Microemulsion synthesis and electrochemical properties of LiFePO4-C cathode materials
第二章微乳液1修改教材
二 微乳液、胶束、液晶的异同
相同:自发形成、各向同性的低粘度稳定体系 不同:
性能 组成
第二章微乳液(Microemulsion)
§2-1两亲分子有序组合体
1 名称: 表面活性剂两亲性→缔合结构体系 80年代 微复相体系 Micro-multiple phase system
1980年 Thomas 有序组合体 Organized Assemblies 1982年 Eike 两亲分子自组装组合体 Self- Organized of
ii)白细胞介素—2(IL—2);人工胰岛素,γ—干扰素 从人体、动物体中获得,成本很高 把人类细胞核中DNA(片段基因)放入大肠杆菌细胞中进行 无性繁殖,并以正确的氨基序列表达。 iii)细胞内环境不同人类细胞,重组蛋白的析叠为堆积聚集 体,没有活性的包含体 科隆细胞→折叠中向体(I)→天然蛋白质分子(N) iv)1990年,Hagen AOT/异辛烷/水体系的W/O微乳液 可控WO,离子强度,PH,变性剂,氧化剂,还原剂等 提供科隆的合适微环境。
增溶系数 : 增溶参数 :
fO
Voil g Saa
fW
fO fW SP
VH2O g Saa
Sp―对应C*(盐度);Sp是界面活性大小标准。
其他因素扫描对相态的影响
扫描变量 含盐量 油(烷烃碳数)ACN值 醇(C1―C3)浓度增加 醇(C4―C8)浓度增加 活性剂烃链长度(LC) 温度(非离子Saa)
浅谈微乳液
■488 ■浅谈微乳液曹恒光 连大成中央大学 化学工程与材料工程系 e-mail: hktsao@.tw在日常生活中,我们常可观察到:当油(例如正己烷)和水加在一起时,会呈现油(上)与水(下)两相分离的状态。
然而此时若加入适量的界面活性剂至该系统中,我们会发现油水界面消失而形成澄清透明的均匀溶液,这就是微乳液(Microemulsion)。
本文将就以下三个主题(一)、微乳液的结构与应用;(二)、微乳液滴具净电荷的成因;和(三)、微乳液的电导度与穿透现象,浅谈微乳液的物理性质。
一、微乳液的结构与应用微乳液是由水、油、和界面活性剂等至少三成份混合所形成的系统,宏观上呈均匀相。
在介绍『微乳液』之前,我们须先了解『界面活性剂』的特性。
界面活性剂是喜欢滞留在固-液或气-液界面上的分子,通常具有亲水头基与疏水尾链,如图一所示,所以又称为『双亲分子』。
在低浓度时,溶液内与界面上的界面活性剂分子达到热力学平衡,如同一般溶质;由于表面上的界面活性剂可提供表面压力而使该液体的『表面张力』降低。
当界面活性剂浓度升高至某一狭小范围,溶液的物理性质,如表面张力和电导度等,会产生显著的变更。
McBain (1913)指出此一类似相变现象的发生乃肇因于溶液中许多『微胞』的形成。
微胞是由数十至数百个界面活性剂分子聚集圖一、界面活性劑基本結構示意圖。
圖二、微胞結構:(a )球形結構;(b )雙層球形結構;(c )及(d )為柱狀和層狀結構,通常在高濃度界面活性劑溶液發生。
而成,如图二所示。
在水溶液中,微胞内的界面活性剂的亲水头基朝外与水分子水合,并将疏水链包围于内以减少水分子与疏水链的接触面积。
虽然微胞通常呈现球形,但其实际大小与形状会随浓度与温度而逐渐改变,可变成圆柱状或层状结构。
界面活性剂可形成微胞的临界浓度,称为『临界微胞浓度』(CMC)。
值得一提的是,在高于CMC的水溶液中,微胞与界面活性剂单体共存,后者的浓度仍约保持于CMC。
微乳液电动色谱法
微乳液电动色谱法(microemulsion electrokinetic chromatography, MEKC)是一种电解质色谱技术,它结合了微乳液和电解质色谱的优点。
微乳液是由小分子溶剂,表面活性剂和水组成的液体,具有很高的溶解度和分离度。
电解质色谱是一种电力驱动的分离技术,通过电场作用于电解质分子上的电荷来实现分离。
MEKC 使用微乳液作为流动相,将样品中的电解质分子溶解在微乳液中,然后将其通过电场移动到色谱柱上进行分离。
这种方法可以在短时间内获得高分离度,对于一些难以分离的分子也能得到较好的分离效果。
MEKC 技术广泛应用于生物化学、药物分析、环境分析等领域,为分离和纯化复杂样品提供了一种有效的手段。
微纳米流动和核磁共振技术
微纳米流动和核磁共振技术英文回答:Microfluidics and nuclear magnetic resonance (NMR) are two important technologies that have revolutionized various fields of science and engineering.Microfluidics refers to the study and manipulation of fluids at the microscale level, typically in channels or chambers with dimensions ranging from micrometers to millimeters. It allows precise control and manipulation of small volumes of fluids, enabling a wide range of applications such as chemical analysis, drug delivery systems, and lab-on-a-chip devices. Microfluidic devices are often fabricated using techniques such as soft lithography, which involve the use of elastomeric materials to create microchannels and chambers.NMR, on the other hand, is a powerful analytical technique that utilizes the magnetic properties of atomicnuclei to study the structure and dynamics of molecules. It is based on the principle of nuclear spin, which is the intrinsic angular momentum possessed by atomic nuclei. By subjecting a sample to a strong magnetic field and applying radiofrequency pulses, NMR can provide information about the chemical composition, molecular structure, and molecular interactions of the sample. NMR has diverse applications in fields such as chemistry, biochemistry, medicine, and materials science.Microfluidics and NMR can be combined to create powerful analytical tools for studying various biological and chemical systems. For example, microfluidic devices can be used to precisely control the flow of samples and reagents, while NMR can provide detailed information about the composition and structure of the samples. This combination has been used in the development ofmicrofluidic NMR systems, which allow rapid and sensitive analysis of small sample volumes. These systems have been applied in areas such as metabolomics, drug discovery, and environmental monitoring.中文回答:微纳米流体力学和核磁共振技术是两种重要的技术,已经在科学和工程的各个领域引起了革命性的变化。
定量电子显微学方法与氧化钛纳米结构研究获国家自然科学二等奖
个 国家 和地 区都有 各 自明确 的纳 米 科技 发展 战略 ,投入 巨 成果 成功 应用 到纳米 结构 的研究 领域 。 在 科 学 家 眼 中 ,食 盐 不 是 食 盐 , 而 是 一 种 典 型 的 离 子 资 、抢 占战略制 高点 。美 国国家 纳米讨‘ ( 划 NN I)2 1 01 晶体 。 么一种 最最普 通的东 西 , 电子显微 镜去观 察它 的 这 用 年 财 政 预 算 l 美 元 ,历 年 投 入 稳 定 增 长 。 日本 尤 其 重 视 8亿 结构 时 ,也 没有 好的理 论去 描述 电子在 这种 离子 晶体 表面 纳 米技术在信 息 、金 属 、环境 、能源 、生命 科学 以及基础 技 的衍 射现 象 。彭 练矛 团 队给 出了描 述诸 如离 子 晶体表 面衍
仿 生智 能纳 米界 面材料 、碳纳 米管 宏观 薄膜 及纤 维结 构 的 贝 尔 物 理 学 奖 就 颁 发 给 了 成 功 地 分 离 出 单 层 石 墨 烯 材 料 的
制备与 性 能研究 、纳 米结 构金 属材 料达 到高 性 能极 限等诸 两 名 英 国 物 理 学 家 。
多 方面取得 突破 。
像 科 技 研 发 和 产 业 化 的 整 体 协 调 。同 时 , 入 并 持 续 开 展 纳 米 重 ,多 数 情 况 下 我 们 在 电 子 显 微 镜 中所 看 到 的 ‘ ’不 能 直 深 接反 映物体 的真正结 构 。 练矛 说 , 用量 子力学 的原理 , ”彭 利 科技领 域战 略研 究 ,提高 决策 能力 ;整合资 源 ,形成在纳 米
Mn2O3纳米结构的简易合成与电化学性质(英文)
Ab ta t h C t ie e tsr cu e ssnh sz d a o m e eau eo yh d oh r l to . sr c :T e Mn O3 h df rn tu t rswa y te ie tro tmp rtr rb y rt ema h d wi f me T eMn O3 h s ban da o m e eaue c ud b rn fre oMnO3 ltsb e t rame t t 0 ℃ . h C a eo tie t o tmp rtr o l et serd t 2 ae yh a e t n 0 p r a p t a6
Z O D n, T N J .h n J Q a . in Z N i—a ’ HA a A i S a I inQ a 他 HA G J T o 一 n n
ZHAO u S n 2 GUO e — i 1 Xi . o g , 0 P iZh , , 0
(ntu 1si t o l u c oa Ma rl( M)Lb rt yo N w Fbr trl adMo enTxi , l t e fMut nt nl t i s M , aoa r e ie eis n d r ete i i ea 1 f o f Ma o l T eG o i ae o Sa e aoa r, i doU i rt, i do S ad n 6 0 1 h rwn B sfr teK yL br oy Qn a nv sy Qn a, h n og2 6 7) g t t g ei g f oeeo hmir C e c nier ga dE v o m n, i d oU i ri, iga, hn og2 6 7 ) lg C e sy hmi E gnei n i n etQn a n esy Qndo S a dn 6 0 Cl f t, l a n n r g v t 1 ( eat n o hmi l n i o e l n neig N i a U i r t o na o , ni e n 3 p r tfC e c dBo l ua E g er , a o l nv sy fS gp r 4E gn r g D me aa m e r i n t n e i i e ei
氢氧化镍复合纳米材料的制备和电化学性能研究
This article focuses on four parts,as follows: 1.In the introduction part,First of all,the definition,claSsification,nature and
the preparation,applications,development of nanomaterials were generalized briefly.
4.静止法.制备花状的氢氧化镍/金复合纳米薄膜。本法只是简单的将甲苯稀 释的三乙胺(微量)滴在含有硝酸镍和金纳米的混合溶液的表面,短时间后,待甲 苯挥发完,就会在气/液界面发现氢氧化镍/金的复合薄膜,本法制备的薄膜,同 样是接触气体的一面较为光滑,在接触液体的一面可以看到颗粒花状的微观形 貌。分别用膜的两面制备半胱氨酸、多巴胺、抗坏血酸以及葡萄糖的传感器进行 循环伏安特性比较,发现复合薄膜的两面在这些传感器中性能相差不大,但是在 碱性的电介质中,膜接触液体的一面存在较大的电容。
sensors were prepared respectively by both sides of the membranes in the comparison of Cyclic Voltammeter,there were few distinguish.However,in the alkaline dielectric, one side ofthe membrane in contact、柝th liquid emerged a large capacitance.
微反应通道混合机制纳米颗粒
微反应通道混合机制纳米颗粒英文回答:Microreactor channel mixing mechanism for nanoparticles.Introduction:Microreactors are small-scale devices that enable precise control and manipulation of chemical reactions. These devices have gained significant attention in recent years due to their potential in various applications, including the synthesis of nanoparticles. In this article, we will discuss the mixing mechanism in microreactor channels for the synthesis of nanoparticles.Mixing mechanism in microreactor channels:Microreactor channels are designed to facilitateefficient mixing of reactants, which is crucial for the synthesis of nanoparticles. There are several mechanismsinvolved in the mixing process, including diffusion, convection, and chaotic advection.1. Diffusion:Diffusion plays a significant role in the mixing of reactants in microreactor channels. It is the process by which molecules move from an area of high concentration to an area of low concentration. In microreactor channels, diffusion helps in the dispersal of reactants, leading to their uniform distribution and eventual reaction.2. Convection:Convection refers to the movement of fluid due to the difference in density caused by temperature or concentration gradients. In microreactor channels, convection helps in the rapid transport of reactants, enhancing the mixing process. The flow patterns created by convection can be controlled by the design of the microreactor channels, allowing for efficient mixing.3. Chaotic advection:Chaotic advection is a phenomenon that occurs whenfluid flow becomes highly irregular and unpredictable. In microreactor channels, chaotic advection enhances mixing by creating intricate flow patterns that promote the interaction of reactants. This chaotic behavior is often achieved by introducing obstacles or irregularities in the microreactor channels.Nano-particle synthesis in microreactor channels:The mixing mechanism in microreactor channels is particularly advantageous for the synthesis of nanoparticles. The controlled and efficient mixing of reactants allows for precise control over the reaction conditions, resulting in the production of uniform andwell-defined nanoparticles. The small-scale nature of microreactors also enables rapid heat transfer, leading to shorter reaction times and improved yield.Conclusion:Microreactor channels provide an effective platform for the synthesis of nanoparticles. The mixing mechanism involving diffusion, convection, and chaotic advection ensures efficient and uniform distribution of reactants, leading to the production of high-quality nanoparticles. The use of microreactors in nanoparticle synthesis offers numerous advantages, including precise control over reaction conditions and improved yield.中文回答:微反应通道混合机制纳米颗粒。
超微电极电化学
超微电极电化学一、引言超微电极电化学是电化学的一个重要分支,主要的是在纳米和微米尺度上的电化学现象。
这个新兴领域的发展使我们有机会探索和理解在极限尺度上,电化学反应的动力学、反应机制、以及与材料性能的关系。
超微电极电化学不仅在基础科学研究上具有重要价值,也在能源储存与转化、环境科学、生物医学工程等应用领域中具有广泛的应用前景。
二、超微电极电化学的基本概念与技术超微电极电化学的主要研究工具是超微电极,它们具有极小的尺寸,可以探测和影响纳米尺度的物质变化。
超微电极的制作通常需要精密的制备技术和先进的材料科学知识。
常见的超微电极包括纳米线、纳米颗粒、纳米盘等。
在超微电极电化学实验中,通常需要使用特殊的电化学测量技术,如扫描隧道显微镜(STM)、原子力显微镜(AFM)、以及各种谱学方法如光谱电化学(SPE)和原位光谱技术等。
这些技术能够提供关于纳米尺度上电化学反应的详细信息,如反应动力学、反应机制、以及电极表面的物质传输和电荷转移过程。
三、超微电极电化学的应用1、能源储存与转化:超微电极电化学在能源储存和转化领域有广泛的应用,如锂离子电池、燃料电池、太阳能电池等。
通过使用超微电极,可以更深入地理解这些设备的电化学性能和反应机制,从而优化其性能。
2、环境科学:超微电极电化学可以用来研究环境中的污染物降解和转化,以及相关反应的动力学和机制。
例如,可以用来研究纳米级催化剂对污染物的光催化降解。
3、生物医学工程:在生物医学工程领域,超微电极电化学可以用来研究生物分子如DNA、蛋白质等的检测和识别,以及细胞的生长和凋亡等生物过程。
超微电极还可以用于药物输送和基因转染等应用。
四、展望未来的研究尽管超微电极电化学已经取得了显著的进步,但仍有许多挑战需要解决。
例如,我们还需要更深入地理解纳米尺度上的电化学反应机制,包括电荷转移过程、物质传输过程、以及相关的影响因素。
我们还需要开发更先进的测量技术和分析方法,以便更准确地描述和预测纳米尺度上的电化学行为。
V_(2)O_(5)g
第34卷第1期2021年2月Vol.34No.1Feb.2021投稿网址: 石油化工高等学校学报JOURNAL OF PETROCHEMICAL UNIVERSITIESV2O5/g⁃C3N4催化剂的制备及其模拟油中硫化物的脱除张豪,李秀萍,赵荣祥(辽宁石油化工大学石油化工学院,辽宁抚顺113001)摘要:以三聚氰胺、偏钒酸铵、硼酸为前驱体,通过煅烧法制备V2O5/g⁃C3N4催化剂。
采用XRD、FT⁃IR、XPS、SEM和BET等技术对催化剂的结构与形貌进行表征。
以V2O5/g⁃C3N4为催化剂,乙腈为萃取剂,H2O2为氧化剂对模拟油中二苯并噻吩(DBT)的脱除进行考察。
探究了反应温度、催化剂质量、萃取剂体积、n(H2O2)/n(S)以及不同硫化物等因素对脱硫效果的影响。
在模拟油体积为5.0mL、萃取剂乙腈体积为3.0mL、n(H2O2)/n(S)=8、催化剂质量为0.02g、反应温度为30℃和反应时间为60min的最佳条件下,DBT的脱除率达到91.9%,经过5次催化剂再生后脱硫率仍可以达到85.7%。
关键词:V2O5/g⁃C3N4;氧化脱硫;二苯并噻吩;三聚氰胺中图分类号:TE624文献标志码:A doi:10.3969/j.issn.1006⁃396X.2021.01.002Preparation of V2O5/g⁃C3N4Catalyst and Desulfurization Ability in Model OilZhang Hao,Li Xiuping,Zhao Rongxiang(School of Petrochemical Engineering,Liaoning Petrochemical University,Fushun Liaoning113001,China)Abstract:The V2O5/g⁃C3N4catalyst was prepared by calcination method,using melamine,ammonium metavanadate,boric acid as precursors and methanol as solvent.The structure and morphology of the catalyst were characterized by X⁃Ray Diffraction(XRD), Fourier transform infrared spectroscopy(FT⁃IR),X⁃ray photoelectron spectroscopy(XPS),scanning tunneling microscope(SEM) and brunauer⁃emmett⁃teller(BET).The desulfurization ability of dibenzothiophene(DBT)in model oil was investigated using V2O5/g⁃C3N4as catalyst,acetonitrile as extractant and H2O2as oxidant.The effects of reaction temperature,amount of catalyst and extractant,n(H2O2)/n(S)molar ratio,and different sulfides on desulfurization rate were investigated.Under the optimum conditions: 5.0mL model oil,3.0mL acetonitrile,n(H2O2)/n(DBT)=8,0.02g of catalyst,temperature was30℃and reaction time was60min, the desulfurization rate of DBT can reach91.9%,which can also keep at a higher value at85.7%after5times of catalyst regeneration. Keywords:V2O5/g⁃C3N4;Oxidative desulfurization;Dibenzothiophene(DBT);Melamine随着汽车工业的迅速发展,燃料油燃烧产生的硫化物对环境的污染越来越严重[1⁃2]。
石墨烯_氧化钌纳米复合材料的水热法合成及电化学电容性能_英文_沈辰飞
收稿日期:2010-08-03。
收修改稿日期:2010-11-10。
江苏省自然科学基金(No.BK2006195)资助项目。
*通讯联系人。
E -mail :jmcao@石墨烯-氧化钌纳米复合材料的水热法合成及电化学电容性能沈辰飞1郑明波2薛露平1李念武1吕洪岭1张松涛1曹洁明*,1(1南京航空航天大学材料科学与技术学院纳米材料研究所,南京210016)(2南京大学微结构国家实验室电子科学与工程学院,南京210093)摘要:通过水热法制备了石墨烯-氧化钌(G -RuO 2)纳米复合材料。
对样品进行了X 射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM)和能量色散谱(EDS)表征。
SEM 结果表明氧化钌粒子均匀地分散在石墨烯层片上。
TEM 结果显示氧化钌纳米粒子的平均粒径约为3nm 。
对样品进行了循环伏安和充放电性能测试,结果表明在1A ·g -1的电流密度下,样品在H 2SO 4(1mol ·L -1)溶液中具有219.7F ·g -1的比电容。
关键词:氧化钌;石墨烯;纳米复合材料;电化学电容器;水热中图分类号:O613.71;O614.82+1文献标识码:A文章编号:1001-4861(2011)03-0585-05Graphene -RuO 2Nanocomposites:Hydrothermal Synthesis and ElectrochemicalCapacitance PropertiesSHEN Chen -Fei 1ZHENG Ming -Bo 2XUE Lu -Ping 1LI Nian -Wu 1L 譈Hong -Ling 1ZHANG Song -Tao 1CAO Jie -Ming *,1(1Nanomaterials Research Institute,College of Materials Science and Technology,Nanjing University ofAeronautics and Astronautics,Nanjing 210016,China )(2National Laboratory of Microstructures,School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China )Abstract:Graphene -ruthenium oxide (G -RuO 2)nanocomposite was prepared via a facile hydrothermal method.The sample was characterized by X -ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM)and energy dispersive X -ray Spectroscopy (EDS).SEM result reveals homogeneous distribution of RuO 2particles on the layers of graphene sheets.TEM images demonstrate that the average size of RuO 2particles is around 3nm.The electrochemical properties of the sample were examined by cyclic voltammetry (CV)and galvanostatic charge -discharge (GC).The specific capacitance value of the sample is about219.7F·g -1at the current density of 1A ·g -1in 1mol ·L -1H 2SO 4.Key words:ruthenium oxide;graphene;nanocomposites;electrochemical capacitor;hydrothermal method0IntroductionElectrochemical capacitors (ESCs)have attracted attention as electricity storage devices due to their higher power capability and longer cycle life compared with conventional double -layer capacitors [1-2].With longcyclelife and high specic capacitance,metal oxide and carbonaceous materials have been viewed as promising electrode materials for ESCs.Metal oxides such as RuO 2[3-7],MnO 2[8-9],NiO [10-11]and Co 3O 4[12-13]have been investigated for their electrochemical behaviors.Among them,electrochemical capacitors based on RuO 2第27卷第3期2011年3月Vol .27No .3585-589无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRY第27卷无机化学学报electrode have been widely investigated due to their superior specfic capacitance,high electrochemical reversibility,and long cycle life[14-16].In terms of carbonaceous materials,carbon nanotubes[17-18],carbon fibers[19],carbon aerogels[20]and activated carbons[21]have been studied for their electrochemical behaviors.Graphene,a new kind of carbonaceous material,has been reported with unique properties and thus has drew great interests[22-23]. Vivekchand et al.[24]evaluated the capacitive behaviors of graphene and a capacitive performance of graphene up to117F·g-1in aqueous H2SO4solution was obtained.Stoller et al.[25]studied the electrochemical behaviors of graphene as the electrode of ESCs and a specfic capacitance of135F·g-1in5.5mol·L-1KOH aqueous electrolyte was achieved.Du et al.[26]used graphene as the electrode of ESCs to obtain a stable specfic capacitance of150F·g-1under specific current of0.1A·g-1for500cycles of charge/discharge. Recently,Du et al.[27]prepared functionalized graphene sheets(FGS)using graphite oxide(GO)as precursor via a low-temperature thermal exfoliation approach in air and the products exhibited good electrochemical behaviors.To harness the good electrochemical properties of both metal oxide and graphene sheets,one possible route is to integrate these two kinds of materials into the electrodes of ESCs.The capacitive performance of the composites will be enhanced largely because most of the metal oxide can contribute pseudo-capacitance to the total capacitance apart from the double-layer capacitance from graphene sheets[28-29].Yan et al.[30] synthesized graphene-MnO2composites through the self-limiting deposition of nanoscale MnO2on the surface of graphene under microwave irradiation and studied the electrochemical behaviors of the products. Son et al.[31]fabricated NiO Resistive Random Access Memory(RRAM)nanocapacitor array on a graphene sheet.In this work,we synthesized graphene-RuO2 nanocomposite with15wt%RuO2loading via a facile hydrothermal method and studied electrochemical characteristics of the products in an aqueous electrolyte.1Experimental1.1Preparation of FGSGO was prepared by Hummers method[32].To obtain FGS,certain amount of GO was thermally exfoliated at300℃for5min under air atmosphere and denoted as FGS300[27].1.2Preparation of G-RuO2All reagents were analytical grade and used without further purification.To prepare the sample with 15wt%RuO2loading of the composite,60mg FGS300 was dissolved in60mL distilled water.After vigorous stirring,a stable suspension was obtained.1.7mL of RuCl3(0.048mol·L-1)was then dropped into the suspension with ultrasonication for30min.Then,the solution was transferred into a Teflon-lined autoclave with a capacity of100mL,and then the autoclave was sealed and maintained at180℃for6h.After cooling to room temperature,the black product was washed with distilled water for several times,and dried under vacuum at50℃for48h.1.3CharacterizationThe dimension and the morphology of the sample were observed by SEM(Gemini LEO1530)and TEM (JEOL JEM-2100).Composition of the samples was analyzed using TEM attached energy dispersive X-ray spectroscopy(EDS).XRD patterns were recorded by a Bruker D8-Advance diffractometer using Cu Kαradiation(λ=0.15418nm)with the scanning2θangles ranging from10°to80°,a graphitic monochrom at40 kV and40mA.1.4Electrochemical testsCyclic voltammetry(CV)and galvanostatic charge-discharge(GC)were done in a three-electrode experimental setup using1mol·L-1H2SO4as electrolyte.The prepared electrode,platinum foil,and saturated calomel electrode(SCE)were used as the working,counter,and reference electrodes in1mol·L-1 H2SO4aqueous solution.The preparation of the working electrode for the three-electrode system was as follows: 80wt%G-RuO2sample,15wt%acetylene black,and 5wt%polytetrafluoroethylene were well mixed,then the mixture was pressed onto a stainless steel grid under10586第3期沈辰飞等:石墨烯-氧化钌纳米复合材料的水热法合成及电化学电容性能MPa.Each electrode contained 5.0mg of G-RuO2(active material).The CV and GC measurements werecarried out on CHI440A electrochemical workstation atroom temperature,the potential ranging from0V to1.0V(vs.SCE).The GC measurement was carried out incurrent density range of0.5~5A·g-1.2Results and discussionFig.1shows the XRD patterns of FGS300and G-RuO2nanocomposite.The characteristic(002)peak ofFGS300is clearly observed on the XRD patterns ofboth FGS300and G-RuO2[27].From a comparison ofthese two XRD patterns,no obvious diffraction peakscorresponding to RuO2are found in G-RuO2.It is supposed to be due to the small size of the RuO2 particles.Fig.2(a)shows the SEM image of FGS300.The wrinkle,a characteristic feature of graphene sheets,is observed.RuO2particles are observed decorated on the graphene sheets from Fig.2(b)and Fig.2(c).The uniform distribution of RuO2particles on graphene sheets guarantees the good electrochemical properties of G-RuO2[33].The HRTEM image(Fig.3(d))reveals the good crystalline nature of the nanoparticles.Besides, the size of the RuO2particles is observed to be around 3nm,which explains the low intensity of diffraction peaks of RuO2in the XRD pattern of the composite. The selected area electron diffraction(SAED)pattern in Fig.2(e)shows a ring pattern,indicating that the obtained RuO2particles are polycrystalline,which is consistent with the HRTEM observation.Moreover,the first ring matches the(110)plane of RuO2.The other rings are very close to both structures of Ru and RuO2,which may be due to incomplete oxidation of RuCl3[34].The EDS spectrum(Fig.1(f))reveals the existence of Ru and O species,of which the Ru and O elements should be the main contribution of RuO2 phase in the composite.CV and GC were used to investigate electrochemical behaviors of G-RuO2in a three-electrode system in1mol·L-1H2SO4electrolyte.Fig.3 (a)shows the CV curves of G-RuO2at different scan rates(5~50mV·s-1)in the potential range from0to1.0 Fig.1XRD patterns of FGS300and G-RuO2nanocompositeFig.2SEM images of FGS300and G-RuO2nanocomposite(a,b),TEM and HRTEM images of G-RuO2nanocomposite(c,d), SAED pattern of G-RuO2composite(e),EDS spectrum of G-RuO2composite(f)587第27卷无机化学学报Table 1Specific capacitances of G -RuO 2(C s,composite )obtained in 1mol ·L -1H 2SO 4from GC method andcapacitance retention for G -RuO 2V.Broad current peaks and almost mirror quasi -rectangular are observed in all the CV curves over theCV potential range.This indicates that the obtained G -RuO 2nanocomposite exhibits high redox reversibility and obvious pseudocapacitance character.[35]Galvanostatic cycling of G -RuO 2is performed ata current density of 0.5~5A ·g -1as shown in Fig.3(b).The specific capacitance of G -RuO 2(C s,composite )could be calculated from the slope of the charge -dischargecurves,according to the equation:C s,composite =I Δt [36],where I is the current of charge -discharge,Δt is the time of discharge,m is the mass of active materials in the working electrode,and ΔV is 1.0V.The calculated specfic capacitances of G -RuO 2at different scan rates and the capacitance retention of the samples are listed in Table 1.The results demonstrate high capacitance retention of the sample.Besides,atthe current density of 1A ·g -1,G -RuO 2exhibits capacitance value of 219.7F ·g -1,which is muchhigher than that of FGS300(119.1F ·g -1).The specific capacitance of RuO 2(C s,Ru )could be calculated basedon the equation:C s,Ru =C s,composite -(1-ωRu )C s,FGS300ωRu[33],where ωRu is the weight fraction of RuO 2within the nanocomposite,C s,FGS300is the specific capacitance of FGS300.At the current density of 1A ·g -1,C s,Ru iscalculated to be 789.8F·g -1.The distinguishing electrochemical behaviors of G -RuO 2are due to the excellent electrochemical properties of FGS300and the contribution of pseudocapacitance by RuO 2.With nanoporous structure,the obtained FGS300has fully accessible surface to electrolyte ion because both sides of a broad range of graphene sheets can be exposed to the electrolyte and contribute to capacitance [27].Furthermore,the residual functional groups on the surface of FGS may improve the hydrophilicity of electrode,which helps the RuO 2particles to be loaded onto the surface of FGS300.The RuO 2and the residual functional groups on graphene sheets all contribute to the pseudocapacitance and thus enhance the overall capacitance value of the composites.Fig.3(a)Cyclic voltammograms of G -RuO 2obtained at different scan rates.(b)Galvanostatic dischargecurves of G -RuO 2obtained at different current densities and FGS300at a current density of 1A ·g -1G -RuO 2233.6219.7200.7176.875.70.5A·g -11A ·g -12A ·g -15A ·g -1Sample C s,composite /(F ·g -1)Capacitance retention /%3ConclusionIn summary,graphene -RuO 2nanocomposite wasprepared via a facile hydrothermal method.The SEMand TEM characterizations reveal homogeneous distribution of RuO 2particles on graphene sheets.High capacitance value and capacitance retention of the composite are shown by capacitive behaviors of G -588第3期RuO2.References:[1]Winter M,Brodd R J.Chem.Rev.,2004,104:4245-4269[2]Pandolfo A G,Hollenkamp A F.J.Power Sources,2006,157:11-27[3]WANG Xiao-Feng(王晓峰),WANG Da-Zhi(王大志),LIANGJi(梁吉),et al.Acta Phys.-Chim.Sin.(Wuli Huaxue Xuebao), 2002,18(8):750-753[4]Hu C C,Chen W C,Chang K H.J.Electrochem.Soc.,2004,151:A281-A290[5]Fang W C,Huang J H,Chen L C,et al.J.Power Sources,2006,160:1506-1510[6]Sugimoto W,Yokoshima K,Murakami Y,et al.Electrochim.Acta,2006,52:1742-1748[7]ZHENG Yan-Zhen(郑言贞),ZHANG Mi-Lin(张密林),CHEN Ye(陈野),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2007,23(4):630-634[8]Toupin M,Brousse T,Belanger D.Chem.Mater.,2004,16:3184-3190[9]Lee H Y,Goodenough J B.J.Solid State Chem.,1999,144:220-223[10]Zheng Y Z,Ding H Y,Zhang M L.Mater.Res.Bull.,2009,44:403-407[11]Patil U M,Salunkhe R R,Gurav K V,et al.Appl.Surf.Sci.,2008,255:2603-2607[12]Cui L,Li J,Zhang X G.J.Appl.Electrochem.,2009,39:1871-1876[13]Shinde V R,Mahadik S B,Gujar T P.Appl.Surf.Sci.,2006,252:7487-7492[14]Zheng J P,Jow T R.J.Electrochem.Soc.,1995,142:L6-L8[15]Zheng J P,Jow T R.J.Power Sources,1996,62:155-159[16]Sugimoto W,Iwata H,Murakami Y,et al.J.Electrochem.Soc.,2004,151:A1181-A1187[17]Ma R Z,Liang J,Wei B Q,et al.Bull.Chem.Soc.Jpn.,1999,72:2563-2566[18]MI Hong-Yu(米红宇),ZHANG Xiao-Gang(张校刚),L譈Xin-Mei(吕新美),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2007,23(1):159-163[19]Xu B,Wu F,Chen R J,et al.J.Power Sources,2010,195:2118-2124[20]Li J,Wang X Y,Huang Q H,et al.J.Power Sources,2006,158:784-788[21]Bispo-Fonseca I,Aggar J,Sarrazin C,et al.J.Power Sources,1999,79:238-241[22]Novoselov K S,Geim A K,Morozov S V,et al.Science,2004,306:666-669[23]Stankovich S,Dikin D A,Dommett G H B,et al.Nature,2006,442:282-286[24]Vivekchand S R C,Rout C S,Subrahmanyam K S,et al.J.Chem.Sci.,2008,120:9-13[25]Stoller M D,Park S J,Zhu Y W,et al.Nano Lett.,2008,8:3498-3502[26]Du X,Guo P,Song H H,et al.Electrochim.Acta,2010,55:4812-4819[27]Du Q L,Zheng M B,Zhang L F,et al.Electrochim.Acta,2010,55:3897-3903[28]Kalpana D,Omkumar K S,Kumar S S,et al.Electrochim.Acta,2006,52:1309-1315[29]Lee B J,Sivakkumar S R,Ko J M,et al.J.Power Sources,2007,168:546-552[30]Yan J,Fan Z J,Wei T,et al.Carbon,2010,48:3825-3833[31]Son J Y,Shin Y H,Kim H,et al.ACS Nano,2010,4:2655-2658[32]Hummers W S,Offeman R E.J.Am.Chem.Soc.,1958,80:1339-1339[33]Yuan C Z,Chen L,Gao B,et al.J.Mater.Chem.,2009,19:246-252[34]Fang W C,Chyan O,Sun C L,et mun.,2007,9:239-244[35]Wen J G,Zhou Z T.Mater.Chem.Phys.,2006,98:442-446[36]Zheng M B,Cao J,Liao S T,et al.J.Phys.Chem.C,2009,113:3887-3894沈辰飞等:石墨烯-氧化钌纳米复合材料的水热法合成及电化学电容性能589。
使微生物直接从外电路获得电子进行硫酸盐还原
使微生物直接从外电路获得电子进行硫酸盐还原
我国矿区高硫酸盐、高重金属污染问题突出,硫化物与重金属结合形成低溶度积沉淀是重金属废水处理的主要途径之一。
微生物还原硫酸盐生成硫化物处理重金属废水已成为重金属污染治理的重要方法。
由于大多数矿区缺乏有机碳源,制约了微生物的硫酸盐还原。
以电极提供电子供给微生物还原硫酸盐为硫化物,将是替代异养硫酸盐还原治理重金属废水的有效途径。
生命科学研究成果、细胞生物学研究进展/reseach/
目前公开报道的生物电化学系统硫酸盐还原过程都是以氢气为介体进行电极和菌株间的电子传递,这种方式存在耗能多的问题,产生的氢气也不利于电子的有效利用。
中科院成都生物研究所李大平研究员课题组长期从事生物电化学及其对N、S的生物转化研究。
课题组在恒定极化电极
(-400 mV vs. Ag/AgCl)为直接电子供体,以碳酸氢钠为无机碳源的条件下,研究了混合菌群在生物电化学系统中的自养硫酸盐还原过程。
结合化学、电化学、电镜和分子鉴定方法,研究提出了一种电极直接传递电子给硫酸盐还原菌进行硫酸盐还原的新机制。
电极表面附着的Geobacter sp.和Desulfobulbus propionicus可能在接受极化电极电子进行硫酸盐还原的过程中起着核心介导作用。
这一结果实现了微生物直接从外电路获得电子进行硫酸盐还原,为缺乏有机碳源的硫酸盐还原和重金属废水的治理提供了新思路。
聚苯胺膜在还原过程中的电性质变化与气敏性能之间的关系
华中科技大学博士学位论文摘要研究聚苯胺膜氧化还原过程中电性质变化是共轭导电聚合物材料领域的一个基础性课题。
然而,由于这一过程的复杂性,尽管国内外学者提出了许多理论模型试图圆满解释这一现象,虽然得出了一些定性结论,却始终无法进行定量描述。
本论文采用改进的双阶跃方法研究聚苯胺膜在还原过程中的电性质变化。
研究发现,主体膜电容与电阻随还原时间延长和/或还原电位负移而变化,并且在还原阶段计时电流曲线中出现了肩峰,这表明聚苯胺膜为两阶段还原过程。
在吸收输渗理论模型与电化学激励构型松弛理论模型优点的基础上,提出一种改进的异相模型,并运用该理论模型较满意地解释了上述实验结果。
这种新模型克服了上述两种模型可能遇到的困难,不仅能定量解释聚苯胺膜在还原过程中的电性质变化,还能合理描述聚苯胺膜还原过程中膜内两相分离的产生与发展及其对膜电性质的影响。
利用改进的双阶跃方法研究了在乙腈溶液中,聚苯胺还原过程中膜电阻与注入膜内还原电量之间的相互关系,并探讨了不同掺杂剂对该过程的影响。
膜电阻与还原电量间关系表现为S-型曲线。
基于本论文提出的异相模型中建立的数学模型,可以求得聚合物电还原过程的临界还原电量Q c,Q c的物理意义为聚苯胺膜内形成连续的部分还原相所需要的最小还原消耗电量。
实验结果表明,掺杂阴离子对Q c值的大小有很大的影响,用十二烷基苯磺酸掺杂的聚苯胺膜相对用高氯酸掺杂的聚苯胺膜具有更小的Q c;当膜内注入的还原电量大于Q c时,导电聚苯胺膜电阻将显著增加。
因此,Q c越小表示聚苯胺膜对还原(或脱杂)越灵敏,这预示着十二烷基苯磺酸掺杂的聚苯胺膜对碱性或还原性气体有更良好的敏感能力。
使用概念传感器,我们证实了十二烷基苯磺酸掺杂的聚苯胺膜传感器相对高氯酸掺杂的聚苯胺膜对低浓度氨气的响应更高。
最后,我们采用一种动电位扫描来调整聚苯胺的链结构,并在乙腈溶液中观察到一种独特的循环伏安行为。
当电位扫描在一较窄的电位窗口内(对应于乙腈溶液中的聚苯胺在完全还原态与中间氧化态间转换的第一对氧化还原峰),在循环伏安图中,表示聚苯胺由完全还原态转变为中间氧化态的阳极峰发生了分裂。
含咪唑类聚合物的电化学合成及电致变色
含咪唑类聚合物的电化学合成及电致变色张军红;魏西莲;赵金生;郝静敏;刘洋洋;闫娜娜【摘要】In this experiment ,the synthesis of a novel different conjugated polymer PM1 was stud‐ied by electrochemical methods ,monomer monomer M1 was synthesized by Still coupling reaction ,syn‐thetic polymers are obtained ,with multicolor electrochromic phenomenon ,the synthesized electrochro‐mic materials was also investigated .Photoelectric properties of visible spectroscopy of cyclic voltamme‐try and UV‐was used to reveal the polymer film .%本实验通过电化学方法研究合成了一种不同的新型共轭聚合物PM1,相应的单体通过Still偶联反应合成了聚合物单体M1,合成得到的聚合物,具有多色电致变色现象,合成得到的电致变色材料亦被详细的表征。
循环伏安法和紫外‐可见光谱法被用来揭示聚合物膜的光电性能。
【期刊名称】《聊城大学学报(自然科学版)》【年(卷),期】2014(027)004【总页数】5页(P37-41)【关键词】导电聚合物;电致变色;光学表征【作者】张军红;魏西莲;赵金生;郝静敏;刘洋洋;闫娜娜【作者单位】聊城大学化学化工学院,山东省化学储能与新型电池技术重点实验室,山东聊城 252059;聊城大学化学化工学院,山东省化学储能与新型电池技术重点实验室,山东聊城 252059;聊城大学化学化工学院,山东省化学储能与新型电池技术重点实验室,山东聊城 252059;聊城大学化学化工学院,山东省化学储能与新型电池技术重点实验室,山东聊城 252059;聊城大学化学化工学院,山东省化学储能与新型电池技术重点实验室,山东聊城 252059;聊城大学化学化工学院,山东省化学储能与新型电池技术重点实验室,山东聊城 252059【正文语种】中文【中图分类】O657.11电致变色常被认为当一些材料被施加掺杂-去掺杂过程时,其吸收率或透过率发生可逆光学变化的现象.共轭聚合物具有好的溶解性、快速的转化速度、掺杂-去掺杂容易进行等优点[1]适合制作电致变色材料.另外,有机聚合物材料比较容易修饰分子结构进而对其禁带进行调控.曾经咪唑的聚合物的电致变色性能被研究过 [2],在此基础上合成了一种可以用在电致变色领域的新型的含咪唑的化合物.咪唑是一种含有两个氮原子的五元环共轭系统.咪唑环的不定域共轭体系结构使之具有吸电子的能力.故当咪唑环的电子共轭体系与供电子基团连接时,可以很好的传输电子.噻吩衍生物具有较好的稳定性、高度的共轭性、低禁带以及颜色随电势的转变性能[3]等优点,是很好的供电子基团.因此,我将咪唑的共轭化合物与噻吩衍生物单元相互整合,制备具有良好电子传输能力的电致变色材料.基于上述考虑,我们通过电化学合成一种新型的聚合物PM1.相应的单体M1通过Still偶联反应得到.1.1 实验材料菲醌、乙酸铵、N-溴代丁二酰亚胺(NBS)、对三苯基二氯化钯Pd(PPh3)2Cl2、二氯甲烷(DCM)、四氢呋喃(THF)、二甲基亚砜(DMSO)、冰醋酸、 N,N-二甲基甲酰胺(DMF)、商业高效液相色谱纯乙腈(CAN)、对二甲胺基-苯甲醛、ITO导电玻璃,实验所需有机锡化合物参照文献方法制备得到[4,5].1.2 实验仪器一个由电脑控制的CHI760C电化学工作站,紫外-可见光谱数据通过Shimadzu UV-2550光谱仪测量得到,拍摄聚合物膜的照片所使用的是Canon Power Shot A3000 IS数码相机.1.3 单体M1的合成M1的合成路线,如图1所示,菲醌和N-溴代丁二酰亚胺(NBS)作为起始原料,对合成过程做适当调整,使其简便易行.1.3.1 2,7-二溴菲醌的合成.根据已知的实验操作流程[7],菲醌(PQ)和NBS作为合成2,7-二溴菲醌的起始原料,如图1所示,在通N2,避光的条件下,将菲醌(0.002 mol)加入到150 ml 98%的浓硫酸中,在温度为50℃(水浴锅恒温)下进行机械搅拌,形成混合溶液,再将NBS(0.002 mol)溶于DMF中后,缓慢滴加到混合物溶液中,最后,机械搅拌8 h.为使反应进行的完全,NBS需要过量10%.反应结束后,将反应混合物缓慢倒入盛有蒸馏水的烧杯中,同时室温搅拌1 h,使反应猝灭,发现烧杯中有大量的沉淀物.对所得的沉淀物依次进行抽滤,蒸馏水水洗,真空干燥,得到粗产品.然后,将粗产品用DMSO进行两次重结晶,得到的纯化产品为血红色晶体.1.3.2 [4-(5,10-二溴-1H-菲并[9,10-d]咪唑-2-基]-二甲基-胺的合成.将2,7-二溴菲醌(5 mmol)、乙酸铵(25 mmol)以及对二甲胺基-苯甲醛(10 mmol)分别加入到带有回流管的圆底烧瓶中.对二甲胺基-苯甲醛过量是保证2,7-二溴菲醌能够被完全反应.50 ml冰醋酸作为溶剂,被加入到圆底烧瓶中,再对混合物进行磁力搅拌,同时加热回流6 h方可.反应结束后,趁热抽滤,蒸馏水水洗,真空干燥,最后得到的[4-(5,10-二溴-1H-菲并[9,10-d]咪唑-2-基]-二甲基-胺(3),颜色为米黄色固体,无需再进一步纯化.1.3.3 M1的合成.[4-[5,10-对(4-乙基噻吩-2-基)-1H-菲并[9,10-d]咪唑-2-基]-苯基]-二甲基-胺(M1)的合成.利用化合物(3)和相应的有机锡化合物通过Stille偶合反应合成,催化剂为Pd(PPh3)2Cl2.反应在充满氮气的氛围中,以经过干燥的THF作为溶剂.反应混合物先在室温下搅拌0.5 h,然后在加热到回流,在实验过程中用薄层色谱法(TCL)跟踪反应的进程.反应结束后,用旋转分离器旋蒸得到的溶剂,粗产品用柱状色谱分离法对粗产品进行分离、提纯.纯化得到的产品M1为黄色固体.1.4 电化学单体的电化学测试以及电化学聚合,在一个一室三电极体系中进行.用于电化学合成实验的,是一个由电脑控制的CHI760C电化学工作站来实现.在实验过程中,直径为0.5 mm的铂丝被用作工作电极,铂环被用作对电极.实验时,工作电极和对电极相距0.5 cm.由于银丝被用作假参比电极,因此以下所提到的电势除非有特殊说明均是以银丝作为参照的.在每次实验之前,铂丝和铂环电极都要经过灼烧处理,银丝也需要经过打磨清洗处理.本实验的电化学聚合以及循环伏安实验,是在含有0.2 M NaClO4的ACN/DCM (体积比1:1)混合溶液中进行的.在含有0.2 M NaClO4电解质的ACN/DCM混合溶液中,对银丝假参比电极进行校正的是二茂铁(Fc/Fc+).在此溶液及电解质的情况下,银丝相对于饱和甘汞(SCE)的校准电压为0.03 V[8].所有的电化学实验,均在室温以及实验室中进行的.1.5 光谱电化学为获得足够的进行试验的聚合物膜,进行光谱电化学的表征.在一个三电极工作体系中,光谱电化学实验以ITO导电玻璃为工作电极,对电极以及假参比电极仍然是铂环和银丝,并且通过电脑控制的Shimadzu UV-2550光谱仪来记录光谱电化学数据.用来进行实验的聚合物薄膜,可直接通过恒电势法,电化学聚合在ITO导电玻璃上(有效面积:0.9cm×1.9cm).聚合物薄膜的厚度,可以通过调控流经聚合小室的电荷量来适当控制(电荷量的多少可以直接从电脑上读出).在使用之前,聚合物膜需要在不含单体的空白溶液中进行完全的去掺杂.所有的测试工作,包括去掺杂过程,均是在含有0.2 M NaClO4电解质的ACN/DCM混合溶液完成的.2.1 PM1的电化学聚合在溶有0.4 M M1单体的0.2 M NaClO4电解质的DCM/ACN (体积比1:1)电解质溶液中进行连续的循环伏安法(CV)扫描,所得曲线如图2所示,单体M1的起始氧化电压(Eonset)为0.765 V.单体经过氧化之后,在0.765 V附近发现有一个明显的还原峰,而相应的氧化峰并不明显.随着CV扫描的进行,可以很清楚的发现聚合物膜出现在工作电极的表面.随着氧化还原峰上电流密度的增加,暗示着沉积在电极上的导电聚合物膜的量,在不断增加.M1单体的CV扫描曲线在0.524 V处显示出聚合物清晰的还原峰,而聚合物相应的氧化峰却与M1单体的氧化峰相重合,没有被清楚的观察到[9].2.2 聚合物膜的电化学行为研究电化学性能的聚合物膜,通过在含单体的电解质溶液中,由循环伏安法扫描三圈,沉积在铂丝电极上制备得到.实验时扫描,扫描速率由25 mV s-1逐步增加到300 mV s-1,如图3所示,PM1膜在掺杂态和去掺杂态之间进行反复的循环扫描,没有发现明显的降解.图4清楚的表明,峰电流密度(j)与扫描速率成正比,显示了聚合物可逆的氧化还原过程能很好的依附在铂丝电极上[10].这说明聚合物膜PM1的氧化还原过程是可逆的并且不受扩散控制的[11].3.1 PM1的光谱电化学特性PM1的光谱电化学是用来获得关于PM1的电子结构信息以及检测在氧化还原转化过程中出现的光谱变化.在相应的空白溶液中,聚合物PM1在逐步氧化过程中的紫外-可见吸收谱图被探索.这种聚合物通过恒电压法沉积在ITO导电玻璃电极上的(PM1聚合电压为1.1 V).为了获得不同电压下的紫外-可见吸收曲线,PM1的施加电压从0 V逐步增加到1.1 V.可以很明显的观察到PM1薄膜在387 nm和576 nm波长处有逐步减弱的吸收峰,这可以归因于π-π*电子跃迁.在大约480 nm和800 nm处的两个载流子吸收带逐渐增强.载流子吸收带的出现也是由于极子和双极子的形成造成的.PM1薄膜在此处有明显的吸收峰数增加.另外,在1250 nm处出现并逐渐增强的吸收峰是由于极子的形成造成的.如图5所示,聚合物PM1呈现出了多重的电致变色性能,这对其在智能窗、显示器等领域的应用非常重要.电致变色材料的颜色可以通过比色法来准确定义.CIE体系作为一种量的分级,目的是用来定义和比较颜色.PM1聚合物膜在中性状态下(0 V)为黄色,在其氧化状态下(1.3 V)为深灰色,在中间态电压下,浅黄色、土黄色、浅灰色均可被观察到. 3.2 聚合物膜PM1的电致变色转换电致变色转换实验是用来研究在特定波长下,聚合物膜透光度随时间的变化情况.为了探究聚合物膜的转变性能,双电位阶跃计时法被应用,以便获取相应的光学谱图6.因此,聚合物PM1的电致变色转化性能在0 V(中性态)到1.10 V(氧化态)的阶跃电压之间,分别在580 nm波长下被测试,其阶跃间隔时间为7 s.常常用来评价电致变色材料的一个重要的因素,就是光学对比度(ΔT%),其可被定义为在一个特定波长下氧化态于还原态之间透光率的变化.PM1在580 nm和1 270 nm处,PM1的ΔT%大约为21.5%.电致变色材料的另一个重要的参数是响应时间,表示在改变电压后,其达到完全的光学转变程度的95%所需要的时间.聚合物MI在580 nm和1 270 nm波长下从中性态到氧化态的光学响应时间为0.55 s.作为探究聚合物膜光学性能实际应用的一个重要手段,着色效率(CE)也经常被广泛的应用.它可以被定义为单位电极面积(ΔQ)上由于电荷的消耗而产生的光学密度(ΔD)的变化.一般可以通过以下公式计算得和η=.在这里Tb和Tc分别代表聚合物膜着色前后的透光率,η代表指定波长下的着色效率(CE).PM1聚合物膜在580 nm和1 270 nm波长下的CE值经计算为 115 cm2 C-1.由图7可知于聚合物PM1在580 nm的透光率一直比在1 270 nm处高.上述得到的结果表明PM1有可能成为有前景的电致变色材料.M1通过较短的化学合成路线成功的合成得到,其相应的聚合物通过电化学的方法合成得到.通过本实验的实验测试可知,聚合物膜在不同的施加电压条件下都呈现出五种明显不同的颜色变化(聚合物膜PM1在中性状态下(0 V)为黄色,在其氧化状态下(1.3 V)为深灰色,聚合物PM1在0-1.1 V之间依次呈现出浅黄色、土黄色、浅灰色.)从中可以看出,聚合物膜PM1是良好的电致变色材料,具有非常好的商业应用前景.【相关文献】[1] Lakshmi A, Anandha R. J, Gopu G, et al. Electrochemical, electrochromicbehaviour and effects of supporting electrolyte on nano-thin film of poly(3,4-ethylenedioxy thiophene)[J]. Electrochimica Acta, 2013, 92(1): 452-459.[2] Ozelcaglayana A C, Sendura M, Akbasoglua N, et al.Synthesis and electrochemical properties of a novel benzimidazole derivative as the acceptor unit in Donor-Acceptor-Donor type polymers[J]. Electrochim Acta, 2012, 67: 224-229.[3] Hu B, Zhang Y J, Lv X J, et al. Electrochemical and electrochromic properties of two novel polymers containing carbazole and phenyl-methanone units[J]. Journal of Electroanalytical Chemistry, 2013, 689: 291-296.[4] Pinhey J T, Roche E G. The chemistry of organolead(IV) tricarboxylates. Synthesis and electrophilic heteroarylation reactions of 2-and 3-thienyl-, and 2-and 3-furyl-lead tricarboxylates[J].Journal of the Chemical Society, Perkin Transactions 1, 1988, 8: 2 415-2 421.[5] Bundgaard E, Kreb F C. A comparison of the photovoltaic response of head-to-head and head-to-tail coupled poly {(benzo-2,1,3-thiadiazol-4,7-diyl) -(dihexyl[2,2’]dithiophene-5,5’-diyl }[J].Polym Bull, 2005, 55(3): 157-164.[6] Kim E , Kim M, Kim K. Diarylethenes with intramolecular donor-acceptor structures for photo-induced electrochemical change[J]. Tetrahedron, 2006, 62(29): 6 814-6 821.[7] 李永舫. 导电聚合物的电化学性质[J]. 复旦学报:自然科学版,2004,43(4):468-476.[8] Raimundo J M, Blanchard P, Frere P, et al.Push-pull chromophores based on 2,2′-bi(3,4-ethylenedioxythiophene) (BEDOT) π-conjugating spacer[J]. Tetrahedron Letters, 2001, 42(3): 1 507-1 510.[9] Lu G.W,ShiG Q.Electrochemical polymerization of pyrene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer[J].J Electroanal Chem,2006,586:154-160.[10] Maoi K,Sakai,Ogano S,etal.Improment of battery performance of lithium batterries assembled with a polypyrrolecathodformedectrochemically with the aid of a nitrile rubber insulalting film[J].J Power Source,1987,20:203-237.[11] Bezgin B, nal A M. Electrochemical polymerization of an electron deficient fluorene derivative bearing ethylenedioxythiophene side groups[J].ElectrochimicaActa, 2010, 55(3): 779-784.[12] Bechinger C, Burdis M S, Zhang J-G. Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films[J]. Solid State Communications, 1997, 101(10): 753-756.。
微粒体酶系统的特点
微粒体酶系统的特点微粒体酶系统(Microsomal enzyme system)是一种存在于细胞内微粒体膜上的一组酶,也称为内质网酶系统(Endoplasmic reticulum enzyme system)。
它是细胞内代谢的重要机制之一,具有多种功能,包括药物代谢、脂质代谢、蛋白质合成和分泌等。
微粒体酶系统在生化反应中起到催化剂的作用,能够将多种外源物质转化为水溶性物质,以便细胞更好地排除它们。
下面将从微粒体酶系统的组成、功能以及其在药物代谢中的重要性等方面进行详细阐述。
微粒体酶系统主要由内质网膜上的酶和蛋白质组成。
内质网是一种细胞内复杂的膜系统,由扁平的囊泡、管状结构和平滑的网状结构组成。
内质网膜上存在着很多酶和蛋白质,包括细胞色素P450酶(Cytochrome P450)、醛酮还原酶(Aldehyde reductase)、醇脱氢酶(Alcohol dehydrogenase)等。
这些酶和蛋白质在细胞内起到了重要的催化作用,参与了多种代谢反应,包括氧化、还原、甲基化、羟基化等。
微粒体酶系统的功能非常多样化。
首先,它参与了药物和毒物的代谢。
微粒体酶系统中的细胞色素P450酶是药物代谢的关键酶之一,能够将许多药物转化为更易排出体外的代谢产物。
这个过程通常包括氧化、还原和水解等反应。
其次,微粒体酶系统参与了脂质代谢。
内质网膜上的醇脱氢酶和醛酮还原酶等酶能够催化脂肪酸的合成和降解,参与了脂质的代谢调节。
此外,微粒体酶系统还参与了蛋白质的合成和分泌。
内质网膜上的核糖体能够合成蛋白质,并通过内质网膜上的囊泡和管状结构将其运输到细胞质和细胞外。
微粒体酶系统在药物代谢中的重要性不可忽视。
药物在体内经过吸收、分布、代谢和排泄等过程,其中代谢是药物的重要去除途径。
微粒体酶系统中的细胞色素P450酶能够将许多药物转化为更易排出体外的代谢产物,从而减轻药物对机体的毒性。
此外,微粒体酶系统还参与了一些药物的活化过程。
碳纤维纳米电极用于微流控芯片安培测定单个PC12细胞中神经递质多巴胺
碳纤维纳米电极用于微流控芯片安培测定单个PC12细胞中神经递质多巴胺程寒;袁琳;明月;杨天鸣;程介克【摘要】A microchip electrophoresis system with end-channel carbon fiber nanoelectrode amperometric detector was developed to study on the content of DA in single phochromocytoma(PC12) cell.An operation mode was designed to achieve single cell injection and lysis in chip-CE with only one high-voltage power supply.The experimental results indicate that four catecholamines were baseline-separated and determined with this system.The cell density and liquid height of the reservoirs were accommodated for single cell loading,docking and analysis.The microchip CE system has been successfully applied to the determination of dopamine (DA) in single cultured rat PC12 cell and the average content of DA in single PC12 cell is 0.80±0.33(n=5) fmol.%为研究单个PC12细胞中多巴胺的含量,以碳纤维纳米电极为工作电极,自行组装了微流控芯片安培柱末检测系统,设计了一种微流控芯片电泳单细胞进样和溶膜的控制方式,仅需一路高压控制即可实现单细胞进样和溶膜操作.结果表明:采用该系统实现了4种儿茶酚胺类物质的基线分离,通过控制适当的细胞密度及液池的液面高度差,实现了单个细胞连续快速进样、溶膜和分析,得出单个PC12细胞中多巴胺含量为0.80±0.33 fmol(n=5).【期刊名称】《中南民族大学学报(自然科学版)》【年(卷),期】2012(031)001【总页数】5页(P25-29)【关键词】芯片毛细管电泳;电化学检测;碳纤维纳米电极;PC12细胞;多巴胺【作者】程寒;袁琳;明月;杨天鸣;程介克【作者单位】中南民族大学药学院,武汉430074;中南民族大学药学院,武汉430074;中南民族大学药学院,武汉430074;中南民族大学药学院,武汉430074;武汉大学化学与分子科学学院,武汉430072【正文语种】中文【中图分类】O657.1细胞是生物体的形态结构和生命活动的基本单位,其体积很小,样品量很少. 细胞群体分析所获得的统计平均结果,掩盖了单个细胞之间的差异,使生物学及医学等很多领域的发展受到限制.微流控芯片已用于各种细胞分析的研究,如细胞输送[1]、进样[2,3]、培养[4]、分类[4]、分离[5,6]和溶胞[7].电化学检测具有灵敏度高、选择性好,易于微型化和集成化等优点,已成为微流控芯片电泳中最具有发展前途的检测方法之一. 芯片上集成电化学检测器的挑战主要在于电极与分离通道出口的准确定位.现有的设计大多是利用光刻蚀法或化学沉积法将工作电极置于通道出口处[8-10],电极损坏后,芯片也随之报废.本研究以碳纤维纳米电极为工作电极,自行组装了微流控芯片安培柱末检测系统,设计了一种微流控芯片电泳单细胞进样和溶膜的控制方式,仅需一路高压控制即可实现单细胞进样和溶膜操作.该系统具有良好的重现性,更换电极后可重复使用.鼠嗜铬神经瘤细胞(PC12)中含有儿茶酚胺类物质多巴胺[11-13],适于电化学方法进行检测. 笔者以PC12细胞为研究对象,实现了单个细胞在自组装微流控芯片电化学检测系统上的进样、溶膜和检测,分析了单个细胞中的多巴胺含量.1 材料和方法1.1 仪器电化学工作站(CHI660,上海辰华仪器公司);高压电源(XCDY,山东师范大学化学化工与材料科学学院);倒置显微镜(XDP-1, 上海光学仪器厂).1.2 试剂PC12细胞购自中国典型物保藏中心,多巴胺(DA)、肾上腺素(NE)、去甲肾上腺素(E)以及儿茶酚(CA)为Sigma公司产品,十二烷基硫酸钠(SDS)为国产化学纯,其他试剂均国产分析纯.细胞培养及电泳实验中所有溶液均用超纯水配置,待测物用0.1 mol/L的HClO4配置成1.0×10-2 mol/L的母液,置于4℃的冰箱冷藏室中保存,使用时用相应的缓冲溶液稀释到所需浓度.1.3 自组装集成电化学检测器自组装置见图1.毛细管电泳芯片(AMC-μchip-T180, Alberta Microelectronic Corporation,Canada). 进样通道为双T布局,通道宽50 μm,高20 μm,截面近似半圆,分离通道长76 mm,双T进样通道长250 μm.样品池S、缓冲液池B 和废液池SW距离双T交叉通道均为5 mm.在毛细管电泳芯片原废液池处截断,将芯片粘在一块载波片上,另外一块凹形的3 mm厚的有机玻璃片与载波片和芯片粘连,形成电化学检测池. 纳米碳纤维电极的制作方法见文献[14],电极尖端的直径控制约为100 nm. 将纳米碳纤维电极夹在微操纵手上,在显微镜下用五维操纵器将工作电极的尖端对准分离通道轴心,距离分离通道出口约30 μm,用粘胶将工作电极粘在检测池上,待粘胶固化后即可移走微操纵手,从而将工作电极集成到芯片上.将Ag/AgCl参比电极靠近检测点,粘在检测池上.将离心管切去一段,对准芯片上另外3个小槽粘好,作为储液池.如需更换工作电极,用刀片切除工作电极上的粘胶,取下电极,用同样的方法另外粘上一根工作电极并固定即可.芯片可以长期反复使用.用此法集成的电化学检测器重现性优良.S为样品池, B为缓冲液池, SW为样品废液池,DC为检测池, RE为参比电极, WE为工作电极图1 微流控芯片集成纳米碳纤维电极示意图Fig.1 Schematic diagram of microfluidic chip integrated with carbon fiber nanoelectrode1.4 PC12细胞悬液制取PC12细胞从培养瓶中消化取出置于10 mL离心管中,于800 r/min转速离心6 min,弃去培养液,用生理盐溶液清洗5次并用血球记数板计数,收集细胞,将细胞中加入适量的PBS,并用移液枪对细胞液进行吹打,形成均匀的细胞悬液,并控制细胞悬液的密度约5×104 cells/mL.2 结果与分析2.1 重现性实验通过测量DA在微流控芯片上所得结果,分析电泳的重现性. 电泳条件:20 mmol/L Tris-HCl(pH 8.0)作为电泳缓冲溶液,样品池中加入1.0×10-4 mol/L DA,其它液池中为电泳缓冲液,进样电压500 V,进样时间20 s,分离电压1000 V,工作电极电位0.6 V(vs Ag/AgCl).图2为0.1 mmol/L DA标准溶液连续10次进样的电泳图谱. 图2中实线箭头所指即为DA的电泳峰,2个虚线箭头所指为电泳的进样电压与分离电压切换时工作电极上出现的电流峰(峰宽约1 s), 其余部分电压切换时的电流峰以及DA电流峰未逐一标示.t/s图2 0.1 mmol/L DA 的10次连续进样电泳图Fig.2 Electropherogram of ten consecutive injections of 0.1 mmol/L DA表1为0.1 mmol/L DA 连续10次进样分离的峰高及迁移时间,计算得出峰高相对标准偏差为1.40 %, 迁移时间的相对标准偏差为1.52%,通过实验计算出同一根电极检测0.1 mmol/L DA 连续40次进样峰高与迁移时间的相对标准偏差分别为1.27 %和1.31 %.表1 连续10次进样分离结果的重复性比较Tab.1 Repeatability comparison of ten consecutive injections编号12345678910RSD/%峰高/nA迁移时间/s2.5171.042.4471.042.4471.042.4271.042.4669.122.4269.122.4469.122.4071.042.4168.882.3968.881.401.52由上分析可知,工作电极固定在芯片通道的出口处,电泳实验结果表现出良好的重复性.该设计方便了实验操作,在固定的工作电极钝化或毁坏之前,微流控芯片可持续使用而不必调整电极位置,且芯片电泳实验勿需在显微镜平台上进行;该设计可方便快速更换电极.较未将工作电极组装在微流控芯片上的系统相比,本装置能显著节省实验时间,从而提高实验效率.2.2 儿茶酚及儿茶酚胺类物质的分离笔者在自组装测试系统上进行了儿茶酚及儿茶酚胺类物质的分离和检测,电泳条件:20 mmol/L Tris-HCl(pH 8.0)作为电泳缓冲溶液,500 V进样20 s,分离电压1000 V,工作电极电位0.6 V(vs Ag/AgCl),实验中保持各液池液面高度于同一水平面; NE、CA的浓度均为1.0×10-5 mol/L,DA、E的浓度均为5.0×10-6mol/L . 在此条件下DA与CA可达到基线分离,而DA、E、NE分离效果则不佳,尤其E和NE的电泳峰发生严重重叠.在电泳缓冲溶液中加入0.1 % SDS 可显著改善DA、E、NE的分离度,并可得其分开的电泳峰. 与传统毛细管电泳相比,分析速度有了很大提高,结果见图3. 由图3可见,4种电活性物质得到了较好的分离,其分离度由左至右依次为:2.24,1.66,2.18.t/s图3 4种电活性物质的电泳分离图Fig.3 Electropherogram for electrophoresis separation four electrically active materials2.3 标准样品电泳分析电泳在未经修饰的芯片通道中进行,每次电泳实验前芯片通道依次浸泡0.1 mol/LHCl(15 min),超纯水(10 min),Tris-HCl(pH 8.0)缓冲溶液(30 min),进行预处理.所有电泳实验均为进样时样品池加进样电压,样品废液池接地,其它2个液池悬浮;分离时缓冲溶液池加分离电压,检测池接地,其它2个液池悬浮,实验过程中保持4个液池的液面水平.图4为1.0×10-4 mol/L DA标准样品的电泳图谱,样品池中加入1.0×10-4 mol/L DA,其他液池中均为电泳缓冲溶液,进样与分离电压分别为500 和1000 V,工作电极电位为0.6 V(vs. Ag/AgCl).迁移时间(tm)和半峰宽(W1/2)分别为71.0 和 9.0 s. 实验进行了一系列不同浓度的DA标准样品电泳分析,得到线性回归方程y =2×10-5x +3×10-11,电泳峰高与DA浓度成正相关,R2 =0.9989,DA浓度在1×10-7~1×10-4 mol/L范围内线性关系良好,采用该方法定量较为可靠.t/s图4 1.0×10-4 mol/L DA标准电泳图Fig.4 Electropherogram of 1.0×10-4 mol/L DA2.4 单细胞进样及分析芯片通道依次用0.1 mol/L HCl,超纯水及电泳缓冲溶液浸泡处理,样品池中加入细胞悬液(120 μL),缓冲液池中加入含0.1 % SDS的Tris-HCl(pH 8.0)缓冲溶液,样品废液池及检测池中均加入Tris-HCl(pH 8.0)缓冲溶液,除样品池外,缓冲液池和样品废液池中分别加入100 μL溶液,检测池的液面高度与缓冲液池和样品废液池高度平行,实验发现,若细胞悬液中细胞密度过大,芯片通道口容易被细胞堵塞,若细胞悬液中细胞密度过小,细胞不易进入通道,当细胞密度调整为约5×104 cells/mL时,在上述液面高度差的条件下,细胞能以大约2 s的时间间隔依次进入样品通道,细胞进样溶膜的过程见图5. 当细胞进入双T通道的瞬间施加1000V分离电压,细胞在分离电场以及SDS的作用下迅速溶膜.(a)单个细胞位于样品池 (b)进入样品通道 (c)出现在双T通道 (d)溶膜 (e)分离检测图5 单个细胞的电泳图示Fig.5 Diagram for electrophoresis of individual cell图6为以纳米碳纤维电极作电化学检测器2次检测所得单个PC12细胞的单个电泳峰,实际样品和标准样品的测定采用同一根工作电极,工作电极的检测电位为0.6 V(vs. Ag/AgCl). 据报道PC12细胞中含有的主要电活性物质为DA[13,15],对比实际样品,与标准DA电泳图谱的迁移时间基本一致,可判断所检测到的信号为DA电泳峰.由于实验采用的芯片双T进样通道长250 μm,标准样品的进样量较单个细胞破膜液(直径约15 μm)的大,电泳峰宽也相应较大.根据标准DA样品的工作曲线计算出单个细胞中DA含量,得到5个单个PC12细胞中DA含量分别为0.73,0.64,0.95,1.28和0.42 fmol,单个PC12细胞中DA平均含量为0.80±0.33 fmol,尽管实验采用的为同一批细胞,由于细胞之间存在大小、生长状态等个体差异,导致单个PC12细胞中的DA含量有较大差异,结果与文献[15]相近,较文献[16]偏低,实验结果的差异可能基于细胞的来源不同所致.t/s t/s图6 2个单细胞的电泳图Fig.6 Electropherograms of two individual PC12 cells3 结语采用自组装的微流控芯片检测系统安培法柱末检测模式,以纳米碳纤维电极为工作电极,实现了对4种儿茶酚胺类物质的基线分离检测,设计了一种在微流控芯片电泳中单个细胞连续进样和溶膜的控制方式,仅需一路高压控制即可实现.按照这一设计,在自行组装的微流控芯片电化学检测系统上实现了单个PC12细胞快速进样、溶膜及分析.参考文献【相关文献】[1]Omiatek D M, Santillo M F, Heien M L. Hybrid capillary-microfluidic device for the separation, lysis, and electrochemical detection of vesicles [J]. Anal Chem, 2009, 81: 2294-2302.[2]Xia F Q, Jin W R, Yin X F, et al. Single-cell analysis by electrochemical detection with a microfluidic device [J]. J Chromatogr A, 2005, 1063: 227-233.[3]Lai C C J, Chen C H, Ko F H. In-channel dual-electrode amperometric detection in electrophoretic chips with a palladium film decoupler [J]. J Chromatogr A, 2004, 1023: 143-150.[4]Lindström S, Andersson-Svahn H. Overview of single-cell analyses: microdevices and applications [J]. Lab Chip, 2010(10): 3363-3372.[5]Roman G T, Chen Y L, Viberg P, et al. Single-cell manipulation and analysis using microfluidic devices [J]. Anal Bioanal Chem, 2007, 387: 9-12.[6]Gao J, Yin X F, Fang Z L. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip [J]. Lab Chip, 2004(4): 47-52.[7]Zhang X Y, Li Q L, Chen Z Z, et al. Electrokinetic gated injection-based microfluidic system for quantitative analysis of hydrogen peroxide in individual HepG2 cells [J]. Lab Chip, 2011(11): 1144-1150.[8]Woolley A T, Lao K, Glazer A N, et al. Capillary electrophoresis chips with integrated electrochemical detection [J]. Anal Chem, 1998, 70: 684-688.[9]Wang J, Tian B M, Sahlin E. Integrated electrophoresis chips/amperometric detection with sputtered gold working electrodes [J]. Anal Chem, 1999, 71: 3901-3904.[10]Zamaleeva A I, Sharipova I R, Shamagsumova R V, et al. A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes [J]. Anal Methods, 2011(3): 509-513.[11]Cheng H, Huang W H, Chen R S, et al. Carbon fiber nanoelectrodes applied to microchip electrophoresis amperometric detection of neurotransmitter dopamine in rat pheochromocytoma (PC12)cells [J]. Electrophoresis, 2007, 28: 1579-1586.[12]Shi B X, Huang W H, Cheng J K. Determination of neurotransmitters in PC12 cells by microchip electrophoresis with fluorescence detection [J]. Electrophoresis, 2007, 28: 1595-1600.[13]Mir T A,Shinohara H,Shimizu Y. Enzyme-luminescence method:tool for evaluation of neuronal differentiation based on real-time monitoring of dopamine release response from PC12 cells [J]. Anal Methods,2011,3:837-841.[14]Huang W H, Pang D W, Tong H, et al. A method for the fabrication of low-noise carbon fiber nanoelectrodes [J]. Anal Chem, 2001, 73: 1048-1052.[15]Zhang L Y, Qv S F, Wang Z L, et al. Determination of dopamine in single rat pheochromocytoma cell by capillary electrophoresis with amperometric detection [J]. JChromatogr B, 2003, 792: 381-385.[16]Gilman S D, Ewing A G. Analysis of single cells by capillary electrophoresis with on-column derivatization and laser-induced fluorescence detection [J]. Anal Chem, 1995, 67: 58-64.。
手性离子液体的合成
收稿:2007年6月,收修改稿:2007年8月 3通讯联系人 e 2mail :gaoge @手性离子液体的合成孙洪海1,2 高 宇3 翟永爱1 张 青1 刘凤岐1 高 歌13(11吉林大学化学学院 长春130023;21大庆师范学院化学系 大庆163712;31北京大学医学部 北京100083)摘 要 近年来,研究者对室温离子液体极为关注,因为这些离子液体可以作为潜在的替代试剂用于有机合成、提取与分离、电化学和材料科学等方面。
在离子液体中,手性离子液体由于可用在手性识别、不对称合成、消旋体的拆分、立体选择聚合、气相色谱、NMR 位移试剂和液晶等方面而受到特别注意。
尽管手性离子液体由于合成困难和费用昂贵而限制了其广泛应用,但其在不对称合成中可作为手性诱导物的应用前景促使研究者不断地去开发新型的手性离子液体。
手性离子液体的制备既可以使用手性源(如氨基酸、胺、氨基醇以及生物碱类),也可以利用不对称合成的手段,其所具有的手性可位于分子的中心、轴或者平面上。
本文综述了手性离子液体合成的最新进展,并按照阴离子或阳离子的种类将其分为咪唑类、吡啶类、铵类和噻唑啉盐类,同时简要介绍了一些新的合成技术。
关键词 手性 离子液体 合成中图分类号:O62113,O64514 文献标识码:A 文章编号:10052281X (2008)0520698215Synthesis of Chiral Ionic LiquidsSun Honghai1,2 Gao Yu 3 Zhai Yongai 1 Zhang Qing 1 Liu Fengqi 1 Gao G e13(1.C ollege of Chemistry ,Jilin University ,Changchun 130023,China ;2.Department of Chemistry ,Daqing NormalUniversity ,Daqing 163712,China ;3.Health Science Center ,Peking University ,Beijing 100083,China )Abstract The interest in using room tem perature ionic liquids (RTI Ls )as potential replacement s olvents for organic synthesis ,extraction ,electrochemistry ,and materials science has increased tremendously in the recent years.Am ong them ,chiral ionic liquids are particularly attractive due to their potential for chiral discrimination ,asymmetric synthesis ,optical res olution of racemates ,stereoselective polymerization ,gas chromatography ,NMR shift reagents and liquid crystals.Even though the difficult syntheses of chiral ionic liquids and their high cost often precluded their use ,the possibility to use chiral ionic liquids as inducers for asymmetric reactions has greatly prom pted researchers to continuely synthesize new chiral s olvents.The chiral ionic liquids are designed either from the chiral pool (aminoacids ,amines ,aminoalcohols ,and alkaloids )or by asymmetric synthesis ;they can bear central ,axial or planar chirality.This review deals mainly with recent advances in synthesis of chiral ionic liquids.Based on the species of cation or anion ,they are classified into imidazolium 2based ,pyridinium 2based ,amm onium 2based ,and thiazolinium 2based etc.In addtion ,s ome new synthesis techniques are als o introduced.K ey w ords chirality ;ionic liquids ;synthesis 以离子液体(I Ls )为溶剂进行有机合成反应是近年来的新兴研究领域之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Materials Chemistry and Physics105 (2007) 80–85Microemulsion synthesis of LiFePO4/C and its electrochemicalproperties as cathode materials for lithium-ion cellsZhihui Xu a,b,Liang Xu a,Qiongyu Lai a,∗,Xiaoyang Ji aa College of Chemistry,Sichuan University,Chengdu Sichuan610064,PR Chinab College of Science,Nanjing Agricultural University,Nanjing Jiangsu210095,PR ChinaReceived26December2005;received in revised form18March2007;accepted8April2007AbstractThe electroactive LiFePO4/C nano-composite powders have been synthesized by a microemulsion method.The material were characterized by X-ray powder diffraction,X-ray photoelectron spectroscopic,scanning electron microscopy and its electrochemical properties were investigated by cyclic voltammetry,AC impedance and charge–discharge tests.The as-prepared LiFePO4/C composite had a high capacity of163mAh g−1at the C/10rate,i.e.95.9%of the theoretical capacity.The composite also display a good rate capability and stable cycle-life.The improved electrode performance originates mainly from thefine particle of nanometric dimension and the uniform size distribution in the product as well as the increase in electronic conductivity by the carbon coating.© 2007 Elsevier B.V. All rights reserved.Keywords:Lithium iron phosphate;Microemulsion synthesis;Cathode material;Lithium-ion cells;Electrochemical performance1.IntroductionThe olivine LiFePO4,which has a large theoretical capacity of170mAh g−1,represents a prospective lithium-intercalating cathode material for lithium-ion batteries.LiFePO4offers bene-fits such as inexpensive,natural abundance and environmentally benign,thermal stable in the fully charged state and good cycle stability.Reversible electrochemical extraction of lithium ions from LiFePO4proceeds at about3.4V versus Li+/Li.The volt-age is not so high as to decompose the electrolyte and is not so low as to sacrifice energy density.However,it was reported that this cathode has very low electronic conductivity and diffusion-controlled kinetics associated with the two-phase character of the insertion/extraction process[1],which decreases utilization in the charge–discharge capacity of active material.Recently, the synthesis of a LiFePO4/electronic conductor composite com-pound[2–10]and doping[11–13]have been used to increase the electronic conductivity.Thereinto,coating carbon on the surface of LiFePO4is proved to be a simple and maneuverable method [2,4,6–10]to increase the bulk conductivity.Li+ions diffusion is always associated with electrons transport.Ideally,both the ∗Corresponding author.Tel.:+862885416969;fax:+862885416969.E-mail address:laiqy5@(i).Li+ions and the electrons are available at the same spot of the active material surface.In the presence of carbon coating,Li+ ions diffusion will not be limited by electrons but more likely by the material ionic conductivity,which depends on the Debye length(λ)[14].As pointed out by Huang et al.[15],poor Li+ ions diffusion can be overcome by decreasing the particle size of the active material.Therefore,interests have been led to the production carbon-containing LiFePO4with a smaller particle size,which will be preferred to improve the electrochemical per-formance of the material and thus make it feasible as a cathode for lithium-ion batteries.The electrochemical behavior of LiFePO4is strongly influ-enced by the method of preparation,as well as the precursors and heat treatment protocols.Synthesis methods determine the crystallinity,phase purity,particle morphology,grain size,and surface area,all of which can impact on the electrochemi-cal performance of the olivine LiFePO4[16].LiFePO4has conventionally been synthesized by diffusion-limited solid-state reactions with their associated repeated grinding and a longer period of high temperature operations.Because of the several disadvantages of this method such as inhomogene-ity,larger particle size and broader particle size distribution, numerous synthetic approaches were adopted for preparation of the title compound in its pure and conductive form.Such an effort includes microwave synthesis[17,18],hydrothermal0254-0584/$–see front matter© 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.matchemphys.2007.04.039Z.Xu et al./Materials Chemistry and Physics 105 (2007) 80–8581method[19–22],spray produced LiFePO4[6,12,23],emul-sion dry approach[24],co-precipitation technique[21,25],soft chemistry route[26,27],mechanochemical activation means [20,28,29],sol–gel method[7,30,31],carbothermal reduction method[10,32],pulsed laser deposition technique[33,34], wherein addition of carbon[32],sucrose[6,8,23],Cu/Ag[3] powder has been implemented to improve the conductivity of native LiFePO4through any one the mentioned methods.In this paper,wefirstly selected an n-octane/n-butyl/ cetyltrimethyl ammonium bromide microemulsion system to synthesize successfully a LiFePO4/C composite with nano-metric dimension and uniform size distribution.The prepared sample displayed a good rate capability and stable cycle-life.2.Experimental2.1.Preparation microemulsionMicroemulsion A:50ml n-octane,20ml n-butyl alcohol,16g cetyltrimethyl ammonium bromide(CTAB),2ml5wt.%poly(ethylene glycol)(PEG,mean molecular weight is about4000),4ml0.4mol l−1(NH4)2Fe(SO4)2,4ml 0.4mol l−1H3PO4.Microemulsion B:50ml n-octane,20ml n-butyl alcohol,16g CTAB,2ml 5wt.%PEG,8ml0.6mol l−1LiOH.Homogeneous water-in-oil(W/O)type microemulsion was obtained when the aqueous solution was vigorously mixed with the oily phase.2.2.Synthesis procedureMicroemulsion B was added drop by drop to microemulsion A while stirring with blowing nitrogen gas into the solution.Thefinal solution,which was grayish blue in color,was matured a few hours at60◦C and separated centrifugally.A measured amount of sugar was dissolved in a small amount of water beforehand. Then the obtained powders were ground with the sugar solution slowly by hand. The mixture was heated at different temperature inflowing nitrogen for24h.2.3.AnalysisThe as-prepared composite was characterized by X-ray powder diffraction analysis(XRD,D/max-rA)using Cu K␣radiation(λ=0.154nm)and X-ray photoelectron spectroscopic(XPS,XSAM800).The morphology of the sam-ple was observed by a scanning electron microscope(SEM,JSM-5900LV)and transmission electron microscope(TEM,JEM-2100).A mixture of15wt.%ethyne black,80wt.%the prepared LiFePO4/C com-posite and5wt.%poly(vinylidene difluoride)binder(PVDF)was mixed together in N-methylpyrrolidinone(NMP).This mixed slurry was heated at70◦C in vac-uum for at least12h.The lithium foils were used both as anode and reference electrodes.The cells werefilled with a1mol dm−3solution of LiPF6in ethylene carbonate/dimethyl carbonate(EC/DMC1:1v/v).All cells were assembled in an argon-filled glove box and tested at room temperature.The cell was cycled galvanostatically between2.0V and4.0V(versus Li)at different rates.The cyclic voltammogram(CV)tests were carried out by electrochemical stations (CHI660b)at0.2mV s−1between2.5V and4.3V(versus Li).AC impedance measurements were carried out by the electrochemical stations(IM6)with the frequency range from8M to100mHz.3.Results and discussionFig.1shows the XRD patterns of the samples synthesized at different temperature.Despite LiFePO4phase began to appear at500◦C,both Li3PO4and Fe3(PO4)2can be observed in the prepared sample,demonstrating that synthesis reaction is not complete at this temperature.However,Li3PO4and Fe3(PO4)2Fig.1.XRD patterns of samples synthesized at different temperature:(a) 500◦C;(b)600◦C;(c)700◦C( :Fe3(PO4)2; :Li3PO4).were not detected in the samples synthesized at600◦C and 700◦C,respectively.The crystalline intensity of the sample prepared at700◦C is a little developed than that of the sam-ple prepared at600◦C.The samples,synthesized at600◦C and700◦C,with an ordered olivine(orthorhombic)structure comprise PO4tetrahedra and distorted FeO6octahedra,which produce a two-dimensional pathway for lithium-ion diffusion [1].There were3.2wt.%and2.9wt.%carbon,measured by TGA,in the600◦C sample and the700◦C sample.The high chemical activity of carbon,generated from the pyrolysis of sugar,ensures in situ coating carbon on the surface of fresh formed LiFePO4particles.It was expected the carbon coating on the LiFePO4crystals would control the oxidation of Fe2+in thefinal product,dramatically increase the electronic conduc-tivity of the electrodes,decrease the charge-transfer resistance and make possible the achievement of good capacities even at room temperature and relative high rates.However,we cannot see any diffraction peak attributed to carbon from Fig.1,which is due probably to the amorphous or low crystalline carbon in thefinal product.Fig.2shows the XPS results for the Fe2p binding energy of the sample synthesized at600◦C.Sample was sputtered three times to eliminate detection error from electrons adsorbed on the surface of the sample.Also,information was collected at a depth of4–5nm from the surface.The shift Fe2p3/2binding energy would be related only to the difference in oxidation state of Fe.The observed shift Fe2p binding energy agrees with the82Z.Xu et al./Materials Chemistry andPhysics 105 (2007) 80–85Fig.2.XPS narrow spectra of the Fe2p of the sample prepared at600◦C. bonding energy of the oxidation of Fe2+[24].It is also consistent with the results shown in Fig.1that no Fe3+compounds were detected.SEM images of samples,synthesized at600◦C and700◦C are shown in Fig.3.The600◦C sample and the700◦C sample have average primary crystal size of about90nm and200nm, respectively,and the crystals form loose agglomerates.Obvi-ously,the higher synthesis temperature will result in undesirable particles growth.TEM studies were also conducted(Fig.4)for the two sample.The morphology and grain size distribution show some differences.Global texture is more clearly evidenced in the600◦C sample,while larger secondary particles are vis-ible in the700◦C sample.It should be noted that no obvious carbon particles are observed,indicating that the carbon is not simply dispersed between particles,but most likely coated on the surface of LiFePO4particles.In this microemulsion method,four factors exercise a great influence on obtaining the LiFePO4particles with nano-metric particle size and uniform size distribution,and thus influencing the electrochemical properties of the LiFePO4. Firstly,interaction would occur between CTAB and PEG at oil–water interface.Hydrophilic group in CTAB was bonded with the polar group on PEG chain through ion–dipole action, and thus forming polymeride–surfactant composite.The PEG molecule chain will stretch at oil–water interface because of the repulsion effect of the electriferous groups in CTAB molecule.This polymeride–surfactant composite can increase Gibbs Marangoni effect,Gibbs elasticity or interface viscosity [35],which decreases water core coalescence,increases the sta-bility of microemulsion nano-reactor and achieves the goal of controlling the particle size and size distribution of thefinal Fig.3.SEM photograph of samples synthesized at different temperature:(a)600◦C;(b)700◦C.Fig.4.TEM photograph of samples synthesized at different temperature:(a)600◦C;(b)700◦C.Z.Xu et al./Materials Chemistry and Physics 105 (2007) 80–8583Fig.5.Cyclic voltammetry curves of the samples synthesized at different tem-perature:(a)600◦C;(b)700◦C.product.Secondly,the polymeride–surfactant composite was adsorbed on the surface of sedimental particles when mixing microemulsion A with B.The polymeride–surfactant composite surrounding sedimental particles provides great spatial hin-drance and helps to inhibit the conglomeration of sedimental particles.Thirdly,carbon generated from the pyrolysis of sugar was coated on the surface of fresh formed LiFePO4particles during the heat treatment process.The in situ coated carbon acts not only as the electronic conductor in thefinal product but also as the obstructerfilm preventing the undesired particle growths. In addition,synthesis temperature also affects the particles size in thefinal product.The LiFePO4particles with nanometric par-ticle size and uniform size distribution would be more beneficial to the full utilization of active materials.The influence of oil to water ratio in volume and concentration in aqueous phase on particle size and distribution is still under investigation.Fig.5shows thefirst cyclic voltammograms of the LiFePO4/C composite synthesized at600◦C and700◦C.Only a couple of anodic and cathodic peaks,which corresponds to the two-phase charge/discharge reaction of the Fe2+/Fe3+ redox couple,were observed at about3.5V[1].The approxi-mately symmetrical peaks suggest the good insertion/extraction reversibility of the microemulsion produced active material.As can be seen in Fig.5,the peak symmetry of the former was superior to that of the latter,meaning that the600◦C sample has the better reversibility for the lithium insertion/extraction,the less ohmic polarization and the more superior electrochemical performance than the700◦C sample.Fig.6shows thefirst discharge capacities of the samples syn-thesized under600◦C and700◦C at the C/10rate.As seen in Fig.6,all the profiles exhibited extremelyflat operating volt-age at about3.5V(versus Li).Aflat charge–discharge profile over a large range indicates that the Fe2+/Fe3+redox reaction of LiFePO4proceeds as a two-phase via afirst order-transition between FePO4and LiFePO4[1]:LiFePO4(S)⇔FePO4(S)+Li++e(1) Because of the increase in electronic conductivity by the carbon coating,the charge and discharge voltage are very close,indicating small electrode polarization during the charge–discharge process.As shown in Fig.6,the600◦Csample Fig.6.First charge–discharge profiles of samples synthesized at different tem-perature:(a)600◦C;(b)700◦C.delivered an initial charge capacity of167mAh g−1and a subse-quent discharge capacity of163mAh g−1.However,the700◦C sample delivered an initial charge capacity of164mAh g−1and a subsequent discharge capacity of159mAh g−1.According to the results obtained from Figs.3,5and6,the sample had the smaller particles and also had the better electrochemical properties.Fig.7shows thefirst discharge capacities of samples syn-thesized under600◦C and700◦C at the C/10,C/2,C,2C rate, respectively.The discharge capacities of samples decreased with the speed up of the discharge rate from C/10to2C.It is shown that the electrochemical property of the700◦C sample worsened more dramatically at high rate than that of the600◦C sample. This phenomenon may also be ascribed to the different particles size of the two samples.The larger particles give rise to transport limitation both for lithium ions and electrons diffusion,which results in capacity loss in utilization,especially at the higher current.Furthermore,the less the particles size is,the more eas-ily electrolyte penetrate across the whole active material.In this way,lithium ions and electrons are available everywhere on the particles surface,and thus can greatly improve the electrochem-ical reaction(1).The rate capability difference between the600◦C sample and the700◦C sample can also be explained from their Nyquist plots (Fig.8).The spectra shows an intercept at high frequency,fol-lowed by a depressed semicircle in the high-middle frequency region,and a straight line in the low frequency region.The inter-cept impedance on the real resistance axis represents the ohmic resistance,which consists of the resistance of the electrolyte and electrode.The high frequency region of the semicirclerep-Fig.7.Rate capability of samples synthesized at different temperature.84Z.Xu et al./Materials Chemistry andPhysics 105 (2007) 80–85Fig.8.ac impedance of samples synthesized at different temperature.resents the migration of the Li +ions at the electrode/electrolyte interface through the SEI layer,whereas,the middle frequency range of the semicircle corresponds to the charge-transfer.The low frequency region of the straight line is attributed to the dif-fusion of the lithium ions into the bulk of the electrode material or so-called Warburg diffusion.As can be seen from Fig.8,the 600◦C sample exhibited lower charge-transfer resistance (R ct )than the 700◦C sample.At a low discharge rate,the effect of a large R ct can be neglected,but for higher discharge rates the R ct is mainly responsible for the voltage drop causing a sudden decrease in the electrochemical performance.To some extent,the difference of charge-transfer resistance between the 600◦C sample and the 700◦C sample is related to the differ-ence of particle size between the two samples.A decrease of the LiFePO 4particles’size will decrease the polarization asso-ciated with electronic and/or ionic resistance at the boundary of crystallites within each polycrystalline particle of active mate-rial,electronic and/or ionic resistance through LiFePO 4/FePO 4interface within each crystallite,and thus improve the reversible capacity of LiFePO 4material.The cycle-life at different discharge rate of the sample,syn-thesized at 600◦C,is shown in Fig.9.Slow capacities decrease is observed and stable cycle-life is present at the C/10,C/2and C rate.Carbon coating was used to increase the bulk electronic conductivity.However,the intrinsic electronic con-ductivity remained unchanged.Under high-rate performance,intrinsic electronic conductivity should become more important [36],which demonstrates that the sample has better cycling sta-bility below C rate.After 40cycles,the discharge capacity of the sample is still about 95.2%of its first dischargecapacitiesFig.9.Cycling performance of the sample synthesized at 600◦C.at the 2C rate.The good cycling behavior is mainly attributed to the nanometric particle size,uniform size distribution and enhancement of the electronic conductivity by the carbon coat-ing.Besides,the high stability of the olivine structure and the minor lattice adjustments [16]are favorable for the cycle stabil-ity.4.ConclusionA microemulsion method is used to manufacture LiFePO 4/C composite with uniform and fine particles.The main advan-tage of this synthesis route is that the reactants are mixed on more homogeneous level by this oil-based solution approach,and that grains are effectively inhibited from coalescence dur-ing the synthetic process.The in situ coated carbon,grains size of nanometric dimension and uniform size distribution as well as phase purity brought about the superior capability and the high capacity retention upon cycling.The LiFePO 4/C compos-ite synthesized by the microemulsion method is believed to be an excellent candidate as cathode active material for next generation lithium-ion batteries.References[1]A.K.Padhi,K.S.Najundaswamy,J.B.Goodenough,J.Electrochem.Soc.144(1997)1188.[2]P.P.Prosini,D.Zane,M.Pasquali,Electrochim.Acta 46(2001)3517.[3]F.Croce,A.D.Epifanio,J.Hassoun,A.Deptuia,T.Olezac,Electrochem.Solid-State Lett.5(2002)A47.[4]Z.Chen,J.R.Dahn,J.Electrochem.Soc.149(2002)A1184.[5]P.Subramanya Herle,B.Ellis,N.Coombs,L.F.Nazar,Nat.Mater.3(2004)147.[6]K.Konstantinow,S.Bewlay,G.X.Wang,M.Lindsay,J.Z.Wang,H.K.Liu,S.X.Dou,J.-H.Ahn,Electrochim.Acta 50(2004)421.[7]J.Yang,J.J.Xu,Electrochem.Solid-State Lett.7(2004)A515.[8]X.-Z.Liao,Z.-F.Ma,L.Wang,X.-M.Zhang,Y .Jiang,Y .-S.He,Elec-trochem.Solid-State Lett.7(2004)A522.[9]E.M.Bauer,C.Bellitto,M.Pasquali,P.P.Prosini,Electrochem.Solid-StateLett.7(2004)A85.[10]C.H.Mi,G.S.Gao,X.B.Zhao,Mater.Lett.59(2005)127.[11]S.Y .Chung,J.T.Bloking,Y .M.Chiang,Nat.Mater.1(2002)123.[12]G.X.Wang,S.L.Bewlay,K.Konstantinov,H.K.Liu,S.X.Dou,J.-H.Ahn,Electrochim.Acta 50(2004)443.[13]G.X.Wang,S.Bewlay,J.Yao,J.H.Ahn,S.X.Dou,H.K.Liu,Electrochem.Solid-State Lett.7(2004)A503.[14]J.M.Tarascon,C.Delacourt,A.S.Prakash,M.Morcrette,M.S.Hegde,C.Wurm,C.Masquelier,Dalton Trans.19(2004)2988.[15]H.Huang,S.-C.Yin,L.F.Nazar,Electrochem.Solid-State Lett.4(2001)170.[16]A.Yamada,S.C.Chung,K.Hinokuma,J.Electrochem.Soc.148(2001)A224.[17]M.Higuchi,K.Katayama,Y .Azuma,M.Yukawa,M.Suhara,J.PowerSources 119–121(2003)258.[18]K.S.Park,J.T.Son,H.T.Chung,S.J.Kim,C.H.Lee,H.G.Kim,mun.5(2003)839.[19]S.Yang,P.Y .Zavalij,M.S.Whittingham,mun.3(2001)505.[20]S.Franger,F.Le Cras,C.Bourbon,H.Rouault,Electrochem.Solid-StateLett.5(2002)A231.[21]S.Franger,F.L.Cras,C.Bourbon,H.Rouault,J.Power Sources 119–121(2003)252.[22]S.Tajimi,Y .Ikeda,K.Uematsu,K.Toda,M.Sato,Solid State Ionics 175(2004)287.Z.Xu et al./Materials Chemistry and Physics 105 (2007) 80–8585[23]S.L.Bewlay,K.Konstantinov,G.X.Wang,S.X.Dou,H.K.Liu,Mater.Lett.2004(58)(1788).[24]S.-T.Myung,S.Komaba,N.Hirosaki,H.Yashiro,N.Kumagai,Elec-trochim.Acta49(2004)4213.[25]G.Amold,J.Garche,R.Hemmer,S.Strobele,C.V ogler,M.Wohlfahrt-Mehrens,J.Power Sources119–121(2003)247.[26]P.P.Prosini,M.Carewska,S.Scaccia,P.Wisniewski,S.Passweini,M.Pasquali,J.Electrochem.Soc.149(2002)A886.[27]P.P.Prosini,M.Carewska,S.Scaccia,P.Wisniewski,M.Pasquali,Elec-trochim.Acta48(2003)4205.[28]N.Kosova,E.Devyatkina,Solid State Ionics172(2004)181.[29]S.J.Kwon,C.W.Kim,W.T.Jeong,K.S.Lee,J.Power Sources137(2004)93.[30]M.M.Doeff,Y.Hu,F.McLarnon,R.Kostecki,Electrochem.Solid-StateLett.6(2003)A207.[31]Y.Hu,M.M.Doeff,R.Kostecki,R.Finones,J.Electrochem.Soc.151(2004)A1279.[32]J.Barker,M.Y.Saidi,J.L.Sowyer,Electrochem.Solid-State Lett.6(2003)A53.[33]Y.Iriyama,M.Yokoyama,C.Yada,S.-K.Jeong,I.Yamada,T.Abe,M.Inaba,Z.Ogumi,Electrochem.Solid-State Lett.7(2004)A340.[34]F.Sauvage,E.Baudrin,M.Morcrette,J.-M.Tarascon,Electrochem.Solid-State Lett.7(2004)A15.[35]W.-P.Liang,F.-S.Yin,Appl.Surf.Dispers.Syst.(2003)12.[36]D.Wang,H.Li,S.Shi,X.Huang,L.Chen,Electrochim.Acta50(2005)2955.。