化学键和晶体结构
高三化学原子结构化学键及分子结构晶体结构
证对市爱幕阳光实验学校高三化学原子结构、化学键及分子结构、晶体结构【本讲信息】 一. 教学内容:物质结构⎪⎩⎪⎨⎧晶体结构化学键及分子结构原子结构二. 教学要求:1. 掌握原子构成的初步知识。
2. 掌握原子序数、核电荷数、质子数、中子数、核外电子数以及质量数与中子数、质子数之间的相互关系。
3. 掌握核外电子排布规律。
4. 掌握离子键、共价键、金属键的涵义。
5. 理解键的极性与分子极性的关系。
6. 了解分子间作用力、氢键的概念。
7. 掌握几种晶体类型的结构特点和性质。
三. 教学:1. 原子核外电子的排布规律。
2. 离子键、共价键的概念,能用电子式表示离子化合物和共价化合物及其形成过程。
3. 三种晶体的结构和性质。
四. 知识分析:1. “六种量〞及其涵义〔1〕质子数:即原子核内质子个数,也称为原子序数,它是决元素品种的重要因素。
〔2〕中子数:即原子核内中子个数。
当质子数相同,而中子数不同时,便提出了同位素的概念。
〔3〕核外电子数:原子中,质子数于电子数,因此整个原子不显电性;当质子数>电子数时,该微粒是阳离子,当质子数<电子数时,该微粒为阴离子。
〔4〕质量数:将原子核内所有质子和中子的相对质量取近似值之和为质量数,用“A 〞表示。
由于电子质量忽略不计,质量数可以近似地表示相对原子质量的大小。
〔5〕同位素的相对原子质量:其意义是某同位素的一个原子质量与C 12原子质量121的相比照值。
初中化学所学的相对原子质量实质上是同位素的相对原子质量。
例如:O 168的一个原子质量为kg 2610657.2-⨯,一个C 126的质量为kg 2610993.1-⨯ O 168的相对原子质量〔6〕元素的相对原子质量:其意义是各种天然同位素的相对原子质量与它的原子所占的原子个数百分比的乘积之总和。
氧元素的相对原子质量[])(O Ar759.999949.15⨯=%+037.09991.16⨯%+204.09992.17⨯%注:我们在题中常用质量数代替同位素的相对原子质量,以此求得的结果称为元素的近似相对原子质量,如: 氧元素的近似相对原子质量759.9916⨯=%037.017⨯+%204.018⨯+%2. 晶体类型与化学键、分子极性之间的关系:由上可知:① 离子晶体〔或离子化合物〕一含离子键。
晶体第五课 化学键及晶格类型
晶体第五课化学键及晶格类型
晶体第五课:化学键及晶格类型
化学键及晶格类型
晶体中的原子之间的相互作用主要有以下几种情况:
.化学键:包括离子键、共价键和金属键。
.非化学性作用:范德华力(分子键)
一般来说,一种晶体通常以一种化学键为主,其物理性质也是由这种占主导地位的化学键决定,因此,我们根据晶体内占主导地位的化学键类型来划分晶体的晶格类型,对应于离子键、共价键、金属键、分子键,就有离子晶格、原子晶格、金属晶格、分子晶格。
但是,晶体中的原子往往不是由单纯一种键型相互作用而构成,大多数情况下,在形成的晶体中各种键型都有存在,只是程度不同而已。
极化、电子离域、轨道重叠等因素相互作用,产生不同程度的键型变异。
这就是由著名化学家唐有祺教授1963年提出的键型变异原理。
键型递变是化学中常见的现象,可以用键型四面体直观表示。
由于分子间的作用力很弱,分子键所形成的分子晶格类型的晶体大多透明、不导电、硬度很小、有较低的熔、沸点,、易挥发,许多物质在常温下呈气态或液态。
有些分子晶体,如H2O、NH3、CH3CH2OH等除了范德华力外还有氢键的作用,它们的熔沸点较高。
化学键晶体结构
①空间结构:正四面体结构。 ②最小的环:十二元环。 ③硅原子数∶氧原子数∶Si—O键数=1∶2∶4。
(5)石墨结构
①最小的环: 六 元环。 ②碳原子数∶C—C键数=2∶3。 (6)干冰晶体结构
①与每个CO2 分子紧邻且等距离的CO2 分子数有 个。 ②每个晶胞中含CO2分子数有 4 个。
12
基础自测
c.同分异构体之间 Ⅰ.一般是支链越多,熔、沸点越低。如沸点:正戊烷
>异戊烷>新戊烷。
Ⅱ.结构越对称,熔、沸点越低。如沸点:邻二甲苯> 间二甲苯>对二甲苯。 d.若分子间有氢键,则分子间作用力比结构相似的同 类晶体大,故熔、沸点较高。如沸点:HF>HI>HBr>HCl, H2O>H2Te>H2Se>H2S。 (3)常温常压下熔、沸点:固体>液体>气体。
【答案】(1) ;离子
(2)2; (3)<
6.现有几组物质的熔点数据如下表:
A组
金刚石: 3550 ℃ 硅晶体: 1410 ℃
B组
Li: 181 ℃ Na: 98 ℃
C组
HF: -83 ℃ HCl: -115 ℃
D组
NaCl: 801 ℃ KCl: 776 ℃
硼晶体: 2300 ℃
二氧化硅: 1723 ℃
三、晶体结构与性质 1.四种晶体的比较
2.几种常见晶体的结构分析 (1)氯化钠晶体结构(离子晶体)
①与每个Na+等距离紧邻的Cl-有 6 个。 ②与每个Cl-等距离紧邻的Na+有 6 个。 ③每个氯化钠晶胞中含有 4 个NaCl。 ④与每个Na+等距离紧邻的6个Cl-围成的空间构型为正 八面体。
2.分子间作用力 分子间作用力是指把分子聚集在一起的作用力,又叫范 德华力。分子间作用力对物质的熔、沸点和溶解度等有影 响,一般说来,组成和结构相似的分子,随相对分子质量的 增大,分子间作用力增大,物质的熔、沸点升高。 3.氢键 氢键是比分子间作用力稍强、比化学键弱的相互作用。 (1)形成条件:原子半径较小、非金属性很强的元素原子 X(N、F、O)与H原子形成强极性键,该分子中的H原子与相 邻的另一分子中的原子半径较小、非金属性很强的原子 Y(N、O、F),产生较强的静电引力,形成氢键。 (2)表示方法:X—H…Y—H(X、Y可相同可不同,一般 为N、O、F)。 (3)氢键的影响:使物质具有较高的熔、沸点(如HF、 H2O、NH3等沸点比同主族相邻元素氢化物显著高很多);使 物质易溶于水(如NH3、C2H5OH等易溶于水);解释一些反常 现象。
第六讲--化学键与晶体结构
第六讲 化学键与晶体结构(必考点)一、 化学键1、定义:相邻的两个或多个原子之间强烈的相互作用,通常叫做化学键。
例如:水的结构式为H-O-H ,H -O 之间存在着强烈的相互作用,而H 、H 之间相互作用非常弱,没有形成化学键。
2、化学键类型 : ⎪⎩⎪⎨⎧金属键共价键(含配位键)离子键3、三种化学键的比较:离 子 键 共 价 键 金 属 键形成过程 阴阳离子间的静电作用 原子间通过共用电子对所形成的相互作用金属阳离子与自由电子间的相互作用构成元素 典型金属(含NH 4+)和典型非金属、含氧酸根非 金 属 金 属实 例 离子化合物,如典型金属氧化物、强碱、大多数盐 多原子非金属单质、气态氢化物、非金属氧化物、酸等金 属※ 配位键:配位键属于共价键,它是由一方提供孤对电子,另一方提供空轨道所形成的共价键,例如:NH 4+的形成在NH 4+中,虽然有一个N -H 键形成过程与其它3个N -H 键形成过程不同(一对电子由N 原子单独提供,H +提供空轨道),但是一旦形成之后,4个共价键就完全相同。
4、共价键的三个键参数概 念 意 义键长 分子中两个成键原子核间距离(米) 键长越短,化学键越强,形成的分子越稳定键能 对于气态双原子分子AB ,拆开1molA-B 键所需的能量 键能越大,化学键越强,越牢固,形成的分子越稳定键角 键与键之间的夹角 键角决定分子空间构型①、键长、键能决定共价键的强弱和分子的稳定性:原子半径越小,键长越短,键能越大,分子越稳定。
比较共价键的强弱实际上就是比较成键原子半径大小,这就依靠对元素周期律的掌握。
例如HF 、HCl 、HBr 、HI 分子中:X 原子半径:F<Cl<Br<IH-X 键键长:H-F<H-Cl<H-Br<H-IH-X 键键能:HF>HCl>HBr>HIH-X 分子稳定性:HF>HCl>HBr>HI②、键角决定分子空间构型,分子空间构型又决定分子的极性以及它们参加反应后产物的空间构型与极性,应特别记忆以下分子的键角和空间构型:分子空间构型 键 角 实 例5、共价键的极性不同原子间形成的共价键一定是极性共价键,同种原子间形成的共价键一定是非极性共价键。
大学无机化学教案中的化学键与晶体结构分析
大学无机化学教案中的化学键与晶体结构分析无机化学是化学科学的重要分支之一,研究无机化合物的性质、结构以及它们之间的反应。
在大学的无机化学教学中,化学键与晶体结构分析是非常重要的内容。
本文将从化学键的类型和特点以及晶体结构的分析方法两个方面进行探讨。
一、化学键的类型和特点化学键是构成化合物的原子之间的相互作用力。
根据电子的共享情况,化学键可以分为离子键、共价键和金属键。
离子键是由正负电荷之间的静电力所形成的。
在离子键中,一方的原子失去电子,形成正离子;另一方的原子获得电子,形成负离子。
正负离子之间的相互吸引力就构成了离子键。
离子键通常存在于金属与非金属之间,如氯化钠(NaCl)中的钠离子和氯离子之间的离子键。
共价键是由两个原子共享电子而形成的。
共价键通常存在于非金属之间,如氧气(O2)中的两个氧原子之间的共价键。
共价键分为单键、双键和三键,根据共享电子对的数量而定。
单键是两个原子共享一个电子对,双键是两个原子共享两个电子对,三键是两个原子共享三个电子对。
共价键的特点是强度较高,通常需要较大的能量才能破坏。
金属键是金属原子之间的相互作用力。
金属原子的外层电子形成电子海,形成了金属键。
金属键的特点是导电性和延展性较好,金属物质通常具有良好的导电性和延展性。
二、晶体结构的分析方法晶体是由原子、离子或分子按照一定的规则排列而成的固体。
晶体结构的分析是无机化学研究的重要内容之一。
晶体结构的分析常用的方法有X射线衍射、电子显微镜和核磁共振等。
其中,X射线衍射是最常用的方法之一。
通过将X射线照射到晶体上,晶体中的原子会对X射线产生散射,形成衍射图样。
根据衍射图样的特点,可以确定晶体的晶格常数和晶体结构。
电子显微镜可以观察到晶体的表面形貌和晶体中的原子排列情况。
核磁共振则可以通过核磁共振信号来分析晶体中的原子种类和原子之间的相互作用。
晶体结构的分析不仅可以帮助我们了解晶体的性质,还可以为无机化学的研究提供重要的依据。
高三化学 化学键与晶体结构
C H H H H 专题四:化学键和晶体结构班级 姓名 学号专题目标:1、掌握三种化学键概念、实质,了解键的极性2、掌握各类晶体的物理性质,构成晶体的基本粒子及相互作用,能判断常见物质的晶体类型。
[经典题型][题型一]化学键类型、分子极性和晶体类型的判断[ 例1 ]4.下列各组物质的晶体中,化学键类型相同、晶体类型也相同的是 [ ](A)SO 2和SiO 2 (B)CO 2和H 2 (C)NaCl 和HCl (D)CCl 4和KCl[点拨]首先根据化学键、晶体结构等判断出各自晶体类型。
A 都是极性共价键,但晶体类型不同,选项B 均是含极性键的分子晶体,符合题意。
C NaCl 为离子晶体,HCl 为分子晶体 D 中CCl 4极性共价键,KCl 离子键,晶体类型也不同。
规律总结 1、含离子键的化合物可形成离子晶体2、含共价键的单质、化合物多数形成分子晶体,少数形成原子晶体如金刚石、晶体硅、二氧化硅等。
3、金属一般可形成金属晶体[例2]、.关于化学键的下列叙述中,正确的是( ).(A)离子化合物可能含共价键 (B)共价化合物可能含离子键(C)离子化合物中只含离子键 (D)共价化合物中不含离子键[点拨]化合物只要含离子键就为离子化合物。
共价化合物中一定不含离子键,而离子化合物中还可能含共价键。
答案 A 、D[巩固]下列叙述正确的是A. P 4和NO 2都是共价化合物B. CCl 4和NH 3都是以极性键结合的极性分子C. 在CaO 和SiO 2晶体中,都不存在单个小分子D. 甲烷的结构式: ,是对称的平面结构,所以是非极性分子答案:C题型二:各类晶体物理性质(如溶沸点、硬度)比较[例3]下列各组物质中,按熔点由低到高排列正确的是( )A O2 、I2 HgB 、CO 2 KCl SiO 2C 、Na K RbD 、SiC NaCl SO2[点拨]物质的熔点一般与其晶体类型有关,原子晶体最高,离子晶体(金属晶体)次之,分子晶体最低,应注意汞常温液态选B[例4]碳化硅(SiC)的一种晶体具有类似金刚石的结构,其中碳原子和硅原子的位置是交替的。
化学中的化学键与结晶学
化学中的化学键与结晶学化学是一门探索物质构成与转化的科学,而化学键则是组成物质的基本单位。
化学键的特性决定了物质的形态、性质、用途等方面,因此在化学研究中占据着重要的地位。
一、化学键的种类化学键是由原子之间的电子互相吸引形成的,主要有离子键、共价键和金属键三种。
离子键是指由两个带电离子通过静电吸引形成的一种化学键。
共价键是指两个或多个原子通过共用电子,将原子各自的电子云合并在一起形成的一种化学键。
金属键则是指在金属晶体中,金属原子通过共享几个外层电子形成的一种键。
不同类型的化学键具有不同的性质,在实际应用中也具有不同的用途。
例如,离子键通常是稳定的,而共价键则更容易发生反应,因此在材料科学中常用于制造具有特定性质的材料。
二、共价键的结晶形态对于共价键而言,其性质决定了物质的结晶形态。
例如,分子中的共价键通常会形成分子晶体,其中分子通过相互作用形成晶体结构。
因此,分子晶体通常具有独特的形态和性质。
除此之外,共价键还可以形成块状晶体和键合晶体。
块状晶体是指由相同或不同的原子通过共价键相互紧密排列而成的晶体,常见的块状晶体有石墨和金刚石等。
键合晶体则是指化学键的强度大于其他相互作用力,因而形成坚硬无法切割的结晶。
三、化学键的应用化学键在实际应用中有着广泛的用途。
例如,分子晶体常用于药物和化妆品中,因为分子晶体可以提高物质的稳定性和保持原有的化学性质。
块状晶体则可以用于制造耐磨、耐高温的材料,例如石墨是一种高强度、耐腐蚀、导电导热的材料,在制造工业用途中具有广泛的应用。
而键合晶体也具有广泛的用途,例如金刚石的硬度高,常用于工具加工,与此类似的还有氮化硼等化合物材料。
四、结晶学的发展与应用结晶学是研究物质的结晶形成、结构及其性质的科学,是一门涉及化学、物理、数学等多学科的交叉研究。
自从结晶学的出现以来,逐渐对人们的认识材料学产生了非常重要的影响。
结晶学中的理论和方法也被广泛应用于材料的制造技术和生产过程中,欧洲、日本等国家已有一些生产的工艺流程以及生产中解决问题的方案用到了基于结晶学研究的成果。
化学键分子结构与晶体结构
化学键分子结构与晶体结构化学键是指化学元素之间的相互作用力,包括共价键、离子键和金属键。
化学键的不同类型决定了分子或晶体的性质和结构。
共价键是两个原子之间的电子共享。
当两个原子都需要电子来达到稳定的电子壳结构时,它们可以共享一对电子形成一个共价键。
共价键的形成使得原子在空间上非常接近,形成分子。
分子中的化学键可以是单一、双重或三重共价键,取决于共享的电子对数目。
离子键是由于正离子和负离子之间的静电力而形成的。
在离子化合物中,金属元素向非金属元素转移电子,从而形成正离子和负离子。
正离子和负离子之间的相互吸引力引发了离子键的形成。
离子晶体的结构通常由正负离子的周期排列所组成。
金属键是金属元素之间电子共享的结果。
金属元素通常有多个价电子,这些价电子可以自由地在金属中移动。
金属键的形成使得金属元素形成具有特定结晶结构的金属。
金属的物质性质通常是导电、导热和可塑性。
分子结构是由共价键连接的原子所组成的。
分子结构的确定需要知道各个原子之间的连接方式和空间排列。
分子结构的性质直接影响着分子的性质,如化学反应的活性、分子的极性和分子间作用力。
晶体结构是由许多原子、离子或分子按照一定的排列顺序在晶格中组成的。
晶体结构具有高度有序性,可以通过晶体学方法来研究和描述。
晶体结构的种类多种多样,包括离子晶体、共价晶体和分子晶体等。
晶体的结构决定了其物理、化学和光学性质,如晶体的硬度、折射率和热膨胀系数等。
总之,化学键是不同原子之间的相互作用力,可以分为共价键、离子键和金属键。
分子结构是由共价键连接的原子所组成的。
晶体结构是离子、原子或分子按照一定顺序在晶格中排列的结构。
化学键、分子结构和晶体结构共同决定了分子和晶体的性质和行为。
矿物晶体化学(第二章++晶体结构与化学键)
2.2 离子键
主要存在于离子晶体化合物中,本质
上可以归结为静电吸引作用。
常发生在活泼的金属元素—活泼的非
金属元素之间。NaCl是典型的离子键化合
物。
离子极化导致键能加强、键长缩短等
现象;离子键向共价键过渡,使化合物中
存在混合键型。
2.2.1 离子键及其特点
定义:正负离子间的静电吸引力叫做离子键。 特点:离子键既没有方向性也没有饱和性。
3、键角:指键之间的夹角 概念:表征化学键方向性、分子空 间结构的重要参数。 4、键矩:表征原子间键的正负电荷重心 不重合的程度。 键矩为零正负电荷重心重合,为非 极性键。 键矩不为零,为极性键;键矩越大, 键极性越强。
1.1.2 化学键的分类
范德华力 物理键 氢键 键的分类 离子键 化学键共价键 金属键
共价键的键型 键( 成键轨道)头 碰头
原子核连线为对称轴
键,肩并肩 穿过原子核连线有一 节面
共价键形成实例
HF的生成
N2的生成
键
键
2.3.2 杂化轨道理论
同一原子中,不同原子轨道的线性组合,改变原子轨道的
分布方向,有利于成键,但原子轨道的数目不变
杂化轨道的主要类型
sp sp2 sp3 dsp2 dsp3(sp3d) d2sp3(sp3d2) 直线型 平面三角形 正四面体形 平面四方形 三角双锥 正八面体 键角180 键角120 键角109 28’’ 键角90 120和90 90
玻恩-哈伯循环 NaCl 晶体的伯恩-哈伯循环与晶格能分别如下:
1 Ela (NaCl) = sub H m (Na)+Ei (Na)+ Ed (Cl2 ) Eea (Cl) Δ f H m (NaCl) 2
第三章 化学键和晶体结构第一节 离子键和离子晶体
2023/2/19
11
(二)离子晶体及其特征结构
(1)离子晶体(ionic crystals) 靠离子 间引力结合而成的晶体 (2)特点
•晶格结点上交替排列着正、负离子,依静电引力结合 •离子键没有饱和性和方向性,正负离子按一定配位数在空 间排列,不存在单个分子,而是一个巨大的分子,如NaCl只表示 晶体的最简式 •因静电引力较强,离子晶体有较高熔、沸点和硬度。离子 电荷越高,半径越小,静电引力越强,熔、沸点越高,硬度越大 •熔融时或水溶液是电的良导体,但固态不导电
H- 208
Br7+
39
Cr6+
52
Hg2+ 110
B3+
20 Co2+ 74
In3+ 81
Bi5+
74
Cr3+
64
I7+
50
Ba2+ 135 Cu+ 96
I-
216
Be2+ 31
Cs+ 169
K+
133
Li+ 60
La3+ 115
Mn7+ 46
Mn2+ 80
Mo6+ 62
Mg2+ 65
N3- 171
6
离子 半径 离子 半径 离子 半径 离子 半径 离子 半径 离子 半径 离子 半径
Ag+ 126 C4- 260
Fe2+ 76
Al3+
50
Ca2+
99
Fe3+ 60
As3+ 47 Cd2+ 97
F-
136
As3- 222 Cl7+ 26
Ge4+ 53
Au+ 137 C4+
15
Ga3+ 62
Br- 195 Cl- 181
5. 了解价层电子互斥理论的基本要点,并能用其解释多原子分子或离子的空 间构型
高考化学专题复习——化学键、晶体结构
化学键、晶体结构
化学键
1.概念:相邻的两个或多个原子之间强烈的相互作用叫化学键2.分类:离子键
化学键共价键
金属键
一、离子键和离子化合物
1.离子键
(1)概念:由阴阳离子间的静电作用而形成的化学键
[讨论]阴阳离子间的静电作用是否就是阴阳离子间的相互吸引?(2)表示方法
①电子式
②形成过程
2.离子化合物
(1)概念;通过离子键形成的化合物即离子化合物
(2)离子化合物的特点:
二、共价键和共价化合物
1.共价键
(1)概念:原子间通过共用电子对形成的化学键
(2)分类:①极性共价键:同种原子间形成的共价键共价键
②非极性共价键:不同种原子间形成的共价键(3)表示方法:
①电子式
②结构式
③形成过程
2.共价化合物
(1)概念:通过共价键形成的化合物即共价化合物
三、分子结构
四、晶体结构
晶体:通常指通过结晶过程形成的具有规则几何外形的固体。
晶体规则几何外形是其构成微粒有序排列的外部表现
分类:依据构成晶体的微粒及其作用可分为四类。
1.离子晶体
(1)概念:离子通过离子键形成的晶体
(2)构成微粒:阴阳离子,它们间的作用为离子键(3)典型晶体:
①NaCl
每个Na+周围有6个Cl-,每个Cl-周围有6个Na+每个晶胞中Na+、Cl-的计算
(4)性质特点。
化学键和晶体结构
BF3分 子形成
2p 2s
B原子基态
激发
2p
2s
激发态
杂化
重叠
sp2杂化态
sp2–p
规律:第ⅢA族元素与第ⅦA 族元素所形成的MX3型共价化 合物,中心原子往往采取sp2 杂化。如BBr3。
F
BF3的空间构型为
B
+ 3F
B
平面三角形
F
F
在sp2杂化轨道中,每两个轨道间的键角为120° 杂化轨道的能量要比杂化前的能量低,因而有利于分 子的成键。
:
H 121o H
C = C 118o
H
H
N
H
H 107o18'
H
键角和键长 是反映分子 空间构型的 重要参数, 它们均可通 过实验测知
思考ห้องสมุดไป่ตู้ 1、键能与键长的关系:
键长越长,键能越小;
键长越短,键能越大。
2、键能与分子稳定性的关系:
键长越长,键能越小,分子越不稳定; 键长越短,键能越大,分子越稳定。
===90°
c ba
正交 Rhombic abc, ===90°
c
c
c ba
ba
a b
六方 Hexagonal
a=bc, ==90°,
=120°
单斜 Monoclinic
abc ==90°,
90°
三斜 Triclinic
abc ===90°
三种立方点阵形式:面心、体心、简单立方晶胞
配位数:12 质点数:4
3p 3s
激发态
激发
SF6分子形成
杂化
3d
sp3d2杂化态
重叠
3d 3p 3s
高中化学知识点总结:化学键和晶体结构
高中化学知识点总结:化学键和晶体结构1.化学键:相邻原子间强烈的相互作用叫作化学键。
包括离子键和共价键(金属键)。
2.离子建(1)定义:使阴阳离子结合成化合物的静电作用叫离子键。
(2)成键元素:活泼金属(或NH4+)与活泼的非金属(或酸根,OH-)(3)静电作用:指静电吸引和静电排斥的平衡。
3.共价键(1)定义:原子间通过共用电子对所形成的相互作用叫作共价键。
(2)成键元素:一般来说同种非金属元素的原子或不同种非金属元素的原子间形成共用电子对达到稳定结构。
(3)共价键分类:①非极性键:由同种元素的原子间的原子间形成的共价键(共用电子对不偏移)。
如在某些非金属单质(H2、Cl2、O2、P4…)共价化合物(H2O2、多碳化合物)、离子化合物(Na2O2、CaC2)中存在。
②极性键:由不同元素的原子间形成的共价键(共用电子对偏向吸引电子能力强的一方)。
如在共价化合物(HCl、H2O、CO2、NH3、H2SO4、SiO2)某些离子化合物(NaOH、Na2SO4、NH4Cl)中存在。
4.非极性分子和极性分子(1)非极性分子中整个分子电荷分布是均匀的、对称的。
极性分子中整个分子的电荷分布不均匀,不对称。
(2)判断依据:键的极性和分子的空间构型两方面因素决定。
双原子分子极性键→极性分子,如:HCl、NO、CO。
非极性键→非极性分子,如:H2、Cl2、N2、O2。
多原子分子,都是非极性键→非极性分子,如P4、S8。
有极性键几何结构对称→非极性分子,如:CO2、CS2、CH4、Cl4。
几何结构不对称→极性分子,如H2O2、NH3、H2O。
5.分之间作用力和氢键(1)分子间作用力把分子聚集在一起的作用力叫作分子间作用力。
又称范德华力。
①分子间作用力比化学键弱得多,它对物质的熔点、沸点等有影响。
②一般的对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔点、沸点也越高。
(2)氢键某些物质的分子间H核与非金属强的原子的静电吸引作用。
高考化学复习 化学键 晶体结构
魁夺市安身阳光实验学校高考化学复习化学键晶体结构一、理解离子键、共价键的含义。
理解极性键和非极性键。
了解极性分子和非极性分子。
了解分子间作用力。
初步了解氢键。
二、了解几种晶体类型(离子晶体、原子晶体、分子晶体、金属晶体)及其性质。
物质结构的理论是高考的热点之一。
要求理解1.化学键、离子键的概念2.共价键3.极性分子和非极性分子4.晶体的结构与性质5.化学键与分子间力的比较六、如何比较物质的熔、沸点1.由晶体结构来确定.首先分析物质所属的晶体类型,其次抓住决定同一类晶体熔、沸点高低的决定因素.①一般规律:原子晶体>离子晶体>分子晶体如:SiO2>NaCl>CO2(干冰)②同属原子晶体,一般键长越短,键能越大,共价键越牢固,晶体的熔、沸点越高.如:石>砂>晶体硅③同类型的离子晶体,离子电荷数越大,阴、阳离子核间距越小,则离子键越牢固,晶体的熔、沸点一般越高.如:MgO>NaCl④分子组成和结构相似的分子晶体,一般分子量越大,分子间作用力越强,晶体熔、沸点越高.如:F2<Cl2<Br2<I2⑤金属晶体:金属原子的价电子数越多,原子半径越小,金属键越强,熔、沸点越高.如:Na<Mg<Al2.根据物质在同条件下的状态不同.一般熔、沸点:固>液>气.如果常温下即为气态或液态的物质,其晶体应属分子晶体(Hg除外).如惰性气体,虽然构成物质的微粒为原子,但应看作为单原子分子.因为相互间的作用为范德华力,而并非共价键.1.(2008全国Ⅰ卷)下列化合物,按其品体的熔点由高到低排列正确的是()A.SiO2 CaCl CBr4 CF2 B.SiO2 CsCl CF4 CBr4C.CsCl SiO2 CBr4 CF4 D.CF4 CBr4 CsCl SiO2解析:物质的熔点的高低与晶体的类型有关,一般来说:原子晶体>离子晶体>分子晶体;即:SiO2>CsCl>CBr4、CF4。
当晶体的类型相同时,原子晶体与原子半径有关;离子晶体与离子的半径和离子所带的电荷有关;分子晶体当组成和结构相似时,与相对分子质量的大小有关,一般来说,相对分子质量大的,熔点高,即CBr4>CF4。
第六章 化学键和晶体结构
第六章化学键和晶体结构一、知识框架和要求知识框架路易斯理论价键理论共价键现代共价理论杂化轨道理论化学键离子键互斥理论金属键化学键和晶体结构分子轨道理论分子晶体离子晶体晶体结构原子晶体金属晶体分子的极性分子间力取向力、诱导力、色散力对物质物理性质的影响学习要求1.掌握离子键的形成条件及其特征;2.掌握共价键的形成条件和本质及现代价键理论的基本要点,理解共价键的类型,了解键能、键长及键角等参数;3.掌握杂化轨道的概念、杂化轨道的基本类型及其空间构型的关系;4.了解分子轨道理论的基本要点,并能用其解释第一、二周期同核双原子分子的结构和性质;5.理解价层电子互斥理论的基本要点,并能用其解释多原子分子或离子的空间构型;6.理解分子间作用力和氢键对物质某些性质的影响;7.了解金属键的形成、特性和金属键理论的要点;8.掌握晶体的基本类型、性质和特点;了解极化对晶体性质的影响。
二、重点及难点解析1. 离子键、共价键和金属键的比较 化学键类型 离子键 共价键 金属键概念 阴、阳离子间通过静电作用所形成的化学键 原子间通过共用电子对所形成的化学键 金属阳离子与自由电子通过相互作用而形成的化学键 成键微粒阴阳离子 原子 金属阳离子和自由电子 成键性质静电作用 共用电子对 电性作用 形成条件活泼金属与活泼的非金属元素 非金属与非金属元素 金属内部 实例 NaCl 、MgO HCl 、H 2SO 4 Fe 、Mg小问答1:下列关于化学键的说法,正确的是( )A. 构成单质分子的粒子一定含共价键。
B. 由非金属元素组成的化合物不一定是共价化合物。
C. 非极性键只存在于双原子单质分子里。
D. 不同元素组成的多原子分子里的化学键一定是极性键。
解析:列举法。
A 错,因稀有气体构成的单原子分子中不含共价键。
B 对,例如、 等铵盐是非金属元素组成的离子化合物。
C 错,例如在、等物质中键是非极性键。
D 错,例如中键,中键是非极性键。
化学键、分子结构与晶体结构.
键的极性 对称
不对称
共价键的分类
极性分子和非极性分子
空间结构 不对称
空间结构 对称
非
常见分子的构型及其分子的极性
常见分子的构型及其分子的极性
常见分子的构型及其分子的极性
常见分子的构型及其分子的极性
常见分子的构型及其分子的极性
小结
共价键=非极性键(对称)+极性键(不对称) 分子极性=非极性分子(空间对称)+极性分子(空间
sp3不等性杂化轨道
若杂化轨道上有不参与成键的孤对电子,则形成的4个 sp3杂化轨道是不完全相同的,这类杂化轨道称为不等 性杂化轨道。NH3、H2O分子就属于这一类。
NH3不等性杂化
有三个sp3杂化轨道分别被未成对电子占有,和三个H 原子的1s电子形成三个N-H键,第四个sp3杂化轨道则 为孤对电子所占有。该孤对电子未与其他原子共用, 不参与成键,故较靠近N原子,其电子云较密集于N原 子的周围,从而对其他三个被成键电子对占有的sp3杂 化轨道产生较大排斥作用,键角从109.5°压缩到 107.3°。故NH3分子呈三角锥形。
极性分子易溶 于极性溶剂; 非极性分子易 溶于非极性溶
剂中
一般不溶于溶 剂,钠等可与 水、醇类、酸
类反应
NaOH、NaCl 金刚石 P4、干冰、硫 钠、铝、铁
本节小结
共价键的分类 杂化轨道及其分子空间结构 键的极性和分子的极性 氢键 熔沸点跟氢键和分子间作用力的关系
3、了解键的极性与分子的极性、极性分子与非极性分子、分子 间作用力的主要类型、氢键。
4、了解晶体结构的主要类型、各类晶体的结构特点及典型性质。
化学键
化学键
键合电子
共价键
共价键的特点
化学键与晶体结构
H
O = C = O
180°(直线型)
104°30′(折线型)
N
H H H
107°18′(三角锥形)
109°28′(正四面体)
键能
判断共价键的稳定性
键长
确定分子在空间的几何构型 键角
反应热= 所有生成物键能总和-所有反应物键能总和 Nhomakorabea练习
反应 H2(气) + Cl2(气) = 2HCl(气)+179kJ 键能数据:H-H 436kJ/mol H-Cl 431kJ/mol 试回答:⑴ Cl-Cl 的键能是多少? ⑵ 氢分子、氯分子和氯化氢分子中,哪 种分子最稳定?为什么? 解:
2、电子式表示离子化合物的形成过程
用电子式表示氯化钠的形成过程:
· · · · + : ] · → Na [ Cl : Na ·+ Cl · · · ·
· ·
二、常考物质的电子式归纳: H2、Cl2、O2、N2 HCl、H2O、NH3、CH4 、 CCl4、 CO2、CS2、 H2O2、 HClO、C2H4、C2H2、N2H4 、 —OH、—CH3 NaCl、NaOH、NaClO、Na2O2、 NaH、CaC2、 Mg3N2 、 NH4Cl
氟化钙晶胞的结构特点:
① 8个Ca2+ 占据立方体8个顶点,6个Ca2+ 占据立方体的6个面心,8个F-在立方体内; ②Ca2+的配位数为8,F-的配位数为4; ③不存在单个的CaF2 分子,每个晶胞平 均含4个Ca2+ 和8个F-。化学式CaF2 仅表示该 离子晶体中阴、阳离子的个数比为2:1
(4)ZnS型晶胞
(一) 非极性分子:整个分子的电荷分 布均匀的、正负电荷中心重合的分子 是非极性分子。 如: H2、Cl2、N2、O2等。
化学键与晶体类型基础知识归纳
化学键与晶体类型基础知识归纳一、晶体类型1、离子晶体:阴、阳离子以一定的数目比、并按照一定的方式依靠离子键结合而成的晶体。
如“NaCl、CsCl 构成晶体的微粒:阴、阳离子;微粒间相互作用:离子键;物理性质:熔点较高、沸点高,较硬而脆,固体不导电,熔化或溶于水导电。
2、原子晶体:晶体内相临原子间以共价键相结合形成的空间网状结构。
如:金刚石、晶体硅、碳化硅、二氧化硅构成晶体的微粒:原子;微粒间相互作用:共价键;物理性质:熔沸点高,高硬度,导电性差。
3、分子晶体:通过分子间作用力互相结合形成的晶体。
如:所有的非金属氢化物,大多数的非金属氧化物,绝大多数的共价化合物,少数盐(如AlCl3)。
构成晶体的微粒:分子;微粒间相互作用:范德华力;物理性质:熔沸点低,硬度小,导电性差。
4、金属晶体(包括合金):由失去价电子的金属阳离子和自由电子间强烈的作用形成的。
构成晶体的微粒:金属阳离子和自由电子;微粒间相互作用:金属键;物理性质:熔沸点一般较高部分低,硬度一般较高部分低,导电性良好。
二、化学键1、离子键:使阴、阳离子结合成化合物的静电作用。
离子键存在于离子化合物中,活泼的金属与活泼的非金属形成离子键。
2、金属键:在金属晶体中,金属阳离子与自由电子间的强烈相互作用。
金属键存在于金属和合金中。
3、共价键:分子中或原子晶体、原子团中,相邻的两个或多个原子通过共用电子对所形成的相互作用。
(1)非极性共价键:由同种元素的原子间通过共用电子对形成的共价键,又称为非极性键。
存在于非金属单质中。
某些共价化合物分子中也有非极性键,如:H2O2中的O-O键,C2H6中的C-C键等。
少数离子化合物中也有非极性键,如:Na2O2中的O-O键,CaC2中的碳碳三键等。
(2)极性共价键:不同种元素的原子形成分子时共用电子对偏向吸引电子能力强的原子而形成的共价键,又称为极性键。
所有的共价化合物分子中都存在极性键,离子化合物的原子团中也存在极性键。
化学键和晶体类型
化学键与晶体类型教学目标1.理解离子键、共价键的涵义,理解极性键和非极性键。
2.了解极性分子和非极性分子,了解分子间作用力,能用有关原理解释一些实际问题。
3.了解几种晶体类型(离子晶体、原子晶体、分子晶体和金属晶体)及其性质,了解各类晶体内部微粒间的相互作用,能够根据晶体的性质判断晶体类型等。
4.能对原子、分子、化学键等微观结构进行三维空间想像,重视理论联系实际、用物质结构理论解释一些具体问题。
教学内容化学键一、化学键1、概念:相邻的原子之间的强烈的相互作用叫做化学键关键词:相邻、强烈、相互作用(与结合力的区别)2、形成化学键后:(1)原子形成稳定结构(2)原子间存在强烈的相互作用(3)体系能量降低3、化学反应的本质:4、化学键的分类:化学键:二、离子键1. 概念使阴、阳离子结合成化合物的静电作用叫做离子键。
(1)成键粒子:(2)成键条件:活泼的金属元素(IA,IIA)与活泼的非金属元素(VIA,VIIA)①活泼金属元素:Na、K、Ca、Mg……活泼非金属元素:O、S、F、Cl……②活泼的金属元素和酸根阴离子(SO42-,NO3-)及OH-③铵根阳离子和酸根阴离子(或活泼非金属元素)④很活泼的金属与氢气反应生成的氢化物如Na、K、Ca与H。
(3)成键的本质阴阳离子间的静电作用(静电引力和斥力)2、成键的主要原因活泼的原子通过得失电子,形成阴、阳离子,它们之间通过静电引力和斥力达到平衡,从而形成稳定的结构,使体系的能量降低。
IA、IIA和VIA、VIIA 大多数盐离子键的存在所有强碱活泼金属氧化物3. 离子化合物(1)概念:由阴、阳离子相互作用而构成的化合物(含离子键)。
(2)常见的离子化合物强碱、大多数盐、活泼金属氧化物特例:全由非金属元素组成的离子化合物:如NH4NO3(3)含离子键的化合物一定是离子化合物。
4、离子键强弱的判断(了解)离子半径越小,阴阳离子间的作用力越强,离子键越强例:KCl NaCl MgCl2NaCl离子间强弱与性质的关系离子键越强,化合物的熔沸点越高例:KCl NaCl MgO CaO【练练】1、下列说法正确的是:A. 离子键就是使阴、阳离子结合成化合物的静电引力B. 所有金属与所有非金属原子之间都能形成离子键C. 在化合物CaCl2中,两个氯离子之间也存在离子键D. 钠原子与氯原子结合成氯化钠后体系能量降低2、下列各数值表示有关元素的原子序数,其所表示的各原子组中能以离子键相互结合成稳定化合物的是:A. 10与12B.8与17C. 11与17D.6与143. 离子化合物溶于水或熔化时离子键是否发生变化?转化成自由移动的离子,离子键即被破坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【B类】下列叙述正确的是( )A.同周期元素的原子半径为ⅦA族的为最大B.在周期表中零族元素的单质全部是气体C.ⅡA族元素的原子,其半径越大越容易失去电子D.所有主族元素的原子形成单原子离子时的最高价数都和它的族数相等解析:同周期元素原子半径从左到右逐渐减小,A错;零族元素又叫稀有气体元素,B正确;同主族元素半径越大越易失电子,从上到下金属性增强C正确;非金属元素形成单原子离子一般为阴离子,D错。
答案:BC【B类】元素X的原子有3个电子层,最外层有4个电子。
这种元素位于周期表的( ) A.第4周期ⅢA族B.第4周期ⅦA族C.第3周期ⅣB族D.第3周期ⅣA族解析:元素在周期表中的位置由核外电子排布决定,电子层数等于周期序数,最外层电子数等于主族序数。
答案:D【B类】A为ⅡA主族元素,B为ⅢA主族元素,A、B同周期,其原子序数分别为M,N,甲乙为同一主族相邻元素,其原子序数分别为X、Y。
则下列选项中的两个关系式均正确的是( )A. N=M+10 Y=X+2B. N=M+11 Y=X+4C. N=M+25 Y=X+8D. N=M+10 Y=X+18解析:本题考查不同元素原子序数之间关系,同主族元素相差的原子序数等于某个周期的元素种类,同周期ⅡA 、ⅢA 相差1、11、25。
答案:C【B类】已知某元素+3价离子的电子排布式为1s22s22p63s23p63d5,该元素在周期表中属于( )A. VB族B. VⅢ族C. ⅧB族D. V A族解析:由离子的电子排布式可知原子的电子排布式为1s22s22p63s23p63d64s2,为Fe元素,所以该元素在周期表中第四周期,VⅢ族答案:C【A类】已知A、B是周期表中同主族相邻两元素,A、B所在周期分别有m、n种元素,若A的原子序数为x,则B的原子序数可能为( )①x+m;②x-m;③x+n;④x-n;A. ①③B. ①④C. ②③D. ①②③④解析:(1)设A、B为ⅠA族元素,当A处于上一周期时,B的原子序数为x+m;当B处于上一周期时,B的原子序数为x-n。
(2)设A、B为ⅢA族元素,当A处于下一周期时,B的原子序数为x-m;当B处于下一周期时,B的原子序数为x+n。
答案:D【A类】X、Y、Z分别是三种单质,它们都是常见的金属或非金属.M、N、R是常见的三种氧化物.其中一种具有高熔点,而且有如下反应(条件未标出,方程未配平):⑴X + Z → N;⑵M+X → N;⑶ M+Y→ R+X 。
若X是非金属,则组成Y单质的元素在周期表中的位置是A.第二周期ⅣA族B.第二周期ⅥA族C.第三周期ⅡA族D.第三周期ⅣA族解析:本题主要考查常见物质间转化关系,通过题给条件可知,X是变价非金属,Z是氧气,单质和氧化物反应能生成非金属单质只有2Mg+CO2→2MgO+C,则可得Y为Mg答案:C【B类】下列各组物质的性质比较,正确的是( )A.酸性:HClO4>H3PO4>H2SO4B.氢化物稳定性:H2S>HF>H2OC.碱性:NaOH>Mg(OH)2>Ca(OH)2D.氧化性:F2 >Cl2 >Br2 >I2解析:本题考查元素的金属性和非金属性的比较,同主族元素从上到下非金属减弱,金属性增强;同周期元素从左到右金属性减弱,非金属性增强答案:D【B类】下列事实能说明氯的非金属性比硫强的是( )A. 铁与硫反应生成硫化亚铁,而铁与氯气反应时生成氯化铁B. 与金属钠反应,氯原子得一个电子,而硫原子能得两个电子C. 常温时氯气呈气态,而硫呈现固态D. 氯的最高价为+7价,而硫的最高价为+6价解析:A可以说明,因为氯气可以将铁氧化到最高价;元素的非金属性是指得电子的难易程度,和转移的电子的数目有关,B错;物质的化学性质和聚集状态无关,C错;元素的化合价和非金属性无关,不能说明,D错答案:A【B类】W、X、Y、Z均为短周期元素,W的最外层电子数与核外电子总数之比为7:17;X与W同主族;Y的原子序数是W和X的原子序数之和的一半;含Z元素的物质焰色反映为黄色。
下列判断正确的是( )A.金属性:Y﹥ZB. 氢化物的沸点:X﹥WC.离子的还原性:X﹥WD. 原子及离子半径:Z﹥Y﹥X解析:本题考查物质结构和元素周期律。
根据题设条件推知W为Cl、X为F、Y为Al、Z为Na。
选项A,Al、Na 同周期,根据同周期元素递变规律,Na的金属性大于Al。
选项B,HF分子间存在氢键,其沸点高于HCl。
选项C,Cl―的还原性大于F―。
选项D,Cl―的半径大于Na+、Al3+答案:B【B类】下列排列顺序正确的是( )①热稳定性:H2O>HF>H2S②原子半径:Na>Mg>O③酸性:H3PO4>H2SO4>HClO4④结合质子能力:OH->CH3COO->Cl-A.①③B. ②④C. ①④D. ②③解析:①中O和F属于同周期元素,氢化物的稳定性:HF>H2O;②中Na和Mg为第三周期元素,原子半径:Na>Mg,而Mg比O多一个电子层,所以Mg>O;③P、S、Cl属于同周期元素,其酸性:HClO4>H2SO4>H3PO4。
答案:B【B类】甲、乙两种非金属:①甲比乙容易与H2化合;②甲原子能与乙阴离子发生氧化还原反应;③甲的最高价氧化物对应的水化物酸性比乙的最高价氧化物对应水化物酸性强;④与某金属反应时甲原子得电子数目比乙多;⑤甲的单质熔、沸点比乙的低。
能说明甲比乙的非金属性强的事实是( )A. 只有④B. 只有⑤C. ①②③D. ①②③④⑤解析:非金属性的比较可以通过单质与H2化合的难易程度,单质之间置换反应,最高价氧化物水化物的酸性,氢化物的稳定性等方面进行比较。
答案:B【B类】同主族元素所形成的同一类型的化合物,其结构和性质往往相似,化合物PH4I是一种元素晶体,下列对它的描述中不正确的是( )A.它不是一种共价化合物B.在加热时此化合物可以分解C.这种化合物不能跟碱发生反应D.该化合物可以由PH3跟HI化合而成解析:根据同主族元素的性质相同,PH4I和熟悉的NH4Cl相似,是一种离子化合物,受热可以分解,可以和碱反应,可以由PH3跟HI化合而成答案:C【B类】1999年1月,俄美科学家联合小组宣布合成出114号元素的一种同位素,该同位素原子质量数为298。
以下叙述不正确的是( )A.该元素属于第七周期B.该元素位于ⅢA族C.该元素为金属元素,性质与82Pb相似D.该同位素原子含有114个电子和184个中子解析:114号元素在周期表中第七周期,ⅣA族,质量数为298,质子数为114,则中子数为298-114=184答案:B【B 类】A 、B 、C 、D 、E 五种元素在元素周期表中的位置如图所示,已知E 的原子序数为X , 则五种元素的原子序数之和不可能为 ( )A. 5XB. 5X+10C. 5X+14D. 5X+25解析:E 的原子序数为X ,则B 的原子序数必为X+1, D 的原子序数为X-1,A ,C 的原子序数有以下几种情况①A 的为X-8,C 的为X+8。
五种元素的原子序数之和为5X②A 的为X-8,C 的为X+18。
五种元素的原子序数之和为5X+10③A 的为X-18,C 的为X+18。
五种元素的原子序数之和为5X④A 的为X-18,C 的为X+32。
五种元素的原子序数之和为5X+14答案:D【B 类】A 、B 、C 为短周期元素,他们在元素周期表中的位置如图所示,如果B 、C 两种元素的原子序数之和等于A 的核电荷数的4倍,B 、C 的族序数之和为A 的族序数的2倍,则A 、B 、C 分别为 ( )A. Be 、 Na 、AlB. B 、 Mg 、 SiC. O 、 P 、 ClD. C 、 Al 、 P解析:本题主要考查元素在周期表中的位置关系与原子序数关系,可以用代入法判断符合条件的应为C 选项。
答案:C【A 类】两种短周期元素A 和B 组成的化合物中,原子个数最简整数比为1:3,若两种元素的原子序数分别为X 和Y ,则X 和Y 的关系为 ( )① X =Y+5;② X+Y =8;③ X+Y =30 ;④X =Y+8A.①②③B.①②③④C.②③④D.①②④解析:本题关键是能找出短周期元素满足原子个数1:3的物质,根据化合价与周期表中的位置关系,可得符合条件的物质有:BF 3、BCl 3、AlCl 3、AlF 3、PCl 3、NH 3、PH 3,C 2H 6、SO 3等答案:B【A 类】X 、Y 为短周期元素,X 位于IA 族,X 与Y 可形成化合物X 2Y ,下列说法正确的是( )A. X 的原子半径一定大于Y 的原子半径B. X 与Y 的简单离子不可能具有相同的电子层结构C. 两元素形成的化合物中,原子个数比不可能为1︰1D. X 2Y 可能是离子化合物,也可能是共价化合物解析: X 属于短周期的IA 族元素,则X 可能是H 、Li 、Na ,因此X 与Y 形成的化合物X 2Y 可能是离子化合物也可能是共价化合物,如H 2O 、Na 2O ,因此选项A 和B 错。
元素Y 与IA 族元素H 或Na 可形成H 2O 2或Na 2O 2等化合物,在两者化合物中原子个数之比均为1:1,因此选项C 也错。
答案:D【A 类】已知短周期元素的离子a A 2+、b B +、c C 2-、d D -都具有相同的电子层结构,则下列叙 E A B D C述正确的是 ( )A.原子半径A >B >C >DB.原子序数d >c >b >aC.离子半径C >D >B >AD.单质的还原性A >B >D >C解析: 四种离子具有相同的电子层结构,可得A 、B 、C 、D 的位置关系为答案:C【B 类】A 、B 、C 为短周期元素,他们在元素周期表中的位置如图所示,A 、C 两种元素的原子序数之和等于B 的核电荷数。
B 原子核内质子数等于中子数。
① 写出A 、B 、C 三种元素的元素名称A_______;B _______;C ________。
② B 、C 可能形成BC6型化合物,其化学式为______③ 该化合物能否燃烧,试从化合价角度说明理由.解析:由题知,B 的原子序数为上一周期同主族元素的两倍,所以B 为S ,A 为N ,C 为F 。
BC6为SF6SF6硫元素为+6价,处于最高价态不能被氧化。
虽然氟为-1价,但也不能被氧气氧化,所以不能燃烧答案: ①氮、氟、硫。
② SF 6③ SF 6不能燃烧。
SF 6硫元素为+6价,处于最高价态不能被氧化。
虽然氟为-1价,但也不能被氧气氧化,所以不能燃烧【B 类】锂和镁在元素周期表中有特殊的“对角线关系”,它们的性质相似,下列有关锂及其化合物性质的叙述,正确的是 ( )A 、Li 2SO 4难溶于水B 、Li 在氮气中燃烧生成Li 3NC 、LiOH 易溶于水D 、Li 2CO 3受热易分解解析:根据题给信息,Li 的化合物的性质可以参照Mg ,MgSO4易溶于水,A 错;Mg 可以在空气中燃烧生成氮化镁,B 正确;Mg(OH)2难溶于水,所以C 错;MgCO3受热会分解,D 正确。