课程设计振动故障
振动基本知识及其故障诊断综述
振动基本知识及其故障诊断综述引言振动是物体在运动过程中产生的周期性往复运动,广泛应用于工程、地震学、医学等领域。
振动不仅可以用于传递能量和信息,还可以帮助我们了解物体的性能和状态。
因此,对振动的研究和故障诊断具有重要意义。
本文将介绍振动的基本知识以及在故障诊断中的应用。
振动的基本概念振动可以通过物体的周期性往复运动来描述。
它是由物体的固有频率和外部作用力共同决定的。
振动可以是机械的,例如机械系统中的旋转或线性振动;也可以是电磁的,例如电路或天线中的振动。
振动的基本概念包括振动的周期、频率、振幅和相位。
•周期:振动一次完成所需的时间。
周期的倒数称为频率,即振动的次数每秒。
•频率:振动的次数每秒。
•振幅:振动物体在其平衡位置附近的最大偏移量。
•相位:振动物体相对于某参考点的位置关系。
振动的类型振动可以分为自由振动和受迫振动两种类型。
•自由振动:在没有外界干扰的情况下,振动物体按照固有的频率和振幅自由振荡。
自由振动可以用振动系统的质量、刚度和阻尼特性来描述。
•受迫振动:振动物体受到外界作用力的驱动而振动。
外界作用力可以是周期性的或非周期性的。
受迫振动通常会引起共振现象,即振幅随着外界作用力频率的变化而发生显著变化。
振动的故障诊断振动的故障诊断是通过分析振动信号来判断机械设备的工作状态和可能存在的故障。
振动信号可以通过加速度传感器或振动传感器来测量和记录。
常用的故障诊断方法包括频域分析、时域分析和轨迹分析。
•频域分析:通过将振动信号转换为频域信号,可以观察到振动信号在不同频率上的成分。
故障通常会在振动信号的频谱中产生特征频率成分,可以通过寻找这些特征频率来判断故障类型。
•时域分析:通过观察振动信号的时间波形,可以了解振动信号的特征和变化趋势。
时域分析可以帮助识别故障的不稳定和瞬态特征。
•轨迹分析:通过将振动信号的相位信息绘制成轨迹图,可以观察到振动信号在相位空间中的分布。
轨迹图可以帮助发现存在振动现象的故障,例如不平衡、脱离和摩擦等。
振动测试与故障诊断 课件
疲劳剥落 磨损 塑性变形 腐蚀 断裂 胶合
疲劳剥落
在滚动轴承中,滚道和滚动体表面既承 受载荷,又相对滚动。由于交变载荷的作 用,首先在表面一定深度处形成裂纹,继 而扩展到使表层形成剥落坑,最后发展到 大片剥落。这种疲劳剥落现象造成了运行 时的冲击载荷,使振动和噪声加剧。
磨损
滚道和滚动体间的相对运动及杂质异物 的侵入都引起表面磨损,润滑不良加剧了 磨损。磨损导致轴承游隙增大,表面粗糙, 降低了机器运行精度,增大了振动和噪声。
特征:啮合频率附近的1X 边频带 齿轮啮合侧隙会在啮合频 率附近产生轴转速频率边 频带,当存在这个问题的 时候,齿轮啮合侧隙波峰 和齿轮的固有频率波峰将 随着载荷的增加而减弱。
齿轮不对中
齿轮不对中时的频谱图
特征 :齿 轮啮 合频 率谐波 附近的1X边频带 不对 中齿 轮会 在啮 合频率 处产 生带 有边 频带 的啮合 频率 振动 ,但 是有 啮合频 率的 谐波 是很 常见 的 ,在 二倍 和三 倍啮 合频 率处谐 波的蜂值还比较高。因此, 设置较高的频率范围 (Fmax) , 使 所 有 要 测 量 的 频率 都能 看到 ,是 很重要 的。
五、振动测量实践
振动测量参数 传感器类型 传感器选择 传感器安放 测量参数设定
振动测量参数
振动测量的基本参数有:加速度、速度和位移
图中显示了振动测 量的基本参数:加速 度、速度和位移。
三者的相位关系是: 位移与加速度有180度 的相位差,与速度有 90度的相位差。
传感器类型
根据测量参数的不同,测量中用到的传 感器有以下几类:
断裂
载荷过大或疲劳会引起轴承零件的破裂。 热处理、装配引起的残余应力、运行时的 热应力过大业会引起断裂。
课程设计振动故障
航空工程学院航空发动机综合课程设计Core Vibration Higher Than 7.3 Units题目核心机振动值高于7.3个单位作者姓名赵冬福专业名称热能与动力工程指导教师尚永锋提交日期2011年月日答辩日期2011年月日中国民航飞行学院航空工程学院课程设计ABBREVIATIONSAPM ARINC Processing ModuleANI Analog InputBITE Build In TestCMC Centralized Maintenance ComputerCFMI CFM InternationalDMC Display management ComputerDIM Discrete Input ModuleECU Electronic Control UnitEMI Electromagnetic InterferenceFMECA Failure Mode Effects and Criticality Analysis FFCCV Forward Flange Compressor Casing vibration FADEC Full Authority Digital Engine ControlGPM General Processing ModuleLRU Line Replaceable UnitMCDU Multifunction Control Display UnitPSM Power Supply ModuleRFI Radio Frequency InterferenceRCC Remote Charge ConverterSFC Specific Fuel ConsumptionSPM Signal Processing ModuleCore V ibrations Higher than 7.3 UnitsTable of contentsChapter 1 Overview of CFM56-5C (1)1.1 General (1)1.1.1 The CFM56-5C series (1)1.1.2 The advantages of CFM56-5C (2)1.2 The main modules of the engine (2)1.2.1 Fan/Booster rotor (2)1.2.2 Fan/Booster stator (2)1.2.3 Fan frame (3)1.2.4 Compressor rotor (3)1.2.5 Compressor stator (3)1.2.6 Combustor (3)1.2.7 High pressure turbine (4)1.2.8 Low pressure turbine (4)Chapter 2 Engine Interface and V ibration Monitoring System (EIVMS) (4)2.1 General (5)2.1.1 Description (5)2.1.2 Operation (7)2.2 Component Location (7)2.3 System Description (8)2.3.1 engine vibration system (8)2.3.2 Power Supply (9)2.3.3 Interface (9)2.4 Operation/Control and Indicating (10)2.4.1 Engine Vibration Monitoring (10)2.4.2 Engine Vibration Maintenance (12)Chapter 3 VIBRA TION SENSORS (12)3.1 General (15)3.1.1 Component Location (15)3.1.2 System Description (15)3.2 Component Description (17)3.2.1 No.1 Bearing Vibration Sensor (17)3.2.2 FFCC V ibration Sensor (18)3.2.3 Remote Charge Converter (RCC) (18)Chapter 4 failure analyzing (21)4.1 The related functional block diagram (21)4.2 Analyzing the probable causes resulting (22)4.3 Carrying out FMECA on the basis of the causes (22)4.4 Drawing the failure tree of the fault (24)4.6 Troubleshooting flow chart (24)中国民航飞行学院航空工程学院课程设计4.7 V ibration monitoring and fault diagnosis method (26)Reference (27)中国民航飞行学院航空工程学院课程设计Chapter 1 Overview of CFM56-5C1.1 GeneralThe CFM56-5C series engine is an axial flow, dual spool, high bypass ratio, turbo-fan engine with fan and multistage compression systems driven by reaction turbines. The engine is designed for use with a long duct, forced mixed flow exhaust system. The single stage fan and 4 stage booster is driven by a 5 stage low pressure turbine. A 9 stage, variable geometry, high pressure compressor is driven by an air cooled single stage turbine. A full annular combustor with 20 duplex fuel nozzles distributes the fuel to provide the heat energy to drive the turbines with residual energy providing thrust.The accessory drive system extracts energy from the high pressure rotor to drive the engine and engine-mounted aircraft accessories. Reverse thrust for braking the aircraft after landing is supplied by an integrated system which acts on the fan discharge airflow.1.1.1 The CFM56-5C seriesThe principal operational differences between the CFM56-5C series engine models are summarized below:Table 1-1 CFM56-5C seriesCFM56-5C2 31,200 lbs (13,878 daN) 950CFM56-5C2/F 31,200 lbs (13,878 daN) 965CFM56-5C2/G 31,200 lbs (13,878 daN) 975CFM56-5C3/F 32,500 lbs (14,456 daN) 965CFM56-5C3/G 32,500 lbs (14,456 daN) 975CFM56-5C4 34,000 lbs (15,123 daN) 975Core V ibrations Higher than 7.3 Units1.1.2 The advantages of CFM56-5CCharacteristics:1. Lowest SFC of the CFM56 family.2. Quietest engine in its thrust class.3. High thrust-to-weight ratio to provide excellent takeoff performance for high-altitude and hot airfields.4.36,000 pounds of thrust demonstrated during ground testing.5. Second-generation FADEC.6. Long-duct, mixed-flow nacelle developed by CFM to provide significant noise attenuation, reduced fuel burn, and increased climb thrust.1.2 The main modules of the engineThe main modules of the engine are:-The fan-The fan and booster-The high pressure compressor-The combustor chamber-The low pressure turbine-The high pressure turbine-The accessory drive gearbox.1.2.1 Fan/Booster rotorThe fan rotor consists of one full diameter single stage fan and a smaller 4 stage booster for the core engine flow.The fan and the booster are mounted on a common internal concentric shaft driven by the 5 stage fan turbine. Two bearings support the fan assembly in the fan frame.1.2.2 Fan/Booster statorFixed stator vanes are provided for both the fan and the rotors. The fan casing, in which the fan stator is mounted, has provisions for blade containment forward of and in the plan of the fan中国民航飞行学院航空工程学院课程设计rotor. The casing is supported by the fan frame and also supports the accessory drive gearbox. 1.2.3 Fan frameThe fan frame is one of the major structural and aerodynamic components of the engine. Aerodynamically the fan frame forms the inner and outer flow passage of the fan and core airstreams.Structurally the fan frame functions are:-to carry inlet cowl loads-to support the fan casing, the two fan bearings and the core engine forward bearings-to house the accessory drive power take off gearbox and radial drive shaft-to contain the variable bypass valve between the booster and high pressure compressor-to support the transfer and accessory gearboxes- to provide mounting surfaces for the fan-stream acoustic panels.This frame also serves as the forward support for the high compressor.1.2.4 Compressor rotorThe compressor is a 9 stage axial flow assembly. The rotor consists of the stage 1 and 2 disks which form a spool, a separately attached stage 3 disk and a spool containing stage 4 - 9 disks. Stages 1, 2, and 3 disks have axial dovetail slots and stages 4 - 9 blades are retained in circumferential slots. All blades are individually replaceable without spool disassembly.1.2.5 Compressor statorAll 9 stages of the compressor stator are shrouded. The Inlet Guide V anes (IGV) and the first 3 stages of the compressor are variable. The casing is composed of two semi-cylindrical halves, permitting a quick access to the core engine compressor.1.2.6 CombustorA step diffuser is incorporated upstream of the combustor for reduction of the combustor sensitivity to the compressor velocity profile. The combustor can be replaced without disturbing the fuel nozzles. The combustor casing provides structural support for the combustor, the compressor Outlet Guide V anes (OGV), the High Pressure (HP) stator and shrouds, and the sealsCore V ibrations Higher than 7.3 Unitsfor the Compressor Discharge Pressure (CDP).1.2.7 High pressure turbineThe High Pressure Turbine (HPT) is an air-cooled single-stage high-energy turbine. Rotor blades are individually replaceable without the need for rotor disassembly or re-balancing.1.2.8 Low pressure turbineThe Low Pressure Turbine (LPT) consists of 5 stages of blades and vanes. The first stage nozzle vane is cooled and transfers cooling air for the high pressure and low pressure turbine disks. The LPT drives the fan rotor through the inner concentric shaft and is aerodynamically coupled to the high pressure system. The front flange of the LPT casing supports the A8 flange extension and the partial axial flow bulkhead.Fig.1-1 CFM56-5CChapter 2 Engine Interface and Vibration Monitoring System(EIVMS)2.1 GeneralThe Engine Interface and Vibration Monitoring System (EIVMS) have two main functions:-Engine interface-Vibration monitoring.The Engine Interface and Vibration Monitoring System (EIVMS) consist in:-One computer (EIVMU)-One separate Remote Charge Connector (RCC)2.1.1 DescriptionThe EIVMU contains:-One General Processing Module (GPM)-One Discrete Input Module (DIM)-One Signal Processing Module (SPM)-One ARINC Processing Module (APM)-One Power Supply Module (PSM)-Four relays(a) General processing moduleThe GPM is involved in all the EIVMU functions except in the transfer function.Most of the logics and all the Discrete Outputs (DSO) are processed by this board from Digital Input (DGI), Discrete Signal Input (DSI) or Analog Input (ANI).BITE data are centralized or GPM for the whole EIVMS.The GPM internally communicates with APM and SPM, but is always the slave in the communication. The GPM has also relations with all other boards (centralization of BITE). (b) Discrete Input ModuleThe DIM acquires all Discrete Inputs (DSI) for the EIVMS. It can be considered as an hardware extension of the GPM board which manages it.(c) Signal processing moduleThe SPM acquires all Analog Inputs (ANI), vibration inputs and processes corresponding data. This board receives accelerometer signal through the RCC.The SPM internal communication is only performed with the GPM.(d) ARINC processing moduleThe APM ensures the processing of all Digital Inputs (DGI) and Digital Outputs (DGO). In particular, the transfer function is fully performed through this board.The APM internal communication is only performed with the GPM thanks to a mail-box process.(d) Power Supply ModuleThe Power Supply Module (PSM) provides all necessary supplies for the whole EIVMS. Aircraft power supply (28VDC) is monitored in order to have a satisfactory behaviour in case of transient.(f) RelaysThree relays are necessary to switch the aircraft power supplies to the corresponding engine. Switching conditions can be software (from GPM) or hardware (direct link to ENG FIRE or ENG/MASTER switch OFF discrete inputs).1.ECU supply switchingThe two following conditions energize the relay R1:-One hardware condition (FIRE ON)-One processed condition (on ground, ENG/MASTER switch in off position for at least 15 minutes).Upon energization of the relay R1, the ECU power supply is cut.2. Igniter supply switchingThe following condition energizes the relay R2:-One hardware condition (ENG FIRE ON or ENG/MASTER switch OFF)Upon energization of the relay R2, the igniter power supply is cut.3.T / R supply switchingThe relay R4 is energized when the EIVMU receives Throttle in REV position from the throttle control unit.2.1.2 OperationThe EIVMU interfaces with aircraft computers and with the associated propulsion system to perform the following functions:-data concentration from the cockpit panels and various aircraft computers to the associated engine control-engine to engine segregation-airframe electrical supplies to engine control-internal processing of some engine related status signals needed by the related engine control system-Processing and monitoring of engine vibration signals.2.2 Component LocationEngine Interface and Vibration Monitoring Unit (EIVMU) are located avionics compartment.- 2 EIVMUS are left.- 2 EIVMUS are right.Fig.2-1 the location of sensorsFig.2-2 Location of EIVMSFig.2-3 the location of sensors2.3 System Description2.3.1 Engine vibration systemThe engine vibration system comprises per engine:-Two monitoring sensors (piezo-electric accelerometers) the No. 1 bearing vibration sensor and the Forward Flange Compressor Casing vibration (FFCCV) sensor-Two tachometers N1 speed sensor and N2 speed sensor- One Engine Interface and Vibration Monitoring Unit (EIVMU)- One Remote Charge Converter (RCC)2.3.2 Power SupplyThe engine vibration system is supplied through the EIVMU from the 3PP bus bar2.3.3 InterfaceThe EIVMU is an interface between the propulsion system and the aircraft.A Interface Signals between Propulsion System and EIVMUFor the vibration monitoring purpose, the EIVMU receives:-Two digital signals from the Electronic Control Unit (ECU) through ARINC 429 data bus ECUA and ECUB:N1 speed, label 045 (used as a back-up for the N1 speed sensor)N2 speed, label 344.-Three analog signals from the:N1 speed sensorNo. 1 BRG VIB sensor (or ACCLRM A) through the RCCFFCC VIB sensor (ACCLRM B) through the RCC.B Interface Signals between EIVMU and AircraftThe EIVMU receives digital signals through ARINC data bus from:-CMC bus CMCM, labels 040, 041, 042, 125, 126, 227, 233, 234, 235, 236, 237, 260, 301, 302, 303, 304 (ARINC 429)-PRINTER bus PRINTER, labels 234, 235, 236 or 237 (ARINC 740).The EIVMU transmits digital signals through ARINC data bus to:-DMC bus A1, labels 035, 135, 136 (ARINC 429)-CMC bus A1, label 356 (ARINC 429)-test plug in the 800VU bus A1, (ARINC 429)-PRINTER bus A2, labels 172 and 223 (ARINC 740).2.4 Operation/Control and IndicatingThe engine vibration system has two main functions:-monitoring-Maintenance.2.4.1 Engine Vibration MonitoringThe EIVMU processes by means of:-Two accelerometer signals No.1 BRG and FFCC VIB received through the RCCFig.2-4 the interface of EIVMU-One N1-dedicated speed sensor signal (one pulse per revolution included) or N1 speed message from ECU buses (as a backup)-One N2 speed message given by the ECU buses.The EIVMU processes:-ACCLRM A corresponds to No.1 BRG (Bearing) VIB sensor, while ACCLRM B corresponds to FFCCV (Forward Flange Compressor Casing Vibration) VIB sensor. Narrow band frequencyfiltering for both of these sensors allows to obtain the two vibration values for each N1 and N2 shafts. An unfiltered BB (Broad Band) measurement is also available for each accelerometer.-N1 vibrations are measured as a displacement in mils (1/1000 of an inch), while N2 vibrations are measured as a speed IPS (inch per second). N1 phase angle is also measured in degrees for balancing purposes.-MAX N1 narrow band VIB selection and normalization for display:The display between 0 and 5 units depicts a vibration between 0 and 5 mils (linear)The display between 5 and 10 units depicts a vibration between 5 and 25 mils (linear).-MAX N2 narrow band VIB selection and normalization for display.The display between 0 and 10 units depicts a vibration between 0 and 3 IPS(linear).-broadband vibration monitoring (inch per second) through a 20 to 500 Hz filter from both No.1 BRG and FFCC VIB-N1 (DEG) phase and displacement (mm inch) from both No.1 BRG and FFCC VIB-N1 and N2 advisory level exceed from MAX of No.1 BRG and FFCC VIB.The N1 and N2 digital vibration values are:-in green color in normal operation-in green pulsing color (only one advisory level), if N1 or N2 engine vibrations exceed 5.7 units and 5.6 units for N2.-Besides the maximum values of the different vibratory measurements encountered during the flight, the EIVMU also processes and stores the cumulated exposure time above "long term operation levels".This exposure time is the sum over the whole flight of all time periods during which at least one "long term operation level" has been exceeded.The "long term operation levels" are fixed at:-20 mils for N1 vibrations-2.4 IPS for N2 vibrationsThere is no specific relationship between max flight values and long term exposure time. LONG TERM EXPOSURE: 0S (zero seconds) means that the "long term operation levels" have not been exceeded.Each of the leg records includes the measurements mentioned above at the moment when the vibration level shown in the record heading reached its maximum during the leg.Fig.2-5 the line of N1 VIBFig.2-6 the line of N2 VIB2.4.2 Engine Vibration MaintenanceThe maintenance tasks are divided into the following main parts:-normal modeSome specific tasks can be activated, in addition to the failure detection. The LRUs and wiring failures specific to vibration detected by the EIVMU are listed below.- Menu mode.(1) Normal modeThe specific tasks are:-max. flight vibrations acquisition-frequency analysis with printing of the results, by direct specific input and output buses linked to the printer-monitoring of broadband level exceed.-monitoring of maintenance level exceed.- Acquisition of 8 sets of points in predetermined conditions for engine trim balance.(a) Max. flight vibrations acquisitionThe EIVMU stores, for each flight and for N1 and N2 vibrations, the max vibration levels.The Max. N1 VIB, and Max. N2 VIB, from No.1 BRG VIB and FFCC VIB sensors are processed during the flight (phase 6) and are available through the MCDU in menu mode for the last 8 flights.(b) Frequency analysisThe frequency analysis (between 1 and 500 HZ by step of 4 HZ) is a semi-graphic print which is done if the broadband threshold level is exceeded or if required on the MCDU before flight (for given conditions).(c) Monitoring of broadband level exceed(d) Monitoring of maintenance level exceedThe EIVMU monitors whether the N1 NB and N2 NB vibrations from the No.1 BRG and FFCC VIB have reached a maintenance level:N1 maintenance level = 6 Mils for all N1 rangeN2 maintenance level = 1,7 IPS for all N2 range.(e) Acquisition of 8 sets of points in predetermined conditionsAcquisition of phase and displacement in stabilized flight conditions allows to rebalance the engine fan.(2) Menu modeThe following tasks can be activated:-ground scanning and integral test of the system-discrete input and output status-frequency analysis demand-max flight vibration displayChapter 3 VIBRATION SENSORS3.1 GeneralThe Remote Charge Converter (RCC) performs the amplification and the conditioning of the vibration pick-up signals from the No.1 bearing vibration and the forward flange compressor casing (FFCC) vibration sensors (respectively ACCLRM A and B), and transmits the signals to the Engine Interface Vibration Monitoring Unit (EIVMU).3.1.1 Component LocationA No.1 Bearing Vibration SensorThe accelerometer part of the vibration sensor is not visible externally. It is located inside the fan and booster section at the 9:00 o'clock position (aft looking forward) on the No.1 and No.2 bearing support near No.1 bearing.The sensor cable is routed on the No.1 and No.2 bearing support, then through the fan frame from which it comes out at the 3:00 o'clock position (ALF) as a 3-pin receptacle.B FFCC Vibration SensorThe FFCC vibration sensor is installed at the 4 O'clock on the front flange of the compressor casing, and is connected to 6 o'clock junction box by a harness.C Remote Charge Converter (RCC)The RCC is located at the 3:00 o'clock position on the fan case (ALF), above the ignition exciters.3.1.2 System DescriptionThe vibration sensor system is made of:-One No.1 bearing vibration sensor-One FFCC vibration sensor-One RCC.Fig.3-1 the location of V ibration unitsA No.1 Bearing Vibration SensorThe No.1 bearing vibration sensor permanently monitors the vibrations from the No.1 bearing. It is also used for trim balance operations.B FFCC Vibration SensorThe forward flange compressor casing (FFCC) vibration sensor is used in conjunction with the No.1 bearing vibration sensor.C Remote Charge Converter (RCC)The RCC is the engine equipment, interfacing with the EIVMU and up to the No.1 BRG VIB and FFCC VIB sensors.Its main function is to condition (Integration in speed) the two piezo-type accelerometer signals and to amplify these preconditioned signals to send them to the EIVMU.3.2 Component Description3.2.1 No.1 Bearing Vibration Sensor(1)DescriptionFig.3-2 Sensor wiringThe No.1 bearing vibration sensor assembly is made of the following items:-One housing including:One accelerometerOne bracket with 2 holes ensuring housing attachment to the No.1 bearing support with 2 bolts -One semi-rigid cable including:Two conductors inserted in an inner sheath and an outer sheath.Two metal tubes to supply cable rigidity.One metal plate for cable attachment to the forward flange of the fan frame mid-box structure. Five shock absorbers to guide and dampen the cable in a tube through the fan frame strut No.3. One 3-pin connector at one end provided with a nut for connector attachment to the fan frame. Four clamps for tube attachment to the fan frame No.1 bearing support.(2) OperationThe sensor is of the piezo-electric type. It includes a stack of piezo-electric discs placed between a mass and a base. When the accelerometer is subjected to a vibration, the mass exerts a variable force on the discs and so generates a potential difference directly proportional to the acceleration in a certain frequency range. The analysis of the signal delivered by this potential difference enables identification of vibration characteristics of the monitored part. The accelerometer sensitivity is 100pc/g.Fig.3-3 No.1 Bearing Vibration Sensor3.2.2 FFCC Vibration Sensor(1) DescriptionThe FFCC vibration sensor consists of a hermetically sealed housing that encloses the sensing element. A flange with two holes is provided to attach the housing to the engine. One electrical connector at the end of the semi-rigid harness provides the interface with a harness to the RCC.(2)OperationThe sensor is of the piezo-electric type.A piezo-electric material generates electrical charges when it is submitted to a mechanical stress. An inert mass is attached to a piece of piezo-electric material. When the assembly is submitted to vibrations, the inertia of the mass generates mechanical stresses in the piezo-electric material. It is therefore possible to collect an electrical signal the frequency and intensity of which is representative of the vibration level to be measured.3.2.3 Remote Charge Converter (RCC)(1)DescriptionThe fan case installed RCC is vibration isolated by four dampers. It consists of:- Two connectors A and B which receive input accelerometer signals from the No.1 BRG VIBand FFCC VIB sensors.Fig.3-4 FFCC V ibration Sensor-One connector C which sends output signals to the EIVMU.-a grounding braid which provides its case ground reference.-Two identical processing channels featuring:One RFI input filter which protects the charge converter against Radio Frequency Interference (RFI) and Electromagnetic Interference (EMI).One differential and symmetrical charge converter which transforms the charge input into a voltage proportional to acceleration.One integrator which converts the acceleration signals into a signal which proportional to velocity.One voltage modulator stage for output of the vibration signal (velocity terms) and power supply input for the circuit.One RFI output filter which protects the Remote Charge Converter against the RFI and Electromagnetic Interference.The RCC features a common circuitry (BITE system) which consists of:-A BITE demodulator.-A BITE level control which simulates an acceleration signal to test the RCC.Fig.3-5 Remote Charge Converter (RCC)(2) OperationThe electronics of the RCC performs the amplification and the conditioning (integration in speed) of the vibration pick-up signals from the No.1 BRG VIB and FFCC VIB sensors, and transmits the signals to the EIVMU.The two analog vibration inputs are fed into the RCC. This charge signal is first voltage converted, then amplified and integrated to transform the vibration signal fro m acceleration to velocity. In order to transmit the signal to the EIVMU through the power line of the RCC (10 V, 6 mA source), it is voltage modulated.An auto-test, triggered by the EIVMU and sent to the RCC over the transmission line, allows the EIVMU to check the proper function of this remote device.The RCC handles the following main functions:-Accelerometer interface.-Test of the remote charge converter.Chapter 4 failure analyzing4.1 The related functional block diagramThe No.1 bearing vibration sensor permanently monitors the vibrations from the No.1 bearing. It is also used for trim balance operations.NO.1 BRG VIB sensorFFCCVsensorRCCEIVMUDMC ECAMFig.4-1 Signal transmission chartThe forward flange compressor casing (FFCC) vibration sensor is used in conjunction with the No.1 bearing vibration sensor.The RCC is the engine equipment, interfacing with the EIVMU and up to the No.1 BRG VIB and FFCC VIB sensors. Its main function is to condition (Integration in speed) the two piezo-type accelerometer signals and to amplify these preconditioned signals to send them to the EIVMU.The piezoelectric acceleration sensor is using some substances such as quartz crystal of piezoelectric effect, accelerometer be in vibration, the quality of the piezoelectric element with the force changed also. When measured vibration frequency is far lower than the natural frequency of the accelerometer is measured by the change and force is directly proportional to the acceleration. The piezoelectric accelerometer during the test has the obvious directivity.From the above analysis, we can draw a diagram of the engine vibration system function structure as follow:Engine vibration systemVibration sonsers system EIVMU N1 speedsonserN2speedsonserNO.1VIB sonser FFCCV VIBsonserRCCMonitorvibrationfrom NO.1Trim balanceMonitor vibration from N2As backupfor NO.1VIBsonserfilter amplifierVoltagemodulator BITEOver voltage &EMI suppressorAnalog moduleBalancing moduleData processingmodule Fig.4-2 functional block diagram of vibration4.2 Analyzing the probable causes r esultingCore Vibrations Higher than 7.3 Units may be caused by three reasons:1.Vibration sensors2.Wiring3.EIVMUVibration sensors-Crystal material or accelerometer.RCC failure.Wiring-short circuit or open circuit.EIVMU fault.4.3 Carrying out FMECA on the basis of the causesTable 4-1 V ibration system FMECA of table(1) (2) (3) (4) (5) (6) (7) (8) (9)sequence number Components namefailuremodefailurecausetaskcycleFailure Impact probability ofoccurrenceSeverity composite ratingpreventivemeasuresitself On oneleveloverallunit1 wires corrosion Break,short-circuitall scrapAffectsignaltransmissiondisabler C Ⅳ4C inspection2 EIVMU ProcessingsystemfaultEIVMUfailure allfailure offunctionV ibrationmonitoring andProcessingCompromisesafetyD Ⅲ3D Bite3NO.1VIBSONSERAccelerometerfailureOrCrystalmaterialsfailureNO.1VIBSONSERfailure all scrapVibrationdetectionCompromisesafetyB Ⅳ4B inspection4 RCC InternalcircuittofailuresRCCfailure allfailure offunctionsignalconditioningCompromisesafetyD Ⅲ3D Bite5FFCCVVIBSONSERAccelerometerfailureOrCrystalmaterialsfailureFFCCVVIBSONSERfailureall scrapVibrationdetectionCompromisesafetyB Ⅳ4B inspection4.4 Drawing the failure tree of this faultVibration sensorsCore vibrations higher than 7.3unitsWiringEIVMUX6X5X7X2X1X3X4Fig 4-3 failure treeX1-damaged pins; X5-RCC failure;X2-connectors oxidation; X6-EIVMU internal system failure; X3-Accelerometer lose effectiveness; X7-EIVMU connectors; X4-Crystal material performance decline;4.6 Troubleshooting flow chart Fault Isolation -Test EIVMU-If no EIVMU CMS fault message is present and max flight vibs confirms vibration above 2.2 IPS:-check vibration sensors installation and wiring connectors and receptacles from vibrations sensors to EIVMU. If the check is not correct: -repair or replace as required.。
机械设备典型故障的振动特性培训资料(PPT 31页)
齿轮偏心的频谱
齿轮啮合频率(GMF)
齿轮不对中时的频谱
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达· 芬奇 4、与肝胆人共事,无字句处读书。——周恩来 5、一个人即使已登上顶峰,也仍要自强不息。——罗素· 贝克 6、一切节省,归根到底都归结为时间的节省。——马克思 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿 11、有勇气承担命运这才是英雄好汉。——黑塞 12、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼· 罗兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔· F· 斯特利 16、业余生活要有意义,不要越轨。——华盛顿 17、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、我这个人走得很慢,但是我从不后退。——亚伯拉罕· 林肯 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃 21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈 23、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 24、知之者不如好之者,好之者不如乐之者。——孔子 25、学习是劳动,是充满思想的劳动。——乌申斯基 26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭 27、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 28、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚 29、越是没有本领的就越加自命不凡。——邓拓 30、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
振动故障机理
磨擦力
反向切向力
1N
1/2,1/3N…
不稳定
不稳定
径向/轴向
不规则杂乱有发散有正反向涡动
明显
变大
有时随油温降低趋稳定
不变
转轴的运动视磨擦面在转轴外测或内侧有正,反向涡动之分
轴向定位尺寸不合理,或制造偏差大
转子轴向间隙调整不当
气体带液轴位移过大
止推轴承磨损造成轴向磨损
调整轴向间隙及止推盘与轴瓦平行度
径向
椭圆
不明显
变大
切断电源高振动消失
绝缘恶化,线圈短路
修复转子
14
同频振动
静气隙偏心
电磁力
圆周交变力
1N
npN
稳定
稳定
径向
椭圆
不明显
变大
切断电源高振动小时
制造偏差
安装转子定子中心不一致
轴承磨损使转子不同心
调整转子定子,使其同心
15
同频振动
动气隙偏心
电磁力
旋转矢量力
1N
稳定
稳定
径向
椭圆
可能增大
变大
切断电源高振动消失
对中不良
联轴器磨损间隙过大或机壳变形造成转子子负荷
消除子负荷或现场动平衡
6
同频振动
角对中不良
轴系
轴向交变力
1N
稳定
稳定
径向
圆或椭圆
正进动
升高
变大
不变
不变
振动随负荷变化明显,负荷变大振动变大
对中超标或没考虑热态对中变化
基础,底座沉降不匀产生对中偏差
考虑热态变形,重新对中
7
同频振动
联轴节误差
振动故障诊断
振动故障诊断振动故障诊断这一名称国外早在40多年前就已提出,但由于当时测试技术和振动故障特点知识的不足,因此这项技术在70年代前未有明显进展。
我国提出振动故障诊断也有20多年的历史,由于国内机组振动的专门性,因而在振动故障诊断方法,故障机理研究方面,具有专门的见解,通过40多年现场故障诊断的实践,在机组振动故障特点方面我们积存了丰富的知识,已扭转了振动故障缘故难于查明的局面。
故障诊断从目的来分,可分为在线诊断和离线诊断,前者是对运行状态下的机组振动故障缘故作出粗线条的诊断,以便运行人员作出纠正性操作,防止事故扩大,因此诊断时刻上要求专门紧迫,目前采纳运算机实现,故又称自动诊断系统。
系统的核心是专家体会,然而如何将分散的专家体会系统化和条理化,变成运算机的语言,是目前国内外许多专家正在研究的一个问题,因此不能将这种诊断系统误解为能替代振动专家,即使今后,也是振动专家设计和制造诊断系统,为缺乏振动知识和体会的运行人员服务,而不是替代振动专家的作用。
离线诊断是为了排除振动故障而进行的诊断,这种诊断在时刻要求上不那么紧迫,能够将振动信号、数据拿显现场,进行认真地分析,讨论或模拟试验,因此称它为离线诊断。
在故障诊断深入程度上要比在线诊断具体得多,因此难度大,本章要讨论的是离线故障诊断技术。
第一节机组振动故障诊断的思路和方法2.1.1直观查找振动故障2.1.1.1振动故障直观可见性由因此采纳肉眼或一样的测量直观去查找,因此能找到的振动故障必定是直观可见的故障,例如轴承座松动、台板接触不行、转子上存在自由活动部件等,关于直观不能发觉的故障,例如转子不平稳,系统共振,汽轮发电机转子存在热弯曲等故障,即使多次查找,也无法查明。
2.1.1.2发觉故障的偶然性即使关于直观可见的故障,也不是通过1—2次解体检查就能发觉的,这是由于查找本身带有较大的盲目性,因此能发觉故障往往带有较大的偶然性,例如某厂一台国产100MW机组,新机启动发生发生2、3瓦振动大,经两次揭缸检查,都未能找到故障缘故,而且经多次启停观看振动,都不能解说其故障缘故,正在一筹莫展之际,一个运行人员无意间用听棒在2、3瓦之间听到异音,再次揭缸才发觉高压转子4公斤重的中心孔堵头脱落掉在波形节联轴器内。
机械振动学中的振动故障诊断与技术
机械振动学中的振动故障诊断与技术在机械系统中,振动是一种常见的现象。
振动的产生是由于机械系统在运行过程中受到不同力的作用而发生的运动。
正常情况下,机械系统的振动可以帮助我们判断系统是否正常工作。
然而,当机械系统中出现了振动故障时,就需要进行振动故障诊断与技术处理,以确保机械系统正常运行。
下面将介绍机械振动学中的振动故障诊断与技术。
1. 振动故障的种类在机械系统中,振动故障可以分为结构振动故障和非结构振动故障两种。
结构振动故障是由于机械系统结构的设计缺陷或损坏所导致的振动问题,而非结构振动故障则是由于机械系统中其他部件的损坏或松动引起的振动问题。
在进行振动故障诊断时,需要根据振动的特点和机械系统的结构来确定振动故障的种类。
2. 振动故障的诊断方法为了准确诊断机械系统中的振动故障,可以采用多种方法进行振动测量和分析。
常见的振动诊断方法包括频谱分析、时域分析、轨迹分析、阶次分析等。
通过这些方法可以获取机械系统中不同频率和振幅的振动信号,从而判断振动故障的具体原因。
3. 振动故障的处理技术一旦确定了机械系统中的振动故障,就需要采取相应的处理技术来解决问题。
根据振动故障的具体类型,可以采用不同的处理方法,如调整机械系统的平衡性、更换受损部件、加强固定支撑等。
通过有效的处理技术,可以及时消除振动故障,确保机械系统的正常运行。
在机械振动学中,振动故障诊断与技术是非常重要的内容。
只有及时准确地诊断和处理振动故障,才能保证机械系统的稳定运行,延长机械设备的使用寿命,提高生产效率。
因此,掌握振动故障诊断与技术是每位机械工程师必备的技能之一。
希望本文的介绍对您有所帮助,谢谢阅读。
振动分析和故障诊断PPT课件
振动监测和诊断的注意事项
振动监测和诊断要想取得准确的结果必 须考虑仔细整个系统的每一个环节:包 括参数的选择,传感器及其固定方法, 测点位置的选择,仪器选择以及分析参 数的选择等
3
振动的三要素
振动是个向量 1.幅值 2.频率 3.相位
4
快速傅里叶 分析(FFT) 原理
快速傅里叶变化
x Ai sin(it i )
5.断路电流通过滚动轴承故障
十七.机器软脚及与之相 1.皮带磨损或不匹配
关的共振
2.皮带轮偏心
3.皮带共振
11
一
力 不
质
平 衡
量
典型的频谱
相位关系
不
平
同频占主导,相位稳定。如果只有不平衡,1X幅值 大于等于通频幅值 的80%,且按转速平方增大。
衡
通常水平方向的幅值大于垂直方向的幅值,但通常
不应超过两倍。
对
典型的频谱
相位关系
中
平行不对中的振动特性类似角不对中,但径向振动较大。
频谱中2X较大,常常超过1X,这与联轴节结构类型有关。.
B
角不对中和平行不对中严重时,会产生较多谐波的高谐次 (4X~8X)振动。甚至出现类似机械松动时出现完整系列
的高频谐波.
联轴节两侧相位相差也是180。
20
四
轴 承
不不
对
对 中
采用平衡的办法只能消除单方向的振动。
16
三
轴
典型的频谱
相位关系
弯
弯曲的轴产生较大的轴向振动.
如果弯曲接近轴的中部,占优势的是一倍频;若弯曲接
近力偶,则占优势的是二倍频.
曲
振动随转速增加迅速增加,过了临界转速也一样。
振动故障机理及案例资料
通频 152
工频 119∠273° 测点故障
26.7
20.1∠172°
转子质量不平衡
案例2:200MW机组现场动平衡
转子质量不平衡
2009年1月,机组在运行过程中发生发电 机转子漏水事故,随即停机检修。 检修后转子应返回制造厂进行高速动平 衡,考虑到工期及费用的因素,决定采 用现场低速动平衡,机组启动后再进行 现场高速动平衡。
动静碰磨
在盘车检查时,发现5瓦外侧裸露轴段有 一处灼烧痕迹,用手摸可以明显感觉到 发热。在此处打百分表测量也显示,轴 颈晃度较大,达到60μm,高于启动前的 测量值30μm。因此可以确定在5瓦处, 轴颈与油挡发生了较为严重的碰磨。
动静碰磨
5号轴承的油挡采用的是尼龙材料,而不是以 往常用的金属材料,因此安装时忽略了发生严 重碰磨的可能性,将动静间隙留得较小。在机 组启动后,转子随即与油挡发生碰磨。由于此 处转子轴颈较粗,在低转速下,其轴颈表面线 速度也比较大,因此碰磨情况比较严重,导致 转子局部产生高温,发生热弯曲,进一步加重 了碰磨。最后导致轴承振动迅速增大而跳机。
转子在工作转速下发生碰磨
故障机理:此类故障一般发生在机组带 负荷运行过程中,由于运行操作不当, 加负荷过快,使金属温度变化较快,各 部件膨胀变形不均匀,局部动静间隙消 失,产生摩擦。同时,某些转子的二阶 临界转速较为靠近工作转速,转子摩擦 变形后激起较大的二阶模态振动,严重 时会导致跳机。
转子在工作转速下发生碰磨
部件飞脱
故障机理: 转子在运行时,部件突然飞脱,产生较 大的不平衡力,转子振动突然增大。 部件飞脱后,有可能伴随产生碰磨故障。 一般情况下,振动突变后,转子振动维 持在较高水平并网发 电,此时低压转子前轴承振动偏大。在 加负荷至约300MW时,低压转子振动增 大,随后降低负荷,一段时间后振动降 低,随后再次加负荷,转子振动持续增 大,约十几分钟后跳机。
振动故障诊断要点
振动故障诊断要点振动故障是机械设备常见的故障类型之一,通过振动故障诊断可以帮助工程师找出故障的原因并采取相应的维修措施。
下面是振动故障诊断的要点:1.基本振动概念:了解振动的基本概念和参数,如振动的幅值、频率、相位和加速度等。
这些参数可以帮助工程师判断振动的严重程度和类型。
2.振动特征分析:振动特征分析包括频谱分析、时域分析和轨迹分析等。
频谱分析可以将振动信号转化为频谱图,从而找出频率和幅值异常的情况。
时域分析可以观察振动信号的波形,判断是否存在常见的故障类型。
轨迹分析可以观察旋转机械中旋转部件的运动轨迹,如转子不平衡和轴承故障。
3.振动测量与工具:了解振动测量的原理和方法,掌握常见的振动测量仪器,如加速度计、速度计和位移计等。
这些测量工具可以帮助工程师获取准确的振动数据,并用于故障诊断。
4.振动故障类型:了解振动故障的常见类型,如轴承故障、齿轮故障、不平衡和磨损等。
每种故障类型都有其特定的振动特征,通过分析这些特征可以判断故障的类型和位置。
5.振动诊断方法:根据振动特征和振动测量数据,结合机械设备的工作原理和结构特点,采用不同的振动诊断方法。
常见的方法包括单点测量、多点测量、滤波和波形诊断等。
通过综合应用这些方法,可以准确判断振动故障的原因。
6.振动故障分析:进行振动故障诊断后,需要对振动数据进行进一步的分析。
这包括对振动频谱进行解释和比较,对不同的振动特征进行关联分析,以及对振动故障的可能原因进行推断和验证。
7.故障预防和维护:通过振动故障诊断可以及时找出故障的原因,从而采取相应的维修措施。
然而,更好的方法是在设备正常运行期间进行故障预防和维护工作,包括定期检查和维护设备、定期校准和保养振动测量仪器等。
8.振动故障诊断的案例分析:通过分析实际案例,学习振动故障诊断的方法和技巧。
实际案例可以帮助工程师理解振动故障的原因和机理,并提高振动故障诊断的能力。
振动故障诊断是机械设备维修中重要的一环,能够帮助工程师快速准确地找出故障的原因,避免设备损坏和停机时间的增加。
振动故障分析与诊断教材..
旋转机械故障诊断(上)技术处性能试验科2009-11前言现代预测维修技术最大的进步也许就是能诊断机器内部的机械故障和电气故障。
诊断的证据就是震动超过预先设定的振动中联报警值和频谱报警值的振动特征信号。
例如,大部分正规的工矿企业都有预测维修用的数据采集器和相应的软件,并且,成功地建立了巨大的数据库,还采集了大量测点的振动数据。
然而,调查表明,只有15%以下的工厂知道如何大致建立振动总量报警值和振动频谱报警值。
因此,须真正了解如何利用振动频谱和相关参数(例如,振动尖峰能量gSE)数据诊断潜在的故障。
本书的目的就是要引导读者,如何从振动频谱和相关的变量中诊断故障。
诊断频谱中包含有大量的、有价值的信息,只有当分析人员能解开其中的“秘密”时,才能有益于故障诊断工作的开展。
在书的最后附有一张非常实用的故障诊断图标(表1.0)。
这张故障诊断表不仅详尽阐述了机器各种故障的振动症兆,还解释了各种故障的“典型振动频谱”。
此外,还图解说明了这些故障占优势时的相位关系。
本书代表了作者根据约16年振动特征信号分析的现场经验以及对机器状态监测、故障诊断领域内大量论文的研究。
并且阐述了作者对这些机器故障机理的理解以及诊断这些机器故障的成果。
振动故障分析与诊断(上)第一章:质量不平衡第一节:力不平衡第二节:力偶不平衡第三节:动不平衡第四节:悬臂转子不平衡第二章:偏心的转子第三章:弯曲的轴第四章:不对中第一节:角相不对中第二节:平行不对中第三节:卡住在轴上不对中的轴承第四节:联轴器故障第五章:共振造成机器故障第一节:识别自振频率特性第二节:如何估算悬臂转子和简支支承转子的机器的自振频率第六章:机械松动第一节:A型结构框架或基础松动第二节:B型由于摇动运动或开裂的结构或轴承座产生的松动第三节:C型轴承在轴承座中松动或两个零部件之间配合不良引起的机械松动第七章:转子摩擦第一节:局部摩擦第二节:整圆周摩擦第八章:滑动轴承故障第一节:滑动轴承磨损和间隙故障第二节:油膜涡动不稳定第三节:油膜拍打不稳定第四节:干拍打第九章:利用振动尖峰能量;高频包络和解调谱技术跟踪滚动轴承的轴承故障发展各个阶段第一节:前言第二节:滚动轴承状态评定的最佳振动参数第三节:有故障的滚动轴承产生的振动频谱的类型第四节:跟踪滚动轴承通过的各故障阶段的典型频谱第十章:流体引起的振动第一节:水力学力和气动力第二节:气穴和缺乏流体现象第三节:回流第四节:紊流第五节:喘振第六节:阻塞第十一章:齿轮故障第一节:齿轮的齿的磨损第二节:齿轮承受大的负载第三节:齿轮偏心和齿隙游移第四节:齿轮不对中第五节:裂纹的、破碎的或断的齿第六节:齿摆动故障第十二章电气故障第一节:定子故障问题第二节:偏心的转子第三节:转子故障第四节:转子不均匀的局部受热引起的轴弯曲第五节:电气相位故障第六节:同步电动机第七节:直流电动机故障第八节:扭矩脉冲故障第十三章:皮带松动故障第一节:磨损、松动或不匹配的皮带第二节:皮带/皮带轮不对中第三节:偏心的皮带轮第四节:皮带共振第五节:由于电动机框架/基础共振引起电动机以及风机转速频率过大的振动第六节:皮带轮松动或风机轮毂松动第十四章:拍振第十五章:交流感应电动机故障的分析和诊断第一节:序言第二节:感应电动机振动分析第三节:感应电动机电流分析第四节:实例第十六章:直流电动机故障的分析和诊断第一节:直流电动机的结构和工作原理第二节:利用振动分析检测直流电动机故障问题和控制问题第三节:开发尚末正式证实的直流电动机故障和控制故障的诊断技术第四节:在分析直流电动机故障问题和控制故障问题中输入精确的转速的重要性振动故障分析与诊断(下)第十七章:用于滚动轴承故障诊断的高频包络解调技术第一节:关于高频包络的初步介绍第二节:介绍高频包络谱分析理论和重要因素第三节:高频包络实例第十八章:低速机器所需的振动分析技术及仪器第一节:前言第二节:低频测量的最佳振动参数第三节:对低频分析仪器的要求第四节:评定低速机器的滚动轴承第五节:低频测量推荐技术的总结第六节:低速机器的振动总量报警和频带报警的设定第七节:低频测量中遇到的困难和错误第十九章:实例A第二十章:高速机器所需的振动分析技术和仪器第二节:高频振动测量的最佳参数第三节:对高频振动分析仪器的要求第四节:高频测量所需的传感器第五节:振动加速度计固定对频率响应的影响第六节:超声测量第七节:高频数据的可靠性;精度和可重复性第八节:真实世界中实例振动故障分析与诊断(上)第一章质量不平衡概述如图1.1至1.4新的质量中心线与轴中心线不重合时便产生不平衡。
《机械设备故障诊断与维修》课程标准
《机械设备故障诊断与维修》课程标准一、课程定位《机械设备故障诊断与维修》课程是机电技术应用及机械制造大类各专业的核心专业课程,依据专业的人才培养目标和机电设备装调维修工岗位群的任职要求而设置的。
本课程采用基于“机电设备生产、销售和服务”职业工作过程的“做”中“学”教学模式,培养从事机电设备机械部件、电气系统和整机的装配、故障排查等机电设备制造和机械加工的关键性岗位能力,并培养良好的职业素质,使学生成为合格的机电设备从业人员。
二、课程目标通过《机械设备故障诊断与维修》课程的学习,基于工作岗位的能力要求,根据我校以“培养高素质高技能应用型人才”的办学定位和大专学生毕业后从事生产第一线技术工作岗位的实际提出如下具体课程目标:1.知识目标1)熟悉机电设备安装与维修相关职业标准。
2)了解设备老化、失效、故障、维修等方面的基本概念、内容,对设备维修与故障诊断有较完整地认识。
3)了解传统的和现代的主要的故障诊断技术和方法,能正确运用故障诊断参数和标准等对实际故障问题进行定性分析和诊断。
4)深入理解设备的拆卸与装配原则,能进行典型零部件的装配。
5)熟悉机械零件的各种修复方法,能进行机械修复、焊接、热喷涂等操作。
6)熟悉设备精度检验中常用的工具,能正确进行常用设备的精度检验。
7) 具有典型零部件、普通机床、农业机械的故障诊断和维修能力。
8)能进行数控设备的安装和简单故障排除2.能力目标1)具有自主学习能力和自我发展能力。
2)能运用电脑、网络等现代学习工具,有信息收集和处理能力。
3)具有安排任务与解决现场问题能力。
4)能自觉评价学习效果,找到适合自己的学习方法和策略。
5)具有方案设计和开拓创新能力。
3.素质目标1)培养良好的团队合作意识和文字表达能力;2)具有较好的语言表达能力和沟通交流能力;3)具有系统概括知识的能力;4)具有拆卸、清洗、检验、修理及装配机械零件的基本能力;5)具有良好的工程表达能力;6) 具有科学思维方法;7) 具有分析问题和解决问题的能力;8) 具有自主学习新知识、新技术的能力。
振动故障诊断
第二章振动故障诊断振动故障诊断这一名称国外早在40多年前就已提出,但由于当时测试技术和振动故障特征知识的不足,所以这项技术在70年代前未有明显发展。
我国提出振动故障诊断也有20多年的历史,由于国内机组振动的特殊性,因而在振动故障诊断方法,故障机理研究方面,具有独特的见解,经过40多年现场故障诊断的实践,在机组振动故障特征方面我们积累了丰富的知识,已扭转了振动故障原因难于查明的局面。
故障诊断从目的来分,可分为在线诊断和离线诊断,前者是对运行状态下的机组振动故障原因作出粗线条的诊断,以便运行人员作出纠正性操作,防止事故扩大,因此诊断时间上要求很紧迫,目前采用计算机实现,故又称自动诊断系统。
系统的核心是专家经验,但是如何将分散的专家经验系统化和条理化,变成计算机的语言,是目前国内外许多专家正在研究的一个问题,因此不能将这种诊断系统误解为能替代振动专家,即使将来,也是振动专家设计和制造诊断系统,为缺乏振动知识和经验的运行人员服务,而而且国内外在线诊断目前主要也是采用这种推理方法。
由于反向推理诊断故障容易掌握,所以目前已获得广泛应用,但是在实际诊断振动故障时往往会发生下列弊病。
1.诊断结果不肯定机组绝大多数振动故障特征有多方面的反映,不同的故障其特征存在着显着的交叉,例如转子不平衡过大,引起的是基频振动过大;同样支撑动刚度不足,轴系连接同心度、平直度偏差等故障,也是基频振动过大,也就是说故障和特征之间不是一一对应关系,而是多重交叉关系,而且一种故障在特征上有多方面的反映,就拿最简单的振动故障转子不平衡来说,它可以在升速过程中发生振动过大,但也有不大的,而只是在工作转速下振动大;有时则相反。
从而依据振动特征反推故障,必然会得出几种不肯定的诊断结果,这就是目前一般都习惯采用的:可能是某种原因,或大概是某种原因。
得出这种不肯定的诊断结果,从方法上来说是采用了反向推理的必然结果。
但从主观上来说,做出这种诊断是事先给自己留好退路,因此严格的说,这是一种不负责任的诊断。
机械振动的故障诊断与
机械振动的故障诊断与修复方法机械振动的故障诊断与修复方法摘要:机械振动是机械设备运行中常见的故障原因之一,它会导致设备的性能下降、寿命缩短甚至设备的完全损坏。
因此,准确诊断振动故障并及时采取修复措施是非常重要的。
本文将介绍机械振动的故障诊断方法和常用的修复技术。
1. 故障诊断方法1.1 观察法观察法是最简单也是最直观的故障诊断方法之一。
通过观察振动设备的外观,检查是否有松动、磨损或裂纹等现象,可以初步判断是否存在故障。
然而,观察法无法准确判断故障的具体原因和位置,因此需要结合其他诊断方法进行进一步分析。
1.2 频谱分析法频谱分析法是一种常用的故障诊断方法,它通过将振动信号转换成频谱图,可以直观地观察到各个频率分量的幅值和相位,从而确定故障的类型和位置。
常见的频谱分析方法有快速傅里叶变换(FFT)和小波变换等。
1.3 振动测量法振动测量法是一种非常准确的故障诊断方法。
它通过使用振动传感器测量设备振动的参数,如振动速度、振动位移和振动加速度等,从而得到故障诊断的数据。
根据振动测量的结果,可以确定故障的类型和严重程度。
2. 故障修复方法2.1 动平衡技术动平衡技术是一种常用的故障修复方法,它通过调整机械设备的质量分布,使得设备在运行时不再产生不平衡的振动。
常见的动平衡方法有单平面平衡和双平面平衡等,可以有效消除设备的振动故障。
2.2 润滑技术润滑技术是一种预防和修复机械振动故障的有效方法。
合适的润滑油可以降低机械设备的摩擦阻力和磨损,从而减少振动的产生。
此外,还可以使用润滑油添加剂来改善润滑效果,进一步降低设备的振动。
2.3 调整工艺参数调整工艺参数是一种常用的故障修复方法,它通过合理调整机械设备的运行参数,如转速、送料量和冷却剂流量等,来减少振动故障的发生。
根据故障的原因和位置,通过调整工艺参数可以使设备恢复正常运行,并降低振动的产生。
结论:机械振动的故障诊断和修复是保障设备正常运行和延长设备寿命的重要环节。
Aintek振动培训故障图例与原理
Ainte振动培训故障图例结合讲解第一节不平衡知识1、静态不平衡特征:径向1X波峰(垂直或水平方向上)Symptoms: 1X radial (V & H)如果机器失去平衡我们将得到频率等于转速的正弦时域波形,在转速频率(1X)处有一个高峰。
最简单的不平衡模型是将转动轴的重心简化到一个点。
这种不平衡称为静态不平衡,因为即使是在旋转体不旋转的情况下也能够表现出来,如果将其放在没有摩擦的轴承中间,重心位置将自动回转到最低位置。
静态不平衡将会在旋转轴的两个承载轴承上产生一个1X频率的作用力,作用于两个轴承上的作用力的方向总是相同。
从这两个轴承上采集到的振动信号同相。
原理:静态的不平衡导致转子两端的轴承在1x处出现不平衡应力,并且两端轴承上应力的方向相同,其产生的振动信号同相位。
一个单纯的静态小平衡将在振动频谱中严生一个强烈的基频波峰,其振幅与不平衡的严重程度以及旋转速度的平方呈正比,轴承上1x处的相对振幅取决于转子"重心"的位置.2、偶不平衡特征:径向1X波峰(垂直或水平方向上)如果机器出现不平衡我们将得到频率等于旋转速度的正弦时域波形,频谱上在转速频率(1X)处会产生一个高峰。
一个旋转体如果存在偶不平衡,就有可能形成静态平衡(放置在无摩擦的轴承上旋转体看起来好象刚好平衡)。
但当旋转体发生旋转的时候,就会在它的两个承载轴承上产生离心作用力,并且它们的相位相反。
原理:一个偶不平衡转子在静止的情况下可能是平衡的(当置放在无摩擦力的轴承上,它看起来是完全平衡的)。
但是一旦开始旋转,它就会在两端轴承上产生反相离心力。
如果仅从振动频谱上来看它们都是很相似的;我们只能通过相位测定来帮助区分偶不平衡和静态不平衡这两种不平衡状态。
转子上可能同时存在着静态不平衡和偶不平衡,这种情况称为动态不平衡。
这是我们会在实际当中经常遇到的现象。
如果没有相关的相位信息我们将很难区分静态和动态不平衡。
对动态不平衡进行校正时,需要在多个平面上进行平衡,而从理论上讲,静态不平衡只需要添加一个平衡重就可以矫正。
振动故障诊断
振动故障诊断集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]第二章振动故障诊断振动故障诊断这一名称国外早在40多年前就已提出,但由于当时测试技术和振动故障特征知识的不足,所以这项技术在70年代前未有明显发展。
我国提出振动故障诊断也有20多年的历史,由于国内机组振动的特殊性,因而在振动故障诊断方法,故障机理研究方面,具有独特的见解,经过40多年现场故障诊断的实践,在机组振动故障特征方面我们积累了丰富的知识,已扭转了振动故障原因难于查明的局面。
故障诊断从目的来分,可分为在线诊断和离线诊断,前者是对运行状态下的机组振动故障原因作出粗线条的诊断,以便运行人员作出纠正性操作,防止事故扩大,因此诊断时间上要求很紧迫,目前采用计算机实现,故又称自动诊断系统。
系统的核心是专家经验,但是如何将分散的专家经验系统化和条理化,变成计算机的语言,是目前国内外许多专家正在研究的一个问题,因此不能将这种诊断系统误解为能替代振动专家,即使将来,也是振动专家设计和制造诊断系统,为缺乏振动知识和经验的运行人员服务,而不是替代振动专家的作用。
离线诊断是为了消除振动故障而进行的诊断,这种诊断在时间要求上不那么紧迫,可以将振动信号、数据拿出现场,进行仔细地分析,讨论或模拟试验,因此称它为离线诊断。
在故障诊断深入程度上要比在线诊断具体得多,因此难度大,本章要讨论的是离线故障诊断技术。
第一节机组振动故障诊断的思路和方法2.1.1直观寻找振动故障2.1.1.1振动故障直观可见性由于是采用肉眼或一般的测量直观去寻找,因此能找到的振动故障必然是直观可见的故障,例如轴承座松动、台板接触不好、转子上存在自由活动部件等,对于直观不能发现的故障,例如转子不平衡,系统共振,汽轮发电机转子存在热弯曲等故障,即使多次寻找,也无法查明。
2.1.1.2发现故障的偶然性即使对于直观可见的故障,也不是通过1—2次解体检查就能发现的,这是由于寻找本身带有较大的盲目性,因此能发现故障往往带有较大的偶然性,例如某厂一台国产100MW机组,新机启动发生发生2、3瓦振动大,经两次揭缸检查,都未能找到故障原因,而且经多次启停观察振动,都不能解说其故障原因,正在一筹莫展之际,一个运行人员无意间用听棒在2、3瓦之间听到异音,再次揭缸才发现高压转子4公斤重的中心孔堵头脱落掉在波形节联轴器内。
机械振动信号分析及故障报警课程设计
燕山大学课程设计说明书题目:机械振动信号分析及故障报警学院(系):电气工程学院年级专业: 10级仪表3班电气工程学院《课程设计》任务书课程名称:“单片机原理及应用——数字信号处置”课程设计说明:一、此表一式四份,系、指导教师、学生各一份,报送院教务科一份。
二、学生那份任务书要求装订到课程设计报告前面。
目录第一章摘要第二章整体设计方案第三章大体原理第四章MATLAB界面设计第五章各模块设计及程序第六章设计心得及总结参考文献第一章摘要机械振动信号分析是现代机械故障诊断的一个有效方式。
在诸多信号分析的手腕中,小波分析与傅氏变换相结合的方式取得普遍应用。
因为这种方式更适合于提取微弱机械振动的特点信号。
可是与其他分析工具一样,小波分析工具有自己的特点,若是不能正确利用,反而会阻碍对信号的正确分析。
从本质上说,小波分析是用小波函数与被被分析的信号函数做一系列的相互关运算,因此选用小波函数不妥会引发分析的误差或误判。
第二章整体设计方案对机械振动信号进行采样,把采样的数据进行时域和频域上的分析,包括FFT,功率谱,倒谱分析。
提取时域波形指标如均值、峰峰值、峭度、偏度、脉冲因数等。
以一种指标为标准,分析振动信号产生的转变。
本次课设利用matlab软件,实现对机械振动信号时频域的分析和故障的判定。
因为频域分析特点值的提取较麻烦,那个地址咱们用其中一种参数的计算量为标准来判定是不是发生故障。
第三章大体原理与Fourier变换相较,小波变换是空间(时刻)和频率的局部变换,因此能有效地从信号中提取信息。
通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。
小波变换联系了应用数学、物理学、运算机科学、信号与信息处置、图像处置、地震勘探等多个学科。
数学家以为,小波分析是一个新的数学分支,它是泛函分析、Fourier分析、样调分析、数值分析的完美结晶;信号和信息处置专家以为,小波分析是时刻—尺度分析和多分辨分析的一种新技术,它在信号分析、语音合成、图像识别、运算机视觉、数据紧缩、地震勘探、大气与海洋波分析等方面的研究都取得了有科学意义和应用价值的功效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空工程学院航空发动机综合课程设计Core Vibration Higher Than 7.3 Units题目核心机振动值高于7.3个单位作者姓名赵冬福专业名称热能与动力工程指导教师尚永锋提交日期2011年月日答辩日期2011年月日中国民航飞行学院航空工程学院课程设计ABBREVIATIONSAPM ARINC Processing ModuleANI Analog InputBITE Build In TestCMC Centralized Maintenance ComputerCFMI CFM InternationalDMC Display management ComputerDIM Discrete Input ModuleECU Electronic Control UnitEMI Electromagnetic InterferenceFMECA Failure Mode Effects and Criticality Analysis FFCCV Forward Flange Compressor Casing vibration FADEC Full Authority Digital Engine ControlGPM General Processing ModuleLRU Line Replaceable UnitMCDU Multifunction Control Display UnitPSM Power Supply ModuleRFI Radio Frequency InterferenceRCC Remote Charge ConverterSFC Specific Fuel ConsumptionSPM Signal Processing ModuleCore V ibrations Higher than 7.3 UnitsTable of contentsChapter 1 Overview of CFM56-5C (1)1.1 General (1)1.1.1 The CFM56-5C series (1)1.1.2 The advantages of CFM56-5C (2)1.2 The main modules of the engine (2)1.2.1 Fan/Booster rotor (2)1.2.2 Fan/Booster stator (2)1.2.3 Fan frame (3)1.2.4 Compressor rotor (3)1.2.5 Compressor stator (3)1.2.6 Combustor (3)1.2.7 High pressure turbine (4)1.2.8 Low pressure turbine (4)Chapter 2 Engine Interface and V ibration Monitoring System (EIVMS) (4)2.1 General (5)2.1.1 Description (5)2.1.2 Operation (7)2.2 Component Location (7)2.3 System Description (8)2.3.1 engine vibration system (8)2.3.2 Power Supply (9)2.3.3 Interface (9)2.4 Operation/Control and Indicating (10)2.4.1 Engine Vibration Monitoring (10)2.4.2 Engine Vibration Maintenance (12)Chapter 3 VIBRA TION SENSORS (12)3.1 General (15)3.1.1 Component Location (15)3.1.2 System Description (15)3.2 Component Description (17)3.2.1 No.1 Bearing Vibration Sensor (17)3.2.2 FFCC V ibration Sensor (18)3.2.3 Remote Charge Converter (RCC) (18)Chapter 4 failure analyzing (21)4.1 The related functional block diagram (21)4.2 Analyzing the probable causes resulting (22)4.3 Carrying out FMECA on the basis of the causes (22)4.4 Drawing the failure tree of the fault (24)4.6 Troubleshooting flow chart (24)中国民航飞行学院航空工程学院课程设计4.7 V ibration monitoring and fault diagnosis method (26)Reference (27)中国民航飞行学院航空工程学院课程设计Chapter 1 Overview of CFM56-5C1.1 GeneralThe CFM56-5C series engine is an axial flow, dual spool, high bypass ratio, turbo-fan engine with fan and multistage compression systems driven by reaction turbines. The engine is designed for use with a long duct, forced mixed flow exhaust system. The single stage fan and 4 stage booster is driven by a 5 stage low pressure turbine. A 9 stage, variable geometry, high pressure compressor is driven by an air cooled single stage turbine. A full annular combustor with 20 duplex fuel nozzles distributes the fuel to provide the heat energy to drive the turbines with residual energy providing thrust.The accessory drive system extracts energy from the high pressure rotor to drive the engine and engine-mounted aircraft accessories. Reverse thrust for braking the aircraft after landing is supplied by an integrated system which acts on the fan discharge airflow.1.1.1 The CFM56-5C seriesThe principal operational differences between the CFM56-5C series engine models are summarized below:Table 1-1 CFM56-5C seriesCFM56-5C2 31,200 lbs (13,878 daN) 950CFM56-5C2/F 31,200 lbs (13,878 daN) 965CFM56-5C2/G 31,200 lbs (13,878 daN) 975CFM56-5C3/F 32,500 lbs (14,456 daN) 965CFM56-5C3/G 32,500 lbs (14,456 daN) 975CFM56-5C4 34,000 lbs (15,123 daN) 975Core V ibrations Higher than 7.3 Units1.1.2 The advantages of CFM56-5CCharacteristics:1. Lowest SFC of the CFM56 family.2. Quietest engine in its thrust class.3. High thrust-to-weight ratio to provide excellent takeoff performance for high-altitude and hot airfields.4.36,000 pounds of thrust demonstrated during ground testing.5. Second-generation FADEC.6. Long-duct, mixed-flow nacelle developed by CFM to provide significant noise attenuation, reduced fuel burn, and increased climb thrust.1.2 The main modules of the engineThe main modules of the engine are:-The fan-The fan and booster-The high pressure compressor-The combustor chamber-The low pressure turbine-The high pressure turbine-The accessory drive gearbox.1.2.1 Fan/Booster rotorThe fan rotor consists of one full diameter single stage fan and a smaller 4 stage booster for the core engine flow.The fan and the booster are mounted on a common internal concentric shaft driven by the 5 stage fan turbine. Two bearings support the fan assembly in the fan frame.1.2.2 Fan/Booster statorFixed stator vanes are provided for both the fan and the rotors. The fan casing, in which the fan stator is mounted, has provisions for blade containment forward of and in the plan of the fan中国民航飞行学院航空工程学院课程设计rotor. The casing is supported by the fan frame and also supports the accessory drive gearbox. 1.2.3 Fan frameThe fan frame is one of the major structural and aerodynamic components of the engine. Aerodynamically the fan frame forms the inner and outer flow passage of the fan and core airstreams.Structurally the fan frame functions are:-to carry inlet cowl loads-to support the fan casing, the two fan bearings and the core engine forward bearings-to house the accessory drive power take off gearbox and radial drive shaft-to contain the variable bypass valve between the booster and high pressure compressor-to support the transfer and accessory gearboxes- to provide mounting surfaces for the fan-stream acoustic panels.This frame also serves as the forward support for the high compressor.1.2.4 Compressor rotorThe compressor is a 9 stage axial flow assembly. The rotor consists of the stage 1 and 2 disks which form a spool, a separately attached stage 3 disk and a spool containing stage 4 - 9 disks. Stages 1, 2, and 3 disks have axial dovetail slots and stages 4 - 9 blades are retained in circumferential slots. All blades are individually replaceable without spool disassembly.1.2.5 Compressor statorAll 9 stages of the compressor stator are shrouded. The Inlet Guide V anes (IGV) and the first 3 stages of the compressor are variable. The casing is composed of two semi-cylindrical halves, permitting a quick access to the core engine compressor.1.2.6 CombustorA step diffuser is incorporated upstream of the combustor for reduction of the combustor sensitivity to the compressor velocity profile. The combustor can be replaced without disturbing the fuel nozzles. The combustor casing provides structural support for the combustor, the compressor Outlet Guide V anes (OGV), the High Pressure (HP) stator and shrouds, and the sealsCore V ibrations Higher than 7.3 Unitsfor the Compressor Discharge Pressure (CDP).1.2.7 High pressure turbineThe High Pressure Turbine (HPT) is an air-cooled single-stage high-energy turbine. Rotor blades are individually replaceable without the need for rotor disassembly or re-balancing.1.2.8 Low pressure turbineThe Low Pressure Turbine (LPT) consists of 5 stages of blades and vanes. The first stage nozzle vane is cooled and transfers cooling air for the high pressure and low pressure turbine disks. The LPT drives the fan rotor through the inner concentric shaft and is aerodynamically coupled to the high pressure system. The front flange of the LPT casing supports the A8 flange extension and the partial axial flow bulkhead.Fig.1-1 CFM56-5CChapter 2 Engine Interface and Vibration Monitoring System(EIVMS)2.1 GeneralThe Engine Interface and Vibration Monitoring System (EIVMS) have two main functions:-Engine interface-Vibration monitoring.The Engine Interface and Vibration Monitoring System (EIVMS) consist in:-One computer (EIVMU)-One separate Remote Charge Connector (RCC)2.1.1 DescriptionThe EIVMU contains:-One General Processing Module (GPM)-One Discrete Input Module (DIM)-One Signal Processing Module (SPM)-One ARINC Processing Module (APM)-One Power Supply Module (PSM)-Four relays(a) General processing moduleThe GPM is involved in all the EIVMU functions except in the transfer function.Most of the logics and all the Discrete Outputs (DSO) are processed by this board from Digital Input (DGI), Discrete Signal Input (DSI) or Analog Input (ANI).BITE data are centralized or GPM for the whole EIVMS.The GPM internally communicates with APM and SPM, but is always the slave in the communication. The GPM has also relations with all other boards (centralization of BITE). (b) Discrete Input ModuleThe DIM acquires all Discrete Inputs (DSI) for the EIVMS. It can be considered as an hardware extension of the GPM board which manages it.(c) Signal processing moduleThe SPM acquires all Analog Inputs (ANI), vibration inputs and processes corresponding data. This board receives accelerometer signal through the RCC.The SPM internal communication is only performed with the GPM.(d) ARINC processing moduleThe APM ensures the processing of all Digital Inputs (DGI) and Digital Outputs (DGO). In particular, the transfer function is fully performed through this board.The APM internal communication is only performed with the GPM thanks to a mail-box process.(d) Power Supply ModuleThe Power Supply Module (PSM) provides all necessary supplies for the whole EIVMS. Aircraft power supply (28VDC) is monitored in order to have a satisfactory behaviour in case of transient.(f) RelaysThree relays are necessary to switch the aircraft power supplies to the corresponding engine. Switching conditions can be software (from GPM) or hardware (direct link to ENG FIRE or ENG/MASTER switch OFF discrete inputs).1.ECU supply switchingThe two following conditions energize the relay R1:-One hardware condition (FIRE ON)-One processed condition (on ground, ENG/MASTER switch in off position for at least 15 minutes).Upon energization of the relay R1, the ECU power supply is cut.2. Igniter supply switchingThe following condition energizes the relay R2:-One hardware condition (ENG FIRE ON or ENG/MASTER switch OFF)Upon energization of the relay R2, the igniter power supply is cut.3.T / R supply switchingThe relay R4 is energized when the EIVMU receives Throttle in REV position from the throttle control unit.2.1.2 OperationThe EIVMU interfaces with aircraft computers and with the associated propulsion system to perform the following functions:-data concentration from the cockpit panels and various aircraft computers to the associated engine control-engine to engine segregation-airframe electrical supplies to engine control-internal processing of some engine related status signals needed by the related engine control system-Processing and monitoring of engine vibration signals.2.2 Component LocationEngine Interface and Vibration Monitoring Unit (EIVMU) are located avionics compartment.- 2 EIVMUS are left.- 2 EIVMUS are right.Fig.2-1 the location of sensorsFig.2-2 Location of EIVMSFig.2-3 the location of sensors2.3 System Description2.3.1 Engine vibration systemThe engine vibration system comprises per engine:-Two monitoring sensors (piezo-electric accelerometers) the No. 1 bearing vibration sensor and the Forward Flange Compressor Casing vibration (FFCCV) sensor-Two tachometers N1 speed sensor and N2 speed sensor- One Engine Interface and Vibration Monitoring Unit (EIVMU)- One Remote Charge Converter (RCC)2.3.2 Power SupplyThe engine vibration system is supplied through the EIVMU from the 3PP bus bar2.3.3 InterfaceThe EIVMU is an interface between the propulsion system and the aircraft.A Interface Signals between Propulsion System and EIVMUFor the vibration monitoring purpose, the EIVMU receives:-Two digital signals from the Electronic Control Unit (ECU) through ARINC 429 data bus ECUA and ECUB:N1 speed, label 045 (used as a back-up for the N1 speed sensor)N2 speed, label 344.-Three analog signals from the:N1 speed sensorNo. 1 BRG VIB sensor (or ACCLRM A) through the RCCFFCC VIB sensor (ACCLRM B) through the RCC.B Interface Signals between EIVMU and AircraftThe EIVMU receives digital signals through ARINC data bus from:-CMC bus CMCM, labels 040, 041, 042, 125, 126, 227, 233, 234, 235, 236, 237, 260, 301, 302, 303, 304 (ARINC 429)-PRINTER bus PRINTER, labels 234, 235, 236 or 237 (ARINC 740).The EIVMU transmits digital signals through ARINC data bus to:-DMC bus A1, labels 035, 135, 136 (ARINC 429)-CMC bus A1, label 356 (ARINC 429)-test plug in the 800VU bus A1, (ARINC 429)-PRINTER bus A2, labels 172 and 223 (ARINC 740).2.4 Operation/Control and IndicatingThe engine vibration system has two main functions:-monitoring-Maintenance.2.4.1 Engine Vibration MonitoringThe EIVMU processes by means of:-Two accelerometer signals No.1 BRG and FFCC VIB received through the RCCFig.2-4 the interface of EIVMU-One N1-dedicated speed sensor signal (one pulse per revolution included) or N1 speed message from ECU buses (as a backup)-One N2 speed message given by the ECU buses.The EIVMU processes:-ACCLRM A corresponds to No.1 BRG (Bearing) VIB sensor, while ACCLRM B corresponds to FFCCV (Forward Flange Compressor Casing Vibration) VIB sensor. Narrow band frequencyfiltering for both of these sensors allows to obtain the two vibration values for each N1 and N2 shafts. An unfiltered BB (Broad Band) measurement is also available for each accelerometer.-N1 vibrations are measured as a displacement in mils (1/1000 of an inch), while N2 vibrations are measured as a speed IPS (inch per second). N1 phase angle is also measured in degrees for balancing purposes.-MAX N1 narrow band VIB selection and normalization for display:The display between 0 and 5 units depicts a vibration between 0 and 5 mils (linear)The display between 5 and 10 units depicts a vibration between 5 and 25 mils (linear).-MAX N2 narrow band VIB selection and normalization for display.The display between 0 and 10 units depicts a vibration between 0 and 3 IPS(linear).-broadband vibration monitoring (inch per second) through a 20 to 500 Hz filter from both No.1 BRG and FFCC VIB-N1 (DEG) phase and displacement (mm inch) from both No.1 BRG and FFCC VIB-N1 and N2 advisory level exceed from MAX of No.1 BRG and FFCC VIB.The N1 and N2 digital vibration values are:-in green color in normal operation-in green pulsing color (only one advisory level), if N1 or N2 engine vibrations exceed 5.7 units and 5.6 units for N2.-Besides the maximum values of the different vibratory measurements encountered during the flight, the EIVMU also processes and stores the cumulated exposure time above "long term operation levels".This exposure time is the sum over the whole flight of all time periods during which at least one "long term operation level" has been exceeded.The "long term operation levels" are fixed at:-20 mils for N1 vibrations-2.4 IPS for N2 vibrationsThere is no specific relationship between max flight values and long term exposure time. LONG TERM EXPOSURE: 0S (zero seconds) means that the "long term operation levels" have not been exceeded.Each of the leg records includes the measurements mentioned above at the moment when the vibration level shown in the record heading reached its maximum during the leg.Fig.2-5 the line of N1 VIBFig.2-6 the line of N2 VIB2.4.2 Engine Vibration MaintenanceThe maintenance tasks are divided into the following main parts:-normal modeSome specific tasks can be activated, in addition to the failure detection. The LRUs and wiring failures specific to vibration detected by the EIVMU are listed below.- Menu mode.(1) Normal modeThe specific tasks are:-max. flight vibrations acquisition-frequency analysis with printing of the results, by direct specific input and output buses linked to the printer-monitoring of broadband level exceed.-monitoring of maintenance level exceed.- Acquisition of 8 sets of points in predetermined conditions for engine trim balance.(a) Max. flight vibrations acquisitionThe EIVMU stores, for each flight and for N1 and N2 vibrations, the max vibration levels.The Max. N1 VIB, and Max. N2 VIB, from No.1 BRG VIB and FFCC VIB sensors are processed during the flight (phase 6) and are available through the MCDU in menu mode for the last 8 flights.(b) Frequency analysisThe frequency analysis (between 1 and 500 HZ by step of 4 HZ) is a semi-graphic print which is done if the broadband threshold level is exceeded or if required on the MCDU before flight (for given conditions).(c) Monitoring of broadband level exceed(d) Monitoring of maintenance level exceedThe EIVMU monitors whether the N1 NB and N2 NB vibrations from the No.1 BRG and FFCC VIB have reached a maintenance level:N1 maintenance level = 6 Mils for all N1 rangeN2 maintenance level = 1,7 IPS for all N2 range.(e) Acquisition of 8 sets of points in predetermined conditionsAcquisition of phase and displacement in stabilized flight conditions allows to rebalance the engine fan.(2) Menu modeThe following tasks can be activated:-ground scanning and integral test of the system-discrete input and output status-frequency analysis demand-max flight vibration displayChapter 3 VIBRATION SENSORS3.1 GeneralThe Remote Charge Converter (RCC) performs the amplification and the conditioning of the vibration pick-up signals from the No.1 bearing vibration and the forward flange compressor casing (FFCC) vibration sensors (respectively ACCLRM A and B), and transmits the signals to the Engine Interface Vibration Monitoring Unit (EIVMU).3.1.1 Component LocationA No.1 Bearing Vibration SensorThe accelerometer part of the vibration sensor is not visible externally. It is located inside the fan and booster section at the 9:00 o'clock position (aft looking forward) on the No.1 and No.2 bearing support near No.1 bearing.The sensor cable is routed on the No.1 and No.2 bearing support, then through the fan frame from which it comes out at the 3:00 o'clock position (ALF) as a 3-pin receptacle.B FFCC Vibration SensorThe FFCC vibration sensor is installed at the 4 O'clock on the front flange of the compressor casing, and is connected to 6 o'clock junction box by a harness.C Remote Charge Converter (RCC)The RCC is located at the 3:00 o'clock position on the fan case (ALF), above the ignition exciters.3.1.2 System DescriptionThe vibration sensor system is made of:-One No.1 bearing vibration sensor-One FFCC vibration sensor-One RCC.Fig.3-1 the location of V ibration unitsA No.1 Bearing Vibration SensorThe No.1 bearing vibration sensor permanently monitors the vibrations from the No.1 bearing. It is also used for trim balance operations.B FFCC Vibration SensorThe forward flange compressor casing (FFCC) vibration sensor is used in conjunction with the No.1 bearing vibration sensor.C Remote Charge Converter (RCC)The RCC is the engine equipment, interfacing with the EIVMU and up to the No.1 BRG VIB and FFCC VIB sensors.Its main function is to condition (Integration in speed) the two piezo-type accelerometer signals and to amplify these preconditioned signals to send them to the EIVMU.3.2 Component Description3.2.1 No.1 Bearing Vibration Sensor(1)DescriptionFig.3-2 Sensor wiringThe No.1 bearing vibration sensor assembly is made of the following items:-One housing including:One accelerometerOne bracket with 2 holes ensuring housing attachment to the No.1 bearing support with 2 bolts -One semi-rigid cable including:Two conductors inserted in an inner sheath and an outer sheath.Two metal tubes to supply cable rigidity.One metal plate for cable attachment to the forward flange of the fan frame mid-box structure. Five shock absorbers to guide and dampen the cable in a tube through the fan frame strut No.3. One 3-pin connector at one end provided with a nut for connector attachment to the fan frame. Four clamps for tube attachment to the fan frame No.1 bearing support.(2) OperationThe sensor is of the piezo-electric type. It includes a stack of piezo-electric discs placed between a mass and a base. When the accelerometer is subjected to a vibration, the mass exerts a variable force on the discs and so generates a potential difference directly proportional to the acceleration in a certain frequency range. The analysis of the signal delivered by this potential difference enables identification of vibration characteristics of the monitored part. The accelerometer sensitivity is 100pc/g.Fig.3-3 No.1 Bearing Vibration Sensor3.2.2 FFCC Vibration Sensor(1) DescriptionThe FFCC vibration sensor consists of a hermetically sealed housing that encloses the sensing element. A flange with two holes is provided to attach the housing to the engine. One electrical connector at the end of the semi-rigid harness provides the interface with a harness to the RCC.(2)OperationThe sensor is of the piezo-electric type.A piezo-electric material generates electrical charges when it is submitted to a mechanical stress. An inert mass is attached to a piece of piezo-electric material. When the assembly is submitted to vibrations, the inertia of the mass generates mechanical stresses in the piezo-electric material. It is therefore possible to collect an electrical signal the frequency and intensity of which is representative of the vibration level to be measured.3.2.3 Remote Charge Converter (RCC)(1)DescriptionThe fan case installed RCC is vibration isolated by four dampers. It consists of:- Two connectors A and B which receive input accelerometer signals from the No.1 BRG VIBand FFCC VIB sensors.Fig.3-4 FFCC V ibration Sensor-One connector C which sends output signals to the EIVMU.-a grounding braid which provides its case ground reference.-Two identical processing channels featuring:One RFI input filter which protects the charge converter against Radio Frequency Interference (RFI) and Electromagnetic Interference (EMI).One differential and symmetrical charge converter which transforms the charge input into a voltage proportional to acceleration.One integrator which converts the acceleration signals into a signal which proportional to velocity.One voltage modulator stage for output of the vibration signal (velocity terms) and power supply input for the circuit.One RFI output filter which protects the Remote Charge Converter against the RFI and Electromagnetic Interference.The RCC features a common circuitry (BITE system) which consists of:-A BITE demodulator.-A BITE level control which simulates an acceleration signal to test the RCC.Fig.3-5 Remote Charge Converter (RCC)(2) OperationThe electronics of the RCC performs the amplification and the conditioning (integration in speed) of the vibration pick-up signals from the No.1 BRG VIB and FFCC VIB sensors, and transmits the signals to the EIVMU.The two analog vibration inputs are fed into the RCC. This charge signal is first voltage converted, then amplified and integrated to transform the vibration signal fro m acceleration to velocity. In order to transmit the signal to the EIVMU through the power line of the RCC (10 V, 6 mA source), it is voltage modulated.An auto-test, triggered by the EIVMU and sent to the RCC over the transmission line, allows the EIVMU to check the proper function of this remote device.The RCC handles the following main functions:-Accelerometer interface.-Test of the remote charge converter.Chapter 4 failure analyzing4.1 The related functional block diagramThe No.1 bearing vibration sensor permanently monitors the vibrations from the No.1 bearing. It is also used for trim balance operations.NO.1 BRG VIB sensorFFCCVsensorRCCEIVMUDMC ECAMFig.4-1 Signal transmission chartThe forward flange compressor casing (FFCC) vibration sensor is used in conjunction with the No.1 bearing vibration sensor.The RCC is the engine equipment, interfacing with the EIVMU and up to the No.1 BRG VIB and FFCC VIB sensors. Its main function is to condition (Integration in speed) the two piezo-type accelerometer signals and to amplify these preconditioned signals to send them to the EIVMU.The piezoelectric acceleration sensor is using some substances such as quartz crystal of piezoelectric effect, accelerometer be in vibration, the quality of the piezoelectric element with the force changed also. When measured vibration frequency is far lower than the natural frequency of the accelerometer is measured by the change and force is directly proportional to the acceleration. The piezoelectric accelerometer during the test has the obvious directivity.From the above analysis, we can draw a diagram of the engine vibration system function structure as follow:Engine vibration systemVibration sonsers system EIVMU N1 speedsonserN2speedsonserNO.1VIB sonser FFCCV VIBsonserRCCMonitorvibrationfrom NO.1Trim balanceMonitor vibration from N2As backupfor NO.1VIBsonserfilter amplifierVoltagemodulator BITEOver voltage &EMI suppressorAnalog moduleBalancing moduleData processingmodule Fig.4-2 functional block diagram of vibration4.2 Analyzing the probable causes r esultingCore Vibrations Higher than 7.3 Units may be caused by three reasons:1.Vibration sensors2.Wiring3.EIVMUVibration sensors-Crystal material or accelerometer.RCC failure.Wiring-short circuit or open circuit.EIVMU fault.4.3 Carrying out FMECA on the basis of the causesTable 4-1 V ibration system FMECA of table(1) (2) (3) (4) (5) (6) (7) (8) (9)sequence number Components namefailuremodefailurecausetaskcycleFailure Impact probability ofoccurrenceSeverity composite ratingpreventivemeasuresitself On oneleveloverallunit1 wires corrosion Break,short-circuitall scrapAffectsignaltransmissiondisabler C Ⅳ4C inspection2 EIVMU ProcessingsystemfaultEIVMUfailure allfailure offunctionV ibrationmonitoring andProcessingCompromisesafetyD Ⅲ3D Bite3NO.1VIBSONSERAccelerometerfailureOrCrystalmaterialsfailureNO.1VIBSONSERfailure all scrapVibrationdetectionCompromisesafetyB Ⅳ4B inspection4 RCC InternalcircuittofailuresRCCfailure allfailure offunctionsignalconditioningCompromisesafetyD Ⅲ3D Bite5FFCCVVIBSONSERAccelerometerfailureOrCrystalmaterialsfailureFFCCVVIBSONSERfailureall scrapVibrationdetectionCompromisesafetyB Ⅳ4B inspection4.4 Drawing the failure tree of this faultVibration sensorsCore vibrations higher than 7.3unitsWiringEIVMUX6X5X7X2X1X3X4Fig 4-3 failure treeX1-damaged pins; X5-RCC failure;X2-connectors oxidation; X6-EIVMU internal system failure; X3-Accelerometer lose effectiveness; X7-EIVMU connectors; X4-Crystal material performance decline;4.6 Troubleshooting flow chart Fault Isolation -Test EIVMU-If no EIVMU CMS fault message is present and max flight vibs confirms vibration above 2.2 IPS:-check vibration sensors installation and wiring connectors and receptacles from vibrations sensors to EIVMU. If the check is not correct: -repair or replace as required.。