25山东工商学院期末考试概率论与数理统计复习题
概率论与数理统计期末考试试题及参考答案
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
《概率分析与数理统计》期末考试试题及解答(DOC)
《概率分析与数理统计》期末考试试题及
解答(DOC)
概率分析与数理统计期末考试试题及解答
选择题
1. 以下哪个选项不是概率的性质?
- A. 非负性
- B. 有界性
- C. 可加性
- D. 全备性
答案:B. 有界性
2. 离散随机变量的概率分布可以通过哪个方法来表示?
- A. 概率分布函数
- B. 累积分布函数
- C. 概率密度函数
- D. 方差公式
答案:B. 累积分布函数
计算题
3. 一批产品有10% 的不合格品。
从该批产品中随机抽查5个,计算至少有一个不合格品的概率。
解答:
设事件 A 为至少有一个不合格品的概率,事件 A 的对立事件
为没有不合格品的概率。
不合格品的概率为 0.1,合格品的概率为 0.9。
则没有不合格品的概率为 (0.9)^5。
至少有一个不合格品的概率为 1 - (0.9)^5,约为 0.409。
4. 一个骰子投掷两次,计算至少一次出现的点数大于3的概率。
解答:
设事件 A 为至少一次出现的点数大于3的概率,事件 A 的对立事件为两次投掷点数都小于等于3的概率。
一个骰子点数大于3的概率为 3/6 = 1/2。
两次投掷点数都小于等于3的概率为 (1/2)^2 = 1/4。
至少一次出现的点数大于3的概率为 1 - 1/4,约为 0.75。
以上是《概率分析与数理统计》期末考试的部分试题及解答。
希望对你有帮助!。
山东工商学院统计学期末复习题
山东工商学院统计学期末复习题本文档由超越高度整理,侵权必究一、单选题()1.下面的哪一个图形适合比较研究两个或多个总体或结构性问题( )A环形图B饼图C直方图D折线图正确答案:A2.对于正态分布变量X,若为A0.68B0.95C0.34D0.99正确答案:A3.从l,2,3,4,5,五个数构成的总体中不重复地随机抽取两个作为样本,则对于所有可能样本的样本均值,以下说法正确的是( )A样本均值的实际抽样误差的最大值为2B样本均值为3的概率是25%C样本均值为3的概率为40%D以上都不对正确答案:D4.一项调查表明,在所抽取的1000个消费者中,他们每月在网上购物的平均消费是200元,他们选择在网上购物的主要原因是“价格便宜”。
这里的参数是: A1000个消费者B所有在网上购物的消费者C所有在网上购物的消费者的平均消费额D1000个消费者的平均消费额正确答案:C5.当变量x按一定数值变化时,变量y也近似地按固定数值变化,这表明变量x 和变量y之间存在着( )A 完全相关关系B 复相关关系C 直线相关关系D没有相关关系正确答案:C6.下面哪一项属于连续性变量A学生的籍贯B保险公司雇员数C奶牛24小时的产奶量D某杂货店一天销售的牛奶件数(箱)正确答案:C7..将比例乘以100得到的数值称为( )A频率B频数C比例D比率正确答案:B8.下列描述正确的是A点估计比区间估计需要更大的样本容量B点估计相对于区间估计更加准确C点估计无法给出参数估计值的置信度和误差大小D区间估计无法给出参数估计值的置信度和误差大小正确答案:C9.了解居民的消费支出情况,则:A居民的消费支出情况是总体B所有居民是总体C居民的消费支出情况是总体单位D所有居民是总体单位正确答案:B10.统计数据的搜集、整理、图表展示以及运用数据的特征值来反映统计数据的分布规律属于:A描述统计B推断统计C抽样分析D经验统计正确答案:A11.为了反映商品价格与需求之间的关系,在统计中应采用( )A划分经济类型的分组B说明现象结构的分组C分析现象间依存关系的分组D上述都不正确正确答案:C12.单位产品成本与其产量的相关;单位产品成本与单位产品原材料消耗量的相关( )A 前者是正相关,后者是负相关B 前者是负相关,后者是正相关C 两者都是正相关D两者都是负相关正确答案:B13.根据概率的统计定义,可用以近似代替某一事件的概率的是( )。
《概率论与数理统计》期末考试试题及解答.doc
《概率论与数理统计》期末考试试题及解答一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)?P(B)?0.5,则A,B至少有一个不发生的概率为__________.答案:0.3解:P(A?B)?0.3即0.3?P(A)?P(B)?P(A)?P(AB)?P(B)?P(AB)?0.5?2P(AB)所以P(AB)?0.1P(?)?P(AB)?1?P(AB)?0.9.2.设随机变量X服从泊松分布,且P(X?1)?4P(X?2),则P(X?3)?______.答案:1?1e6解答:P(X?1)?P(X?0)?P(X?1)?e????e,??P(X?2)??22e??????2?? 由P(X?1)?4P(X?2) 知e??e?2?e2 即2????1?0 解得??1,故P(X?3)?1?1e 623.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y?X在区间(0,4)内的概率密度为fY(y)?_________.答案:0?y?4,fY(y)?FY?(y)?fX? 0,其它.?解答:设Y的分布函数为FY(y),X的分布函数为FX(x),密度为fX(x)则FY(y)?P(Y?y)?P(X?2y)?y?)yX)Xy? ?)y 因为X~U(0,2),所以FX(?0,即FY(y)?FX故10?y?4,fY(y)?FY?(y)?fX? 0,其它.?另解在(0,2)上函数y?x2严格单调,反函数为h(y)?所以0?y?4,fY(y)?fX? ?0,其它.?24.设随机变量X,Y相互独立,且均服从参数为?的指数分布,P(X?1)?e,则??_________,P{min(X,Y)?1}=_________.答案:??2,P{min(X,Y)?1}?1?e-4解答:P(X?1)?1?P(X?1)?e???e?2,故??2P{min(X,Y)?1}?1?P{min(X,Y)?1}?1?P(X?1)P(Y?1)?1?e?4.5.设总体X的概率密度为???(??1)x,0?x?1, f(x)?? ???1. ?其它?0,X1,X2,?,Xn是来自X的样本,则未知参数?的极大似然估计量为_________.答案:???11nlnxi?ni?1?1解答:似然函数为L(x1,?,xn;?)??(??1)xi??(??1)n(x1,?,xn)?i?1nlnL?nln(??1)??n?lnxi?1ni解似然方程得?的极大似然估计为dlnLn???lnxi?0 d???1i?12?? ?11n?lnxini?1?1.二、单项选择题(每小题3分,共15分)1.设A,B,C为三个事件,且A,B相互独立,则以下结论中不正确的是(A)若P(C)?1,则AC与BC也独立.(B)若P(C)?1,则A?C与B也独立.(C)若P(C)?0,则A?C与B也独立.(D)若C?B,则A与C也独立. ()答案:(D).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D).事实上由图可见A与C不独立.2.设随机变量X~N(0,1),X的分布函数为?(x),则P(|X|?2)的值为(A)2[1??(2)]. (B)2?(2)?1.(C)2??(2). (D)1?2?(2). ()答案:(A)解答:X~N(0,1)所以P(|X|?2)?1?P(|X|?2)?1?P(?2?X?2)(2)??(?2)?1?[2?(2?) ?1??1]?2?[1 ? 应选(A).3.设随机变量X和Y不相关,则下列结论中正确的是(A)X与Y独立. (B)D(X?Y)?DX?DY.(C)D(X?Y)?DX?DY. (D)D(XY)?DXDY. () 3答案:(B)解答:由不相关的等价条件知,?xy?0?cov(x,y)?0 D(X?Y)?DX?DY+2cov (x,y)应选(B).4.设离散型随机变量X和Y的联合概率分布为(X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3) P111169183??若X,Y独立,则?,?的值为(A)??29,??19. (A)??129,??9.(C)??16,??16 (D)??518,??118.4 )(答案:(A)解答:若X,Y独立则有??P(X?2,Y?2)?P(X?2)P(Y?2) 1121 ?(????)(??)?(??) 393921 ???,??99 故应选(A).5.设总体X的数学期望为?,X1,X2,?,Xn为来自X的样本,则下列结论中正确的是(A)X1是?的无偏估计量. (B)X1是?的极大似然估计量.(C)X1是?的相合(一致)估计量. (D)X1不是?的估计量. ()答案:(A)解答:EX1??,所以X1是?的无偏估计,应选(A).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设A?‘任取一产品,经检验认为是合格品’B?‘任取一产品确是合格品’则(1)P(A)?P(B)P(A|B)?P()P(A|)?0.9?0.95?0.1?0.02?0.857.(2)P(B|A)?四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.5 P(AB)0.9?0.95??0.9977. P(A)0.857解:X的概率分布为P(X?k)?C3()()k25k353?kk?0,1,2,3.X即X的分布函数为P02712515412523612538 125x?0,?0,?27?,0?x?1,?125??81,1?x?2, F(x)???125?117 2?x?3,?125,?x?3.?1,?26EX?3??,552318DX?3???.5525五、(10分)设二维随机变量(X,Y)在区域D?{(x,y)|x?0,y?0,x?y?1} 上服从均匀分布. 求(1)(X,Y)关于X的边缘概率密度;(2)Z?X?Y的分布函数与概率密度.(1)(X,Y)的概率密度为?2,(x,y)?Df(x,y)??0,其它.?fX(x)?(2)利用公式fZ(z)? 其中f(x,z?x)????????????2?2x,0?x?1f(x,y)dy??0,其它??f(x,z?x)dx?2,0?x?1,0?z?x?1?x?2,0?x?1,x?z?1.??0,其它??0,其它.当z?0或z?1时fZ(z)?0 0?z?1时fZ(z)?2?z0dx?2x0?2zz6故Z的概率密度为??2z,0?z?1,fZ(z)????0,其它.Z的分布函数为fZ(z)??z??z?0?0,?0,z?0,?z??fZ(y)dy???2ydy,0?z?1??z2,0?z?1, 0??1,z?1.?z?1??1,或利用分布函数法?z?0,?0,?FZ(z)?P(Z?z z1,)?P(X?Y?)z,y0??????2dxd?D1?1,z?1.??0,?2, ??z?1,?z?0,0?z?1, z?1.?2z,?0,0?z?1,其它.fZ(z)?FZ?(z)??六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,2)分布. 求(1)命中环形区域D?{(x,y)|1?x?y?2}的概率;(2)命中点到目标中心距离Z?1)P{X,Y)?D}?222.??f(x,y)dxdyD???2??4D?x2?y28dxdy? 18?r282??2?21e?r28rdrd??(2)EZ?E? ?21e?r28d(?)??e 82??e?e;1?18?12 ?? ??r28 ????1e?04 ???1e8??x2?y28dxdy?18???2???0re?rdrd??r28r2dr7??rer2?8????0??0e?r28dr??????r28dr?.七、(11分)设某机器生产的零件长度(单位:cm)X~N(?,?2),今抽取容量为16的样本,测得样本均值?10,样本方差s2?0.16. (1)求?的置信度为0.95的置信区间;(2)检验假设H0:?2?0.1(显著性水平为0.05).(附注)t0.05(16)?1.746,t0.05(15)?1.753,t0.025(15)?2.132,解:(1)?的置信度为1??下的置信区间为(?t?/2(n?222?0.05(16)?26.296,?0.05(15)?24.996,?0.025(15)?27.488. ?t?/2(n??10,s?0.4,n?16,??0.05,t0.025(15)?2.132所以?的置信度为0.95的置信区间为(9.7868,10.2132)2 (2)H0:?2?0.1的拒绝域为?2???(n?1).15S22?15?1.6?24,?0.05 ??(15)?24.996 0.12 因为?2?24?24.996??0.05(15),所以接受H0.2《概率论与数理统计》期末考试试题(A)专业、班级:姓名:学号:一、单项选择题(每题3分共18分)891011121314151617《概率论与数理统计》课程期末考试试题(B)专业、班级:姓名:学号:181920212223242526272829共8页30。
《概率论与数理统计(本科)》期末考试复习题
《概率论与数理统计(本科)》期末考试复习题一、选择题1、以A 表示甲种产品畅销,乙种产品滞销,则A 为( ).(A) 甲种产品滞销,乙种产品畅销 (B) 甲、乙产品均畅销(C) 甲种产品滞销 (D) 甲产品滞销或乙产品畅销2、假设事件,A B 满足(|)1P B A =,则( ).(A) A 是必然事件 (B) (|)0P B A =(C) A B ⊃ (D) A B ⊂3、设()0P AB =, 则有( ).(A) A 和B 不相容 (B) A 和B 独立 (C) P(A)=0或P(B)=0 (D) P(A-B)=P(A)4、设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是()(A )A 与B 不相容 (B )A 与B 相容(C )()()()P AB P A P B = (D )()()P A B P A -=5、设,A B 为两个随机事件,且0()1P A <<,则下列命题正确的是( )。
(A) 若()()P AB P A = ,则B A ,互不相容;(B) 若()()1P B A P B A += ,则B A ,独立;(C) 若()()1P AB P AB +=,则B A ,为对立事件;(D) 若()()()1P B P B A P B A =+=,则B 为不可能事件;6、设A,B 为两随机事件,且B A ⊂,则下列式子正确的是( )(A )()()P A B P A ⋃=; (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -7、设A ,B 为任意两个事件,0)(,>⊂B P B A ,则下式成立的为( )(A )B)|()(A P A P < (B )B)|()(A P A P ≤(C )B)|()(A P A P > (D )B)|()(A P A P ≥8、设A 和B 相互独立,()0.6P A =,()0.4P B =,则()P A B =( )(A )0.4 (B )0.6 (C )0.24 (D )0.59、设(),(),()P A a P B b P A B c ==⋃=,则()P AB 为( ).(A) a b - (B) c b - (C) (1)a b - (D) b a -10、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球,则第二人在第一次就取到黄球的概率是 ( )(A )1/5 (B )2/5 (C )3/5 (D )4/511、一部五卷的选集,按任意顺序放到书架上,则第一卷及第五卷分别在两端的概率是( ). (A) 110 (B) 18 (C) 15 (D) 1612、甲袋中有4只红球,6只白球;乙袋中有6只红球,10只白球.现从两袋中各取1球,则2球颜色相同的概率是( ). (A) 640 (B) 1540 (C) 1940 (D) 214013、设在10个同一型号的元件中有7个一等品,从这些元件中不放回地连续取2次,每次取1个元件.若第1次取得一等品时,第2次取得一等品的概率是( ). (A) 710 (B) 610 (C) 69 (D) 7914、在编号为1,2,,n 的n 张赠券中采用不放回方式抽签,则在第k 次(1)k n ≤≤抽到1号赠券的概率是( ). (A) 1n k + (B) 11n k -+ (B) 1n (D) 11n k ++ 15、随机扔二颗骰子,已知点数之和为8,则二颗骰子的点数都是偶数的概率为( )。
概率论与数理统计期末试卷及答案(最新12)(推荐文档)
概率论与数理统计期末试卷及答案一、是非题(共7分,每题1分)1.设A ,B ,C 为随机事件,则A 与C B A ⋃⋃是互不相容的. ( ) 2.)(x F 是正态随机变量的分布函数,则)(1)(x F x F -≠-. ( ) 3.若随机变量X 与Y 独立,它们取1与1-的概率均为5.0,则Y X =. ( )4.等边三角形域上二维均匀分布的边缘分布仍是均匀分布. ( ) 5. 样本均值的平方2X 不是总体期望平方2μ的无偏估计. ( ) 6.在给定的置信度α-1下,被估参数的置信区间不一定惟一. ( ) 7.在参数的假设检验中,拒绝域的形式是根据备择假设1H 而确定的. ( )二、选择题(15分,每题3分)(1)设A B ⊂,则下面正确的等式是 。
(a))(1)(A P AB P -=; (b))()()(A P B P A B P -=-; (c))()|(B P A B P =; (d))()|(A P B A P =(2)离散型随机变量X 的概率分布为kA k X P λ==)(( ,2,1=k )的充要条件是 。
(a)1)1(-+=A λ且0>A ; (b)λ-=1A 且10<<λ; (c)11-=-λA 且1<λ; (d)0>A 且10<<λ.(3)设10个电子管的寿命i X (10~1=i )独立同分布,且A X D i =)((10~1=i ),则10个电子管的平均寿命Y 的方差=)(Y D .(a)A ; (b)A 1.0; (c)A 2.0; (d)A 10.(4)设),,,(21n X X X 为总体)1,0(~N X 的一个样本,X 为样本均值,2S 为样本方差,则有 。
(a))1,0(~N X ; (b))1,0(~N X n ; (c))1(~/-n t S X ; (d))1,1(~/)1(2221--∑=n F XX n ni i.(5)设),,,(21n X X X 为总体),(2σμN (μ已知)的一个样本,X 为样本均值,则在总体方差2σ的下列估计量中,为无偏估计量的是 。
概率论和数理统计期末考试题库
数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
概率论和数理统计期末考试题及答案
概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
商学院《概率论与数理统计》第一学期期末考试试题测试卷及参考答案
n-1 n-1 n《概率论与数理统计》第一学期期末试卷一.判断题(10 分,每题 2 分)1.在古典概型的随机试验中,P( A) = 0 当且仅当A 是不可能事件 ( )2.连续型随机变量的密度函数f (x) 与其分布函数F (x) 相互唯一确定 ( )3.若随机变量X 与Y 独立,且都服从p = 0.1的 (0,1) 分布,则X =Y ( )4.设X 为离散型随机变量, 且存在正数k使得P( X >k ) = 0 ,则X 的数学期望E( X ) 未必存在( )5.在一个确定的假设检验中,当样本容量确定时, 犯第一类错误的概率与犯第二类错误的概率不能同时减少 ( )二.选择题(15 分,每题 3 分)1.设每次试验成功的概率为p (0 <p < 1) ,重复进行试验直到第n 次才取得r (1 ≤r ≤n) 次成功的概率为.(a) (c) C r -1 p r (1 -p)n-r ;(b)C r -1 p r -1 (1 -p)n-r +1 ;(d)C r p r (1 -p)n-r ;p r (1 -p)n-r .2.离散型随机变量X 的分布函数为F (x) ,则P( X =xk) = .(a) (c) P(xk -1≤X ≤xk) ;(b)P(xk -1<X <xk +1) ;(d)F (xk +1) -F (xk -1) ;F (xk) -F (xk -1) .3.设随机变量X 服从指数分布,则随机变量Y = max ( X , 2003) 的分布函数.(a) 是连续函数;(b) 恰好有一个间断点;(c) 是阶梯函数;(d) 至少有两个间断点.4.设随机变量( X , Y ) 的方差D( X ) = 4 , D(Y ) = 1, 相关系数ρXY= 0.6 , 则n ⎩方差 D ( 3X - 2Y ) = .(a) 40;(b) 34;(c) 25.6; (d) 17.625. 设( X 1 , X 2 , , X ) 为总体 N( 1, 2 ) 的一个样本, X 为样本均值,则下列结论中正确的是.X - 1 1 n 2(a)2 / ~ t ( n ) ;(b)n∑( X i - 1) i =1 ~ F ( n , 1) ;X - 1 1n22(c)2 / n~ N ( 0, 1) ;(d)∑( X i- 1) i =1~ χ ( n ) .二. 填空题(28 分,每题 4 分)1. 一批电子元件共有 100 个, 次品率为 0.05. 连续两次不放回地从中任取一个, 则第二次才取到正品的概率为2. 设连续随机变量的密度函数为 f (x ) ,则随机变量Y = 3e X 的概率密度函数为 f Y ( y ) =3. 设 X 为总体 X ~ N ( 3 , 4) 中抽取的样本( X 1 , X 2 , X 3 , X 4 )的均值, 则P (-1 < X < 5) =.4. 设二维随机变量( X , Y ) 的联合密度函数为⎧1, y < x , 0 < x < 1;f (x , y ) = ⎨ 0 , 其 他则条件密度函数为,当时 , f Y X ( y x ) =5. 设 X ~ t ( m ) ,则随机变量Y = X 2 服从的分布为( 需写出自由度 )6. 设某种保险丝熔化时间 X 样本均值和方差分别为 X ~ N (μ, σ2 ) (单位:秒),取n = 16 的样本,得 = 15, S 2 = 0.36 ,则μ的置信度为 95%的单侧 置信区间上限为7. 设 X 的分布律为4 41 2X 1 2 3 Pθ22θ(1 -θ)(1 -θ)2已知一个样本值(x 1 , x 2 , x 3 ) = ( 1, 2 , 1) ,则参数的极大似然估计值为三. 计算题(40 分,每题 8 分)1. 已知一批产品中 96 %是合格品. 检查产品时,一合格品被误认为是次品的概率是 0.02;一次品被误认为是合格品的概率是 0.05.求在被检查后认为是合格品的产品确实是合格品的概率2. 设随机变量 X 与Y 相互独立, X , Y 分别服从参数为λ,μ(λ≠ μ) 的指数分布,试求Z = 3X + 2Y 的密度函数 f Z (z ) .3. 某商店出售某种贵重商品. 根据经验,该商品每周销售量服从参数为λ= 1的泊松分布. 假定各周的销售量是相互独立的. 用中心极限定理计算该商店一年内(52 周)售出该商品件数在 50 件到 70 件之间的概率.4. 总体 X ~ N (μ,σ2 ) , ( X , X , , X n ) 为总体 X 的一个样本.求常数 k , 使k ∑ i =1X i - X 为σ 的无偏估计量.5.(1) 根据长期的经验,某工厂生产的特种金属丝的折断力 X ~ N (μ, σ2 )(单位:kg). 已知σ = 8 kg , 现从该厂生产的一大批特种金属丝中随机抽取 10 个样品,测得样本均值 x = 575.2 kg . 问这批特种金属丝的平均折断力可否认为是 570 kg ? ( α= 5 % )(2) 已知维尼纶纤度在正常条件下服从正态分布 N (μ, 0.0482 ) . 某日抽取5 个样品,测得其纤度为:1.31, 1.55, 1.34, 1.40, 1.45 .问 这天的纤度的总体方差是否正常?试用 α= 10 % 作假设检验.四. 证明题(7 分)nY设随机变量 X ,Y , Z 相互独立且服从同一贝努利分布 B (1, p ) . 试证明随机变量 X + Y 与Z 相互独立.附表: 标准正态分布数值表χ2 分布数值表t 分布数值表参 考 答 案一. 判断题(10 分,每题 2 分)是 非 非 非 是 .二. 选择题(15 分,每题 3 分) (a)(d)(b)(c)(d).三. 填空题(28 分,每题 4 分)1.1/22 ;2. ⎧ 1 f ( y ) = ⎨ y ⎩f [ln(y / 3)]) 0 y > 0 y ≤ 0 ; 3.0.9772 ; ⎧1/(2x ) - x < y < x4. 当0 < x < 1 时 f Y X ( y x ) = ⎨ ;⎩ 0其 他5. F (1, m )6. 上限为 15.263 .7. 5 / 6 .四. 计算题(40 分,每题 8 分) 1. A被查后认为是合格品的事件, B抽查的产品为合格品的事件. (2 分)P ( A ) = P (B )P ( A B ) + P (B )P ( A B ) = 0.96 ⨯ 0.98 + 0.04 ⨯ 0.05 = 0.9428 , (4 分)P (B A ) = P (B )P ( A B ) / P ( A ) = 0.9408/ 0.9428 = 0.998.(2 分)⎧ λe- λx2.f X (x ) = ⎨x > 0 ⎧ μe - μy f Y ( y ) = ⎨ y > 0(1 分)⎩ 0其他⎩ 0其他z ≤ 0 时, F Z (z ) = 0 ,从而 f Z (z ) = 0 ;(1 分)t 0.025 (15) = 2.1315 t 0.05 (15) = 1.7531 t 0.025 (16) = 2.1199 t 0.05 (16) = 1.7459(5) = 1.145 0.95 χ2(5) = 11.071 0.05 χ2(4) = 0.711 0.95 χ2(4) = 9.488 0.05 χ2Φ(0.28) = 0.6103Φ(1.96) = 0.975Φ(2.0) = 0.9772Φ(2.5) = 0.9938+∞ 2⎰-∞ ⎨ ⎨ ∑ | z ZZ z ≤ 0 时, f Z (z ) =1f X (x ) f Y [(z - 3x ) / 2]dx(2 分)= 1 z / 3λμe -λx -μ[( z - x ) / 2] dx =λμ(e -λz / 3 - e -μz / 2 )(2 分)2 ⎰3μ- 2λ所以⎧ λμ(e -λz / 3 - e -μz / 2 ),z > 0f (z ) = ⎪3μ- 2λ [⎩⎪ 0, ⎧ λμ(e-λz / 2- e-μz / 3),z ≤ 0z > 0f (z ) = ⎪ 2μ- 3λ](2 分)⎩⎪ 0,z ≤ 03. 设 X i 为第 i 周的销售量, i = 1, 2 , , 52X i ~ P (1 )(1 分)则一年的销售量为 52Y =X i, E (Y ) = 52 ,i =1D (Y ) = 52 .(2 分)由独立同分布的中心极限定理,所求概率为⎛ - 2 Y - 52 18 ⎫ ⎛ 18 ⎫ ⎛ 2 ⎫(4 分)P (50 < Y < 70) = P < 52 < ⎪ ≈ Φ 52 52 ⎪ + Φ 52 ⎪ - 152 ⎝ ⎭ ⎝ ⎭ ⎝ ⎭= Φ(2.50) + Φ(0.28) - 1 = 0.9938 + 0.6103 - 1 = 0.6041.(1 分)4. 注意到X - X =1(- X in1 - X2 + (n -1) X i - - X n )E ( X i - X ) = 0 , ⎛D ( X n - 1 - X ) = n - 1σ2i n2 ⎫(2分) X i - X ~ N 0, σ ⎪ ⎝ n ⎭ - z 2 n -1 2(1分)E (| X - X |) = ⎰ 2 σn dz -∞= 2⎰ - z 2 2 n -1σ2e n dz (3分)⎛ n⎫ ⎛ n ⎫ 令E k ∑| X i - X |⎪ = k ∑E | X i - X |⎪σ⎝ i =1 ⎭ ⎝ i =1 ⎭+∞ i +∞σ/ nX 0 1 PqpX + Y 0 1 2Pq 22 pqp 20 0 1 1σ 22 0 0 5. (1) 要检验的假设为检验用的统计量 H 0 : μ= 570 , U =X - μ0H 1 : μ≠ 570~ N ( 0,1) , (1 分)拒绝域为U ≥ z α(n -1) = z 0.025 = 1.96 .(2 分)2U 0 = 0.65= 2.06 > 1.96 ,落在拒绝域内,故拒绝原假设 H 0 ,即不能认为平均折断力为 570 kg .571 - 569.2[ U 0 == 0.2 = 0.632 < 1.96 , 落在拒绝域外,故接受原假设 H 0 ,即可以认为平均折断力为 571 kg . ] (1 分)(2) 要检验的假设为H :σ2 = 0.0482 , [ H :σ2 = 0.792 , H :σ2 ≠ 0.0482H :σ2 ≠ 0.792] (1 分)5∑( X i -X ) 2检验用的统计量 χ2= i =1~ χ2 (n - 1) ,拒绝域为χ2 > χ2 (n - 1) = χ2(4) = 9.488 或α0.05χ2 < χ2 (n -1) = χ2(4) = 0.711(2 分)x = 1.41 1-α[ x = 1.49 ]0.95χ2 = 0.0362 / 0.0023 = 15.739 > 9.488 ,落在拒绝域内,[ χ2= 0.0538 / 0.6241 = 0.086 < 0.711 ,落在拒绝域内,]故拒绝原假设 H 0 ,即认为该天的纤度的总体方差不正常 .(1 分)五、证明题 (7 分)由题设知(2 分)P ( X + Y = 0 , Z = 0) = q 3 = P ( X + Y = 0)P (Z = 0) ; P ( X + Y = 0 , Z = 1) = pq 2 = P ( X + Y = 0)P (Z = 1) ; P ( X + Y = 1, Z = 0) = 2 pq 2 = P ( X + Y = 1)P (Z = 0) ;10 10P( X +Y = 1, Z = 1) = 2 pq 2 =P( X +Y = 1)P(Z = 1) ;P( X +Y = 2 , Z = 0) =pq 2 =P( X +Y = 2)P(Z = 0) ;P( X +Y = 2 , Z = 1) =p 3 =P( X +Y = 2)P(Z = 1) .所以X +Y 与Z 相互独立. (5 分)。
大学《概率论与数理统计》期末考试试卷含答案
大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。
《概率论与数理统计》期末考试试卷附答案
《概率论与数理统计》期末考试试卷附答案一、单项选择题(每小题3分,共10小题,共30分)1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是(A )P (A+B) = P (A); (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。
3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。
则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/54. 对于事件A ,B ,下列命题正确的是(A )若A ,B 互不相容,则A 与B 也互不相容。
(B )若A ,B 相容,那么A 与B 也相容。
(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。
(D )若A ,B 相互独立,那么A 与B 也相互独立。
5. 若()1P B A =,那么下列命题中正确的是(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -=6. 设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<=A )增大B )减少C )不变D )增减不定。
7.设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。
那么对任意给定的a 都有A )0()1()af a f x dx -=-⎰ B ) 01()()2a F a f x dx -=-⎰ C ))()(a F a F -= D ) 1)(2)(-=-a F a F8.下列函数中,可作为某一随机变量的分布函数是A )21()1F x x =+B ) x x F arctan 121)(π+= C )=)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩D ) ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰ 9. 假设随机变量X 的分布函数为F(x),密度函数为f(x).若X 与-X 有相同的分布函数,则下列各式中正确的是A )F(x) = F(-x); B) F(x) = - F(-x);C) f (x) = f (-x); D) f (x) = - f (-x).10.已知随机变量X 的密度函数f(x)=x x Ae ,x 0,λλ-≥⎧⎨<⎩(λ>0,A 为常数),则概率P{X<+a λλ<}(a>0)的值A )与a 无关,随λ的增大而增大B )与a 无关,随λ的增大而减小C )与λ无关,随a 的增大而增大D )与λ无关,随a 的增大而减小二、填空题(每小题5分,共10小题,共50分)1.设 A 、B 、C 是三个随机事件。
完整word版概率论与数理统计期末考试试题及答案
X其概率分布为设随机变量)(2P 0.2 0.3 0.1 0.4
则()。}{X1.5P(D) (A)0.6 (B) 1 (C) 0
3)(AA同时发生必导致事件发生,则下列结论正确的是(与)设事件A21P(A)P(AA)P(A)P(A))A()(B112P(A)P(AA)P(A)P(A))C()(D211
(4)
3,1),Y~N(N(2,1),X~且设随机变量7,Z~X2Y(Z,).则立令0,54).(C)30N);,((A)N05(B)(,);N(0,46);
12P(A)12P(A)12XY相互独与(D)N(
2的一个简单随机样本,其中设X,XX,,2N为正态总体)(,)(5n1,2未知,则()是一个统计量。
解:因为是单调可导的,故可用公式法计算………….1分1y2x
当时,………….2分0X1Yy11,x'x得,由…………4分12yx22y11y1f()22从而的密度函数为…………..5分Yy)(fY0y1
1y1ey122…………..6=分y01
8分已知随机变量和的概率分布为YX)六、(01011YX
11111PP22442而且P{XY0}1.
)(1
设随机变量的分布函数为X)(2x0,0,F(x)xx0.1(1x)e,则的密度函数,.f()2P(x)XX
(3)
???????,,,a2,3设的无偏估计量是总体分布中参数123123?,.a________时当也是的无偏估计量
X,X,X是来自总体的,相互独立设总体和,且都服从),1N(0YXX)4(921XX91UYYY,,是来自总体样本,的样本,则统计量Y91222YY91。服从分布(要求给出自由度)
(1)求随机变量和的联合分布;YX(2)判断与是否相互独立?YX
山东工商学院概率统计答案
第一章 随机事件与概率习题一一、1、基本事件全体构成的集合2、相斥3、Ω=++=≠=n j i A A A n j i j i A A 21;3,2,1,φ4、有且仅有其一二、1、C B A 2、ABC 3、C B A 4、ABC 5、()C B A + 6、C B A ++7、C B A C B A C B A ++ 8、AC BC AB ++ 9、AC BC AB ++ 或 (C B A C B A C B A ++) 习题二一、1、稳定 2、近似(表现),本质 3、概率4、样本空间中的样本点是有限个;每个基本事件出现的机会是相同的二、n N m n MN m M C C C --;三、n n n C 365!1365-;四、1、51 ; 2、53352411=C C C ;3、1032523=C C ;五、n 1 习题三一、1、()()()()()()()B P A P B A P AB P B P A P B A P +=+-+=+,2、()()()()()AB P A P AB P A P B A P ≥-=-,3、()()()()()()()()ABC P AC P BC P AB P C P B P A P C B A P +---++=++4、()()()()()12121312121|||-=n n n A A A A P A A A P A A P A P A A A P5、()()()()()0|>=A P A P AB P A B P6、()()()()B A A P B A P B A P B A A P ||||212121-+=+ 二、设:A={三个球中无红球} B={三个球中无黄球}()27827121212==C C C A P ;()278=B P ;()271=AB P ;()()()()95=-+=+AB P B P A P B A P 三、解:按分房问题考虑设:A={已知有一个是女孩} B={另一个也是女孩}()4321222=-=C A P ()412222==C AB P ()()()31|==A P AB P A B P四、解:设A={甲抽到难签} B={乙抽到难签} C={丙抽到难签}()104=A P ()()()9012|==A B P A P AB P ()()()9024|==A B P A P B A P ()()()()72024||==AB C P A B P A P ABC P习题四二、设A={第一次取新球} B={第二次取新球}()53=A P ()52=A P ()42|=AB P ()43|=A B P ()()()()()53||=+=A B P A P A B P A P B P三、设A={甲抽到难签} B={乙抽到难签} C={丙抽到难签}显然,()()()()()()104||104=+==A B P A P A B P A P B P A P ())]()([][)]([A A B C A A CB P B C CB P B B C P C P +++=+=+=()()()()104][=+++=+++=A B C P A B C P A CB P CBA P A B C A B C A CB CBA P 四、设A={加工A 零件} B={加工B 零件} C={机床停产} ()()()()()367.0||=+=B C P B P A C P A P C P五、A={任选一人是男性} A ={任选一人是女性} B={任选一人是色盲患者} ()()()()()02625.0||=+=A B P A P A B P A P B P ; ()()()()2120||==B P A B P A P B A P习题五一、1、()()()B P A P AB P =2、()()()()()()()()()C P B P BC P C P A P AC P B P A P AB P ===;; ()()()()C P B P A P ABC P =3、相互独立;4、()()()n A P A P A P 211- 5、()n k pq pA P qp C kn kkn ,,2,1,01 =-==-;6、错;7、错二、 配置n 门炮=i A {第i 门炮击中飞机} n i ,,2,1 = B={敌机被击中}()()()()n n n A A A P A A A P A A A P B P 21212111-=+++-=++=()()99.04.0111≥-=-=n n A P A P 026.5≥n 至少配置6门炮三、设A={机床甲不需工人管理} B={机床乙不需工人管理} C={机床丙不需工人管理}()()()()()388.011=-=-=C P B P A P ABC P ABC P()()()()()059.02=-++=++C B A P B C P C A P B A P B C C A B A P四、()()027.01.011.023223=--C五、352.0)4.01(4.03323≈--=∑kk k k C317.0)4.01(4.05535≈--=∑k k k k C复习题一、1A +2A 前两次中至少有一次击中目标2A 第二次未击中目标1A +2A +3A 三次射击中至少有一次击中目标321A A A 三次射击都击中目标2323A A A A =- 第三次击中而第二次未击中目标 2121A A A A =+ 前两次都未击中目标1A 2A +1A 3A +2A 3A 三次中至少有两次击中目标二、设=i B {杯中球的最大个数为i 个}3,2,1=i ,()33414p B P = ()313142324C C C B P = ()3143334C C B P = 三、101 四、i A ={三个球中有i 个白球}3,2=i()35183713242==C C C A P ()35437343==C C A P ()()()35223232=+=+A P A P A A P五、设=i A {第i 次取正品} 2,1=i i B ={第i 次取次品} 2,1=i (1)()()()4528|12121==A A P A P A A P (2)()()()451621212121=+=+A B P B A P A B B A P (3)21212B B B A B +=,()()()5121212=+=B B P B A P B P 六、=i A {第i 次打通了电话} 3,2,1=i B={拨号不超过三次打通电话}()()()()()321211321211A A A P A A P A P A A A A A A P B P ++=++=()()()()()103|||101213121121=++=A A A P A A P A P A A P A P 七、设A={机器调整良好} B={产品合格}()75.0=A P ()25.0=A P ()9.0|=A B P ()3.0|=A B P()()()()()75.0||=+=A B P A P A B P A P B P ,()()()()9.0||==B P A B P A P B A P八、设A={一盒中取A 球} R={第二次取出红球}()107=A P ()103=A P ()21|=A R P ()108|=A B P ()()()()()59.0||=+=A R P A P A R P A P R P九、()()()()()21212121212111p p p p A A P A A P A A A A P -+-=+=+十、B={从外向办公室打通电话}1A ={总机打通} 2A ={办公室不占线}()()()()42.0)3.01(6.02121=-⨯===A P A P A A P B P十一、P (第k 次把门打开)=mm k 1111-⎪⎭⎫ ⎝⎛-第二章 随机变量及其概率分布习题一 一、填空题1.1=b ; 2.][p np +; 3.19/27; 4.232-e 。
《概率论与数理统计》期末考试试题及答案
《概率论与数理统计》期末考试试题及答案)B 从中任取3),(8a k k ==则Y X =产品中有12件是次品四、(本题12分)设⼆维随机向量(,)X Y 的联合分布律为\01210.10.20.12Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独⽴为什么五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X⼀、填空题(每⼩题3分,共30分) 1、ABC 或AB C 2、 3、2156311C C C 或411或 4、1 5、13 6、2014131555kX p 7、1 8、(2,1)N - ⼆、解设12,A A 分别表⽰取出的产品为甲企业和⼄企业⽣产,B 表⽰取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ========..... 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=?+?=................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ?=== ............................... 12分三、(本题12分)解 (1)由概率密度的性质知34=+-=+=故16k =. .......................................................... 3分 (2)当0x ≤时,()()0x F x f t dt -∞==?; 当03x <<时, 2011()()612xxF x f t dt tdt x -∞===??; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞==+-=-+-;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞?==+-=;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤< .................................. 9分(3) 77151411(1)22161248P X F F<≤=-=-=?? ????? .......................... 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = ........................................................... 4分0.40.30.3Xp ............................................... 6分120.40.6Y p ................................................... 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===?=,故{}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独⽴. .............................................. 12分五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤=-≤≤其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞??==+-=+-=?........... 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=.......................... 9分 221()()[()].6D XE X E X =-= ......................................... 12分⼀、填空题(每空3分,共45分)1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B)=2、设事件A 与B 独⽴,A 与B 都不发⽣的概率为19,A 发⽣且B 不发⽣的概率与B 发⽣且A 不发⽣的概率相等,则A 发⽣的概率为:;3、⼀间宿舍内住有6个同学,求他们之中恰好有4个⼈的⽣⽇在同⼀个⽉份的概率:没有任何⼈的⽣⽇在同⼀个⽉份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ??, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独⽴,则Z=max(X,Y)的分布律:;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独⽴,则D(2X-3Y)= ,1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ??≤≤?=其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ?;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ?<<其他求边缘密度函数(),()X Y x y ??;2)问X 与Y 是否独⽴是否相关计算Z = X + Y 的密度函数()Z1、(10分)设某⼈从外地赶来参加紧急会议,他乘⽕车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
概率与数理统计复习题.doc
概率论与数理统计复习题一、填空题1.设()0.5 , ()0.6 , P A P B A ==, 则()P AB = 。
2.设2(),(),E X D x μσ==由切比雪夫不等式知{}22P X μσμσ-<<+≥ .3.设总体),(~2σμN X ,2σ未知,检验假设00:μμ=H 的检验统计量为 。
4.已知,A , B 两个事件满足条件)()(B A P AB P Y =,且p A P =)(,则=)(B P 。
5.设一批产品有12件,其中2件次品,10件正品,现从这批产品中任取3件,若用X 表示取出的3件产品中的次品件数,则{}==2X P .6.同时抛掷3枚硬币,以X 表示出正面的个数,则X 的概率分布为 。
7.设随机变量X 的概率密度为⎩⎨⎧<<=,,0,10,2)(其他x x x f 用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则{}==2Y P 。
8.设随机变量X~ B(2,p),若95)1(=≥X P ,则p = .9.设随机变量(,)~(0,1,2,3,0)X Y N ,则(31)D X Y -+= 。
10.若二维随机变量(X , Y )的区域{}22(,)|1D x y x y =+≤上服从均匀分布,则(X ,Y )的密度函数为11.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧>>=+-,,0,1,1,),(21其他y x x e y x f y则=)(x f X 。
12.设随机变量X 的分布律为=)(2X E 。
13.设随机变量X 的概率密度为⎪⎩⎪⎨⎧+∞<<=其他,01,)(3x x Ax f 则A = 。
14.设)4,1(~N X ,则=)(X E ,=)(X D 。
15.已知离散型随机变量X 服从参数为2的泊松分布,X Y 312-=,则=)(Y D 。
16.从一批零件的毛坯中随机抽取8件,测得它们的重量(单位:kg )为230,243,185,240,228,196,246,200则样本均值=x ,样本方差=2S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
概率论与数理统计复习题
一、填空题
1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件
1)A 、B 、C 至少有一个发生
2)A 、B 、C 中恰有一个发生
3)A 、B 、C 不多于一个发生
2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B
)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=
4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为
5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为
6.设离散型随机变量X 分布律为{}5(1/2)
(1,2,)k P X k A k ===⋅⋅⋅则
A=______________ 7. 已知随机变量X 的密度为()f x =⎩
⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________
8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________
9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为
8081
,则该射手的命中率为_________
10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7
P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=
13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=
14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从。