17.1.3表示无理数
无理数的定义和概念是什么
无理数的定义和概念是什么
无限不循环的小数就是无理数。
换句话说,就是不可以化为整数或者整数比的数。
常见的无理数有非完全平方数的平方根、π等。
一.无理数的定义
无理数,也称为无限不循环小数,不能写作两整数之比。
若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。
二.有理数和无理数的区别
实数分为有理数和无理数。
有理数和无理数主要区别有两点:
(1)有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数)。
把有理数和无理数都写成小数形式时,有理数能写成有限小数或无限循环小数,比如4=4.0;4/5=0.8等等;也可分为正有理数(正整数、正分数),0,负有理数(负整数、负分数),而无理数只能写成无限不循环小数.
(2)所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.因此,无理数也叫做非比数。
三.无理数的性质
1.无理数加(减)无理数既可以是无理数又可以是有理数。
2.无理数乘(除)无理数既可以是无理数又可以是有理数。
3.无理数加(减)有理数一定是无理数。
4.无理数乘(除)一个非0有理数一定是无理数。
人教版八年级下册17.1在数轴上表示无理数教案
⼈教版⼋年级下册17.1在数轴上表⽰⽆理数教案第⼗七章勾股定理第三课时17.1 勾股定理(3)⼀.教学⽬标:1.熟练掌握勾股定理,并能灵活的运⽤勾股定理解决数学中的实际问题。
2.能运⽤勾股定理在数轴上画出表⽰⽆理数的点,进⼀步体会数形结合的思想及数轴上的点与实数⼀⼀对应的理论。
3.通过研究⼀系列富有探究性的问题,培养学⽣与他⼈交流、合作的意识和品质.⼆.重点与难点:重点:运⽤勾股定理解决数学中的问题。
难点:勾股定理的灵活运⽤。
三.学情分析:在此之前,学⽣已学过在数轴上表⽰有理数和勾股定理。
但勾股定理的运⽤不太熟悉。
对于⼀些特殊的⽆理数(带根号的)如何在数轴上准确表⽰它们。
可仿造前⾯有理数表⽰⽅法来学习,所以关键是借助勾股定理来⽤线段表⽰这⼀⽆理数是本节的难点。
四.教学过程:(⼀)回顾复习1.叙述勾股定理的内容?2. 在RT△ABC中,∠C=90°,已知:c=17 b=8 求a已知:c=13 a=5 求 b3.什么是数轴?实数与数轴上的点具有什么关系?4.在数轴上画出表⽰下列各数的点:3、1、0、-2.5、 -4.(⼆)⾃主学习学⽣阅读课本26页练习下和27页,思考并回答:1.在数轴上表⽰5的点到原点的距离为5. 表⽰-3.4的点到原点的距离为3.4,那么表⽰13的点,到原点的距离就是132.在数轴上要画出表⽰⼀个数的点,⾸先要画出表⽰这个数绝对值的线段.3. 如何画出表⽰13的线段。
由勾股定理知,直⾓边为1的等腰Rt△,斜边为2.因此在数轴上能表⽰2那么长为13的线段能否是直⾓边为正整数的直⾓三⾓形的斜边,通过下⾯的⽹格可以知道,两条直⾓边的长是2,3的直⾓三⾓形的斜边长为13。
(三)新知学习在数轴上作出表⽰的点。
作法:(1)在数轴上找到点A ,使OA=3;(2)过点A 作直线垂直于OA ,在上取点B, 使AB=2,那么OB=13;(3)以原点O 为圆⼼,以OB 为半径作弧,弧与数轴交于点C ,则OC=13.如图,在数轴上,点C 为表⽰13 的点。
八年级数学下册教学课件《勾股定理》(第3课时)
3.以原点O为圆心,以OB为半径作弧,弧与数轴交于C
点,则点C即为表示 13 的点.
l B 13 2
3
O 0
1
A•
2 3 C4
也可以使OA=2, AB=3,同样可
以求出C点.
探究新知
17.1 勾股定理
方法点拨
利用勾股定理表示无理数的方法: (1)利用勾股定理把一个无理数表示成直角边是两个正 数的直角三角形的斜边. (2)以原点为圆心,以无理数斜边长为半径画弧与数轴 存在交点,在原点左边的点表示是负无理数,在原点右边 的点表示是正无理数.
解:如图所示,有8条.
一个点一个点地 找,不要漏解.
巩固练习
17.1 勾股定理
如图,在5×5正方形网格中,每个小正方形的边 长均为1,画出一个三角形的长分别为 2 、2、10 .
解:如图所示. A C
B
探究新知
17.1 勾股定理
知识点 4 利用勾股定理在折叠问题中求线段的长度
如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折 叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3, 求AM的长.
能力提升题
在△ABC中,AB、BC、AC三边的长分别为 5、10、13,求这个三
角形的面积.小辉同学在解答这道题时,先建立一个正方形网格
(每个小正方形的边长为1),再在网格中画出格点△ABC(即 △ABC三个顶点都在小正方形的顶点处),如图所示.这样不需 求△ABC的高,而借用网格就能计算出它的面积.
探究新知
17.1 勾股定理
问题2 长为 13 的线段是直角边的长都为正整数的直角三角 形的斜边吗?
13 ?
13 ?
13 ?
1
数学人教版八年级下册17.1 (3) 数轴表示根号a 教学设计
优质资料---欢迎下载17.1.3 勾股定理的应用(3))a为正整数一、内容和内容解析1.内容勾股定理的应用(3))a为正整数.2.内容解析勾股定理是中学数学重要定理之一,它揭示了直角三角形三边之间的数量关系.把三角形有一个直角的“形”的特点,转化为三角形三边之间的“数”的关系,是数形结合的典范.勾股定理可以解决许多直角三角形中的计算、证明问题,它有着悠久的历史,在数学发展中起着重要的作用,在现实世界中有着广泛的应用.是初中数学教学内容的重点之一.基于以上分析,确定本节课的教学重点为:会利用勾股定理在数轴上表示出一个无理数)a为正整数的点.二、目标和目标解析1.教学目标(1))a为正整数的点.(2)经历观察—猜想—归纳—验证的数学发现过程,发展合情推理的能力,体会数形结合、化归、对应等数学思想.2.目标解析目标(1) )a为正整数为一边的直角三角形,画出)a为正整数)a为正整数的点的目标.目标(2)要求学生在学习过程中,不断运用勾股定理,体会勾股定理的教育价值。
提高)a为正整数的点的方法的同一性和灵活性.三、教学问题诊断分析通过前面的数学学习,学生已经熟练掌握勾股定理:如果直角三角形两直角边分别为a、b,斜边为c,那么222+=.)a b ca为正整数为斜边的直角三角学生应该)a为正整数为直角边的直角三角形学生不容易想到.这一阶段的学生能积极参与数学学习活动,对数学学习有较强的好奇心和求知欲,他们能探索具体问题中的数量关系和变化规律,也能较清楚地表达解决问题的过程及所获得的解题经验,他们愿意对数学问题进行讨论,并敢于对不懂的地方和不同的观点提出自己的疑问.)a为正整数为直角边的直角三角形的另外两条边长.四、教学支持条件分析根据本节课教材内容的特点,为了帮助学生更直观、形象的观察,借助flash动画和多媒体工具教学,化静为动,化抽象为具体.五、教学过程设计1.情景激趣问题1:请同学们看投影上的两幅图片,它们是?(海螺图)数学上也有这样一幅美丽的海螺型图案,我们称它为数学海螺图.第七届国际数学教育大会的会徽就是用的这个图案.这幅数学海螺图是如何画成的呢?这节课的最后我再为同学们揭晓答案.数学海螺图设计意图:通过联系生活中的实物,将数学几何图形与实际联系,激发学生学习数学的兴趣.2.复习引入我们知道,有理数和无理数统称为实数,实数和数轴上的点是一一对应的.请用数轴上的点表示下列各数(请学生上黑板指)问题2:这些数都是什么类型的实数?(有理数)我们能较容易的在数轴上找到它们对应的点.)a为正整数的无理数表示出来是我们这节课要学习的内.容.设计意图:通过在网格中发现可以沿网格线构造直角边为整数的直角三角形,所求线段为斜边,利用勾股定理求出相应线段的长.问题3:这里用什么方法求出线段AB、CD、EF的长?总结:构造直角三角形,利用勾股定理求得第三边.设计意图)a为正整数的线段.3.画图探究活动1.可以构造一个两条直角边长都为1的直角三角形,斜边长即为如图,在数轴上找出表示1的点A,则OA=1,过点A作直线l垂直OA,在l上取点B,使AB=1.活动2:练习.1、2、在数轴上画出对应的点.先独立完成,然后小组交流画法是否一样.问题5)a为正整数的方法?归纳:构造一个直角三角形,通过先作出其余两边,再运用勾股定理构造出第三边)a为正整数.4.能力提升请先独立思考,并尝试动手画一画,然后小组内进行交流讨论.可能出现的画法预设:3不能分成两个正整数的平方和,引导学生自己想方法构造设计意图.1不是定向思维只能把无理数作为斜边.种画法,并比较这两种画法.造一个直角三角形))a为正整数的点有一个更直观生动的认识,并能体会画图方法的灵活性.5.回归图形回到本节课的开始,数学海螺图是如何画成的呢?设计意图:前后呼应,让学生感受数学的图形之美,体会学习数学的价值.6.课堂小结(1)本节课你学到了什么知识?(2)这个知识是用什么方法研究的?设计意图)a为正整数的线段的方法.体会数形结合思想和化归思想.六、目标检测设计.1.a为正整数的线段这一运用的掌握情况.2.在数轴上画出表示8的点.设计意图:考查学生灵活运用所学知识的能力.。
部编版八年级下册课件利用勾股定理作图与计算
用同样的方法作
呢?
如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,求重叠部分△AFC的面积.
距离为多少?(杯壁厚度不计)
l
如图,分别以等腰Rt△ACD的边AD、AC、CD为直径画半圆.
例3 如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8,BC=10,求EC的长.
新知探究
在5×5的正方形网格中,每个小正方形的边长 都为1,求线段AB的长.
B AB 2
B
AB 5
B AB2 2
例1 在如图所示的6×8的网格中,每个小正
方形的边长都为1,写出格点△ABC各顶点的坐
标,并求出此三角形的周长. 勾股定理与网格的综合求线段长时,通常是把线段放在与网格构成的直角三角形中,利用勾股定理求其长度.
1
2
?1
2 ?5 1
?1 3 2
3
新知探究
1. 你能在数轴上表示出 2 的点吗? 2 呢?
21
2 -1
0
11
2
25
3 4
6
3
7
用同样的方法作 3, 4, 5, 6,以作出长为 2, 3, 5 的线段.
1
12
34
5
“数学海螺”
思考 根据以下问题你能在数轴上画出表示 1 3 的点吗?
我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数. 例1 在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格点△ABC各顶点的坐标,并求出此三角形的周长. 通常与网格求线段长或面积结合起来 思考 根据以下问题你能在数轴上画出表示 的点吗? 例1 在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格点△ABC各顶点的坐标,并求出此三角形的周长. 如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,求重叠部分△AFC的面积. 你能在数轴上分别画出表示3,的点吗? 作直线l⊥OA,在l上取一点B,使AB=2; 例2 如图,在2×2的方格中,小正方形的边长 变式2:如图,圆柱形玻璃杯高为14 cm,底面周长 距离为多少?(杯壁厚度不计) 思考 根据以下问题你能在数轴上画出表示 的点吗? (已知油罐的底面半径是2 m,高AB是5 m,π取3)? 思考 根据以下问题你能在数轴上画出表示 的点吗? 相对的点A处,问蚂蚁从外壁A处到内壁B处的最短 你能在数轴上画出表示 的点吗? 求证:所得两个月型图案AGCE和DHCF的面积之和(图中阴影部分)等于Rt△ACD的面积. 如图,分别以等腰Rt△ACD的边AD、AC、CD为直径画半圆.
17.1 勾股定理(2)勾股定理的应用 参考解析
17.1 勾股定理第2课时勾股定理的应用课前预习1.应用勾股定理的前提条件是在直角三角形中.如果三角形不是直角三角形,要先构建直角三角形,再利用勾股定理求未知边的长.2.利用勾股定理可以解决与直角三角形有关的计算和证明,其主要应用如下:(1)已知直角三角形的任意两边求第三边;(2)已知直角三角形的任意一边,确定另外两边的关系;(3)证明包含平方关系的几何问题;(4)构造方程(或方程组)计算有关线段的长.3.一般地,n为正整数),通常是利用勾股定理作图.课堂练习知识点1 勾股定理的实际应用1.如图,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=___2___.2.【核心素养·数学抽象】如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要___7___米.3.(教材改编)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑___0.5___米.【解析】在Rt△ACB中,根据勾股定理,得AC=22-=2.在2.5 1.5AB CB-=22Rt△ECD中,根据勾股定理,得CE=22-=1.5.∴AE=AC -ED CD2.52-=22CE=2-1.5=0.5.即滑竿顶端A下滑0.5米.故答案为0.5.4.如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度﹒于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线未端刚好接触地面.请你帮小旭求出风筝距离地面的高度AB.解:根据题意,得AC=AB+1,BC=5米.在Rt△ABC中,BC2+AB2=(1+AB)2.解得AB=12(米).答:风筝距离地面的高度AB 为12米.5.放学以后,小东和晓晓从学校分手,分别沿东南方向和西南方向回家,若小东和晓晓行走的速度都是40米/分钟,小东用15分钟到家,晓晓用20分钟到家,求小东和晓晓家的直线距离.解:根据题意作图,由图可知△ABO是直角三角形,OA=40×20=800(米),OB=40×15=600(米).在Rt△OAB中,根据勾股定理,得(米).答:小东和晓晓家的直线距离为1 000米.知识点2 在数轴上表示无理数6.(2020玉溪红塔区期末)如图,数轴上的点A表示的数是-2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为(C).7.用直尺和圆规在如图所示的数轴上作出表示解:∵32+22=13,3和2的直角三角形的斜边长.∴课时作业练基础1.如图是由4个边长为1的正方形构成的“田字格”,只用没有刻度的直尺在这___8___条.30°,则以它的腰长为边2.有一个面积为的正方形的面积为___20___.3.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行(B)A.8米B.10米C.12米D.14米4.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1,图2,推开双门,双门间隙C,D的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10 寸),则AB的长是(C)A.50.5寸B.52寸C.101寸D.104寸5.(2020盘龙区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为 1.5米,则小巷的宽为(C)A.2.5米B.2.6米C.2.7米D.2.8米【解析】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B2,∴BD2+1.52=6.25.∴BD2=4.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.故选C.6.如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标在(B)A.-3和-2之间B.-4和-3之间C.-5和-4之间D.-6和-5之间7.如图,在边长为1的正方形网格中,△ABC的三边a,b,c的大小关系是(B)A.c<b<aB.c<a<bC.a<c<bD.a<b<c8.(教材改编)小明拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿的长和门的高. 解:根据题意作图,由图可知AD=4尺.设门高AB为x尺,则竹竿的长BD为(x+1)尺.在Rt△ABD中,由勾股定理得AB2+AD2=BD2,即x2+42=(x+1)2,解得x=7.5.则x+1=8.5.答:竹竿的长为8.5尺,门高为7.5尺.9.【核心素养·数学抽象】一根直立的旗杆AB长 8 m,一阵大风吹过,旗杆从C点处折断,顶部(B)着地,离杆脚(A)4 m,如图.工人在修复的过程中,发现在折断点C的下面1.25 m 的D处,有一明显伤痕,如果下次大风将旗杆从D 处刮断,则杆脚周围多大范围内有被砸伤的危险?解:在Rt △ABC 中,设AC 的长为x m ,则BC 的长为(8-x )m.根据勾股定理,得AC 2+AB 2=BC 2,即x 2+42=(8-x )2.解得x=3,即AC=3.当从点D 处折断时,AD=AC-CD=3-1.25=1.75,∴BD=8-1.75=6.25.∴AB=3675.125.62222=-=-AD BD =6 (m ).答:杆脚周围6 m 范围内有被砸伤的危险.10.如图,铁路上A ,B 两站(视为直线上的两点)相距25 km ,DA ⊥AB 于点A ,CB ⊥AB 于点B ,DA=15 km ,CB=10 km ,现要在铁路上建设一个土特产收购站E ,使得C ,D 两村到收购站E 的距离相等,则收购站E 应建在距离A 站多少km 处?解:∵C ,D 两村到E 点的距离相等,∴CE=DE.在Rt △DAE 和Rt △CBE 中,根据勾股定理,得DE 2=AD 2+AE 2,CE 2=BE 2+BC 2,∴AD 2+AE 2=BE 2+BC 2.设AE=x km ,则BE=(25-x )km.x 2+152=(25-x)2+102.解得x=10.答:收购站E 应建在距离A 站10 km 处.提能力11.如图,小正方形的边长为1,连接小正方形的三个顶点,可得△ABC ,则BC 边上的高是( A )A.223 B.1055 C.553 D.554【解析】由图形,根据勾股定理可得ABC 的面积为2×2-12×1×1-12×1×2-12×1×2=4-12-2=32,再根据△ABC 面积的不同计算方法得32=12BC 边上的高.故选A. 12.有一辆装满货物的卡车,高5 m ,宽3.2 m (货物的顶部是水平的),要通过如图所示的截面的上半部分是半圆,下半部分是长方形的隧道,已知半圆的直径为4 m ,长方形竖直的一条边长是4.6 m.这辆卡车能否通过此隧道?请说明理由.解:能通过. 理由如下:如图,设O 为半圆的圆心,AB 为半圆的直径,在OB 上截取OE=3.2÷2=1.6(m ),过点E 作EF ⊥AB 交半圆于点F ,连接OF.在Rt △OEF 中,OF 2=OE 2+EF 2,即22=1.62+EF 2,解得EF=1.2 m.因为1.2+4.6=5.8(m )>5 m ,所以这辆卡车能通过此隧道.。
17.1.3勾股定理应用2(数轴上表示无理数)
A
B
D
B
∴点C即为表示 13 的点
A
0
1
2
3 C 4
你能画出斜边为
的直角三角形吗? 5
5
2
1
1、在数轴上表示 —
5
的点吗?
数学海螺图:
利用勾股定理作出长为
1,
2,
3,
4,
5 的线段.
17
1
1
2
3 4 5
6
2、在数轴上画出表示
的点 17 的点 20
3、在数轴上画出表示
小结:
•说说你的本节课的 收获?
35154545232312312345探索规律在数轴上表示的数右边的数总比左边的351535115
17.1勾股定理(3)
---在数轴上画出无理数
勾股定理(gou-gu theorem)
直角三角形两直角边的平方和等 于斜边的平方。
符号语言:
a
c
∵Rt△ABC中,∠C=90°
b
∴ a b c
2 2
如图,小颍同学折叠一个直角三 角形的纸片,使A与B重合,折痕为 DE,若已知AC=10cm,BC=6cm,你 B 能求出CE的长吗?
D
10-x
A
E
6
x C
2.矩形ABCD如图折叠,使点D落 在BC边上的点F处,已知AB=8, BC=10,求折痕AE的长。Aຫໍສະໝຸດ D EBF
C
3.RtΔABC中,AB比BC多2,AC=6, 如图折叠,使C落到AB上的E处, 求CD的长度, C
C
B D A
3、蚂蚁沿图中的折线从A点爬到D点,一共爬 了多少厘米?(小方格的边长为1厘米) G A
人教版八下数学17.1 课时3 利用勾股定理作图或计算教案+学案
人教版八年级下册数学第17章勾股定理17.1 勾股定理课时3 利用勾股定理作图或计算教案【教学目标】1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【教学重点】会运用勾股定理确定数轴上表示实数的点及解决网格问题.【教学难点】灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【教学过程设计】一、情境导入[过渡语] 上一节课,我们学会了利用勾股定理解决生活中的实际问题.本节课我们将继续研究勾股定理的综合运用.我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上找到表示的点吗?表示的点呢?[设计意图] 在七年级时,学生只能找到数轴上的表示有理数的点,而对于表示像,这样的无理数的点却找不到.学习了勾股定理后,这样的问题就可以得到解决.由旧入新,开门见山导入新课.[过渡语]同学们,我们一起来欣赏一幅图片:这个美丽的图案是怎么画出来的呢?它依据的是什么数学知识?[设计意图] 以图案导入,在直观形象的图案欣赏中吸引了学生的注意力,加上巧妙设问,为新课的展开做好了铺垫.二、合作探究1.利用勾股定理证明HL定理[过渡语]让我们一起来探究下面的问题:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?师生共同画图,写出已知、求证.引导学生关注画图的过程,思考哪些元素相等.已知:如图所示,在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,AB=A'B',AC=A'C'.求证:Rt△ABC≌Rt△A'B'C'.〔解析〕要证明Rt△ABC≌Rt△A'B'C',难以找到锐角对应相等,只有找第三边相等,发现可以根据勾股定理得到BC=,B'C'=,容易得到BC=B'C'.证明:在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,根据勾股定理,得:BC=,B'C'=.又AB=A'B',AC=A'C',∴BC=B'C'.∴△ABC≌△A'B'C'(SSS).2.利用勾股定理在数轴上表示无理数思路一[过渡语]下面我们回到导入一的问题,一起来看:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上找到表示的点吗?表示的点呢?学生回忆以前的作法,并运用勾股定理计算,长为的线段是两条直角边的长都为1的直角三角形的斜边.学生尝试在数轴上找到表示的点.OB是以数轴的单位长度为边的正方形的对角线,以数轴的原点为圆心、OB长为半径画弧,交数轴正半轴于点A,则点A表示的数是.小组交流讨论:找到长为的线段所在的直角三角形.教师可指导学生寻找长为,……这样的包含在直角三角形中的线段.逐步引导学生得出,由于在数轴上表示的点到原点的距离为,所以只需画出长为的线段即可.设c=,两直角边为a,b,根据勾股定理得a2+b2=c2,即a2+b2=13,若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3.所以长为的线段是直角边长为2,3的直角三角形的斜边.学生在数轴上画出表示的点.教师根据巡视情况指导步骤如下:(1)在数轴上找到点A,使OA=3;(2)作直线l垂直于OA,在l上取一点B,使AB=2;(3)连接OB,以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点.学生自由作图,教师适当指导.利用勾股定理作出长为,,……的线段,按照同样方法,在数轴上画出表示,,……的点.[设计意图]利用勾股定理和数轴上的点表示实数,将数与形进一步联系在一起,渗透数形结合思想,加深对勾股定理、数轴和实数的理解.思路二引导学生观察图案发现:图形由若干个直角三角形形成,是根据我们所学的勾股定理来完成的.最后教师总结画图的方法:先构造出直角边长为1的等腰直角三角形,并以前一个三角形的斜边及长度为1的线段为直角边,以此向外画直角三角形,就可以得到问题中的图案了.提问:我们知道是两条直角边的长都为1的直角三角形的斜边的长,可是在数轴如何表示出?如何表示出呢?学生根据观察的结果思考在数轴上如何表示出,.教师根据情况指点.追问:你能在数轴上找出表示的点吗?学生讨论:利用勾股定理把长为的线段看成一个直角三角形的斜边,那么两条直角边长分别是哪两个正整数?学生发现()2=22+32后,尝试作图,教师讲解,师生再共同完成.作法:在数轴上找到点A,使OA=3;过点A作直线l垂直于OA,在l上取一点B,使AB=2,连接OB,以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C 即为表示的点.[设计意图]通过观察感知,讨论分析,规范作图,一步紧扣一步,让学生明白如何利用勾股定理在数轴上找到表示无理数的点.[知识拓展]在数轴上表示无理数时,将在数轴上表示无理数的问题转化为画长为无理数的线段问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中两条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点为圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.3.例题讲解(补充)如图所示,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形ABCD的面积.学生讨论:如何构造直角三角形?比较发现:可以连接AC,或延长AB,DC交于F,或延长AD,BC交于E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单.解:延长AD,BC交于E,如图所示.∵∠A=60°,∠B=90°,∴∠E=30°.∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==4.DE2=CE2-CD2=42-22=12,DE==2.∴S四边形ABCD=S△ABE-S△CDE= AB·BE- CD·DE=6.[解题策略]不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差.三、课堂小结师生共同回顾本节课所学主要内容:1.用勾股定理在数轴上表示无理数,构造长为无理数的线段放在直角三角形中,有时是直角边,有时是斜边.2.求不规则图形的面积,应用割补法把图形分解为特殊图形,四边形中常常通过作辅助线构造直角三角形,以利用勾股定理.【板书设计】17.1 勾股定理课时3 利用勾股定理作图或计算1.利用勾股定理证明HL定理2.利用勾股定理在数轴上表示无理数3.例题讲解例题.【教学反思】在课堂教学中注重数学与生活的联系,注重数学知识的应用,从学生认知规律和接受水平出发,循序渐进地引入新课,成功地引导学生会将长为无理数的线段看成一个直角三角形的斜边,再按照尺规作图的要求,在数轴上找出表示无理数的点.由于学生尺规作图的能力较差,学生在确定了作图思路之后,却难以按照尺规作图的步骤完成作图.教师指导在数轴上找出表示无理数的点,示范作图步骤.教学中,根据学生的基础情况,适当进行复习,帮助学生解决学习中的困难.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时3 利用勾股定理作图或计算学案【学习目标】1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【学习重点】会运用勾股定理确定数轴上表示实数的点及解决网格问题.【学习难点】灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【自主学习】一、知识回顾1.我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数.你能在数轴上分别画出表示3,-2.5的点吗?2.求下列三角形的各边长.二、合作探究知识点1:勾股定理与数轴呢?(提示:可以构造直角三角形想一想 1.你能在数轴上表示出2的点吗?2作出边长为无理数的边,就能在数轴上画出表示该无理数的点.)2.长为13的线段能是这样的直角三角形的斜边吗,即是直角边的长都为正整数?3.13.(1)在数轴上找到点A,使OA=______;(2)作直线l____OA,在l上取一点B,使AB=_____;(3)以原点O为圆心,以______为半径作弧,弧与数轴交于C点,则点C即为表示______的点.要点归纳:利用勾股定理表示无理数的方法:(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.类似地,利用勾股定理可以作出长2,3,5为线段,形成如图所示的数学海螺.【典例探究】例1如图,数轴上点A所表示的数为a,求a的值.易错点拨:求点表示的数时注意画弧的起点不从原点起,因而所表示的数不是斜边长.【跟踪检测】1.如图,点A表示的实数是()A. 3B. 5C. 3D.5--2.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2B.5 1C.10 1D.53.你能在数轴上画出表示17的点吗?知识点2:勾股定理与网格综合求线段长【典例探究】第1题图第2题图例2 在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格点△ABC 各顶点的坐标,并求出此三角形的周长.方法总结:勾股定理与网格的综合求线段长时,通常是把线段放在与网格构成的直角三角形中,利用勾股定理求其长度.例3 如图,在2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,求AB边上的高.方法总结:此类网格中求格点三角形的高的题,常用方法是利用网格求面积,再用面积法求高.【跟踪检测】1.如图是由4个边长为1的正方形构成的田字格,只用没有刻度的直尺在这个田字格中最多可以作出多少条长度为5的线段?2.如图,在5×5正方形网格中,每个小正方形的边长均为1,画出一个三角形的长分别为2,2,10.知识点3:勾股定理与图形的计算【典例探究】例4 如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.方法总结:折叠问题中结合勾股定理求线段长的方法:(1)设一条未知线段的长为x(一般设所求线段的长为x);(2)用已知线数或含x的代数式表示出其他线段长;(3)在一个直角三角形中应用勾股定理列出一个关于x的方程;(4)解这个方程,从而求出所求线段长.变式题如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,求AM的长.【跟踪检测】1.如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD 的面积.三、知识梳理利用勾股定理作图或计算在数轴上表示出无理数的点利用勾股定理解决网格中的问题通常与网格求线段长或面积结合起来利用勾股定理解决折叠问题及其他图形的计算通常用到方程思想四、学习中我产生的疑惑【学习检测】1.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.25BA2.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后点D做一条垂直于数轴的线段CD,CD为3个单位第1题图第2题图第3题图长度,以原点为圆心,以到点C的距离为半径作弧,交数轴于一点,则该点位置大致在数轴上()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.如图,网格中的小正方形边长均为1,△ABC的三个顶点均在格点上,则AB边上的高为_______.4.边长分别为2cm和3cm的长方形的一条对角线长为_______cm.5.如果等腰直角三角形的斜边长为_______cm,那么这个三角形的面积是_______cm2.6. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为_______.7. 如图,A是数轴上一点,以OA为边长作正方形ABCO,以OB为半径作半圆交数轴于P1、P2两点.(1)当点A表示的数是1时,P1表示的数是_______,P2表示的数是_______;(2) 当点A表示的数是2时,P1表示的数是_______,P2表示的数是_______.8. 边长为3的正方形的一条对角线长是_______.9.如图,在四边形ABCD中,AB=AD=8cm,∠A=60°,∠ADC=150°,已知四边形ABCD的周长为32cm,求△BCD的面积.10. 如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,求重叠部分△AFC的面积.11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角,则梯子的顶端沿墙面升高了多少米?12.问题背景:在△ABC中,AB、BC、AC三边的长分别为5103a、、,求这个三角形的面积.王琼同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)求△ABC的面积;a a a(a>0),请利用图②的正方形网格(每(2)若△ABC三边的长分别为5,22,17个小正方形的边长为a)画出相应的△ABC,并求出它的面积.图①图②13.如图所示,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是,点B表示的数是.14.如图所示,在Rt△AOB中,OB=1,AB=2,以原点O为圆心,OA为半径画弧,交数轴负半轴于点P,则点P表示的实数是.15.如图所示,4×4方格中每个小正方形的边长都为1.(1)直接写出图(1)中正方形ABCD的面积及边长;(2)在图(2)的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的格点上),并把图(2)中的数轴补充完整,然后用圆规在数轴上表示实数.。
人教版八年级下册 17.1 在数轴上表示无理数 教学设计
17.1 勾股定理 数轴表示根号13万全区第一初级中学 郭秀一、教学目标知识与技能1.利用勾股定理,能在数轴上找到表示无理数的点.2.进一步学习将实际问题转化为直角三角形的数学模型,•并能用勾股定理解决简单的实际问题.过程与方法1.经历在数轴上寻找表示地理数的总的过程,发展学生灵活勾股定理解决问题的能力.2.在用勾股定理解决实际问题的过程中,体验解决问题的策略,•发展学生的动手操作能力和创新精神.3.在解决实际问题的过程中,学会与人合作,并能与他人交流思维过程和结果,形成反思的意识.情感、态度与价值观1.在用勾股定理寻找数轴上表示无理数点的过程中,•体验勾股定理的重要作用,并从中获得成功的体验,锻炼克服困难的意志,建立自信心.2.在解决实际问题的过程中,形成实事求是的态度以及进行质疑和独立思考的习惯.二、教学重、难点重点,……这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.三、教学准备 多媒体课件四、教学方法分组讨论,讲练结合五、教学过程(一)复习回顾,引入新课复习勾股定理的内容.本节课探究勾股定理的综合应用.思考:在八年级上册中我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗? 先画出图形,再写出已知、求证. 探究:的点呢?(设计意图:上一节,我们利用勾股定理可以解决生活中的不少问题.在初一时我们只能找到数轴上的一些表示有理数的点,……这样的无理数的数点却找不到,的线段就可以,勾股定理的又一次得到应用.)师生行为:学生小组交流讨论此活动,教师应重点关注:这样的线段所在的直角三角形;②学生是否有克服困难的勇气和坚强的意志;③学生能否积极主动地交流合作.的线段即可.1的直角三角形的斜边.的线段能否是直角边为正整数的直角三角形的斜边呢?生:设,两直角边为a,b,根据勾股定理a2+b2=c2即a2+b2=13.若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3.•的线段是直角边为2,3的直角三角形的斜边.的点.生:步骤如下:1.在数轴上找到点A,使OA=3.2.作直线L垂直于OA,在L上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点.13(二)新课教授例1、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4 800米处,过了10秒后,飞机距离这个男孩头顶5 000米,飞机每小时飞行多少千米?分析:根据题意,可以画出图,A点表示男孩头顶的位置,C、B•点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.解:根据题意,得Rt△ABC中,∠C=90°,AB=5 000米,AC=4 800米.由勾股定理,得AB2=AC2+BC2.即5 0002=BC2+4 8002,所以BC=1 400米.飞机飞行1 400米用了10秒,那么它1小时飞行的距离为1 400×6×60=50 400米=504千米,即飞机飞行的速度为504千米/时.评注:这是一个实际应用问题,经过分析,问题转化为已知两边求直角三角形等三边的问题,这虽是一个一元二次方程的问题,学生可尝试用学过的知识来解决.同时注意,在此题中小孩是静止不动的.例2、如右图所示,某人在B处通过平面镜看见在B正上方5米处的A物体,•已知物体A 到平面镜的距离为6米,向B点到物体A的像A′的距离是多少?分析:此题要用到勾股定理,轴对称及物理上的光的反射知识.解:如例2图,由题意知△ABA′是直角三角形,由轴对称及平面镜成像可知:AA′=2×6=12米,AB=5米;在Rt△A′AB中,A′B2=AA′2+AB2=122+52=169=132米.所以A′B=13米,即B点到物体A的像A′的距离为13米.评注:本题是以光的反射为背景,涉及到勾股定理、轴对称等知识.由此可见,数学是物理的基础.例3、在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,•问这里的水深是多少?解:根据题意,得到右图,其中D 是无风时水草的最高点,BC 为湖面,AB•是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB ,BC ⊥AD .所以在Rt △ACB 中,AB 2=AC 2+BC 2,即(AC+3)2=AC 2+62,AC 2+6AC+9=AC 2+36.6AC=27,AC=4.5,所以这里的水深为4.5分米.评注:在几何计算题中,方程的思想十分重要.(设计意图:让学生进一步体会勾股定理在生活中的应用的广泛性,同时经历勾股定理在物理中的应用,由此可知数学是物理的基础,方程的思想是解决数学问题的重要思想.)师生行为:先由学生独立思考,完成,后在小组内讨论解决,教师可深入到学生的讨论中去,对不同层次的学生给予辅导.在此活动中,教师应重点关注:② 学生是否自主完成上面三个例题;②学生是否有综合应用数学知识的意识,特别是学生是否有在解决数学问题过程中应用方程的思想.例4的点.是两直角边为4和1的点如下图:(设计意图:进一步巩固在数轴上找表示无理数的点的方法,熟悉勾股定理的应用.) 师生行为:由学生独立思考完成,教师巡视.此活动中,教师应重点关注:(1)生能否积极主动地思考问题;(2)能否找到斜边为,另外两个角直边为整数的直角三角形.例5 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求:四边形ABCD 的面积. 分析:如何构造直角三角形是解本题的关键,可以连结AC ,或延长AB 、DC 交于F ,或延长AD 、BC 交于E ,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单.教学中要逐层展示给学生,让学生深入体会.解:延长AD 、BC 交于E.∵∠A=∠60°,∠B=90°,∴∠E=30°.∴AE=2AB=8,CE=2CD=4,∴BE 2=AE 2-AB 2=82-42=48,BE=48=34.∵DE 2= CE 2-CD 2=42-22=12,∴DE=12=32. ∴S 四边形ABCD =S △ABE -S △CDE =21AB·BE -21CD·DE=36 小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差.(三)巩固练习1.在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=3,AB=.2.在Rt △ABC 中,∠C=90°,S △ABC =30,c=13,且a <b ,则a=,b=.3.已知:如图,在△ABC 中,∠B=30°,∠C=45°,AC=22,求(1)AB 的长;(2)S △ABC .4.在数轴上画出表示-52,5 的点.答案1.4; 2.5,12;3.提示:作AD ⊥BC 于D ,AD=CD=2,AB=4,BD=32,BC=2+32,S △ABC = =2+32;4.略.(四)课堂小结1、进一步掌握利用勾股定理解决直角三角形问题;2、你对本节内容有哪些认识?会利用勾股定理得到一些无理数并理解数轴上的点与实数一一对应.(五)、板书设计(六)、课后作业1.在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=3,AB=.2.在Rt △ABC 中,∠C=90°,S △ABC =30,c=13,且a <b ,则a=,b=.3.已知:如图,在△ABC 中,∠B=30°,∠C=45°,AC=22,求(1)AB 的长;(2)S △ABC .4.已知:如图,△ABC 中,AB=26,BC=25,AC=17,求S △ABC .答案:1.4;2.5,12;3.提示:作AD ⊥BC 于D ,AD=CD=2,AB=4,BD=BC=2+S △ABC = =2+4.作BD ⊥AC 于D ,设AD=x ,则CD=17-x ,252-x 2=262-(17-x )2,x=7,BD=24,S △ABC =12AC·BD=254;教学反思注重数学与生活的联系,从学生认知规律和接受水平出发,这些理念贯彻到教材与课堂教学当中,很好地激发了学生学习数学的兴趣.学生们善于提出问题、敢于提出问题、解决问题的能力强,已经成为数学新课标下学生表现的一个标志.通过学习几何可以认识丰富多彩的几何图形,建立与发展空间观念,掌握必要的几何知识,培养运用这些知识认识世界与改造世界的能力.但是,这些并不是几何学的全部教育功能.从更深层次看,学习几何学的一个重要的作用是:以几何图形为载体,培养逻辑思维能力,提高理性思维水平.这正是自古希腊开始几何教学一直倍受重视的主要原因.按照人的一般认知规律,认识几何图形的过程,也是从具体到抽象,从简单到复杂,从特殊到一般,从感性到理性的过程.根据教育心理学的规律可知,初中学生多处于认识方法发生升华的阶段,他们对事物的认识已不满足于表面的、孤立的层次,而有了向更深层次发展的要求,即向往“由此及彼,由表及里”的思维方式.从几何教学的内容看,学生们从小学开始已经通过直观实验这种主要方式学习了基础的图形知识,在他们的头脑中已经积累了一定的关于图形的感性认识,在初中阶段应该更深入地在“为什么”的层面上认识图形.显然,单纯的直观实验这种学习方式已经不适应继续深入学习的需要,因为这种方式难以真正从道理上对图形规律进行解释,而逻辑推理的方式才能担此重任.因此,从“实验几何”向“推理几何”的过渡成为初中几何教学必须面对的问题,培养逻辑推理能力成为初中几何教学必须实现的教学目标.。
有理数和无理数的表示符号
有理数和无理数的表示符号:
有理数和无理数可以用不同的表示符号来表示。
有理数的表示符号:
1.分数表示:有理数可以表示为两个整数的比值,例如 1/2、3/4。
2.小数表示:有理数可以表示为有限小数或循环小数,例如 0.5、0.75、1.33
3...。
3.整数表示:整数也是有理数的一种特殊情况,例如 1、-5。
无理数的表示符号:
1.开方表示:无理数可以用根号表示,例如√2、√3。
2.π 表示:π 是一个无理数,表示圆周率,近似值为
3.14159...
3. e 表示:e 是一个无理数,表示自然对数的底数,近似值为 2.71828...
需要注意的是,无理数不能被精确表示为有限小数或分数,因为它们具有无限不循环的小数部分。
因此,我们通常使用近似值来表示无理数。
无论是有理数还是无理数,它们都是实数的一部分。
实数包括了所有的有理数和无理数。
无理数的认识
01
02
03
04
无限不循环: 无理数是无限 不循环的小数, 无法用分数表 示。
稠密性:无理 数在实数轴上 稠密分布,即 任意两个有理 数之间都存在 无理数。
连续性:无理 数在实数轴上 连续分布,即 任意两个无理 数之间都存在 其他无理数。
非代数性:无 理数不能通过 四则运算和开 方运算得到, 即无理数不是 代数数。
02
无理数在数学中广 泛应用,理解无理 数有助于学生解决 实际问题,提高数 学应用能力。
03
04
无理数是数学思维 的重要体现,理解 无理数有助于培养 学生的逻辑思维能 力和抽象思维能力。
无理数在数学教育 中具有重要意义, 理解无理数有助于 学生认识数学的严 谨性和科学性,提 高数学素养。
03
提高学生的数学素养和数 学应用能力
02
帮助学生理解数学的抽象 性和严谨性
04
激发学生对数学的兴趣和 探索精神
01
无理数是初中数学的重要内容
03
无理数的概念、性质和运算是中考数学的 必考知识点
02
中考数学试卷中,无理数相关的题目占比 较大
04
掌握无理数的相关知识,有助于提高中考 数学成绩
01
无理数是数学中的 基本概念,理解无 理数有助于学生掌 握数学的基本原理 和规律。
05
根号5:用于计算正五边形的边长等
0 2 自然对数的底e:用于计算指数函数、 对数函数等
根号3:用于计算直角三角形的斜边 长度等
04
0 6 根 号 7 : 用于计算正七 边形的边长等
01
计算机科学中的数值计算:无理数在计算机科学中的数值 计算中发挥着重要作用,例如在数值分析、科学计算等领
17.1利用勾股定理在数轴上表示无理数-教案
教案新课题目17.1 勾股定理(4)利用勾股定理在数轴上表示无理数教学(学习)目标知识与技能目标利用勾股定理能在数轴上找到表示无理数的点以及直角三角形中长度为无理数的线段.过程与方法目标经历在数轴上寻找无理数的点的过程,发展学生灵活运用勾股定理解决问题的能力.情感、态度和价值观目标体验勾股定理的重要作用,并从中获得成功的体验,锻炼学生克服困难的意志.重点利用勾股定理在数轴上寻找表示2, 3,5…这样的表示无理数的点.难点利用勾股定理寻找直角三形中长度为为无理的线段.教具多媒体课件、直尺、三角板、圆规.教学方法讨论法、讲练结合法教学方式实验课演示课电教课多媒体课√提前测评及一、课前5分钟:1、宣誓2、唱红歌3、学习《和田人民忠国爱民图册》暴恐分子是没有文化、没有脑子,很容易上当的蠢货。
二、温顾而知新1、勾股定理的内容是什么?2、如图,在Rt△ABC中,∠c = 90°1 导入新课①已知ɑ,b 则c=②已知ɑ,c 则b=③已知b,c 则ɑ=3、矩形的一边长5,对角线长13,则它的面积是.二、导入新课实数与数轴上的点有怎样的关系?说出下列数轴上各字母所表示的实数你能在数轴上表示出无理数对应的点吗?揭示课题:17.1利用勾股定理在数轴上表示无理数教学过程设计(教学内容,方法及重难点的处理方法,师生活动、总结一、探究1、议一议我们知道数轴上的点,有的表示有理数,有的表示无理数.那么你能在数轴上表示出13所对应的点吗?2、画一画、议一议在数轴上画出表示2的点.作法:1、在数轴上找到点A,使OA=12、作直线m⊥OA,在m上取一点B,使AB=13、以原点O为圆心,以OB为半径作弧,弧与数轴交于C点,则点C即为表示2的点。
基础知识)教学过程设计(教学内容,方法及重难点的处理方法,师生活动、总结基础知识)3、归纳结论只要能画出长为2的线段,就能在数轴上画出表示这个数的点。
长为2的线段是两条直角边的长都是1 的直角三角形的斜边。
人教版八年级数学下《勾股定理 第3课时:用勾股定理在数轴上表示无理数》精品教学课件
能画出长为 13的线段,就能在数轴上画出表示 13的点.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
步骤:
1 在数轴上找到点A,使OA=3;
2 作直线l⊥OA,在l上取一点B,使AB=2;
3 以原点O为圆心,以OB为半径作弧,弧与
13 3
数轴交于C点,则点C即为表示 13的点.
l
正整数的角三角形的斜边; 2 以原点为圆心,以无理数斜边为半径画弧与数轴
存在交点,弧与数轴的交点即为表示无理数的点.
原点左边的点表示负无理数,原点右边的点表示 正无理数.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
拓展
利用勾股定理可以作出这样一幅美丽的“海螺型” 图案,它被选为第七届国际数学教育大会的会徽.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
复习回顾
勾股定理
如果直角三角形的两条直角边长分别 b
c
为a,b,斜边长为c,那么a²b²c². a
变 求斜边:c a2 b2 形 求直角边:a c2 b2 ,b c2 a2
已知两边可求第三边
利用勾股定理还能解决哪些问题呢?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习 2.如图,O为数轴原点,A、B两点分别对应3、3,作腰 长为4的等腰△ABC,连接OC,以O为圆心,OC长为半
径画弧交数轴于点M,则点M对应的实数为 7 .
3 2 1 O 1 2M3
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
随堂练习
3.如图,已知△ABC是腰长为1的等腰直角三角形, 以Rt△BAC的斜边AC为直角边,画第二个等腰 Rt△ACD,再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE.依此类推,则第2018个
2020-2021学年人教版数学八年级下册17.1.2数轴表示根号13教案
在数轴上表示无理数一、教学目标知识与技能1、能用勾股定理证明直角三角形全等的"HL〞判定定理;2、能应用勾股定理在数轴上画出表示无理数的点;过程与方法1.通过证明 "HL〞加强学生对勾股定理的理解和运用2.通过学生在数轴上表示无理数培养学生运用知识、思考问题、解决问题的能力 . 3.在解决实际问题的过程中 ,学会与人合作 ,•并能与他人交流思维过程和结果 ,形成反思的意识.情感、态度与价值观1.在用勾股定理寻找数轴上表示无理数点的过程中 ,•体验勾股定理的重要作用 ,并从中获得成功的体验 ,锻炼克服困难的意志 ,建立自信心.2.在解决实际问题的过程中 ,•形成实事求是的态度以及进行质疑和独立思考的习惯.涉及核心素养1、数学抽象:通过对国际数学大会会徽认识数学中的数字海螺图 ,认识数学的美 ,体会数学的严谨和神奇 .运用勾股定理得到一个想要长度的线段2、数学推理和数学运算:勾股定理的理解、运用和计算二、教学重、难点35重点:在数轴上寻找表示 , ,……这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.三、教学过程一、创设情境1.PPT展示第七届国际数学大会的会徽图案,联系生活中的海螺图,让学生体会数学的美,对数学学习有向往 .师生活动:老师引导学生了解会徽的构成特点,联系海螺的命名特点给会徽命名 .老师要多给予肯定和鼓励 .设计意图:引导学生总结会徽的特点,培养学生的观察总结能力和利用数学知识分析实际问题的能力,也引起学生的兴趣,为学生树立学习的目标,提高学生的爱国情操,让学生命名是一个开放性的创新问题,引人入胜,也培养了学生的创新意识和创新能力 .会徽也是本节课的学习知识,为后面的学习埋下伏笔 .2、复习引入勾股定理:如果直角三角形的两直角边长分别为a、b ,斜边长为c ,那么2a+2b=2c求直角三角形中未知边的长度2设计意图:复习上节课的知识,检查和稳固学生对勾股定理的理解和运用能力 .为下面的学习做好知识上的准备 .让学生顺利过渡到新问题的探究当中去,也为下面的学习做下铺垫 .3、学习探究探究点一:证明 "HL〞问题1在八年级|上册中 ,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后 ,你能证明这一结论吗 ?:如图 ,在Rt△ABC 和Rt△A B C 中 ,∠C =∠C , =90° ,BC =B ,C ,,AC =A ,C ,.求证:△ABC≌△A B C .证明:师生活动:跟学生一起完成整个分析、作图、证明的过程 ,老师要注重引导 ,不可直接给出答案 ,可以让一个学生说答案 ,老师板书 ,让其与学生以纠错完善的方式参与其中 .尤其要提醒学生注意画图的过程和证明的一般性 ,体会数学的严谨美 .设计意图:1、本节课的重点是在是在数轴上画出表示无理数的点 ,本环节在证明HL时 ,用到的勾股定理的运用和尺规作图都对下面的重点学习有重要的正面引导作用 .2、让学生感受学习的成就感和必要性 ,原来没有知识的准备 ,只能用作图的方法证明 ,有了新知识 ,可以用更严谨的方法证明 ,提高学生不断学习的内在动力和成就感 .3、让学生体会数学的严谨美 ,提高学生学习数学、研究数学的兴趣 .探究点二:在数轴上表示无理数??问题2 我们知道数轴上的点有的表示有理数 ,有的表示无理数 (与实数一一对应 ) ,你能在数轴上画出表示13的点吗 ?师生活动1:引导学生在数轴上找表示有理数的点 ,如表示点1、3、5、 -1、 -3等 老师追问:能像找出点1一样找到13位置吗 ?大致的在什么位置 ?如果给你一条长为13的线段呢 ?你在什么地方见过长为13的线段呢 ?设计意图:引导学生思考整数点可以在数轴上表示出来 ,无理数想要表示出来的关键点在于:找一条长度为该无理数的线段 ,借助前面的学习学生很容易得出可以用勾股定理来得到这样的线段 ,并且其余两边为整数 .师生活动2:让学生带着问题思考如何得到一条长为13的线段 ,并在数轴上表示出来表示13的点 ,学生给出结论 ,老师示范标准步骤 .设计意图:让学生在明白原理的根底上 ,动手画图 ,也可以自己给出答案 ,但是由于是第|一次接触这个问题 ,条理性、标准化要求肯定达不到 ,所以一定要做示范 ,将知识原理转化为具体过程 .师生活动3:请学生在数轴上画出表示17的点 ,并请学生上来演板 ,老师注意学生的答题情况 ,并给予点评 .老师一定要要求学生作图时保存作图痕迹 .你能找到一个两条边为正整数 ,一条边为13的点吗 ?设计意图:纸上得来终觉浅 ,绝|知此事要躬行 ,进一步稳固在数轴上找表示无理数点的方法 ,熟悉勾股定理的应用 ,并找出缺乏 ,及时改变 .4.....的点问题3:在数轴上表示出235师生活动4:因导学生画出课前预习中的第七届国际数学教育大会会徽 .并从中受到启发 ,4......在数轴上分别画出2、 -2、3、5设计意图:让学生举一反三 ,通过勾股定理两边都是整数发散思维 ,如果有一个边是的无理数 ,也可以当做边 ,构造直角三角形 ,求得所需要的无理数 ,让学生明白 ,可以通过勾习中的困惑 ,激发学生利用知识解决问题的活力和积极性 .可以让学生先自己大胆尝试和。
人教版八年级数学教案设计:17.1利用勾股定理在数轴上表示无理数
教学设计新课题目17.1 勾股定理 (3)利用勾股定理在数轴上表示无理数教学(学习)目标知识与技能目标利用勾股定理能在数轴上找到表示无理数的点以及直角三角形中长度为无理数的线段.过程与方法目标经历在数轴上寻找无理数的点的过程,发展学生灵活运用勾股定理解决问题的能力.情感、态度和价值观目标体验勾股定理的重要作用,并从中获得成功的体验,锻炼学生克服困难的意志.建立自信心。
重点利用勾股定理在数轴上寻找表示2 , 3 ,5…这样的表示无理数的点.难点利用勾股定理寻找直角三形中长度为无理数的线段.教具多媒体课件、直尺、三角板、圆规.教学方法分组讨论法、讲练结合法教学方式实验课演示课电教课多媒体课√√回顾旧知导入新课一、温顾而知新1.勾股定理的内容是什么?2、如图,在Rt△ABC中,∠c = 90°①已知ɑ, b 则c=②已知ɑ, c 则b=③已知b, c 则ɑ=二、导入新课实数与数轴上的点有怎样的关系?说出下列数轴上各字母所表示的实数:你能在数轴上表示出无理数对应的点吗?揭示课题:17.1利用勾股定理在数轴上表示无理数教学过程设计(教学内容,方法及重难点的处理方法,师生活动、总结基础知识)教学过程设计(教学内容,方法及重难点的处理方法,师生活动、总结基础知识)三、探究新知1、议一议我们知道数轴上的点,有的表示有理数,有的表示无理数.那么你能在数轴上表示出2、13所对应的点吗?教师可指导学生寻找象2,3,……这样的包含在直角三角形中的线段.此活动,教师应重点关注:①学生能否找到含长为2,13这样的线段所在的直角三角形;②学生是否有克服困难的勇气和坚强的意志;③学生能否积极主动地交流合作.师:由于在数轴上表示13的点到原点的距离为13,所以只需画出长为13的线段即可.我们不妨先来画出长为2的线段.2、画一画、议一议在数轴上画出表示2的点.作法:①在数轴上找到点A,使OA=1②、作直线m⊥OA,在m上取一点B,使AB=1③、以原点O为圆心,以OB为半径作弧,弧与数轴交于C点,则点C即为表示2的点。
新人教版八年级数学下册《十七章 勾股定理 17.1 勾股定理 17.1.2勾股定理应用 数轴表示根号13》课件_24
A
6
6E x
4
x 8-x C
D D
第8题图
B
通过本节课的学习你有那些收获:
1.能用勾股定理证明直角三角形全等 的“斜边、直角边”判定定理;
2.能应用勾股定理在数轴上画出表示 无理数的点;
3.能运用勾股定理解决直角三角形相 关问题。
1、在数轴上画出表示 20的点。
2、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点
数轴交于C点l ,则点C即为表示 13 的点。
B
∴点C即为表示 13 的点
0 1 2 A3 C 4
你能在数轴上画出表示 17 的点吗?
数学海螺图:
利用勾股定理作出长为 1, 2 , 3, 4 , 5 的线段.
1
12
34 5
数学海螺图:
(三)、利用勾股定理解决有关的折叠问题
例3、一张长方形纸片宽AB=8cm,长
B C′ B′
证明“HL”
已知:如图,在Rt△ABC 和Rt△A′B′C′中,∠C= ∠C′=90°,AB=A′B′,AC=A′C′.
求证:△ABC≌△A′B′C′.
证明:
A
∵ AB=A′B′,
AC=A′C′,
∴ BC=B′C′.
∴ △ABC≌△A′B′C′
(SSS). C
A′ B C′ B′
(一)、勾股定理与三角形全等综合的证明题:
C
B
练习1:
如图,△ACB和△ECD都是等腰直角三角形, ∠ACB =∠ECD =90°,D为AB边上一点.求证:AD2 + DB2 =DE2.
证明:∴ ∠B =∠CAE=45°,
∠DAE =∠CAE+∠BAC =45°+45°=90°.
无理数和有理数的性质对比
无理数和有理数的性质对比一、无理数的性质1.无理数不能表示为两个整数的比例,即无理数不是分数的形式。
2.无理数的小数部分是无限不循环的,即小数点后的数字没有规律地重复。
3.无理数的平方根不一定是整数或分数,例如√2和√3都是无理数。
4.无理数可以用近似值表示,但近似值无法完全等于无理数。
5.无理数在数轴上对应的是无限不循环的小数点后的点。
二、有理数的性质1.有理数可以表示为两个整数的比例,即有理数是分数的形式。
2.有理数的小数部分是有限或循环的,即小数点后的数字在某一位开始重复。
3.有理数的平方根一定是整数或分数,例如√4=2和√9=3都是整数。
4.有理数可以用精确值表示,因为它们是分数的形式。
5.有理数在数轴上对应的是有限或循环小数点后的点。
三、无理数和有理数的对比1.表示形式:无理数不能表示为分数,有理数可以表示为分数。
2.小数部分:无理数的小数部分是无限不循环的,有理数的小数部分是有限或循环的。
3.平方根:无理数的平方根不一定是整数或分数,有理数的平方根一定是整数或分数。
4.近似值:无理数只能用近似值表示,有理数可以用精确值表示。
5.数轴上的位置:无理数在数轴上对应的是无限不循环的小数点后的点,有理数在数轴上对应的是有限或循环小数点后的点。
四、无理数和有理数的实际应用1.几何学:无理数在几何学中有着广泛的应用,例如计算圆的周长和面积、三角形的边长等。
2.物理学:无理数在物理学中也有重要作用,例如计算声音的频率、光的速度等。
3.工程学:无理数在工程学中用于计算各种尺寸和角度,例如建筑物的尺寸、机械零件的配合等。
4.日常生活:无理数也存在于我们的日常生活中,例如计算食物的营养成分比例、身高的比例等。
通过以上对比,我们可以更好地理解无理数和有理数的性质,以及它们在各个领域的应用。
希望这份知识归纳能帮助您更好地掌握无理数和有理数的相关知识。
习题及方法:1.习题:判断以下哪个数是无理数?答案:c) √20是无理数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ ∴ 又 ∴
D
B
应用提高
A ∴ ∠B =∠CAE=45°, ∠DAE =∠CAE+∠BAC =45°+45°=90°. E AD2 +AE2 =DE2. AE=DB , AD2 +DB2 =DE2. D
∴ ∵ ∴
C
B
x
x
1 3
17.1 勾股定理(3)
• 学习目标: 1.能用勾股定理证明直角三角形全等的“斜边、 直角边”判定定理; 2.能应用勾股定理在数轴上画出表示无理数的点;
证明“HL”
问题1 在八年级上册中,我们曾经通过画图得到结 论:斜边和一条直角边分别相等的两个直角三角形全等. 学习了勾股定理后,你能证明这一结论吗?
合作探究 证明“HL”
已知:如图,在Rt△ABC 和Rt△A B C 中,∠C= ′′′ ∠ C′ =90°,AB=A B ,AC=A ′C ′. ′ ′ A ′ 求证:△ABC≌△A BC . A ′′′ 证明:在Rt△ABC 和 Rt△A B C 中,∠C=∠C′ ′′′ =90°,根据勾股定理,得
自学课本第27页
2
x 4x13程序设计:自学+展示(2+2分钟) 方法导航:根据勾股定理 展示方式:学生主动站起来回答问题.
合作探究
问题2 我们知道数轴上的点有的表示有理数,有 的表示无理数,你能在数轴上画出表示 13 的点吗?
画图提高
在数轴上找到表示
5
的点.
类比迁移
“勾股海螺”
知识盘点
(1)勾股定理有哪些方面的应用,本节课学习了勾 股定理哪几方面的应用? (2)你能说说勾股定理求线段长的基本思路吗? (3)本节课体现出哪些数学思想方法?
每周习惯:养成习惯,坚持预习。
每日一言: 在探索中收获快乐! 我探究,我进步!
课前准备:课本、练习本、直尺 圆规
主备:马瑞华
如果直角三角形的两直角边长分别为a、b, 斜边长为c,
2 2 2 那么a +b =c
a
b
c
复习回顾 求出下列直角三角形中未知边的长度
2
4
程序设计:自学+展示(2+2分钟) 方法导航:根据勾股定理 展示方式:学生主动站起来回答问题.
当堂检测
练习2 教科书第27页练习2.
程序设计:合学+展示(2+2分钟) 方法导航:根据勾股定理 展示方式:小组派代表在展示板位置要写清证明过程..
作业
作业:教科书第27页第1,2题.
应用提高
如图,△ACB和△ECD都是等腰直角三角形, ∠ACB =∠ECD =90°,D为AB边上一点 .求证:AD2 +DB2 =DE2. 证明:∵ ∠ACB =∠ECD, ∠ACD +∠BCD=∠ACD +∠ACE , A ∠BCD =∠ACE. BC=AC, DC=EC, △ACE≌△BCD. E
BC = AB 2 -AC 2 ,
B′′ C = A′′ B -A′ C′ .
2 2
C
B C′
B′
A
A ′
AB=A′ B′ , AC=A′ C′ , ∴ BC=B ′ C′ . ∵ ∴ △ABC≌△A B C ′ ′ ′ (SSS). C B C′ B′
自学探究
数轴上的点有的表示有理数,有的表示无理数. 想一想,怎样在数轴上找到表示 13 的点.