x ∈+∞,()0h x '<,()h x 递减,当1m =时,()0h x ',()h x 的单调递增区间为(0,)+∞, 当1m 时,令()0h x '=,得1x =或1x m =;101m<<,当x 变化,()h x ',()h x 变化如下表即单调增区间为1(0,)m,(1,)+∞,减区间为(,1)m. 当01m <<时,令()0h x '=,得1x =或1x m =;11m>,当x 变化,()h x ',()h x 变化如下表即单调增区间为(0,1),1(,)m+∞,减区间为(1,)m. 综上:当0m 时,单调增区间为(0,1),减区间为(1,)+∞,当01m <<时,单调增区间为(0,1),1(,)m+∞,减区间为1(1,)m, 当1m =时,()h x 的单调递增区间为(0,)+∞, 当1m 时,单调增区间为1(0,)m,(1,)+∞,减区间为1(,1)m. 【点睛】本题主要考查利用导数研究函数的单调性,考查构造思想及分类讨论思想,考查运算求解能力,属于中档题.25.(I )2a =;(II )(4,3]--. 【解析】试题分析:(Ⅰ)求导数,把43x =代入导函数为零可得关于a 的方程,解之可得实数a的值,检验是否有极值即可;(Ⅱ)求()'f x ,利用导数研究函数的单调性,结合其变化规律可得函数的极值,数形结合可得答案. 试题 (I )由题意得,经检验满足条件(II )由(I )知令(舍去) 当x 变化时,的变化情况如下表:x-1(-1,0) 0 (0,1) 1- 0 +-1↘-4↗-3∵关于x 的方程上恰有两个不同的实数根∴实数m 的取值范围是26.(1)增区间是()1,+∞,递减区间是(),1-∞;(2)0k e <<. 【详解】试题分析:(1)借助题设条件运用导数与函数单调性之间的关系求解;(2)借助题设运用等价转化的思想及导数的知识求解. 试题(1)由k e =得()xf x e ex =-,所以()x f x e e '=-.由()'0fx >得1x >,故()f x 的单调递增区间是()1,+∞, 由()'0f x <得1x <,故()f x 的单调递减区间是(),1-∞.(2)由()()fx f x -=可知()f x 是偶函数.于是等价于()0f x >对任意0x ≥成立.由()0xf x e k ='-=得ln x k =.①当(]0,1k ∈时,()()100xf x e k k x =->-≥≥',此时()f x 在[)0,+∞上单调递增.故()()010f x f ≥=>,符合题意. ②当()1,k ∈+∞时,ln 0k >.当x 变化时()'fx ,()f x 的变化情况如下表:x()0ln k , ln k()ln k,+∞由此可得,在0,+∞上,ln ln f x f k k k k ≥=- 依题意,ln 0k k k ->,又1,1k k e >∴<<. 综合①②得,实数k 的取值范围是0k e <<. 也可以分离用最值研究.考点:导数与函数的单调性之间的关系及分析转化法等有关知识和方法的综合运用.。
(常考题)北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(含答案解析)
一、选择题1.已知函数()()2xf x ax e x =+-(其中2a >-),若函数()f x 为R 上的单调减函数,则实数a 的取值范围为( ) A .()2,1--B .(]2,0-C .(]1,0-D .(]2,1--2.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( )A .[1,)+∞B .(0,1]C .[2,)+∞D .(0,)+∞3.已知3()ln 44x f x x x=-+,2()24g x x ax =--+,若对1(0,2]x ∀∈,2[1,2]x ∃∈,使得12()()f x g x ≥成立,则a 的取值范围是( )A .1[,)8-+∞B .258ln 2[,)16-+∞ C .15[,]84-D .5(,]4-∞4.已知函数()ln f x x x =-,则()f x 的图象大致为( )A .B .C .D .5.已知函数()f x lnx =,若关于x 的方程()f x kx =恰有两个不相等的实数根, 则实数k 的取值范围是( ) A .1(0,)eB .(0,1]eC .1(2,)e eD .1(2,]ee6.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞7.函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .8.已知函数()f x 对定义域R 内的任意x 都有()()22f x f x +=-,且当2x ≠时其导函数()f x '满足()()2xf x f x ''>,若24a <<则( )A .()()()223log af f f a <<B .()()()23log 2af f a f <<C .()()()2log 32af a f f <<D .()()()2log 23af a f f <<9.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<10.函数y =x 3+x 的递增区间是( ) A .(0,+∞) B .(-∞,1) C .(-∞,+∞) D .(1,+∞) 11.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( ) A . B .C .D .二、填空题13.已知函数()2e 2=++xf x ax a ,若不等式()()1≥+f x ax x 对任意[]2,5x ∈恒成立,则实数a 的取值范围是____________. 14.若函数()21ln 2f x x b x ax =++在()1,2上存在两个极值点,则()39b a b ++的取值范围是_______. 15.321313y x x x =--+的极小值为______. 16.函数()ln xf x x=在(),1a a +上单调递增,则实数a 的取值范围为______. 17.已知函数2()x f x ae x =-有两个极值点,则实数a 的取值范围是_______. 18.已知函数()ln f x x x =.存在k Z ∈,使()2f x kx k >--在1x >时恒成立,则整数k 的最大值为________.19.已知()2sin cos f x x x x x =++,则不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>的解集为______.20.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为__________.三、解答题21.已知函数()()211ln ,022f x x a x a R a =--∈≠. (1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 的单调区间;(3)若对任意的[)1,x ∈+∞,都有()0f x ≥成立,求a 的取值范围.22.设函数()xf x e x =-.(1)求()f x 的单调区间; (2)证明:当0x ≥时,()2112f x x ≥+. 23.已知函数()()()3222110f x ax a x a =--+≠. (1)讨论()f x 的单调性;(2)当2a =时,若α∀、R β∈,()()sin sin f f m αβ-<,求m 的取值范围. 24.已知函数2(),()sin x f x ae x g x x bx =+=+,一条直线与()f x 相切于点(0,)a 且与()g x 相切于点,122b ππ⎛⎫+ ⎪⎝⎭. (1)求a ,b 的值;(2)证明:不等式()()f x g x >恒成立. 25.已知2()2ln f x x x =- (1)求()f x 的最小值; (2)若21()2f x tx x ≥-在(]0,1x ∈内恒成立,求t 的取值范围. 26.设函数2()(41)43x f x e ax a x a ⎡⎤=-+++⎣⎦.(1)0a >时,求()y f x =的单调增区间;(2)若()f x 在2x =处取得极小值,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】令()()(2)1x g x f x ax a e ='=++-,则()(2)x g x ax a e '=++.分0a =,0a >,20a -<<三类讨论,即可求得实数a 的取值范围即可. 【详解】解:令()()(2)1x g x f x ax a e ='=++-,则()(22)x g x ax a e '=++,(ⅰ)当0a =时,()20x g x e '=>,()g x 在R 递增,即()21x f x e '=-在R 递增, 令()0f x '=,解得:2x ln =-,故()f x 在(,2)ln -∞-递减,在(2,)ln -+∞递增,()f x 不单调,与题意不符; (ⅱ)当0a >时,由2()0(2)g x x a '>⇒>-+,2()0(2)g x x a '<⇒<-+,222()(2)10aming x g ae a--∴=--=--<,(0)10g a =+>,∴此时函数()f x '存在异号零点,与题意不符;(ⅲ)当20a -<<,由()0g x '>,可得2(2)x a <-+,由()0g x '<可得2(2)x a>-+,()g x ∴在2(,2)a -∞--上单调递增,在2(2a--,)+∞上单调递减,故222()(2)1a maxg x g ae a--=--=--,由题意知,2210aae ----恒成立,令22t a--=,则上述不等式等价于12t e t+,其中1t >, 易证,当0t >时,112tte t >+>+, 当(1t ∈-,0]时12te t+成立, 由2120a-<--,解得21a -<-. 综上,当21a -<-时,函数()f x 为R 上的单调函数,且单调递减; 故选:D . 【点睛】本题主要考查了利用导数研究函数的单调性,突出考查等价转化思想与分类讨论思想的应用,考查逻辑思维能力与推理证明能力,考查参数范围问题及求解函数的值域,属于函数与导数的综合应用.2.A解析:A 【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可. 【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,等价于()'211f x ax =-≥,1x 时恒成立, 0a时,()'0f x <,不合题意,0a >时,只需211ax -,即1ax在[1,)+∞恒成立, 故max 1()1a x=,故a 的范围是[1,)+∞, 故选:A 【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.3.A解析:A 【分析】先求()f x 最小值,再变量分离转化为对应函数最值问题,通过求最值得结果 【详解】 因为()(]3ln x 0,244x f x x x=-+∈,, 所以22113(1)(3)()01444x x f x x x x x ---'=--==⇒=,(3舍去) 从而01,()0;12,()0;x f x x f x ''<<<<<>即1x =时()f x 取最小值12, 因此[]x 1,2∃∈,使得21242x ax ≥--+成立,724x a x ≥-+的最小值,因为724x x -+在[]1,2上单调递减,所以724xx -+的最小值为271288-+=-,因此18a ≥-,选A.【点睛】本题考查不等式恒成立与存在性问题,考查综合分析与转化求解能力,属中档题.4.A解析:A 【解析】函数的定义域为0x ≠ ,当0()ln()x f x x x <⇒=-- ,为增函数,故排除B ,D ,当0()ln x f x x x >⇒=-,'111()x xf x x --==,当1,()0.01()0x f x x f x >'<<⇒'><故函数是先减后增;故选A .5.A解析:A 【分析】f (x )=kx 可变形为k lnxx=,关于x 的方程f (x )=kx 的实数根问题转化为直线y =k 与函数g (x )g (x )lnxx=的图象的交点个数问题,由导数运算可得函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数,又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=,画草图即可得解. 【详解】 设g (x )()f x lnx xx==, 又g ′(x )21lnxx -=, 当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0, 则函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数, 又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=, 即直线y =k 与函数g (x )的图象有两个交点时k 的取值范围为(0,1e), 故选A .【点睛】本题考查了导数的运算及方程与函数的互化及极限思想,属于中档题.6.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.7.B解析:B 【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x--≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.8.C解析:C 【分析】由()f x =(4)f x -得到函数的对称性,(2)()0x f x '->得到函数的单调性,结合关系即可得到结论. 【详解】由于函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -, 可知函数关于2x =对称,根据条件2x ≠时,有()2(),xf x f x ''>得(2)()0x f x '->,当2x >时()f x 递增,当2x <时()f x 单调递减, 因为24a <<所以4216a <<,21log 2a <<,因为2x =是对称轴,所以22log 3a <<, 所以22log 32aa <<<, 所以2(log )(3)(2)af a f f <<, 故选:C. 【点睛】本题主要考查函数值的大小比较,根据导数判断函数的单调性,再利用对称性、单调性比较大小.9.D解析:D 【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x -=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=, 而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.10.C解析:C 【解析】y ′=3x 2+1>0对于任何实数都恒成立.11.C解析:C 【解析】构造函数1ln ,0,10y x x x y x+='=>+> ,故函数ln y x x =+在0,上单调递增,即由“0a b >>” 可得到“ln ln a a b b +>+”,反之,由“ln ln a a b b +>+”亦可得到“0a b >>” 选C12.C解析:C 【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-, 当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<, 所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x ,即x →+∞时,()0f x >,则D 错误. 故选:C. 【点睛】本题考查了函数图象的识别,属于中档题.二、填空题13.【分析】原不等式可化为当时该不等式恒成立当时不等式可化为从而构造函数求导并判断单调性可求出令即可【详解】由题意不等式可化为当时恒成立;当时不等式可化为令则求导得所以在上单调递减在上单调递增所以则综上 解析:(3,e ⎤-∞⎦【分析】原不等式可化为()e 2xa x ≥-,当2x =时,该不等式恒成立,当(]2,5x ∈时,不等式可化为e 2x a x ≥-,从而构造函数()e 2xg x x =-,求导并判断单调性,可求出()min g x ,令()min g x a ≥即可.【详解】由题意,不等式()2e 21x ax a ax x ++≥+可化为()e 2xa x ≥-, 当2x =时,()e 2xa x ≥-恒成立;当(]2,5x ∈时,不等式可化为e 2xa x ≥-,令()e 2xg x x =-,(]2,5x ∈,则()min g x a ≥,求导得()()()2e 32x x g x x -'=-,所以()g x 在()2,3上单调递减,在[]3,5上单调递增,所以()()3min 3e g x g ==,则3e a ≤,综上所述,实数a 的取值范围是(3,e ⎤-∞⎦.故答案为:(3,e ⎤-∞⎦.【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为e 2xa x ≥-,通过构造函数()e 2xg x x =-,令()min g x a ≥,可求出a 的取值范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.14.【分析】先求导设把问题转化为在上存在两个零点设为且再利用韦达定理求解代入整理利用二次函数求取值范围即可【详解】因为所以设因为函数在上存在两个极值点所以在上存在两个零点所以在上存在两个零点设为且所以根解析:814,16⎛⎫⎪⎝⎭【分析】先求导,设()2g x x ax b =++,把问题转化为()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠,再利用韦达定理求解,代入()39b a b ++,整理利用二次函数求取值范围即可. 【详解】 因为()()21ln 02f x x b x ax x =++>, 所以()2b x ax bf x x a x x++'=++=,设()2g x x ax b =++,因为函数()f x 在()1,2上存在两个极值点, 所以()f x '在()1,2上存在两个零点,所以()g x 在()1,2上存在两个零点,设为12,x x 且12x x ≠, 所以根据韦达定理有:1212x x ax x b +=-⎧⎨⋅=⎩,故()23939b a b b ab b ++=++()()21212121239x x x x x x x x =⋅-⋅++⋅()()22112233x x x x =--,因为()11,2x ∈,所以221113993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭, 222223993,2244x x x ⎛⎫⎡⎫-=--∈-- ⎪⎪⎢⎝⎭⎣⎭,由于12x x ≠, 所以()()22112281334,16x x xx ⎛⎫--∈ ⎪⎝⎭.故答案为:814,16⎛⎫⎪⎝⎭. 【点睛】思路点睛:利用导数研究函数的极值问题.把函数在区间存在两个极值点的问题转化为导函数在区间内存在两个零点,利用韦达定理得到参数和系数的关系,最后利用二次函数求取值范围.15.【分析】求导根据导数正负得到函数单调区间得到函数的极小值为计算得到答案【详解】则当和时函数单调递增;当时函数单调递减故函数极小值为故答案为:【点睛】本题考查了利用导数求极值意在考查学生的计算能力和应 解析:8-【分析】求导,根据导数正负得到函数单调区间得到函数的极小值为()3f ,计算得到答案. 【详解】()321313y f x x x x ==--+,则()()()2'2331f x x x x x =--=-+, 当()3,x ∈+∞和(),1x ∈-∞-时,()'0f x >,函数单调递增; 当()1,3x ∈-时,()'0f x <,函数单调递减, 故函数极小值为()32313333183f ⨯--⨯+=-=. 故答案为:8-. 【点睛】本题考查了利用导数求极值,意在考查学生的计算能力和应用能力.16.【分析】先求出得到在上单调递增要使得在上单调递增则从而得到答案【详解】由函数有由得得所以在上单调递增在上单调递减又函数在上单调递增则则解得:故答案为:【点睛】本题考查函数在某区间上的单调性求参数的范解析:[]0,1e -【分析】 先求出()21ln xf x x-'=,得到()f x 在()0e ,上单调递增,要使得在(),1a a +上单调递增,则()(),10a a e +⊆,,从而得到答案. 【详解】 由函数()ln xf x x =有()()2ln 1ln 0x x f x x x x-'==> 由()0f x '>得0x e <<,()0f x '<得x e >.所以()f x 在()0e ,上单调递增,在(),e +∞上单调递减, 又函数()ln xf x x=在(),1a a +上单调递增,则()(),10a a e +⊆, 则01a a e≥⎧⎨+≤⎩ ,解得:01a e ≤≤-. 故答案为:[]0,1e - 【点睛】本题考查函数在某区间上的单调性,求参数的范围,属于基础题.17.【分析】求出函数的导数问题转化为和在上有2个交点根据函数的单调性求出的范围从而求出的范围即可【详解】若函数有两个极值点则和在上有2个交点时即递增时递减故(1)而恒成立所以故答案为:【点睛】本题考查了解析:2(0,)e. 【分析】求出函数的导数,问题转化为y a =和2()xxg x e =在R 上有2个交点,根据函数的单调性求出()g x 的范围,从而求出a 的范围即可. 【详解】()2x f x ae x '=-,若函数2()x f x ae x =-有两个极值点, 则y a =和2()x xg x e=在R 上有2个交点, 22()xxg x e -'=, (,1)x ∈-∞时,即()0g x '>,()g x 递增,(1,)x ∈+∞时,()0g x '<,()g x 递减,故()max g x g =(1)2e=, 而20x xe >恒成立,所以20a e<<, 故答案为:2(0,)e. 【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.18.2【分析】由即则将问题转化为在上恒成立令利用导函数求出最小值即可【详解】解:因为由即对任意的恒成立得()令()则令得画出函数的图象如图示:与在有唯一的交点∴存在唯一的零点又∴零点属于∴在递减在递增而解析:2 【分析】由()2f x kx k >--,即ln 2x x kx k >--,则将问题转化为ln 21x x k x +<-在1x >上恒成立,令ln 2()1x x h x x +=-,利用导函数求出最小值即可. 【详解】解:因为()ln f x x x =,由()2f x kx k >--即()()12k x f x --<对任意的1x >恒成立, 得ln 21x x k x +<-(1x >), 令ln 2()1x x h x x +=-(1x >),则2ln 3()(1)x x h x x '--=-, 令()ln 30g x x x =--=,得3ln x x -=, 画出函数3y x =-,ln y x =的图象,如图示:∴3y x =-与ln y x =在1x >有唯一的交点,∴()g x 存在唯一的零点,又()41ln40g =-<,()52ln50g =->,∴零点0x 属于()4,5,∴()h x 在()01,x 递减,在()0,x +∞递增, 而4ln 442(4)33h +<=<,115ln 55(5)344h +<=<, ∴()023h x <<,k Z ∈, ∴k 的最大值是2. 故答案为:2 【点睛】本题考查不等式的恒成立问题,考查利用导函数求最值,考查零点存在性定理的应用,考查数形结合思想.19.【分析】先判断函数为偶函数再利用导数判断函数在递增从而将不等式转化为进一步可得不等式解对数不等式即可得答案【详解】的定义域为且即有即为偶函数;又时则在递增不等式即为即有可得即有即或解得或则解集为故答解析:()10,100,100⎛⎫+∞ ⎪⎝⎭【分析】先判断函数为偶函数,再利用导数判断函数在0x >递增,从而将不等式转化为()()lg 2f x f >,进一步可得不等式lg 2x >,解对数不等式即可得答案.【详解】()2sin cos f x x x x x =++的定义域为R ,且()()()()()22sin cos sin cos f x x x x x x x x x -=--+-+-=++,即有()()f x f x -=,即()f x 为偶函数;又0x >时,()()sin cos sin 22cos 0f x x x x x x x x '=+-+=+>, 则()f x 在0x >递增,不等式()()1lg lg 22f x f x f ⎛⎫+ ⎪⎝⎭>,即为()()()lg lg 22f x f x f +->,即有()()lg 2f x f >, 可得()()lg 2fx f >,即有lg 2x >, 即lg 2x >或lg 2x <-,解得100x >或10100x <<, 则解集为()10,100,100⎛⎫+∞ ⎪⎝⎭.故答案为:()10,100,100⎛⎫+∞ ⎪⎝⎭.【点睛】本题考查函数奇偶性、单调性的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意偶函数(||)()f x f x =这一性质的应用.20.【分析】把代入即恒成立构造利用导数研究最值即得解【详解】则恒成立等价于令因此在单调递增在单调递减故故答案为:【点睛】本题考查了导数在不等式的恒成立问题中的应用考查了学生转化与划归数学运算的能力属于中 解析:[)0,+∞【分析】把()ln f x x x =-,代入()10f x m -+≤,即ln 1m x x ≥-+恒成立,构造()ln 1g x x x =-+,利用导数研究最值,即得解.【详解】()ln f x x x =-,则()10f x m -+≤恒成立,等价于ln 1m x x ≥-+令11()ln 1(0),'()1(0)x g x x x x g x x x x-=-+>=-=> 因此()g x 在(0,1)单调递增,在(1)+∞,单调递减, 故max ()(1)00g x g m ==∴≥ 故答案为:[)0,+∞ 【点睛】本题考查了导数在不等式的恒成立问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.三、解答题21.(1)22y x =-+;(2)答案见解析;(3)()(],00,1-∞.【分析】(1)求出切点坐标和切线的斜率即得解; (2)先求导再对a 分类讨论即得函数的单调区间;(3)任意的[)1,x ∈+∞,()min 0f x ≥,再对a 分类讨论即得解. 【详解】(1)3a =时,()2113ln 22f x x x =--,()10f =()3f x x x'=-,()12f '=-∴()y f x =在点()()1,1f 处的切线方程为22y x =-+ 所以所求的切线方程为22y x =-+;(2)()()20a x af x x x x x-'=-=>①当0a <时,()20x af x x-'=>恒成立,函数()f x 的递增区间为()0,∞+②当0a >时,令()0f x '=,解得x =x =所以函数f x 的递增区间为+∞,递减区间为(当0a <时,()20x af x x-'=>恒成立,函数()f x 的递增区间为()0,∞+;当0a >时,函数()f x 的递增区间为)+∞,递减区间为(.(3)对任意的[)1,x ∈+∞,使()0f x ≥成立,只需任意的[)1,x ∈+∞,()min 0f x ≥ ①当0a <时,()f x 在[)1,+∞上是增函数, 所以只需()10f ≥, 而()111ln1022f a =--=, 所以0a <满足题意;②当01a <≤时,01<≤,()f x 在[)1,+∞上是增函数, 所以只需()10f ≥ 而()111ln1022f a =--=, 所以01a <≤满足题意;③当1a >1>,()f x 在⎡⎣上是减函数,)+∞上是增函数,所以只需0f ≥即可,而()10ff <=,从而1a >不满足题意;综合①②③实数a 的取值范围为()(],00,1-∞.【点睛】方法点睛:用导数求函数的单调区间的步骤:求函数的定义域D →求导'()f x →解不等式'()f x >()<0得解集P →求D P ⋂,得函数的单调递增(减)区间.求函数的单调区间是函数的必备基本功,要熟练掌握灵活运用.22.(1)函数()f x 的增区间为()0,∞+,减区间为(),0-∞;(2)证明见解析. 【分析】(1)求出()f x ',解不等式()0f x '>、()0f x '<可得出函数()f x 的单调递增区间和递减区间;(2)构造函数()()2112g x f x x =--,利用导数证得()()00g x g ≥=,即可证得所证不等式成立. 【详解】(1)函数()xf x e x =-的定义域为R ,且()1xf x e '=-.令()0f x '>,可得0x >;令()0f x '<,可得0x <.因此,函数()f x 的单调递增区间为()0,∞+,单调递减区间为(),0-∞; (2)构造函数()()22111122x g x f x x e x x =--=---,则()1x g x e x '=--, 当0x ≥时, ()10xg x e ''=-≥,所以,函数()g x '在区间[)0,+∞上为增函数, 当0x ≥时,()()00g x g ''≥=,所以,函数()g x 在区间[)0,+∞上为增函数, 当0x ≥时,()()()211002f x x g x g --=≥=,()2112f x x ∴≥+. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.23.(1)答案见解析;(2)()8,+∞. 【分析】(1)求得()2163a f x ax x a -⎛⎫'=-⎪⎝⎭,分0a <、102a <<、12a =、12a >四种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间;(2)由题意可知,当[]1,1x ∈-时,()()max min m f x f x >-,由(1)中的结论求得()f x 在区间[]1,1-上的最大值和最小值,即可求得实数m 的取值范围. 【详解】(1)()()221622163a f x ax a x ax x a -⎛⎫'=--=-⎪⎝⎭. ①当0a <时,2103a a ->,由()0f x '>,得2103a x a -<<,则()f x 在210,3a a -⎛⎫⎪⎝⎭上单调递增;由()0f x '<,得0x <或213a x a ->,则()f x 在(),0-∞,21,3a a -⎛⎫+∞⎪⎝⎭上单调递减; ②当102a <<时,2103a a-<, 由()0f x '<,可得2103a x a -<<;由()0f x '>,可得213a x a-<或0x >. ()f x 在21,03a a -⎛⎫ ⎪⎝⎭上单调递减,在21,3a a -⎛⎫-∞ ⎪⎝⎭,()0,∞+上单调递增;③当12a =时,()230f x x '=≥,()f x 在R 上单调递增;④当12a >时,2103a a ->, 由()0f x '<可得2103a x a -<<;由()0f x '>可得0x <或213a x a ->. ()f x 在210,3a a -⎛⎫ ⎪⎝⎭上单调递减,在(),0-∞,21,3a a -⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述,当0a <时,函数()f x 的单调递增区间为210,3a a -⎛⎫⎪⎝⎭,单调递减区间为(),0-∞,21,3a a -⎛⎫+∞⎪⎝⎭; 当102a <<时,函数()f x 的单调递减区间为21,03a a -⎛⎫⎪⎝⎭,单调递增区间为21,3a a -⎛⎫-∞ ⎪⎝⎭,()0,∞+;当12a =时,函数()f x 在R 上单调递增; 当12a >时,函数()f x 的单调递减区间为210,3a a -⎛⎫ ⎪⎝⎭,单调递增区间为(),0-∞,21,3a a -⎛⎫+∞ ⎪⎝⎭; (2)因为[]sin 1,1x ∈-,所以α∀、R β∈,()()sin sin f f m αβ-<等价于()f x 在[]1,1-上的最大值与最小值的差小于m ,即()()max min m f x f x >-.当2a =时,()32431f x x x =-+,由(1)知,()f x 在[)1,0-,1,12⎛⎤ ⎥⎝⎦上单调递增,在10,2⎛⎫⎪⎝⎭上单调递减. 因为()16f -=-,()01f =,1324f ⎛⎫=⎪⎝⎭,()12f =,所以()min 6f x =-,()max 2f x =,所以()268m >--=,即m 的取值范围为()8,+∞. 【点睛】本题考查利用导数求解含参函数的单调区间,同时也考查了利用导数求解函数不等式问题,解本题的关键在于利用下面的结论:1x ∀、2x D ∈,()()()()12max min f x f x m m f x f x -<⇔>-.24.(1)1,1a b ==;(2)证明见解析. 【分析】(1)利用导数的几何意义求出两条切线方程,根据两条切线重合可得结果;(2)转化为证明2sin x e x x x +->,不等式左边构造函数,利用导数求出其在0x =时取得最小值,又因为函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值,且函数()h x 的最小值与函数sin y x =的最大值不会同时取到,所以所证不等式成立. 【详解】(1)由题知()2,()cos x f x ae x g x x b =+'=+',∴(0),2f a g b π⎛⎫'⎝'==⎪⎭, ∴()y f x =在点(0,)a 处的切线方程为:y ax a =+,()y g x =在点,122b ππ⎛⎫+ ⎪⎝⎭处的切线方程为:122y b x b ππ⎛⎫=-++ ⎪⎝⎭,即1y bx =+, ∵两条切线重合. ∴1,1a b ==.(2)证明:由(1)知要证不等式()()f x g x >恒成立,即证2sin x e x x x +>+恒成立,即证2sin x e x x x +->恒成立,令2()x h x e x x =+-,则()21x h x e x '=+-.易知()21x h x e x '=+-为增函数,且(0)0h '=.当(,0)x ∈-∞时,()(0)0h x h ''<=,函数()h x 在(,0)-∞上单调递减,当(0,)x ∈+∞时,()(0)0h x h ''>=,函数()h x 在(0,)+∞上单调递增.∴min ()(0)1h x h ==.又函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值.∵函数()h x 的最小值与函数sin y x =的最大值不会同时取到.∴不等式()()f x g x >恒成立.【点睛】本题考查了导数的几何意义,考查了利用导数证明不等式,属于中档题.25.(1)1 ;(2)(],1-∞.【分析】(1)先求函数的导函数,求出函数的极值,并将它与函数的端点值进行比较即可. (2)要求若21()2f x tx x ≥-在(]0,1x ∈内恒成立,即转化为312ln 2x t x x x≤+-在(]0,1x ∈内恒成立,只需求312ln ()x h x x x x =+-(]0,1x ∈内的最小值即可. 【详解】(1)函数的定义域为()0,∞+ 设()()2112()2x x f x x x x+-'=-=, 由()0f x '>得:1x >,由()0f x '<得:01x <<, 所以()f x 在()0,1单调递减,在()1,+∞单调递增,min ()(1)1f x f ==,(2)若21()2f x tx x ≥-在(]0,1x ∈内恒成立, 可得312ln 2x t x x x≤+-在(]0,1x ∈内恒成立, 令312ln ()x h x x x x =+-,4224232ln ()x x x x h x x --+'=, 因为(]0,1x ∈,所以430x -<,220x -<,22ln 0x x <,40x >,所以()0h x '<,可得()h x 在()0,1上单调递减,所以当1x =时,312ln ()x h x x x x=+-有最小值2, 得22t ≤,所以1t ≤,故t 的取值范围是(],1-∞,【点睛】 本题主要考查了利用导数求闭区间上函数的最值,以及求函数恒成立问题,属于基础题. 26.(1)分类讨论,答案见解析;(2)1,2⎛⎫+∞⎪⎝⎭. 【分析】(1)对函数求导得()(1)(2)x f x ax x e '=--,然后分12a >,102a << 和12a =三种情况令导函数大于零,可求得()y f x =的单调增区间;(2)对函数求导,讨论0a =,12a >,102a <≤,0a <,由极小值的定义,即可得到所求a 的取值范围【详解】解:(1)因为()2()e 4143x f x ax a x a ⎡⎤=-+++⎣⎦,所以2()(21)2(1)(2)x x f x ax a x e ax x e '⎡⎤=-++=--⎣⎦, 当12a >时,令()0f x '>,得:1x a <或2x >, 当102a <<时,令()0f x '>,得:2x <或1x a >, 当12a =时,0f x 恒成立 . 综上,当12a >时,单调递增区间是()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭ 当102a <<时,单调递增区间是()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭ 当12a =时,()f x 在R 上单调递增 (2)2()(21)2(1)(2)x x f x ax a x e ax x e '⎡⎤=-++=--⎣⎦,由(1)得,若12a >,()f x 在2x =处取得极小值; 102a <≤,所以2不是()f x 的极小值点. 0a =时,()(1)(2)e 0,2x f x x x '=--><,()(1)(2)0,2x f x x e x '=--<>,2是()f x 的极大值点,0a <时,()0f x '>,得:12x a <<,令()0f x '<,得:1x a <或2x > 2是()f x 的极大值点,综上可知,a 的取值范围是1,2⎛⎫+∞⎪⎝⎭. 【点睛】此题考查导数的应用,考查利用导数求单调区间和极值,考查分类讨论的数学思想,属于中档题。
北师大版高中数学高中数学选修2-2第三章《导数应用》测试卷(包含答案解析)(2)
一、选择题1.已知函数()2ln f x x ax x =-+有两个不同的零点,则实数a 的取值范围是( )A .0,1B .(),1-∞C .0,D .11,e ⎛⎫⎪⎝⎭2.已知函数()ln f x x x =-,则()f x 的图象大致为( )A .B .C .D .3.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( ) A .1(,1)2 B .1(2,2) C .(1,2)- D .(1,3)-4.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( )A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞5.函数()2e e x x f x x--=的图像大致为 ( ) A . B .C .D .6.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在()f x 图象上;(2)点A ,B 关于原点对称,则称点对()A B ,是函数()f x 的一个“和谐点对”,()A B ,与()B A ,可看作一个“和谐点对”.已知函数22(0)()2(0)x x x x f x x e⎧+<⎪=⎨≥⎪⎩则()f x 的“和谐点对”有( )A .1个B .2个C .3个D .4个7.函数()ln sin f x x x =+(x ππ-≤≤且0x ≠)的大致图像是( )A .B .C .D . 8.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-a x 在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( )A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤ 9.函数()21x y x e =-的图象大致是( )A .B .C .D .10.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2e B .e C .1 D .1211.已知函数(),2021,0x e x f x x x x ⎧>=⎨-++≤⎩,若函数()()g x f x kx =-恰好有两个零点,则实数k 等于(e 为自然对数的底数)( )A .1B .2C .eD .2e12.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<二、填空题13.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________14.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.15.关于x 的不等式2ln 0x x kx x -+≥恒成立,实数k 的取值范围是__________. 16.已知函数()f x 是定义在(0,)+∞上的单调函数,()f x '是()f x 的导函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,若函数()()2()3F x xf x f x '=--的一个零点0(,1)x m m ∈+,则整数m 的值是__________.17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.已知函数21()ln 2f x x a x =+,若对任意两个不等的正实数1x ,2x 都有()()12122f x f x x x ->-恒成立,则实数a 的取值范围是____ 19.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件;②函数()3113f x x x =++有两个零点; ③集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 即与定圆()2224x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是()280y x x =≠⑤若对任意的正数x ,不等式x e x a ≥+ 恒成立,则实数的取值范围是1a ≤ 其中正确的命题序号是_____.20.设函数()2()1x f x x e =-,当0x ≥时,()1(0)f x ax a ≤+>恒成立,则a 的取值范围是________.三、解答题21.已知函数2(),()sin x f x ae x g x x bx =+=+,一条直线与()f x 相切于点(0,)a 且与()g x 相切于点,122b ππ⎛⎫+ ⎪⎝⎭. (1)求a ,b 的值;(2)证明:不等式()()f x g x >恒成立.22.已知函数()321f x x bx cx =++-的图象在()()1,1f 处的切线经过点()2,4,且()f x 的一个极值点为-1.(1)求()f x 的极值;(2)已知方程()0f x m -=在[]22-,上恰有一个实数根,求m 的取值范围. 23.已知函数()x f x e =,()215122g x x x =--(e 为自然对数的底数). (1)记()()ln F x x g x =+,求函数()F x 在区间[]1,3上的最大值与最小值;(2)若k ∈Z ,且()()0f x g x k +-≥对任意x ∈R 恒成立,求k 的最大值.24.已知函数()ln ()a f x x a R x=+∈. (1)讨论函数()f x 的单调性;(2)当0a >时,若函数()f x 在[1,]e 上的最小值是2,求a 的值.25.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}.(1)求函数f (x )的解析式;(2)求函数g (x )=()f x x-4ln x 的零点个数. 26.已知函数()(2)()x f x x e alnx ax a R =-+-∈.(1)若1x =为()f x 的极大值点,求a 的取值范围;(2)当0a 时,判断()y f x =与x 轴交点个数,并给出证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解.【详解】 由题意得2ln x x a x+=有两个零点 2431(1)(ln (2)12ln x x x x x x x a x x +-+-='-=) 令()12ln (0)g x x x x =--> ,则2()10g x x'=--<且(1)0g = 所以(0,1),()0,0x g x a ∈>'>,2ln x x a x+=在(0,1)上为增函数, 可得),(1a ∈-∞, 当(1,),()0,0x g x a ∈+∞<<',2ln x x a x +=在(1,)+∞上单调递减,可得(0,1)∈a , 即要2ln x x a x +=有两个零点有两个零点,实数a 的取值范围是()0,1. 故选:A【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 2.A解析:A【解析】函数的定义域为0x ≠ ,当0()ln()x f x x x <⇒=-- ,为增函数,故排除B ,D ,当0()ln x f x x x >⇒=-,'111()x xf x x --==,当1,()0.01()0x f x x f x >'<<⇒'><故函数是先减后增;故选A .3.C解析:C【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围.【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--,所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=, 整理可得ln 2ln 31x x x x x x -=-+,解得1x =,所以ln122AC k k =-=-=-;(2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=,故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点;在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-.故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.4.D解析:D【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln x a x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解.【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=,()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x ∴=-()1x >, 不等式()f x ax ≤对任意()1,x ∈+∞恒成立, ∴2ln x ax x-≤对任意()1,x ∈+∞恒成立, 即ln x a x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′, 令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln e g x g e e e==-=-, a e ∴≥-, ∴实数a 的取值范围是[),e -+∞.故选:D.【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥.5.B解析:B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>, 所以舍去C ;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.6.B解析:B【分析】问题转化为0,()x f x ≥关于原点对称的函数与2()2f x x x =+在(,0)-∞交点的个数,先求出0,()x f x ≥关于原点对称的函数()g x ,利用导数方法求出2()2g x x x =+在(,0)-∞解的个数,即可得出结论.【详解】设(,)(0)P x y x ≤是()(0)y f x x =≥关于原点对称函数图象上的点,则点P 关于原点的对称点为()P x y '--,在()(0)y f x x =≥上, 2,2x x y y e e--==-,设()2(0)x g x e x =-≤, “和谐点对”的个数即为()g x 与()f x 在(,0)-∞交点的个数,于是222x e x x -=+,化为2220(0)x e x x x ++=<,令2()22(0)x x e x x x ϕ=++<,下面证明方程()0x ϕ=有两解,由于20x e >,所以220x x +<,解得20x -<<,∴只要考虑(20)x ∈-,即可, ()222x x e x ϕ'=++,()x ϕ'在区间(20)-,上单调递增, 而2(2)2420e ϕ-'-=-+<,1(1)20e ϕ-'-=>,∴存在0(2,1)x ∈--使得0()0x ϕ'=,当0(2,),()0,()x x x x ϕϕ∈-'<单调递减,0(,0),()0,()x x x x ϕϕ∈'>单调递增,而2(2)20e ϕ--=>,10()(1)210x e ϕϕ-<-=-<,(0)20ϕ=>, ∴函数()ϕx 在区间(21)--,,(1,0)-分别各有一个零点, 即()f x 的“和谐点对”有2个.故选:B .【点睛】本题考查函数的新定义,等价转化为函数图象的交点,利用函数导数研究单调性,结合零点存在性定理是解题的关键,考查逻辑思维能力和运算求解能力,属于常考题. 7.D解析:D【分析】利用函数的奇偶性排除选项,能过导数求解函数极值点的个数,求出()f π的值,从而可判断选项【详解】 解:因为()ln sin()ln sin ()f x x x x x f x -=-+-=+=,所以()f x 为偶函数,故排除B当0πx <≤时,()ln sin f x x x =+,则'1()cos f x x x=+, 令'()0f x =,则1cos x x =-, 作出1,cos y y x x==-的图像如图,可知两个函数图像有一个交点,就是函数的极值点,所以排除A因为()ln 1f ππ=>,所以排除C ,当0x x =时,'0()0f x =,故0(0,)x x ∈时,函数()f x 单调递增,当0(,)x x π∈时,函数()f x 单调递减,所以D 满足.故选:D【点睛】此题考查了与三角函数有关的函数图像识别,利用了导数判断函数的单调性,考查数形结合的思想,属于中档题8.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2a g x x x =+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果.【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减, 所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立, 得23,3x a a -≤∴≥-,又因为()2a g x x x =-在区间(]1,2上既有最大值,又有最小值,所以,可知()2'2a g x x x =+在(]1,2上有零点, 也就是极值点,即有解220a x x +=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C.【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围.9.A解析:A【分析】 根据函数图象,当12x <时,()210x y x e =-<排除CD ,再求导研究函数单调性得()21x y x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,排除B 得答案. 【详解】 解:因为12x <时,()210x y x e =-<,所以C ,D 错误; 因为()'21x y x e =+, 所以当12x <-时,'0y <, 所以()21x y x e =-在区间1,2⎛⎫-∞-⎪⎝⎭上单调递减, 所以A 正确,B 错误.故选:A.【点睛】 本小题主要考查函数的性质对函数图象的影响,并通过对函数的性质来判断函数的图象等问题.已知函数的解析式求函数的图像,常见的方法是,通过解析式得到函数的值域和定义域,进行排除,由解析式得到函数的奇偶性和轴对称性,或者中心对称性,进行排除,还可以代入特殊点,或者取极限.10.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x +=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.11.C解析:C【分析】求得y kx =与x y e =的图象相切时的k 值,结合图象可得结论.【详解】()()0g x f x kx =-=,()f x kx =,作出()f x 的图象,及直线y kx =,如图,∵0x ≤时,221y x x =-++是增函数,0x =时,1y =,无论k 为何值,直线y kx =与()(0)y f x x =≤都有一个交点且只有一个交点,而()g x 有两个零点,∴直线y kx =与()(0)x f x e x =>只能有一个公共点即相切.设切点为00(,)x y ,()x f x e '=,00()x f x e '=,切线方程为000()-=-x x y e e x x ,切线过原点,∴000x x e e x -=-⋅,01x =,∴(1)k f e '==,故选:C .【点睛】方法点睛:本题考查函数零点个数问题,解题方法是把零点转化为直线与函数图象交点个数,再转化为求直线与函数图象相切问题.12.D解析:D【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2a x =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2a x =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <, 综上:a 的取值范围为28a <<故选:D【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.二、填空题13.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调 解析:1,e ⎛⎤-∞ ⎥⎝⎦ 【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln x k x =有解,构造函数()ln x f x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点, ∴等价于方程ln kx x =在0x >时有解, 即ln x k x=有解, 设()ln x f x x=, 则()21ln x f x x -'=, 由()0f x '>,解得0x e <<,此时函数单调递增,由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e ==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e ⎛⎤-∞ ⎥⎝⎦. 故答案为:1,e ⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.14.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确.故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.15.【分析】根据不等式恒成立分离参数并构造函数求得导函数结合导数性质可判断的单调区间与最小值即可求得的取值范围【详解】在恒成立即恒成立即令则当即解得当即解得所以在上为减函数在上增函数所以所以故答案为:【 解析:1,1e ⎛⎤-∞- ⎥⎝⎦ 【分析】根据不等式恒成立,分离参数并构造函数()ln 1g x x x =+,求得导函数()g x ',结合导数性质可判断()g x 的单调区间与最小值,即可求得k 的取值范围.【详解】2ln 0x x kx x -+≥在()0,∞+恒成立,即ln 10x x k -+≥恒成立,即ln 1k x x ≤+, 令()ln 1g x x x =+,则()ln 1g x x '=+,当()0g x '≥,即ln 10x +≥,解得1x e≥, 当()0g x '<,即ln 10x +<,解得10x e <<所以()g x 在10,e ⎛⎫ ⎪⎝⎭上为减函数,在1,e ⎡⎫+∞⎪⎢⎣⎭上增函数, 所以()min 1111ln 11g x g e e e e ⎛⎫==+=- ⎪⎝⎭, 所以11k e≤- 故答案为:1,1e ⎛⎤-∞- ⎥⎝⎦. 【点睛】本题考查了分离参数与构造函数法的应用,由导函数求函数的最值及参数的取值范围,属于中档题.16.2【分析】先通过已知求出得到再利用导数研究得到函数在内没有零点函数的零点在内即得的值【详解】因为函数是定义在上的单调函数且对任意的都有所以是一个定值设所以所以或(舍去)所以所以所以所以函数在是增函数 解析:2【分析】先通过已知求出2()=+1,f x x 得到3()33F x x x =--,再利用导数研究得到函数()F x 在(0,1)内没有零点,函数()F x 的零点在(2,3)内,即得m 的值.【详解】因为函数()f x 是定义在(0,)+∞上的单调函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,所以2()f x x -是一个定值,设2()f x x t -=,所以2()=+f x x t ,()2f t =所以2()=+2,1f t t t t =∴=或2t =-(舍去).所以2()=+1,()2f x x f x x '=,所以23()(1)22333F x x x x x x =+-⨯-=--,所以2()33=3(1)(1)F x x x x '=-+-,所以函数()F x 在(1,)+∞是增函数,在(0,1)是减函数,因为(0)30,(1)50F F =-<=-<,所以函数()F x 在(0,1)内没有零点.因为(2)86310,(3)2712150F F =--=-<=-=>,函数()F x 在(1,)+∞是增函数, 所以函数()F x 的零点在(2,3)内,所以2m =.故答案为:2【点睛】本题主要考查函数的单调性的应用,考查利用导数求函数的单调区间,考查利用导数研究零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】 32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x xg -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增; 又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <, ∴2a ≥.故答案为:2a ≥.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】由条件不妨设恒成立即为恒成立构造函数只需在上为增函数即可即求恒成立时的取值范围【详解】依题意不妨设恒成立恒成立设即在上为增函数恒成立只需的取值范围是故答案为:【点睛】本题考查函数的单调性求参 解析:[1,)+∞【分析】由条件不妨设12x x >,()()12122f x f x x x ->-恒成立,即为()()112222f x x f x x ->-恒成立,构造函数()()2g x f x x =-,只需()g x 在(0,)+∞上为增函数即可,即求()0g x '≥恒成立时a 的取值范围.【详解】依题意,不妨设12x x >,()()12122f x f x x x ->-恒成立, ()()112222f x x f x x ->-恒成立,设()()2g x f x x =-即12()(),()g x g x g x >在(0,)+∞上为增函数,2()2,()1220ln a g x x g x x x a x x'=-+-+=≥, 22,(0,)a x x x ≥-+∈+∞恒成立, 只需2max (2)1,(0,)a x x x ≥-+=∈+∞,a ∴的取值范围是[1,)+∞.故答案为:[1,)+∞.【点睛】本题考查函数的单调性求参数范围,构造函数把问题等价转化为函数的单调性是解题的关键,属于中档题.19.①③⑤【分析】①通过导数研究函数的单调性可得结论正确;②利用导数可知函数为增函数函数最多一个零点;③根据古典概型求得概率为;④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立可得的范围【详解】对解析:①③⑤【分析】①通过导数研究函数的单调性可得结论正确;②利用导数可知函数为增函数,函数最多一个零点;③根据古典概型求得概率为13; ④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立,可得a 的范围.【详解】对于①,当2a >时,()cos f x a x '=-0>恒成立,所以,()sin f x ax x =-为R 上的增函数;而当12a ≤≤时,()cos f x a x '=-0>也恒成立,()sin f x ax x =-在R 上也是增函数,所以“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件是正确的; 对于②,2()10f x x '=+>恒成立,所以()f x 在R 上为增函数,最多只有一个零点,故②是错误的;对于③,所有基本事件为:21,22,23,31,32,33++++++共6个, 其中和为4的有22,31++共2个,根据古典概型可得所求概率为2163=,故③正确;对于④,设(,)(0)C x y x ≠||x =2+,两边平方并化简得244||y x x =+,当0x >时,得28y x =,当0x <时,得0y =,所以所求轨迹方程是:28(0)y x x =>或0,0y x =<,故④不正确;对于⑤,依题意得x a e x ≤-对任意的正数x 恒成立,令()x f x e x =-,则()1x f x e =-',因为0x >,所以()0f x '>,所以()x f x e x =-在(0,)+∞上为增函数,所以()(0)1f x f >=,所以1a ≤,故⑤时正确的.故答案为:①③⑤【点睛】本题考查了;利用导数研究函数的单调性,考查了利用导数处理不等式恒成立,考查了古典概型,考查了两圆外切,考查了求曲线的轨迹方程,属于中档题.20.【分析】求得在处的切线的斜率结合图像求得的取值范围【详解】函数对于一次函数令解得(负根舍去)所以在上递增在上递减画出的图像如下图所示由图可知要使当时恒成立只需大于或等于在处切线的斜率而所以故答案为: 解析:[1,)+∞【分析】求得()f x 在0x =处的切线的斜率,结合图像,求得a 的取值范围.【详解】函数()2()1x f x x e =-,()01f =.对于一次函数()()10g x ax a =+>,()01g =.()()'221,0x f x x x e x =--+⋅≥,令'0f x ,解得021x =-(负根舍去),所以()f x 在()00,x 上递增,在()0,x +∞上递减,画出()f x 的图像如下图所示.由图可知,要使当0x ≥时,()1(0)f x ax a ≤+>恒成立,只需a 大于或等于()f x 在0x =处切线的斜率.而()'01f =,所以1a ≥.故答案为:[1,)+∞【点睛】本小题主要考查利用导数求解不等式恒成立问题,考查数形结合的数学思想方法,属于中档题.三、解答题21.(1)1,1a b ==;(2)证明见解析.【分析】(1)利用导数的几何意义求出两条切线方程,根据两条切线重合可得结果;(2)转化为证明2sin x e x x x +->,不等式左边构造函数,利用导数求出其在0x =时取得最小值,又因为函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值,且函数()h x 的最小值与函数sin y x =的最大值不会同时取到,所以所证不等式成立. 【详解】(1)由题知()2,()cos x f x ae x g x x b =+'=+',∴(0),2f a g b π⎛⎫'⎝'==⎪⎭, ∴()y f x =在点(0,)a 处的切线方程为:y ax a =+,()y g x =在点,122b ππ⎛⎫+ ⎪⎝⎭处的切线方程为:122y b x b ππ⎛⎫=-++ ⎪⎝⎭,即1y bx =+, ∵两条切线重合. ∴1,1a b ==.(2)证明:由(1)知要证不等式()()f x g x >恒成立,即证2sin x e x x x +>+恒成立, 即证2sin x e x x x +->恒成立,令2()x h x e x x =+-,则()21x h x e x '=+-. 易知()21x h x e x '=+-为增函数,且(0)0h '=.当(,0)x ∈-∞时,()(0)0h x h ''<=,函数()h x 在(,0)-∞上单调递减, 当(0,)x ∈+∞时,()(0)0h x h ''>=,函数()h x 在(0,)+∞上单调递增. ∴min ()(0)1h x h ==.又函数sin y x =在R 上最大值为1,当且仅当2()2x k k ππ=+∈Z 取到最大值.∵函数()h x 的最小值与函数sin y x =的最大值不会同时取到. ∴不等式()()f x g x >恒成立. 【点睛】本题考查了导数的几何意义,考查了利用导数证明不等式,属于中档题. 22.(1)()0f x =极大值,()3227f x -=极小值.(2)(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭【分析】(1)首先求出函数的导函数,求出函数在()()1,1f 处的切线方程,由点()2,4过切线,即可得到321b c +=,再由函数的一个极值点为1-则()'1320f b c -=-+=,即可求出函数解析式,最后利用导数求出函数的极值;(2)依题意可得函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点,结合函数图象,即可得解; 【详解】解:(1)∵()2'32f x x bx c =++,∴()'132f b c =++,∴()f x 的图象在()()1,1f 处的切线方程为()()()321y b c b c x -+=++-. ∵该切线经过点()2,4,∴()()()43221b c b c -+=++-,即321b c +=①. 又∵()f x 的一个极值点为-1,∴()'1320f b c -=-+=②. 由①②可知1b =,1c =-,故()321f x x x x =+--.()2'321f x x x =+-,令()'0f x =,得1x =-或13x =.当x 变化时,()'f x ,()f x 的变化情况如下表:故()()10f x f =-=极大值,()327f x f ⎛⎫==-⎪⎝⎭极小值. (2)∵方程()0f x m -=在[]22-,上恰有一个实数根, ∴函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点. ∵()23f -=-,()29f =, 结合函数()f x 的图象,∴(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭.【点睛】本题考查利用导数研究函数的极值,函数与方程思想,数形结合思想的应用,属于中档题. 23.(1)()min 4ln 2F x =-+,()max 4ln3F x =-+;(2)1-. 【分析】(1)对函数()F x 求导,根据导数的方法研究其在[]1,3上的单调性,进而可得出最值; (2)先将不等式恒成立转化为215122xk e x x ≤+--对任意x ∈R 恒成立,令()215122x h x e x x =+--,根据导数的方法求出最值,即可得出结果. 【详解】(1)∵()()215ln ln 122F x x g x x x x =+=+--,∴()()()2122x x F x x--'=,令()0F x '=,则112x =,22x =, 当()1,2x ∈时,()()()21202x x F x x--'=<,则函数()F x 在区间()1,2上单调递减;当()2,3x ∈时,()()()21202x x F x x--'=>,则函数()F x 在区间()2,3上单调递增;∴()()min 24ln2F x F ==-+,又()()33ln 143F F =-<=-+,所以()max 4ln3F x =-+; (2)∵()()0f x g x k +->对任意x ∈R 恒成立,∴2151022x e x x k +---≥对任意x ∈R 恒成立, ∴215122xk e x x ≤+--对任意x ∈R 恒成立. 令()215122xh x e x x =+--,则()52x h x e x '=+-. 由于()10xh x e '=+>,所以()h x '在R 上单调递增.又()3002h =-<',()3102h e =->',121202h e ⎛⎫'=-< ⎪⎝⎭,3437044h e ⎛⎫'=-= ⎪⎝⎭,所以存在唯一的013,24x ⎛⎫∈⎪⎝⎭,使得()00h x '=, 且当()0,x x ∈-∞时,()0h x '<,()0,x x ∈+∞时,()0h x '>. 即()h x 在()0,x -∞单调递减,在()0,x +∞上单调递增. ∴()()02000min 15122xh x h x e x x ==+--. 又()00h x '=,即00502xe x +-=,∴0052x e x =-. ∴()()2200000051511732222h x x x x x x =-+--=-+. ∵013,24x ⎛⎫∈⎪⎝⎭,∴()0271,328h x ⎛⎫∈-- ⎪⎝⎭. 又∵215122xk e x x ≤+--对任意x ∈R 恒成立,∴()0k h x ≤, 又k ∈Z ,∴max 1k =-. 【点睛】本题主要考查用导数的方法求函数的最值,考查导数的方法研究等式恒成立问题,属于常考题型.24.(1)见解析;(2),a e =. 【分析】 (1)求得()2x af x x='-,分类讨论,即可求解函数的单调性;(2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,分1a e <<和a e ≥两种情况讨论,求得函数的最小值,即可求解. 【详解】(1)定义域为()0,+∞,求得()221a x a f x x x x='-=-, 当0a ≤时,()0f x '>,故()f x 在()0,+∞单调递增 ,当0a >时,令()0f x '=,得 x a =,所以当()0,x a ∈时,()0f x '<,()f x 单调递减 当(),x a ∈+∞时,()0f x '>,()f x 单调递增.(2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,所以 ()()min 12f x f a ===(舍去),当1a e <<时,由(1)知()f x 在[]1,a 单调递减,在[],a e 单调递增 所以()()min ln 12f x f a a ==+=,解得a e = (舍去), 当a e ≥时,由(1)知()f x 在[]1,e 单调递减, 所以()()min ln 12a af x f e e e e==+=+=,解得a e = , 综上所述,a e =. 【点睛】本题主要考查了导数在函数中的应用,其中解答中熟记函数的导数与函数的关系,准确判定函数的单调性,求得函数的最值是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.25.(1)f (x )=x 2-2x -3;(2)1个. 【分析】(1)根据一元二次不等式的解集,可设f (x )=a (x +1)(x -3),再结合f (x )的最小值为-4即可求出a 的值,得到函数f (x )的解析式;(2)对g (x )求导可以得到g (x )的单调区间,在每个单调区间上研究函数g (x )的零点情况即可. 【详解】(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R}, ∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)由(1)知g (x )=223x x x---4ln x =x -3x -4ln x -2,∴g (x )的定义域为(0,+∞),g ′(x )=1+23x -4x=2(1)(3)x x x --, 令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的取值变化情况如下表: x (0,1) 1 (1,3) 3 (3,+∞) g ′(x ) +-+g (x )极大值 极小值当x >3时,g (e 5)=e 5-53e-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增, 因而g (x )在(3,+∞)上只有1个零点, 故g (x )仅有1个零点. 【点睛】本题主要考查二次函数和导数在研究函数中的应用. 26.(1)a e >;(2)()f x 有唯一零点;证明见解析. 【分析】(1)先对函数求导,然后结合极值存在条件即可求解;(2)结合导数可判断函数的单调性,然后结合a 的范围及函数的性质可求. 【详解】解:(1)()(1)x e x af x x x-'=-,0x >,设()x g x xe a =-,()(1)0x g x x e '=+>,()g x 在R 递增, 故存在0x 使得0()0g x =,当a e =时,()(1)0x e x af x x x-'=-恒成立,故()f x 单调递增无极值,a e <时,易得0x x <时,()0f x '>,函数()f x 单调递增,01x x <<时,()0f x '<,函数单调递减,当1x >,()0f x '>,函数单调递增, 当1x =时,函数取得极小值,不满足题意;a e >时,易得1x <时,()0f x '>,函数()f x 单调递增,01x x <<,时,()0f x '<,函数单调递减,当0x x >,()0f x '>,函数单调递增,1x =为极大值点 综上:a e >,(2)由(1)知:①a e =时,()f x 在(0,)+∞单调递增,f (2)0<,f (3)0>,()f x 有唯一零点; ②a e <时,0x 满足()0g x =,01x <,()f x 在0(0,)x 递增,在0(x ,1)递减,在(1,)+∞递增,当(0,1)x ∈时,()0f x <恒成立,当(1,)x ∈+∞时,f (1)0<,2(2)(2)(2)0a f a ae aln a a a ++=++-+>,所以23a e a +>+,有唯一零点;③a e >,()f x 在(0,1)上单调递增,0(1,)x 单调递减,0(x ,)+∞单调递增, 0()f x f <(1)0<在0(0,)x 上无零点,在0(x ,)+∞上有唯一零点;综上:0a ,()f x 有唯一零点. 【点睛】本题主要考查了利用导数研究函数的极值及函数零点的研究,体现了分类讨论思想的应用,属于中档题.。
北师大版高中数学高中数学选修2-2第三章《导数应用》检测题(含答案解析)(2)
一、选择题1.已知函数x y a =(1a >)与log ay x =(1a >)的图象有且仅有两个公共点,则实数a 的取值范围是( )A .1e 1e a <<B .1e a <<C .1e e e a <<D .e a >2.已知函数2()1(0)f x ax x a =-+≠,若任意1x ,2[1x ∈,)+∞且12x x ≠都有1212()()1f x f x x x ->-,则实数a 的取值范围( )A .[1,)+∞B .(0,1]C .[2,)+∞D .(0,)+∞3.已知函数()f x lnx =,若关于x 的方程()f x kx =恰有两个不相等的实数根, 则实数k的取值范围是( ) A .1(0,)eB .(0,1]eC .1(2,)e eD .1(2,]ee4.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞5.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞- ⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞ ⎪⎝⎭6.已知定义在R 上的可导函数()f x 的导函数为'()f x ,满足()'()f x f x >,且(0)1f =,则不等式()x e f x >(e 为自然对数的底数)的解集为( )A .(1,)-+∞B .(0,)+∞C .(1,)+∞D .(,0)-∞7.若曲线21:(0)C y ax a =>与曲线2:xC y e =存在公共切线,则a 的取值范围为( )A .2[,)8e +∞B .2(0,]8eC .2[4e ,)+∞D .2(0,]4e8.下列函数中,在(0,+∞)上为增函数的是( ) A .y =sin 2xB .y =x 3-xC .y =x e xD .y =-x +ln(1+x )9.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .10.f (x )是定义在R 上的偶函数,当x <0时,f (x )+x •f '(x )<0,且f (﹣3)=0,则不等式f (x )>0的解集为( ) A .(﹣3,0)∪(3,+∞) B .(﹣3,0)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞)D .(﹣∞,﹣3)∪(0,3)11.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( )A .(21e -,0) B .(12e-,0) C .(0,12e ) D .(0,21e) 12.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <',且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( ) A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞二、填空题13.如图,有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD 的形状,它的下底AB 是圆O 的直径,上底C 、D 的端点在圆周上,则所裁剪出的等腰梯形面积最大值为_______________.14.已知||()cos x f x e x =+,则不等式(21)(1)f x f x -≥-的解集为__________. 15.已知关于x 的方程20--=x e x k 有2个不相等的实数根,则k 的取值范围是___________.16.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .17.有如下命题:①函数sin y x =与y x =的图象恰有三个交点;②函数sin y x =与y x =③函数sin y x =与2y x 的图象恰有两个交点;④函数sin y x =与3y x =的图象恰有三个交点,其中真命题为_____ 18.已知函数()1cos 2f x x x =+,0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的单调递增区间为______. 19.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________.20.已知定义在R 上的连续函数()y f x =对任意实数x 满足(4)()f x f x -=,(()2)0x f x -'>,则下列命题正确的有________.①若(2)(6)0f f <,则函数()y f x =有两个零点; ②函数(2)y f x =+为偶函数; ③(2)(sin12cos12)f f >︒+︒; ④若12x x <且124x x +>,则12()()f x f x <.三、解答题21.已知函数()()()3222110f x ax a x a =--+≠.(1)讨论()f x 的单调性;(2)当2a =时,若α∀、R β∈,()()sin sin f f m αβ-<,求m 的取值范围. 22.近年来,网上购物已经成为人们消费的一种习惯.假设某淘宝店的一种装饰品每月的销售量y (单位:千件)与销售价格x (单位:元/件)之间满足如下的关系式:24(6),26,,2ay x x a R a x =+-<<∈-为常数.已知销售价格为4元/件时,每月可售出21千件.(1)求实数a 的值;(2)假设该淘宝店员工工资、办公等所有的成本折合为每件2元(只考虑销售出的装饰品件数),试确定销售价格x 的值,使该店每月销售装饰品所获得的利润最大.(结果保留一位小数)23.已知函数()1ln (1)2f x x a x =--. (1)若2a =-,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若不等式()0f x <对任意(1,)x ∈+∞恒成立,求实数a 的取值范围. 24.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围. 25.已知函数(),xf x e kx x R =-∈.(1)若k e =,试确定函数()f x 的单调区间; (2)若0k >,且对于任意x ∈R ,()0fx >恒成立,试确定实数k 的取值范围.26.已知函数2()2ln f x x mx x =-+ (m R ∈).(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若45m <<,且()f x 有两个极值点12,x x ,其中12x x <,求12()()f x f x -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 将问题转化为()1xy a a =>的图象与y x =有两个公共点,即ln ln x a x=有两解,再构造新函数()ln xf x x=,根据()f x 的单调性和取值分析ln a 的取值即可得到结果. 【详解】因为函数()()1,log 1xa y aa y x a =>=>的图象关于直线y x =对称,所以两个图象的公共点在y x =上,所以()1xy a a =>的图象与y x =有两个公共点,即xx a =有两解,即ln ln x x a =有两解,即ln ln xa x=有两解, 令()ln x f x x =,所以()21ln xf x x -'=, 当()0,x e ∈时,()0f x '>,()f x 单调递增,当(),x e ∈+∞时,()0f x '<,()f x 单调递减,()f x 大致图象如下图所示:所以()10ln a f e e<<=,所以11e a e <<, 故选:A. 【点睛】结论点睛:函数图象的交点个数、方程根的数目、函数的零点个数之间的关系: 已知()()()h x f x g x =-,则有()h x 的零点个数⇔方程()()f x g x =根的数目⇔函数()f x 与函数()g x 的图象的交点个数. 2.A解析:A 【分析】求出函数的导数,通过讨论a 的范围,得到关于a 的不等式,解出即可. 【详解】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,等价于()'211f x ax =-≥,1x 时恒成立, 0a时,()'0f x <,不合题意,0a >时,只需211ax -,即1ax在[1,)+∞恒成立, 故max 1()1a x=,故a 的范围是[1,)+∞, 故选:A 【点睛】1212()()1f x f x x x ->-表示函数()f x 在区间[)1,+∞上任意两个不同点连线的斜率都大于1,由此考虑利用导数进行求解.3.A解析:A 【分析】f (x )=kx 可变形为k lnxx=,关于x 的方程f (x )=kx 的实数根问题转化为直线y =k 与函数g (x )g (x )lnxx=的图象的交点个数问题,由导数运算可得函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数,又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=,画草图即可得解. 【详解】 设g (x )()f x lnx xx==, 又g ′(x )21lnxx -=, 当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0, 则函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数, 又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=, 即直线y =k 与函数g (x )的图象有两个交点时k 的取值范围为(0,1e), 故选A .【点睛】本题考查了导数的运算及方程与函数的互化及极限思想,属于中档题.4.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.5.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+,0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.6.B解析:B 【解析】 令()()()()()0,(0)1x xf x f x f xg x g x g e e -=∴=<'='所以()xe f x >()1(0)0g x g x ⇒=⇒ ,选B.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等7.C解析:C 【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为求最值,求得a 的范围. 【详解】 由2(0)y axa =>,得2y ax '=,由x y e =,得x y e '=,曲线21:(0)C y ax a =>与曲线2:xC y e =存在公共切线, 则设公切线与曲线1C 切于点211(,)x ax ,与曲线2C 切于点22(,)xx e ,则22211212x x e ax ax e x x -==-,将212x e ax =代入2211212x e ax ax x x -=-,可得2122=+x x ,11212+∴=x e a x ,记12()2+=x e f x x,则122(2)()4xex f x x +-'=,当(0,2)x ∈时,()0f x '<,当(2,)x ∈+∞时,()0f x '>. ∴当2x =时,2()4mine f x =. a ∴的范围是2[,)4e +∞. 故选:C 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,意在考查学生对这些知识的理解掌握水平.8.C解析:C 【解析】A 在R 上是周期函数,2sin cos y x x =' ,导函数在(0,+∞)上有正有负,故原函数有增有减;.B 231,y x -'= 在(0,+∞),有正有负,所以原函数不是增函数,C x x y xe e '=+ 0> ,恒成立,故原函数单调递增;D 1111x y x x-=-+=++' ,在(0,+∞)上导函数为负,原函数应该是减函数. 故选C .点睛:判断函数的单调性的方法,可以根据导函数的正负来判断原函数的单调性.9.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.10.B解析:B 【分析】构造函数()()g x xf x =,根据条件确定()g x 奇偶性与单调性,最后根据单调性解不等式. 【详解】令()()g x xf x =,因为f (x )是定义在R 上的偶函数,所以g (x )是定义在R 上的奇函数,当x <0时,()()()0g x f x xf x ''=+<,即()g x 在(,0)-∞上单调递减,又(0)0g = 因此()g x 在(0,)+∞上单调递减,因为f (﹣3)=0,所以(3)0(3)0g g -=∴=, 当(3,0)x ∈-时,()(3)0()0,()0g x g xf x f x <-=∴<>; 当(,3)x ∈-∞-时,()(3)0()0,()0g x g xf x f x >-=∴><; 当(0,3)x ∈时,()(3)0()0,()0g x g xf x f x >=∴>>; 当(3,)x ∈+∞时,()(3)0()0,()0g x g xf x f x <=∴<<; 综上,不等式f (x )>0的解集为(﹣3,0)∪(0,3) 故选:B 【点睛】本题考查函数奇偶性、单调性、利用单调性解不等式,考查综合分析求解能力,属中档题.11.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x =有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x =有两个交点, 又由()312ln xg x x -'=, 令12ln 0x -=,可得x e =,当(0,)x e ∈时,()0g x '>,则()g x 单调递增; 当(,)x e ∈+∞时,()0g x '<,则()g x 单调递减, 所以当x e =时,()max 12g x e=, 若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.12.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e'-'=∴=<∴单调递减 (1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔> 故选:D二、填空题13.【分析】连过作垂足为设则则等腰梯形的面积令利用导数求其最值【详解】连过作垂足为如图:设则所以等腰梯形的面积令单调递增单调递减所以时取得极大值也是最大值即的最大值故答案为:【点睛】本题考查了函数的实际 解析:33【分析】连OC ,过C 作CE OB ⊥,垂足为E ,设(02),OE x x CE y =<<=,则224x y +=,则等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+3(2)(2)x x =+-,令3()(2)(2),02h x x x x =+-<<,利用导数求其最值. 【详解】连OC ,过C 作CE OB ⊥,垂足为E ,如图:设,OE x CE y ==,则224x y +=, 所以等腰梯形ABCD 的面积1(24)(2)2S x y x y =+=+2(2)4x x =+-3(2)(2),02x x x =+-<<令3()(2)(2),02h x x x x =+-<<232()3(2)(2)(2)4(1)(2)h x x x x x x '=+--+=-+, (0,1),()0,()x h x h x ∈'>单调递增, (1,2),()0,()x h x h x ∈'<单调递减,所以1x =时,()h x 取得极大值,也是最大值,max ()(1)27h x h ==,即S 的最大值故答案为: 【点睛】本题考查了函数的实际应用,运用导数求最值时解题的关键,属于中档题.14.【分析】首先根据题意得到为偶函数利用导数求出的单调区间再根据单调区间解不等式即可【详解】又因为所以为偶函数当时因为所以故在为增函数又因为为偶函数所以在为减函数因为所以解得或故答案为:【点睛】本题主要解析:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【分析】首先根据题意得到()f x 为偶函数,利用导数求出()f x 的单调区间,再根据单调区间解不等式即可. 【详解】又因为x ∈R ,()()()||||cos cos x x f x e x e x f x --=+-=+=,所以()f x 为偶函数.当0x >时,()cos x f x e x =+,()sin x f x e x '=-, 因为0x >,e 1x >,所以()sin 0x f x e x '=->, 故()f x 在()0,∞+为增函数.又因为()f x 为偶函数,所以()f x 在(),0-∞为减函数. 因为(21)(1)f x f x -≥-,所以211x x -≥-,解得23x ≥或0x ≤. 故答案为:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【点睛】本题主要考查利用导数研究函数的单调性,同时考查了函数的奇偶,属于中档题.15.【分析】把关于x 的方程有2个不相等的实数根转化为与函数的图象有两个不同的交点利用导数求得函数的单调性与极值即可求解【详解】由题意关于x 的方程有2个不相等的实数根即函数与函数的图象有两个不同的交点设则 解析:(22ln2,)-+∞【分析】把关于x 的方程20--=x e x k 有2个不相等的实数根,转化为y k =与函数2x y e x =-的图象有两个不同的交点,利用导数求得函数()2x f x e x =-的单调性与极值,即可求解. 【详解】由题意,关于x 的方程20--=x e x k 有2个不相等的实数根, 即函数y k =与函数2x y e x =-的图象有两个不同的交点,设()2x f x e x =-,则()2x f x e '=-,令()20x f x e '=-=,解得ln 2x =, 所以函数的减区间为(,ln 2)-∞,增区间为(ln 2,)+∞, 所以函数()f x 的最小值为(ln 2)22ln 2f =-,且当x →-∞时,()f x →+∞,当x →∞时,()f x →+∞, 要使得2x e x k -=有2个不相等的实数根,所以22ln 2k >-. 即实数k 的取值范围是(22ln2,)-+∞. 故答案为:(22ln2,)-+∞. 【点睛】本题主要考查了利用导数研究方程的根,其中解答中把方程根的个数转化为两个函数的图象的交点的个数,利用导数求得函数的单调性与极值是解答的关键,着重考查转化思想,以及运算与求解能力.16.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可. 【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为GE x = cm ,因为302x AE AH -==cm ,2A π∠=,所以包装盒的底面边长为)HE x - cm ,所以包装盒的体积为232())]60900)V x x x x x =-=-+,030x <<,则2()120900)V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V单调递减,所以3max ()(10)60009000))V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.17.②③④【分析】①构造函数求出函数的导数研究函数的导数和单调性进行判断即可;②利用与x 的关系进行转化判断;③设函数利用导数研究其单调性根据零点存在原理得出零点个数判断其真假④设函数利用导数研究其单调性解析:②③④ 【分析】①构造函数()sin f x x x =-,求出函数的导数,研究函数的导数和单调性,进行判断即可;②x x 的关系进行转化判断;③设函数()2sin g x x x =-,利用导数研究其单调性,根据零点存在原理得出零点个数,判断其真假.④设函数()3sin h x x x =-,利用导数研究其单调性,根据零点存在原理得出零点个数,判断其真假. 【详解】①设()sin f x x x =-,则()cos 10f x x '=-≤,即函数()f x 为减函数, ∵()0=0f ,∴函数()f x 只有一个零点,即函数sin y x =与y x =的图象恰有一个交点,故①错误, ②由①知当0x >时,sin x x <, 当01x <≤sin x x x >>, 当1x >sin x x >,当0x =sin x x =,综上当0x >sin x x >恒成立, 函数sin y x =与y x =②正确,③设函数()2sin g x x x =-,则()cos 2g x x x '=-, 又()sin 20g x x ''=--<,所以()g x '在R 上单调递减. 又()01g '=,02g ππ⎛⎫'=-<⎪⎝⎭所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使得()00g x '= 即当0x x <时,()0g x '>,函数()g x 单调递增. 当0x x >时,()0g x '<,函数()g x 单调递减. 由函数()g x 在()0,x -∞上单调递增且()00g =,所以函数()g x 在(]0-∞,上有且只有一个零点. 由()00g =,函数()g x 在()0,x -∞上单调递增,则()00g x >又21024g ππ⎛⎫=-< ⎪⎝⎭,且函数()g x 在()0x +∞,上单调递减. 所以()g x 在()0x +∞,上有且只有一个零点. 即()g x 在()0+∞,上有且只有一个零点. 所以()g x 有2个零点,即函数sin y x =与2yx 的图象恰有两个交点,故③正确.④设函数()3sin h x x x =-,()h x 为奇函数,且()00h =.所以只需研究()h x 在()0+∞,上的零点个数即可. 则()2cos 3h x x x '=-,则()sin 6h x x x ''=--,所以()cos 60h x x '''=--<,所以()h x ''在()0+∞,上单调递减. 所以当()0x ∈+∞,时,()()00h x h ''''<=,则()h x '在()0+∞,上单调递减. 又()01h '=,203024h ππ⎛⎫'=-⨯< ⎪⎝⎭. 所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使得()00h x '=. 即当00x x <<时,()0h x '>,函数()h x 单调递增. 当0x x >时,()0h x '<,函数()h x 单调递减.()00h =,由函数()h x 在()00x ,上单调递增,则()00h x >又31028h ππ⎛⎫=-< ⎪⎝⎭,且函数()h x 在()0x +∞,上单调递减. 所以()h x 在()0x +∞,上有且只有一个零点. 即()h x 在()0+∞,上有且只有一个零点. 由()h x 为奇函数,所以()h x 在()0-∞,上有且只有一个零点,且()00h =. 所以()h x 有3个零点,即函数sin y x =与3y x =的图象恰有三个交点,故④正确. 故答案为:②③④.【点睛】本题主要考查命题的真假判断,涉及函数零点个数,利用数形结合或构造函数,利用导数是解决本题的关键.属于中档题.18.【分析】首先求出函数的导函数由再根据三角函数的性质解三角不等式即可;【详解】解:所以令即所以故的单调递增区间为故答案为:【点睛】本题考查利用导数求函数的单调区间三角函数的性质的应用属于中档题解析:06,π⎡⎤⎢⎥⎣⎦【分析】首先求出函数的导函数,由()0f x '>,再根据三角函数的性质解三角不等式即可; 【详解】 解:()1cos 2f x x x =+,0,2x π⎡⎤∈⎢⎥⎣⎦所以()1sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦令()0f x '>,即1sin 02x -+>,所以06x π<<,故()f x 的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,故答案为:06,π⎡⎤⎢⎥⎣⎦【点睛】本题考查利用导数求函数的单调区间,三角函数的性质的应用,属于中档题.19.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围. 【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-,当1a ≥时,令2'()330f x ax =-=解得x =,且1>-<①当1x -<<()0,()f x f x '>为递增函数,②当x <<()0,()f x f x '<为递减函数,③1x <<时,()f x 为递增函数.所以()010f f ⎧≥⎪⎨⎝⎭⎪-≥⎩,即3320320a a ⎧⎪-+≥⎨⎝⎭⎝⎭⎪-++≥⎩, 解得15a ≤≤. 故答案为:15a ≤≤. 【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.20.①②④【分析】根据已知条件得到函数的对称轴以及函数的单调性结合题意对选项进行逐一判断即可【详解】因为故关于对称;又故当时单调递增;时单调递减对①:若根据函数单调性显然则根据零点存在定理和函数单调性在解析:①②④ 【分析】根据已知条件得到函数的对称轴,以及函数的单调性,结合题意,对选项进行逐一判断即可. 【详解】因为(4)()f x f x -=,故()f x 关于2x =对称;又(()2)0x f x -'>,故当2x >时,()f x 单调递增;2x <时,()f x 单调递减. 对①:若(2)(6)0f f <,根据函数单调性,显然()()20,60f f ,则()20f -> 根据零点存在定理和函数单调性,()f x 在()()2,2,2,6-上各有1个零点,故①正确; 对②:因为()f x 关于2x =对称,故()2f x +关于0x =对称,故是偶函数,则②正确;对③:121257sin cos ︒+︒=︒<(),2-∞单调递减可知,()1212ff sin cos <︒+︒,故③错误;对④:因为12x x <,故可得1222x x -<-;因为124x x +>,故可得1222x x -<- 故2122x x ->-,又函数关于2x =对称,结合函数单调性, 故可得()()21f x f x >,故④正确. 综上所述:正确的有①②④. 故答案为:①②④. 【点睛】本题考查根据导数的正负判断函数的单调性,函数对称轴的识别,涉及辅助角公式的使用,利用函数单调性比较大小,属综合性中档题.三、解答题21.(1)答案见解析;(2)()8,+∞. 【分析】(1)求得()2163a f x ax x a -⎛⎫'=-⎪⎝⎭,分0a <、102a <<、12a =、12a >四种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间; (2)由题意可知,当[]1,1x ∈-时,()()max min m f x f x >-,由(1)中的结论求得()f x 在区间[]1,1-上的最大值和最小值,即可求得实数m 的取值范围. 【详解】(1)()()221622163a f x ax a x ax x a -⎛⎫'=--=-⎪⎝⎭. ①当0a <时,2103a a ->,由()0f x '>,得2103a x a -<<,则()f x 在210,3a a -⎛⎫⎪⎝⎭上单调递增;由()0f x '<,得0x <或213a x a ->,则()f x 在(),0-∞,21,3a a -⎛⎫+∞⎪⎝⎭上单调递减; ②当102a <<时,2103a a-<, 由()0f x '<,可得2103a x a -<<;由()0f x '>,可得213a x a-<或0x >. ()f x 在21,03a a -⎛⎫ ⎪⎝⎭上单调递减,在21,3a a -⎛⎫-∞ ⎪⎝⎭,()0,∞+上单调递增; ③当12a =时,()230f x x '=≥,()f x 在R 上单调递增; ④当12a >时,2103a a ->, 由()0f x '<可得2103a x a -<<;由()0f x '>可得0x <或213a x a->. ()f x 在210,3a a -⎛⎫ ⎪⎝⎭上单调递减,在(),0-∞,21,3a a -⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述,当0a <时,函数()f x 的单调递增区间为210,3a a -⎛⎫⎪⎝⎭,单调递减区间为(),0-∞,21,3a a -⎛⎫+∞⎪⎝⎭;当102a <<时,函数()f x 的单调递减区间为21,03a a -⎛⎫⎪⎝⎭,单调递增区间为21,3a a -⎛⎫-∞ ⎪⎝⎭,()0,∞+;当12a =时,函数()f x 在R 上单调递增; 当12a >时,函数()f x 的单调递减区间为210,3a a -⎛⎫⎪⎝⎭,单调递增区间为(),0-∞,21,3a a -⎛⎫+∞ ⎪⎝⎭;(2)因为[]sin 1,1x ∈-,所以α∀、R β∈,()()sin sin f f m αβ-<等价于()f x 在[]1,1-上的最大值与最小值的差小于m ,即()()max min m f x f x >-.当2a =时,()32431f x x x =-+,由(1)知,()f x 在[)1,0-,1,12⎛⎤ ⎥⎝⎦上单调递增,在10,2⎛⎫ ⎪⎝⎭上单调递减.因为()16f -=-,()01f =,1324f ⎛⎫=⎪⎝⎭,()12f =,所以()min 6f x =-,()max 2f x =,所以()268m >--=,即m 的取值范围为()8,+∞. 【点睛】本题考查利用导数求解含参函数的单调区间,同时也考查了利用导数求解函数不等式问题,解本题的关键在于利用下面的结论:1x ∀、2x D ∈,()()()()12max min f x f x m m f x f x -<⇔>-.22.(1)10a =;(2) 3.3. 【分析】(1)将“销售价格为4元/件时,每月可售出21千件”带入关系式中即可得出结果; (2)首先可通过题意得出每月销售装饰品所获得的利润24(6102)2f x x x x ,然后通过化简并利用导数求得最大值,即可得出结果. 【详解】(1)由题意可知,当销售价格为4元/件时,每月可售出21千件, 所以2214(46)42a ,解得10a =.(2)设利润为()f x ,则2f xy x ,26x <<,带入2104(6)2y x x =+--可得: 224(6)(6)10210422f x xx x x x ,化简可得32456240278f xx x x ,函数()f x 的导函数21211224043106f xx x x x ,26x <<,当0f x 时,1032x ,函数()f x 单调递增;当0f x时,1036x ,函数()f x 单调递减;当0fx 时,103x,函数()f x 取极大值,也是最大值,所以当103x,函数()f x 取最大值,即销售价格约为每件3.3元时,该店每月销售装饰品所获得的利润最大. 【点睛】本题考查函数的相关性质,主要考查函数的实际应用以及利用导数求函数的最值,本题的关键在于能够通过题意得出题目所给的销售量、销售价格以及每月销售装饰品所获得的利润之间的关系,考查推理能力与计算能力,考查化归与转化思想,是中档题. 23.(1)22y x =-;(2)[2,)+∞. 【分析】(1)2a =-时()ln 1f x x x =+-求导,得到在切点(1,0)处切线斜率,代入点斜式即可;(2) 求导()22axf x x-'=对a 分情况讨论,讨论函数的单调性,结合题目要求()0f x <对任意(1,)x ∈+∞恒成立名即可得到实数a 的取值范围;【详解】解:(1)因为2a =-时,()()1ln 11f x x x f x x'=+-⇒=+, 所以切点为(1,0),(1)2k f '==,所以2a =-时,曲线()y f x =在点(1,(1))f 处的切线方程22y x =-. (2)因为()()112ln (1)222a ax f x x a x f x x x-'=--⇒=-=, ①当0a ≤时,()()1,0x f x '∈+∞>,,所以()f x 在(1,)+∞上单调递增,()()10f x f >=,所以0a ≤不合题意.②当2a ≥时,即201a<≤时,()2()2022a x ax a f x x x--'==<在(1,)+∞恒成立, 所以()f x 在(1,)+∞上单调递减,有()()10f x f <=,所以2a ≥满足题意. ③当02a <<时,即21>a时,由()0f x '>,可得21x a <<,由()0f x '<,可得2x a>,所以()f x 在2(1,)a 上单调递增,()f x 在2(,)a +∞上单调递减,所以()2()10f f a>=所以02a <<不合题意,综上所述,实数a 的取值范围是[2,)+∞. 【点睛】本题考查函数的切线方程,讨论函数的单调性和利用导数解决恒成立问题,属于中档题. 24.(1)1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)32a e > 【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222aln a a af ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围;【详解】解:(1)因为()2xf x eax b =-+所以()()220xf x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增,∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞, ∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫<⎪⎝⎭,又a b =, ∴ln 21ln ln 02222aa a af e a ⎛⎫=-+< ⎪⎝⎭,即ln 0222a a aa -+< 所以3ln02a -< 所以32a e > 【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.25.(1)增区间是()1,+∞,递减区间是(),1-∞;(2)0k e <<. 【详解】试题分析:(1)借助题设条件运用导数与函数单调性之间的关系求解;(2)借助题设运用等价转化的思想及导数的知识求解.试题(1)由k e =得()xf x e ex =-,所以()xf x e e '=-.由()'0fx >得1x >,故()f x 的单调递增区间是()1,+∞, 由()'0f x <得1x <,故()f x 的单调递减区间是(),1-∞.(2)由()()fx f x -=可知()f x 是偶函数.于是等价于()0f x >对任意0x ≥成立.由()0xf x e k ='-=得ln x k =.①当(]0,1k ∈时,()()100xf x e k k x =->-≥≥',此时()f x 在[)0,+∞上单调递增.故()()010f x f ≥=>,符合题意. ②当()1,k ∈+∞时,ln 0k >.当x 变化时()'fx ,()f x 的变化情况如下表:由此可得,在0,+∞上,ln ln f x f k k k k ≥=- 依题意,ln 0k k k ->,又1,1k k e >∴<<. 综合①②得,实数k 的取值范围是0k e <<. 也可以分离用最值研究.考点:导数与函数的单调性之间的关系及分析转化法等有关知识和方法的综合运用. 26.(1)4m ≤;(2)1504ln 24⎛⎫- ⎪⎝⎭,. 【分析】(1)由题意结合导数与函数单调性的关系可转化条件为22m x x≤+在(0,)+∞上恒成立,利用基本不等式求得22x x+的最小值即可得解; (2)由题意结合函数极值点的概念可得122mx x +=,121x x ⋅=,进而可得1112x <<,转化条件为21211211()()4ln f x f x x x x -=-+,令221()4ln g x x x x =-+(112x <<),利用导数求得函数()g x 的值域即可得解. 【详解】(1)()f x 的定义域为(0,)+∞, ∵()f x 在(0,)+∞上单调递增,∴2()20f x x m x '=-+≥在(0,)+∞上恒成立,即22m x x≤+在(0,)+∞上恒成立,又224x x +≥=,当且仅当1x =时等号成立, ∴4m ≤;(2)由题意2222()2x mx f x x m x x-+'=-+=,∵()f x 有两个极值点12,x x ,∴12,x x 为方程2220x mx -+=的两个不相等的实数根, 由韦达定理得122mx x +=,121x x ⋅=, ∵120x x <<,∴1201x x <<<, 又121112()2()(4,5)m x x x x =+=+∈,解得1112x <<, ∴()()2212111222()()2ln 2ln f x f x x mx x x mx x -=-+--+()()()()22121212122ln ln 2x x x x x x x x =-+--+-()()2221122ln ln x x x x =-+-2112114ln x x x =-+, 设221()4ln g x x x x =-+(112x <<), 则4222333242(21)2(1)()20x x x g x x x x x x---+--=-+='=<, ∴()g x 在1,12⎛⎫⎪⎝⎭上为减函数,又1111544ln 4ln 22424g ⎛⎫=-+=-⎪⎝⎭,(1)1100g =-+=, ∴150()4ln 24g x <<-, 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭,.【点睛】本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,牢记函数单调性与导数的关系、合理转化条件是解题关键,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年高中数学 第三章 导数应用综合测试 北师大版选修2-2时间120分钟,满分150分.一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数存在极值的是( ) A .y =2x B .y =1xC .y =3x -1D .y =x 2[答案] D[解析] 画出图像即可知y =x 2存在极值f (0)=0. 2.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2[答案] A [解析] ∵y ′=x ′· x +2 -x · x +2 ′ x +2 2=2x +22,∴k =y ′|x =-1=2-1+22=2,∴切线方程为y +1=2(x +1),即y =2x +1.3.已知对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ).当x >0时,f ′(x )>0,g ′(x )>0,则当x <0时,下列各式正确的是( )A .f ′(x )>0,g ′(x )>0B .f ′(x )>0,g ′(x )<0C .f ′(x )<0,g ′(x )>0D .f ′(x )<0,g ′(x )<0[答案] B[解析] 由题意f (x )为奇函数,图像关于原点对称,在对称区间上的单调性相同;g (x )为偶函数,在对称区间的单调性相反.又由x >0时,f (x )是增函数,g (x )是增函数, ∴x <0时,f (x )是增函数,g (x )是减函数, ∴f ′(x )>0,g ′(x )<0.4.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( ) A .0≤a ≤21 B .a =0或a =7 C .a <0或a >21 D .a =0或a =21[答案] A[解析] f ′(x )=3x 2+2ax +7A .当Δ=4a 2-84a ≤0,即0≤a ≤21时,f ′(x )≥0恒成立,函数不存在极值点.5.如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列结论正确的是( )A .在区间(-3,1)内f (x )是增函数B .在区间(1,2)内f (x )是减函数C .在区间(4,5)内f (x )是增函数D .当x =2时,f (x )取极小值 [答案] C[解析] 由题中图象可知,当x ∈(4,5)时,f ′(x )>0,∴f (x )在(4,5)内为增函数. 6.若函数y =f (x )是定义在R 上的可导函数,则f ′(x 0)=0是x 0为函数y =f (x )的极值点的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] B[解析] 如y =x 3,y ′=3x 2,y ′|x =0=0,但x =0不是函数y =x 3的极值点. 7.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 [答案] D[解析] 本节考查了利用导数工具来探索其极值点问题.f ′(x )=-2x 2+1x =1x (1-2x)=0可得x =2.当0<x <2时,f ′(x )<0,f (x )递减,当x >2时f ′(x )>0,∴f (x )单调递增.所以x =2为极小值点.对于含有对数形式的函数在求导时,不要忽视定义域.8.(2014·武汉实验中学高二期末)设函数f (x )在定义域内可导,y =f (x )的图象如下图所示,则导函数y =f ′(x )的图象可能是( )[答案] A[解析] f (x )在(-∞,0)上为增函数,在(0,+∞)上变化规律是减→增→减,因此f ′(x )的图象在(-∞,0)上,f ′(x )>0,在(0,+∞)上f ′(x )的符号变化规律是负→正→负,故选A .9.函数f (x )=sin x +2xf ′(π3),f ′(x )为f (x )的导函数,令a =-12,b =log 32,则下列关系正确的是( )A .f (a )>f (b )B .f (a )<f (b )C .f (a )=f (b )D .f (|a |)<f (b )[答案] A[解析] ∵f ′(x )=cos x +2f ′( π3),∴f ′(π3)=cos π3+2f ′(π3),即f ′(π3)=-12.∴f (x )=sin x -x . 又f ′(x )=cos x -1≤0, 故f (x )在R 上递减.又∵-12<log 32,∴f (-12)>f (log 32),即f (a )>f (b ).10.(2015·新课标Ⅱ,12)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞) [答案] A[解析] 记函数g (x )=f x x ,则g ′(x )=xf ′ x -f xx 2,因为当x >0时,xf ′(x )-f (x )<0,故当x >0时,g ′(x )<0,所以g (x )在(0,+∞)单调递减;又因为函数f (x )(x ∈R )是奇函数,故函数g (x )是偶函数,所以g (x )在(-∞,0)单调递减,且g (-1)=g (1)=0.当0<x <1时,g (x )>0,则f (x )>0;当x <-1时,g (x )<0,则f (x )>0,综上所述,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A .二、填空题(本大题共5小题,每小题5分,共25分)11.(2014·湖北重点中学高二期中联考)已知函数f (x )=13ax 3+12ax 2-2ax +2a +1的图象经过四个象限,则实数a 的取值范围是________.[答案] (-65,-316)[解析] f ′(x )=ax 2+ax -2a =a (x -1)(x +2), 由f (x )的图象经过四个象限知,若a >0,则⎩⎪⎨⎪⎧f -2 >0,f 1 <0,此时无解;若a <0,则⎩⎪⎨⎪⎧f -2 <0,f 1 >0,∴-65<a <-316,综上知,-65<a <-316.12.函数y =x ·e x的最小值为________. [答案] -1e[解析] y ′=(x +1)e x=0,x =-1. 当x <-1时,y ′<0,当x >-1时y ′>0∴y min =f (-1)=-1e13.若函数f (x )=xx 2+a(a >0)在[1,+∞]上的最大值为33,则a 的值为________. [答案]3-1[解析] f ′(x )=x 2+a -2x 2 x 2+a 2=a -x 2x 2+a2.当x >a 时f ′(x )<0,f (x )在(a ,+∞)上是递减的,当-a <x <a 时,f ′(x )>0,f (x )在(-a ,a )上是递增的.当x =a 时,f (a )=a 2a =33,a =32<1,不合题意. ∴f (x )max =f (1)=11+a =33,解得a =3-1.14.一工厂生产某型号车床,年产量为N 台,分批进行生产,每批生产量相同,每批生产的准备费为C 2元,产品生产后暂存库房,然后均匀投放市场(指库存量至多等于每批的生产量).设每年每台的库存费为C 1元,求在不考虑生产能力的条件下,每批生产该车床________台,一年中库存费和生产准备费之和最小.[答案]C 2N C 1[解析] 设每批生产x 台,则一年生产N x批.一年中库存费和生产准备费之和y =C 1x +C 2N x(0<x <N ).y ′=C 1-C 2Nx2.由y ′=0及0<x <N ,解得x =C 2NC 1(台).根据问题的实际意义,y 的最小值是存在的,且y ′=0有唯一解.故x =C 2NC 1台是使费用最小的每批生产台数. 15.(2014·泉州实验中学期中)已知函数f (x )=x 3-3x ,若过点A (1,m )(m ≠-2)可作曲线y =f (x )的三条切线,则实数m 的取值范围为________.[答案] (-3,-2)[解析] f ′(x )=3x 2-3,设切点为P (x 0,y 0),则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),∵切线经过点A (1,m ),∴m -(x 30-3x 0)=(3x 20-3)(1-x 0),∴m =-2x 30+3x 20-3,m ′=-6x 20+6x 0,∴当0<x 0<1时,此函数单调递增,当x 0<0或x 0>1时,此函数单调递减,当x 0=0时,m =-3,当x 0=1时,m =-2,∴当-3<m <-2时,直线y =m 与函数y =-2x 30+3x 20-3的图象有三个不同交点,从而x 0有三个不同实数根,故过点A (1,m )可作三条不同切线,∴m 的取值范围是(-3,-2).三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.已知函数f (x )=x 3+ax 2+bx +c ,f (x )在x =0处取得极值,并且在区间[0,2]和[4,5]上具有相反的单调性.(1)求实数b 的值; (2)求实数a 的取值范围.[解析] (1)由导数公式表和求导法则得,f ′(x )=3x 2+2ax +b , 因为f (x )在x =0处取得极值,所以f ′(0)=0,即得b =0.(2)令f ′(x )=0,即3x 2+2ax =0,解得x =0或x =-23A .依题意有-23a >0.因为函数在单调区间[0,2]和[4,5]上具有相反的单调性, 所以应有2≤-23a ≤4,解得-6≤a ≤-3.17.求证:x >0时,1+2x <e 2x.[分析] 利用函数的单调性证明不等式是常用的方法之一,而函数的单调性,可利用其导函数的符号确定.[证明] 设f (x )=1+2x -e 2x , 则f ′(x )=2-2e 2x=2(1-e 2x ). 当x >0时,e 2x>1,f ′(x )=2(1-e 2x)<0,所以函数f (x )=1+2x -e 2x在(0,+∞)上是减函数. 当x >0时,f (x )<f (0)=0,即当x >0时,1+2x -e 2x<0,即1+2x <e 2x. 18.(2014·山东文,20)设函数f (x )=a ln x +x -1x +1,其中a 为常数. (1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.[解析] (1)f (x )的定义域为(0,+∞)f ′(x )=a x + x +1 - x -1 x +1 2=a x +2x +1 2∵a =0,∴f ′(x )=2 x +1 2,根据导数的几何意义,所求切线的斜率k =f ′(1)=12, 而f (1)=0.∴所求切线方程为y =12(x -1),即x -2y -1=0.(2)f ′(x )=a x +1 2+2x x x +1 2=ax 2+2 a +1 x +ax x +1 21°当a =0时,f ′(x )=2x +12>0,∴f (x )在(0,+∞)递增. 令g (x )=ax 2+2(a +1)x +a Δ=4(a +1)2-4a 2=8a +42°当a >0时,Δ>0,此时g (x )=0的两根x 1=- a +1 -2a +1a,x 2=- a +1 +2a +1a∵a >0,∴x 1<0,x 2<0.∴g (x )>0,∵x ∈(0,+∞),∴f ′(x )>0 故f (x )在(0,+∞)递增.3°当a <0时,Δ=8a +4≤0,即a ≤-12时,g (x )≤0,∴f ′(x )≤0.故f (x )在(0,+∞)递减. 当Δ>0,即-12<a <0时,x 1=- a +1 +2a +1a >0,x 2=- a +1 -2a +1a>0∴令f ′(x )>0,x ∈(x 1,x 2),f ′(x )<0,x ∈(0,x 1)∪(x 2,+∞)∴f (x )在(x 1,x 2)递增,在(0,x 1)和(x 2,+∞)上递减. 综上所述:当a ≥0时,f (x )在(0,+∞)递增. 当-12<a <0时,f (x )在(x 1,x 2)递增,在(0,x 1)和(x 2,+∞)递减(其中x 1=- a +1 +2a +1a ,x 2=- a +1 -2a +1a).当a ≤-12时,f (x )在(0,+∞)递减.19.已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求矩形的面积最大时的边长.[分析] 如图,设出AD 的长,进而求出|AB |表示出面积S ,然后利用导数求最值.[解析] 设矩形边长为AD =2x ,则|AB |=y =4-x 2,则矩形面积S =2x (4-x 2)(0<x <2), 即S =8x -2x 3,∴S ′=8-6x 2, 令S ′=0,解得x 1=23,x 2=-23(舍去) 当0<x <23时,S ′>0;当23<x <2时,S ′<0,∴当x =23时,S 取得最大值,此时,S 最大=3239,y =83.即矩形的边长分别为433、83时,矩形的面积最大.[点评] 本题的关键是利用抛物线方程,求出矩形的另一边长.20.(2014·重庆文,19)已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.[解析] (1)函数f (x )的定义域为(0,+∞),f ′(x )=14-a x 2-1x ,由导数的几何意义,且切线与y =12x 垂直.得f ′(1)=14-a -1=-2,∴a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,∴f ′(x )=14-54x 2-1x =x 2-4x -54x2. 令f ′(x )=0解得x =-1或5,-1不在定义域之内故舍去. ∴当x ∈(0,5),f ′(x )<0,∴f (x )在(0,5)递减. 当x ∈(5,+∞),f ′(x )>0,∴f (x )在(5,+∞)递增. ∴f (x )的增区间为(5,+∞),减区间为(0,5)∴f (x )在x =5时取极小值f (5)=54+14-ln5-32=-ln5.21.设函数f (x )=e x-ax -2. (1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值. [分析] (1)先确定函数的定义域,然后求导函数f ′(x ),因不确定a 的正负,故应讨论,结合a 的正负分别得出在每一种情况下f ′(x )的正负,从而确立单调区间;(2)分离参数k,将不含有参数的式子看作一个新函数g(x),将求k的最大值转化为求g(x)的最值问题.[解析](1)f(x)的定义域为(-∞,+∞),f′(x)=e x-A.若a≤0,则f′(x)>0,所以f(x)在(-∞,+∞)单调递增.若a>0,则当x∈(-∞,ln a)时,f′(x)<0;当x∈(ln a,+∞)时,f′(x)>0,所以f(x)在(-∞,ln a)单调递减,在(ln a,+∞)单调递增.综上,a≤0时f(x)增区间(-∞,+∞)a>0时f(x)增区间(ln a,+∞),减区间(-∞,ln a)(2)由于a=1,所以(x-k)f′(x)+x+1=(x-k)(e x-1)+x+1.故当x>0时,(x-k)f′(x)+x+1>0等价于k<x+1e x-1+x(x>0).①令g(x)=x+1e x-1+x,则g′(x)=-x e x-1e x-1 2+1=e x e x-x-2e x-1 2.由(1)知,函数h(x)=e x-x-2在(0,+∞)单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点.设此零点为α,则α∈(1,2).当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(α).又由g′(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.[点评]本题考查导数的应用及参数的取值范围的求法.利用导数求参数的取值范围时,经常需将参数分离出来,转化为恒成立问题,最终转化为求函数的最值问题,求得参数的取值范围.。