2019年高二试题(文科数学参考答案)
(完整word版)2019年高考数学试卷全国卷1文科真题附答案解析
2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设312iz i-=+,则||(z = ) A .2B .3C .2D .12.(5分)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(UBA = )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}3.(5分)已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5151(0.61822--≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm5.(5分)函数2sin ()cos x xf x x x+=+的图象在[π-,]π的大致为( ) A .B .C .D .6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生7.(5分)tan 255(︒= ) A .23-B .23-+C .23D .23+8.(5分)已知非零向量a ,b 满足||2||a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 9.(5分)如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+ D .112A A=+10.(5分)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .312.(5分)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年全国Ⅱ卷文科数学高考试题及答案解析(选)
2019年全国Ⅱ卷文科数学高考试题答案及解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =( C )解析:由交集的定义可得, }21|{<<-=x x B A ,也即是(-1,2)点评:本题主要考查交集运算,注意集合的不等式表示和区间表示的方法的互换,属于容易题,送分题,考生应该在10秒内选出答案。
2.设z =i(2+i),则z =( D )解析:先根据复数的乘法运算法则求得z=i (2+i )=2i+i 2=-1+2i共轭复数的含义就是它的虚部变为相反数,所以i z 21--=点评:本题主要考查复数的运算及共轭复数,注重了基础知识、基本计算能力的考查,理解概念,准确计算,是解答此类问题的基本要求,考生在备考中一定要注意打好基础,本题是送分题,30秒内应该把答案找出来。
3.已知向量a =(2,3),b =(3,2),则|a -b |=( A )解析:由已知,a-b=(2,3)-(3,2)=(-1,1), ()211||22=+-=-b a点评: 主要考查平面向量的坐标运算,向量模长的计算,属于送分题,考生应该在1分钟内选出答案来。
4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( B )解析:概率为恰有2只测量过的情况占总共可能出现的情况:从5只中选3只,总共可能出现的情况1012334535=⨯⨯⨯⨯=C 恰有2只测量过该指标,也就是从标记的3只选2人,没标记的2只中选1只的总数;6231223=⨯=C C总概率: 531023351223=⨯==C C C P点评:本题主要考查古典概率的求解,应用组合的概念可以算出总共可能出现的情况,及满足条件的情况,考生也要熟练掌握组合的计算方法,本题属于容易题。
2019年高考全国2卷文科数学试题含答案解析
2019年高考全国2卷文科数学试题解析1.设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A 【解析】由题意{1,2,3,4}A B =,故选A.2.(1i)(2i)++=A .1i -B .13i +C .3i +D .33i + 【答案】B3.函数π()sin(2)3f x x =+最小正周期为 A .4π B .2π C . π D .π2【答案】C【解析】由题意2ππ2T ==,故选C. 4.设非零向量a ,b 满足+=-a b a b ,则A .a ⊥bB .=a bC .a ∥bD .>a b 【答案】A【解析】由+=-a b a b 平方得222222+⋅+=-⋅+a a b b a a b b ,即0⋅=a b ,则⊥a b ,故选A.5.若1a >,则双曲线2221x y a-=的离心率取值范围是A .)+∞B .2)C .D .(1,2) 【答案】C6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为221π36π3463π2V =⋅⋅⋅+⋅⋅=,故选B. 7.设,x y 满足约束条件2+330,2330,30,x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩则2z x y =+的最小值是A .15-B .9-C .1D .9 【答案】A【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()6,3B --处取得最小值,最小值为min 12315z =--=-.故选A.8.函数2()ln(28)f x x x =--的单调递增区间是A .(,2)-∞-B . (,1)-∞C . (1,)+∞D . (4,)+∞ 【答案】D9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙结果则知道自己的结果,丁看到甲的结果则知道自己结果,故选D.10.执行下面的程序框图,如果输入的1a=-,则输出的S=A.2 B.3 C.4 D.5【答案】B11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数:总计有25种情况,满足条件的有10种. 所以所求概率为102255=. 12.过抛物线2:4C y x =的焦点F ,3的直线交C 于点M (M 在x 的轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A 5B .2C . 23D . 33【答案】C二、填空题,本题共4小题,每小题5分,共20分. 13.函数()2cos sin f x x x =+的最大值为 . 5【解析】2()215f x ≤+=14.已知函数()f x 是定义在R 上函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = .【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=.15.长方体的长,宽,高分别为3,2,1,其顶点都在球O 球面上,则球O 的表面积为 . 【答案】14π【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===16.ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = .【答案】π3【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 17.(12分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S . 18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2AB BC AD BAD ABC ==∠=∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积. 19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100个网箱,测量各箱水产品产量(单位:kg ), 其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附:22()()()()()n ad bc K a b c d a c b d -=++++.K 2=22006266343815.70510010096104⨯⨯-⨯⨯⨯⨯()≈.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法. 20.(12分)设O 为坐标原点,动点M 在椭圆C 错误!未找到引用源。
2019年高二上学期期末考试数学文试卷含答案
2019年高二上学期期末考试数学文试卷含答案高二数学 (文科) xx.1本试卷共4页,共100分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共24分)一、选择题: (共大题共8小题,每小题3分,共24分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 直线的倾斜角为A. B. C. D.2. 用一个平面去截一个几何体,得到的截面不可能是圆的几何体是A. 圆锥B. 圆柱C. 球D..三棱锥3. 命题“使得成立”的否定形式是A. 使得成立B. 使得成立C.恒成立D.恒成立4.已知三条不同的直线,若,则“”是“∥”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 圆和圆的位置关系为A. 相交B. 内切C. 外切D. 内含6. 设,是两条不同的直线,,是两个不同的平面,且,,下列命题中正确的是A.若⊥,则⊥B.若∥,则∥C.若⊥,则⊥D.若⊥,则⊥7. 已知抛物线的焦点为,是上一点,且,则的值为A. 8B. 4C. 2D. 18.右图中的两条曲线分别表示某理想状态下捕食者和被捕食者数量随时间的变化规律.对捕食者和被捕食者数量之间的关系描述正确的是二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在答题卡中相应题中横线上)9.双曲线()的一条渐近线方程为,则.10. 设满足约束条件10,30,30.≥≥≤x yx yx-+⎧⎪+-⎨⎪-⎩则的最小值为.11.一个几何体的三视图如图所示,那么这个几何体的表面积是.112侧(左)视图2正(主)视图12. 如图,在三棱锥中,平面, ,,为上的动点,当 时,的值为 .13. 已知为椭圆中心,为椭圆的左焦点,分别为椭圆的右顶点与上顶点,为椭圆上一点,若,∥,则该椭圆的离心率为__________.14. 某销售代理商主要代理销售新京报、北京晨报、北京青年报三种报刊.代理商统计了过去连续100天的销售情况,数据如下:三种报刊中,日平均销售量最大的报刊是____________________;如果每份北京晨报的销售利润分别为新京报的1.5倍,北京青年报的1.2倍,那么三种报刊日平均销售利润最大的报刊是________________.三、解答题(本大题共6个小题,共52分,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分8分)已知直线过点,,且与直线:平行. (Ⅰ)求直线的方程;(Ⅱ)过点与垂直的直线交直线于点,求线段的长.16.(本题满分9分)如图,在正方体中. (I )求证:;(Ⅱ)是否存在直线与直线 都相交?若存在,请你在图中画出两条满足条件的直线(不必说明画法及理由);若不存在,请说明理由.17.(本题满分9分)A1A已知圆的圆心为点,且与轴相切,直线与圆交于 两点.(Ⅰ)求圆的方程; (Ⅱ)若,求的值.18.(本题满分9分)已知边长为2的正方形与菱形所在平面互相垂直,为中点.(Ⅰ)求证:∥平面. (Ⅱ)若,求四面体的体积.19.(本题满分9分)如图,在四棱锥中,底面是矩形,,,分别是,,的中点,底面.(Ⅰ)求证:平面∥平面.(Ⅱ)是否存在实数满足,使得平面平面?若存在,求出的值;若不存在,请说明理由.20.(本题满分8分)已知椭圆C :()的离心率为,且经过点(0,1),四边形的四个顶点都在椭圆上,对角线所在直线的斜率为,且,. (Ⅰ)求椭圆C 的方程; (Ⅱ)求四边形面积的最大值.FB东城区xx 第一学期期末教学统一检测高一数学(文科)参考答案一、选择题(共大题共8小题,每小题3分,共24分. 在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在答题卡中相应题中横线上)三、解答题(本大题共6个小题,共52分,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分8分)解:(Ⅰ)根据题意,得 , 解得.所以,.所求直线的方程为. ……4分 (Ⅱ)过点与垂直的直线方程为, 整理,得.由 解得. ||BC == ……8分16.(本题满分9分) (Ⅰ)证明:如图,连结.正方体, 平面. 平面, .四边形是正方形, . ,A1A平面. 平面,. ……5分(Ⅱ)存在.答案不唯一,作出满足条件的直线一定在平面中,且过的中点并与直线相交.下面给出答案中的两种情况, 其他答案只要合理就可以给满分.……9分 17.(本题满分9分)解:(Ⅰ)因为圆的圆心为点,且与轴相切, 所以圆的半径.则所求圆的方程为. ……5分 (Ⅱ)因为,,所以△为等腰直角三角形. 因为,则圆心到直线的距离.则,解得或. ……9分 18. (本题满分9分) (Ⅰ)方法一: 取中点,连结.∵四边形是正方形,为中点, ∴.∵四边形是菱形,∴.∴. ∴四边形是平行四边形. ∴∥. ∵平面,平面,∴∥平面. ……5分 方法二:∵四边形是正方形, ∴∥. ∵平面,平面, ∴∥平面. ∵四边形是菱形,FA1AA1A E M∴∥.∵平面,平面,∴∥平面.∵∥平面,∥平面,,∴平面∥平面.∵平面,∴∥平面.(Ⅱ)方法一:取中点,连结.∵在菱形中,,∴△为正三角形,∴.∵,∴.∵平面平面,平面平面,∴平面,∴为四面体的高.∴11112332ACM ACE E AC MMV V S EP--==⋅=⨯⨯⨯=……9分方法二:取中点,连结.∵在菱形,,∴△为正三角形,∴.∵,∴.∵四边形为正方形,∴.∵平面平面,∴平面.∵平面,平面,∴,.∴平面.∴为四面体的高.∵,∴.FF∴111333M AEC A EMC EMCV V AQ S--==⋅==.……9分19.(本题满分9分)(Ⅰ)连结.∵底面是矩形,是中点,∴也是的中点.∵是的中点,∴是△的中位线,∴∥.∵平面,平面,∴∥平面.∵是中点,是中点,∴是△的中位线,∴∥.∵平面,平面,∴∥平面.∵∥平面,∥平面,,∴平面∥平面.……5分(Ⅱ)存在,,即时,平面平面.方法一:∵底面,底面,底面,∴,.∵底面是矩形,∴.∵,∴平面.∵平面,∴.∵,为的中点,∴.当,即时,∴平面.∵平面,BB∴平面平面.此时 . ……9分 方法二:过点作∥. ∴,共面,即平面. ∵底面是矩形, ∴∥. ∵∥, ∴∥.∴,共面,即平面. ∴平面平面. ∵底面,底面, ∴.∵底面是矩形, ∴. ∵∥, ∴,. ∵, ∴平面. ∵平面,平面, ∴,,∴是平面和平面所成二面角的平面角. ∵平面平面, ∴.∵,为的中点, ∴.∴△是等腰直角三角形.∴.即时,平面平面. ……9分 20.(本题满分8分) 解(Ⅰ)根据题意得,2221,.c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得. 所求椭圆方程为. ……3分B(Ⅱ)因为,,所以对角线垂直平分线段.设,所在直线方程分别为,,,,中点.由得. 令,得. ,.则||NQ ==.同理.所以1||||2MNPQS MP NQ ==四边形.又因为,所以中点. 由点在直线上,得,所以1||||2MNPQS MP NQ ==四边形 . 因为,所以.所以当时,四边形面积的最大值为. ……8分M35033 88D9 裙20106 4E8A 亊M39052 988C 颌j38159 950F 锏32885 8075 聵38328 95B8 閸31461 7AE5 童29760 7440 瑀 1F21361 5371 危。
2019年全国统一高考数学试卷(文科)(新课标ⅲ)-含答案
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合{1A =-,0,1,2},2{|1}B x x =…,则(A B =I ) A .{1-,0,1}B .{0,1}C .{1-,1}D .{0,1,2}2.(5分)若(1)2z i i +=,则(z = ) A .1i --B .1i -+C .1i -D .1i +3.(5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14 C .13D .124.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为( ) A .0.5B .0.6C .0.7D .0.85.(5分)函数()2sin sin 2f x x x =-在[0,2]π的零点个数为( ) A .2B .3C .4D .56.(5分)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a =) A .16B .8C .4D .27.(5分)已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则( ) A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-8.(5分)如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM EN =,且直线BM ,EN 是相交直线B .BM EN ≠,且直线BM ,EN 是相交直线C .BM EN =,且直线BM ,EN 是异面直线D .BM EN ≠,且直线BM ,EN 是异面直线9.(5分)执行如图所示的程序框图,如果输入ò为0.01,则输出的s 值等于( )A .4122-B .5122-C .6122-D .7122-10.(5分)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则OPF ∆的面积为( )A .32B .52C .72D .9211.(5分)记不等式组6,20x y x y +⎧⎨-⎩……表示的平面区域为D .命题:(,)p x y D ∃∈,29x y +…;命题:(,)q x y D ∀∈,212x y +„.下面给出了四个命题 ①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝ 这四个命题中,所有真命题的编号是( ) A .①③B .①②C .②③D .③④12.(5分)设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A .233231(log )(2)(2)4f f f -->> B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>二、填空题:本题共4小题,每小题5分,共20分。
2019年高考文科数学(2卷)答案详解
a 2 1
图 A16 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考
生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。
17.(12 分)(立体几何) 如图,长方体 ABCD–A1B1C1D1 的底面 ABCD 是正方形,点 E 在棱 AA1 上,BE⊥EC1.
D.
5
【解析】从这 5 只兔子中随机取出 3 只的所有情况数为 C53 ,恰有 2 只测量过该指标的所有情况数为 C31C21 .
所以所求的概率为 P
C31C21 C52
3 5
.
第 1 页 共 11 页
PS:可以用列举法进行求解. 设 5 只兔子的编号为 1、2、3、A、B,其中 1、2、3 为测量过某项指
以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图 2 是一个棱数为 48 的半正多面体,
它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为 1.则该半正多面体共有________个面,
其棱长为_________.(本题第一空 2 分,第二空 3 分.)
第 5 页 共 11 页
【解析】由题意可知,该半正多面体所有顶点都在同一个正方体的表面上,由 18 个正方形面和 8 个三角形 面构成,所有该半正多面体共有 26 个面. 并且图中的一个八边形与正方体一个面的关系如图 A16 所示. 设该半正多面体的棱长 a,则有
A. 2
B.2
C. 5 2
【解析】∵ a b (1,1) ,∴|a b| 2 .
D.50
【答案】A
4.(概率统计)生物实验室有 5 只兔子,其中只有 3 只测量过某项指标,若从这 5 只兔子中随机取出 3 只,
高二文科数学期末试卷及答案
2019年高二文科数学期末试卷及答案2019年高二文科数学期末试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|x2+x-2=0},B={x|ax=1},若A∩B=B,则a= ( )A.-12或1B.2或-1C.-2或1或0D.-12或1或02.设有函数组:① ,;② ,;③ ,;④ , .其中表示同一个函数的有( ).A.①②B.②④C.①③D.③④3.若,则f(-3)的值为( )A.2B.8C.18D.124.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有( )A.1个B.2个C.3个D.4个5.下列函数中,在[1,+∞)上为增函数的是( )A.y=(x-2)2B.y=|x-1|C.y=1x+1D.y=-(x+1)26.函数f(x)=4x+12x的图象( )A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称7.如果幂函数y=xa的图象经过点2,22,则f(4)的值等于 ( )A.12B.2C.116D. 168.设a=40.9,b=80.48,c=12-1.5,则 ( )A.c> a>bB. b>a>cC.a>b>cD.a>c>b9 .设二次函数f(x)=a x2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是 ( )A.(-∞,0]B.[2,+∞)C.[0,2]D.(-∞,0]∪[2,+∞)10.已知f(x)在区间(0,+∞)上是减函数,那么f(a2-a+1)与f34的大小关系是 ( )A.f(a2-a+1)>f34B.f(a2-a+1)≤f34C.f(a2-a+1)≥f34D.f(a2-a+1)11.已知幂函数f(x)=xα的部分对应值如下表:x 1 12f(x) 1 22则不等式f(|x|)≤2的解集是 ( )A.{x|-4≤x≤4}B.{x|0≤x≤4}C.{x|-2≤x≤2}D.{x|012.若奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则的解集为( )A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每题5分,共20分,把最简答案填写在答题卡的横线上)13. 已知函数若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是________.14.已知f2x+1=lg x,则f(21)=___________________.15.函数的增区间是____________.16.设偶函数f(x)对任意x∈R,都有,且当x∈[-3,-2]时,f(x)=2x,则f(113.5)的值是____________.三.解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤).17.(本题满分10分) 已知函数,且 .(1)求实数c的值;(2)解不等式 .18.(本题满分12分) 设集合, .(1)若,求实数a的取值范围;(2)若,求实数a的取值范围;(3)若,求实数a的值.19.(本题满分12分) 已知函数 .(1)对任意,比较与的大小;(2)若时,有,求实数a的取值范围.20.(本题满分12分) 已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=2x4x+1.(1)求f(1)和f(-1)的值;(2)求f(x)在[-1,1]上的解析式.21.(本题满分12分) 已知函数f(x),当x,y∈R 时,恒有f(x+y)=f(x)+f(y).(1)求证:f(x)是奇函数;(2)如果x为正实数,f(x)<0,并且f(1)=-12,试求f(x)在区间[-2,6]上的最值.22.(本题满分12分) 已知函数f(x)=logax+bx-b(a>0,b>0,a≠1).(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性;2019年高二文科数学期末试卷答案2.D 在①中,的定义域为,的定义域为,故不是同一函数;在②中,的定义域为,的定义域为,故不是同一函数;③④是同一函数.3. C f(-3)=f(-1)=f(1)=f(3)=2-3=18.4. C 由x2+1=1得x=0,由x2+1=3得x=±2,∴函数的定义域可以是{0,2},{0,-2},{0,2,-2},共3个.5. B 作出A 、B、C、D中四个函数的图象进行判断.6. D f(x)=2x+2-x,因为f(-x)=f(x),所以f(x)为偶函数.所以f(x)的图象关于y轴对称.7. A ∵幂函数y=xa的图象经过点2,22,∴22=2a,解得a=-12,∴y=x ,故f(4)=4-12=12.8. D 因为a=40.9=21.8,b=80.48=21.44 ,c=12-1.5=21.5,所以由指数函数y=2x在(-∞,+∞)上单调递增知a>c>b.9. C 二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,则a≠0,f′(x)=2a(x- 1)<0,x∈[0,1],所以a>0,即函数图象的开口向上,对称轴是直线x=1.所以f(0) =f(2),则当f( m)≤f(0)时,有0≤m≤2.10. B ∵a2-a+1=a-122+34≥34,又f(x)在(0,+∞)上为减函数,∴f(a2-a+1)≤f34.11.A 由题表知22=12α,∴α=12,∴f(x)=x .∴(|x|) ≤2,即|x|≤4,故-4≤x≤4.12. B 根据条件画草图,由图象可知xfx<0⇔x>0,fx<0或x<0,fx>0⇔-313. (0,1) 画出分段函数f(x)的图象如图所示,结合图象可以看出,若f(x)=k有两个不同的实根,即函数y=f(x)的图象与y=k有两个不同的交点,k的取值范围为(0,1).14.-1 令2x+1=t(t>1),则x=2t-1,∴f(t)=lg2t-1,f(x)= lg2x-1(x>1),f(21)=-1.15.-∞,12 ∵2x2-3x+1>0,∴x<12或x>1.∵二次函数y=2x2-3x+1的减区间是-∞,34,∴f(x)的增区间是-∞,12.16.15. ∵f(-x)=f(x),f(x+6)=f(x+3+3)=-1fx+3=f(x),∴f(x)的周期为6.∴f(113.5)=f(19×6-0.5)=f(-0.5)=f(0.5) =f(-2.5+3)=-1f-2.5=-12×᠄ 0;-2.5=15.17.解:(1)因为,所以,由,即,.……5分(2)由(1)得:由得,当时,解得 .当时,解得,所以的解集为…10分18.解:(1)由题意知:,, .①当时,得,解得 .②当时,得,解得 .综上,.……4分(2)①当时,得,解得 ;②当时,得,解得 .综上,.……8分(3)由,则.……12分19.解:(1)对任意,,故.……6分(2)又,得,即,得,解得.……12分20.解:(1)∵f(x)是周期为2的奇函数,∴f(1)=f(1-2)=f(-1)=-f(1),∴f(1)=0,f(-1)=0 . ……4分(2)由题意知,f(0)=0.当x∈(-1,0)时,-x∈(0,1).由f(x)是奇函数,∴f(x)=-f(-x)=-2-x4-x+1=-2x4x+1,综上,f(x)=2x4x+1,x∈0,1,-2x4x+1, x∈-1,0,0, x∈{-1,0,1}.……12分∴f(x)+f(-x)=0,得f(-x)=-f(x),∴f(x)为奇函数.……6分(2)设x1则f(x2-x1)=f(x2+(-x1))=f(x2)+f(-x1)=f(x2)-f(x1).∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)-f(x1)<0,即f(x)在R上单调递减.∴f(-2)为最大值,f(6)为最小值.∵f(1)=-12,∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.∴f(x)在区间[-2,6]上的最大值为1,最小值为-3. ……12分22.解: (1)令x+bx-b>0,解得f(x)的定义域为(-∞,-b)∪(b,+∞).……2分(2)因f(-x)=loga-x+b-x-b=logax+bx-b-1=-logax+bx-b=-f(x),故f(x)是奇函数.……7分。
2019年高考全国2卷文科数学试题含答案解析
2019年高考全国2卷文科数学试题解析1.设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A 【解析】由题意{1,2,3,4}A B =,故选A.2.(1i)(2i)++=A .1i -B .13i +C .3i +D .33i + 【答案】B3.函数π()sin(2)3f x x =+最小正周期为 A .4π B .2π C . π D .π2【答案】C【解析】由题意2ππ2T ==,故选C. 4.设非零向量a ,b 满足+=-a b a b ,则A .a ⊥bB .=a bC .a ∥bD .>a b 【答案】A【解析】由+=-a b a b 平方得222222+⋅+=-⋅+a a b b a a b b ,即0⋅=a b ,则⊥a b ,故选A.5.若1a >,则双曲线2221x y a-=的离心率取值范围是A .)+∞B .2)C .D .(1,2) 【答案】C6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为221π36π3463π2V =⋅⋅⋅+⋅⋅=,故选B. 7.设,x y 满足约束条件2+330,2330,30,x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩则2z x y =+的最小值是A .15-B .9-C .1D .9 【答案】A【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()6,3B --处取得最小值,最小值为min 12315z =--=-.故选A.8.函数2()ln(28)f x x x =--的单调递增区间是A .(,2)-∞-B . (,1)-∞C . (1,)+∞D . (4,)+∞ 【答案】D9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙结果则知道自己的结果,丁看到甲的结果则知道自己结果,故选D.10.执行下面的程序框图,如果输入的1a=-,则输出的S=A.2 B.3 C.4 D.5【答案】B11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数:总计有25种情况,满足条件的有10种. 所以所求概率为102255=. 12.过抛物线2:4C y x =的焦点F ,3的直线交C 于点M (M 在x 的轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A 5B .2C . 23D . 33【答案】C二、填空题,本题共4小题,每小题5分,共20分. 13.函数()2cos sin f x x x =+的最大值为 . 5【解析】2()215f x ≤+=14.已知函数()f x 是定义在R 上函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = .【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=.15.长方体的长,宽,高分别为3,2,1,其顶点都在球O 球面上,则球O 的表面积为 . 【答案】14π【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===16.ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = .【答案】π3【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 17.(12分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S . 18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2AB BC AD BAD ABC ==∠=∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积. 19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100个网箱,测量各箱水产品产量(单位:kg ), 其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附:22()()()()()n ad bc K a b c d a c b d -=++++.K 2=22006266343815.70510010096104⨯⨯-⨯⨯⨯⨯()≈.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法. 20.(12分)设O 为坐标原点,动点M 在椭圆C 错误!未找到引用源。
2019届高二上学期期末考试(文科数学试卷及答案详解),推荐文档
⎪ - 2019 届高二上学期期末考试试卷文科数学考试时间:120 分钟满分:150 分)A .90B .110C .250D .2095. 将一条 5 米长的绳子随机地切断为两段,则两段绳子都不短于 1 米的概率为()注意事项:A .1B . 23 4 C.D .1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分。
考试结束后,请将答题卡上交。
55552. 答卷前,考生务必将自己的学校、姓名、班级、准考证号、考场号、座位号填写在答题卡上。
3. 选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,⎧3x + y - 2≤0 6. 已知变量 x , y 满足线性约束条件⎨x - y + 2≥0⎪⎩x + y +1≥0,则目标函数 z = 1 x - y 的最小值为( )2 用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
4. 非选择题的作答:用黑色签字笔在答题卡上对应的答题区域内作答。
答在试卷、草稿纸上无效。
5 A.B . 2413C . -2D .47. 下列四个命题中正确的是()5. 考生务必保持答题卡的整洁。
第 I 卷一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设全集U = {1,2,3,4,5}, M = {1,2,4}, N = {2,4,5},则(C U M )⋂ (C U N ) 等于( ) A . {4} B . {1,3}C . {2,5}D . {3}①若一个平面经过另一平面的垂线,那么这两个平面相互垂直;②若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;③垂直于同一条直线的两个平面相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.A .①③B .①④C .①②④D .①③④8. 某四棱锥的三视图如图所示,则该四棱锥的体积为( )42.设 x ∈ R ,“ x > 1 ”是“ x ≥ 1”的()A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件3. 已知直线l 经过点 P (-2,5),且斜率为- 3,则直A .B . 2 3C .8 D . 23ππ线l 的方程为()49. 若cos(+ ) = 1,∈(0, ) ,则sin的值为()4 32 A . 3x + 4 y -14 = 0 B . 3x - 4 y +14 = 0 A . 2B .4 + 2 C . 7D .4 - 236186C . 4x + 3y -14 = 0D . 4x - 3y +14 = 010. 若圆C 的半径为 1,圆心在第一象限,且与直线4x - 3y = 0 和 x 轴都相切,则该圆的标准方程是( )4.如果执行右面的程序框图,那么输出的 S = (A . (x - 2)2 + ( y -1)2 = 1B . (x - 2)2 + ( y +1)2 = 133 2 2 2 ⎝2 ⎪⎣ 6 3 ⎦∆ C . (x + 2)2 + ( y -1)2 = 1D . (x - 3)2 + ( y -1)2 = 111. 《莱因德纸草书》(Rhind Papyrus )是世界上最古老的数学著作之一,书中有这样一道题:把 120个面包分成 5 份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的 7 倍, 则最少的那份有( )个面包.三、解答题(本大题共 6 小题,共 70 分。
2019年全国统一高考文科数学全国II卷(含答案)
A.2B.3
C.4D.8
【答案】D
【解析】
【分析】
利用抛物线与椭圆有共同的焦点即可列出关于 的方程,即可解出 ,或者利用检验排除的方法,如 时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,故选D.
【详解】因为抛物线 的焦点 是椭圆 的一个焦点,所以 ,解得 ,故选D.
3.已知向量a=(2,3),b=(3,2),则|a–b|=
A. B.2
C.5 D.50
【答案】A
【解析】
【分析】
本题先计算 ,再根据模的概念求出 .
【详解】由已知, ,
所以 ,
故选A
【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.
乙:丙的成绩比我和甲的都高.
丙:我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为
A.甲、乙、丙B.乙、甲、丙
C.丙、乙、甲D.甲、丙、乙
【答案】A
【解析】
【分析】
利用逐一验证的方法进行求解.
【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.
1.已知集合 , ,则A∩B=
A.(–1,+∞)B.(–∞,2)
C.(–1,2)D.
2019年普通高等学校招生全国统一考试文科数学
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则UB A =A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(51-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年全国统一高考数学试卷(文科)以及答案解析(全国1卷)
绝密★启用前2019年高考普通高等学校招生全国统一考试(全国1卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则|z|=()A.2B.C.D.12.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=()A.﹣2﹣B.﹣2+C.2﹣D.2+8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.9.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+10.(5分)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为()A.2sin40°B.2cos40°C.D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A =﹣,则=()A.6B.5C.4D.312.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1二、填空题:本题共4小题,每小题5分,共20分。
2019—2020高二下学期期末文科数学试题与答案
2019-2020学年高二第二学期期末考试数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}32,41P <<=<<=x x Q x x ,则=Q P ( )A {}21≤<x xB {}32<<x xC {}43<≤x xD {}41<<x x 2. 已知R a ∈,若i a a )2(1-+-(i 为虚数单位)是实数,则=a ( ) A 1 B -1 C 2 D -2 3. 函数)32sin()(π+=x x f 的最小正周期为( )A π4B π2C π D2π4. 函数12)2()(2+-+=x m x x f 为偶函数,则m 的值是( ) A 1 B 2 C 3 D 45.下列函数中,在区间),(∞+0上单调递增的是( ) A 21x y = B x y -=2 C x y 21log = D xy 1=6.已知向量→a ,→b ,满足1=→a ,则1-=•→→b a ,则=-•→→→)2(b a a ( ) A 0 B 2 C 3 D 47. 圆2)1(22=++y x 的圆心到直线3+=x y 的距离为( ) A 1 B 2 C2 D 228. 某三棱柱的底面为正三角形,其三视图如图所示, 该三棱柱的表面积为( ) A 36+ B 326+ C 312+ D 3212+9. 已知135)sin(=-απ,则)2cos(απ+等于( ) A 135 B 1312 C 135- D 1312-10. 等比数列{}n a 中,已知26=a ,则9876543a a a a a a a =( ) A 52 B 62 C 72 D 82 11. 已知1,0,0=+>>b a b a ,则ba 11+的取值范围是( ) A ),2(+∞ B [)+∞,2 C ),4(+∞ D [)+∞,4 12. 设方程a x =-32的解的个数为m ,则m 不可能等于( ) A 1 B 2 C 3 D 4二、填空题:本题共 4 小题,每小题 5 分,共 20 分. 13. =- 15sin 45cos 15cos 45sin 14. 甲乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率是15. 若y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤-≥+-0220201y x y x y x ,则y x z +=的最大值为16.已知2,1,,b a 的中位数为3,平均数为4,则=ab三、解答题、共70分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知数列{}n a 是公差为d 的等差数列,.9,331==a a (Ⅰ)求通项n a ;(Ⅱ)数列{}n b 满足n a b n 2=),3,2,1(⋅⋅⋅=n ,求数列{}n b 的前项和n S .18.(本小题满分12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.已知13,5,22===c b a . (Ⅰ)求角C 的大小; (Ⅱ)求A sin 的值; (Ⅲ)求)42sin(π+A 的值.19. (本小题满分12分)如图,三棱锥ABC P -中,PA PC PC PB PB PA ⊥⊥⊥,,,2===PC PB PA ,E 是AC 的中点,点F 在线段PC 上. (Ⅰ)求证:AC PB ⊥;(Ⅱ)若//PA 平面BEF ,求四棱锥APFE B -的体积.( 参考公式:锥体的体积公式Sh V 31=,其中S 是底面积,h 是高 )20. (本小题满分12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对商场的(Ⅰ)服务满意的概率;(Ⅱ)能否有%95的把握认为男、女顾客对商场服务的评价有差异?附:))()()(()(22d b c a d c b a bc ad n K ++++-=,其中d c ba n +++=.21.(本小题满分12分) 已知函数.cos )(x x e x f x -=(Ⅰ)求曲线)(x f y =在点))0(,0(f 处的切线方程; (Ⅱ)求函数)(x f 在区间⎥⎦⎤⎢⎣⎡2,0π上的最大值和最小值.22.(选修4-4,本小题满分12分)在平面直角坐标系xOy 中,圆C 的方程为25)6(22=++y x .(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是)(sin cos 为参数t t y t x ⎩⎨⎧==αα,l 与C 交于B A ,两点,10=AB ,求l 的斜率.2019-2020学年高二第二学期期末考试数学(文科)参考答案一、选择题二、填空题 (每小题4分,共20分)13. 21 14. 65 15. 2316. 3617.(10分)(1)由已知可得等差数列{}n a 的公差3=d ,首项31=a , 所以n a n 3=……………………………………………………5分 (2)由(1)可得nn n a b 232⋅==,所以{}n b 是首项为6,公比为2的等比数列.所以62621)21(6-⋅=--=n n n S ………………………………10分 18. (12分)(1)在△ABC 中,由余弦定理及13,5,22===c b a 有,222cos 222=-+=ab c b a C 又因为),0(π∈C ,所以4π=C …………………………………………4分(2)在△ABC 中,由正弦定理及13,,22,4===c a C π,可得13132sin sin ==c C a A ……………………………………………8分 (3)由c a <及13132sin =A ,可得13133sin 1cos 2=-=A A , 故有1351cos 22cos ,1312cos sin 22sin 2=-===A A A A A ,所以, 26217221352213124sin2cos 4cos2sin )42sin(=⨯+⨯=+=+πππA A A……………………………………….12分19. (12分)ACPB PAC AC PB P PC PAPC PAC PA PC PB PB PA ⊥∴⊂⊥∴=⊂⊂⊥⊥,.PAC ,,,,)1(平面又平面平面平面 ……………………………………………4分.//,,,//2EF PA EF PAC BEF PAC PA BEF PA ∴=⊂平面平面平面平面)(.中点为的中点,为又PC F AC E ∴PAC FEC PAC APEF S S S S ∆∆∆=-=∴43四边形 22221,2,=⨯⨯=∴==⊥∆PAC S PC PA PA PC.23=∴APEF S 四边形由(1)得,PAC PB 平面⊥ 的高,是四棱锥APFE B PB -=∴2 12233131=⨯⨯=⋅=∴-PB S V APFE APFE B 四边形四棱锥 ………………………………………………………12分20.(12分)(1)由调查数据,男顾客中对该商场服务满意的比率为8.05040= 因此男顾客对该商场服务满意的概率的估计值为0.8 女顾客中对该商场服务满意的比率为6.05030= 因此女顾客对该商场服务满意的概率的估计值为0.6………………6分(2)762.430705050)10302040(10022≈⨯⨯⨯⨯-⨯=K 由于841.3762.4>,故有%95的把握认为男、女顾客对该商场服务的评价有差异………………………………………….12分21.(12分)(1)因为.cos )(x x e x f x-=, 所以.0)0(,1)sin (cos )(='--='f x x e x f x .又因为1)0(=f ,所以曲线)(x f y =在点))0(,0(f 处的切线方程为1=y ………………4分 (2)设1)sin (cos )(--=x x e x h x,则.sin 2)cos sin sin (cos )(x e x x x x e x h x x -=---='当)2,0(π∈x 时,0)(<'x h ,所以)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π上单调递减. 所以对任意⎥⎦⎤⎝⎛∈2,0πx 有)0()(h x h <,即)(x f '<0 所以函数)(x f 在区间⎥⎦⎤⎢⎣⎡2,0π上单调递减. 因此)(x f 在区间⎥⎦⎤⎢⎣⎡2,0π上的最大值为1)0(=f ,最小值为2)2(ππ-=f . …………………………………………………………….12分22. (12分)(1)由θρθρsin ,cos ==y x 可得圆的极坐标方程为.011cos 122=++θρρ……………………………4分(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为)(R ∈=ραθ.设B A ,所对应的极径分别为21,ρρ,将l 的极坐标方程代入C 极坐标方程,得.011cos 122=++αρρ.于是11,cos 122121=-=+ρραρρ..44cos 1444)(22122121-=-+=-=αρρρρρρAB由10=AB ,得315tan ,83cos 2±==αα.所以l 的斜率为315或.315-…………………………12分 (其它解法同样给分)。
(完整版)2019年高考文科数学全国2卷含答案
2019年普通高等学校招生全国统一考试(全国II 卷) 文科数学1.设集合{}1-|>=x x A ,{}2|<=x x B ,则=⋂B A ( ) A. ),1(+∞- B. )2,(-∞ C. )2,1(- D. φ2. 设(2)z i i =+,则z = ( ) A. 12i + B. 12i -+ C. 12i - D. 12i --3. 已知向量(2,3)=a , (3,2)=b ,则-=a b ( )B. 2C. D. 504. 生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23 B. 35C. 25D. 155. 在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6. 设()f x 为奇函数,且当0≥x 时,()1=-xf x e ,则当0<x 时,()=f x ( ) A. 1--x e B. 1-+x e C. 1---x e D . 1--+x e7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面8. 若123,44x x ππ==是函数()sin (0)f x x ωω=>两个相邻的极值点,则ω=A .2B. 32C. 1D.129.若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( ) A.2 B.3 C.4 D.810. 曲线2sin cos y x x =+在点(,1)π-处的切线方程为( ) A. 10x y π---= B. 2210x y π---= C. 2210x y π+-+= D. 10x y π+-+=11. 已知(0,)2πα∈,2sin 2cos21αα=+,则sin α=( )A.15D.512.设F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,0为坐标原点,以OF 为直径的圆与圆222x y a +=交于,P Q 两点,若PQ OF =,则C 的离心率为:A.2B.3C.2D.5 二、填空题13. 若变量,x y 满足约束条件23603020x y x y y +-≥⎧⎪+-≤⎨⎪-≤⎩则3z x y =-的最大值是 .14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站的高铁列车所有车次的平均正点率的估计值为 .15. ABC ∆的内角,,A B C 的对边分别为,,a b c .已知sin cos 0b A a B +=,则B = . 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)三、解答题17.如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥. (1)证明:BE ⊥平面11EB C(2)若1AE AE =,3AB =,求四棱锥11E BB C C -的体积.18.已知{}n a 是各项均为正数的等比数列,162,2231+==a a a . (1)求{}n a 的通项公式:(2)设n n a b 2log =,求数列{}n b 的前n 项和.19. 某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[)0.20,0-[)0,0.20[)0.20,0.40 [)0.40,0.60 [)0.60,0.80企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 748.602≈.20. 已知12,F F 是椭圆C :22221(0,0)x y a b a b+=>>的两个焦点,P 为C 上的点,O 为坐标原点.(1)若2POF ∆为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF ∆的面积等于16,求b 的值和a 的取值范围.21. 已知函数()(1)ln 1=---f x x x x .证明: (1)()f x 存在唯一的极值点;(2)()0=f x 有且仅有两个实根,且两个实根互为倒数.四、选做题(2选1)22.在极坐标系中,O 为极点,点00(,)M ρθ0(0)ρ>在曲线:=4sin C ρθ上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当03πθ=时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 23.[选修4-5:不等式选讲]已知 ()|||2|()f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集: (2)若(,1)x ∈-∞时,()0f x <,求a 得取值范围.2019年普通高等学校招生全国统一考试(全国II 卷 )文科数学答 案1. 答案:C 解析:{}1-|>=x x A ,{}2|<=x x B ,∴)(2,1-=⋂B A .2. 答案:D 解析:因为(2)12z i i i =+=-+,所以12z i =--. 3. 答案:A 解答:由题意知(1,1)-=-a b ,所以2-=a b .4. 答案:B 解答:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B ()()()()2,3,2,3,2,,3,,A B A B A B ,则恰好有两只测量过的有6种,所以其概率为35.5.答案:A 解答:根据已知逻辑关系可知,甲的预测正确,乙丙的预测错误,从而可得结果. 6. 答案:D 解答:当0<x 时,0->x ,()1--=-xf x e ,又()f x 为奇函数,有()()1-=--=-+xf x f x e .7. 答案:B解析:根据面面平行的判定定理易得答案. 8.答案:A 解答:由题意可知32442T πππ=-=即T=π,所以=2ω. 9.答案:D 解析:抛物线)0(22>=p px y 的焦点是)0,2(p,椭圆1322=+p y p x 的焦点是)0,2(p ±, ∴p p22=,∴8=p . 10. 答案:C 解析:因为2cos sin y x x '=-,所以曲线2sin cos y x x =+在点(,1)π-处的切线斜率为2-, 故曲线2sin cos y x x =+在点(,1)π-处的切线方程为2210x y π+-+=. 11. 答案:B 解答:(0,)2πα∈,22sin 2cos 214sin cos 2cos ααααα=+⇒=,则12sin cos tan 2ααα=⇒=,所以cos α==,所以sin α==. 12. 答案:A解析:设F 点坐标为)0,2c (,则以OF 为直径的圆的方程为2222)2⎪⎭⎫⎝⎛=+-c y c x (-----①,圆的方程222a y x =+-----②,则①-②,化简得到c a x 2=,代入②式,求得caby ±=,则设P 点坐标为),2c ab c a (,Q 点坐标为),2c ab c a -(,故cab PQ 2=,又OF PQ =,则,2c cab=化简得到2222b a c ab +==,b a =∴,故2222==+==aaa b a a c e .故选A. 二、填空题 13. 答案:9 解答:根据不等式组约束条件可知目标函数3z x y =-在()3,0处取得最大值为9. 14.答案:0.98 解答:平均正点率的估计值0.97100.98200.99100.9840⨯+⨯+⨯==.15.答案:34π 解析:根据正弦定理可得sin sin sin cos 0B A A B +=,即()sin sin cos 0A B B +=,显然sin 0A ≠,所以sin cos 0B B +=,故34B π=.16.答案:1 解析:由图2结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解. 三、解答题 17.答案: (1)看解析 (2)看解析 解答:(1)证明:因为11B C C ⊥面11A B BA ,BE ⊥面11A B BA∴11B C BE ⊥ 又1111C E B C C ⋂=,∴BE ⊥平面11EB C ;(2)设12AA a =则 229BE a =+,22118+a C E =,22194C B a =+ 因为22211=C B BE C E + ∴3a =,∴11111h 3E BB C C BB C C V S -=1363=183=⨯⨯⨯ 18.答案: (1)122-=n n a ; (2)2n解答:(1)已知162,2231+==a a a ,故162121+=q a q a ,求得4=q 或2-=q ,又0>q ,故4=q ,则12111242---=⋅==n n n n q a a .(2)把n a 代入n b ,求得12-=n b n ,故数列{}n b 的前n 项和为22)]12(1[n nn =-+.19. 答案: 详见解析 解答:(1)这类企业中产值增长率不低于40%的企业比例是14721100100+=, 这类企业中产值负增长的企业比例是2100. (2)这类企业产值增长率的平均数是()0.1020.10240.30530.50140.7071000.30-⨯+⨯+⨯+⨯+⨯÷=⎡⎤⎣⎦这类企业产值增长率的方差是()()()()()222220.100.3020.100.30240.300.30530.500.30140.700.3071000.0296⎡⎤--⨯+-⨯+-⨯+-⨯+-⨯÷=⎣⎦所以这类企业产值增长率的标准差是28.6020.172040.17100==⨯=≈. 20. 答案: 详见解析 解答:(1)若2POF ∆为等边三角形,则P 的坐标为,22c ⎛⎫± ⎪ ⎪⎝⎭,代入方程22221x y a b +=,可得22223144c c a b+=,解得24e =±1e =. (2)由题意可得122PF PF a +=,因为12PF PF ⊥,所以222124PF PF c +=, 所以()22121224PF PF PF PF c +-⋅=,所以222122444PF PF a c b ⋅=-=,所以2122PF PF b ⋅=,所以122121162PF F S PF PF b ∆=⋅==,解得4b =. 因为()212124PF PF PF PF +≥⋅,即()21224a PF PF ≥⋅,即212a PF PF ≥⋅,所以232a ≥,所以a ≥21. 答案:见解析解答:(1)1()ln (0)'=->f x x x x ,设1()ln =-g x x x ,211()0'=+>g x x x则()g x 在(0,)+∞上递增,(1)10=-<g ,11(2)ln 2ln 022=->=g , 所以存在唯一0(1,2)∈x ,使得00()()0'==f x g x ,当00<<x x 时,0()()0<=g x g x ,当0>x x 时,0()()0>=g x g x ,所以()f x 在0(0,)x 上递减,在0(,)+∞x 上递增,所以()f x 存在唯一的极值点.(2)由(1)知存在唯一0(1,2)∈x ,使得0()0'=f x ,即001ln =x x , 00000000011()(1)ln 1(1)1()0=---=---=-+<f x x x x x x x x x , 22221113()(1)(2)110=----=->f e e e e,2222()2(1)130=---=->f e e e e , 所以函数()f x 在0(0,)x 上,0(,)+∞x 上分别有一个零点.设12()()0==f x f x ,(1)20=-<f ,则1021<<<x x x ,有1111111(1)ln 10ln 1+---=⇒=-x x x x x x , 2222221(1)ln 10ln 1+---=⇒=-x x x x x x , 设1()ln 1+=--x h x x x ,当0,1<≠x x 时,恒有1()()0+=h x h x, 则12()()0+=h x h x 时,有121=x x .22.答案:(1)0ρ=l 的极坐标方程:sin()26πρθ+=;(2)P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 解析:(1)当03πθ=时,00=4sin 4sin 3πρθ==以O 为原点,极轴为x轴建立直角坐标系,在直角坐标系中有M ,(4,0)A,OM k =,则直线l的斜率3k =-,由点斜式可得直线l:(4)3y x =--,化成极坐标方程为sin()26πρθ+=;(2)∵l OM ⊥∴2OPA π∠=,则P 点的轨迹为以OA 为直径的圆,此时圆的直角坐标方程为22(2)4x y -+=,化成极坐标方程为=4cos ρθ,又P 在线段OM 上,由4sin 4cos ρθρθ=⎧⎨=⎩可得4πθ=,∴P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 23.答案(1)看解析(2)看解析解答:(1)当1a =时,22242(2),()12(1)22(12),242(1).x x x f x x x x x x x x x x ⎧-+≥⎪=-+--=-<<⎨⎪-+-≤⎩所以不等式()0f x <等价于224202x x x ⎧-+<⎨≥⎩或22012x x -<⎧⎨<<⎩或224201x x x ⎧-+-<⎨≤⎩解得不等式的解集为{}2x x <。
2019年普通高等学校招生全国统一考试文科数学(含答案)
2019年普通高等学校招生全国统一考试文科数学(含答案)本试卷共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2)C .(–1,2)D .∅2.设z =i(2+i),则z = A .1+2i B .–1+2iC .1–2iD .–1–2i3.已知向量a =(2,3),b =(3,2),则|a –b |=A B .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23 B .35 C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 8.若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .129.若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .8 10.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15BCD12.设F为双曲线C:22221x ya b-=(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为ABC.2 D二、填空题:本题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件23603020x yx yy⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则z=3x–y的最大值是___________.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.15.ABC△的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=__________ _.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。
2019年全国统一高考数学试卷(文科)(新课标Ⅱ)(解析版)
绝密★启用前2019年普通高等学校招生全国统一考试文科数学本试卷共5页。
考试结束后,将本试卷和答题卡一并交回 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A. (–1,+∞) B. (–∞,2) C. (–1,2) D. ∅【答案】C 【解析】 【分析】本题借助于数轴,根据交集的定义可得. 【详解】由题知,(1,2)AB =-,故选C .【点睛】本题主要考查交集运算,容易题,注重了基础知识、基本计算能力的考查.易错点是理解集合的概念及交集概念有误,不能借助数轴解题.2.设z =i(2+i),则z = A. 1+2i B. –1+2i C. 1–2i D. –1–2i【答案】D 【解析】本题根据复数的乘法运算法则先求得z ,然后根据共轭复数的概念,写出z . 【详解】2i(2i)2i i 12i z =+=+=-+, 所以12z i =--,选D .【点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.已知向量a =(2,3),b =(3,2),则|a –b |= A.B. 2C.D. 50【答案】A 【解析】 【分析】本题先计算a b -,再根据模的概念求出||-a b . 【详解】由已知,(2,3)(3,2)(1,1)-=-=-a b , 所以22||(1)12-=-+=a b ,故选A【点睛】本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错.4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A. 23B.35 C. 25D. 15【答案】B 【解析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种, 所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A. 甲、乙、丙 B. 乙、甲、丙 C. 丙、乙、甲 D. 甲、丙、乙【答案】A 【解析】 【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.6.设f (x )为奇函数,且当x ≥0时,f (x )=1x e -,则当x <0时,f (x )= A. e 1x --B. e 1x -+C. e 1x ---D. e 1x --+【答案】D 【解析】 【分析】先把x <0,转化为-x>0,代入可得()f x -,结合奇偶性可得()f x .【详解】()f x 是奇函数,020011()f x x x =+'.当0x <时,0x ->,()e 1()x f x f x --=-=-,得()e 1xf x -=-+.故选D . 【点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.7.设α,β为两个平面,则α∥β的充要条件是 A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. α,β平行于同一条直线 D. α,β垂直于同一平面 【答案】B 【解析】 【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B . 【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.8.若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A. 2 B. 32C. 1D. 12【答案】A 【解析】 【分析】 从极值点可得函数的周期,结合周期公式可得ω.【详解】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,得2ω=.故选A . 【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用方程思想解题.9.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A. 2B. 3C. 4D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.10.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为 A. 10x y --π-= B. 2210x y --π-= C. 2210x y +-π+= D. 10x y +-π+=【答案】C 【解析】 【分析】先判定点(,1)π-是否为切点,再利用导数的几何意义求解. 【详解】当x π=时,2s i n c o s y =π+π=-,即点(,1π-在曲线2s i n c y x x=+上.2c o s s i n ,y x x '=-2cos si n 2,x y πππ=∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .【点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养.采取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.11.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα= A.15 B.55C. D.25【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又s i n 0α>,sin α∴=故选B .【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.12.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A.B. 3C. 2D.5【答案】A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=,故选A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.二、填空题:本题共4小题,每小题5分,共20分.13.若变量x ,y 满足约束条件23603020x y x y y ,,,+-≥⎧⎪+-≤⎨⎪-≤⎩则z =3x –y 的最大值是___________.【答案】9. 【解析】 【分析】作出可行域,平移30x y -=找到目标函数取到最大值的点,求出点的坐标,代入目标函数可得. 【详解】画出不等式组表示的可行域,如图所示,阴影部分表示的三角形ABC 区域,根据直线30x y z --=中的z 表示纵截距的相反数,当直线3z x y =-过点3,0C ()时,z 取最大值为9.【点睛】本题考查线性规划中最大值问题,渗透了直观想象、逻辑推理和数学运算素养.采取图解法,利用数形结合思想解题.搞不清楚线性目标函数的几何意义致误,从线性目标函数对应直线的截距观察可行域,平移直线进行判断取最大值还是最小值.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.15.V ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】34π. 【解析】 【分析】先根据正弦定理把边化为角,结合角的范围可得. 【详解】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠得sin cos 0B B +=,即tan 1B =-,3.4B π∴=故选D . 【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在(0,)π范围内,化边为角,结合三角函数的恒等变化求角.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】 (1). 共26个面. (2). 21. 【解析】 【分析】第一问可按题目数出来,第二问需正方体中简单还原出物体位置,利用对称性,平面几何解决.【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,22,2(21)1BG GE CH x GH x x x ∴===∴=+==, 21x ∴==,即该半正多面体棱长为1x x -.【点睛】本题立意新颖,空间想象能力要求高,物体位置还原关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.三、解答题:共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高二月考试题文科数学参考答案13.14.2 15. 13x x ⎧⎫>-⎨⎬⎩⎭ 16. (一)必考题:共60分。
17.(本小题满分12分)已知数列{}n a 是等差数列,23a =,56a =,数列{}n b 的前n 项和为n S ,且22n n b S -=. (Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)记21n n n n na c a ab ++=⋅⋅,求数列{}n c 的前n 项和为n T .解:(1)由已知得11346a d a d +=⎧⎨+=⎩,解得12,1a d ==,所以1n a n =+…………………………2分当1n =时,1122b b -=,12b ∴= (1)…………………………………………3分1122222n n n n b S n b S ---=⎧⎨≥-=⎩当时,,当2n ≥时,12n n b b -= (2)………………………5分 由(1),(2)得2n n b =…………………………………………………………………………6分 (Ⅱ)由(Ⅰ)知,所以32(1)(2)n n n c n n +=⋅+⋅+……………………………………………………8分1112(1)2(2)n n nc n n -⇒=-⋅+⋅+……………………………………………………………10分 01122311111111111()()()()2223232424252(1)2(2)22(2)n nn n n T T n n n -⇒=-+-+-+⋅⋅⋅-⇒=-⋅⋅⋅⋅⋅⋅⋅+⋅+⋅+……………………………………………………………………………………………………12分 18.(本小题满分12分)如图,在四棱锥A B C D E -中,底面BCDE 是直角梯形,//BE CD ,90BED ∠=,且22AD CD BE ===,AE ⊥底面BCDE 。
(Ⅰ)若F 为AD 的中点,求证://EF 平面ABC(Ⅱ)若AB 与底面BCDE 所成角为4π,求四棱锥A BCDE -的体积解:(Ⅰ)取AC 的中点G ,连接BG ,FG ,EF ………… ……………………………( 1分)因为//BE CD ,且12BE CD =又因为FG 为三角形ACD 的中位线,所以FG 平行且等于12CD 故//BE FG 且BE FG =,即BEFG 为平行四边形,因此//EF BG ………… ……………………… …………………………………………( 3分) 又因为EF ⊄平面ABC ,BG ⊂平面ABC所以//EF 平面ABC ………… …………… ………………………………………………( 4分) (Ⅱ)因为AE ⊥底面BCDE所以ABE ∠即为AB 与底面BCDE 所成角, 故4ABE π∠=。
因此1AE BE == ………… …………………………………………( 6分)因为AE ⊥底面BCDE ,DE BCDE ⊂平面,所以AE DE ⊥在直角三角形ADE 中,1AE =,2AD =,所以DE =11+22BCDE S =⨯=梯形()11133A BCDE BCDE V S AE -=⋅==梯形。
19.(本小题满分12分)某商店销售某海鲜,统计了春节前后50天该海鲜的需求量x (1020x ≤≤,单位:公斤),其频率分布直方图如图所示,该海鲜每天进货1次,商店每销售1公斤可获利50元;若供大于求,剩余的削价处理,每处理1公斤亏损10元;若供不应求,可从其它商店调拨,销售1公斤可获利30元.假设商店每天该海鲜的进货量为14公斤,商店的日利润为y 元.(Ⅰ)求商店日利润y 关于需求量x 的函数表达式; (Ⅱ)假设同组中的每个数据用该组区间的中点值代替.①求这50天商店销售该海鲜日利润的平均数; ②估计日利润在区间[]580,760内的概率.【答案】(1)30280,142060140,1014x x y x x +≤≤⎧=⎨-≤<⎩;(2)①698.8元;②0.54.解:(1)商店的日利润y 关于需求量x 的函数表达式为:()()50143014,1420501014,1014x x y x x x ⎧⨯+⨯-≤≤⎪=⎨-⨯-≤<⎪⎩,化简得30280,142060140,1014x x y x x +≤≤⎧=⎨-≤<⎩.………………………………6分 (2)①由频率分布直方图得:海鲜需求量在区间[)10,12的频率是20.080.16⨯=; 海鲜需求量在区间[)12,14的频率是20.120.24⨯=; 海鲜需求量在区间[)14,16的频率是20.150.30⨯=; 海鲜需求量在区间[)16,18的频率是20.100.20⨯=; 海鲜需求量在区间[]18,20的频率是20.050.10⨯=; 这50天商店销售该海鲜日利润y 的平均数为:()()()11601400.1613601400.2415302800.30⨯-⨯+⨯-⨯+⨯+⨯+()()17302800.2019302800.10⨯+⨯+⨯+⨯83.2153.621915885698.8=++++=(元)…………………8分②由于14x =时,30142806014140700⨯+=⨯-=, 显然30280,142060140,1014x x y x x +≤≤⎧=⎨-≤<⎩在区间[]10,20上单调递增,58060140y x ==-,得12x =; 76030280y x ==+,得16x =;日利润y 在区间[]580,760内的概率即求海鲜需求量x 在区间[]12,16的频率:0.240.300.54+=.………12分 20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F 、,过点2F 且垂直于x 轴的直线截椭圆形成,且椭圆C的离心率为2,过点1F 的直线l 与椭圆C 交于,M N 两点. (1)求椭圆C 的标准方程;(2)若点(2,0)R ,且RM RN λ∙≤,则当λ取得最小值时,求直线l 的方程.解:(1)联立2222,1,x c x y a b =⎧⎪⎨+=⎪⎩解得2b y a =±,故22b a =.又2c a =,222a b c =+,解得a =1b =,故椭圆C 的标准方程为2212x y +=.…………………………………………………………………………4分(2)设11(,)M x y ,22(,)N x y ,故1122(2,)(2,)RM RN x y x y ⋅=-⋅-uuu r uu u r.当直线l 垂直于x 轴时,121x x ==-,12y y =-,且2112y =,此时211117(3,)(3,)92RM RN y y y ⋅=-⋅--=-=uuu r uuu r .………………………………………………………6分当直线l 不垂直于x 轴时,设直线:(1)l y k x =+,联立22(1),22,y k x x y =+⎧⎨+=⎩ 整理得2222(12)4220k x k x k +++-=,所以2122412k x x k-+=+,21222212k x x k -=+,…………………………………………………………………………………………8分故21212122()4(1)(1)RM RN x x x x k x x ⋅=-+++++uuu r uu u r22222222121222224(1)(2)()4(1)(2)41212k k k x x k x x k k k k k k-=++-+++=+--++++2221721713171222(12)2k k k +==-<++.综上所述,λ的最小值为172,此时直线l 的方程为1x =-.……………………………………………………………………………………………12分21.(本小题满分12分)已知函数()e x f x ax =-(a 为常数)的图象与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为2-. (1)求a 的值及函数()f x 的单调区间;(2)设()231g x x x =-+,证明:当0x >时,()()f x g x >恒成立解:(1)令0x =,得1y =,则()0,1A ,()e x f x a '=-,()012f a '∴=-=-,解得3a =,()e 3x f x '∴=-,…………………………2分当ln3x >时,()0f x '>,()f x 单调递增; 当ln3x <时,()0f x '<,()f x 单调递减.()f x ∴的单调递增区间为()ln3,+∞,单调递减区间为(),ln3-∞.…………………………………6分(2)证明:当0x >时,()()2e 10x f x g x x >⇔-->,∴令()()2e 10x h x x x =-->,则()e 2x h x x '=-,()e 2x h x "=-,………………………………6分当0ln2x <<时,()0h x "<,()h x '递减; 当ln2x >时,()0h x ">,()h x '递增, ()()ln2ln2e 2ln222ln20h x h ''∴≥=-=->,()h x ∴在()0,+∞上单调递增,()()01010h x h ∴>=--=,2e 10x x ∴-->,∴当0x >时,()()f x g x >.…………………………………………………12分(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
[选修4-4:坐标系与参数方程](10分) 22.(本小题满分10分)在平面直角坐标系中,曲线错误!未找到引用源。
的参数方程为错误!未找到引用源。
(错误!未找到引用源。
,错误!未找到引用源。
为参数),以坐标原点错误!未找到引用源。
为极点,x 轴正半轴为极轴建立极坐标系,曲线错误!未找到引用源。
经过点错误!未找到引用源。
,曲线错误!未找到引用源。
的极坐标方程为错误!未找到引用源。
.(Ⅰ)求曲线错误!未找到引用源。
的极坐标方程;(Ⅱ)若错误!未找到引用源。
,错误!未找到引用源。
是曲线错误!未找到引用源。
上两点,求错误!未找到引用源。
的值.【解析】:(1)将曲线错误!未找到引用源。
的参数方程错误!未找到引用源。