软件工程结构化分析与设计资料讲解
软件工程概述-第5章 结构化需求分析
实体 属性 联系
用矩形表示,矩形内写 明实体名
用椭圆形表示,并用无 向边将其与对应实体连 接起来
用菱形表示,并用无向 边分别与有关实体连接 起来,同时在无向边旁 标上联系的类型。
E-R 图表示图示 例 2-1 中的例子
练习
例:简单的学生选课系统:
(1)学生 属性有学号,姓名, 性别,年龄,所在系
x
1.1
1.2
1.3
1
3
2
2.1 2.3
2.2
1.1 1.3
目录
1
5.1结构化分析
2
5.2数据流图
3
5.3数据字典
4
5.4 实体关系图
5
5.5 状态转换图
数据流图
数据流图(Data Flow Diagram,DFD)是描述系统中数据 流程的图形工具,它描述了将系统的逻辑输入转换为逻辑输出 所需的加工处理过程。
(2)课程 属性有课程号,课程 名称,先修课程号,学分
实体之间的联系:
一个学生可同时选修多门 课程,而一门课程可以同时被 若干学生选修。用成绩来表示 某个学生学习某门课程的成绩 。
分解:对于一个复杂的系统,为了将复杂性降 低到可以掌握的程度,可以把大问题分解成若 干小问题,然后分别解决。
抽象:分解可以分层进行,即先考虑问题最本 质的属性,暂把细节略去,以后再逐层添加细 节,直至涉及到最详细的内容,这种用最本质 的属性表示一个系统的方法就是“抽象”
结构化分析
结构化分析方法基本思想 “分解”和“抽象”
取值范围:数据项的取值范围,例如,职工年龄 的取值范围定义为18至60岁,表示为18..60。
初始值:数据项的初始值,例如,为了操作简便, 软件定义借书日期的初始值默认为系统的当前日 期。
南邮 软件工程-Unit_03-0_结构化分析和设计方法
结构化分析
数据流图:建立功能模型
问题提出
可行性研究
提供了功能建模机制也提供了信息流建模机制 是系统逻辑功能的图形表示,没有任何具体的物理元素 描绘了信息在软件中流动和被处理的情况 描绘“做什么”而不考虑“怎样做” 正方形(或立方体):表示数据的源点或终点 圆形(或圆角矩形):代表变换数据的处理 开口矩形(或两条平行横线):代表数据存储 箭头:表示数据流,即特定数据的流动方向
结构化编程
15
结构化分析
数据字典(Data Dictionary,DD)
问题提出
可行性研究
结构化分析
1) 数据流词条的描述 数据流名: 说明:简要介绍作用即它产生的原因和结果。 数据流来源:即该数据流来自何方。 数据流去向:去向何处。 数据流组成:数据结构。 每个数据量流通量:数据量、流通量。
结构化设计
结构化编程
详细设计:模块内部的具体设计
28
结构化设计
问题提出
基本思想:自顶向下的模块化设计方法 描述方式:软件结构图 设计方法:(面向数据流的方法)
可行性研究
结构化分析
DFD映射 变换流→变换分析法 事务流→事务分析法
结构化设计
结构化编程
29
结构化设计
软件结构图
结构化分析和设计方法
王传栋 南京邮电大学计算机学院
传统视角的软件生命周期
问题定义 可行性研究 结构化分析 结构化设计 结构化的程序设计 测试 运行和维护
2
问题定义
任务:
问题提出
实验二结构化分析与设计
实验⼆结构化分析与设计实验⼆结构化分析与设计博客班级软件⼯程作业链接第⼆次实验作业要求完成第⼆次实验学号3180701318⼀.实验⽬的(1)掌握结构化的需求分析⽅法;(2)掌握分层数据流图的绘制、数据字典和加⼯说明的编制;(3)掌握数据流图映射为软件结构图的⽅法;(4)掌握需求说明书和设计说明。
书的主要内容,学习软件需求说明书和设计说明书的编写;(5)掌握测试的基本⽅法。
⼆.实验内容(1)参考⼀个熟悉的系统,如,机票预订系统/教材订购系统/ATM⾃动取款机,讨论其⽤户需求、系统需求和业务需求;(2)绘制系统的分层数据流图,并给出数据字典;(3)将系统的分层数据流图映射为软件结构图,绘制软件结构图;(4)为关键模块进⾏详细设计,如绘制关键模块的流程图;(5)实现系统部分功能并测试。
【实例1】机票预订系统参考:(1)携程⽹:(2)去哪⼉:为了⽅便旅客,某航空公司拟开发⼀个机票预定系统。
旅⾏社把预定机票的旅客信息(姓名、性别、⼯作单位、⾝份证号码、旅⾏时间、旅⾏⽬的地等)输⼊该系统,系统为旅客安排航班,旅客在飞机起飞前⼀天凭取票通知和账单交款取票,系统核对⽆误即印出机票给顾客【实例2】教材订购系统销售系统的⼯作过程为:⾸先由教师或学⽣提交购书单,经教材发⾏⼈员审核是有效购书单后,开发票、登记并返给教师或学⽣领书单,教师或学⽣即可去书库领书。
采购系统的主要⼯作过程为:若是脱销教材,则登记缺书,发缺书单给书库采购⼈员;⼀旦新书⼊库后,即发进书单通知给教材发⾏⼈员。
【实例3】图书管理系统参考:三.实验步骤(1)复习结构化的分析与设计⽅法的主要过程;结构化分析⽅法的基本思想是⾃顶向下逐层分解。
分解和抽象是⼈们控制问题复杂性的两种基本⼿段。
对于⼀个复杂的问题,⼈们很难⼀下⼦考虑问题的所有⽅⾯和全部细节,通常可以把⼀个⼤问题分解成若⼲个⼩问题,每个⼩问题再分解成若⼲个更⼩的问题,经过多次逐层分解,每个最底层的问题都是⾜够简单、容易解决的,于是复杂的问题也就迎刃⽽解了。
软件工程结构化分析与设计
软件工程结构化分析与设计在当今数字化的时代,软件几乎无处不在,从我们日常使用的手机应用程序,到企业内部复杂的业务系统,软件已经成为推动社会发展和提高生活质量的重要力量。
而软件工程中的结构化分析与设计,作为软件开发过程中的关键环节,对于确保软件的质量、可维护性和可扩展性具有至关重要的意义。
首先,让我们来理解一下什么是软件工程结构化分析。
简单来说,结构化分析就是对软件系统进行详细的调查和研究,以确定系统的需求和功能。
这就好比在盖房子之前,我们需要清楚地知道要盖什么样的房子,有多少房间,每个房间的用途是什么等等。
在软件领域,结构化分析的主要任务包括收集用户需求、理解业务流程、识别系统的输入和输出、定义数据结构等。
在收集用户需求时,开发人员需要与用户进行充分的沟通和交流。
用户可能来自不同的背景和领域,他们对软件的期望和需求也各不相同。
因此,开发人员需要具备良好的沟通技巧和理解能力,能够将用户模糊的、不明确的需求转化为清晰、具体的软件功能描述。
比如,用户可能说“我希望这个软件能够快速处理大量数据”,开发人员就需要进一步询问“快速”的具体标准是什么,“大量数据”大概是多少,以及数据的类型和格式等。
理解业务流程也是结构化分析的重要部分。
不同的行业和组织都有其独特的业务流程,软件系统需要能够与之相适应和支持。
例如,在一个电子商务系统中,订单处理、库存管理、支付流程等都是关键的业务环节,开发人员需要深入了解这些流程的细节,以便设计出符合业务需求的软件。
接下来,我们谈谈软件工程结构化设计。
结构化设计是在结构化分析的基础上,将系统的需求转化为软件的架构和模块设计。
这就像是根据房子的设计图纸,确定房子的框架结构、房间布局以及各个部分使用的材料等。
在结构化设计中,模块划分是一个关键步骤。
模块是软件系统中的独立组成部分,具有明确的功能和接口。
合理的模块划分可以提高软件的可维护性和可扩展性。
例如,将一个复杂的系统划分为用户界面模块、数据处理模块、业务逻辑模块等,每个模块都专注于完成特定的任务,并且可以独立地进行开发、测试和维护。
软件工程5(1)- 结构化设计原理
主函数main和子函数sum之间 为标记耦合关系
void output(flag) {if (flag) printf("OK! "); else printf("NO! "); }
D.作用范围与控制范围不受任何限制
重用率高的模块在软件结构图中的特征是
:(
)。
A.扇出数大
B.扇入数大
C.内聚性高
D.扇出数小
答案:B
在划分模块时,一个模块的作用范围应该在其 控制范围之内。若发现其作用范围不在其控制 范围内,则( )不是适当的处理方法。 A.将判定所在模块合并到父模块中,使判定处 于较高层次 B.将受判定影响的模块下移到控制范围内 C.将判定上移到层次较高的位置 D.将父模块下移,使判定处于较高层次
偶然内聚。偶然内聚即模块内部各元素之间的联系很少或者没有。
逻辑内聚。逻辑内聚将几种相关的功能组合在一起形成一个模块。
时间内聚。时间内聚是指模块内部各功能之间的执行与时间相关。
过程内聚。如果模块内各元素的执行是按照一定次序来进行的,即各 个元素的处理是相关的,则称其为过程内聚。
通信内聚。一个模块内部可以有几个功能部分,如果这些功能部分都 使用相同的数据输入,或者产生相同的数据输出,这不是通信内聚。
内容耦合:内容耦合是一种耦合性很强的耦合,这种耦合严重影响了模 块的独立性。
1. 函数fac和prt之间为非直接耦合关 系
2. 主函数main和子函数fac之间为数 据耦合关系
模块A将学生信息,即学生姓名、学号、手机号 等以参数形式传递给模块B。模块A和B之间的耦 合类型为( A )耦合。
软件工程结构化分析与设计范文精简版
软件工程结构化分析与设计软件工程结构化分析与设计简介软件工程结构化分析与设计是软件工程领域中重要的一环,它涉及到软件系统的分析和设计阶段。
在软件工程领域,结构化分析与设计是指通过建立准确的抽象层次,将软件系统划分为各个模块,并规定各个模块之间的关系和功能,以实现系统的需求。
什么是结构化分析与设计结构化分析与设计是一种系统性的方法,它利用模块化和层次化的原则,对软件系统进行分析、设计和实现。
结构化分析关注的是系统需求,它通过分解需求,将系统划分为不同的模块,并定义它们之间的关系。
结构化设计则负责将分析得到的模块进行详细设计,并确定模块的功能和接口。
结构化分析与设计的目标是提高软件系统的可理解性、可维护性和可扩展性。
结构化分析与设计的流程结构化分析与设计通常包含以下几个步骤:1. 确定系统需求:定义软件系统的功能和性能要求。
2. 确定模块划分:将系统划分为不同的模块,并定义它们之间的功能和接口。
3. 定义模块内部逻辑:对每个模块进行详细设计,包括设计数据结构和算法等。
4. 确定模块间的通信方式:确定模块之间的数据交换和通信方式。
5. 验证和评估设计:对设计进行评估和验证,确保满足系统需求。
6. 实施和编码:根据设计编写代码,完成软件系统的实施。
7. 和调试:对软件系统进行和调试,确保其功能和性能的正确性。
结构化分析与设计的优势结构化分析与设计具有以下优势:1. 提高可理解性:通过模块化的设计原则,使系统的结构和功能更易于理解和掌握。
2. 提高可维护性:分解模块可以使系统的维护更加简单和方便,减少对其他模块的影响。
3. 提高可扩展性:模块化的设计可以使系统更易于扩展和修改,方便适应需求变化。
4. 提高开发效率:结构化分析与设计明确了各个模块的功能和接口,可以并行开发,提高开发效率。
5. 降低系统复杂性:通过模块化的设计,将大型系统划分为多个小模块,降低了系统的复杂性。
结构化分析与设计的工具和技术在软件工程中,有许多工具和技术可以用于结构化分析与设计。
软件工程第四章结构化需求分析
数据字典
定义
数据字典是一种用于描述数据元 素及其属性的工具,它提供了数 据的详细描述和定义。
பைடு நூலகம்
内容
包括数据元素的名称、别名、类 型、长度、取值范围、默认值等 属性信息。
作用
为开发人员提供了一个统一的数 据定义和描述标准,避免了数据 不一致和歧义的问题。
03 结构化需求分析过程
问题识别
01
确定软件系统的范 围和目标
用例表
列出系统的所有用例,包括用例名称、描述、前置条件和后置条件 等。
用户故事表
以用户为中心描述系统需求,包括用户角色、场景、任务和目标等。
原型工具
低保真原型
使用简单的工具和方法创建的原型,主要用于 概念验证和用户反馈收集。
高保真原型
使用高级工具和方法创建的原型,几乎与实际 产品一样,用于详细需求分析和用户测试。
04 结构化需求分析工具
图形工具
流程图
用于描述系统或程序的逻辑流程,包括开始、结束、决策点和活动 等元素。
数据流图
用于描述数据在系统中的流动和处理过程,包括数据源、数据存储、 数据处理和数据终点等元素。
实体关系图
用于描述系统中实体之间的关系,包括实体、关系和属性等元素。
表格工具
需求规格说明书
详细列出系统需求,包括功能需求、性能需求、安全需求和接口 需求等。
步骤
首先确定系统的主要功能,然后逐层向下分解,直 到每个功能都清晰、具体、可实现。
优点
能够全面地了解系统的功能需求,有助于保 证系统的完整性。
数据流图
定义
数据流图是一种图形化表示方法,用于描述系统中数 据的流动和处理过程。
组成
包括数据流、数据存储、数据处理和外部实体等基本 元素。
软件工程结构化设计
软件工程结构化设计在当今数字化的时代,软件几乎无处不在,从我们日常使用的手机应用程序,到企业级的复杂业务系统,软件已经成为推动社会发展和提高生活质量的重要力量。
而软件工程中的结构化设计,作为软件开发过程中的关键环节,对于确保软件的质量、可维护性和可扩展性具有至关重要的意义。
什么是软件工程结构化设计呢?简单来说,它是一种将软件系统分解为若干个模块,并明确这些模块之间的关系和交互方式的设计方法。
其目的是为了使软件系统具有清晰的结构,便于开发人员理解、实现和维护。
在结构化设计中,模块是基本的组成单位。
模块应该具有高内聚和低耦合的特性。
高内聚意味着模块内部的各个部分紧密相关,共同完成一个明确的功能;低耦合则表示模块之间的依赖关系尽可能少,相互之间的影响较小。
这样的设计能够使得每个模块都相对独立,当需要对某个模块进行修改或优化时,不会对其他模块产生过多的影响,从而降低了软件维护的成本和风险。
为了实现良好的结构化设计,通常会采用一些原则和方法。
比如,自顶向下的设计方法,先从系统的整体功能出发,逐步细化到各个子系统和模块;还有逐步求精的原则,不断对设计进行完善和优化,逐步增加细节和精度。
在进行结构化设计时,数据结构的设计也是非常重要的一部分。
合理的数据结构能够提高数据的存储和访问效率,为软件的性能提供有力的支持。
同时,还要考虑到数据的完整性和一致性,确保数据在整个软件系统中的准确性和可靠性。
另外,接口设计也是不容忽视的环节。
清晰、简洁的接口能够让不同的模块之间更好地进行通信和协作。
良好的接口设计可以减少模块之间的误解和错误,提高软件系统的稳定性和可靠性。
软件工程结构化设计的好处是显而易见的。
首先,它能够提高软件开发的效率。
清晰的结构和明确的分工,使得开发人员能够更加专注于自己负责的模块,减少了不必要的沟通和协调成本。
其次,有利于软件的维护和升级。
当软件需要进行修改或扩展时,能够快速定位到相关的模块,并且由于模块之间的低耦合性,降低了修改带来的风险和影响。
软件工程结构化分析与设计
软件工程结构化分析与设计软件工程结构化分析与设计简介软件工程结构化分析与设计(Software Engineering Structured Analysis and Design)是软件工程的重要环节之一,旨在将复杂的软件系统分解为相对简单的模块,从而便于理解、开发和维护。
结构化分析结构化分析是软件工程中的一种需求分析方法,通过对用户需求进行分析,将系统功能划分为不同的模块,以及模块之间的关系和交互。
结构化分析采用基于流程图的图形化表示方法,通常使用数据流图(Data Flow Diagram,简称DFD)来描述系统的功能流程。
结构化设计结构化设计是在结构化分析的基础上,进一步定义每个模块内部的结构和功能。
它将模块细化为更小的子模块,通过设计各个模块之间的接口和通信方式,确保系统能够协调运作。
结构化设计通常使用结构图来表示系统的模块组织结构,其中最常见的就是层次图(Hierarchy Chart)和结构图(Structure Chart)。
优势与挑战结构化分析与设计的主要优势在于可以将复杂系统分解为简单的模块,使得系统的开发和维护更加容易。
结构化分析与设计还能够提高系统的可靠性和可扩展性。
,结构化分析与设计也面临一些挑战。
结构化分析与设计需要面对不断变化的需求,需要具备较好的适应性和灵活性。
结构化分析与设计也需要考虑系统的性能、安全性等方面的需求,以保证系统能够满足用户的要求。
软件工程结构化分析与设计是软件工程中重要的一环,通过将复杂的系统分解为简单的模块,并设计模块之间的关系和接口,实现系统的有效开发和维护。
结构化分析与设计能够提高系统的可靠性、可扩展性和易开发性,但也需要面对需求变化和其他挑战。
希望通过软件工程结构化分析与设计,我们可以开发出更好的软件系统,满足用户的需求。
软件工程结构化分析与设计
软件工程结构化分析与设计1. 简介软件工程结构化分析与设计是软件开发中非常重要的一门课程,通过对软件系统进行结构化分析和设计,可以提高软件的质量、可维护性和可扩展性。
本文将介绍软件工程结构化分析与设计的基本概念和主要内容。
2. 结构化分析结构化分析是软件工程中的一种分析技术,它主要用于对问题域进行分析,确定问题需求和对问题进行建模。
结构化分析主要包括以下几个步骤:确定问题领域和问题域边界;识别问题中的对象和它们之间的关系;划分问题域为子问题,建立问题域模型;确定问题的功能需求和非功能需求。
结构化分析的核心是数据流图,它可以表示问题域中的数据流和处理过程,帮助确定系统功能和数据流向。
3. 结构化设计结构化设计是在结构化分析的基础上进行的,它主要用于确定系统的结构和设计系统的组件。
结构化设计的主要内容包括以下几个方面:系统结构设计:确定系统的模块和模块之间的关系;数据结构设计:设计系统中的数据结构和数据存储组织方式;接口设计:设计系统与其他系统或外部设备之间的接口;过程设计:设计系统中的算法和处理过程。
结构化设计的目标是提高系统的可维护性、可扩展性和可重用性,满足系统的功能需求和非功能需求。
4. 工具与方法在软件工程结构化分析与设计过程中,有一些常用的工具和方法可以帮助完成任务。
其中一些常用的工具包括:UML:统一建模语言,用于描述系统的结构和行为;数据流图:用于表示数据流和处理过程;结构图:用于表示系统的模块和模块之间的关系;状态图:用于描述系统中对象的状态和状态转换。
而一些常用的方法包括:数据字典:记录系统中的数据元素和数据流,帮助理清数据之间的关系;面向对象分析与设计:通过对象的抽象和分类,设计系统的结构和行为;结构化设计方法:采用自顶向下和自底向上的设计方法,将系统划分为模块并确定模块之间的关系。
5.软件工程结构化分析与设计是软件开发中非常重要的一环,它通过对问题域进行分析和设计,帮助构建高质量、可维护和可扩展的软件系统。
软件工程结构化分析实验
软件工程结构化分析实验
软件工程结构化分析实验是软件工程课程中的一项实践性任务,旨在让学生通过实际操作来学习和掌握软件结构化分析的方法和技巧。
在软件工程结构化分析实验中,学生将以一个实际的软件项目为例,对其进行结构化分析。
一般步骤如下:
1. 确定需求:,学生需要了解软件项目的需求。
可以通过与项目负责人进行讨论,或者将需求文档作为参考来理解项目的功能和要求。
2. 建立数据流图:学生需要根据需求,绘制出软件系统的数据流图。
数据流图主要由数据流、处理器和数据存储器组成,用来展现系统中的数据流动和处理过程。
3. 建立数据字典:在绘制数据流图的,学生还需要建立数据字典。
数据字典记录了数据流图中所有的数据流、数据存储器和处理器的详细描述。
4. 确定功能层次:在数据流图中,学生需要将各个功能模块进行层次化分解。
这样可以更好地理解系统中各个模块之间的关系,并能够更容易地进行后续的设计和实现。
5. 确定数据流转换:根据需求和功能层次,学生需要确定数据流在各个功能模块中的转换关系。
这是软件系统中数据的流动路径,也是后续的设计和实现的基础。
6. 验证模型:学生需要对所建立的数据流图进行验证,确保其与需求和功能层次的一致性。
可以通过与项目负责人进行讨论,或者进行模型审核等方式来验证。
7. 文档:,学生需要将结构化分析的结果进行整理,相应的文档以供参考。
这些文档可以包括数据流图、数据字典、功能层次图等。
,软件工程结构化分析实验旨在通过实际操作来学习和掌握软件结构化分析的方法和技巧,培养学生的分析和设计能力,为后续的软件设计和开发打下基础。
软件工程第六讲结构化分析方法
问题二:该如何来理解结构化方法的指导思想 (自顶向下、逐步求精)与两个基本原则(抽象、 分解)的联系?
精ห้องสมุดไป่ตู้ppt
2
什么叫软件重用的问题?
1
或 编号 文件名 或 编号 文件名
数据存储
2(软设) 3(系分)
精选ppt
1返5 回
P110: 第(8)个注意事项,给出了数据流 图的另一套基本符号。我不知道何时该用 原来的那一套基本符号,何时用这套基本 符号?这两套符号分别用在什么场合?
数据流图的基本符号表示了什么含义?除 了4种基本图形符号还有别的图形符号吗?
“等。 如果在命名时遇到困难,说明你可能对数据流的分解不恰当,应
问题六:基本加工是靠自己的经验来确定的,还 是有一定的标准?
精选ppt
1返9 回
数据流
表示数据的流向。
数据流由一组数据项组成。
命名规则和注意事项:
数据流的名字用名词或名词词组 应尽量使用现实系统中已有的名字 把现实环境中传递的一组数据中最重要的那个数据的名字作为数
据流的名字 不要把控制流作为数据流 不要使用意义空洞的名词作为数据流名,如”数据“、“信息
精选ppt
7
①结构化分析方法(SA)
结构化分析方法是一种面向数据流的需求 分析方法,适合于数据处理类型软件。
策略:自顶向下逐层分解
问题:“自顶向下逐层
分解”是不是和程序设
计一样分成模块来单独
进行开发
结构化分析为什么是自
顶向下逐层分解,那为
软件工程结构化分析实验
软件工程结构化分析实验软件工程是一门综合性学科,其核心是通过结构化分析与设计来构建高质量的软件系统。
在软件工程课程中,结构化分析实验是一项重要的实践环节,旨在让学生通过实际操作来理解和应用结构化分析的概念和方法。
本文将对软件工程结构化分析实验进行详细介绍。
结构化分析是软件工程中的一种需求分析方法,其目标是将系统需求转化为一个有层次结构的设计模型。
在结构化分析实验中,学生通常会以小组形式进行合作,通过使用工具和技术来完成实验任务。
以下是一个常见的结构化分析实验流程:1.需求分析:在实验开始时,学生需要与教师和小组成员讨论并确定一个具体的需求案例。
一旦确定了需求案例,学生需要对其进行详细分析,包括确定系统功能、定义用户需求和约束条件等。
2.数据流图绘制:学生需要绘制出系统的数据流图模型。
数据流图是结构化分析中的一种图形化表示方法,用于描述系统中的数据流和处理过程。
通过绘制数据流图,学生可以更清晰地理解系统中的各个组成部分之间的关系。
3.数据字典编写:学生需要编写数据字典,用于描述数据流图中的各个数据元素。
数据字典包括每个数据元素的名称、数据类型、数据长度等详细信息。
编写数据字典有助于学生更好地理解系统中的数据流和数据处理过程。
4.逻辑模型设计:学生需要将数据流图转化为一个更具体的逻辑模型。
逻辑模型是结构化分析中的一种设计方法,用于描述系统中的数据结构和处理过程。
学生需要使用数据流图中的数据流和处理过程来创建逻辑模型,以实现对系统的详细设计。
5.验证和调整:在完成逻辑模型设计后,学生需要对其进行验证和调整。
他们可以通过模拟测试、检查数据字典和数据流图等方法来验证设计的正确性,并根据实际测试结果进行相应的调整和修改。
通过以上步骤,学生可以完成一个完整的结构化分析实验。
在这个过程中,他们不仅学会了如何使用结构化分析的方法和工具,更锻炼了团队合作和问题解决能力。
结构化分析实验的目的是教会学生如何应用结构化分析的概念和原理来进行软件需求分析和设计。
《软件工程实用教程》第4章_结构化软件设计
第4 章 結構化軟體設計
3.虛擬機風格 例:解釋器,通過虛擬機特定模組的解釋步驟 如下: 解釋引擎從被解釋的模組中選擇一條指令; 基於這條指令,引擎更新虛擬機內部的狀 態; 上述過程反復執行。
第4 章 結構化軟體設計
特點: 在虛擬機環境中運行的代碼不必須瞭解虛擬 機的具體細節。 一旦運行環境發生變化,只需要重寫虛擬機 本身,而不是整個系統。 通常虛擬機會限制在其中運行的軟體的行為, 特別是那些以實現跨平臺為目的的虛擬機, 如Java虛擬機和.NET CLR。 能夠使系統的結構更具層次性,使用虛擬機 提供的設施編寫的代碼,可以不考慮虛擬機 以外的實際環境,而在正確地實現了這種虛 擬機的環境中執行。
第4 章結構化軟體設計
本章學習內容: 1.瞭解概要設計的任務與過程 2.掌握結構化設計技術的基本原理與準則 3.掌握面向數據流分析的設計方法 4.瞭解面向數據的設計方法 5.掌握資料庫設計原則和步驟 6.瞭解常用的詳細設計工具 7.瞭解概要設計說明書的基本內容
第4 章 結構化軟體設計
4.1 概要設計的任務與過程 概要設計的目標是概要地說明軟體 應該怎樣實現,即解決軟體系統總 體結構設計的問題,包括軟體系統 的結構、模組劃分、模組功能和模 組間的聯繫等。
第4 章 結構化軟體設計
4.2.1 現代體系結構模型的基本概念
1.模式:是針對特定問題的成功解決方案,是指形成 了一種趨於固定的結構形式。 結構模式表達了軟體系統的基本結構組織形式或結 構方案,包含了一組預定義的子系統,規定了這些 子系統的責任,同時還提供了用於組織和管理這些 子系統的規則和嚮導。 設計模式為軟體系統的子系統、構件或者構件之間 的關係提供一個精練後的解決方案,描述了特定環 境下,用於解決通用軟體設計問題的構件以及這些 構件相互通信時的可重現結構。
软件工程3-史济民概要
结构化分析与设计的由来
• 瀑布模型的首次实践
• 瀑布模型由传统的生存周期过程演变而来。 作为一种系统开发方法,结构化分析与设计 是瀑布模型的首次实践。该模型一般可划分 为以下阶段: • 需求定义与分析→总体设计→详细设计→编 码→测试→使用维护
结构化分析与设计的由来
• SA与SD的流程
• 系统的整个开发流程可简明表示为: • 结构化分析(工具:DFD、PSPEC) (分层DFD图)+ SRS • 结构化设计(工具:SC图) 映射 模型(初始SC图) • 初始设计模型(初始SC图) 优化 模型(最终SC图)
分析模型 初始设计 最终设计
• SA与SD的流程是为待开发系统建立分析模型和 设计模型的过程。
结构化分析与设计的由来
• 基本任务与指导思想
• 结构化分析
• 建立分析模型:功能模型、数据模型、行为模型 • 编写需求说明:软件需求规格说明书(SRS)标准 的主要内容为引言、信息描述、 功能描述、行为 描述、质量保证、接口描述等。 SRS标准强调SRS 应具有准确性、应防止二义性、应直观易改。 • 主要指导思想:抽象与分解。
• 自顶向下对系统进行功能分解,画出分层DFD图 • 由后向前定义系统的数据和加工,编制DD和PSPEC • 最终写出SRS
数据流图的层次结构
数据流图的层次结构
• 在多层数据流图中,顶层流图仅包含一 个加工(处理) ,它代表被开发系统。 它的输入流是该系统的输入数据,输出 流是系统所输出数据。 • 底层流图是指其加工不需再做分解的数 据流图,它处在最底层。 • 中间层流图则表示对其上层父图的细化 。它的每一加工可能继续细化,形成子 图。
2. 画出SC图框架
• DFD图的三个部分分别映射为事务控制模块,接 受模块和动作发送模块
第三章软件工程结构化分析
get f1 A
f4 f6
f3 f2
主模块 (C、D、E)
f7
将f3变换成f7和f8
f7
f8
C
D
E
put f7
put f8
f9 f8 f10
F put f9 G put f10
f10
f11
H put f11
主模块 (C、D、E)
get f3
将f3变换成f7和f8
put f7
put f8
get f2 B
随着设计的逐步深入,对软件结构进一步细化,称为详 细设计(或过程设计)。
因此,软件设计分为:概要设计、详细设计两个阶段。
█ 概要设计 通过仔细分析“软件需求规格说明”,适当地对软件
进行功能分解,从而将系统分解为一系列功能模块,并 设计出完成预定功能的模块结构。(层次结构) █ 详细设计
具体针对每个模块,确定完成每个模块功能所需要的 算法和数据结构等。 (实现过程)
每个模块完成一个特定的子功能,所有模块按某种方法组 装成为一个整体,从而实现整个系统所要求的功能。
说明:模块化是软件开发过程中解决复杂问题的重要手段。
开发大而复杂的系统,进行适当的分解,不但可降低系 统复杂性,还可减少开发工作量,总体上降低开发成本, 提高软件生产率。
是否将系统无限分解,最后开发工作量就趋于零?
第4章 结构化设计
学习内容: 1、结构化设计的定义与目标 2、结构化设计与结构化分析的关系 3、结构化设计的分类与任务 4、结构化设计的概念和原理
了解: 结构化设计与结构化分析的关系
掌握: 结构化设计的概念与原理
一、结构化设计的定义与目标
在需求分析基础上,采用结构化方法进行软件系统的设
软件工程中的结构化程序设计
软件工程中的结构化程序设计软件工程的基本思想是面对复杂的问题,让软件的开发按照工程的概念、原理、技术和方法模式来实施,有计划地按照要求分阶段实现。
针对大型项目开发,为了保证软件产品质量,提高软件开发效率,在进行详细设计、程序设计之前,必须先确定软件总体结构。
软件总体结构设计的方法主要有结构化设计、面向数据结构的设计和面向对象的设计,其中结构化设计方法是应用最广泛的一种,它是建立良好程序结构的方法,提出了衡量模块质量的标准是“高内聚、低耦合”。
另外,结构化设计(structured design,SD)方法是一种面向过程的设计方法或面向数据流的设计方法,它可以与结构化分析方法、结构化程序设计(structured programming)方法前后呼应,形成了统一、完整的系列化方法。
结构化设计方法以需求分析阶段获得的数据流图为基础,通过一系列映射,把数据流图变换为软件结构图。
结构化程序设计通常使用自上往下的设计模型,开发员将整个程序结构映射到单个小部分。
已定义的函数或相似函数的集合在单个模块或字模块中编码,这意味着,代码能够更有效的载入存储器,模块能在其它程序中再利用。
模块单独测试之后,与其它模块整合起来形成整个程序组织。
程序流程遵循简单的层次化模型,采用“for”、“while”等循环结构。
几乎任何语言都能使用结构化程序设计技术来避免非结构化语言的通常陷阱。
非结构化程序设计必须依赖于开发人员避免结构问题,从而导致程序组织较差。
大多数现代过程式语言都鼓励结构化程序设计。
结构化设计主要有两种图形工具:结构图和层次图。
结构图和层次图基本上是大同小异,都是用来描述软件结构的图形工具,图中设有很多方框,一个方框就代表一个模块,框内注明模块的名字或主要功能;方框之间的箭头(或直线)用来表示模块的调用关系。
二者描述重点不一样。
1.结构图结构图主要描述软件结构中模块之间的调用关系和信息传递问题。
基本成分有模块、调用和数据。
软件工程 结构化方法
软件工程结构化方法
结构化方法是软件工程中最早出现的方法之一,它的目的是通过分解和组合来设计复杂系统。
结构化方法主要是针对大型软件系统的开发而设计的,它的核心思想是通过分解系统为若干个子系统和模块,然后通过建立模块之间的接口关系来实现系统的集成和控制。
结构化方法主要包括以下几个方面:
1. 层次化设计:将一个大系统分解为若干个子系统和模块,每个子系统和模块都是一个逐步细化和精化的层次结构,直到每个模块都可以被独立设计和实现。
2. 完整性:每个模块必须具备独立性、完整性和可重用性。
3. 模块化设计:模块化是指将系统功能划分为若干个模块,每个模块完成一项特定的功能,模块之间通过数据和控制信息交换进行互联。
4. 结构化程序设计:结构化程序设计是一种良好的程序结构体系,它以序列结构、选择结构和循环结构为主体,避免使用无限制的分支语句,从而提高程序可读性和可维护性。
总的来说,结构化方法是一种将复杂系统分解为若干个简单模块的设计方法,它可以提高软件设计的可维护性、可重用性和可扩展性。
但是,随着软件开发技术
的进步和发展,其他种类的设计方法也逐渐出现,使得软件设计变得更加灵活和多样化。