2018年高考数学总复习第八章立体几何与空间向量第3讲空间点、直线、平面之间的位置关系学案!

合集下载

2018高考数学复习:第8章立体几何第3节空间点、直线、平面之间的位置关系(含解析)

2018高考数学复习:第8章立体几何第3节空间点、直线、平面之间的位置关系(含解析)

第三节空间点、直线、平面之间的位置关系题型93 证明“点共面”“线共面”或“点共线”及“线共点”2013年1.(2013江西文15)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为 .FEαA B C D2016年1.(2016山东文6)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b 相交”是“平面α和平面β相交”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件1. A 解析由直线a和直线b相交,可知平面αβ,有公共点,所以平面α和平面β相交.反过来,如果平面α和平面β相交,直线a和直线b不一定相交,可能与两平面的交线都平行.故选A.Q1D A 题型94 异面直线的判定2015年1.(2015广东文6)若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ).A .l 与1l ,2l 都不相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 至少与1l ,2l 中的一条相交1.解析 若直线1//l l 且2//l l ,则12//l l ,与直线1l 与2l 是异面直线矛盾. 故直线l 至少与1l ,2l 中的一条相交.故选D .2.(2015湖北文5) 1l ,2l 表示空间中的两条直线,若p :1l ,2l 是异面直线,q :1l ,2l 不相交,则( ).A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件 C .p 是q 的充分必要条件 D .p 既不是q 的充分条件,也不是q 的必要条件2.解析 若p :1l ,2l 是异面直线,由异面直线的定义知,1l ,2l 不相交,所以命题q :1l ,2l 不相交成立,即p 是q 的充分条件; 反过来,若q :1l ,2l 不相交,则1l ,2l 可能平行,也可能异面. 所以,不能推出1l ,2l 是异面直线,即p 不是q 的必要条件,故选A. 补充题型 截面问题2013年13. (2013安徽文15)如图,正方体1111-ABCD A B C D 的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A P Q ,,的平面截该正方体所得的截面记为S .则下列命题正确的是 (写出所有正确命题的编号) ①当10<<2CQ 时,S 为四边形 ②当12CQ =时,S 为等腰梯形 ③当34CQ =时,S 与11C D 的交点R 满足113C R = ④当3<<14CQ 时,S 为六边形⑤当1CQ =时,S。

高考数学一轮复习第八章立体几何8.3空间点、直线、平面之间的位置关系课件文新人教A

高考数学一轮复习第八章立体几何8.3空间点、直线、平面之间的位置关系课件文新人教A

即 D,B,F,E 四点共面. ②在正方体 ABCD-A1B1C1D1 中,设平面 ACC1A1 为 α,平 面 DBFE 为 β. 因为 Q∈A1C1,所以 Q∈α, 又 Q∈EF,所以 Q∈β,则 Q 是 α 与 β 的公共点, 同理,P 是 α 与 β 的公共点,所以 α∩β=PQ. 又 A1C∩β=R,所以 R∈A1C,R∈α 且 R∈β, 所以 R∈PQ,故 P,Q,R 三点共线.
[典题 1] (1)以下四个命题中,正确命题的个数是( B )
①不共面的四点中,其中任意三点不共线;
②若点 A,B,C,D 共面,点 A,B,C,E 共面,则 A,
B,C,D,E 共面;
③若直线 a,b 共面,直线 a,c 共面,则直线 b,c 共面;
④依次首尾相接①四边形 BCHG 的形状是___平__行__四__边__形____; ②点 C,D,E,F,G 中,能共面的四点是_C__,_D__,__E_,__F_. 解析:①∵G,H 分别为 FA,FD 的中点, ∴GH 綊12AD.又 BC 綊12AD,所以 GH 綊 BC,
所以四边形 BCHG 为平行四边形.
C.2
D.3
[解析] ①显然是正确的,可用反证法证明;②中若 A,B, C 三点共线,则 A,B,C,D,E 五点不一定共面;③构造长方 体如图,显然 b,c 异面,故不正确;④中空间四边形中四条线 段不共面.故只有①正确.
(2)已知正方体 ABCD-A1B1C1D1 中,E,F 分别为 D1C1,C1B1 的中点,AC∩BD=P,A1C1∩EF=Q.求证:
(4)公理 2 的三个推论 推论 1:经过一条直线和这条直线外一点有且只有一个平面; 推论 2:经过两条___相__交___直线有且只有一个平面; 推论 3:经过两条___平__行___直线有且只有一个平面.

最新-2018届高考数学一轮复习 83 空间点、直线、平面之间的位置关系课件 新人教A版 精品

最新-2018届高考数学一轮复习 83 空间点、直线、平面之间的位置关系课件 新人教A版 精品

的公共点,由公理2知,D、E、F共线.
2.关于直线和平面的四个命题中不正确的是(C ) A.平行于同一平面的两个平面一定平行 B.平行于同一直线的两条直线一定平行 C.垂直于同一直线的两条直线一定平行 D.垂直于同一平面的两条直线一定平行 解析 垂直于同一直线的两条直线不一定平 行,还可能相交或异面.
①直线BE与直线CF是异面直线;
②直线BE与直线AF是异面直线;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确结论的序号是(B ) A.①② B.②③ C.①④
D.②④
解析 由EF∥AD∥BC,知BE、CF共面,
①错;②正确;③正确;④错.故选B.
(2)如图,正方体ABCD—A1B1C1D1中,M、N分 别为棱C1D1、C1C的中点,有以下四个结论: ①直线AM与CC1是相交直线; ②直线AM与BN是平行直线; ③直线BN与MB1是异面直线; ④直线AM与DD1是异面直线. 其中正确的结论为 ③④ (注:把你认为正确
解析 如图所示,三个平面α、β、γ两两相
交,交线分别是a、b、c且a∥b∥c.则α、β、
γ把空间分成7部分.
2.直线a,b,c两两平行,但不共面,经过其中两条
直线的平面的个数为( B )
A.1
B.3
C.6
ห้องสมุดไป่ตู้
D.0
解析 以三棱柱为例,三条侧棱两两平行,但
不共面,显然经过其中的两条直线的平面有3个.
3.分别在两个平面内的两条直线的位置关系是
题型分类 深度剖析
题型一 平面的基本性质 【例1】如图所示,空间四边形ABCD
中,E、F、G分别在AB、BC、CD上, 且满足AE∶EB=CF∶FB=2∶1, CG∶GD=3∶1,过E、F、G的平 面交AD于H,连接EH. (1)求AH∶HD; (2)求证:EH、FG、BD三线共点. 思维启迪 证明线共点的问题实质上是证明点在 线上的问题,其基本理论是把直线看作两平面 的交线,点看作是两平面的公共点,由公理3得证.

立体几何3空间点、直线和平面之间的位置关系.

立体几何3空间点、直线和平面之间的位置关系.

空间点、直线、平面之间的位置关系考纲要求1理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.公理3;如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.知巩梳理"T"平面的基本性质名称内容图形衣示谄R表不作用公理1如果一条自线上的两点Ae/.be住一个/ILAG G,平而内•册么/〉《?■—/ B e U =>这条n纟戈在lUa此¥面内①判定直线住rifti A ;②判足点在平血内过不在—勒工线I-的三点・右-R只有一个平曲•B•C若A、”、「-:点不同住一条立线L.则A、”、「三点的定一个 fifiJa① a >iz平而;②ill:明点、线共而如果则个不重合的平向冇一个公典点•那么它们冇M貝仃一条过该点的公共宜线P W a • li "j =>a 「14 Z. H.He/①判定两亍半向是杏相交;©ill-明点在(!£线I .;③UF明三点、兵线* ①旺明三线共点S⑤iBlj两个相交平而的交线(3) 等角定理:空间中如果两个角的两边分别对应平 行,则这两个角相等或者互补.(4) 两异面直线所成的角:两条异面直线a, b,经过空 间任一点0作直线a' 〃d,方'lib 、把o' , H 所成的锐角 (或直角)叫异面直线a, 〃所成的角(或夹角).心,Z 所成 的角的大小与点O 的选择无关,为了简便,点O 通常取在异 两直裁的一条上;异,如果两条异面直线所成异面直线垂直,记作心 • 2 •空间直线(1)空间两直线的位置关系;相交直线:有且只有一个公共点; 平行直线:没有公共点:. .. (2)公理4: 空间中的直线4, b, C,如果4〃力,b//c.则0〃0问誠思考►问题1平面的基本性质(1)若点A在直线/上,直线/在平面G内,则点A在平面伉内;()(2)—条直线与一个点确定一个平面;()(3)三点确定一个平面;()(4)两个相交平面只有有限个公共点.()[答案]⑴对(2)错⑶错(4)错►问题2设平面仅与4UG直线比卩,则点M—定不在直线/上.()[答案]错[解析1因为《rU=M, uUa, bup,所以』1/在《内,M在〃内.又因为平面a与平面/栩交于人所以M在/上.►问题4 若O4〃0iAi,0B〃0右且Z4O〃=60。

高考数学一轮复习第8章立体几何3空间点直线平面之间的位置关系课件新人教A版

高考数学一轮复习第8章立体几何3空间点直线平面之间的位置关系课件新人教A版
∴P∈平面ABC.同理P∈平面ADC.
∴P为平面ABC与平面ADC的公共点.
又平面ABC∩平面ADC=AC,
∴P∈AC,∴P,A,C三点共线.
-20考点1
考点2
考点3
考点 2
空间两条直线的位置关系
例2(1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面
α与平面β的交线,则下列命题正确的是( D )
双基自测
3.公理4
平行于 同一条直线
1
2
3
4
5
6
7
的两条直线互相平行.
-5知识梳理
双基自测
1
2
3
4
5
6
7
4.定理
空间中如果两个角的两边分别对应平行,那么这两个
角 相等或互补
.
-6知识梳理
双基自测
1
2
3
4
5.直线与平面的位置关系
直线与平面的位置关系有 平行
种情况.
5
6

7
相交
在平面内
、__________三
为正方形需满足 EF=EH 且 EF⊥EH,即 AC=BD 且 AC⊥BD.
关闭
(1)AC=BD (2)AC=BD 且 AC⊥BD
解析
答案
-15考点1
考点2
考点3
考点 1
平面的基本性质及应用
例1如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点,
求证:
(1)E,C,D1,F四点共面;
双基自测
1
2
3
4
5
2.如图,在正方体ABCD-A1B1C1D1中,E,F分别为BC,BB1的中点,则

【与名师对话】高考数学总复习 8-3 空间点、直线、平面之间的位置关系课件 理 新人教A版

【与名师对话】高考数学总复习 8-3 空间点、直线、平面之间的位置关系课件 理 新人教A版

下列说法中,正确的是________. ①首尾相接的四条线段在同一个平面内; ②三条互相平行的线段在同一个平面内; ③两两相交的三条直线在同一个平面内; ④若四个点中的三个点在同一条直线上,那么这四个 点在同一个平面内; ⑤若A∈l,A∈α,B∈l,B∈α,则l⊂α; ⑥若A∈α,A∈β,B∈α,B∈β,则α∩β=AB; ⑦若l⊄α,A∈l,则A∉α
3.证明点线共面的常用方法 (1)纳入平面法:先确定一个平面,再证明有关点、线 在此平面内. (2)辅助平面法:先证明有关的点、线确定平面α,再证 明其余元素确定平面β,最后证明平面α、β重合.
如图所示,在正方体ABCD- A1B1C1D1中,E为AB的中点,F为A1A的中 点, 求证:(1)E、C、D1、F四点共面; (2)CE、D1F、DA置关系的 定义,并了解可 以作为推理依据 的公理和定理.
考情分析 预测:2013年高考对本节内容的考查仍将 以求证异面直线垂直、求异面直角所成角 为主.以棱柱、棱锥为依托考查异面直线 所成角,2013年高考复习中应予以高度关 注,还应关注共点、共线、共面问题的命 题.
(对应学生用书P132)
平面的基本性质是研究立体几何的理论基础,考查平 面的基本性质、推论及文字语言、图形语言和符号语言的 相互转化能力.
(1)三个平面两两相交,则交线条数为 A.3 C.2或3 B.1 D.1或3
(
)
(2)平行六面体ABCD-A1B1C1D1中,既与AB共面,又与 CC1共面的棱的条数为________.
【证明】 (1)分别连接 EF、A1B、D1C. ∵E、F 分别是 AB 和 AA1 的中点, 1 ∴EF 綊 A1B.又 A1D1 綊 B1C1 綊 BC, 2 ∴四边形 A1D1CB 为平行四边形. ∴A1B∥CD1,从而 EF∥CD1. ∴EF 与 CD1 确定一个平面. ∴E、F、D1、C 四点共面.

浙江专用2018版高考数学大一轮复习第八章立体几何8.3空间点直线平面之间的位置关系课件

浙江专用2018版高考数学大一轮复习第八章立体几何8.3空间点直线平面之间的位置关系课件
答案 解析
思维升华
空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于 异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯 形 ) 中位线的性质、公理 4 及线面平行与面面平行的性质定理;对于垂 直关系,往往利用线面垂直的性质来解决.
跟踪训练2
(1)已知a,b,c为三条不重合的直线,有下列结论:①若
2.(2016· 浙江 ) 已知互相垂直的平面 α , β 交于直线 l. 若直线 m , n 满足 m∥α,n⊥β,则 答案 A.m∥l C.n⊥l 由已知,α∩β=l,
解析
B.m∥n D.m⊥n
∴l⊂β,
又∵n⊥β,
∴n⊥l,C正确.
3.已知a,b是异面直线,直线c平行于直线a,那么c与b A.一定是异面直线 C.不可能是平行直线
跟踪训练3
(2017· 杭州第一次质检) 如图,△ABC是等腰直角三角形,
AB=AC,∠BCD=90°,且BC= 3CD =3.将△ABC沿BC边翻折,设
点A在平面BCD上的射影为点M,若点M在△BCD的内部(含边界),则
3 点M的轨迹的最大长度等于________ ;在翻折过程中,当点M位于线段 2
答案
解析
B.一定是相交直线 D.不可能是相交直线
由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平
行直线,
若b∥c,则a∥b,与已知a、b为异面直线相矛盾.
4. (教材改编)如图所示,已知在长方体ABCD-
EFGH中,AB= 2 3, AD=2 3,AE=2,则BC和
EG所成角的大小是______ 45° ,AE和BG所成角的大
①④ 其中所有正确的命题是________.( 填序号)

2018年高考数学一轮复习 第八章 立体几何 8.3 空间点、直线、平面之间的位置关系 文 新人教A版

2018年高考数学一轮复习 第八章 立体几何 8.3 空间点、直线、平面之间的位置关系 文 新人教A版

角度二 异面直线的判定 [典题 3] (1)在下图中,G,N,M,H 分别是正三棱柱的顶 点或所在棱的中点,则表示直线 GH,MN 是异面直线的图形有 __②__④____.(填上所有正确答案的序号)




[解析] 图①中,直线 GH∥MN;图②中,G,H,N 三点共 面,但 M∉平面 GHN,因此直线 GH 与 MN 异面;图③中,连接 GM,GM∥HN,因此 GH 与 MN 共面;图④中,G,M,N 共面, 但 H∉平面 GMN,因此 GH 与 MN 异面.所以在图②④中,GH 与 MN 异面.
∴cos∠A1BC1=12, 故异面直线 A1B 与 AD1 所成角的余弦值为12.
[题点发散 2] 将本例中条件“AA1=2AB=2”改为“AB= 1,若异面直线 A1B 与 AD1 所成角的余弦值为190”,试求:AAAB1的 值.
解:设AAAB1=t,则 AA1=tAB. ∵AB=1,∴AA1=t, ∵A1C1= 2,A1B= t2+1=BC1, ∴cos∠A1BC1=2×t2+t12++t12×+1-t2+2 1=190, ∴t=3,即AAAB1=3.
考点 2 空间两直线的位置关系
1.直线与直线的位置关系
位 的置 分关 类系共 异面 面直 直线 线: 不平相同行交在
直线 直线 任何

内,没有公共点
一个平面
2.直线与平面的位置关系有___平__行___、___相__交___、在__平__面__内__ 三种情况.
3.平面与平面的位置关系有__平 __行____、__相__交____两种情况. 4.等角定理 空间中如果两个角的___两__边__分__别__对__应__平__行___,那么这两个角 相等或互补.

高考数学一轮复习 第八章 立体几何 8.3 空间点、直线、平面之间的位置关系真题演练集训 理 新人教

高考数学一轮复习 第八章 立体几何 8.3 空间点、直线、平面之间的位置关系真题演练集训 理 新人教

位置关系真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第八章立体几何8.3 空间点、直线、平面之间的位置关系真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第八章立体几何8.3 空间点、直线、平面之间的位置关系真题演练集训理新人教A版的全部内容。

间的位置关系真题演练集训 理 新人教A 版1.[2016·新课标全国卷Ⅰ]平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A 。

错误! B.错误! C.错误! D 。

错误!答案:A解析:因为过点A 的平面α与平面CB 1D 1平行,平面ABCD ∥平面A 1B 1C 1D 1,所以m ∥B 1D 1∥BD ,又A 1B ∥平面CB 1D 1,所以n ∥A 1B ,则BD 与A 1B 所成的角为所求角,所以m ,n 所成角的正弦值为32,故选A 。

2.[2015·安徽卷]已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面 答案:D解析:可以结合图形逐项判断. A 项,α,β可能相交,故错误;B 项,直线m ,n 的位置关系不确定,可能相交、平行或异面,故错误;C 项,若m ⊂α,α∩β=n ,m ∥n ,则m ∥β,故错误;D 项,假设m ,n 垂直于同一平面,则必有m ∥n ,所以原命题正确,故选D 。

2018高中数学文人教A版学考课件:8-3 空间点、直线、

2018高中数学文人教A版学考课件:8-3 空间点、直线、
8.3
空间点、直线、平面 之间的位置关系
-2知识梳理 双基自测 自测点评
1
2
3
4
5
6
7
1.平面的基本性质 公理1:如果一条直线上的 两点 在一个平面内,那么这条直线 在此平面内. 公理2:过 不在一条直线上 的三点,有且只有一个平 面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有 一条 过该点的公共直线.
-18考点1 考点2 考点3
解题心得1.点线共面问题的证明方法: (1)纳入平面法:先确定一个平面,再证有关点、线在此平面内; (2)辅助平面法:先证有关点、线确定平面α,再证其余点、线确定 平面β,最后证明平面α,β重合. 2.证明多线共点问题,常用的方法是:先证其中两条直线交于一点, 再证交点在第三条直线上.证交点在第三条直线上时,第三条直线 应为前两条直线所在平面的交线,可以利用公理3证明.
-3知识梳理 双基自测 自测点评
1
2
3
4
5
6
7
2.直线与直线的位置关系
位置关系的分类
平行 共面直线 相交
异面直线:不同在 任何
一个平面内
-4知识梳理 双基自测 自测点评
1
2
3
4
5
6
7
3.公理4 平行于 同一条直线
的两条直线互相平行.
-5知识梳理 双基自测 自测点评
1
2
3
4
5
6
7
4.定理 空间中如果两个角的两边分别对应平行,那么这两个 角 相等或互补 .
关闭
②④
答案
-13知识梳理 双基自测 自测点评
1
2
3
4
5
4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列 四个命题,其中正确的命题是 .(填序号) ①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③ a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b

2018届高考数学(理)大一轮复习教师用书第八章第二节空间点、直线、平面之间的位置关系Word版含解析

2018届高考数学(理)大一轮复习教师用书第八章第二节空间点、直线、平面之间的位置关系Word版含解析

第二节空间点、直线、平面之间的位置关系本节主要包括2个知识点:1.平面的基本性质;空间两直线的位置关系.突破点(一)平面的基本性质1.公理1~32.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.1.(1)公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据公理3证明这些点都在交线上;(2)同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.2.证明线共点问题的方法先证两条直线交于一点,再证明第三条直线经过该点. 3.证明点、直线共面问题的常用方法(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.[典例] 已知:空间四边形ABCD (如图所示),E ,F 分别是AB ,AD 的中点,G ,H 分别是BC ,CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E ,F ,G ,H 四点共面; (2)三直线FH ,EG ,AC 共点. [证明] (1)连接EF ,GH ,∵E ,F 分别是AB ,AD 的中点, ∴EF ∥BD .又∵CG =13BC ,CH =13DC ,∴GH ∥BD ,∴EF ∥GH , ∴E ,F ,G ,H 四点共面.(2)易知FH 与直线AC 不平行,但共面, ∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,∴FH ,EG ,AC 共点.[方法技巧]平面的基本性质的应用公理1是判断一条直线是否在某个平面内的依据,公理2及其推论是判断或证明点、线共面的依据,公理3是证明三线共点或三点共线的依据.1.如图是正方体或四面体,P ,Q ,R ,S 分别是所在棱的中点,则这四个点不共面的一个图是( )解析:选D A 、B 、C 图中四点一定共面,D 中四点不共面. 2.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .至多等于3 B .至多等于4 C .等于5D .大于5解析:选B n =2时,可以;n =3时,为正三角形,可以;n =4时,为正四面体,可以;n =5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长相等,这种情况不可能出现,所以正整数n 的取值至多等于4.3.以下四个命题中,正确命题的个数是( ) ①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面; ③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面; ④依次首尾相接的四条线段必共面. A .0 B .1 C .2 D .3解析:选B ①显然是正确的,可用反证法证明;②中若A ,B ,C三点共线,则A ,B ,C ,D ,E 五点不一定共面;③构造长方体或正方体,如图显然b ,c 异面,故不正确;④中空间四边形中四条线段不共面.故只有①正确.4.如图所示,四边形ABEF 和四边形ABCD 都是梯形,BC 綊12AD ,BE 綊12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么?解:(1)证明:由已知FG =GA ,FH =HD ,可得GH 綊12AD .又∵BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)C ,D ,F ,E 四点共面,证明如下:由BE 綊12AF ,G 为FA 的中点知BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG ∥CH ,∴EF ∥CH .∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.突破点(二) 空间两直线的位置关系1.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)公理4和等角定理①公理4:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 2.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)范围:⎝⎛⎦⎤0,π2.[例1] (1)①在空间中,若两条直线不相交,则它们一定平行; ②平行于同一条直线的两条直线平行;③一条直线和两条平行直线中的一条相交,那么它也和另一条相交; ④空间四条直线a ,b ,c ,d ,如果a ∥b ,c ∥d ,且a ∥d ,那么b ∥c . A .①②③B .②④C.③④D.②③(2)在图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.(填上所有正确答案的序号)[解析](1)①错,两条直线不相交,则它们可能平行,也可能异面;②由公理4可知正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N 共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)B(2)②④[方法技巧]判断空间两直线位置关系的思路方法(1)判断空间两直线的位置关系一般可借助正方体模型,以正方体为主线直观感知并准确判断.(2)异面直线的判定方法①反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.②定理法:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.异面直线所成的角[例2]空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E,F分别为BC,AD的中点,求EF与AB所成角的大小.[解]取AC的中点G,连接EG,FG,则EG綊12AB,FG綊12CD,由AB=CD知EG=FG,∴∠GEF(或它的补角)为EF与AB所成的角,∠EGF(或它的补角)为AB与CD所成的角.∵AB与CD所成的角为30°,∴∠EGF=30°或150°.由EG=FG知△EFG为等腰三角形,当∠EGF=30°时,∠GEF=75°;当∠EGF=150°时,∠GEF=15°.故EF与AB所成的角为15°或75°.[方法技巧]用平移法求异面直线所成的角的步骤(1)一作:即根据定义作平行线,作出异面直线所成的角;(2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.能力练通抓应用体验的“得”与“失”1.[考点一]下列说法正确的是()A.若a⊂α,b⊂β,则a与b是异面直线B.若a与b异面,b与c异面,则a与c异面C.若a,b不同在平面α内,则a与b异面D.若a,b不同在任何一个平面内,则a与b异面解析:选D由异面直线的定义可知D正确.2.[考点一]l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面解析:选B 若l 1⊥l 2,l 2⊥l 3,则l 1,l 3有三种位置关系,可能平行、相交或异面,A 不正确;当l 1∥l 2∥l 3或l 1,l 2,l 3共点时,l 1,l 2,l 3可能共面,也可能不共面,C ,D 不正确;当l 1⊥l 2,l 2∥l 3时,则有l 1⊥l 3,故选B.3.[考点二]如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,则异面直线AP 与BD 所成的角为________.解析:如图,将原图补成正方体ABCD -QGHP ,连接GP ,AG ,则GP ∥BD ,所以∠APG 为异面直线AP 与BD 所成的角,在△AGP 中AG =GP =AP ,所以∠APG =π3.答案:π34.[考点一、二]如图所示,三棱锥P -ABC 中, PA ⊥平面ABC ,∠BAC =60°,PA =AB =AC =2,E 是PC 的中点.(1)求证AE 与PB 是异面直线;(2)求异面直线AE 与PB 所成角的余弦值.解:(1)证明:假设AE 与PB 共面,设平面为α,∵A ∈α,B ∈α,E ∈α,∴平面α即为平面ABE ,∴P ∈平面ABE ,这与P ∉平面ABE 矛盾,所以AE 与PB 是异面直线.(2)取BC 的中点F ,连接EF ,AF ,则EF ∥PB ,所以∠AEF (或其补角)就是异面直线AE 与PB 所成的角.∵∠BAC =60°,PA =AB =AC =2,PA ⊥平面ABC ,∴AF =3,AE =2,EF =2,cos ∠AEF =AE 2+EF 2-AF 22·AE ·EF=2+2-32×2×2=14,故异面直线AE 与PB 所成角的余弦值为14.[全国卷5年真题集中演练——明规律] 1.(2016·全国乙卷)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A.32B.22 C.33D.13解析:选A 如图,在正方体ABCD -A 1B 1C 1D 1的上方接一个同等大小的正方体ABCD -A 2B 2C 2D 2,则过A 与平面CB 1D 1平行的是平面AB 2D 2,即平面α就是平面AB 2D 2,平面AB 2D 2∩平面ABB 1A 1=AB 2,即直线n 就是直线AB 2,由面面平行的性质定理知直线m 平行于直线B 2D 2,故m ,n 所成的角就等于AB 2与B 2D 2所成的角,在等边三角形AB 2D 2中,∠AB 2D 2=60°,故其正弦值为32.故选A. 2.(2013·新课标全国卷Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l解析:选D 由于m ,n 为异面直线,m ⊥平面α,n ⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m ,n ,又直线l 满足l ⊥m ,l ⊥n ,则交线平行于l ,故选D.3.(2016·全国甲卷)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________.(填写所有正确命题的编号)解析:对于①,α,β可能平行,也可能相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线l ⊂α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确.对于③,因为α∥β,所以α,β没有公共点.又m ⊂α,所以m ,β没有公共点,由线面平行的定义可知m ∥β,故正确.对于④,因为m ∥n ,所以m 与α所成的角和n 与α所成的角相等.因为α∥β,所以n 与α所成的角和n 与β所成的角相等,所以m 与α所成的角和n 与β所成的角相等,故正确.答案:②③④[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.四条线段顺次首尾相连,它们最多可确定的平面有()A.4个B.3个C.2个D.1个解析:选A首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD 不相交,充分性成立;若直线AC和BD不相交,若直线AC和BD平行,则A,B,C,D 四点共面,必要性不成立,所以甲是乙成立的充分不必要条件.3.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α解析:选D结合正方体模型可知b与α相交或b⊂α或b∥α都有可能.B1C1D1中既与AB共面又与CC1共4.如图,平行六面体ABCD-A面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的棱有5条.答案:5[练常考题点——检验高考能力]一、选择题1.若直线上有两个点在平面外,则()A.直线上至少有一个点在平面内B.直线上有无穷多个点在平面内C.直线上所有点都在平面外D.直线上至多有一个点在平面内解析:选D根据题意,两点确定一条直线,那么由于直线上有两个点在平面外,则直线在平面外,只能是直线与平面相交,或者直线与平面平行,那么可知直线上至多有一个点在平面内.2.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是()A.6 2 B.12 C.12 2 D.24 2解析:选A如图,已知空间四边形ABCD,对角线AC=6,BD=8,易证四边形EFGH为平行四边形,∠EFG或∠FGH为AC与BD所成的角,大小为45°,故S四边形EFGH=3×4×sin 45°=62,故选A.3.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定解析:选D构造如图所示的正方体ABCD-A1B1C1D1,取l1为AD,l2为AA1,l3为A1B1,当取l4为B1C1时,l1∥l4,当取l4为BB1时,l1⊥l4,故排除A、B、C,选D.4.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b 和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面解析:选D 依题意,直线b 和c 的位置关系可能是相交、平行或异面.5.如图,ABCD -A 1B 1C 1D 1是长方体,O 是B 1D 1的中点,直线A 1C交平面AB 1D 1于点M ,则下列结论正确的是( )A .A ,M ,O 三点共线B .A ,M ,O ,A 1不共面C .A ,M ,C ,O 不共面D .B ,B 1,O ,M 共面解析:选A 连接A 1C 1,AC ,则A 1C 1∥AC ,所以A 1,C 1,C ,A四点共面,所以A 1C ⊂平面ACC 1A 1,因为M ∈A 1C ,所以M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,所以M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理O 在平面ACC 1A 1与平面AB 1D 1的交线上,所以A ,M ,O 三点共线.6.过正方体ABCD -A 1B 1C 1D 1的顶点A 作直线l ,使l 与棱AB ,AD ,AA 1所成的角都相等,这样的直线l 可以作( )A .1条B .2条C .3条D .4条解析:选D 如图,连接体对角线AC 1,显然AC 1与棱AB ,AD ,AA 1所成的角都相等,所成角的正切值都为 2.联想正方体的其他体对角线,如连接BD 1,则BD 1与棱BC ,BA ,BB 1所成的角都相等,∵BB 1∥AA 1,BC ∥AD ,∴体对角线BD 1与棱AB ,AD ,AA 1所成的角都相等,同理,体对角线A 1C ,DB 1也与棱AB ,AD ,AA 1所成的角都相等,过A 点分别作BD 1,A 1C ,DB 1的平行线都满足题意,故这样的直线l 可以作4条.二、填空题7.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,则下列说法正确的是________.(填写所有正确说法的序号)①EF 与GH 平行②EF 与GH 异面③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上④EF 与GH 的交点M 一定在直线AC 上解析:连接EH ,FG (图略),依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G,H共面.因为EH=12BD,FG=23BD,故EH≠FG,所以EFGH是梯形,EF与GH必相交,设交点为M.因为点M在EF上,故点M在平面ACB上.同理,点M在平面ACD上,∴点M是平面ACB与平面ACD的交点,又AC是这两个平面的交线,所以点M一定在直线AC上.答案:④8.如图为正方体表面的一种展开图,则图中的AB,CD,EF,GH在原正方体中互为异面直线的有________对.解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD 与GH相交,CD与EF平行.故互为异面直线的有3对.答案:39.已知a,b,c为三条不同的直线,且a⊂平面α,b⊂平面β,α∩β=c.①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β.其中正确的命题有________.(填写所有正确命题的序号)解析:①中若a与b是异面直线,则c至少与a,b中的一条相交,故①正确;②中平面α⊥平面β时,若b⊥c,则b⊥平面α,此时不论a,c是否垂直,均有a⊥b,故②错误;③中当a∥b时,则a∥平面β,由线面平行的性质定理可得a∥c,故③正确;④中若b∥c,则a⊥b ,a ⊥c 时,a 与平面β不一定垂直,此时平面α与平面β也不一定垂直,故④错误.答案:①③10.如图,在三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC=2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.解析:如图所示,连接DN ,取线段DN 的中点K ,连接MK ,CK .∵M 为AD 的中点,∴MK ∥AN ,∴∠KMC (或其补角)为异面直线AN ,CM所成的角.∵AB =AC =BD =CD =3,AD =BC =2,N 为BC 的中点,由勾股定理易求得AN =DN =CM =22,∴MK = 2.在Rt △CKN 中,CK = (2)2+12= 3.在△CKM 中,由余弦定理,得cos ∠KMC =(2)2+(22)2-(3)22×2×22=78,所以异面直线AN ,CM 所成的角的余弦值是78. 答案:78三、解答题11.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.解:(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD , 所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.12.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求: (1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解:(1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·PA =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 空间点、直线、平面之间的位置关系最新考纲 1.理解空间直线、平面位置关系的定义;2.了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.知 识 梳 理1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 2.空间点、直线、平面之间的位置关系3.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 4.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)范围:⎝⎛⎥⎤0,π2.诊断自测1.判断正误(在括号内打“√”或“×”)(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( )(2)两两相交的三条直线最多可以确定三个平面.( )(3)如果两个平面有三个公共点,则这两个平面重合.( )(4)若直线a不平行于平面α,且a⊄α,则α内的所有直线与a异面.( )解析(1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误.(3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误.(4)由于a不平行于平面α,且a⊄α,则a与平面α相交,故平面α内有与a相交的直线,故错误.答案(1)×(2)√(3)×(4)×2.(必修2P52B1(2)改编)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为( )A.30°B.45°C.60°D.90°解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求的角.又B1D1=B1C=D1C,∴∠D1B1C=60°.答案 C3.在下列命题中,不是公理的是( )A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解析选项A是面面平行的性质定理,是由公理推证出来的.答案 A4.(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.答案 A5.若直线a ⊥b ,且直线a ∥平面α,则直线b 与平面α的位置关系是________. 答案 b 与α相交或b ∥α或b ⊂α6.如图所示,平面α,β,γ两两相交,a ,b ,c 为三条交线,且a ∥b ,则a 与c 的位置关系是________;b 与c 的位置关系是________. 答案 a ∥c b ∥c考点一 平面的基本性质及应用【例1】 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,AA 1的中点.求证:(1)E ,C ,D 1,F 四点共面; (2)CE ,D 1F ,DA 三线共点.证明 (1)如图,连接EF ,CD 1,A 1B .∵E ,F 分别是AB ,AA 1的中点,∴EF ∥A 1B .又A 1B ∥CD 1,∴EF ∥CD 1, ∴E ,C ,D 1,F 四点共面. (2)∵EF ∥CD 1,EF <CD 1,∴CE 与D 1F 必相交,设交点为P ,则由P ∈CE ,CE ⊂平面ABCD ,得P ∈平面ABCD . 同理P ∈平面ADD 1A 1.又平面ABCD ∩平面ADD 1A 1=DA ,∴P ∈直线DA .∴CE ,D 1F ,DA 三线共点. 规律方法 (1)证明线共面或点共面的常用方法 ①直接法,证明直线平行或相交,从而证明线共面.②纳入平面法,先确定一个平面,再证明有关点、线在此平面内.③辅助平面法,先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.(2)证明点共线问题的常用方法①基本性质法,一般转化为证明这些点是某两个平面的公共点,再根据基本性质3证明这些点都在这两个平面的交线上.②纳入直线法,选择其中两点确定一条直线,然后证明其余点也在该直线上.【训练1】 如图所示,四边形ABEF 和ABCD 都是梯形,BC 綉12AD ,BE綉12FA ,G ,H 分别为FA ,FD 的中点. (1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明 由已知FG =GA ,FH =HD ,可得GH 綉12AD .又BC 綉12AD ,∴GH 綉BC ,∴四边形BCHG 为平行四边形.(2)解 ∵BE 綉12AF ,G 为FA 的中点,∴BE 綉FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綉CH , ∴EF ∥CH ,∴EF 与CH 共面. 又D ∈FH ,∴C ,D ,F ,E 四点共面. 考点二 判断空间两直线的位置关系【例2】 (1)(2015·广东卷)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A.l 与l 1,l 2都不相交 B.l 与l 1,l 2都相交C.l 至多与l 1,l 2中的一条相交D.l 至少与l 1,l 2中的一条相交(2)(2017·嘉兴七校联考)如图,G ,H ,M ,N 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形有________(填上所有正确答案的序号).解析 (1)法一 由于l 与直线l 1,l 2分别共面,故直线l 与l 1,l 2要么都不相交,要么至少与l 1,l 2中的一条相交.若l ∥l 1,l ∥l 2,则l 1∥l 2,这与l 1,l 2是异面直线矛盾. 故l 至少与l 1,l 2中的一条相交.法二 如图1,l 1与l 2是异面直线,l 1与l 平行,l 2与l 相交,故A ,B 不正确;如图2,l 1与l 2是异面直线,l 1,l 2都与l 相交,故C 不正确.(2)在图①中,直线GH ∥MN ;在图②中,G ,H ,N 三点共面,但M ∉平面GHN ,N ∉GH ,因此直线GH 与MN 异面;在图③中,连接QM,GM∥HN,因此GH与MN共面;在图④中,G,M,N共面,但H∉平面GMN,G∉MN,因此GH与MN异面.所以在图②④中GH与MN异面.答案(1)D (2)②④规律方法(1)异面直线的判定方法①反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.②定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.(2)点、线、面位置关系的判定,要注意几何模型的选取,常借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系.【训练2】 (1)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是( )A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)(2017·武汉调研)a,b,c表示不同的直线,M表示平面,给出四个命题:①若a∥M,b ∥M,则a∥b或a,b相交或a,b异面;②若b⊂M,a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.其中正确的为( )A.①④B.②③C.③④D.①②解析(1)如图,连接C1D,在△C1DB中,MN∥BD,故C正确;∵CC1⊥平面ABCD,BD⊂平面ABCD,∴CC1⊥BD,∴MN⊥CC1,故A正确;∵AC⊥BD,MN∥BD,∴MN⊥AC,故B正确;∵A1B1与BD异面,MN∥BD,∴MN与A1B1不可能平行,故选项D错误.(2)对于①,当a∥M,b∥M时,则a与b平行、相交或异面,①为真命题.②中,b⊂M,a∥b,则a∥M或a⊂M,②为假命题.命题③中,a与b相交、平行或异面,③为假命题.由线面垂直的性质,命题④为真命题,所以①,④为真命题.答案(1)D (2)A考点三异面直线所成的角【例3】 (1)(2017·浙江五校联考)如图所示,在正三棱柱ABC-A1B1C1中,D是AC 的中点,AA 1∶AB =2∶1,则异面直线AB 1与BD 所成的角为________.(2)(2016·全国Ⅰ卷)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) A.32B.22C.33D.13解析 (1)取A 1C 1的中点E ,连接B 1E ,ED ,AE , 在Rt △AB 1E 中,∠AB 1E 为异面直线AB 1与BD 所成的角. 设AB =1,则A 1A =2,AB 1=3,B 1E =32,故∠AB 1E =60°. (2)根据平面与平面平行的性质,将m ,n 所成的角转化为平面CB1D 1与平面ABCD 的交线及平面CB 1D 1与平面ABB 1A 1的交线所成的角.设平面CB 1D 1∩平面ABCD =m 1.∵平面α∥平面CB 1D 1,∴m 1∥m . 又平面ABCD ∥平面A 1B 1C 1D 1, 且平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1, ∴B 1D 1∥m 1,∴B 1D 1∥m . ∵平面ABB 1A 1∥平面DCC 1D 1,且平面CB 1D 1∩平面DCC 1D 1=CD 1,同理可证CD 1∥n . 因此直线m 与n 所成的角即直线B 1D 1与CD 1所成的角. 在正方体ABCD -A 1B 1C 1D 1中,△CB 1D 1是正三角形, 故直线B 1D 1与CD 1所成角为60°,其正弦值为32. 答案 (1)60° (2)A规律方法 (1)求异面直线所成的角常用方法是平移法,平移方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. (2)求异面直线所成角的三个步骤①作:通过作平行线,得到相交直线的夹角. ②证:证明相交直线夹角为异面直线所成的角.③求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角,如果求出的角是钝角,则它的补角才是要求的角.【训练3】 如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( ) A.15B.25C.35D.45解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角. 连接A 1C 1,由AB =1,AA 1=2, 则A 1C 1=2,A 1B =BC 1=5, 在△A 1BC 1中,由余弦定理得 cos ∠A 1BC 1=5+5-22×5×5=45.答案 D[思想方法]1.主要题型的解题方法(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上. 2.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过点B 的直线是异面直线. (2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面. 3.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为相交直线的夹角,体现了化归思想. [易错防范]1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.3.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.。

相关文档
最新文档