运筹第3章对偶问题
《运筹学》线性规划的对偶问题
3、资源影子价格的性质
z y b1w1 b2w2 bi wi bmwm z z b1w1 b2w2 (bi bi )wi bmwm z bi wi
w
o i
z o bi
最大利润的增量 第i种资源的增量
第i种资源的边际利润
■影子价格越大,说明这种资源越是相对紧缺 ■影子价格越小,说明这种资源相对不紧缺 ■如果最优生产计划下某种资源有剩余,这种资源的影子 价格一定等于0
总利润(元)
单位产品的利润(元/件)
产品产量(件)
max z c1x1 c2 x 2 c2 x 2
s.t.
a11x1 a12x 2 a1n x n x n1
a 21x1 a 22x 2 a 2n x n
x n2
b1
b2
a m1x1 a m2 x 2 a mn x n
差额成本=机会成本 ——利润
5、互补松弛关系的经济解释
wix ni
0xwni
0 x ni i 0 wi
0 0
x jwmj
0xwjm j
0 0
w m x
j j
0 0
在利润最大化的生产计划中 (1)边际利润大于0的资源没有剩余 (2)有剩余的资源边际利润等于0 (3)安排生产的产品机会成本等于利润 (4)机会成本大于利润的产品不安排生产
4、产品的机会成本
增加单位资源可以增加的利润
max z c1x1 c2x2 c jx j cn xn
s.t.
a11x1 a12x 2 a1jx j a1nx n b1 w1
a 21x1 a 22x 2 a 2jx j a 2nx n b2 w2
a m1 x1 a m2 x 2 a mj x j a mn x n bm wm
运筹学线性规划的对偶问题
证明:设X(0)是原问题的最优解,对应的基矩阵为B, 非基 变量的检验数为CN- CBB-1N≤0
全体检验数 C- CBB-1A≤0,即C≤CBB-1A 令Y(0)= CBB-1,则有Y(0)A≥C
即Y(0)是对偶问题的可行解。 由于z=C X(0)= CBXB(0)= CBB-1b= Y(0)b(目标值相等) 由最优性定理可知Y(0)为对偶问题的最优解。
对偶问题:Y在b和A的左边(左右对换)
对偶问题的基本性质和基本定理 1. 对称性定理:对偶问题的对偶是原问题 证明:
设原问题为
max Z = CX
AX b
s.t.
X
0
max() = Y (b)
Y (A) C s.t.Y 0 max Z = CX
AX b s.t.X 0
A
A
C
y '' 0
min = ( y ' y '' )b
s.t
.
(y' y',
y ''
y ''
)A 0
C
min = Yb YA C
s.t.Y 自 由
原问题(或对偶问题) 目标函数 max z
n个
变量
0 0
无约束
Y(0)AX(0)≤Y(0)b, 及Y(0)A≥C
故
C X(0)≤Y(0)A X(0)≤Y(0)b
亦即 C X(0)≤Y(0)b
证毕
3. 若原问题(对偶问题)为无界解,则其对偶问题(原问题) 无可行解。
由弱对偶定理可证得
北交大交通运输学院《管理运筹学》知识点总结与例题讲解第3章 对偶理论与灵敏度分析
⎟ ⎟ ⎟⎟⎠
⎪⎩x1, x2 ,", xn ≥ 0
min z = b1y1 + b2y2 +" + bm ym
(3-5)
⎪⎧⎜⎛ s.t.⎪⎪⎪⎪⎨⎜⎜⎜⎜⎝
a11 a12 #
a1n
a21 a22 #
a2n
" "
"
am1 ⎟⎞⎜⎛ y1 ⎟⎞ ⎜⎛ c1 ⎟⎞
am2 #
amn
⎟⎜ y ⎟⎟⎟⎠⎜⎜⎜⎝#y
+ −
y3* =3 y3* = 4
把 X * 代入原问题 3 个约束中可知原问题式(3)是不等式,故 y 3 * =0,然后解方程组
得到
⎧⎪ ⎨ ⎪⎩
2y1* 3y1*
+ +
3y2* =3 2 y2* = 4
⎧⎪ ⎨ ⎪⎩
y1* =6/5 y2* = 1/ 5
故对偶最优解为 Y * =(6/5,1/5,0), z * =w * =28.
⎪⎪⎪⎨22yy11++3yy22
− +
y3 y3
≥2 ≥3
⎪⎪3y1 + 2 y2 − y3 ≥ 4
⎪⎩y1, y2 , y3 ≥ 0
由于 x 3 * =x 4 * =4>0,故对偶问题约束方程式(3)、(4)是等式约束,即对 Y * 成立等式
⎧⎪ ⎨ ⎪⎩
2y1* 3y1*
+ +
3 y2* 2 y2*
推论 3 若原始问题可行,则其目标函数无界的充要条件是对偶问题没有可行解。
定理 3.2 最优性准则定理
若 X 和 Y 分别为互为对偶问题的线性规划(3-5)与(3-6)的可行解,且使 CX = bT Y T ,
管理运筹学(第四版)第三章习题答案
3.1(1)解:, 53351042..715min 212112121≥≥+≥≥++=y y y y y y y t s y y ω(2)解:无限制32132131323213121,0,0 2520474235323..86max y y y y y y y y y y y y y y y t s y y ≤≥=++≤-=+≥+--≤++=ω3.4解:例3原问题6,,1,0603020506070..min 166554433221654321 =≥≥+≥+≥+≥+≥+≥++++++=j x x x x x x x x x x x x x t s x x x x x x z j对偶问题:6,,1,0111111..603020506070max 655443322161654321 =≥≤+≤+≤+≤+≤+≤++++++=j y y y x y y y y y y y y y t s y y y y y y j ω3.5解:(1)由最优单纯形表可以知道原问题求max ,其初始基变量为54,x x ,最优基的逆阵为⎪⎪⎪⎪⎭⎫ ⎝⎛-=-31610211B 。
由P32式(2.16)(2.17)(2.18)可知b B b 1-=',5,,1,,1 ='-=='-j P C c P B P j B j j j j σ,其中b 和j P 都是初始数据。
设⎪⎪⎭⎫ ⎝⎛=21b b b ,5,,1,21 =⎪⎪⎭⎫⎝⎛=j a a P j j j ,()321,,c c c C =,则⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-⇒='-25253161021211b b b B b ,即⎪⎩⎪⎨⎧=+-=2531612521211b b b ,解得⎩⎨⎧==10521b b ⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-⇒='-0211121031610212322211312111a a a a a a P B P j j ,即 ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=+-=-=+-==+-=03161121213161212113161021231313221212211111a a a a a a a a a ,解得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==-====121130231322122111a a a a a a()()()⎪⎪⎪⎪⎭⎫⎝⎛---=---⇒'-=31612102121,0,0,2,4,4132c c c P C c j B j j σ,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=+--=+-2314612142121113132c c c c c c ,解得⎪⎩⎪⎨⎧==-=6102132c c c所以原问题为:,, 10352..1026max 32132132321≥≤+-≤++-=x x x x x x x x t s x x x z 对偶问题为:, 102263..105min 212121221≥≥+-≥-≥+=y y y y y y y t s y y ω(2)由于对偶问题的最优解为()()()2,4,,5454*=-=-=σσσc c C Y IB IB3.6解:(1)因为3x 的检验数0353≤⨯-c ,所以3c 的可变范围是153≤c 。
运筹学对偶问题的直观描述
运筹学对偶问题的直观描述
运筹学中的对偶问题是指原始线性规划问题和对应的对偶线性规划问题之间的关系。
直观描述对偶问题可以从几个方面来理解。
首先,可以从成本和效益的角度来理解。
原始线性规划问题通常涉及最小化成本或者最大化利润,而对偶线性规划问题则涉及最大化成本或者最小化利润。
这种对偶关系可以被解释为在资源有限的情况下,通过最小化成本来实现最大化效益,或者通过最大化效益来实现最小化成本。
其次,可以从约束条件的角度来理解。
原始线性规划问题的约束条件对应着对偶线性规划问题的变量,而对偶线性规划问题的约束条件对应着原始线性规划问题的变量。
这种对偶关系可以被理解为在资源分配和利用的过程中,对约束条件和变量之间的转换和对应关系。
另外,可以从几何图形的角度来理解。
原始线性规划问题的最优解和对偶线性规划问题的最优解之间存在着一种对偶关系,即原始问题的最优解和对偶问题的最优解分别对应着凸集的两个相对的极值点,它们之间的距离可以被理解为对偶问题的最优值和原始问
题的最优值之间的关系。
总的来说,对偶问题在运筹学中具有重要的意义,它不仅可以帮助我们理解原始问题和对偶问题之间的关系,还可以为我们寻找最优解提供了一种新的视角和方法。
通过对偶问题的研究和理解,我们可以更好地解决实际生产和管理中的复杂问题。
运筹学第3章 对偶问题
x1 > 0, x2 > 0
联立求解得: y1 = 0, y2 = 0.5, y3 = 0.5
三、影子价格
设 x* ( j = 1,L, n) 和 yi* (i = 1,L, n) 分别是原问题和 j 对偶问题的最优解,则由对偶性质,有
=b
BX B + NX N + IX S = b X ≥ 0, X ≥ 0 N B
S S
max z = C B X B + C N X N + 0 X s
将XB的系数 矩阵化为单 位矩阵
原来 BX B + NX N + IX IX B + B − 1 NX N + B − 1 X
= b = B
注 上表中我们将松弛变量与剩余变量统称为松弛变量
二、对偶问题的基本性质
1、对偶问题的对偶问题是原问题
max z=CX s.t. AX≤b X ≥0 对偶的定义 min w=b’Y s.t. A’Y≥C Y ≥0
min z’ = - CX s.t. -AX ≥-b X ≥0
对偶的定义
max w = -b’Y s.t. -A’Y≤-C Y ≥0
−1
b
项目
原问题变量
原问题松弛变量
原问 题最 终单 纯形 表
x1
x3 15/2 x1 7/2 x2 3/2 -σj 0 1 0 0
x2
0 0 1 0
x3
1 0 0 0
x4
5/4 1/4 -1/4 1/4
x5
15/2 -1/2 3/2 1/2
运筹学:第1章 线性规划 第3节 对偶问题与灵敏度分析
s.t.
4x1 3x1
5x2 200 10x2 300
x1, x2 0
9x1 4x2 360
s.t.
34xx11
5x2 10 x
200 2 300
3x1 10x2 300
x1, x2 0
则D为
min z 360y1 200y2 300y3 300y4
9 y1 4 y2 3y3 3y4 7 s.t.4 y1 5y2 10 y3 10 y4 12
amn xn bm ym xn 0
机会成本 a1 j y1 a2 j y2 aij yi amj ym
表示减少一件产品所节省的可以增加的利润
(3)对偶松弛变量的经济解释——产品的差额成本
机会成本
利润
min w b1 y1 b2 y2 bm ym
a11 y1
st
a12
y1
a1n y1
max z CX
(P)
AX b
s
.t
.
X
0
(D)
min w Yb
s.t.
YA C Y 0
• (2)然后按照(D)、(P)式写出其对偶
例:写出下面线性规划的对偶规划模型:
max z 2x1 3x2
min w 3 y1 5y2 1y3
x1 2x2 3 y1 0
s.t.
2xx11
例如,在前面的练习中已知
max z 2.5x1 x2 的终表为
3x1 5x2 15 s.t.5x1 2x2 10
x1, x2 0
0 x3 9 2.5 x1 2
0 19 1 - 3
5
5
1
2
0
1
5
第三章 线性规划及其对偶问题
第三章 线性规划及其对偶问题线性规划是最优化问题的一种特殊情形,也是运筹学的一个重要分支,它的实质是从多个变量中选取一组适当的变量作为解,使这组变量满足一组确定的线性式,而且使一个线性目标函数达到最优(最大或最小).线性规划的应用极为广泛,自1949年美国数学家G. B. Dantzing 提出一般线性规划问题求解的方法——单纯形法之后,线性规划无论在理论上、计算方法和开拓新的应用领域中,都获得了长足的进步,线性规划从解决技术问题的最优化设计到工业、农业、商业、交通运输业、军事、经济计划和管理决策等领域都有广泛的发展和应用.本章主要从线性规划的基本概念、数学模型、单纯形法、对偶理论、灵敏度分析等方面进行介绍.§3.1 线性规划数学模型基本原理一、线性规划的数学模型满足以下三个条件的数学模型称为线性规划的数学模型:(1)每一个问题都用一组决策变量T n x x x ][21,,, 表示某一方案;每一组值就代表一个具体方案.(2)有一个目标函数,可用决策变量的线性函数来表示,按问题的不同,要求目标函数实现最大化或最小化.(3)有一组约束条件,可用一组线性等式或不等式来表示. 线性规划问题的一般形式为1211221111221121122222112212max(min)()()()..()0n n n n n n n m m mn n m n f x x x c x c x c x a x a x a x b a x a x a x b s t a x a x a x b x x x =++++++≤=≥⎧⎪+++≤=≥⎪⎪⎨⎪+++≤=≥⎪⎪≥⎩,,,,,,,,,,,,,.这里,目标函数中的系数n c c c ,,, 21叫做目标函数系数或价值系数,约束条件中的常数m b b b ,,, 21叫做资源系数,约束条件中的系数;,,,m i a ij 21(= )21n j ,,, =叫做约束系数或技术系数.二、线性规划问题的标准形式所谓线性规划问题的标准形式,是指目标函数要求min ,所有约束条件都是等式约束,且所有决策定量都是非负的,即1211221111221121122222112212min ()..0n n n n n n n m m mn n mn f x x x c x c x c x a x a x a x b a x a x a x b s t a x a x a x b x x x =++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪⎪≥⎩,,,,,,,,,,,或简写为11min ()12..012nj j j nij ji j jf X c x a x b i m s t x j n ===⎧==⎪⎨⎪≥=⎩∑∑,,,,,,,,,,. 可以规定各约束条件中的资源系数0(12)i b i n ≥=,,,,否则等式两端乘以“1-”.线性规划问题的矩阵表示为min ()..0f X CX AX b s t X ==⎧⎨≥⎩,,,其中12[]n C c c c =,,,,12[]T n X x x x =,,,,11121212221212n n n m m mn a a a a a a A P P P a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦[,,,],12[]T n b b b b =,,,. 任意的线性规划模型都可以转化为标准形式:(1)若目标函数是求最大值的问题,这时只需将所有目标函数系数乘以“-1”,求最大值的问题就变成了求最小值的问题,即)](min[)(max X f X f --=.求其最优解后,把最优目标函数值反号即得原问题的目标函数值.(2)若约束条件为不等式,这里有两种情况:一种是“≤”不等式,则可在“≤”不等式的左端加入一个非负的新变量(叫松驰变量),把不等式变为等式;另一种是“≥”不等式,则可在“≥”不等式的左端减去一个非负松驰变量(也叫剩余变量),把不等式变为等式.松驰变量在目标函数中对应的系数为零.(3)若存在取值无约束的变量k x ,可令k k k x x x ''-'=,其中k x ',0≥''k x . 例3.1 将下列线性规划问题化为标准形式123123123123123max ()2372.3250f X x x x x x x x x x s t x x x x x x =-+++≤⎧⎪-+≥⎪⎨-++=⎪⎪≥⎩,,,,,,为无约束. 解 将目标函数变为)](min[X f -,令543x x x -=,其中450x x ≥,,在第一个约束不等式中加入松驰变量6x ,在第二个约束不等式中减去剩余变量7x ,则可得标准形式12456712456124571245124567min[()]23()00()7()2.32()5,,,,,0f X x x x x x x x x x x x x x x x x s t x x x x x x x x x x -=-+--++++-+=⎧⎪-+--=⎪⎨-++-=⎪⎪≥⎩,,,,.三、线性规划的解的概念和基本定理 考虑线性规划标准形式的约束条件0AX b X =≥,,其中A 为n m ⨯矩阵,m n >,b 是m 维向量.假定增广矩阵,A b []的秩=矩阵A 的秩m =,把矩阵A 的列进行可能的重新排列,使,A B N =[].这里B 为m m ⨯矩阵,且有逆矩阵存在,即0||≠B ,称B 为该线性规划问题的一个基.不失一般性,设111211212,,,m m m m mm a a a B PP P a a a ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦[], 称(12)j P j m =,,,为基向量,与基向量对应的变量(12)j x j m =,,,称为基变量,记为12T B m X x x x =[,,,],其余的变量称为非基变量,记为12T N m m n X x x x ++=[,,,].令m n -个非基变量均为0,并用高斯消元法,可得一个解12[][00]T T T T B N m X X X x x x ==,,,,,,,,称X 为该约束方程组的基解,其中b B X B 1-=.满足非负约束条件0≥X (基解的非零分量都0≥)的基解称为基可行解.对应于基可行解的基称为可行基.基可行解的非零分量个数小于m 时,称为退化解.线性规划的解的基本定理:引理3.1 线性规划问题的可行解12[]T n X x x x =,,,为基可行解的充要条件是X 的正分量所对应的系数列向量是线性无关的.证 必要性由基可行解的定义可知.下证充分性若向量组k P P P ,,,21线性无关,则必有m k ≤;当m k =时,它们恰构成一个基,从而12[00]T k X x x x =,,,,,,为相应的基可行解.当m k <时,则一定可以从其余的列向量中取出k m -个与k P P P ,,,21构成最大的线性无关向量组,其对应的解恰为X ,所以它是基可行解. 定理3.1 线性规划问题的基可行解X 对应于可行域D 的顶点. 证 不失一般性,假设基可行解X 的前m 个分量为正,故∑==mj jj b xP 1.(3.1)现在分两步来讨论,分别用反证法.(1)若X 不是基可行解,则它一定不是可行域D 的顶点.根据引理3.1,若X 不是基可行解,则其正分量所对应的系数列向量m P P P ,,, 21线性相关,即存在一组不全为零的数12i i m α=,,,,,使得02211=+++m m P P P ααα (3.2)用一个0>μ的数乘式(3.2),再分别与式(3.1)相加和相减,得到111222()()()m m m x P x P x P b μαμαμα-+-++-=,111222()()()m m m x P x P x P b μαμαμα++++++=.现取11122[()()()00]T m m X x x x μαμαμα=---,,,,,,,21122[()()()00]T m m X x x x μαμαμα=+++,,,,,,,由21X X ,可得121122X X X =+,即X 是21X X ,连线的中点.另一方面,当μ充分小时,可保证012i i x i m μα±≥=,,,,,即21X X ,是可行解,这证明了X 不是可行域D 的顶点.(2)若X 不是可行域D 的顶点,则它一定不是基可行解.因为X 不是可行域D 的顶点,故在可行域D 中可找到不同的两点,(1)(1)(1)112[]T nX x x x =,,,,T nx x x X ][)2()2(2)2(12,,, =,使12(1)01X X X ααα=+-<<,.设X 是基可行解,对应向量组m P P P ,,, 21线性无关,当m j >时,有0)2()1(===j j j x x x ,由于21X X ,是可行域的两点,应满足∑∑====mj mj jj j j b xP b x P 11)2()1(,.将这两式相减,即得∑==-mj j j jx xP 1)2()1(0)(.因21X X ≠,所以上式系数)()2()1(j j x x -不全为零,故向量组m P P P ,,, 21线性相关,与假设矛盾,即X 不是基可行解.定理3.2 若可行域有界,线性规划问题的目标函数一定可以在其可行域的顶点上达到最优.证 设k X X X ,,, 21是可行域的顶点,若0X 不是顶点,且目标函数在0X 处达到最优*0()f X CX =(标准形式是*()min ()f X f X =).因0X 不是顶点,所以它可以用D 的顶点线性表示为01101kki i i i i i X X ααα===≥=∑∑,,.因此011k ki i i i i i CX C X CX αα====∑∑.(3.3)在所有的顶点中必然能找到某一个顶点m X ,使m CX 是所有i CX 中最小者,并且将m X 代替式(3.3)中的所有i X ,得到∑∑===≥ki ki m m i ii CX CX CX11αα,由此得到m CX CX ≥0.根据假设,0CX 是最小值,所以只能有m CX CX =0,即目标函数在顶点m X 处也达到最小值.§3.2 线性规划迭代算法单纯形法是求解线性规划问题的迭代算法.一、单纯形法的计算步骤单纯形法的基本思路是:从可行域中某个基可行解(一个顶点)开始,转换到另一个基可行解(顶点),直到目标函数达到最优时,基可行解即为最优解.单纯形法的基本过程如图3.1所示.为计算方便,通常借助于单纯形表来计算,从初始单纯形表3.1开始,每迭代一步构造一个新单纯形表.单纯型表中B X 列中填入基变量m x x x ,,, 21;B C 列中填入基变量的价值系数m c c c ,,, 21;b 列中填入约束方程组右端的常数;j θ列的数字是在确定换入变量后,按θ规则计算填入;最后一行称为检验数行,对应各非基变量j x 的检验数是∑=-=-=mi j j ij i j j z c a c c 1σ,1j m n =+,,(这里令∑==mi ijj j ac z 1).(1)找出初始可行基,确定初始基可行解,建立初始单纯形表. (2)检验各非基变量j x 的检验数∑=-=-=mi j j iji j j z c ac c 1σ(1j m n =+,,).若所有0≥j σ,则已得到最优解,停止计算.否则转入下一步.(3)在0(1)j j m n σ<=+,,,中,若所有0≤jk a ,则此问题无最优解,停止计算.否则转入下一步.(4)根据min{|0}j j k σσσ<=,确定k x 为换入变量.按θ规则计算min 0i l ik ik lkb ba a a θ⎧⎫=>=⎨⎬⎩⎭, 可确定l x 为换出变量,转入下一步.(5)以lk a 为主元素进行迭代(用高斯消元法),把k x 所对应的列向量120010k k k lk mk a a P l a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=−−−→⎢⎥⎢⎥←⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦变换成第行, 将B X 列中的l x 换为k x ,得到新的单纯形表,重复步骤(2)—步骤(5),直到终止.单纯形法的流程图如图3.2所示.若目标函数要求实现最大化,一方面可将最大化转换为最小化,另一方面也可在上述计算步骤中将判定最优解的0≥j σ改为0≤j σ,将换入变量的条件min{|0}j j k σσσ<=改为max{|0}j j k σσσ>=.二、初始可行基的确定 (1) 若线性规划问题是11min ()12..012nj j j nij ji j jf X c x a x b i m s t x j n ===⎧==⎪⎨⎪≥=⎩∑∑,,,,,,,,,,, 则从(12)j P j n =,,,中一般能直接观察到存在一个初始可行基12100010[,,,]001m B P P P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦.(2)对所有约束条件是“≤”形式的不等式,可以利用化标准形式的方法,在每个约束条件的左端加入一个松驰变量,经过整理重新对j x 及ij a 进行编号,可得下列方程组.,,m n mn m m m m n n m m n n m m b x a x a x b x a x a x b x a x a x =+++=+++=+++++++++ 11,2211,221111,11显然得到一个m m ⨯单位矩阵B 可作为初始可行基12100010[,,,]001m B P P P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦. (3)对所有约束条件是“≥”形式的不等式及等式约束情况,若不存在单位矩阵时,可采用人工变量,即对不等式约束减去一个非负的剩余变量后,再加入一个非负的人工变量;对等式约束再加入一个非负的人工变量,总可得到一个单位矩阵作为初始可行基.例3.2 求解线性规划问题12121212max ()2328416..4120f X x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩,,,,,. 解:将线性规划问题化为标准形式12345123142512345min[()]2300028416..4120f X x x x x x x x x x x s t x x x x x x x -=--+++++=⎧⎪+=⎪⎨+=⎪⎪≥⎩,,,,,,,,.作初始单纯形表,按单纯形法计算步骤进行迭代,结果如下(表3.2).表3.2最后一行的检验数均为正,这表示目标函数值已不可能再减小,于是得到最优解*42004T X =[,,,,],目标函数值14)(*=X f .三、单纯形法的有关说明对线性规划问题min ()..0f X CX AX b s t X ==⎧⎨≥⎩,,,(3.5) 若系数矩阵中不含单位矩阵,没有明显的基可行解时,常采用引入非负人工变量的方法来求初始基可行解.下面分别介绍常用的“大M 法”和“两阶段法”.(一)大M 法在约束条件式(3.5)中加入人工变量,人工变量在目标函数中的价值系数为M ,M 为一个很大的正数.在迭代过程中,将人工变量从基变量中逐个换出,如果在最终表中当所有检验数0≥j σ时,基变量中不再含有非零的人工变量,这表示原问题有解,否则无可行解.例3.3 求解线性规划问题12312312313123min ()3211423..210f X x x x x x x x x x s t x x x x x =-++-+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩,,,,,,. 解:将原问题化为标准形式并引入人工变量,得12345671234123561371234567min ()300211423..210f X x x x x x Mx Mx x x x x x x x x x s t x x x x x x x x x x =-++++++-++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩,,,,,,,,,,.用单纯形法计算,得表3.3.根据表 3.3的最后一行的检验数均0≥,得最优解*4190000T X =[,,,,,,],最优值2)(*-=X f ,由于人工变量的值均为零,故得原问题的最优解*419T X =[,,],最优值为2)(*-=X f .(二)两阶段法两阶段法是把线性规划问题的求解过程分为两个阶段:第一阶段,给原问题加入人工变量,构造仅含价值系数为1的人工变量的目标函数且要求实现最小化,其约束条件与原问题相同,即11111111211221112min ()00..0n n m n n n n nn n n m mn n n m m n m g X x x x x a x a x x b a x a x x b s t a x a x x b x x x ++++++=++++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪⎪≥⎩,,,,,,,. 然后用单纯形法求解上述问题,若得到0)(=X g ,这说明原问题存在基可行解,可进入第二阶段计算,否则原问题无可行解,停止计算.第二阶段,将第一阶段计算得到的最终表,除去人工变量,将目标函数行的系数换为原问题的目标函数系数,作为第二阶段计算的初始单纯形表进行计算.例3.4 用两阶段法求解线性规划问题12312312313123min ()3211423.210f X x x x x x x x x x s t x x x x x =-++-+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩,,,,,,. 解 第一阶段,标准化并引入人工变量,得如下的线性规划=)(min X g 76x x +,1234123561371234567211423.210x x x x x x x x x s t x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩,,,,,,,,,. 用单纯形法计算该线性规划(见表 3.4),最优解为*[011120000]T X =,,,,,,,,最优值0)(*=X g .表3.4由于人工变量076==X X ,所以得原问题的基可行解为[011120]T X =,,,,.于是进入第二阶段计算(见表3.5),最优解为*[41900]T X =,,,,,最优值2)(*-=X f ,于是原问题的最优解为*[419]T X =,,,最优值为2)(*-=X f .§3.3 对偶问题的基本原理一、对偶问题的提出对偶性是线性规划的重要内容之一,每一个线性规划问题必然有与之相伴而生的另一个线性规划问题,我们称一个叫原问题,另一个叫对偶问题,这两个问题有着非常密切的关系,让我们先分析一个实际的线性规划模型与其对偶线性规划问题的经济意义.例3.5 某工厂计划在下一生产周期生产3种产品1A ,2A ,3A ,这些产品都要在甲、乙、丙、丁4种设备上加工,根据设备性能和以往的生产情况知道单位产品的加工工时,各种设备的最大加工工时限制,以及每种产品的单位利润(单位:千元),如表3.6所示,问如何安排生产计划,才能使工厂得到最大利润?解 设321x x x ,,分别为产品321A A A ,,的产量,构造此问题的线性规划模型为1231231231312123max ()8102237042280..3152250,,0f X x x x x x x x x x s t x x x x x x x =++++≤⎧⎪++≤⎪⎪+≤⎨⎪+≤⎪⎪≥⎩,,,,,.现在从另一个角度来讨论该问题.假设工厂考虑不安排生产,而准备将所有设备出租,收取租费.于是,需要为每种设备的台时进行估价.设4321y y y y ,,,分别表示甲、乙、丙、丁4种设备的台时估价.由表3.6可知,生产一件产品1A 需用各设备台时分别为h h h h 2342,,,,如果将h h h h 2342,,,不用于生产产品1A ,而是用于出租,那么将得到租费43212342y y y y +++.当然,工厂为了不至于蚀本,在为设备定价时,保证用于生产产品1A 的各设备台时得到的租费,不能低于产品1A 的单位利润8千元,即823424321≥+++y y y y .按照同样分析,用于生产一件产品2A 的各设备台时h 1,h 2,0,h 2所得的租费,不能低于产品2A 的单位利润10千元,即1022421≥++y y y .同理,还有223321≥++y y y .另外,价格显然不能为负值,所以01234iy i ≥=,,,,. 企业现在设备的总以时数为70h ,80h ,15h ,50h ,如果将这些台时都用于出租,企业的总收入为422150158070)(y y y y Y g +++=.企业为了能够得到租用设备的用户,使出租设备的计划成交,在价格满足上述约束的条件下,应将设备价值定得尽可能低,因此取)(Y g 的最小值,综合上述分析,可得到一个与例3.5相对应的线性规划,即123412341231231234min ()70801550243282210..3220g Y y y y y y y y y y y y s t y y y y y y y =++++++≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩,,,,,,,.称后一个规划问题为前一个规划问题的对偶问题,反之,也称前一个规划问题是后一个规划问题的对偶问题.二、原问题与对偶问题的表达形式和关系在线性规划的对偶理论中,把如下线性规划形式称为原问题的标准形式11221111221121122222112212min ()..0n n n n n n m m mn n mn f X c x c x c x a x a x a x b a x a x a x b s t a x a x a x b x x x =++++++≥⎧⎪+++≥⎪⎪⎨⎪+++≥⎪⎪≥⎩,,,,,,,. 而把如下线性规划形式称为对偶问题的标准形式11221111221121122222112212max ()..0n n m m m m n n mn m nm g Y b y b y b y a y a y a y c a y a y a y c s t a y a y a y c y y y =++++++≥⎧⎪+++≥⎪⎪⎨⎪+++≥⎪⎪≥⎩,,,,,,,. 若用矩阵形式表示,则原问题和对偶问题分别可写成如下形式:原问题min ()..0f X CX AX b s t X =≥⎧⎨≥⎩,,.(3.6)对偶问题max ()..0g Y Yb YA C s t Y =≤⎧⎨≥⎩,,.(3.7)原问题与对偶问题的关系见表3.7.例3.6 求下面线性规划问题的对偶问题123412341342341234min ()23535224..600f X x x x x x x x x x x x s t x x x x x x x =+-++-+≥⎧⎪+-≤⎪⎨++=⎪⎪≤≥⎩,,,,,,,无约束. 解:根据表3.7可直接写出上述问题的对偶问题12312131********max ()546223..325100g Y y y y y y y y s t y y y y y y y y y =+++≥⎧⎪+≤⎪⎪-++≤-⎨⎪-+=⎪⎪≥≤⎩,,,,,,,无约束. 三、对偶理论定理3.3(弱对偶定理) 对偶问题(max )的任何可行解︒Y ,其目标函数值总是不大于原问题(min )任何可行解︒X 的目标函数值.证 由定理所设及问题(3.6)和问题(3.7)容易看出︒︒︒︒≤≤CX AX Y b Y .定理3.4(对偶定理) 假如原问题或对偶问题之一具有有限的最优解,则另一问题也具有有限的最优解,且两者相应的目标函数值相等.假如一个问题的目标函数值是无界的,则另一问题没有可行解.证明从略.定理3.5(互补松驰定理) 假如︒X 和︒Y 分别是原问题(3.6)和对偶问题(3.7)的可行解,︒U 是原问题剩余变量的值,︒V 是对偶问题松驰变量的值,则︒X 、︒Y 分别是原问题和对偶问题最优解的充要条件是0=+︒︒︒︒X V U Y .证 由定理所设,可知有0AX U b X U ︒︒︒-=︒≥,,,(3.8) 0Y A V C Y V ︒︒︒︒︒+=≥,,.(3.9)分别以︒Y 左乘式(3.8),以︒X 右乘式(3.9),两式相减,得b Y CX X U U Y ︒︒︒︒︒︒-=+.若0=+︒︒︒︒X V U Y ,根据弱对偶定理知CX b Y CX Yb ≤=≤︒︒.这说明︒X ,︒Y 分别是原问题和对偶问题最优解,反之亦然.根据互补松驰定理和决策变量满足非负条件可知,在最优解时,︒︒U Y 和︒︒X V 同时等于0,所以有)21(000n j x v j j ,,, ==, )21(000m i u y i i ,,, ==. 于是,互补松驰定理也可以这样叙述:最优化时,假如一个问题的某个变量取正数,则相应的另一个问题的约束条件必取等式;或者一个问题中的约束条件不取等式,则相应于另一问题中的变量必为零.例3.7 已知线性规划问题123451234512445min ()23523234.2330125jf X x x x x x x x x x x s t x x x x x x j =++++⎧++++≥⎪-+++≥⎨⎪≥=⎩,,,,,,,.已知其对偶问题的最优解为5)(5/35/4**2*1===Y g y y ,,,试用对偶理论找出原问题的最优解.解:先写出它的对偶问题12121212121212max ()4322(1)3(2)235(3)..2(4)33(5)0g Y y y y y y y y y s t y y y y y y =++≤⎧⎪-≤⎪⎪+≤⎪⎨+≤⎪⎪+≤⎪≥⎪⎩,,,,,,,.将*2*1y y ,的值代入约束条件,得(2),(3),(4)为严格不等式,由互补松驰定理得***2340x x x ===,因021≥y y ,,原问题的两个约束条件应取等式,故有**1534x x +=, **1523x x +=.求解后得到**1511x x ==,,故原问题的最优解为 **10001()5TX f X ==[,,,,],.四、对偶问题的迭代算法对偶单纯形法是对偶问题的迭代算法,其基本思想是:从原问题的一个基本解出发,此基本解不一定是可行解,但它对应着对偶问题的一个可行解;然后检验原问题的基本解是否可行,即是否有负的分量.如果有小于零的分量,则进行迭代,求另一个基本解,此基本解对应着另一个对偶可行解.如果得到的基本解的分量皆非负,则该基本解为最优解.也就是说,对偶单纯形法在迭代过程中始终保持对偶解的可行解,使原问题的基本解由不可行逐步变为可行.当同时得到对偶问题与原问题的可行解时,便得到原问题的最优解.对线性规划问题的标准形式min ()..0f X CX AX b s t X =≥⎧⎨≥⎩,,.对偶单纯形法的计算步骤如下:(1)找出原问题的一个基,构成初始对偶基可行解,使所有检验数0≥j σ,构成初始对偶单纯形表.(2)若所有0≥i b ,则当前的解是最优解,停止计算,否则计算min{|0}l i i b b b =<,则l 行为主行,该行对应的基变量为换出变量.(3)若所有0≥lj a ,则对偶问题无界,原问题无解,停止计算,否则计算min |0j k lj lj lka a a σσθ⎧⎫⎪⎪=<=⎨⎬--⎪⎪⎩⎭,则k 列为主列,该列对应的基变量为换入变量.(4)以lk a 为主元素进行迭代,然后转回步骤(2). 对偶单纯形法的流程图如图3.3所示.例3.8 用对偶单纯形法求解下述线性规划问题123123123123min ()23423..2340f X x x x x x x s t x x x x x x =++++≥⎧⎪-+≥⎨⎪≥⎩,,,,,.解:首先将“≥”约束条件两边反号,再加入松驰变量,可得原问题的一个基123451234123512345min ()2340023..2340f X x x x x x x x x x s t x x x x x x x x x =++++---+=-⎧⎪-+-+=-⎨⎪≥⎩,,,,,,,.图3.3从表3.8看出,所有检验数0≥j σ,则对应对偶问题的解是可行的,因b 列数字为负,需进行迭代,计算min 344--=-{,}.所以5x 为换出变量.又因为24min 123θ⎧⎫=-=⎨⎬⎩⎭,,,所以1x 为换入变量,以换入、换出变量所在行列交叉处元素“-2”为主元素,按单纯形法计算步骤进行迭代,得表3.9.由表3.9的最后一行看出,所有检验数0≥j σ,故原问题的最优解为*[11/52/50]T X =,,.若对应两个约束条件对偶变量为1y ,2y ,则可得对偶问题的最优解为*[8/51/5]T Y =,.§3.4 线性规划问题灵敏度在建立实际的线性规划模型时,所收集到的数据不是很精确;另一方面在实际应用中,各种信息瞬息万变,已形成的数学模型中的某些数据需要随之而变.因此,对于一个线性规划问题,研究当数据发生变动时解的变化情况是很重要的.下面仅介绍两种数据变化而导致解的变化的情况,这就是灵敏度分析问题.一、价值系数的变化假设只有一个系数k C 变化,其它系数保持不变 ,k C 的变化只影响检验解而不影响解的非负定性,下面分别就k C 是非基变量系数和基变量系数两种情况进行讨论.(1)k C 是非基变量的系数由于B C 不变,因而j Z 对任何j 都不变.这时非基变量的系数k C 的变化只影响与k C 有关的一个检验数k σ的变化,而对其它j σ没有影响,设系数从k C 变化到k C ',这时检验数k k k Z C -=σ被k k kZ C -'='σ所代替,在当前解是原问题的最优解时,有0≥-=k k k Z C σ,假如()(k k k k k k C Z C Z C σ'''=-=-+)0k C -<,则k X 必须引进基,单纯形法继续进行,否则原解仍是k C 变化后的新问题的最优解,最优解不变相当于k C '变化的界限为)(k k k kZ C C C --≥'. (2)k C 为基变量的系数当k C 被k C '所代替时,j Z 变成j Z ',j j Z C '-可计算为kj k kj j j j a C C Z C Z C )(-'--='-. (3.10)特别是当k j =时,0=-k k Z C ,且1=kk a ,因此k k k k C C Z C -'='-,仍为零.由式(3.10)知,基变量k x 的价值系数k C 的变化会引起整个价值系数行的变化,变化值为)(k k C C -'-乘以最终表相应该基变量k x 所在的k 行的数值kj a .k 列本身则调整为0='-'k k Z C .由式(3.10)可看出,当对某个非基变量j x ,式(3.10)为负时会引起基的变化,若要保持最优解不变,分析变化值)(k k C C -'且大于或小于零以及kj a 值是正或负的情况,得出会保持最优解不变的k C '的变化界限为max 0min 0j j j j k kj k k kj j jkj kj C Z C Z C a C C a a a ⎧⎫⎧⎫--⎪⎪⎪⎪'+<≤≤+>⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭.例3.8 以例3.2的最终表为例,设基变量2x 的系数2C 变化2C ∆,在原最优解不变条件下,确定2C ∆的变化范围.解 此时例3.2的最终表便成为表3.10为了保持原最优解不变,则2x 的检验数应当为零,进行行初等变换,得表3.11.从表(3.11)可得02232≥∆-C 且08812≥∆+C . 由此可得2C ∆的变化范围为312≤∆≤-C ,即2x 的价值系数2C 可以在[0,4]之间变化,而不影响原最优解.二、资源系数的变化假设资源系数k b 变化为k b ',k b 的变化将会影响解的可行性,但不会引起检验数的符号变化.根据基可行解的矩阵表示可知,b B X B 1-=,所以只要k b 变化必定会导致最优解的数值发生变化,最优解的变化分为两类:一类是保持01≥-b B ,最优基B 不变;另一类是b B 1-中出现负分量,这将使最优基B 变化,若最优基不变,则只需将变化后的k b 代入B X 的表达式重新计算即可;若b B 1-中出现负分量,则要通过迭代求解新的最优基和最优解.设系数k b 变化到k k k b b b ∆+=',而其它系数都不变,这样使最终表中原问题的解相应变化为11111100k B k k k k m mk m b a b X B b b B b B b b b a b ---⎡⎤⎡⎤⎢⎥⎢⎥'⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'=+∆=+∆=+∆⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 其中B X 为原最优解,i b '为B X 的第i 个分量,ik a 为1-B 的第i 行第k 列元素,为了保持最优基不变,应使0≥'B X ,即110k k m mk a b b b a '⎡⎤⎡⎤⎢⎥⎢⎥+∆≥⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦. 由此可得到保持最优基不变时,资源系数的变化界限为max 0min 0i i k ik k k ik ik ik b b b a b b a a a ⎧⎫⎧⎫''--⎪⎪⎪⎪'+>≤≤+<⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭.例3.9 若例3.2的第二个约束条件中2b 变化为22b b ∆+,在最优解不变的条件下,求2b ∆的变化范围.解 计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡≥∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆+--000812141244002211b b B b B可得2224/(1/4)164/(1/2)82/(1/8)16b b b ∆≥-=-∆≥-=-∆≤--=,,.所以2b ∆的变化范围是(-8,16).显然2b 的变化范围是(8,32).。
运筹学对偶单纯形法
8. 最优松紧性 设
= (XT, XTs) = ( x1 , x2 , … , xn , … , xn+m )T
T = (YT,Ys ) = ( y1 , y2 , … , ym , … , ym+n )T
分别是(P1) (D1)的可行解,那么 和 分别是(P1) (D1)最优解的充分必要条件是: ⑴ xj >0 → ym+j = 0 ⑵ ym+j>0 → xj = 0 ⑶ xn+i > 0 → yi = 0 ⑷ yi > 0 → xn+i = 0
关系3:一般对偶关系
对偶问题 目标要求
规范不等式 约束的式号
(P) max ≤ (aij)m×n
第 k 个约束 约束个数 第 k 个右端常数 (非)规范不等式约束 等式约束
(D) min ≥ (aji)n×m
第 k 个变量 变量个数 第 k 个价值系数 非负(正)变量 自由变量
系数阵 函数 约束 与 变量
(2) 对资源 i 现行分配量的评估。当资源 i 在市场上脱销时, 其总存量无法增加,但可酌情调整其在企业内部的现行分配量, 以便获得最佳经济效益。 二、 当 yi* 代表影子利润(即企业的目标是实现最大总利 润)时: (1) 对资源 i 总存量的评估。 (2) 对资源 i 现行分配量的评估。
对偶问题的经济解释
工时利润 (百元/工时) y1 y2 y3
产品 车间
单耗(工时/件)
甲
乙
最大生产能力 (工时/天)
A B C
单位利润 (百元/件)
1 0 2 3
0 2 3 2
《运筹学》对偶理论
s.t
6
x1 2x2 x1 x2
x4 x5
2 5
4
xj 0
s.t
5
6 y2 y3 y1 2 y2
y
y4 3
2 y5
1
yi 0
分别用单纯形法求解上述2个规划问题,得到最终单纯形表如
下表:
对偶性质
原问 题最 优表
XB
b
x3
15/2
x1
7/2
x2
3/2
j
原问题的变量
x1
x2
0
max z c1x1 c2 x2
s.t.
11x1 12x2 21x1 22x2
b1 b2
x1
0,
x
无约束
2
min w b1 y1 b2 y2
s.t.1121yy11
21y2 22 y2
c1 c2
y1, y2 0
min w b1 y1 b2 y2
s.t.1121yy11
4
y1 , y2 , y3 0
线性规划的对偶模型
(2) 非对称型对偶问题 若给出的线性规划不是对称形式, 可以先化成对称形式
再写对偶问题。也可直接写出非对称形式的对偶问题。
线性规划的对偶模型
原问题(或对偶问题)
约束条件右端项
目标函数变量的系数
目标函数 max
约
m个
束
≤
条
件
≥
=
n个
变
≥0
量
≤0
s.t.2111xx11
12 22
x2 x2
b1 b2
x1 0, x2 0
min w b1 y1 b2 y2
运筹学 第三章 对偶单纯形法
目标函数系数 约束方程常数列 约束方程常数列 目标函数系数 系数矩阵 A 系数矩阵A 变量个数n 约束方程个数m 约束方程≤ ≥ = 变量≥0 ≤0 无符号约束 约束方程个数n 变量个数m 变量≥0 ≤0 无符号约束 约束方程≥ ≤ =
解:
min 10 y1 8 y2 y1 2 y2 5 2 y y 12 1 2 s.t. y 3 y 4 1 2 y1 0, y2无约束
设
Ⅰ产量–––– Ⅱ产量––––
x1
1
x2
2 2
如何安排生产, 使获利最多?
max z 2 x x s.t.
1 2
5 x 15 6 x 2 x 24 x x 5
1 2x,x 012厂 家设:设备A —— y 1 元/时 设备B ––––
调试工序 ––––
y2 元/时 y 3 元/时
Y (-A) ≥ - C
Y ≥0
5﹒变量无约束的对偶
原问题: max z=CX AX≤b X无约束 对偶 问题 min ω=Yb YA =C Y ≥0 令 X=X1 - X2 X1, X2≥0 max z=CX1-CX2 AX1 - AX2 ≤b X1,X2≥0 max z=(C, -C) X1 (A, -A) ≤b X2 X1,X2≥0 min ω=Yb
2﹒约束条件全部为“=”的对偶
原问题: max z=CX AX=b X≥0 等价 b max z=CX AX≤b 等价 AX≥b X≥0 max z=CX AX≤b -AX≤-b X≥0 max z=CX b A X≤ -b -A X≥0 等 价
min ω=(Y1,Y2) -b A (Y1,Y2) ≥C -A Y1,Y2≥0 min ω=(Y1-Y2)b ( Y 1 - Y 2 ) A ≥C Y1,Y2≥0
运筹学-对偶问题
对偶问题的应用场景
资源分配问题
在资源有限的情况下,如何合理分配资源以达到 最优目标。
运输问题
如何制定运输计划,使得运输成本最低且满足运 输需求。
生产计划问题
如何制定生产计划,使得生产成本最低且满足市 场需求。
投资组合优化问题
如何选择投资组合,使得投资收益最大且风险最 小。
02
对偶问题在运筹学中的重要性
对偶问题的理论完善与深化
对偶理论的数学基础
进一步深入研究对偶理论的数学基础,包括对偶映射、对偶函 数、对偶不等式等,为解决对偶问题提供更坚实的理论基础。
对偶问题的转化与求解
研究如何将复杂的对偶问题转化为更容易求解的形式,或 者设计有效的求解方法,以提高对偶问题的求解效率。
对偶理论与实际应用的结合
在对偶理论不断完善的基础上,进一步探索如何将其应用于实际问题 中,以解决实际问题的优化问题,提高决策的科学性和效率。
在整数规划中,对偶问题通常 是指将原问题的约束条件或目 标函数进行一些变换,使得原 问题与对偶问题在结构上存在 一定的对称性。
对偶问题的性质
02
01
03
对偶问题的最优解与原问题的最优解具有密切关系。
在线性规划中,如果原问题是最大化问题,则对偶问 题是最小化问题,反之亦然。
在整数规划中,对偶问题的约束条件和目标函数通常 与原问题存在一定的对称性。
02 求解步骤
03 1. 定义原问题和对偶问题。
04
2. 利用状态转移方程和最优子结构性质,求解对偶问 题。
05 3. 利用对偶问题的解,求解原问题。
博弈论中的对偶策略
1. 定义博弈中的策略空间和支付 函数。
求解步骤
2. 构造对偶问题。
运筹学 第03章 线性规划的对偶理论
1
引例
解:设Ⅰ、Ⅱ产品的生产数量分别为x1和x2,建立问题数学模型如下: max z =2x1+3x2
2x1+2x2≤12
4x1 ≤16 5x2 ≤15
xj≥0,j=1,2
现假设有另一家四海机器厂,为了扩大生产想租借常山机器厂拥有的设备资源,问常山厂分别以
例:写出下列线性规划问题的对偶问题 min w = x1 + 2x2 + 3x3 s.t. 2x1+3x2 + 5x3 2 3x1+ x2 + 7x3 3 x1,x2 , x3 0
2
原问题与对偶问题的形式关系
解: 令
例:写出下述线性规划问题的对偶问题
max z = c1x1 + c2x2 + c3x3 s.t. a11x1 + a12x2 + a13x3 ≤ b1 a21x1 + a22x2 + a23x3 = b2 a31x1 + a32x2 + a33x3 ≥ b3 x1≥0, x2≤0, x3 无约束
每小时什么样的价格才愿意出租自己的设备呢?
1
引例
设A、B、C设备的机时单价分别为y1、y2、y3,新的线性规划数学模型为 max z =2x1+3x2 2x1+2x2≤12 4x1 ≤16 min w=12y1+16y2+15y3
2y1+4y2
2y1
≥2
+5y3≥3
5x2 ≤15
xj≥0,j=1,2
若对偶变量 yi* 0 ,则原问题相应的约束条件 若约束条件
运筹学习题答案(第三章)
2
4
3 3
4
3
2
3
8
2 2
2
5
3
0
3
2
6
14
3
0
销量
School of Management
运筹学教程
第三章习题解答
3.10 某市有三个面粉厂,它们供给三个面食加 工厂所需的面粉。各面粉厂的产量、各面食加工厂加 工面粉的能力、各面食加工厂和各面粉厂之间的单位 运价,均表示于表3-35中。假定在第1,2和3面食加 工厂制作单位面粉食品的利润分别为12元、16元和 11元,试确定使总效益最大的面粉分配计划(假定面 粉厂和面食加工厂都属于同一个主管单位)。
表3-37
城市
电站 Ⅰ Ⅱ page 21
11 August 2013
1
2
3
15 21
18 25
22 16 21
School of Management
运筹学教程
第三章习题解答
习题3.12的解答
城市 城市 城市 城市 城市 城市 产量 1-1 1-2 2 3-1 3-2 电站
Ⅰ
Ⅱ Ⅲ 销量
page 22 11 August 2013
page 11 11 August 2013
B1
B2
B3
B4
产量
4 5 1 3 4 6 6 1 2 5 2 0 3 7 3 5 1 1
6 5 6 3
8
8 4 20
11
销量
School of Management
运筹学教程
第三章习题解答
表3-33 销地 产地 A1 A2 A3 销量
page 12 11 August 2013
运筹学-3对偶单纯形法
1.对偶单纯形法的应用条件; 2.出基与进基的顺序; 3.如何求最小比值; 4.最优解、无可行解的判断。 作业:教材P76 T2.7
The End of Section 3
灵敏度分析 Exit
即对偶问题具有无
界解,由性质2a知ik 原问a题Lj 无可行解。aik
§2.3 对偶单纯形法 The Dual Simplex Method
Ch2 Dual Problem
2020年6月20日星期六 Page 9 of 9
本节利用对偶性质6:原问题的检验数与对偶问题的基本 解的对应关系,介绍了一种特殊线性规划的求解方法—对 偶单纯形法。
0
-4
-1
0
-1
— 1.6 — —
2
x2
0.4
0
1 -0.2 -0.4 0.2
x1
2.2
1
0
1.4 -0.2 -0.4
检验数 5.6
0
0 -1.8 -1.6 -0.2
最优解: x2=0.4 x1=2.2
Max z = -5.6
§2.3 对偶单纯形法 The Dual Simplex Method
Ch2 Dual Problem
【解】先将约束不等式化为等式,再两边同乘以(-1), 得到
min z 2x1 3x2 4x3
x1 2x2 x3 x4 3
2x1 x2 3x3 x5 4
x
j
0,
j
1,2,
,5
用对偶单纯形法,迭代过程如下页或看演示(请启用宏)。
§2.3 对偶单纯形法 The Dual Simplex Method
问题中,λ≤j0分母aij<0,
j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3.1 写出下面线性规划的对偶规划 模型
11
Max z = x1 - x2+5x3-7x4 s.t. x1 + 3 x2 -2 x3 + x4 = 25 2 x1 + 7x3 + 2x4 ≥ -60 2 x1 + 2x2 -4x3 ≤ 30 x4 ≥-5 x4 ≤10 x1 , x2 , ≥ 0 x3 , x4取值无约束
100 x2 1 1 (1) 100* 0 0 1 0 0 0 1 0
0 x3 1 0 0 0 1 0 0 0 1 -2 0 -50
0 x4 0 1 0 0 0 1 0 0 0 1 0 0
0 x5 0 0 1 0 -1 -1 1 -100 -1 1 1 -50
I
θi 300 400 250 50 75
14
Ⅲ弱对偶定理
分别为( 若 x, y 分别为(LP) 和(DP)的可行解,那么 Tx ≤ )的可行解,那么c bTy。 。
推论
LP( DP)可行,那么LP( DP) ①若LP(或DP)可行,那么LP(或DP)无有限最优 有无界解)的充分必要条件是 解(有无界解 的充分必要条件是 (或LP)无可行解。 有无界解 的充分必要条件是DP( )无可行解。 ??当 ( ??当LP(或DP)无可行解时,则DP(或LP)具有 )无可行解时, ( ) 无界解。 无界解。 ②极大化问题的任意一个可行解所对应的目标函数值 是其对偶问题最优目标函数值的一个下界。 是其对偶问题最优目标函数值的一个下界。 ③极小化问题的任意一个可行解所对应的目标函数值 是其对偶问题最优目标函数值的一个上界。 是其对偶问题最优目标函数值的一个上界。
20
四、对偶问题的解
利用最优单纯形表求对偶问题最优解 标准形式: 标准形式: Max z = 50 x1 + 100 x2 s.t. x1 + x2 + x3 = 300 2x1 + x2 + x4 = 400 x2 + x5 = 250 x1 ,x2 ,x3 ,x4 ,x5 ≥ 0
21
CB 0 0 0 0 0 100 50 0 100
-cB B- 1
x4 = 50 y3 = 50 ,
B -1
22
3.1线性规划的对偶问题概念、 线性规划的对偶问题概念、 线性规划的对偶问题概念 理论及经济意义
3.2线性规划的对偶单 线性规划的对偶单 纯形法
3.3线性规划的灵敏度分析 线性规划的灵敏度分析
23
对偶单纯形法的基本思想 对偶单纯形法的基本思想是: 从一个对偶可行解 对偶可行解(检验数非正)出 对偶可行解 发;然后检验原问题的基本解是否可 行,即是否有负的分量,如果有小于 零的分量,则进行迭代,求另一个基 本解,此基本解对应着另一个对偶可 行解(检验数非正)。
24
如果得到的基本解的分量皆非 负则该基本解为最优解。也就是说, 对偶单纯形法在迭代过程中始终保 持对偶解的可行性(即检验数非 正),使原规划的基本解由不可行 逐步变为可行,当同时得到对偶规 划与原规划的可行解时,便得到原 规划的最优解。
25
1.建立初始对偶单纯形表,对应一个基本解, 1.建立初始对偶单纯形表,对应一个基本解,所有检 建立初始对偶单纯形表 验数均非正, 验数均非正,转2; ≥0,则得到最优解 <0则选 2.若 ≥0,则得到最优解,停止;否则, 2.若b’≥0,则得到最优解,停止;否则,若有bk<0则选 的基变量为出基变量, b最小的基变量为出基变量,转3 3.若所有akj’≥0( j = 1,2, ,n ),则原问题无可 1,2,…, 3.若所有 ≥0( 行解,停止; 行解,停止; 否则, 否则,若有akj’<0 则选 <0 θ=min{σj’ / akj’┃akj’<0}=σr’/akr’那么 <0}= / 那么 ┃ <0 xr为入基变量,转4; 为入基变量, 作矩阵行变换使入基变量变为单位向量, 4. 作矩阵行变换使入基变量变为单位向量,转2。
Min W = 65y1+ 40y2 + 75y3
4
对偶变量的经济意义可以解释为对工时及原材料 的单位定价 若工厂自己不生产产品A、 和 , 若工厂自己不生产产品 、B和C,将现有的工时 及原材料转而接受外来加工时,那么上述的价格 及原材料转而接受外来加工时,那么上述的价格 系统能保证不亏本又最富有竞争力( 系统能保证不亏本又最富有竞争力(包工及原材 料的总价格最低) 料的总价格最低) 当原问题和对偶问题都取得最优解时, 当原问题和对偶问题都取得最优解时,这一对线 性规划对应的目标函数值是相等的: 性规划对应的目标函数值是相等的: Zmax=Wmin=8
5
原问题的对偶问题DP: 原问题的对偶问题DP: DP Min W= 65y1+ 40y2 + 75y3 s.t. 3y1+2y2 ≥1500 2y1+y2+3y3 ≥2500 y1, y2 , y3 ≥ 0
6ห้องสมุดไป่ตู้
Max z = 1500x1 + 2500x2 s.t. 3x1 + 2x2 ≤ 65 2x1 + x2 ≤ 40 原问题 3x2 ≤ 75 x1 ,x2 ≥ 0 Min W = 65y1+ 40y2 + 75y3 s.t. 3y1+2y2 ≥1500 2y1+y2+3y3 ≥2500 对偶问题 y 1, y 2 , y 3 ≥ 0
3
设备的租金收入不能低于自己组织生产 时的获利收入: 时的获利收入:
不少于甲产品的利润) 3y1+2y2 ≥1500(不少于甲产品的利润) 不少于乙产品的利润) 2y1+y2+3y3 ≥2500(不少于乙产品的利润)
用于生产第i种产品的资源转让收益不小 用于生产第 种产品的资源转让收益不小 于生产该种产品时获得的利润 租方希望在满足上述条件下尽量要求全 部设备的总租金越少越好, 部设备的总租金越少越好,即
13
二、对偶问题的基本性质
Ⅰ对称性定理
对偶问题的对偶是原问题。 对偶问题的对偶是原问题。
Ⅱ 主对偶定理
若(LP)和(DP)均可行,那么(LP)和(DP)均有最优解,且 (LP)和(DP)均可行 那么(LP)和(DP)均有最优解 均可行, 均有最优解, 最优值相等。 最优值相等。 如果原问题有最优解, 如果原问题有最优解,则其对偶问题也一样具有最优 且有max w。 解,且有max z=min w。
19
需要指出, 需要指出 , 影子价格不是固定不变 当约束条件、 的 , 当约束条件 、 产品利润等发生变化 有可能使影子价格发生变化。 另外, 时 , 有可能使影子价格发生变化 。 另外 , 影子价格是指资源在一定范围内增加时 的情况, 当某种资源的增加超过了这个 的情况 , 一定的范围” “ 一定的范围 ” 时 , 总利润的增加量则 不是按照影子价格给出的数值线性地增 加 。 这个问题还将在灵敏度分析一节中 讨论。 讨论。
15
Ⅳ 最优性准则定理
若x,y分别(LP),(DP)的可行解,且cTx=bTy ,那么x,y x,y分别 分别(LP),(DP)的可行解 的可行解, 那么x,y 分别为(LP)和(DP)的最优解 的最优解。 分别为(LP)和(DP)的最优解。
16
三、影子价格
市场价格 确切的定义是: 影子价格 ,确切的定义是:一个线性规划对偶问 题的最优解(简称为“对偶最优解” 题的最优解(简称为“对偶最优解”)。 对偶变量y 代表对一个单位第i种资源的估价 种资源的估价。 对偶变量 i :代表对一个单位第 种资源的估价。 这种估价不是资源的市场价格, 这种估价不是资源的市场价格,而是根据资源在 生产中做出的贡献而作的估价。 生产中做出的贡献而作的估价。 bi 是线性规划原问题约束条件右端项,它代表第 是线性规划原问题约束条件右端项,它代表第i 种资源的拥有量。 种资源的拥有量。
第三章 线性规划问题的对偶与 灵敏度分析
本章内容重点 3.1线性规划的对偶问题概念、 线性规划的对偶问题概念、 线性规划的对偶问题概念 理论及经济意义 3.2线性规划的对偶单纯形法 线性规划的对偶单纯形法 3.3线性规划的灵敏度分析 线性规划的灵敏度分析
1
线性规划原问题
三种类型的设备, 例2.1:某工厂拥有A、B、C三种类型的设备, 生产甲、 乙两种产品。 生产甲 、 乙两种产品 。 每件产品在生产中需要 占用的设备机时数, 占用的设备机时数 , 每件产品可以获得的利润 以及三种设备可利用的时数如下表所示。 以及三种设备可利用的时数如下表所示 。 求获 最大利润的方案。 最大利润的方案。
产品甲 设备A 设备B 设备C 利润(元/件) 3 2 0 1500 产品乙 2 1 3 2500
2
设备能力 (h) 65 40 75
3.1线性规划对偶问题 3.1线性规划对偶问题
一、对偶问题: 对偶问题: 它的对偶问题就是一个价格系统, 它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后, 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力 若另外一个工厂要求租用该厂的设备A 若另外一个工厂要求租用该厂的设备A、B、C , 那么该厂应如何确定合理的租金。 那么该厂应如何确定合理的租金。 设 y1 ,y2 ,y3 分别为每工时设备 A、B、C 的租金。 的租金。
18
企业可以根据现有资源的影 子价格, 子价格 , 对资源的使用有两种考 虑: 第一, 第一 ,是否将设备用于外加工或出 租 , 若租费高于某设备的影子价 可考虑出租该设备, 格 , 可考虑出租该设备 , 否则不 宜出租。 宜出租。 第二,是否将投资用于购买设备, 第二 ,是否将投资用于购买设备 , 以扩大生产能力, 以扩大生产能力 , 若市价低于某 设备的影子价格, 设备的影子价格 , 可考虑买进该 设备,否则不宜买进。 设备,否则不宜买进。