全国2010年7月自学考试复变函数与积分变换试题

合集下载

复变函数与积分变换2010上卷A及答案

复变函数与积分变换2010上卷A及答案

中南大学考试试卷2009-- 2010学年二学期 时间110分钟课程: 复变函数与积分变换 考试形式:闭卷 专业年级: 工程数学08级 总分100分,占总评成绩 70 %注:此页不作答题纸,请将答案写在答题纸上 一、选择题:(5×4')1、函数),(),()(y x iv y x u z f +=在点00iy x z +=处连续的充要条件是( ) A. ),(y x u 在),(00y x 处连续; B. ),(y x v 在),(00y x 处连续; C. ),(y x u 和),(y x v 在),(00y x 处连续;D. ),(),(y x v y x u +在),(00y x 处连续. 2.函数),(),()(y x iv y x u z f +=在点0z 处解析,则命题( )不成立. A. ),(y x u 和),(y x v 仅在0z 处可微且满足C-R 条件.B. 存在点0z 的某一邻域)(0z U ,),(y x u 和),(y x v 在)(0z U 内满足C-R 条件;C. ),(y x u 和),(y x v 在)(0z U 内可微;D. B 与C 同时成立.3. 函数)(z f 在单连通域B 内解析是函数)(z f 沿B 内任一闭曲线C 的积分0)(=⎰Cdz z f 的( ).A. 充分条件;B.必要条件;C. 充分必要条件;D.既非充分条件也非必要条件. 4. 幂级数∑∞=0)(cos n n z in 的收敛半径是( ).A.1;B.2;C.e ;D.e1.5.1=z 是函数11-z e的( ).A.一级极点;B.二级极点;C.可去奇点;D.本性奇点.二、解答下列各题:(8×10')1、试求下列函数的极限: (1)zz iz +→1lim; (2)11lim1--+-→z z z z z z ;2、下列函数何处可导?何处解析?(1)i y x z f 3332)(+=; (2)xshy i xchy z f cos sin )(+=; 3、计算积分1|:|,)1( cos 5>=-⎰r z C dz z zC π。

复变函数与积分变换2010A答案

复变函数与积分变换2010A答案
A和B部分函数C和函数D调和函数
6)题目六:0是 的:(C)
A孤立奇点B本性奇点C零点D原点
7)题目七:级数 :(C)
A绝对收敛B条件收敛C发散D既不收敛又不发散
二、填空题(每小题2分七小题共14分)
1)题目一:复数-8i的三次单位根是 、、 。(2i)
2)题目二: 。( )
3)题目三:函数 的C-R方程是 。
6)题目六:若函数在D内的朗洛展开式中不含 的负幂项,则 是 的可去奇点。(T)
7)题目七:积分 给出了函数 的拉普拉斯变换.( F )
共页第页
四、计算题(每题5分五小题共25分)
1)题目一:已知调和函数 。求其共轭调和函数 。
2)题目二:计算
3)题目三:求函数 在 的留数。
4)题目四:求函数 的傅立叶变换。
4)题目四:设 在简单正向曲线C及其所围的区域D内出处解析且 ,那么 。
5)题目五:级数 的收敛半径是。
6)题目六:函数 在 解析,则 是 的m阶零点的充分必要条件是 。
7)题目七:傅立叶变换 的逆变换是。
三、判断题判断下面各题叙述的正误。正确在后面括号里用T标记,错误的用F标记(每小题1分七小题共7分)。
1)题目一:两个复数乘积的模和辐角分别等于两复数模与辐角的乘积。(F)
2)题目二:函数 不仅在 可导,则必然在 解析。( F )
3)题目三:函数 在定义域内一点 可导的充分条件是 和 在点 可微且满足C-R方程。(F)
4)题目四:若级数 在 处收敛,则该级数对任意 的z都绝对收敛。( T )
5)题目五: 是 的m阶极点的充分必要条件是 。(T)

5)题目五:求正弦函数 的复频函数(其中k为任意复数)。
共页第页

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。

2.-8i得三个单根分别为:、、。

3.Lnz在得区域内连续。

4.得解极域为:ﻩﻩﻩﻩﻩ。

5.得导数ﻩﻩﻩﻩﻩ。

6. ﻩﻩ。

7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。

8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。

9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。

10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。

二、(10分)已知、求函数使函数为解析函数、且f(0)=0。

三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。

五、(10分)求函数在以下各圆环内得罗朗展式。

1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。

八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。

复变函数考试题及答案自考

复变函数考试题及答案自考

复变函数考试题及答案自考一、选择题(每题2分,共20分)1. 下列哪个选项是复数z = 3 + 4i的共轭复数?A. 3 - 4iB. -3 + 4iC. -3 - 4iD. 3 + 4i答案:A2. 如果复变函数f(z)在点z₀处解析,那么它的导数f'(z₀)等于:A. 极限lim(Δz→0) [f(z₀ + Δz) - f(z₀)] / ΔzB. f(z₀)的实部C. f(z₀)的虚部D. f(z₀)的模答案:A3. Cauchy积分定理适用于:A. 仅在实数域B. 仅在复平面上的简单闭合曲线C. 仅在复平面上的开区域D. 所有以上情况答案:C4. 如果一个复变函数在某区域内除了一个孤立奇点外处处解析,那么这个函数在该区域内:A. 一定有原函数B. 一定没有原函数C. 可能是周期函数D. 以上都不对答案:A5. 复变函数f(z) = u(x, y) + iv(x, y)中,u和v分别表示:A. 实部和虚部B. 模和辐角C. 辐角和模D. 都不对答案:A6. 以下哪个是复变函数的柯西-黎曼方程?A. ∂u/∂x = ∂v/∂yB. ∂u/∂y = -∂v/∂xC. ∂u/∂x = ∂v/∂yD. ∂u/∂y = ∂v/∂x答案:B7. 复变函数的级数展开式中的系数是:A. 常数B. 复数C. 实数D. 以上都不对答案:B8. 如果一个复变函数在某个区域内处处连续,那么它的模:A. 也必定处处连续B. 可能不连续C. 必定不连续D. 以上都不对答案:A9. 复变函数的Taylor级数展开是关于:A. 模的展开B. 辐角的展开C. z的展开D. 共轭复数的展开答案:C10. 下列哪个是复变函数的Laurent级数展开的一个特性?A. 它只能展开在解析函数上B. 它包含负幂项C. 它只能展开在奇点附近D. 以上都是答案:B二、填空题(每题3分,共30分)11. 复数z = 2 - 3i的模是________。

2010年全国自考复变函数与积……2

2010年全国自考复变函数与积……2

2010年全国自考复变函数与积分变换模拟试卷(十)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.A. AB. BC. CD. D答案:D2.A. z=0B. z=1C. z=-1D. 无奇点答案:A3.A. |z|<1B. |z|>1C. |z|=1D. 不确定答案:A4. 复数-1+i的模是()A. AB. BC. CD. D 答案:D5.A. 0B. 1C. eD. 1/e 答案:D6.A. 1B. 2C. 3D. 4答案:C7.A. AB. BC. CD. D答案:D8.A. 0B. 1C. 2D. 6πi 答案:D9.A. 绝对收敛B. 收敛C. 发散D. 不能确定答案:A10.A. δ(t)costB. δ(t)-costC. δ(t)(1-sint)D. δ(t)-sint答案:D二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1. 题中横线处答案为:___答案:2. 题中横线处答案为:___答案:3. 题中横线处答案为:___答案:4. 题中横线处答案为:___答案:5. 题中横线处的答案为:___答案:6πi6. 题中横线处答案为:___答案:三、计算题(本大题共8小题,共52分)1.答案:2. 已知F(ω)=π[δ(ω+ω0)+δ(ω-ω0)]为函数f(t)的傅氏变换,求f(t).答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:四、综合题(下列3个小题中,第1题必做,第2、3题中只选做一题。

每小题8分,共16分)1.答案:2.答案:3.答案:。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

自考复变函数与积分变换试题试卷真题

自考复变函数与积分变换试题试卷真题

复变函数与积分变换试题一、单项选择题(本大题共15小题,每小题2分,共30分)1.z=2-2i ,|z 2|=( )A.2B.8C.4D.82.复数方程z=cost+isint 的曲线是( )A.直线B.圆周C.椭圆D.双曲线3.Re(e 2x+iy )=( )A.e 2xB.e yC.e 2x cosyD.e 2x siny4.下列集合为有界单连通区域的是( )A.0<|z-3|<2B.Rez>3C.|z+a|<1D.π≤<πargz 215.设f(z)=x 3-3xy 2+(ax 2y-y 3)i 在Z 平面上解析,则a=( )A.-3B.1C.2D.36.若f(z)=u(x ,y)+iv(x ,y)在Z 平面上解析,v(x,y)=e x (ycosy+xsiny),则u(x ,y)=()A.e x (ycosy-xsiny)B.e x (xcosy-xsiny)C.e x (ycosy-ysiny)D.e x (xcosy-ysiny) 7.⎰=-3|i z |zdz =( )A.0B.2πC.πiD.2πi 8.⎰=---11212z z sinzdz |z |=( ) A.0 B.2πisin1C.2πsin1D.1sin 21i π9.⎰302dz zcosz =( ) A.21sin9 B.21cos9 C.cos9D.sin9 10.若f(z)=tgz ,则Res[f(z),2π ]=( ) A.-2πB.-πC.-1D.0 11.f(z)=2i)z(z cosz -在z=1处泰勒展开式的收敛半径是( ) A.0B.1C.2D.3 12.z=0为函数cosz 1的( ) A.本性奇点B.极点C.可去奇点D.解析点 13.f(z)=)z )(z (121--在0<|z-2|<1内的罗朗展开式是( ) A.∑∞=-01n n n z )( B.∑∞=-021n n z )z ( C.∑∞=-02n n )z ( D.∑∞=---0121n n n )z ()(14.线性变换ω=iz z i +-( ) A.将上半平面Imz>0映射为上半平面Im ω>0B.将上半平面Imz>0映射为单位圆|ω|<1C.将单位圆|z|<1映射为上半平面Im ω>0D.将单位圆|z|<1映射为单位圆|ω|<115.函数f(t)=t 的傅氏变换J [f(t)]为( )A.δ(ω)B.2πi δ(ω)C.2πi δ'(ω)D.δ'(ω)二、填空题(本大题共5小题,每小题2分,共10分)16.若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.17.若cosz=0,则z=________.18.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 19.幂级数∑∞=1n n n z n !n 的收敛半径是________.20.线性映射ω=z 是关于________的对称变换.三、计算题(本大题共8小题,每小题5分,共40分)21.计算复数z=327-的值.22.已知调和函数v=arctg xy ,x>0,求f ′(z),并将它表示成z 的函数形式. 23.设f(z)=x 2+axy+by 2+i(-x 2+2xy+y 2)为解析函数,试确定a ,b 的值.24.求积分I=⎰+C dz z i 的22值,其中C :|z|=4为正向. 25.求积分I=⎰+C zdz )i z (e 的42值,其中C :|z|=2为正向. 26.利用留数计算积分I=⎰C zsinzdz ,其中C 为正向圆周|z|=1. 27.将函数f(z)=ln(3+z)展开为z 的泰勒级数.28.将函数f(z)=()22+z z 在圆环域0<|z|<2内展开为罗朗级数. 四、综合题(下列3个小题中,第29小题必做,第30、31小题中只选做一题。

高等教育自学考试-复变函数与积分变换试题与答案-课程代码

高等教育自学考试-复变函数与积分变换试题与答案-课程代码

全国2010年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.arg(-1+i 3)=( ) A.-3π B.3π C.π23 D.π23+2n π 2.w =|z |2在z =0( )A.不连续B.可导C.不可导D.解析3.设z =x +iy ,则下列函数为解析函数的是( )A.f (z )=x 2-y 2+i 2xyB.f (z )=x -iyC.f (z )=x +i 2yD.f (z )=2x +iy 4.设C 为由z =-1到z =l 的上半圆周|z |=1,则⎰C z z d ||=( ) A.2πiB.0C.1D.2 5.设C 为正向圆周|z |=1,则⎰-C z z z )2(d =( ) A.-πiB.0C.πiD.2πi 6.设C 为正向圆周|z |=2,则⎰-C izi z z e 3)(d z =( )A.0B.e -1C.2πiD.-πe -1i7.z =0是3sin z z的极点,其阶数为( )A.1B.2C.3D.48.以z=0为本性奇点的函数是( ) A.z z sin B.2)1(1-z z C.z 1e D.1e 1-z9.设f (z )的罗朗展开式为-11)1(22---z z +(z -1)+2(z -l)2+…+n (z -1)n +…则Res[f (z ),1]=() A.-2 B.-1C.1D.210.设z =a 为解析函数f (z )的m 阶零点,则函数)()(z f z f '在z =a 的留数为( )A.-mB.-m +lC.m -1D.m二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.|z -i |=|z -1|的图形是_______________.12.设z =i i ,则Im z =_______________.13.设C 为由点z =-l-i 到点z =l+i 的直线段,则⎰C z 3d z =_______________.14.设C 是顶点为z=±21,z=±i 56的菱形的正向边界,则⎰-C i z e 2dz=______________.15.设C 为正向圆周|z|=1,则⎰C z cos z d z =_________.16.函数21-z 在点z =4的泰勒级数的收敛半径为_________.三、计算题(本大题共8小题,共52分)17.设z =x +iy ,求复数11+-z z 的实部与虚部.(6分)18.求复数i 8-4i 25+i 的模.(6分)19.求f (z )=(z -1)2e z 在z =1的泰勒展开式.(6分)20.求f (z )=)2)(1(2--z z 在圆环域1<|z|<2内的罗朗展开式.(6分) 21.求解方程cos z =2.(7分)22.设z =x +iy ,试证v (x ,y )=x 2+2xy -y 2为调和函数,并求解析函数f (z )=u (x ,y )+iv (x ,y ).(7分)23.设C 为正向圆周|z-2|=1,求⎰-C z z z 2)2(e d z .(7分) 24.设C 为正向圆周|z|=1,求⎰C z1sin d z .(7分) 四、综合题(下列3个小题中,第25题必做,第26、27题中只选做一题。

全国自学考试复变函数与积分变换试题

全国自学考试复变函数与积分变换试题

全国2011年4月自学考试复变函数与积分变换试题1做试题,没答案?上自考365,网校名师为你详细解答!全国2011年4月自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3πB.6π C.3π D.23π 2.w=z 2将Z 平面上的实轴映射为W 平面的( ) A.非负实轴 B.实轴 C.上半虚轴 D.虚轴 3.下列说法正确的是( ) A.ln z 的定义域为 z>0 B.|sin z|≤1 C.e z ≠0 D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n C sin zdz z ⎰=2π i ,则整数n 为( )A.-1B.0C.1D.25.设C 为正向圆周|z|=2,则2Czdz z ⎰=( ) A.-2πi B.0 C.2πi D.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( ) A.-3i 36πB.3i 36π7.设nn n 0a z∞=∑nn n 0b z∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )全国2011年4月自学考试复变函数与积分变换试题2A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( )A.|z|<1B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z ,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15! 10.整数k≠0,则Res[cot kz, π]=( ) A.-1kB.0C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分) 请在每小题的空格中填上正确答案。

复变函数与积分变换考试题

复变函数与积分变换考试题

[试题分类]:复变函数与积分变换[题型]:单选[分数]:2分1.复数 3 – 2i的虚部为()。

A. 3B.– 2iC.– 2D.–i[答案]:C2.算式(3 – 2i) – (–1 + i) 的值等于()。

A. 4 –iB. 4 – 3iC. 2 –iD. 2 – 3i[答案]:B3.算式(–1 + i)2的值等于()。

A. –2iB. 2 – 2iC. 2D. 2i[答案]:A4.算式的值等于()A.B.C.D.[答案]:D5.已知z1和z2 是两个复数,以下关于共轭复数运算的式子()是正确的。

A.B.C.D.[答案]:A6.方程组的解为()。

A.B.C.D.[答案]:B7. 复数的三角表示式为()。

A.B.C.D.[答案]:D8.复数z的主辐角在()上不连续。

A. 负实轴B. 正实轴C. 原点及负实轴D. 原点及正实轴[答案]:C9. 复数的三角表示式为()。

A.B.C.D.[答案]:D10. 的值等于()。

A.8iB.–8iC. 8D.–8[答案]:B11. 圆周方程的复数形式为()。

A.B.C.D.[答案]:A12.复数的模等于()。

A.13B.49C.7D.[答案]:C13.复数6 – 8i的模等于()。

A. 10B.–10C.D. 100[答案]:A14.复数2 + 3i的主辐角()。

A.B.C.D.[答案]:B15.复数–4 + 6i的主辐角()。

A.B.C.D.[答案]:D16.复数–1 – 2i的主辐角()。

A.B.C.D.[答案]:B17.复数 1 – 2i的主辐角()。

A.B.C.D.[答案]:C18.以下式子中,不正确的是()。

(注:Re表示实部,Im表示虚部)A.2i > 0B.| 2i | > 1C.Re (2i) = 0D.Re (2i) < Im (2i)[答案]:A19.以下()不是方程的根。

A.B.C. 2D. –2[答案]:C20. 以下复数中只有()是方程的根。

(完整版)复变函数与积分变换习题答案

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。

(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。

全国自学考试复变函数与积分变换试题

全国自学考试复变函数与积分变换试题

全国2011年4月自学考试复变函数与积分变换试题1做试题,没答案?上自考365,网校名师为你详细解答!全国2011年4月自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3πB.6π C.3π D.23π 2.w=z 2将Z 平面上的实轴映射为W 平面的( ) A.非负实轴 B.实轴 C.上半虚轴 D.虚轴 3.下列说法正确的是( ) A.ln z 的定义域为 z>0 B.|sin z|≤1 C.e z ≠0 D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n C sin zdz z ⎰=2π i ,则整数n 为( )A.-1B.0C.1D.25.设C 为正向圆周|z|=2,则2Czdz z ⎰=( ) A.-2πi B.0 C.2πi D.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( ) A.-3i 36πB.3i 36π7.设nn n 0a z∞=∑nn n 0b z∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )全国2011年4月自学考试复变函数与积分变换试题2A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( )A.|z|<1B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z ,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15! 10.整数k≠0,则Res[cot kz, π]=( ) A.-1kB.0C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分) 请在每小题的空格中填上正确答案。

复变函数及积分变换试题及答案

复变函数及积分变换试题及答案

第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。

A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。

2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。

A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。

A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。

A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。

A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。

A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。

A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。

(完整版)《复变函数》考试试题与答案各种总结

(完整版)《复变函数》考试试题与答案各种总结

《复变函数》考试试题(一)一、 判断题(20分):1.若f (z)在z 0的某个邻域内可导,则函数f(z )在z 0解析. ( )2.有界整函数必在整个复平面为常数。

( ) 3。

若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6。

若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。

( ) 7。

若)(lim 0z f z z →存在且有限,则z 0是函数f (z)的可去奇点. ( )8。

若函数f (z )在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠。

( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10.若函数f(z )在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数。

( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2。

=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________。

5。

幂级数0n n nz ∞=∑的收敛半径为__________。

6.若函数f (z )在整个平面上处处解析,则称它是__________。

7。

若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8。

=)0,(Re n zz e s ________,其中n 为自然数。

9. zz sin 的孤立奇点为________ .10。

全国高等教育自学考试复变函数与积分变换真题与答案

全国高等教育自学考试复变函数与积分变换真题与答案

全国2011年4月高等教育自学考试复变函数与积分变换试题课程代码:02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3π B.6πC.3πD.23π2.w=z 2将Z 平面上的实轴映射为W 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴3.下列说法正确的是( )A.ln z 的定义域为 z>0B.|sin z|≤1C.e z ≠0D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n Csin zdz z ⎰=2π i ,则整数n 为( )A.-1B.0C.1D.2 5.设C 为正向圆周|z|=2,则2Czdz z ⎰=( )A.-2πiB.0C.2πiD.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( )A.-3i 36π B.3i 36π7.设nn n 0a z∞=∑n n n 0b z ∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( ) A.|z|<1 B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15!10.整数k≠0,则Res[cot kz, π]=( ) A.-1k B.0 C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

复变函数及积分变换试卷及答案

复变函数及积分变换试卷及答案

«复变函数与积分变换»期末试题〔A〕一.填空题〔每题3分,共计15分〕1.231i-的幅角是〔〕;2.)1(iLn+-的主值是〔〕;3.211)(zzf+=,=)0()5(f〔〕;4.0=z是4sinzzz-的〔〕极点;5.zzf1)(=,=∞]),([Re zf s〔〕;二.选择题〔每题3分,共计15分〕1.解析函数),(),()(yxivyxuzf+=的导函数为〔〕;〔A〕yxiuuzf+=')(;〔B〕yxiuuzf-=')(;〔C〕yxivuzf+=')(;〔D〕xyivuzf+=')(.2.C是正向圆周3=z,如果函数=)(zf〔〕,那么0d)(=⎰C zzf.〔A〕23-z;〔B〕2)1(3--zz;〔C〕2)2()1(3--zz;〔D〕2)2(3-z. 3.如果级数∑∞=1nnnzc在2=z点收敛,那么级数在〔A 〕2-=z 点条件收敛 ; 〔B 〕i z 2=点绝对收敛;〔C 〕i z+=1点绝对收敛; 〔D 〕i z 21+=点一定发散.4.以下结论正确的选项是( )〔A 〕如果函数)(z f 在0z 点可导,那么)(z f 在0z 点一定解析; (B)如果)(z f 在C 所围成的区域解析,那么0)(=⎰Cdz z f〔C 〕如果0)(=⎰Cdz z f ,那么函数)(z f 在C 所围成的区域一定解析;〔D 〕函数),(),()(y x iv y x u z f +=在区域解析的充分必要条件是),(y x u 、),(y x v 在该区域均为调和函数.5.以下结论不正确的选项是〔 〕.(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞三.按要求完成以下各题〔每题10分,共计40分〕〔1〕设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a〔2〕.计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;〔3〕计算⎰=++3342215d )2()1(z z z z z〔4〕函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩大复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、〔此题14分〕将函数)1(1)(2-=z z z f 在以下区域展开成罗朗级数; 〔1〕110<-<z ,〔2〕10<<z ,〔3〕∞<<z 1五.〔此题10分〕用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、〔此题6分〕求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题〔A 〕答案及评分标准一.填空题〔每题3分,共计15分〕1.231i -的幅角是〔 2,1,0,23±±=+-k k ππ〕;2.)1(i Ln +-的主值是〔 i 432ln 21π+ 〕; 3.211)(z z f +=,=)0()5(f 〔 0 〕,4.0=z 是4sin z zz -的〔 一级 〕极点;5. zz f 1)(=,=∞]),([Re z f s 〔-1 〕; 二.选择题〔每题4分,共24分〕1.解析函数),(),()(y x iv y x u z f +=的导函数为〔B 〕;〔A 〕 y x iu u z f +=')(; 〔B 〕y x iu u z f -=')(;〔C 〕y x iv u z f +=')(; 〔D 〕x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f 〔 D 〕,那么0d )(=⎰Cz z f .〔A 〕23-z ; 〔B 〕2)1(3--z z ; 〔C 〕2)2()1(3--z z ; 〔D 〕2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,那么级数在〔C 〕〔A 〕2-=z 点条件收敛 ; 〔B 〕i z 2=点绝对收敛;〔C 〕i z+=1点绝对收敛; 〔D 〕i z 21+=点一定发散.4.以下结论正确的选项是( B )〔A 〕如果函数)(z f 在0z 点可导,那么)(z f 在0z 点一定解析; (B)如果)(z f 在C 所围成的区域解析,那么0)(=⎰Cdz z f〔C 〕如果0)(=⎰Cdz z f ,那么函数)(z f 在C 所围成的区域一定解析;〔D 〕函数),(),()(y x iv y x u z f +=在区域解析的充分必要条件是),(y x u 、),(y x v 在该区域均为调和函数.5.以下结论不正确的选项是〔 D 〕.的可去奇点;为、zA 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、zC 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成以下各题〔每题10分,共40分〕〔1〕.设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 中国自考人()——700门自考课程 永久免费、完整 在线学习 快快加入我们吧!
全国2010年7月自学考试复变函数与积分变换试题
课程代码:02199
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.arg =+i i
3( ) A.-3π B.-3π
+2πk ,(k =0,±1,±2) C.3π D.3π
+2πk ,(k =0,±1,±2)
2.设D ={z |0<|z +2i |2},则D 为( )
A.有界单连通区域
B.有界多连通区域
C.无界单连通区域
D.无界多连通区域
3.ln(-4-3i )=( )
A.ln5+i (-π+arctg 43)
B.ln5+i (π+arctg 43
)
C.ln5+i (-π+arctg 34
) D.ln5+i (π+arctg 34
)
4.设f (z )=u (x ,y )+iv (x ,y ),(z =x +iy ,z 0=x 0+iy 0),则ib a z f z z +=→)(lim 0
的充要条件是(
) A.a y x u y x y x =→),
(lim ),(),(00 B.b y x v y x y x =→),(lim )
,(),(00 C.a y x u y x y x =→),(lim ),(),(00或b y x v y x y x =→),(
lim ),(),(00 D.a y x u y x y x =→),(lim ),(),(00且b y x v y x y x =→),(lim )
,(),(00 5.
⎰=-2
||3cos z dz i z z =( ) A.0 B.1
C.2π
D.2πi
第 2 页 6.
⎰=1|| z z dz z
e =( ) A.0
B.1
C.2π
D.2πi 7.幂级数∑∞=122n n n nz 的收敛半径是( )
A.2
B.3
C.4
D.5 8.Res[tg πz ,
21]=( ) A.-
π2 B.-π1 C.π1 D.π
2 9.分式线性映射ω=
z 2将单位圆内部|z |<1映射成( ) A.|ω|<1
B.|ω|<2
C.|ω|>2
D.|ω|>1
10.函数f (t )=cos t sin t 的傅氏变换
为( A.)]2()2([2
π--+ωδωδ B.)]2()2([2π-++ωδωδ C.)]2()2([2π--+ωδωδi D.)]2()2([2
π-++ωδωδi 二、填空题(本大题共6小题,每小题2分,共12分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

11.方程z 3-1=0根的三角表示式z k =________________.
12.若函数ω=f (z )________________,则称函数ω=f (z )在点z 0处解析.
13.=+⎰+dz z i )13(20________________.
14.z =0是函数)4(cos 22+=z z z
ω的孤立奇点,且孤立奇点的类型是________________. 15.=]0,1sin [s Re 2z
z ________________. 16.将z =∞,i 和0分别对应0=ω,i 和∞的分式线性映射=ω________________.
三、计算题(本大题共8小题,共52分)
17.(本题6分)用cos θ与sin θ表示sin4θ.
第 3 页
18.(本题6分)已知z 0≠时22y x y x u ++=
为调和函数,求解析函数f (z )=u +iv 的导数)(z f ',并将它表示成z 的函数形
式. 19.(本题6分)设f (z )=x 2-y 2-3y +i (axy +3x )在复平面上解析,试确定a 的值.
20.(本题6分)计算积分I =⎰
C dz z z Re ,其中C 为连接由点0到点1+i 的直线段. 21.(本题7分)计算积分I=⎰-+-C dz z z z 22)1(1
2,其中C 为正向圆周|z|=2.
22.(本题7分)将函数2
31)(-=z z f 在z =2处展开为泰勒级数. 23.(本题7分)将函数)1)(2(5
2)(22+-+-=z z z z z f 在圆环域1<|z |<2内展开为罗朗级数.
24.(本题7分)利用留数计算积分I =⎰+-C dz z z )1()1(12
2,其中C 为正向圆周x 2+y 2=2(x +y ). 四、综合题(本大题共3小题,第25小题必做,第26、27小题只选做一题,两题都做,以26小题计分。

每小题8
分,共16分)
25.(1)求)4)(1()(22++=z z e z f iz
在上半平面内的所有孤立奇点;
(2)求f (z )在以上各孤立奇点的留数;
(3)利用以上结果计算I =dx x x x
)4)(1(cos 220++⎰+∞.
26.设Z 平面上区域D:0<arg z <2
π,试求下列保角映射: (1)ω1=f 1(z )把D 映射成W 1平面上区域D 1:Im ω1>0;
(2)ω2=f 2(ω1)把D 1映射成W 2平面上区域D 2:|ω2|<1,并且满足f 2(i )=0;
(3)ω=f 3(ω2)把D 2映射成W 平面上区域D 3:|ω-i|<2;
(4)综合以上三步,求保角映射ω=f (z )把D 映射成D 3:|ω-i|<2.
27.(1)求e -t 的拉氏变换;
(2)设F(p)= [y(t)],其中函数,y(t)三阶可导
,
存在,
且y (0)=y '(0)=0)0(=''y ,求; (3)利用拉氏变换,求解常微分方程初值问题:
第 4 页 ⎪⎩
⎪⎨⎧=''='==+'+''+'''-0)0()0()0(633y y y e y y y y t
中国自考人()——改写昨日遗憾 创造美好明天!用科学方法牢记知识点顺利通过考试!。

相关文档
最新文档