概率统计第五章随机变量序列的极限

合集下载

概率第五章_大数定律与中心极限定理090505

概率第五章_大数定律与中心极限定理090505
加法法则
P ( − Eξ ε ) = ξ ≥
P(ξ ≥ Eξ + ε ) + P (ξ ≤ Eξ − ε )
k
=

k : xk ≥ E +
∑ξ ε p
k
+
k : xk ≤ E −
∑ξ ε p
pk +
k :xk ≥ E +
∑ξ ε
( x − Eξ ) 2
ε
2
k :xk ≤ E −
∑ξ ε
( x − Eξ ) 2
, 方差 Dξ n ( n = 1, 2,L),且 Dξi < l (i = 1, 2,L) 其中 l 与 i 无关的
1 Eξ = (1 + 2 + 3 + L + 6) 6
35 7 故 Eξ = Dξ = 12 2
4 2 = P (ξ = 5) + P(ξ = 6) + P (ξ = 1) + P (ξ = 2) = = 6 3 7 1 P( − 2 ) = P(ξ ≥ 5.5) + P(ξ ≤ 1.5) = P (ξ = 6) + P (ξ = 1) = ξ ≥

lim P ( − p < ε ) = 1 n →∞ n
ξ
此定理表明:当试验在不变的条件下重复进行很多次时, 随机事件的频率 频率在它的概率 概率附近摆动。 频率 概率 由贝努里大数定律可知,若事件A的概率很小很小时,则 它的频率也很小很小,即事件A很少发生或几乎不发生, 这种事件叫小概率事件。反之,若随机事件的概率很接近1, 则可认为在个别试验中这事件几乎一定发生。 同分布的两个或多个随机变量: 同分布的两个或多个随机变量 离散型: 它们的概率分布律相同. 离散型 它们的概率分布律相同 连续型: 它们的概率密度函数相同. 连续型 它们的概率密度函数相同 所以它们的期望与方差一定相同. 所以它们的期望与方差一定相同

概率论与数理统计 第五章

概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列

n
i =1
Xi −
∑ E(X
i =1
n
i
)

n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0

概率论与数理统计 第五章 大数定律与中心极限定理

概率论与数理统计 第五章 大数定律与中心极限定理
nA 一种提法是: “当 n 足够大时,频率 n 与概率 p 有较大偏差
的概率很小” ,用数学语言表达,就是要证明: 0 ,有
nA nA lim P p 0 lim P p 1 n ,或 n n . n
另一种提法是:研究随机变量 n A 的分布的极限行为,即讨 论分布函数
nA lim P p 0 lim P n n 或 n
nA p 1 . n
证 引入
1 , 第i次试验中事件A发生 Xi ,i 1 , 2 , , n , 0 , 第i次试验中事件A不发生
下面我们进一步来讨论贝努利试验.若记 n A 为 n 次贝努利试
nA 验中事件 A 发生的次数, 则事件 A 发生的频率为 n . 所谓 “频 率的稳定性” ,无非是指当试验次数 n 无限增大(即 n )时,
nA 频率 n 无限接近于某个固定常数.这个固定的常数就是“事 件 A 在一次试验中发生的的概率 p” . nA 由此可见,讨论频率 n 的极限行为,是理解概率论中最基本
2019年1月14日星期一
11 / 102
§5.1
大数定律
作为预备知识,我们先明确随机变量序列收敛的
相关概念,同时给出一个重要的不等式,它是以下理 论证明所用的主要工具之一.
定 义 1.1 设 a 是常数,对于随机变量序列 ,如果 0 ,有
X1 , X 2 ,
, Xn ,
lim P
n
个常数,即在这个常数的附近摆动,这就是所谓的“频
率稳定性”.但对这一点,至今为止我们尚未给予理论 上的说明.另外,在第二章我们给出了二项分布的泊松 逼近,那么更一般的近似计算方案又是怎样呢?

第五章 大数定律与中心极限定理 《概率论》PPT课件

第五章  大数定律与中心极限定理  《概率论》PPT课件

概率论与数理统计
§5.2 中心极限定理
2)中 心极限 定理表明,若 随 机 变 量 序 列
X 1 , X 2 , , X n 独立同分布,且它们的数学期
望及方差存在,则当n充分大时,其和的分布,
n
即 X k 都近似服从正态分布. (注意:不一定是 k 1
标准正态分布)
3)中心定理还表明:无论每一个随机变量 X k ,
概率论与数理统计
§5.1 大数定律
定理1(Chebyshev切比雪夫大数定律)
假设{ Xn}是两两不相关的随机
变量序列,EXn , DXn , n 1,2, 存在,
其方差一致有界,即 D(Xi) ≤L,
i=1,2, …, 则对任意的ε>0,
lim P{|
n
1 n
n i1
Xi
1 n
n i1
E(Xi ) | } 1.
概率论与数理统计
§5.2 中心极限定理
现在我们就来研究独立随机变量之和所 特有的规律性问题.
在概率论中,习惯于把和的分布 收敛于正态分布这一类定理都叫做中心 极限定理.
下面给出的独立同分布随机变量序 列的中心极限定理, 也称列维——林德 伯格(Levy-Lindberg)定理.
概率论与数理统计
§5.2 中心极限定理
大量的随机现象平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
概率论与数理统计
§5.1 大数定律
一、大数定律
阐明大量的随机现象平均结果的稳定性的一系
列定理统称为大数定律。
定义1 如果对于任意 0, 当n趋向无穷时,事件
" Xn X " 的概率收敛到1,即

概率论与数理统计----第五章大数定律及中心极限定理

概率论与数理统计----第五章大数定律及中心极限定理

= 1 − Φ(3.54)
=0.0002
一箱味精净重大于20500的概率为 的概率为0.0002. 一箱味精净重大于 的概率为
推论:
特别,若X~B(n,p),则当n充分大时, 特别, ~B(n 则当n充分大时,
X~N(np,npq) X~N(np,npq) np
若随机变量X~B( X~B(n, ),则对任意实数x有 ),则对任意实数 即 若随机变量X~B( ,p),则对任意实数 有
不等式证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于 不小于0.9,D(X)=0.009.则用 不小于 则用
切比绍夫不等式估计ε的 最小值是( 切比绍夫不等式估计 的 最小值是
0.3 ).
4.(894) 设随机变量 的数学期望为 设随机变量X的数学期望为 的数学期望为µ, 标准差为σ,则由切比绍夫不等式 标准差为 则由切比绍夫不等式 P{|X-µ|≥3σ}≤( ). 1/9 5. 设随机变量X的分布律为 设随机变量 的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率 的概率. 的概率
1 n lim P ∑ Xi − µ < ε = 1 n→∞ n i =1
定理(贝努里利大数定律) 设每次实验中事件A发生的概率 定理(贝努里利大数定律) 设每次实验中事件A 为p,n次重复独立实验中事件A发生的次数为nA,则对任 次重复独立实验中事件A发生的次数为n 意的ε>0 意的ε>0 ,事件的频率 nA ,有 ε>

+∞
−∞

第五章 大数定律与中心极限定理

第五章 大数定律与中心极限定理
∑200
【解】 设 X i 表示“该射手第 i 次射击的得分”,则 Y = X i 表示射手所得总分,
i=1
Xi (i =1, 2, , 200) 独立同分布,分布表如下:
Xi
0
2
3
4
5
p
由于
0.1
0.1
0.2
0.2
0.4
E( Xi ) = 0×0.1+ 2×0.1+ 3×0.2 + 4×0.2 + 5×0.4 = 3.6 ;
试验中发生的概率,这个定律以严格的数学形式刻画了频率的稳定性,在实际应用中,当试 验次数很大时,便可以用事件发生的频率来替代事件的概率.
3、辛钦大数定律
设随机变量序列 X , X , 12
,Xn,
相互独立且服从相同的分布,具有相同的数学期望
E(X i
)
=
μ
,(
i
=
1,
2,
) ,则对任意给定的正数 ε ,有
) ,则对任意实数 x ,有
∑ ⎧

n
X − nμ i
⎫ ⎪
⎨ lim P i=1
≤ x⎬ =
⎪ n→∞




∫ 1

x −t2
e
−∞
2 dt = Φ(x) .
154
第五章 大数定律与中心极限定理
n
∑ 【评注】 n 个相互独立同分布、方差存在的随机变量之和 Xi ,当 n 充分大时,近似 i =1
第五章 大数定律与中心极限定理
本章学习要点
① 了解切比雪夫不等式; ② 了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大

东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

7 8.75E-06 6.2863E-05 7.19381E-05 7.28862E-05 7.2992E-05
8 3.65E-07 7.3817E-06 8.93826E-06 9.1053E-06 9.124E-06
4 0.01116 0.01494171 0.015289955 0.015324478 0.01532831
5 0.001488 0.00289779 0.003048808 0.003063976 0.00306566
6 0.000138 0.00046345 0.0005061 0.000510458 0.00051094
ln n) + 1 ( 2
ln n) = 0
Dn
=
E
2 n
=
1 2
(ln n) +
1 2
(ln n)
=
ln n

但 1
n2
n
D( i ) =
i =1
1 n2
n i =1
Di
=
1 n2
n
ln i
i =1
1 n2
n
ln n =
i =1
ln n n
→0
满足马尔可夫条件,{
}服从大数定律
n
注意: 辛钦大数定律只要求一阶矩存在,但是 随机变量序列是独立同分布的. 若所讨论的 随机变量序列是不服从同分布的要求或不独 立可应用切比雪夫大数定律 或者马尔可夫大 数定律 .
(2)设 n 为 n 次独立重复试验中 A 出现的次数, p 是事件 A 在每次试验中出现的概率, 0 ,

lim
n→
P{
n
n

p

大数定律

大数定律
则对于任意ε>0,有
1
lnimlniPmPn
n
1n
i
X
1
nXi
En(
Xn
i 1
)E( Xi
)
1
1

1n X n n i1 X i
1 n
E( Xn ) n i1 E( Xi )
这意味着在n充分大时,相互独立的随机变量的算术平均值
X n 的值将比较紧密地聚集在它的数学 期望 E( Xn ) 附近.
第五章 极限定理
考试内容 切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯
努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣 莫弗-拉普拉斯(De Moivre-laplace)定理 列维-林德伯格 (Levy-Lindberg)定理
考试要求 1.了解切比雪夫不等式. 2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定
结束
二、大数定律
定理1(切贝雪夫大数定律)如果X1,X2…,Xn,…是相互独立的 随机变量序列,每一个Xi都有数学期望E(Xi)和有限的方差D(Xi), 且方差有公共的上界,即
D( Xi ) C, i 1, 2, , n, ; C 0 则对于任意ε>0,有
lim P n
1 n
n i 1
(3 D(X ) )2 9
《概率统计》
返回
下页
结束
例2.若在每次试验中,A发生的概率为0.5,进行1000 次独立试验,估计 A 发生 400~600 次之间的概率。
解:因 X ~B(1000,0.5),E(X)=500,D(X)=250
所以 P{ 400 < X < 600 } = P{ | X-500 | < 100 }

概率论与数理统计 第三版 第五章 大数定律和中心极限定理

概率论与数理统计 第三版 第五章 大数定律和中心极限定理
上页 下页 返回
依概率收敛的序列还有以下性质: 设 X n p a, Yn pb, 且函数 g(x,y) 在点 (a,b)连续,
具有数学期望 E(X ) 和方差 D(X ) , 0 ,有
P{
X
E
(
X
)

}≤
D(
X
2
)
,

P{ X E(X ) }≥1 D(X ) .
2
上页 下页 返回
证 以连续型随机变量X为例.
P{ X E( X ) ≥} f (x)dx x E ( X ) ≥
≤ x E ( X ) ≥
x E(X ) 2
E(
X
k
)
,D(
X
k
)
2
(k
1,2,
上页
,
n).
下页
返回
则对任意的ε>0, 有
1
lim P{ n n
n
Xk
k 1
}1
证 由于
lim P X 1.
n
E
1 n
n k 1
X
k
1 n
n k 1
E(X
k
)
1 n
n
,
D
1 n
n k 1
Xk
1 n2
n
D
k 1
XK
1 n2
n
2
2
n
,
上页 下页 返回
由切比雪夫不等式知
P
1 n
n
Xk
k 1
≥1
2
n
2
.
令n , 并注意到概率不能大于1, 即得
1
lim
n
P

概率统计简明教程 第五章 大数定律与中心极限定理

概率统计简明教程 第五章   大数定律与中心极限定理

168第五章 大数定律与中心极限定理我们知道,随机事件在某次试验中可能发生也可能不发生,但在大量的重复试验中随机事件的发生却呈现出明显的规律性,例如人们通过大量的试验认识到随机事件的频率具有稳定性这一客观规律.实际上,大量随机现象的一般平均结果也具有稳定性,大数定律以严格的数学形式阐述了这种稳定性,揭示了随机现象的偶然性与必然性之间的内在联系.客观世界中的许多随机现象都是由大量相互独立的随机因素综合作用的结果,而其中每个随机因素在总的综合影响中所起作用相对微小.可以证明,这样的随机现象可以用正态分布近似描述,中心极限定理阐述了这一原理.§1 大 数 定 律首先我们介绍证明大数定律的重要工具—切比雪夫(Chebyshev )不等式.1.1 切比雪夫不等式定理 1.1 设随机变量X 数学期望()E X 和方差()D X 都存在,则对任意给定的正数ε,成立{}2()()D X P X E X εε-≥≤. (1.1)证明 只对X 是连续型随机变量情形给予证明. 设X 的密度函数为()f x ,则有{}()P X E X ε-≥()()d x E X f x x ε-≥=⎰22()[()]()d x E X x E X f x x εε-≥-≤⎰221[()]()d x E X f x x ε+∞-∞≤-⎰1692()D X ε=.称(1.1)为切比雪夫不等式,它的等价形式为 {}2()|()|1.D X P X E X εε-<≥-(1.2)切比雪夫不等式直观的概率意义在于:随机变量X 与它的均值()E X 的距离大于等于e 的概率不超过21D X ()e.在随机变量X 分布未知的情况下,利用切比雪夫不等式可以给出随机事件{()}X E X ε-<的概率的一种估计.例如当ε={8|()|0.8889.9P X E X -<=≥也就是说,随机变量X 落在以()E X为中心,以为半径的邻域内的概率很大,而落在该邻域之外的概率很小.随机变量X 的取值集中在()E X 附近,而这正是方差这个数字特征的意义所在.例1.1 已知随机变量X 和Y 的数学期望、方差以及相关系数分别为()()2E X E Y ==,()1D X =,()4D Y =,,0.5X Y ρ=,用切比雪夫不等式估计概率{6}P X Y -≥.解 由于()()()0E X Y E X E Y -=-=,,(,)1X YCov X Y ρ==,()()()2(,)523D X Y D X D Y cov X Y -=+-=-=,170由切比雪夫不等式,有2(){6}{()()6}6D X Y P X Y P X YE X Y --≥=---≥≤310.08333612===.例 1.2 假设某电站供电网有10000盏电灯,夜晚每一盏灯开灯的概率都是0.7,并且每一盏灯开、关时间彼此独立,试用切比雪夫不等式估计夜晚同时开灯的盏数在6800至7200之间的概率.解 令X 表示夜晚同时开灯的盏数,则~(,)X B n p ,10000n =,0.7p =,所以()7000E X np ==, ()(1)2100.D X np p =-=由切比雪夫不等式,有{}{}68007200|7000|200X P X P <<=-<221001200≥-0.9475=.在例1.2中,如果用二项分布直接计算,这个概率近似为0.99999.可见切比雪夫不等式的估计精确度不高. 切比雪夫不等式的意义在于它的理论价值,它是证明大数定律的重要工具.1.2 依概率收敛在微积分中,收敛性及极限是一个基本而重要的概念,数列{}n a 收敛到a 是指对任意0e >,总存在正整数,N 对任意的n N >时,恒有||.n a a e -<在概率论中,我们研究的对象是随机变量,要考虑随机变量序列的收敛性.如果我们以定义数列的极限完全相同的方式来定义随机变量序列的收敛性,那么,随机变量序列{}1n X n ()³收敛到一个随机变量X 是指对任意0e >,总存在正整数,N 对任意的n N >时,恒有||n X X e -<.但171由于,n X X 均为随机变量,于是||n X X -也是随机变量,要求一个随机变量取值小于给定足够小的e 未免太苛刻了,而且对概率论中问题的进一步研究意义并不大.为此,我们需要对上述定义进行修正,以适合随机变量本身的特性.我们并不要求n N >时, ||n X X e -<恒成立,只要求n 足够大时,出现||n X X e ->的概率可以任意小.于是有下列的定义定义 1.1 设12,,,,n X X X 是一个随机变量序列,X 是一个随机变量,如果对于任意给定的正数ε,恒有{}lim 0,n n P X X ε→∞->= (1.3)则称随机变量序列12,,,,n X X X 依概率收敛于X ,记作nPX X −−→.1.3 大数定律在第一章,我们曾指出,如果一个事件A 的概率为p ,那么大量重复试验中事件A 发生的频率将逐渐稳定到p ,这只是一种直观的说法.下面的定理给出这一说法的严格数学表述.定理1.2 伯努利大数定律 设A n 是n 重伯努利试验中事件A 发生的次数, p (01)p <<是事件A 在一次试验中发生的概率,则对任意给定的正数ε,有{}lim 1.n A n Pp nε→∞-<= (1.4)证明 由于A n 是n 重伯努利试验中事件A 发生的次数,所以~(,)A n B n p ,进而172()A E n np =,()(1)A D n np p =-. ()()A A n E n E p n n==, 2()(1)()A A n D n p p D n nn-==.根据切比雪夫不等式,对任意给定的0ε>,有2(){()}1A A A n D n n nP E nnεε-<≥-,即2(1)1{}1A n p p P p n nεε--≤-<≤.令n →∞,则有 lim {}1A n n P p nε→∞-<=.由伯努利大数定律可以看出,当试验次数n 充分大时,事件A 发生的频率A n n与其概率p 能任意接近的可能性很大(概率趋近于1),这为实际应用中用频率近似代替概率提供了理论依据.定理1.3 切比雪夫大数定律 设,,,,12X X X n 是相互独立的随机变量序列,其数学期望与方差都存在,且方差一致有界,即存在正数M ,对任意k (1,2,k = ),有()k D X M ≤则对任意给定的正数ε,恒有1111lim () 1.nnk k n k k P X E X nnε→∞==-<=⎧⎫⎨⎬⎩⎭∑∑ (1.5)证明 因为()1111()nnkkk k EXE Xnn===∑∑,()21111()nnkkk k DXD Xnn===∑∑,173由切比雪夫不等式,有{}12211()11()1nknnk k kk k D XPX E Xnnn εε===-<≥-∑∑∑.由于方差一致有界,因此1(),nkk D XnM =≤∑从而得{}211111()1nnkkk k M PXE Xn nnεε==-≤-<≤∑∑.令n →∞,则有{}1111lim ()1nnkkn k k PXE Xnnε→∞==-<=∑∑.推论1.1 设随机变量12,,,n X X X ,相互独立且服从相同的分布,具有数学期望()(1,2,)k E X k μ== 和方差2()k D X σ=(1,2,k = ),则对任意给定的正数ε,有{}11lim 1.nn k k PX nμε→∞=-<=∑ (1.6)切比雪夫大数定律是1866年俄国数学家切比雪夫提出并证明的,它是大数定律的一个相当普遍的结果,而伯努利大数定律可以看成是它的推论.事实上,在伯努利大数定律中,令1,k X ⎧=⎨⎩在第k 次试验中事件A 发生,在第k 次试验中事件A 不发生.0, (1,2,)k =,则(1,)(1,2,),k X B p k = 1nk k A X n ==∑,11nAkk n X nn ==∑,11()nkk E Xp n==∑,并且12,,,,n X X X 满足切比雪夫大数定律的条件, 于是由切比雪夫大数定律可证明伯努利大数定律.174以上两个大数定律都是以切比雪夫不等式为基础来证明的,所以要求随机变量的方差存在.但是进一步的研究表明,方差存在这个条件并不是必要的.下面介绍的辛钦大数定律就表明了这一点.定理 1.4 辛钦(Khintchine)大数定律 设随机变量序列12,,,n X X X ,相互独立且服从相同的分布,具有数学期望()k E X μ=,1,2,k = ,则对任意给定的正数ε,有{}11lim 1nn k k PX nμε→∞=-<=∑ (1.7)证明略.使用依概率收敛的概念,伯努利大数定律表明:n 重伯努利试验中事件A 发生的频率依概率收敛于事件A 发生的概率,它以严格的数学形式阐述了频率具有稳定性的这一客观规律.辛钦大数定律表明:n 个独立同分布的随机变量的算术平均值依概率收敛于随机变量的数学期望,这为实际问题中算术平均值的应用提供了理论依据.例 1.3 已知12,,,,n X X X 相互独立且都服从参数为2的指数分布,求当n →∞时,211nn k k Y X n==∑依概率收敛的极限.解 显然 1()2k E X =,1()4k D X =,所以22111()()()442k k k E X E X D X =+=+= ,1,2,k = ,由辛钦大数定律,有 22111()2nP n k k k Y X E X n==−−→=∑.最后需要指出的是:不同的大数定律应满足的条件是不同的,切比雪夫大数定律中虽然只要求12,,,,n X X X 相互独立而不要求具有相同的分布,但对于方差的要求是一致有界的;伯努利大数定律则要求12,,,,n X X X 不仅独立同分布,而且要求同服从同参数的01-分布;175辛钦大数定律并不要求k X 的方差存在,但要求12,,,,n X X X 独立同分布.各大数定律都要求k X 的数学期望存在,如服从柯西(Cauchy )分布,密度函数均为21()(1)f x x p =+的相互独立随机变量序列,由于数学期望不存在,因而不满足大数定律.§2 中心极限定理上节大数定律实际上告诉我们:当n 趋向于无穷时,独立同分布的随机变量序列的算术平均值11nk k X n=å依概率收敛于k X 的数学期望m ,即对任意给定的0e >,有11{||}0nk k P X nm e=-钞å.那么,对固定的0e >,n 充分大时,事件11{||}nk k X nm e =- å的概率究竟有多大,大数定律并没有给出答案,本节的中心极限定理将给出更加“精细”的结论.定理2.1 列维-林德伯格(Levy-Lindberg)定理(独立同分布的中心极限定理) 设随机变量12,,,,n X X X 相互独立且服从相同的分布,具有数学期望()k E X μ=和方差2()0k D X σ=> (1,2,)k = ,则对任意实数x ,有221lim Φd ().nk n tx X n P x t x e→∞--∞-μ≤==⎧⎫⎪⎪⎬⎪⎩⎭∑⎰ (2.1)证明略.独立同分布的中心极限定理表明:只要相互独立的随机变量序列17612,,,,n X X X 服从相同的分布,数学期望和方差(非零)存在,则当n →∞时,随机变量nkn Xn Y -=∑μ总以标准正态分布为极限分布,或者说,随机变量1nk k X =∑以()2,N n n μσ为其极限分布.在实际应用中,只要n 足够大,便可以近似地把n 个独立同分布的随机变量之和当做正态随机变量来处理,即21(,)nk k X N n n =∑μσ 近似或.(0,1)nin Xn Y N μ-=∑近似(2.2)下面的定理是独立同分布的中心极限定理的一种特殊情况. 定理2.2 棣莫弗—拉普拉斯(De Moivre-Laplace )定理设随机变量n Y 服从参数为,(01)n p p <<的二项分布,则对任意实数x ,恒有22lim Φ()1d n tx Y x x et npP →∞--∞≤==⎧⎫-⎬⎭⎰(2.3)证明 设随机变量12,,...,n X X X 相互独立,且都服从(1,)B p (01p <<),则由二项分布的可加性,知1nn k k Y X ==∑.由于()k E X p =,()(1)k D X p p =-,1,2,k = ,根据独立同分布的中心极限定理可知,对任意实数x,恒有22limΦ(),1dnkntxX npx xe tP→∞--∞-≤==⎧⎫⎪⎪⎬⎪⎭∑⎰亦即22limΦ().1dntxYxx e tnpP→∞--∞≤==⎧⎫-⎬⎭⎰当n充分大时,可以利用该定理近似计算二项分布的概率.例2.1某射击运动员在一次射击中所得的环数X具有如下的概率分布求在100次独立射击中所得环数不超过930的概率.解设iX表示第(1,2,,100)i i= 次射击的得分数,则12100,,,X X X相互独立并且都与X的分布相同,计算可知()9.15iE X=,() 1.2275,iD X=1,2,,100i= ,于是由独立同分布的中心极限定理,所求概率为{}1001930iiXp P=≤=∑1001009.159301009.15iXP⨯-⨯-=≤⎧⎫⎪⎪⎩⎭∑177178(1.35)0.9115Φ≈=.例 2.2 某车间有150台同类型的机器,每台出现故障的概率都是0.02,假设各台机器的工作状态相互独立,求机器出现故障的台数不少于2的概率.解 以X 表示机器出现故障的台数,依题意,(150,0.02)X B ,且()3E X =,() 2.94D X =,1.715=,由德莫弗—拉普拉斯中心极限定理,有{}{}211P X P X ≥=-≤ {}3131 1.7151.715X P--=-≤1Φ(0.5832)≈--0.879=.例 2.3 一生产线生产的产品成箱包装,每箱的重量是一个随机变量,平均每箱重50千克,标准差5千克.若用最大载重量为5吨的卡车承运,利用中心极限定理说明每辆车最多可装多少箱,才能保证不超载的概率大于0.977?解 设每辆车最多可装n 箱,记(1,2,,)i X i n = 为装运的第i 箱的重量(千克),则12,,,n X X X 相互独立且分布相同,且()50i E X =,()25,i D X = 1,2,,i n = , 于是n 箱的总重量为12n n T X X X =+++ ,由独立同分布的中心极限定理,有50{5000}nin XnP T P -≤=≤∑Φ≈.由题意,令179Φ0.977Φ(2).>=有2>, 解得98.02n <,即每辆车最多可装98箱.第二章的泊松定理告诉我们: 在实际应用中,当n 较大p 相对较小而np 比较适中(10,100≤≥np n )时,二项分布),(p n B 就可以用泊松分布()P λ(np =λ)来近似代替;而德莫弗—拉普拉斯中心极限定理告诉我们:只要n 充分大,二项分布),(p n B 就可以用正态分布近似计算,一般的计算方法是: (1)对0,1,,,k n =ΦΦ⎛⎫⎛⎫≈-⎝(2.4) (2)对非负整数1212;,0k k k k n ≤<≤ 12{}X k P k <≤≈ΦΦ⎛⎫⎛⎫- (2.5)*李雅普诺夫(Liapunov )定理设12,,,,n X X X 相互独立,且具有数学期望()k k E X μ=和方差2()0k k D X σ=≠(1,2,k = ),记221nn kk B σ==∑,若存在正数δ,使得n →∞时,{}{0.50.5}P X k P k k k ==-<≤+1802211(||)0nkk k nE XB δδμ++=-→∑,则随机变量11()nnnnkkkkk k n nXE XXZ Bμ==--==∑∑∑∑的分布函数()n F x 对于任意实数x ,恒有11lim ()lim n nk kk k nn n nX F x P x Bμ==→∞→∞-=≤⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭∑∑221Φ()txedt x --∞==⎰.证明略.在李雅普诺夫定理的条件下,当n 充分大时,随机变量11nnk kk k n nX Z B μ==-=∑∑近似服从标准正态分布(0,1)N .因此,当n 充分大时,随机变量11nnkn n kk k XB Z μ===+∑∑近似服从正态分布21(,)nkn k N B μ=∑.这就是说,无论随机变量(1,2,)k X k = 服从什么分布,只要满足李雅普诺夫定理的条件,181当n 充分大时,这些随机变量的和1nk k X =∑就近似服从正态分布.在许多实际问题中,所考察的随机变量往往可以表示成很多个独立的随机变量的和.例如,一个试验中的测量误差是由许多观察不到的、可加的微小误差合成的;一个城市的用水量是大量用户用水量的总和,等等,它们都近似服从正态分布.习 题 五1.已知()1E X =,()4D X =,利用切比雪夫不等式估计概率{}1 2.5P X -<.2. 设随机变量X 的数学期望()E X μ=,方差2()D X σ=,利用切比雪夫不等式估计{}||3P X μσ-≥.3. 随机地掷6颗骰子,利用切比雪夫不等式估计6颗骰子出现点数之和在1527 之间的概率.4. 对敌阵地进行1000次炮击,每次炮击中.炮弹的命中颗数的期望为0.4,方差为3.6,求在1000次炮击中,有380颗到420颗炮弹击中目标的概率.5. 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100g ,标准差是10g .求一盒螺丝钉的重量超过10.2kg 的概率.6. 用电子计算机做加法时,对每个加数依四舍五入原则取整,设所有取整的舍入误差是相互独立的,且均服从[]0.5,0.5-上的均匀分布.182(1)若有1200个数相加,则其误差总和的绝对值超过15的概率是多少?(2)最多可有多少个数相加,使得误差总和的绝对值小于10的概率达到90%以上.7. 在人寿保险公司是有3000个同一年龄的人参加人寿保险,在1年中,每人的的死亡率为0.1%,参加保险的人在1年第1天交付保险费10元,死亡时家属可以从保险公司领取2000元,求保险公司在一年的这项保险中亏本的概率.8. 假设12,,...,n X X X 是独立同分布的随机变量,已知()ki k E X α=(1,2,3,4;1,2,,)k i n == .证明:当n 充分大时,随机变量211nn ii Z Xn==∑近似服从正态分布.9. 某保险公司多年的统计资料表明:在索赔户中被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X 的概率分布;(2)利用德莫弗-位普拉斯中心极限定理,求:被盗索赔户不少于14户,且不多于30户的概率.10 . 某厂生产的产品次品率为0.1p =,为了确保销售,该厂向顾客承诺每盒中有100只以上正品的概率达到95%,问:该厂需要在一盒中装多少只产品?11. 某电站供应一万户用电,设用电高峰时,每户用电的概率为0.9,利用中心极限定理:(1)计算同时用电户数在9030户以上的概率?(2)若每户用电200瓦,问:电站至少应具有多大发电量,才能以0.95的概率保证供电?【提供者:路磊】183。

随机变量序列极限

随机变量序列极限
时很困难. 有些情况下, 可以得到其分布. 例如
i 1
n
Xi
B 1, p ,

X
i 1
n
i
B n, p ,
进一步地有
X

B m, p , Y
B n, p ,
X Y
有这个必要.
B m n, p .
但很多情况下这样的分布并不能得到, 有时也不一定
人们在长期实践中发现 , 在相当一般的条件下, 只要 n
该定理的实际意义是, 若随机变量序列 X1 , X 2 , 满足定理条件, 记 Yn
X i , 则当n充分大时
i 1
n
Yn E Yn D Yn
近似服从标准正态分布. 即
Yn X i ~ N E Yn , D Yn .
i 1
n
.
例2 某人要测量甲、乙两地的距离, 限于测量工具, 他 分成1200段进行测量, 每段测量误差(单位: 厘米)服从
注意
该定理的条件为方差有界.
定理
(独立同分布情形下的大数定律) 设 X1 , X 2 ,
2
是独立同分布的随机变量序列, 且 E
D X i , i 1, 2,
,

X .
P
X i ,
用独立同分布情形下的大数定律可以证明频率的稳 定性。 设进行n次独立重复的试验,每次试验只有两个结果
第五章 随机变量序列的极限
本章要点
本章讨论两类重要的极限分布.
一、大数定律
定义 设 数c, 使得对于任意常数 0, 总有
n
X1 , X 2 ,
是一个随机变量序列, 如果存在常

概率论与数理统计 第五章

概率论与数理统计 第五章

贝努里定理. 它的叙述如下:设是n次重复独立 对于任意给定的ε>0,有
lim P{| nA p | } 1
n
n
lim P{| nA p | } 1
n
n
其中nA/n是频率,p是概率,即次数多
时事件发生的频率收敛于概率.表示频率的稳定性.
定理3
lim P{|
n
1 n
n i 1
Xi
| } 1
数理统计的方法属于归纳法,由大量的资料作依据,而不
是从根据某种事实进行假设,按一定的逻辑推理得到的.例
如统计学家通过大量观察资料得出吸烟和肺癌有关,吸烟
者得肺癌的人比不吸烟的多好几倍.因此得到这个结论.
数理统计的应用范围很广泛.在政府部门要求有关的资
料给政府制定政策提供参考.由局部推断整体,学生的假期
第五章 大 数 定 律 与 中 心 极 限 定 律
§ 5.1大 数 定 律
定理1(切比雪夫定理) 设X1,X2,...,Xn,...是相互独立的随机变
量序列若存在常数C,使得D(Xi)≤C. (i=1,2,...n),则对任意给
定的ε>0,有
lim P{|
n
1 n
n i 1
[Xi
E( X i )] |
7200 6800 2
200 1
D 2
1
2100 2002
0.95
可见虽有10000盏灯,只要电力供应7200盏灯即有相当大的保 证率切贝谢夫不等式对这类问题的计算有较大价值,但它的精度 不高.为此我们研究下面的内容.
2021/9/5
10
§ 5.2 中 心 极 限 定 理
在随机变量的一切可能性的分布律中,正态分布占有特殊的

概率论与数理统计目录

概率论与数理统计目录
概率论与数理统计 概率论与数理统计
第一章 概率论的基本概念 第二章 随机变量及其分布 第三章 多维随机变量及其分布 第四章 随机变量的数字特征
版权归北京科技大学《概率论与数理统计》课程组
概率论与数理统计 概率论与数理统计
第五章 大数定律及中心极限定理 第六章 样本及抽样分布 第七章 参数估计 假设检验
第二章 随机变量及其分布 第一节 随机变量 第二节 离散型随机变量及其分布 第三节 随机变量的分布函数 第四节 连续型随机变量及其分布 第五节 随机变量的函数的分布
版权归北京科技大学《概率论与数理统计》课程组
第三章 多维随机变量及其分布 第一节 二维随机变量 第二节 边缘分布 第三节 条件分布 第四节 相互独立的随机变量 第五节 随机变量函数的分布
版权归北京科技大学《概率论与数理统计》课程组
第四章 随机变量的数字特征 第一节 数学期望 第二节 方差 第三节 协方差及相关系数 第四节 矩、协方差矩阵
版权归北京科技大学《概率论与数理统计》课程组
第五章大数定律及中心极限定理 第一节 大数定律 第二节 中心极限定理
版权归北京科技大学《概率论与数理统计》课程组
第六章 样本及抽样分布 第 0 节 数理统计序言 第一节 随机样本 第二节 抽样分布
版权归北京科技大学《概率论与数理统计》课程组

第七章 参数估计 第一节 第二节 点估计 估计量的评选标准
第三节 区间估计 第四节 正态总体均值与方差 的区间估计
版权归北京科技大学《概率论与数理统计》课程组
第八章 假设检验 第一节 假设检验 第二节 正态总体均值的假设检验 第三节 正态总体方差的假设检验 第四节 置信区间与假设检验之 间的关系
版权归北京科技大学《概率论与数理统计》课程组

概率论与数理统计第5章

概率论与数理统计第5章

2、定理以数学形式证明了随机变量X
1
,
X
的算术平均
n
X

1 n
n i 1
X i接近数学期望E( X k ) (k
1,2, n),这种接近
说明其具有的稳定性
这种稳定性的含义说明算术平均值是依概率收敛的意义下 逼近某一常数.
1.(2010-1)设 n 为n次独立重复试验中事件A发生的次数,p是事件
10
3.(2009 1)
设X i

0, 1,
事件A不发生 事件A发生 (i 1, 2,
,100),且P(A) 0.8,
100
X1, X 2 , , X100相互独立,令Y Xi则由中心极限定理知Y 近似服从于 i 1
正态分布,其方差为________ .
4.(2008 -10)设总体X的分布律为P{X 1} p, P{X 0} 1- p, 其中0 p 1.
P{|
m n

p
|
}1

ln im
P{|
m n

p
|

}
0
注: 贝努里大数定律表明,当重复试验次数n充分 大时,事件A发生的频率m/n与事件A的概率p有较 大偏差的概率很小.
事件发生的频率可以代替事件的概率.
5.2.2 独立同分布随机变量的切比雪夫大数定律
定理5-3
设随机变量X
1
,
X

2
,X
n
,
是独立同分布随机变量序列,
E( Xi ) , D( Xi ) 2 (i 1, 2, )均存在,则对任意 0有
lim{|
n

概率论第五章 大数定律及中心极限定理

概率论第五章 大数定律及中心极限定理

的标准化变量为
n
X i n
Yn i1 n
则Yn的分布函数Fn(x)对任意的x∈(-∞,+∞)都有
n X i n
lim
n
Fn
(
x)

lim
n
P(Yn

x)

lim
n
P
i 1
n
x




x

1
t2
e 2 dt
2
该定理说明,当n充分大时, Yn近似地服从标准正 态分布,Yn~N(0,1), (n )
P|
X


|




2 2

P X



1


2 2
证明 (1)设X的概率密度为p(x),则有
P{| X | } p(x)dx
| x |2
p(x)dx
|x|
|x|
2

1
2

(x



)2
p(
x)dx


2 2
Xi 2
0
pi
1 4
1 2
2
(i 1,2, , n, )
1 4

因为 X1, X 2 , , X n ,
相互独立, EX i 0 , E
X
2 i
1

DX i

E
X
2 i
EX i
2
1 0
1, i
1,2,
, n,

所以,满足切比雪夫大数定理的条件,可使用大数定理.

第五章 大数定律及中心极限定理

第五章 大数定律及中心极限定理

解:(1)由X~b(300,1/4)知,E(X)=np=75, D(X)= npq =300*1/4*3/4=225/4.所以所求概率为:
225 P{| X − E ( X ) |≤ 50} ≥ 1 − 502 = 0.9975 4
(2)由X~b(1000,1/4)知, E(X)=250, D(X)=375/2.所以
依概率收敛的意义
依概率收敛即依概率1收敛。随机变量序列{ X n }依概率 收敛于a,说明对于任给的ε > 0,当n很大时,事件 “ xn − a < ε”的概率接近于1,但正因为是概率,所以不排 除小概率事件“ xn − a ≥ ε”发生。所以说依概率收敛是不 确定现象中关于收敛的一种说法。
例 设在每次试验中,事件A发生的概率为1/4. (1)300次重复独立试验,以X记A发生的次数.用切 比雪夫不等式估计X与E(X)的偏差不大于50的 概率; ; (2)问是否可用0.925的概率,确信在1000次试验 中, A发生的次数在200到300之间.
数学期望 E ( X i )和方差 D( X i )都存在( i = 1,2, L),且D( X i ) < C ( i = 1,2,L),则对任意给定的 ε > 0,有 1 n lim P ∑ [ X i − E ( X i )] < ε = 1 n→ ∞ n i =1
切比雪夫定理的特殊情况
定理 序列, 设X 1 , X 2 , L , X n , L是相互独立的随机变量 序列,
有相同的数学期望和方 差,E ( X i ) = µ , D( X i ) = σ 2 ( i = 1,2, L)。则对任意给定的 ε > 0,有 1 n lim P ∑ X i − µ < ε = 1 n→ ∞ n i =1 即 X →µ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率统计第五章随机变量序列的极限
一 大数定律
依概率收敛的定义 独立同分布情形下的大数定律
依概率收敛
定义:设 X1, X 2, 是一个随机变量序列。
如果存在一个常数 c ,使得对任意一个 0 ,
总有
lim P
n
Xn c
1,
那么称序列Xn,i 1, 2, 依概率收敛于 c ,
记作
例 6.某计算机系统有 120 个终端, 每个终端有 5%的时间在使用,若各个终 端使用与否是相互独立的。试求在任何时 刻有 10 个或更多个终端在使用的概率。
推论:(德莫弗-拉普拉斯中心极限定理) 设 X1, X2, , X n , 是独立同分布随机变 量序列,且都服从参数为 p 的两点分布,
则对任意 x, ,有
n
Xi np
lim P i1
x x
n np 1 p
一般地有下列公式:设Y Bn, p ,则
当 n 充分大时,
Pa Y b
b np
a np
np 1 p np 1 p
例7.(p126,例5.3) 一本20万字的长篇小说进行排版, 假定每个字排错的概率为10-5,试求该 小说出版后发现有6个以上错字的概率. 假定各个字是否排错是相互独立的.
一个随机变量 X ,已知 E X 2, D X 2.25。现在进行 100 次轰炸。问击中
的炮弹总数在 180 枚至 220 枚之间的概率。
例4. (课本例 5.2) 某人要测量甲,乙两地的距离,限于
交通工具,他分成 1200 段来测量,每段 上 的 测 量 误 差 ~R(-0.5,0.5), 且 相 互 独 立,试求总距离误差的绝对值超过 20 厘米的概率.
X

频率的稳定性可用贝努利大数定律来表达:
贝努利大数定律(定理 5.4)
设 X1, X 2, , X n , 独立同分布,且
X1 B1, p ,则
X p p 。
二 中心极限定理
定理 5.5 (独立同分布情形下的中心极限定理) 设独立同分布随机变量序列 X1, X2, , X n , ,
且 E X1 , D X1 2 0 。则对任意 x, ,总有
例8. 现有一大批种子,其中良种占 1 。 6
今从中任选 6000 粒。试问在这些种子中
良种所占的比例减去 1 后小于 1%的概率 6
是多少?
例9. 利用中心极限定理计算: 当掷一枚均匀的铜币时,需投掷多少次
才能保证使得正面出现的频率在 0.4 至 0.6 之间的概率不小于 90%。
且 E X1 , D X1 2 ,那么
X
1 n
n i 1
Xi
p

因 为 EX , 极 限 也 可 表 为 X p E X 。
(也即 lim P X 0 ) n
例1. 设 X1, X 2, , X n , 独立同分布,
(1)若 X1 B1, p ;(2) X1 N , 2 。
n
Xi n
lim P i1
x x
n
n 2
进一步说明:
n
(1)记 Z X i ,则 Z n N n, n 2 i 1
n
Xi n
(2)记 Y i1
,则Y nN 0,1 ;
n 2
即 Z E Z n N 0,1 ; DZ
(3)
X
n N
,
2
n

X
n
N
0,1

n
例3. 对某据点进行轰炸,击中的炮弹数是
问 X 依概率收敛于什么值?
例2. 频率的稳定性:在 n 次重复独立试验中, 设随机变量
1 Xi 0
事件A在第i次试验时发生 事件A在第i次试验时不发生
那么 n 次重复独立试验中 A 发生的频率为
fn i 1
Xi
。于是
NA n
p p 可
表为
1 n
n i 1
Xi
p
p
E
Xn
p c
。(或
lim
n
P
Xn c
0)
考察频率的稳定性:
在 n 重贝努利试验中,设事件 A 发生了
NA 次,则 NA Bn, p ,其中 p P A 。
那么事件 A 发生的频率为
fn
A
NA n
,而且 NA n
p p 。
独立同分布情形下的大数定律
定理 5.3 设 X1, X 2, , X n , 独立同分布,
例 5. 设有 30 个电子元件 D1, D2 , , D30 。 它们如下使用:当 D1 损坏时立即使用 D2 , 当 D2 损坏时立即起用 D3 ,依次类推。用 Di
表示第 i 个元件的寿命,设 Di E 0.1 (单
位:小时)。记T 为 30 个元件使用的总计时间。 问T 超过 350 小时的概率是多少?
相关文档
最新文档