分离技术 (2)
第二章 蛋白质分离纯化技术(2)

几种盐在不同温度下的溶解度(克/100毫升水)
温度
0℃ 20℃ 80℃ 100℃
(NH4)2SO4 70.6 75.4
95.3
103
Na2SO4 4.9 18.9
43.3
42.2
NaH2PO4 1.6
7.8 93.8
101
1)硫酸铵在0℃时的溶解度,远远高于其它盐类
29
2) 分离效果好:有的提取液加入适量硫 酸铵盐析,一步就可以除去75%的杂 蛋白,纯度提高了四倍。
3) 温度:为防止变性和降解,制备具有活性的蛋白 质和酶,提取时一般在0℃~5℃的低温操作。
4) 防止蛋白酶的降解作用:加入抑制剂或调节提 取液的pH、离子强度或极性等方法使相应的水解 酶失去活性,防止它们对欲提纯的蛋白质、酶的降 解作用。
15
5) 搅拌与氧化:搅拌能促使被提取物的溶解, 一般采用温和搅拌为宜,速度太快容易产生大 量泡沫,增大了与空气的接触面,会引起酶等 物质的变性失活。因为一般蛋白质都含有相当 数量的巯基,有些巯基常常是活性部位的必需 基团,若提取液中有氧化剂或与空气中的氧气 接触过多都会使巯基氧化为分子内或分子间的 二硫键,导致酶活性的丧失。在提取液中加入 少量巯基乙醇或二硫苏糖醇以防止巯基氧化。
1) 盐浓度(即离子强度):
离子强度对生物大分子的溶解度有极大的影响,绝大多数蛋 白质和酶,在低离子强度的溶液中都有较大的溶解度,如在 纯水中加入少量中性盐,蛋白质的溶解度比在纯水时大大增 加,称为“盐溶”现象。盐溶现象的产生主要是少量离子的 活动,减少了偶极分子之间极性基团的静电吸引力,增加了 溶质和溶剂分子间相互作用力的结果。
带正电荷蛋白质
(疏水胶体)
阴离子
不稳定蛋白颗粒
现代分离方法与技术-第2章-沉淀分离法-最终版本

Q—加入沉淀剂瞬间生成沉淀物的浓度;
s— 沉淀物的溶解度;
Q-s — 沉淀物的过饱和度;
K— 比例常数,它与沉淀物的性质、温度、溶液中存在
的其它物质有关。
Q
s
s
— 沉淀物的相对过饱和度;
( 2)哈伯理论
聚集速度
条件
在沉淀的形成过程中,晶核逐渐长大成沉淀微粒,
这些微粒可以聚集成更大的聚集体。这种聚集过程的快慢
CoS:型 Ksp = 4.0×10-20 型 Ksp = 7.9×10-24
2.1.4 沉淀的生成
1). 沉淀的类型
类别 颗粒直径
特性
示例
晶形沉淀
凝乳状沉 淀
无定形沉 淀
0.1~1µm
∠0.02 µm
颗粒大,内部排列规 则,紧密,极易沉于 容器底部
介于两者之间
内部排列杂乱无章, 疏松,絮状沉淀,体 积庞大,含大量水,
溶度积:在微溶化合物的饱和溶液中,组成沉淀的有关
离子浓度的乘积,在一定温度下为一常数,称 为溶度积常数或溶度积。构晶离子
MA型: MA ⇆ M+ + A-
Ksp= [M+ ][A-]
MmAn型: MmAn ⇆ mMn++ nAm-
Ksp= [Mn+ ]m[Am-]n 意义:溶度积是微溶化合物和它的饱和溶液达到平衡
(2)晶核的生长过程
晶核形成后,溶液中的构晶离子向晶核表面扩散,并沉 积在晶核上,使晶核逐渐长大,到一定程度时,成为沉淀微 粒。
结论: 异相成核显著, 易形成大颗粒晶形沉淀; 均相成核显著, 易形成小颗粒非晶形沉淀.
3). 晶形沉淀和无定形沉淀的生成 (1)冯氏经验公式
中药化学2.2 色谱分离技术

聚酰胺吸附力的影响因素: 1:形成氢键的能力与溶剂有关 水中>有机溶剂中>碱性溶剂中 常用溶剂对聚酰胺洗脱能力顺序如下: 水<甲醇或乙醇<丙酮<稀氢氧化钠液或稀氨溶 液<甲酰胺或二甲基甲酰胺<尿素水溶液。
注意温度超过150 ℃则游离硅醇基之间脱 水形成硅氧醚结构丧失游离硅醇基的吸附能力。 为酸性吸附剂适于分离中性或酸性成分。
常用硅胶:
硅胶H(不含黏合剂) 硅胶G(含黏合剂) 硅胶GF254(含煅石膏,另含有一种无机荧 光剂)。硅胶GF254nm紫外光下呈强烈黄绿色 荧光背景,在荧光背景下通过紫外光照射成分 斑点为暗斑,常用于一般显色手段不易显色的 成分的分离。
3、 洗脱:
洗脱操作的目的是要将加入的样品中各个 组分先后从上往下带出来,并能分开收集各成 分。 洗脱的过程中,上端溶剂不能干,分段收 集是关键;作定性检查合并相同成分。 TLC时Rf为0.2-0.3的溶剂系统是最佳的 洗脱系统,梯度洗脱。
4. 应用 柱色谱分离能力比薄层分离能力更强, 效果更好,尤其对结构相似、性质接近、 采用薄层难以分离的成分分离效果好。
(一)吸附剂
4、常用的吸附剂
(1)硅胶SiO2•xH2O 多孔性的硅氧烷交链结构,极性吸附剂, 吸附性较氧化铝稍低,既适于分离亲水性成分, 又可用于分离亲脂性成分。 其吸附作用的强弱取决于游离硅醇基的数 目,也与含水量有关,含水量达17%以上,则 失去吸附性,所以需110℃活化30分钟。
(一)吸附剂
例:求图中A、B、C三斑点Rf大小并判断三成分 极性大小顺序。
实验室常用分离技术原理及操作

实验室常用分离技术原理及操作实验室中常用的分离技术包括离心法、层析法、电泳法、过滤法和蒸馏法等。
下面对这些常用的分离技术原理及操作进行详细介绍。
1.离心法离心法是利用离心机的离心力,将混合物中的组分按照不同密度分离开来的一种分离技术。
其原理是根据组分的密度差异来分离。
操作步骤如下:(1)将待分离的混合物均匀地倒入离心管中。
(2)将离心管盖紧,并放入离心机中。
(3)启动离心机,使之以一定的转速旋转一定时间。
(4)停止离心机并取出离心管。
(5)将管内上清液或下沉物取出即可。
2.层析法层析法是基于不同物质在固定相和移动相之间分配系数不同而实现分离的方法。
原理是通过移动相在固定相上的运动,使不同成分在两相之间分配,从而分离出不同组分。
操作步骤如下:(1)准备好层析柱,并充填固定相。
(2)将待分离的混合物溶解于适当的移动相中。
(3)在层析柱中加入适当的移动相,待流速稳定后,开始加样。
(4)加样后,根据不同组分的分配系数,它们在固定相和移动相之间的分配程度不同,从而实现分离。
(5)收集流出的组分,并进行后续分析或操作。
3.电泳法电泳法是将带电粒子在电场作用下进行运动而实现分离的方法。
根据带电粒子的运动方式和性质的不同,电泳法可以分为凝胶电泳、毛细管电泳和等电点电泳等不同类型。
以凝胶电泳为例,操作步骤如下:(1)准备好电泳槽和凝胶。
(2)在凝胶中形成电泳孔。
(3)将样品与适当的电泳缓冲液混合后,加载在电泳孔中。
(4)打开电源,开启电场,使带电的样品分子在电场作用下进行运动。
(5)根据带电粒子的大小和电荷以及凝胶孔道的大小,不同的组分将以不同的速度迁移,从而实现分离。
4.过滤法过滤法是通过孔隙较小的过滤介质,如滤纸、滤膜或滤芯等,将混合物中的固体颗粒或大分子物质与溶液分离的方法。
操作步骤如下:(1)准备好过滤介质并装入过滤设备中。
(2)将混合物倒入过滤设备中。
(3)混合物中的液体部分通过过滤介质,而固体颗粒或大分子物质被截留在过滤介质上。
国开电大化工分离技术形考任务二参考答案

纳滤膜为多孔性的,其平均孔径为()nm。
·选项、
1
2
3
4
【答案】
2
·题目、
液膜分离所用的膜是()。
·选项、
多孔膜
复合膜
液膜
离子交换膜
【答案】
液膜
·题目、
气体膜分离是以()为推动力的分离过程。
·选项、
压力差
浓度差
电位差
化学反应
【答案】
压力差
·题目、
膜蒸馏所选用的膜是()。
·选项、
致密膜
疏水微孔膜
·选项、
极限电流
极限电压
临界电流
临界电压
【答案】
极限电流
·题目、
离子交换膜是电渗析器的关键部件,对离子交换膜应具备一定的条件,其中()是衡量膜性能的主要指标。
·选项、
化学稳定性
选择透过性
膜电阻
机械强度
【答案】
选择透过性
·题目、
一般来说超滤所用的膜是()。
·选项、
非对称膜
对称膜
复合膜
均质膜
【答案】
非对称膜
·选项、
致密膜
微孔膜
非对称膜
复合膜
离子交换膜
【答案】
致密膜
微孔膜
非对称膜
复合膜
离子交换膜
·题目、
影响超滤渗透通量的因素有:()。
·选项、
操作压力
流量
料液流速
温度
截留液浓度
【答案】
操作压力
料液流速
温度
截留液浓度
·题目、
无机膜包括:()。
·选项、
陶瓷膜
橡胶态膜
玻璃膜
药物分离技术第二章 药物的液液萃取技术

第二节 分子间作用力与溶剂特性
范得华力包括:
色散力:存在于非极性分子之间。由于非极性分子外围电子不停运动和原子核的不断 震动,可能造成某一瞬间存在偶极矩不为0(即正负电荷中心不重合),造成同极相 吸、异极相斥,这种作用力即为色散力。
大小取决于分子的变形性,半径越大,色散力越强。
产物 青霉素G 红霉素 螺旋霉素 土霉素
萃取溶剂 乙酸丁酯 乙酸丁酯 乙酸丁酯
丁醇
产物 林可霉素 加兰他敏 延胡索乙素 新生霉素
萃取溶剂 丁醇
乙酸乙酯 乙醚 丁醇
主要用于抗生素及天然植物中的有效成分的提取。
四、化学萃取
• 化学萃取则利用萃取剂与溶质之间的化学反应生成复合分子, 向萃取相分配而实现溶质转移。
当溶质—溶质之间作用力和溶剂—溶剂之间的作用力越大时,溶解越困难。 分子间作用力的大小与分子的极性关系:
非极性物质<极性物质<氢键物质<离子型物质 当物质溶解时,溶质结构与溶剂结构相似、彼此间的作用力相似,溶解容易进行, 此为“相似相容”原理。
第二节 分子间作用力与溶剂特性 一、分子间作用力
物质内部作用力:化学键、氢键和分子间作用力。
pKb
pH
可见,弱电解质溶质在有机相中的浓度主要取决于pH值。
弱酸性电解质:pH值越低,分配系数越大;弱碱性正好相反。
• 在一定温度和压力下,分配系数是水中氢离子浓度的函数,调节水相的pH, 使溶质以分子状态↑,进入萃取相↑,分配系数↑,萃取率↑。
红霉素是碱性电解质,在乙酸戊酯和 pH 9.8 的水相之间分配系数为 44.7 ,而水相 pH5.5 时为14.3 。
乳状液是一个不稳定的热力学体系,易聚集分层,成为稳定的两相。 若要形成稳定的乳剂,需要加入稳定剂使其形成稳定的体系,这种稳
2沉淀分离技术

2沉淀分离技术第⼆讲沉淀分离技术2学时※、通过本章学习应掌握的内容1、什么是沉析?2、沉析法纯化蛋⽩质的优点有哪些?3、沉析的⼀般操作步骤是什么?4、何谓盐析?其原理是什么?5、盐析操作时常⽤的盐是什么?6、影响盐析的主要因素有哪些?7、有机溶剂沉析法的原理是什么?8、影响有机溶剂沉析的主要因素有哪些?9、等电点沉析的⼯作原理是什么?10、其它常⽤的沉析⽅法有哪些?⼀、沉淀分离的⽬的及其⽅法沉淀分离技术是经典的化学分离技术。
沉淀的概念是指溶液中的介质在适当条件下由液相变成固相⽽析出的过程。
沉淀技术的⽬的包括两个:⑴通过沉淀使⽬标成分达到浓缩和去杂质的⽬的。
当⽬标成分是以固相形式回收时,固液分离可除去留在溶液中的⾮必要成分;如果⽬标成分是以液相形式回收时,固液分离可使不必要的成分以沉淀形式去除。
⑵通过沉淀可使已纯化的产品由液态变成固态,有利于保存和进⼀步的加⼯处理。
沉淀分离技术通常包括下列各种沉淀⽅法:⑴⽆机沉淀剂沉淀分离法:通常是以盐类作为沉淀剂的⼀类沉淀⽅法,如盐析法,多⽤于各种蛋⽩质和酶类的分离纯化,以及某些⾦属离⼦的去除。
常⽤的沉淀剂有:硫酸铵、硫酸钠、柠檬酸钠、氯化纳等。
⑵有机沉淀剂沉淀分离法:以有机溶剂作为沉淀剂的⼀种沉淀分离⽅法,多⽤于⽣物⼩分⼦、多糖及核酸类产品的分离;有时也⽤于蛋⽩质的沉淀和⾦属离⼦的去除;⽤于酶的沉淀分离时,易导致酶的失活。
常⽤到的沉淀剂有:丙酮、⼄醇、甲醇等。
⑶⾮离⼦多聚体沉淀剂沉淀分离法:采⽤⾮离⼦型的多聚体作为⽬标成分的沉淀剂,适⽤于⽣物⼤分⼦的沉淀分离,如酶、核酸、蛋⽩质、病毒、细菌等。
典型的⾮离⼦型多聚体是聚⼄⼆醇(PEG),根据其相对分⼦量的⼤⼩,有PEG600、PEG4000、PEG20000等型号。
⑷等电点沉淀法:主要是利⽤两性电解质在等电点状态下的溶解度最低⽽沉淀析出的原理。
适⽤于氨基酸、蛋⽩质及其它属于两性电解质组分的沉淀分离,如⼤⾖蛋⽩“碱提酸沉”的提取⽅法。
分离科学与技术

2.3 无机化合物萃取(了解)
无机萃取一般包括如下过程: (1)水相中的被萃取溶质与加入的萃取剂形成萃取物(通 常是配合物); (2)在两相界面,萃合物因疏水分配作用进入有机相,最 终溶质在两相间达成平衡。
P’= He + Hd + Hn
Xe =He/P’ Xd = Hd/P’ Xn= Hn/P’
溶剂的质子接受强度分量 溶剂的给予强度分量 溶剂的偶极相互作用强度
两种溶剂中的P’值相同时,表明这两种溶剂的极性相同, 但若Xe大,表明接受质子的能力强,对于质子给予性物质的 溶解有较好选择性。
三个分量代表了溶剂对三种不同类型化合物的溶剂选择性 大小。
(1)平衡常数
Nernst 在1891年提出的溶剂萃取分配定律是:在 一定温度下,当某一溶质在互不相溶的两相溶剂(水相 /有机相) 中达到分配平衡时,该溶质在两相中的浓 度比为一个常数,该常数称为平衡常数(KD)。
KD
[ A]org [ A]aq
实验发现, KD是一个常数的条件是, 温度不变,溶质A在 溶液的浓度极低,且存在形式不变。溶质浓度高时, KD存 在偏离。应使用活度代替浓度计算。
选择一种极性溶剂和一种非极性溶剂,将二者按 不同比例混合,得到一系列不同极性的混合溶剂, 计算混合溶剂的极性参数p’;
研究目标物质在上述不同极性混合溶剂中的溶解 度,以最大溶解度对应的混合溶剂p’值可知溶质 的近似p’。
挑选具有不同选择性的另外一种极性溶剂替换原 极性溶剂,通过调整该极性溶剂的比例维持原p’, 从而找到溶解性和选择性都合适的溶剂。
分离科学与技术第2章 沉淀分离法

第二章 沉淀分离法
2.2 沉淀的生成过程 2.2.5 分级沉淀 分级沉淀:两种难溶盐(阳离子或阴离子相同),若 其溶度积相差足够大时,可通过加入沉淀剂将其先后分 别沉淀出来加以分离。 溶度积小的难溶盐先沉淀,如 AgI 较 AgCl 先沉淀。
第二章 沉淀分离法
2.2 沉淀的生成过程 2.2.5 分级沉淀
第二章 沉淀分离法
2.2 沉淀的生成过程 2.2.4 晶形沉淀与胶体 内因: 沉淀的性质
生成沉淀类型 外因
沉淀的形成条件
沉淀的后处理
沉淀类型:晶形沉淀、无定形沉淀、凝乳状沉淀
几种类型沉淀的比较 特点 直径 晶形沉淀 0.1~1 m 凝乳状沉淀 0.02~0.1 m 无定形沉淀 < 0.02 m
[I ] [Cl ] 6 6 10 , 10 [Cl ] [I ]
Ksp,AgI = [Ag+][I] = 9.31017 Ksp,AgCl = [Ag+][Cl] = 1.81010 当 [Cl]/[I] < 106 时,只有 AgI 析出; 当 [Cl]/[I] > 106 时,AgCl 才开始析出。
第二章 沉淀分离法
2.1 沉淀生成的条件 2.1.3 氢离子浓度及配位剂的影响 配位剂的影响: 难溶盐沉淀 + 配位剂 溶解度增大(或完全溶解)
第二章 沉淀分离法
2.1 沉淀生成的条件 2.1.4 有机溶剂的影响 有机溶剂的影响: 难溶盐沉淀 + 有机溶剂 溶解度减小(溶剂化作用较 小,介电常数较低)。如 PbSO4: 100 mL H2O: 4.0 mg, 100 mL 20% 乙醇: 4.0/10 mg 100 mL 乙醇: 4.0/1500 mg
第二章 沉淀分离法
膜分离技术 (2)

量与分离特性的不可逆变化现象。
膜污染的表现一是膜通量下降;二是通过膜的压力和 膜两侧的压差逐渐增大;三是膜对生物分子的截留性
能改变。
南京工业大学 Nanjing University of Technology
膜污染
膜污染与浓差极化在概念上不同, 浓差极化加重了污染 , 但浓差极化是可逆的,即变更操作条件可使之消除,而污
Nanjing University of Technology
南京工业大学
Nanjing University of Technology
超滤 纳滤
压力差 小分子物质分 糖/二价盐/游离酸的分 离 Donna效应 离
反渗透 致密膜、复合 压力差 膜<1nm 渗析 对称的或不对 浓度差 称的膜
电渗析 离子交换膜 渗透蒸 致密膜 发 电位差 气压差
小分子物质浓 单价盐/非游离酸的分离 缩 小分子有机物 除小分子有机物或无机 /无机离子 离子
膜污染
②吸附污染 有机物在膜表面的吸附通常是影响膜性能的主要因素。随 时间的延长,污染物在膜孔内的吸附或累积会导致孔径减 少和膜阻增大,这是难以恢复的。 与膜污染相关的有机物特征包括它们对膜的亲和性,分子 量,功能团和构型。一般来讲膜的亲水性越强有机物不宜 吸附。而疏水作用可增加其在膜上的积累,导致严重的吸 附污染。
南京工业大学
Nanjing University of Technology
膜分离过程的主要特征
过程 微滤 膜结构 驱动力 对称微孔膜 压力差 0.05~10μm 不对称微孔膜 压力差 1~50nm 复合膜< 1nm 应用对象 实 例 消毒、澄清收 培养悬浮液除菌,产品 集细胞 消毒,细胞收集 大分子物质分 蛋白质的分离/浓缩/纯 离 化/脱盐/去热源
第五章 膜分离技术2

L:膜管的长度(m),
d:膜管经(m),
l:料液密度(kg/m3)。 k:从入口到管长为L处的平均传质系数(m/s)
Sh:Sherwood准 度(Pa s)
数,
u:流速(m/s),l
:料
液黏
5.14 膜渗透通量的影响因素
意义:k随流速的增大而提高;因此,流速的增大,透过通 量增大。
适合条件:对蛋白质溶液以及小分子有效,但对细胞和胶体 粒子的悬浮液无效。Why?
操作形式
终端过滤(Dean-end filtration) 错流过滤(cross flow filtration, CFF):
流速:
流速对透过通量的影响反应在传质系数上,传 质系数k, 对于圆型管路的层流液(Re < 1800)为:
对于圆型管路的层流料液(Re > 4000),可用下 式计算传质系数:
液量和透过通量不变,则目标产物和小分子溶质的物料蘅 算方程是
s0:溶质初始浓度, V:料液体积, s:洗滤后的溶质的浓度, VD:加水或缓冲液的体积, Rs:小分子溶质的截留率。
5.15 超滤操作方式
洗滤(Dia-filtration): 意义:
料液体积V越小,所需VD越小。因此,洗滤前首先浓缩稀 料液可减少洗滤液的用量。但浓缩后,目标产物浓度增大 透过通量下降。所以,存在最佳料液浓度,使洗滤时间最 短。设目标产物的R=1,小分子溶质的Rs=0,浓缩后料液 体积为V,洗滤过程中其浓度和透过流量不变,目标产物 浓度和洗滤时间分别为:
分离技术

分离的主要目的:(1)分析前对样品的预处理:消除对分析有干扰的共存物,提高分析方法的准确性及可靠性;对被测样品进行浓缩或富集,以达到分析方法的检测灵敏度;(2)确认目标物质的结构:红外、核磁、质谱;(3)获取单一纯物质或某类物质以作他用:天然产物提取分。
(4)除去有害或有毒物质:如除去废水中的重金属(选择性吸附或沉淀分离法)。
P11T3根据你自己的理解,用自己的语言阐述分离与分析两个概念的区别与联系。
分离是利用混合物中各组分在物理性质或化学性质上的差异,通过适当的装置或方法,使各组分分配至不同的空间区域或在不同的时间依次分配至同一空间区域的过程。
分析化学是开发分析物质成分、结构的方法,使化学成分得以定性和定量,化学结构得以确定。
区别:1、目的不同:化学分析是确定物质的结构,分离是从物质中分离相关物质。
2、特点不同:化学分析是确定成分的含量,分离是将成分分离,不用确定含量。
3、方法不同:分析法常使用如电泳、色谱法、场流分级等方法。
分离:盐析、萃取分离法(包括溶剂萃取、胶团萃取、双水相萃取。
P49T4举例说明范德华力在分离过程中的应用。
答:色谱:利用固体表面与分子间相互作用力(范德华力、氢键)的不同,使各组分在固定相中停留时间不同,从而将不同溶质分离开来,达到分离目的。
分离方法的好坏,理论上可以用分离度、回收率、富集倍数、准确性和重现性等进行评价。
测定回收率的方法很多,通常采用标准加入法和标准样品法流动相不同路径的流速差异引起溶质分布区带扩展,称为涡流扩散效应,或称多路径效应H M1、给定被测组分后,色谱分离过程中,影响分配系数K的因数有(A/C)A固定相的性质 B流动相的性质c温度 D流动相和固定相的体积2、在气一液色谱系统中,被分离组分与固定液分子的类型越相似,它们之间(C)A、作用力越小,保留值越小B、作用力越小,保留值越大C、作用力越大,保留值越大D、作用力越大,保留值越小3、van- -Deemter方程主要阐述了(C)A、色谱流出曲线的形状B、组分在两相间的分配情况C、色谱峰扩张柱效降低的各种动力学因素D、塔板高度的计算4、指出下列哪些参数改变会引起相对保留值的增加ACDA、柱长增加B、相比增加C、降低柱温D、流动相速度降低5、改变如下条件,可减少板高H(即提高柱效)(CEF)A、增加固定液含量B、减慢进样速度 C增加气化室温度D、增加载气流速E、减少填料的颗粒度F、降低柱温6、比移值与容量因子的关系是 Rf=1/(1+K)保留值与容量因子的关系是 t R=t0(1+k)7、保留值大小反映了组分与固定相之间作用力的大小,这些作用力包括定向力、透导力、色散力、氢键作用力等。
第四章 固相析出分离技术(二)

图4-4 温度对成核速度的影响
成核速度与溶质种类有关。
对于无机盐类,有下列经验规则:阳离子或阴离 子的化合价越大,越不容易成核;在相同化合 价下,含结晶水越多,越不容易成核。对于有 机物质,一般结构越复杂,相对分子质量越大, 成核速度就越慢。 例如,过饱和度很高的蔗糖溶液,可保持长时间 不析出。
)晶核的诱导
(2真正自动成核的机会很少,加晶种能诱导结晶。 晶种可以是同种物质或相同晶形的物质,有时惰性 的无定形物质也可作为结晶的中心,如尘埃也能导 致结晶。
添加晶种诱导晶核形成的常用方法如下: ①如有现成晶体,可取少量研碎后,加入少量溶剂, 离心除去大的颗粒,再稀释至一定浓度(稍稍过饱 和),使悬浮液中具有很多小的晶核,然后倒进待 结晶的溶液中,用玻璃棒轻轻搅拌,放置一段时间 后即有结晶析出。
对于大多数生化小分子来说,水、乙醇、甲醇、丙 酮、氯仿、乙酸乙酯、异丙醇、丁醇、乙醚、N-甲 基甲酰胺等溶剂使用较多。尤其是乙醇,既具亲水 性,又具亲脂性,而且价格便宜、安全无毒,所以 应用较广。 至于蛋白质、酶和核酸等大分子,使用较多的是硫 酸铵溶液、氯化钠溶液、磷酸缓冲液、Tris缓冲液 和丙酮、乙醇等。
5.温度 从生物活性物质的稳定性而言,一般要求在较低 的温度下结晶,这样不容易变性失活。另外,低 温可使溶质溶解度降低而有利于溶质的饱和,还 可避免细菌繁殖。所以生化物质的结晶温度多控 制在0-20℃,对富含有机溶剂的结晶体系则要求 更低的温度。但也有某些酶,如猪糜胰蛋白酶, 需要在稍高的温度(25℃)下才能较好地析出晶 体。另外,温度过低时,有时由于黏度大会使结 晶生成变慢,可在低温时析出结晶后适当升温。 通过降温促使结晶时,如果降温快,则结晶颗粒 小;降温慢,则结晶颗粒大。
制药分离纯化技术2第二章固液萃取浸取972003

无毒无害,价格低廉,还具有一定的防腐作用, 其比热容小,沸点低,汽化热不大,使分离回收 费用低,可降低生产成本。但乙醇具有挥发性和 易燃性,生产中应注意安全防护。
③ 丙酮
一种良好的脱脂溶剂,与水形成任意组成的混合 液。丙酮也是一种脱水剂,常用于新鲜动物药材 的脱水和脱脂。丙酮的防腐性能较好,但有一定 的毒胜,而且丙酮易于挥发和燃烧,使用时要特 别注意。
渗漉法的操作主要包括润湿膨胀、药材装填 和渗漉。
(1) 润湿膨胀 将药材粗粉放入有盖的容器中,加入粗粉量
60%~70 % 的浸取溶剂,均匀润湿后,密 闭放置15min~6h,使药材充分膨胀后备用。
(2) 药材装填
取脱脂棉一团,用浸取液润湿后,铺垫在 渗漉筒的底部,然后将已润湿膨胀的药材粗 粉分次装入渗流筒中,装入量不多于渗漉筒 容积的2/3,松紧程度视药材及及取溶剂而 定。若为醇含量高的溶剂则可压紧些,若含 水最大则宜装得疏松些,装完后用滤纸或纱 布覆盖,并加一些玻璃珠或瓷块之类的重物, 以防止加入溶剂时将药粉冲浮起来。
一般为常数;如用质量浓度 ( kg/kg ) 表示, 则 KD 值会发生变化。因为在浸取过程中, 随着溶质的浸出,固体内外的溶液密度将发
生变化。
1.固体物料颗粒度的影响
各类固体生物物料是由细胞组成的,可溶性物质 通常存在于细胞内,细胞膜产生一种不同于一般情 况下的扩散阻力,因此浸取速率通常比较小。 为了从动、植物等中浸提药品,在浸取前需先对 固体原料进行恰当的预处理,即进行细胞破碎,以 缩短固体或细胞内部溶质分子向其表面扩散的距离, 而溶剂也容易进入细胞内部直接溶解溶质,从而提 高浸取速率。
温浸法是在热回流浸出工艺基础上发展起 来的一种方法。此法将浸取器内的温度控 制在40~50℃,较好地运用了温度对加速 浸出的有利因素,减少了较高温度对浸取 成分的破坏,降低了无效成分的浸出率。 温浸法的浸取率高于渗漉法,但浸取液的 澄明度不及渗漉法。
化学实验中的分离技术

化学实验中的分离技术在化学实验中,分离技术是一项至关重要的技术手段。
它通过不同物质之间的物理或化学性质的差异,使得在混合物中将各个组分分离开来。
本文将介绍几种在化学实验中常用的分离技术,包括蒸馏、萃取、结晶、过滤和色谱等。
蒸馏蒸馏是一种通过液体的汽化和冷凝过程将混合物中的组分分离开的方法。
在蒸馏中,混合物被加热至其中某个组分的沸点,该组分蒸发成气体,然后冷凝回到液体状态。
蒸馏可以分为简单蒸馏和分馏两种形式。
简单蒸馏适用于分离沸点差异较大的混合物,如水和盐溶液的分离。
分馏适用于分离沸点接近的液体混合物,通过使用分馏柱可以更加高效地实现组分的分离。
萃取萃取是一种通过溶剂将混合物中的有机物或无机物分离出来的方法。
在实验室中,我们通常使用分液漏斗进行萃取。
首先,将混合物与适当的有机溶剂混合,使其中一部分组分溶解在有机溶剂中。
然后,通过重力或离心等方式分离有机相和水相。
最后,将有机相与适当的溶剂进行洗涤和干燥,即可得到所需的物质。
结晶结晶是一种通过溶解和再结晶来分离纯净晶体的方法。
它适用于分离固体混合物中溶质和溶剂之间溶解度差异较大的情况。
首先,将混合物溶解在适当的溶剂中,加热溶液使其达到饱和状态。
然后冷却溶液,使溶质逐渐结晶出来。
最后,通过过滤将结晶物与溶剂分离,获得纯净的晶体。
过滤过滤是一种通过筛选和分离杂质的方法。
在化学实验中,我们通常使用纸过滤和玻璃棉过滤。
纸过滤通过滤纸的孔隙进行分离,将固体颗粒留在过滤纸上,液体通过孔隙流过。
玻璃棉过滤则通过玻璃棉的缠绕和聚集,将悬浊液中的固体颗粒捕捉在其中。
该分离技术广泛应用于实验室中,具有简单、快速、适用于大部分混合物的特点。
色谱色谱是一种通过物质在固体或液体移动相和流动相之间分配不均来实现组分分离的方法。
色谱通常分为气相色谱和液相色谱两种形式。
气相色谱使用气体作为流动相,将混合物蒸发到气相中,并通过柱子上的固定相分离。
液相色谱使用液体作为流动相,将混合物溶解在液相中,并通过柱子上的固定相分离。
有机化学实验中的分离技术

有机化学实验中的分离技术在有机化学实验中,分离技术是一项非常重要的实验操作。
通过分离技术,我们可以将混合物中的不同组分分离出来,并获得纯净的有机物质。
本文将介绍几种常用的有机化学实验中的分离技术,包括提取法、结晶法、蒸馏法和色谱法。
提取法是有机化学实验中常用的一种分离技术。
它基于不同物质在溶剂中的溶解度差异,通过溶剂的选择和提取过程的控制,可以将需要分离的有机物质从混合物中提取出来。
提取法可以用于分离有机物与无机物的混合物,也可以用于分离不同有机物之间的混合物。
在实验操作中,通常使用漏斗进行液-液相分离,通过叠加分液仪可以方便地分离两相,从而获得纯净的有机物质。
结晶法是一种常用的纯化有机化合物的分离技术。
结晶法基于物质在溶剂中的溶解度随温度变化的差异。
通过逐渐降低溶液温度,使得溶质逐渐从溶液中析出结晶,从而实现对有机物质的纯化。
结晶法需要选择适宜的溶剂和恰当的结晶条件,如搅拌、过滤和干燥等操作,以获得高纯度的结晶产物。
蒸馏法是一种分离液体混合物的重要技术。
在有机化学实验中,蒸馏法通常用于分离液体的挥发性有机成分。
蒸馏法基于不同物质的沸点差异,通过加热混合物,使得具有较低沸点的物质先蒸发,然后再通过冷凝收集,从而实现对有机物质的分离。
在实验操作中,常用的蒸馏设备包括常压蒸馏和沸石蒸馏,通过控制温度和调节收集装置,可以得到纯净的有机产物。
色谱法是一种分离和纯化有机化合物的重要技术。
色谱法基于物质在固定相和流动相之间的分配行为,通过流动相的传递,使得不同组分在固定相上发生差异分离,从而实现对有机物质的分离。
常见的色谱技术包括薄层色谱、柱色谱和气相色谱。
在实验操作中,需要选择合适的固定相和流动相,根据物质的特性和需要的分离效果进行调节,最终通过检测不同位置的色斑或峰来获得纯净的有机产物。
综上所述,有机化学实验中的分离技术包括提取法、结晶法、蒸馏法和色谱法等。
这些技术在有机合成、纯化和分析等领域起着重要作用。
实验室常用分离技术原理及操作

♦采取长时间静置 ♦用盐析效应.在水溶液中先加入一定量电解质(如氯化钠)或加饱和食盐 水溶液.以提高水相的密度,同时又可以减少有机物在水相中的溶解度。 ♦改变表面张力滴加数滴醇类化合物 ♦加热破坏乳状液(注意防止易燃溶剂着火); ♦过滤.除去少量轻质固体物,必要时可加入少量吸附剂,滤除絮状固体。 ♦改变pH值。如若在萃取含有表面活性剂的溶液时形成乳状溶液,当实验条 件允许时.可小心地改变pH值,使之分层。 ♦加入过量的酸或碱。当遇到某些有机碱或弱酸的盐类,因在水溶液中能发 生一定程度解离,很易被有机溶剂萃取出水相.为此,在溶液中要加入过量 的酸或碱,即能破乳又能达到顺利萃取之目的。 ♦轻摇与搅动。遇到轻度乳化,可将溶液在分液漏斗中轻轻旋摇,或缓缓地 搅拌,对破乳有时会有帮助。
D.若不能选出单一溶剂进行重结晶,则可应用混合溶剂。
(二)结晶与重结晶操作
1.固体溶解
A.按照溶剂选择,选用合适溶剂。 B.热沸溶剂,尽可能少的加入待纯化样品中,使之大部分溶
解(不可加入溶剂后加热溶解,避免化合物分解。也不可 溶剂沸腾后加入样品,暴沸危险)
*当样品较多,溶剂较多时可安上回流管,以避免溶剂挥发。 搅拌下加热,使之溶解。必要时添加少量溶剂,每次加入 量一定少。
B.对于已知的化合物,可借鉴参考文献选用合适溶剂。
C.未知的化合物在选取溶剂时,根据化合物的结构性质,按照“相似相溶” 的原则, 按上述尝试法实验之。 若溶质极性很大,必须用极性较大的溶剂溶解。 若溶质为非极性的,则需用非极性溶剂。 溶剂的极性在很大程度上取决于介电常数,可以通过查找与对比介电常数的大小选 择适当的溶剂。
*若待纯化物质含有不溶或难溶杂质,不要误认为溶剂不够, 而加入过多溶剂。
* 若分不清是杂质还是样品,则宁愿将其滤掉。在这过程中 若需要脱色,可以提前加入活性炭,且不可在溶液沸腾后 加入,否则产生强烈瀑沸,危险!
生物化学实验技术(2)常用分离技术

二.硫酸铵的使用
硫酸铵中常含有少量的重金属离子, 硫酸铵中常含有少量的重金属离子,对蛋白质巯基 有敏感作用,使用前必须用H 处理: 有敏感作用,使用前必须用H2S处理:将硫酸铵配成浓 溶液,通入H 饱和,放置过夜, 溶液,通入H2S饱和,放置过夜,用滤纸除去重金属离 浓缩结晶,100℃烘干后使用 烘干后使用。 子,浓缩结晶,100℃烘干后使用。 另外,高浓度的硫酸铵溶液一般呈酸性(PH=5.0左 另外,高浓度的硫酸铵溶液一般呈酸性(PH=5.0左 ),使用前也需要用氨水或硫酸调节至所需PH。 使用前也需要用氨水或硫酸调节至所需PH 右),使用前也需要用氨水或硫酸调节至所需PH。
第三节 其他沉淀法一.Fra bibliotek电点沉淀法 二.生成盐复合物沉淀法 三. 选择性变性沉淀 四.非离子多聚物沉淀法
一.等电点沉淀法
两性电解质分子上的净电荷为零时溶解度最低, 两性电解质分子上的净电荷为零时溶解度最低,不同的 两性电解质具有不同的等电点,以此为基础可进行分离。 两性电解质具有不同的等电点,以此为基础可进行分离。 利用等电点除杂蛋白时必须了解制备物对酸碱的稳定性, 利用等电点除杂蛋白时必须了解制备物对酸碱的稳定性, 不然盲目使用十分危险。 不少蛋白质与金属离子结合后, 不然盲目使用十分危险。 不少蛋白质与金属离子结合后,等 电点会发生偏移,故溶液中含有金属离子时,必须注意调整PH 电点会发生偏移,故溶液中含有金属离子时,必须注意调整PH 值。 等电点法常与盐析法、 等电点法常与盐析法、有机溶剂沉淀法或其他沉淀方法联 合使用,以提高其沉淀能力。 合使用,以提高其沉淀能力。
使用硫酸铵时: 使用硫酸铵时:
1)必须注意饱和度表中规定的温度,一般有0℃或室温两种, )必须注意饱和度表中规定的温度,一般有 ℃或室温两种, 加入固体盐后体积的变化已考虑在表中; 加入固体盐后体积的变化已考虑在表中; 2)分段盐析中,应考虑每次分段后蛋白质浓度的变化。一种 )分段盐析中,应考虑每次分段后蛋白质浓度的变化。 蛋白质如经二次透析,一般来说,第一次盐析分离范围( 蛋白质如经二次透析,一般来说,第一次盐析分离范围(饱 和度范围)比较宽,第二次分离范围较窄。 和度范围)比较宽,第二次分离范围较窄。 3)盐析后一般放置半小时至一小时,待沉淀完全后才过滤或 )盐析后一般放置半小时至一小时, 离心。过滤多用于高浓度硫酸铵溶液,因为此种情况下, 离心。过滤多用于高浓度硫酸铵溶液,因为此种情况下,硫 酸铵密度较大, 酸铵密度较大,若用离心法需要较高离心速度和长时间的离 心操作,耗时耗能。离心多用于低浓度硫酸铵溶液。 心操作,耗时耗能。离心多用于低浓度硫酸铵溶液。
药物分离纯化技术 (2)

药物分离纯化技术
药物分离纯化技术是指通过一系列化学、物理或生物学的
方法,将混合物中的目标药物分离出来并纯化的一种技术。
常用的药物分离纯化技术包括以下几种。
1. 薄层层析:利用吸附剂在薄层上的分离作用,将混合物
中的组分分离出来。
这种方法操作简单、快速,适用于小
规模的样品。
2. 柱层析:将混合物通过柱层析柱,利用不同组分在固定
相上吸附和脱附的差异来实现分离。
3. 液液萃取:利用溶解度差异将目标药物从混合物中提取
出来。
一般是将混合物和提取剂进行混合,然后通过萃取
剂的溶解度选择性地提取目标药物。
4. 活性炭吸附:利用活性炭对目标药物具有吸附作用,将混合物中的目标药物吸附到活性炭上,然后通过洗脱等方法将药物从活性炭上分离出来。
5. 膜分离:利用不同孔径大小的膜来分离混合物中的目标药物。
常用的膜分离技术包括微滤、超滤、逆渗透等。
6. 结晶技术:通过控制溶液的温度、浓度等条件,使药物从溶液中结晶出来,然后通过过滤、洗涤等步骤将结晶物纯化。
7. 固相萃取:利用固相吸附剂的选择性吸附作用将目标药物从混合物中分离出来。
常用的固相萃取方法包括固相萃取柱、固相萃取板和固相微萃取等。
以上仅为常见的药物分离纯化技术,具体使用哪种技术还需要根据具体情况进行选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精馏及其在甲醇合成中的应用粗甲醇精制的精馏过程, 传统上多采用由预塔和主塔构成的双塔流程。
鉴于对高品质、低乙醇甲醇产品的要求和节能的优势, 又发展出三塔双效精馏流程。
据资料[ 2 ] 介绍, 不少国外公司均采用了这一先进流程。
国内也报道了若干生产厂投产了这种三塔双效流程[3~ 6 ]。
本文将对有关问题作更深入的讨论。
1一、精馏1.1概念一种利用回流使液体混合物得到高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛应用于石油、化工、轻工、食品、冶金等部门。
精馏操作按不同方法进行分类。
根据操作方式,可分为连续精馏和间歇精馏;根据混合物的组分数可分为二元精馏和多元精馏。
根据是否在混合物中加入影响汽液平衡的添加剂,可分为普通精馏和特殊精馏。
(包括萃取精馏、恒沸精馏、加盐精馏)。
若精馏过程伴有化学反应,则成为反应精馏。
1.2精馏原理双组分混合液的分离是最简单的精馏操作。
典型的精馏设备是连续精馏装置(图1),包括精馏塔、再沸器、冷凝器等精馏塔供汽液两相接触进行相际传质,位于塔顶的冷凝器使蒸汽得到部分冷凝,部分分凝液作为回流液返回塔顶,其余馏出液是塔顶产品。
位于塔底的再沸器使液体部分汽化,蒸汽沿塔上升,余下的液体作为塔底产品。
进料加在塔的中部,进料中的液体和上塔段来的液体一起沿塔下降,进料中的蒸气和下塔段来的蒸气一起沿塔上升。
在整个精馏塔中,汽液两相逆流接触,进行相际传质。
液相中的易挥发组分进入汽相,汽相中的难挥发组分转入液相。
对不形成恒沸物的物系,只要设计和操作得当,馏出液将是高纯度的易挥发组分,塔底产物将是高纯度的难挥发组分。
进料口以上的塔段,把上升蒸气中易挥发组分进一步提浓,称为精馏段;进料口以下的塔段,从下降液体中提取易挥发组分,称为提馏段。
两段操作的结合,使液体混合物中的两个组分较完全地分离,生产出所需纯度的两种产品。
当使 n组分混合液较完全地分离而取得n个高纯度单组分产品时,须有n-1个塔。
精馏之所以能使液体混合物得到较完全的分离,关键在于回流的应用。
回流包括塔顶高浓度易挥发组分液体和塔底高浓度难挥发组分蒸气两者返回塔中。
汽液回流形成了逆流接触的汽液两相,从而在塔的两端分别得到相当纯净的单组分产品。
塔顶回流入塔的液体量与塔顶产品量之比,称为回流比,它是精馏操作的一个重要控制参数,它的变化影响精馏操作的分离效果和能耗。
1.3工业上的应用化工生产中所处理的原料、中间产物、粗产品等几乎都是混合物,而且大部分是均相物系。
为进一步加工和使用,常需要将这些混合物分离为较纯净或几乎纯态的物质。
精馏是分离均相液体混合物的重要方法之一,属于气液相间的相际传质过程。
在化工生产中,尤其在石油化工、有机化工、高分子化工、精细化工、医药、食品等领域更是广泛应用。
1.4分类工业上精馏过程有多种分类方法,见下表分类特点及应用按蒸馏方式分类平衡蒸馏平衡蒸馏和简单蒸馏,只能达到有限程度的提浓而不可能满足高纯度的分离要求。
常用于混合物中各组分的挥发度相差较大,对分离要求又不高的场合。
简单蒸馏精馏借助回流技术来实现高纯度和高回收率的分离操作。
特殊精馏特殊精馏适用于普通精馏难以分离或无法分离的物系。
按操作压力分类加压精馏常压下为气态(如空气)或常压下沸点为室温的混合物,常采用加压精馏常压精馏对于常压下沸点较高(一般高于150℃)或高温下易发生分解,聚合等变质现象的热敏性物料宜采用真空精馏,以降低操作温度。
真空精馏按被分离混合物中组分的数目分类两组分精馏工业生产中绝大多数为多组分精馏,多组分精馏过程更复杂。
多组分精馏按操作流程分类间歇精馏间歇操作是不稳定操作,主要应用于小规模、多品种或某些有特殊要求的场合。
工业中以连续精馏为主。
连续精馏1.5精馏操作的主要影响因素除了设备问题以外,精馏操作过程的影响因素主要有以下几个方面:塔的温度和压力(包括塔顶、塔釜和某些有特殊意义的塔板);进料状态;进料量;进料组成;进料温度;塔内上升蒸汽速度和蒸发釜的加热量;回流量;塔顶冷剂量;塔顶采出量和塔底采出量。
塔的操作就是按照塔顶和塔底产品的组成要求来对这几个影响因素进行调节。
1.6精馏的主要设备①精馏塔按压力---------加压塔、常压塔、减压塔按单元操作--------精馏塔、吸收塔、解吸塔、萃取塔、反应塔、干燥塔按支承方式--------框架塔、自支承式塔按塔内件结构--------板式塔、填料塔②再沸器再沸器的任务是将部分塔底的液体蒸发以便进行精馏分离。
再沸器是热交换设备,根据加热面安排的需要,再沸器的构造可以是夹套式、蛇管式或列管式;加热方式可以是间接加热或直接加热。
③冷凝器冷凝器的任务是冷凝离开塔顶的蒸气,以便为分离提供足够的回流。
部分冷凝的优点是未凝的产品富集了轻组分,冷凝器为分离提供了一块理论板。
当全凝时,部分冷凝液作为回流返回,冷凝器没有分离作用。
二、甲醇精馏2.1甲醇的性质①甲醇的物理性质甲醇是最简单的饱和脂肪醇,分子式为CH3OH,相对分子质量为32.04,常温常压下,甲醇是易挥发和易燃的无色液体,具有类似酒精的气味。
甲醇能和水以任意比例互溶,但不与水形成共沸物,因此可用精馏的方法来分离甲醇和水。
甲醇蒸气和空气能形成爆炸混合物,爆炸极限为(6.0%~36.5%)(体积分数)。
甲醇具有很强的毒性,误饮能使眼睛失明,甚至死亡,甲醇也可以通过呼吸道和皮肤等途径而导致人体中毒,在空气中甲醇蒸气的最高允许浓度为0.05mg/L。
甲醇属极强性有机化合物,具有很强的溶解能力,能和多种有机溶液互溶,并形成共沸物,共沸物的生成影响甲醇中有机杂质的消除和以甲醇为原料合成其他下游产品的精制。
甲醇对气体(如CO2、H2S)的溶解力也很强,但不能与脂肪烃化合物互溶。
②甲醇的化学性质甲醇分子中含有一个甲基与一个羟基,化学性质较活泼,既具有醇类的典型反应,又能进行甲基化反应,甲醇可以与一系列物质反应,所以在工业上有十分广泛的应用。
2.2甲醇精馏工艺及其塔器优化设计摘要:对四塔甲醇精馏节能流程提出了四项优化措施,利用PRO/Ⅱ工艺模拟软件,进行了工况研究。
结果表明,采用优化后的工艺流程,甲醇回收率可提高约0.3%,预精馏塔能耗降低约7%;并根据工况研究结果和生产数据,提出了各塔合适的理论级数和操作参数,推荐了各塔结构形式、参考塔径、填料高度或塔盘层数。
关键词:甲醇;精馏;工艺;模拟;优化;塔器国内常用的甲醇精馏工艺多为鲁奇节能工艺的改进,如在预精馏塔塔顶设置两级冷凝[1],使用约为粗甲醇进料的20%的新鲜水作为萃取水[2],以稳定操作和提高甲醇回收率;并将常压精馏塔侧线抽出的杂醇油用汽提进一步回收甲醇[3]。
但工艺流程仍需进一步完善,塔内件的选型还需深入研究。
为此,本文作者调研了国内多套甲醇精馏装置的原料组成和运行情况,综合出典型的粗甲醇原料组成,装置规模按200 kt/a 精甲醇计,用PRO/Ⅱ工艺模拟计算软件,选择合适的热力学方法[4],优化其工艺流程和换热网络,求出各塔合适的理论级数,提出了几个常见规模下甲醇精馏装置的参考塔径及填料段高度或塔盘层数,为甲醇精馏装置优化设计提供参考。
1 甲醇精馏工艺流程的优化1.1 优化换热网络,提高进料温位常见的甲醇精馏工艺一般将粗甲醇预热到泡点65 ℃左右后进入预精馏塔;本工艺推荐进料粗甲醇先后与常压塔塔釜水和加压塔塔顶精甲醇产品换热,通过用PRO/Ⅱ软件模拟计算,可将粗甲醇进料温度提高到75 ℃左右,进一步模拟计算不同进料温度下预精馏塔热负荷和蒸汽耗量如表1。
可见提高进料温度对塔底热负荷和蒸汽耗量有所降低,而冷凝器负荷维持不变,这样可节约预热工质和精甲醇产品冷却水,降低能耗0.8181 kcal/h (1 kcal=4.183kJ),节约塔釜热负荷约7%。
1.2 增设预精馏塔不凝气洗涤器,提高甲醇回收率甲醇精馏装置损耗甲醇主要是预精馏塔塔顶不凝气中所带甲醇和汽提塔侧线抽出的杂醇油所含甲醇。
对于200 kt/a 甲醇精馏装置,如果每提高0.1%的回收率,则可增产甲醇200 t/a。
工艺模拟计算结果表明,在预精馏塔塔顶不凝气设置洗涤器,对于提高甲醇回收率十分有效,结果见表2。
可见增设洗涤器后,不凝气中甲醇含量显著降低,装置回收率提高了0.3%,对于200 kt/a 甲醇精馏装置每年就可多产600 t 甲醇。
1.3 常压塔底废水作为萃取水利用由于预精馏塔精馏段液相负荷较小,需加入大量新鲜水作为萃取水以提高甲醇回收率,同时可使装置操作稳定。
实际上大部分萃取水是可以利用常压塔塔釜废水,如果由于废水循环而导致的高沸点杂质的积累对产品质量造成影响,可以通过调节洗涤器的补充洗涤水量来抑制系统中高沸点物质的积累,这样可以节约用水、利于环保。
这一措施吴嘉等曾有研究[4]。
1.4 汽提塔塔顶气相返回常压塔首先,汽提塔出精甲醇产品是没有必要的,抽出杂醇油而不带走更多的甲醇,可采用简单的侧线汽提,或者将回收塔塔顶的甲醇气相返回到常压塔中,这样就可以利用常压塔的分离能力回收精甲醇,可降低汽提塔的一次投资和长期运行费用1.5 优化的甲醇精馏工艺流程综上所述,优化的甲醇精馏工艺如图1 所示,粗甲醇先后与常压塔塔釜水和加压塔塔顶精甲醇换热到75℃左右进入预精馏塔。
塔顶气经过两级冷凝,不凝气再经过洗涤后出装置,冷凝液和洗涤水返回塔顶全回流。
塔釜甲醇水经泵加压并与加压塔塔釜甲醇水换热后进入加压塔精馏,塔顶甲醇蒸气进入常压塔塔釜冷凝/蒸发器冷凝,凝液进入回流罐,经回流泵加压后,一部分返回塔顶做回流,另一部分约50%的精甲醇产品出装置。
加压塔塔釜甲醇水自压进入常压塔精馏,塔顶分出剩余甲醇,塔釜水一部分返回预精馏塔塔顶洗涤器,剩余废水去污水处理。
侧线抽出杂醇油进入汽提塔,塔顶气体返回常压塔,汽提塔侧线杂醇油出装置,塔釜水去污水处理或返回气化工段使用。
2 塔器选型与设计2.1 理论级和操作条件的确定国内上百套甲醇精馏装置,当量塔径和塔高差别较大,过则浪费,不足将导致处理能力不够,产品质量难以达标,甲醇回收率降低,设计失败案例时有发生。
所以,确定各塔合适并安全的理论级数是优化设计的前提。
对此,利用PRO/Ⅱ工艺模拟程序,采用NRTL 热力学计算模型,对热力学参数做了修正,以吻合生产操作数据。
采用Shortcut模块先行计算出各塔分离所需的最小理论级,结合实际生产数据和工况,给出了各塔合适的理论级和操作条件,其计算结果见表3。
所采用的粗醇组成数据见表4。
对于不同规模的甲醇精馏装置,模拟计算只需更改粗醇组成和流量即可。
而合适的塔器选型是实现各塔理论级和功效最大化的保证,解决好本装置的系统问题后,重要的就是根据工况、物性和理论级进行塔器选型与结构优化设计,而且国内先进深入全面的塔器技术[6]也为此提供了有利条件。